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ABSTRACT

Neuropathic pain is a chronic pain syndrome associated with drug, injury or disease-induced

destruction of sensory afferent fibers of the dorsal root ganglia (DRG). Although the exact

underlying mechanisms involved in its pathogenesis is not known, pro-inflammatory

cytokines, such as tumor necrosis factor-alpha (TNF-cr), is recognized as a principle

modulator in the early development of neuropathic pain through inducing sensory neuronal

apoptosis via the mitogen-activated protein kinases (MAPKs) pathway. The results of this

study demonstrate a transient upregulation of TNF-o expression within bilateral DRG

following unilateral sciatic nerve axotomy. Peak TNF-cr expression is shown to occur within

the first 7 days post-axotomy, which normalizes to baseline level by day 14. During the first

week post-axotomy, the identified transient upregulation of TNF-c is associated with a

switch in source production from satellite cells to sensory neurons. Our results indicate that

peripheral nerve injury triggers the integral production of TNF-c¿ within the DRG

representing a novel mechanism for axotomy-induced neuropathic pain.

KEY WORDS

DRQ neuropathic pain, sciatic nerve axotomy, cytokines, TNF-cr, sensory neurons, satellite

cells
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1. BACKGROUND

Neuropathic pain occurs in approximately lo/o of the population (Stacey 2005). It constitutes

approximately 25-50% of all pain clinic visits (Verma et al. 2005). Characteristic clinical

presentations of neuropathic pain includes sensory abnormalities such as the feeling of pins

and needles, buming, shooting and/or stabbing pain with or without throbbing and numbness

(Jensen et al. 2001; Namaka et al. 2004). Although the etiology of neuropathic pain has been

extensively studied, the exact underlying mechanism involved in its pathogenesis is still not

known. Irrespective, it is recognized as a ch¡onic pain syndrome associated with drug, injury

or disease-induced destruction of sensory afferent fibers of the dorsal root ganglia (DRG).

Various drugs have been associated with the development of neuropathic pain. For example,

drugs such as isoniazid, ethambutol, ethionamide, nitrofurantoin, itraconazole, metronidazol,

vinca alkaloids, perhexiline, hydrallazine, methaqualon, indomethacin, chloroquine,

phenytoin, as well as interferon-alpha, statins, cisplatin, suramin, and tacrolimus have all

been reported to be associated as potential causative agents involved in neuropathic pain

(Argov and Mastaglia 1979; Peltier and Russell 2002;Yardizer et al.2003; Chong et al. 2004;

Pratt and Weimer 2005; Singh and Cundy 2005). In addition, heavy metals and alcohol have

also been reported to cause neuropathic pain (Koike et al. 2001; Rubens et al. 2001; Eaton

and Qian 2002; Hoffrnan 2003).

Physical injury is another com.mon cause of neuropathic pain. For example, automobile

accidents, falls, surgeries, and sports-related injuries associated partial or complete nerve



damage (severed, crushed, compressed, or stretched) have all been linked to the development

of chronic neuropathic pain syndromes (Elman and McCluskey 2004; Sarkies 2004; Harden

2005; Nienhuijs et al. 2005).

Fufthermore, a variety of diseases, such as acquired immunodeficiency syndrome (AIDS),

diabetes, herpes zoster, Guillain-Barre syndrome, and multiple sclerosis (MS), have also been

associated with induction of neuropathic pain (Moulin 1998; Lilie and Wassilew 2003;Lopez

eI al. 2004; Aaron et al. 2005; Kelkar 2005; Lewis 2005).

Irrespective of its cause, disruption of sensory homeostatic mechanisms in the DRG of the

peripheral nervous system (PNS) is recognized as a common target involved in ch¡onic

neuropathic pain.

I.I DRG

DRG are sensory ganglia that lie within the vertebral column immediately adjacent to the

spinal cord (Kandel l99l). The DRG house a variety of distinct non-neuronal and neuronal

cell types (Devor 1999; Verge et al. 2004; Zerbont et al. 2005; Kelm et al. 2006).

1 .l.l Microglia/Macroglia

In general, there are two major classes of non-neuronal cells integral to the structure and

function of DRG which include microglia and macroglia (Ono et al. 1999; Abbadie et al.

2003;Lam et al. 2003).



Specifically, the microglia are phagocytes that become mobilized in case of injury infection

or disease (Carson eL al. 2004). Phagocytes defend the host through non-specific immune

response mechanisms. The main functions of phagocytes are to ingest and digest invading

microorganisms (Beers 1999). Phagocles include a variety of cell types such as neutrophils,

monocytes (in the blood) and macrophages (in the tissues) (Kasama et al. 2005). Widely

distributed, macrophages are strategically situated at the interfaces between tissues and blood

where they recognize and bind to foreign substances to the body. The protective mechanism

by which macrophages exert their effect is attributed to their ability to express major

histocompatibility complex II (MHC II ). MHC II expression on the surface of macrophages

plays a critical role in recognizing foreign antigens that enter the body (Hu and Mclachlan

2003). As a result, they are considered as antigen presenting cells (APCs) that are essential to

immune system activation (Bomstein et al. 2003). Macrophages have been identified within

the DRG by the presence of EBM-11 and Leu-M3 on their cells surface (Graus et al. 1990).

Macrophages have been subdivided into several main morphological subtypes that include:

ramifîed, ameboid, and bipolar phenotypes (Hutchins eT al. 1992; Williams et al. 1992;

Roggendorf et al. 1996). Positionally within the DRG macrophages are often located

between the macroglial cells such as satellite cells that can also function as APCs (Fenzi et al.

200 l).

1.1.2 Satellite cells

Satellite cells are small macroglial cells that display a flat appearance localized in close

proximity to the circumference of sensory neurons. The mean diameter of satellite cells



located in rat DRG is approxim aTely 7 .2-7 .5pm (Cecchini et al. 1999). They provide nutritive

support to the neurons and other cell types housed within the DRG in paracrine fashion, by

secreting neurotrophic factors such as nerve growth factor (NGF) and neurotrophin-3 (NT-3)

essential for their survival (Jongsma Wallin et al. 2001 ; Dodge et al. 2002; Liu et al, 2002).In

addition to their morphological characteristics and positional distribution around sensory

neurons, the satellite cells can also be identified by the presence of distinct

immunohistochemical markers, such as glial fibrillary acidic protein (GFAP) (Peters et al.

2005), and 5-100 (Gonzalez-Martinez et al. 2003). Besides their sustaining and nutritive

function within DRG, satellite cells also express MHC II, thereby providing a protective

function as APC. Specif,rcally, satellite cells are known to protect sensory neurons from

pathogenic invasion of various bacteria and viruses (Graus et al. 1990). In addition to satellite

cells, other macroglial cells also located within the DRG include fibroblasts and Schwann

cells.

1.1.3 Fibroblasts

Fibroblasts represent another fype of macroglial cell type found within the DRG. Analogous

to satellite cells, these connective cells lie interneuronally within DRG. Morphologically, they

are flat in appearance and present many hillocks on their cell bodies (Kandel l99l), with

diameter of their cell bodies approximately 10-20¡rm (van Dorp et al. 1990). Fibroblasts are

involved in collagen production used to form the fibrillar matrix of connective tissue, thereby

providing firmness and structural support to the DRG (Yang et al. 1999). Similar to satellite

cells, hbroblasts also sustain, suppof, and protect sensory neurons by producing various



nutritive substances, such as: brain-derived neurotrophic factor (BDNF), NGF, and basic

fibroblast gowth factor (bFGF) (Frim et at. 1993; Zhou ef al. 1999; Jin et al. 2002; Líu et al.

2003), that are essential for the survival and maintenance of the neurons housed within DRG

Besides their morphological characteristics, fibroblasts can be identified using

immunohistochemistry that recognize specifrc markers expressed on their cell surface, such

as vimentin and fibronectin (Dubovy eT al. 2002; Conrad et al. 2005).

1.1.4 Schwann cells

Schwann cells represent the third major class of macroglial cells found within the DRG

These cells wrap along the length of a single neuronal axon in a three-dimension-spiral

fashion, the resultant myelin sheath is essential for electrical nerve impulse transmission and

propagation that govems normal bodily functions (Oguievetskaia 2005). Each Schwann cell

makes up a single segment of a neuronal axon's myelin sheath (Kingsley 1999). The intervals

between the segments of myelin, which is about lmm long, are termed the nodes of Ranvier

(Poliak and Peles 2003; Sherman and Brophy 2005). The thickness and presence or absence

of the myelin coating largely depends on the subtype of sensory neuron from which axons

evolve (Tjen et al. 2005). Similar to satellite cells and fibroblasts, Schwarur cells are also

important supporting cells of sensory neurons housed within DRG. They secrete

neurotrophins, such as: NGF, NT-3, NT-4 (Frostick et al. 1998; Hansen et al. 2001; Hiroi et al.

2005), and other substances, such as: insulin-like growth factors, platelet derived growth

factor (Eccleston et al. 1993; Fushimi and Shirabe 2004), that are integral to the survival of

sensory neurons. Schwann cells can be identified through the use of several well known



immunohistochemical markers that include: 5-100, fast blue, and cellular prion protein

(Bergers eT al. 2002; Dedkov et aL.2002; Ford et a\.2002).

1.I.5 Sensory neurons

Morphologically, the sensory neurons within the DRG are composed of cell body, dendrites,

and axon (Kandel 1991). Sensory neurons are pseudo-unipolar neurons that have a peripheral

and a central projection. The peripheral projection connects to skin, muscle, or joints, while

the central projection enters the spinal cord at the dorsal tip of the dorsal horn (Martin 2003).

The peripheral and central projections of DRG neurons are called primary afferent fibers.

These afferent fibers convey a variety of different sensory modalities from the external

environment, such as: touch, pain, temperature, proprioception, and vibration, to the DRG

and eventually relay these information centrally for higher order processing (McGraw et al.

2005).

DRG neurons have been classified according to various methods that include: neuronal

diameter, axonal diameter, presence or absence of myelin, as well as electrical impulses

conduction velocity (Windebank et al. 1985; Djouhri et al. 2003).

There are th¡ee main subpopulations of primary afferent fibers of DRG neurons: Ap, Aõ, and

C. AP fibers are thick myelinated nerve fibers of large-sized neurons (soma diameter>45¡rm)

that convey non-noxious, low intensity mechanical stimulus sensory information at an

accelerated rate of 35-120m/s. Aõ fibers are thinly myelinated nerve fibers of smaller-sized



neurons (soma diameter:30-45pm) that have a intermediate conduction velocity of 5-30m/s.

C fibers are unmyelinated nerve fibers of smallest-sized neurons (soma diameter<3Opm)

which have the slowest conduction velocity of 0.5-2mls (Kandel l99l; Lawson2002; Fang et

aL.2005; Ma and LaMotte 2005).

All three types of afferent fibers are able to convey non-nociceptive information, but only Aô

and C fibers are able to convey nociceptive information. Ap fibers predominantly transmit

fast impulses, including touch, movement, vibration, and pressure, Aô and C fibers are

responsible for slower impulses and pain transmission (Fang et al. 2005). The sensory

neurons that give rise to Aô and C fibers comprise approximately 70% of all neurons within

the DRG (Snider and McMahon 1998). Both Aõ and C fibers transmit noxious mechanical,

chemical, and thermal stimuli, the main difference between them is that C fibers are

unmyelinated, Aô fibers are myelinated, as a result, pain transmitted by Aô fibers is clinically

described as very sharp and well localized, while C f,rbers pain is dull and poorly localized

(Narhi er. al. 1992; Ngassapa I 996).

DRG neurons have also been subdivided according to their own inherent specificity for

various neurotrophic factors. Neurotrophins are a family of peptides that regulate the growth,

proliferation, differentiation, and survival of DRG neurons. NGR BDNR NT-3, and NT-4 are

several examples of such neurotrophins, however, glial cell line-derived neurotrophic factor

(GDNF) represents a non-neurotrophic factor utilized by select neuronal subpopulations

(Paves and Saarma 1997;Wang et al. 2003).



At present, there are six main subtypes of neurotrophin specific DRG neurons that have been

identified: tyrosine kinase A (trkA)/ìt{GF, tyrosine kinase B (trkB)/BDNF, trkB/NIT-415,

tyrosine kinase C (trkC)AIT-3, ReVGDNF, and P2X3IATP dependent neurons (Vulchanova et

al. 1998; Karchewski etal. 1999; Josephson et al. 2001).

l. 1.5. 1 TrhA/NGF dependent neurons

Some neurons within DRG are predominately responsive to NGF. This process is usually

mediated by a high affiniry trkA receptor and a low affinily P75 receptor (Canoll et al. 1992;

Murray and Cheema 2003). The interaction of NGF with the complex of trkA/P75 results in

the high affrnity binding of NGF essential for signaling and other biological activity

(Canossa et al. 1996). The NGF responsive neurons are usually small to medium soma

diameter neurons, with size less than 30pm (Shu and Mendell 2001). As a result, the sensory

afferent fibers that project from these sensory neurons are often unmyelinated or thinly

myelinated (Silos-Santiago et al. 1995), which correspond to C and Aõ hbers, respectively.

Hence, TrkA/NGF dependent DRG neurons convey nociceptive sensory information, such as:

thermal and mechanical information, and display characteristic immunohistochemical

markers such as: calcitonin gene related peptide (CGRP), and substance P (SP), which are

known nociceptive neurotransmitters (Lawson et al. 1996; Pezet et al. 1999). For instance,

following peripheral nerve ligation, the number of trkA./NGF responsive neurons in the DRG

slowly declined during the first three weeks, which was followed by a full recovery at two

months (Shen et al. 1999). The early decrease of trkA/NGF responsive neurons number is

likely due to deprivation of target-derived NGF caused by nerve ligation. The subsequent



recovery might either be because alternative sources of NGF become available or

neurogenesis occurs (Namaka et al. 2001). The predominant effects of nerve ligation on

trkAA{GF responsive neurons are not surprising as these are the neurons responsible for the

transmission of nociceptive information induced by ligation. This evidence indicates that

although trkAAtrGF neurons in the DRG initially adapt themselves to survive in response to

injury, the initial protection may trigger downstream events involved in the development of

injury-induced chronic pain syndromes due to the preferential loss ofAõ and C fibers.

|.1.5.2 TrkB/BDNF and trkB/NT-4/5 dependent neurons

Both BDNF and NT4/5 responsive neurons bind to high affinity trkB receptors, as well as

low affinity P75 receptors to exert their maximal biological effects (Kalb 2005; Williams et

al. 2005). TrkB positive neurons in DRG are predominately medium-sized, ranging in size

from 25¡rm to 40¡rm in soma diameter (Mu et al. 1993). They usually possess thinly

myelinated afferent fibers, which are also termed Aô fibers (Mu et al. 1993). These afferent

fibers convey nociceptive information, such as sharp and well-localized pain from the

periphery to the CNS (Kandel l99l). Approximalely 50% of the TrkB dependent neurons

show immunoreactivity for neuropeptide Y (NPY) (Gorba and Wahle 1999). Interestingly,

following a focal crush injury of the sciatic nerve, trkB responsive neurons survive

throughout the post-injury time course (Sebert and Shooter 1993), suggesting that trkB

responsive neurons are less prone to the damaging effects induced by peripheral nerve injury.

In fact, injury induces these neurons to s1'nthesize BDNF within the DRG which may assist

in the survival and maintenance of themselves.



l. 1.5.3 TrkC/NT-3 dependent neurons

A¡other main subpopulation of DRG neurons includes that of the NT-3 responsive subtype'

which predominantly requires NT-3 for survival, development, and maintenance (Lefcort et

al. 1996). This particular subpopulation is composed of the neuronal cells that range in soma

diameter from medium (25-40¡rm) to large (>40pm) (Mu et al. 1993). Axonal projections

from these sensory neurons are often thickly myelinated AB and Aô afferent fibers (Kandel

l99l). NT-3 is considered to bind to the high affinity trkC receptor and the low affinity P75

receptor to exert its maximal biological effects (Friedman and Greene 1999; Zaccaro et al.

2001). However, Wright and Snider reported in 1995 ThatPT5 is coexpressed in only 50o/o of

trkC responsive neurons, suggesting a potential new sensory neuronal subtype characterized

by trkC dependence and P75 independence (Wright and Snider 1995). Additional research

into this area is required before any definite conclusion can be drawn. TTkCAIT-3 dependent

neurons show immunoreactivify for the ionotropic purine receptors PZX4,P2X5, and P2X6

(Kobayashi et al. 2005), and transient receptor potential vanilloid ion channels subfamily

member 2 (TRPV2) (Tamura et al. 2005). TrkCA{T-3 dependent neurons usually convey

non-nociceptive, rapidly transmitted sensory information, such as: touch, proprioception,

pressure, and vibration (Kandel l99l). Confirmation of their functions has been obtained

from study on trkC-def,rcient mice that have displayed abnormal movements consistent with

loss of proprioception (Barbacid 1994). Another in vivo study demonstrated that after

unilateral dorsal root rhizotomy in cat, the number of trkC/NT-3 dependent neurons (t57pm)

in the DRG decreases, while the number of small size neurons (<42pm) signifìcantly

increases (Li et al. 2000). However, the same group of scientists reported conflicting results

t0



stating that the number of large trkCÆrlT-3 dependent neurons (57-l00pm) increases

following peripheral injury (Ni et al.200l). Against this confusion, other researchers have

shown that NT-3 expression is not even detected either in intact or nerve injured rat DRG

(Shen et al. 1999), indicating a lack of injury-induced response on this specific sensory

neuronal phenotype. Although there are conflicting findings of these studies, in general, large

diameter ftkcn\iT-3 dependent neurons are predominantly unaffected by injury (Frisen et al.

1993; Liebl et al. 2001; Cui et al.2002).

l. 1.5.4 ReI/GDNF dependent neurons

The DRG also contains another neuronal subtype identified by the presence of GDNF

receptor and trk receptor: Ret (Zihlmann et al. 2005). The ReIGDNF dependent sensory

neurons predominately have cell bodies in small to medium diameter (<25pm), and thereby

transmit nociceptive sensory information (Honda et al. 1999). Their corresponding axons are

usually unmyelinated or thinly myelinated, but are uniquely different from the previously

described trkA responsive neurons (Leitner et al. 1999). GDNF is not a member of the

neurotrophin family, but a member of the transforming growth factor (TGF) super family

(Chiang et al. 2005). However, analogous to neurotrophins, GDNF must bind to a high

affinity receptor GDNFR to form a complex and then interacts with Ret to exert its maximal

biological effects (Treanor et al. 1996; Klein et al. 1997; Sanicola et al. 1997). The

Ret/GDNF dependent neurons are known to be immunoreactive for isolectin 84 (IB4), as

well as anenzpe called thiamine monophosphatase (TMP) (Berurett et al. 1998).

ll



In 1998, Bar et ai reported that higher levels of GDNF were found in DRG axotomized from

the spinal cord than in post-mortem control DRG. As a result, this neuronal subtype doesn't

appear to be very affected by injury to the same degree as the TrkA/NGF responsive neurons.

In addition, GDNF immunostaining was seen in Schwann cells and in DRG neurons,

especially of small and medium size cells, while that of Ret was restricted to DRG neurons

and axons, with no significant changes in numbers of positive DRG neurons after injury (Bar

et al. 1998). These findings suggest that the ReIGDNF dependent neurons may be

self-supported in autocrine fashion in case ofperipheral injury instead ofrelying on central or

peripheral target for neurotrophic support.

l. l.5.5 P2X3/ATP dependent neurons

This subpopulation of DRG neurons contains thr adenosine 5'-triphosphate (ATP) receptor,

PZX3. The P2X3IAIP dependent neurons in the DRG are predominately small sized

(<25pm), and their axons correspond to C fibers, which are involved in nociceptive

information transmission (Novakovic et al. 1999; Kage et al. 2002). Approximately 40Yo of

neuronal profiles in normal rats DRG areP2X3/H1P responsive (Vulchanova et al. 1998),

most of them are also GDNF sensitive (Ramer et al.200l).PzXyNfP responsive neurons

show immunoreactivity to neurofilament (Petruska et al. 2000). P2X3IATP responsive

neurons usually convey pain information from periphery to CNS, therefore, to selectively

block the P2X3 receptor might be significant in achieving pain relief (Honore et al. 2002).

Immunohistochemical studies indicate that the number of P2X3/ATP positive neurons in rat

DRG is increased following neuropathic injury induced by chronic constriction of the sciatic
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nerve (Novakovic et al. 1999). Other studies, however, indicate that levels of P2X3 receptor

expression were decreased in ipsilateral DRG after peripheral axotomy in the rat (Bradbury

et al. 1998; Kage et al. 2002).Interestingly, it was also shown that GDNF may completely

reverse axotomy-induced downregulation of the P2X3 receptor (Bradbury et al. 1998),

implying that the expression of P2X3 receptor in DRG after peripheral injury can be

regulated by other factors.

It has already been identified that the approximate percentages of human adult DRG neurons

expressing p75, trkA, trkB, trkC or Ret is 57%o, 460/0, 29yo, 24%o and 79o/o, respectively

(Josephson et al. 2001). Another quantitative in situ hybridization study in human adult

shows a slightly different distribution of neuronal subtypes: 79o/o, 4lo/o, 33yo, 43o/o for p75,

trkA, trkB, trkC, respectively (Karchewski et al. 1999). Co-localization studies reveal that

approximately l0% of DRG neurons co-express trkA and trkB mRNA, l9o^ co-express trkA

and trkC nRNA, and l8% co-express trkB and trkC mRNA, while tri-localization of all th¡ee

trk mRNAs is approximaTely 3-4o/o of neurons in the DRG (Karchewski et al. 1999). The

obvious overlap among the neuronal subtypes may serve to inherently protect the sensory

neurons by allowing them to change neurotrophic dependence in response to injury in order

to minimize neuronal loss. This unique ability identifies the extreme plasticify of DRG

neuronal cells.

Besides these major classif,ications of DRG sensory neurons, there are other newfound

categones that include non-peptide-expressing neurons and P-neurons (Acosta et al. 2001;
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Priestley et al. 2002). Non-peptide-expressing neurons are small sized, immunoreactive for

vanilloid receptor I (VRl), and usually convey thermal nociceptive information (Priestley et

al.2002). P-neurons are small diameter in soma, projecting unmyelinated fibers (Acosta et al.

2001). They are immunoactive to neurofilament of 200kDa, and neither NT:3 nor BDNF

influence their survival during embryonic and postnatal stages, respectively (Acosta et al.

2001). Most interestingly, embryonic P-neurons require NGF, but not bFGF, while postnatal

P-neurons need bFGF but not NGF for survival in vitro (Acosta et al. 2001). This trophic

switch during different early developmental stages is unique to that of DRG neuronal

subpopulations.

1.2 Pain transmission

1.2.1 Pain processing loop

Painful stimuli from periphery are transmitted via sensory afferent f,rbers (Aô and C fibers) to

a collection of sensory neuron cell bodies within DRG The nociceptive afferent impulses

received by the DRG are then transmitted centrally via dorsal roots to the main pain

processing areas of the spinal cord in the superf,rcial laminae I and II. The afferent impulse

is then relayed centrally via the ascending pathways, including spinothalamic tract (STT),

spinoreticular tract (SRT), and spinomesencephalic tract (SMT), for higher order processing.

The pain processing center (mainly cortex) then activates descending pain-control pathways

to release various neurotransmitters such as norepinephrine (NE), serotonin (5-HT),

endo¡phin, NPY and gamma-aminobufyric acid (GABA), which trigger a complex cascade

of interactions that ultimately inhibit the excitatory transmission that originated at the level of
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spinal cord (Przewlocki and Przewlocka 2001;Moran et al. 2004). Overall, the net result is

the formation of an entire pain-processing loop driven by nociceptive afferent fiber input that

is eventually suppressed by a descending antinociceptive ouþut (Millan 1999; Namaka et al.

2004)

7 .2.2 As cending pathv,ays

Incoming peripheral afferent fibers enter the spinal cord via the DRG where they synapse in

the dorsal horn. The sensory information is then conveyed via various ascending pathways

for higher order processing in the brain. Specifically, the non-nociceptive sensory

information is transmitted through the dorsal colum¡-medial lemniscal system, while noxious

information is mediated through the anterolateral system (Kandel l99l; Saade et al.2002).

There are three major pathways of the anterolateral system: STT, SRT, and SMT (Lynn 1992;

Mense 2004).

STT is the most important and mostly studied pathway. It is the major ascending pathway

relaying specific information as to the intensity, location, duration, rate, and quality of the

noxious stimuli (Willis 1985; Zhang and Giesler 2005). Both Aô and C fibers mainly project

in the superficial dorsal horn at lamina I (marginal zone) and lamina II (substantia

gelatinosa) (Dubuisson 1989). Pain information from lamina I and II is then transmitted

to interneurons in deeper laminae of the spinal cord (Tavares and Líma 2002). The axons of

these interneurons in deeper laminae cross the midline and ascend all the way to the thalamus

and cortex in the ante¡olateral quadrant ofthe contralateral halfofthe spinal cord for higher
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order processing (Ralston and Ralston 1992).

Besides STT, there are SRT and SMT, which are also involved in pain transmission (Mense

2004). SRT originate primarily in laminaVIl and VIil of the spinal cord (Willis 1985). They

terminate in the brain stem reticular formation, and further project to many areas of the brain,

including the hypothalamus and the thalamus (Willis and Westlund 1997). SRT relays

nociceptive information contributing to the motivational and affective responses aspects of

pain (Chapman et al. 1985). SMT neurons originate in lamina I , N, and V in the dorsal

horn of the spinal cord (Wiberg and Blomqvist 1984; Fleetwood-Walker et al. 1988). They

terminate in the midbrain (Lyrm 1992). SMT plays a critical role in relaying and integrating

nociceptive information that produce affective and aversive behaviors such as fear (Yezierski

and Broton l99l). Activation of these ascending pain pathways subsequently activate the

descending inhibitory pathways which produce endogenous analgesia.

1.2.3 Descending pathways

There are five major descending pathways have been identified, corticospinal, rubrospinal,

reticulospinal, vestibulospinal, and tectospinal tract (ten Donkelaar 2000; Chen et al. 2002;

Pettersson and Perfiliev 2002).

The corticospinal tract is the largest and most important descending pathway (Kandel l99l;

Canedo 1997). The neurons of the corticospinal tract originate from the cerebral coftex

(Coonan et al.200l; Cincotta et al.2003). As the tract descends, the corticospinal tract is
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divided into two bundles, approximate 90o/o of the fibers traverse the medulla within a

well-defined pyramidal tract, decussates within several fascicles at the spinomedullary

junction, and extends down the spinal cord in a compact bundle in the dorsal funiculus

(Stanfield 1991; Joosten et al. 1992). The remaining l0% of the descending fibers continue to

descend ipsilaterally without decussation (Armand and Kuypers 1980). Most corticospinal

tract axons terminated in laminall and L of cervical segments of the spinal cord (Yang and

Lemon 2003).

The rubrospinal tract neurons have their cell bodies in the red nucleus, which is an

encapsulated cell group situated in the tegmentum of the midbrain (Munay and Gurule 1979;

Kwon et al. 2004). Their fibres decussate immediately on leaving the red nucleus and

descend through the pons, medulla and spinal cord as the tract descends (Wild eT al. 1979;

Raineteau et al. 2002), and further terminate on interneurons in laminaV and Vi through

the entire length of the spinal cord (Kuchler et al. 2002).

The reticulospinal tract neurons can be divided to two subgroups, one has the cell bodies in

the pontine reticular formation, while another group of neurons has their cell bodies in the

medullary reticular formation (Sholomenko and O'Donovan 1995). The fibres from the pons

descend in the pontine reticulospinal tract, and are mainly ipsilateral, terminating in laminaVll

and V[ of the spinal cord (Matsuyama et al. 1999). The fibres from the medulla descend in

the medullary reticulospinal tract, and are both ipsilateral and contralateral, terminating

among the gray matter in laminaV-VII (Peneault et al. 1993; Takakusaki et al.1994).
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The vestibulospinal tract neurons have their cell bodies in the vestibular nuclei situated in the

pons (Nathan et al. 1996; Boyle and Johanson 2003). There are two subgroups of the neurons.

Some neurons have their cell bodies in lateral vestibular nuclei, whose axons descend the

length of the spinal cord ipsilaterally without decussation, and enter laminaeVll and VII of

the anterior horn (Kuze et al. 1999; Tellegen et al. 2001). Other neurons have their cell bodies

in the medial vestibular nuclei, with axons descending ipsilaterally only to cervical levels,

terminating mainly in laminaVll-X (Shinoda ef al. 1989; 1992; Shinoda et al. 2005)

The tectospinal tract neurons have their cell bodies in the tectum. Their fibers mostly

decussate just caudally to their origin in the midbrain, and descend through the midbrain,

pons and medulla, terminating on medially placed interneurons within the cervical spinal

cord (Dicke 1999).

The descending pathways inhibit ascending pain transmission at the level of spinal cord via

ionic and neurotransmitter mechanisms (Holmes and Fujimoto 1994; Bruce et al. 2002;

Hasue et al. 2004; Namaka et al. 2004). In either case, ion channels are altered as to their

number and location for the sole purpose of downregulating the states of neuronal

hyperexcitability (Pasero 2004; Dobremez et al. 2005). Both ionic and neurotransmitter

mechanisms play a crucial role in the underlying pathophysiology of neuropathic pain.

1.3 Pathophysiologt

The pathophysiological mechanisms involved in neuropathic pain are not completely
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understood but are considered to be complex, multifactoral, and to evolve over time (Chevlen

et al. 2005). Current studies indicate that the cellular changes results from ionic and

neurotransmitter mechanisms contribute to the pathogenesis of neuropathic pain (Neale et al.

200s).

1.3.1 lonic mechanism

Neuronal hyperexcitability is the hallmark cellular characteristic of neuropathic pain (Jensen

2002). Neuronal hyperexcitability is produced by increased excitation and/or decreased

inhibition, which result from changes of ion permeability (Jen et al. 2005). Ions such as

sodium (Na*), calciurn (Cu'*), potassium (K*), and chloride (C1-) are involved in altering the

cellular membrane potential (Busse et al. 2005; Shin et al. 2005). During an event of drug-,

disease-, or injury-induced damage or destruction of perípheral nerve, neuronal cells become

excited and Na* channels start to open, resulting in an influx of Na* into the cell, and

subsequently trigger an influx of Ca2* via reversal of the Na*-Ca2* exchanger, which funher

alters the existing electrolyte concentration gradients (Fung 2000; Okuyama et al. 2000;

Brown et al. 2001; Wolf et al. 2001). This depolanzing response will result in K* channels

being opened, the K* efflux begins to counteract the influx of positive ions (Na* and Ca2*),

bringing the membrane potential back toward the original resting state (Bhattacharjee and

Kaczmarek 2005). Hence, any defects in the homeostatic regulation of these ions may lead to

enhanced states of neuronal hyperexcitability.
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I .3.2 Neurotransmitter mec hanis m

In conjunction with the ionic mechanism, neurotransmitters play a key role in the

development of neuronal hyperexcitability. During the resting state, there is a balance

existing between excitatory and inhibitory neurotransmitters (Dickenson et al. 1997).

Glutamate, a widely studied excitatory neurotransmitter, exerts its excitatory effects by its

ability to bind to two major ionotropic receptors, alpha-amino-3-hydroxy-5-

methylisoxazole- -propionic acid (AMPA) and N-methyl-D-aspartate (NMDA), on the

cellular membrane (Bames and Slevin 2003). During a triggering event, released glutamate is

able to bind to both AMPA and NMDA receptors, which are involved in the opening of Na*

and Caz* chan¡rels. The influx of these cations results in an excitatory depolanzng response

of the neuronal cell (Martinez-Sanchez et al. 2004). Besides ionotropic receptors, there are

three groups of G-protein-coupled metabotropic glutamate receptors (mGluR) that modulate

neuronal excitability (Meldrum 2000). mGluRs can be further subdivided into eight subtypes

(mGluRl-8) based on sequence homologies, mechanisms of signal transduction as well as

pharmacological characteristics (Ritzen et al. 2005). Group I mGluRs consists of mGluRl

and 5, group II consists of mGluR2 and 3, while grouplll includes mGluR4, 6, 7, 8 (Dolan

et al. 2004; Guo and Ikeda 2005). In general, group I mGluRs mediate excitatory effects,

whereas group II and III decrease synaptic transmission and usually induce inhibitory

effects on neuronal excitation (Lanneau ef al. 2002; Yang and Gereau 2003; Chen et al. 2005;

Chen and Pan 2005). Regardless the different roles that mGluR subtypes play in the

development of neuronal hyperexcitability, glutamate is generally recognized an excitatory

neurotransmitter.
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In contrast, inhibitory neurotransmitters such as GABA attempt to restore the normal balance

between excitation and inhibition (Ferraro and Sardo 2004). GABA participates in the

inhibition of neuronal hyperexcitability through interaction with GABAa and GABAB

receptors on the cellular surface (Johnston et al.200l). The binding of GABA to GABA4

receptors produces fast synaptic inhibition through the opening of Cl- channels, the influx of

anions into the cell suppresses cellular excitation (Hevers and Luddens 1998). GABA can

also bind to GABA3 receptors to exert its inhibitory effect. The interaction of GABA with

GABAB receptors works through a G-protein-coupled receptor to facilitate the opening of K*

channels and the closure of Caz* channels (Fearon eL al. 2003; Richman et al. 2004). Both

events result in the production of a more negative membrane potential, resulting in an

inhibitory response.

Additionally, endorphins, enkephalins, dynorphins, NE, 5-HT, and NPY are also known to be

inhibitory neurotransmitters (Delgado 2004; Holden et al. 2005; Li et al. 2005). Therefore,

activation of descending pathways that release these types of anti-nociceptive

neurotransmitters suppresses incoming neuronal hyperexcitability at the dorsal hom level of

the spinal cord.

Many drugs that effectively treat neuropathic pain, such as opioids and antidepressants,

mimic the action of the inhibitory transmitter system associated with the descending

antinociceptive pathways, to produce analgesia (Brown and Bottomley 1990; Advokat 1993).

For example, tricyclic antidepressants (TCAs) are believed to alleviate neuropathic pain
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predominately through blocking the reuptake of anti-nociceptive neurotransmitters, such as

NE and 5-Hl in the CNS descending pathways from which they are released (Barkin and

Fawcett 2000). As a result, TCAs have been extensively used in the treatment of a variety of

neuropathic pain disorders, and are considered first-line agents in the pharmacologic

management of neuropathic pain (Hemstreet and Lapointe 2001; Namaka et al. 2004; Saarto

and Wiffen 2005).

Although effective pharmacologic therapy is available to assist in the management of

neuropathic pain, current therapy is still inadequate at alleviating pain (Dray 2004). At best,

current treatment strategies only reduce pain to a tolerable level (Namaka et al. 2004). The

lack of effective therapeutic agents for neuropathic pain is due to the fact that its underlying

pathophysiological mechanisms are still not fully understood.

However, recent studies indicate that the transmission of the nociceptive and antinociceptive

information depends upon the activation of cell signaling pathways of inflammatory

responses, which are orchestrated by cytokines (White et al. 2005).

1.4 Cytokines

C¡okines are soluble proteins or glycoproteins that were originally described to mediate

activatíon of the immune system and inflammatory responses (Sommer 2001). Cytokines are

secreted by T:cells and a variety of other cells including those in the nervous system

(Moalem et aL.2004). They are usually produced in response to local stimuli, such as injury,
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the presence of antigens or endotoxins, or the transduction of signals provided by other

cy'tokines (Cunha et al. 2000). Cytokines can be divided into two subgroups:

pro-inflammatory and anti-inflammatory cytokines. In order to maintain homeostasis, a

dynamic balance must be struck between pro- and anti-inflammatory cytokines (Milligan et

al. 2005). Upregulation of pro-inflammatory cytokines may result in excess inflammation,

which may further cause a variety of diseases, as in the case of neuropathic pain (Ma and

Quirion 2005). Inhibition of pro-inflarnmatory cfiokines, either by synthesis inhibitors,

inhibitors of cleavage from the cell membrane, by direct antagonists, or by antibodies,

reduces pain and hyperalgesia in most models studied (Urban 2000; Sommer 2001; Wijnker

et al.2004; Kopp et al. 2005).

The major pro-inflammatory cytokines that are thought to be involved in pathogenesis of

neuropathic pain include interleukin-lZ (IL-12), interferon-gamma (IFN-y), and tumor

necrosis factor-alpha (TNF-o) (Ji and Strichartz 2004; Vikman et al. 2003; Verri et al. 2005).

1.4.1 IL-12

IL-12 is produced by macrophages and dendritic cells in response to antigenic stimulation

(Ehlers et al. 2005). It is a heterodimer of 70kDa that is composed of p35 and p40 subunits

(Constantinescu et aI.2005). IL-12 primarily stimulates natural killer(NK) cells and naïve T

cells, leading naive T cells to differentiate toward the type I T helper (Thl) cells

(Pagenstecher et al. 2000). Both NK and Thl cells subsequently produce IFN-y and TNF-o

for the development of the inflammatory response involved in nociceptive information
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transmission (Marcenaro et al. 2005; Nath et al. 2005).IL-12 binds to two IL-12 receptors,

pl and p2, to exert its effect on NK and T cells (Ireland et al. 2005). Antibody against IL-12

is reportedly able to inhibit the neuroimmuno response that induced by IL-12 (Bright et al.

1 998).

r.4.2IFN-y

IFN-y is a l7-kDa polypeptide produced mainly by Thl cells, NK cells, monocytes,

macrophages, and neurons in response to the presence of foreign antigens (Yun et al. 2000;

Dorries 2001; Dafny and Yang 2005; Lee et al. 2006). It can be released for extended periods

of time in the CNS and peripheral nervous system (PNS) during inflammatory and infectious

events, and alter synaptic activity in DRG neurons and thereby contribute to neuronal

hyperexcitability (Vikman et al. 2003). IFN-y is known to exert its biological functions by

binding to two receptors, IFN-y receptor I (IFNGRI) and IFN-y receptorll (IFNGR2)

(Schrijver et al. 2004), while its function can be significantly reduced by anti-IFN-y

antibodies (Shaked et al. 2005).

1.4.3 TNF-a

TNF-o is a 17.5 kDa, 157 amino acid protein synthesized and released by different cell types,

including Thl cells, macrophages, Schwann cells, and astrocytes following nerve injury

(Monney et aL. 2002; Ohtori et al. 2004; Gambino et al. 2005).

TNF-cr exerts its effect through two known receptors, the TNF receptor I (TNFRI) and the
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TNF receptor 2 (TNFR2) (George et al. 2005). Most TNF-a biological activity is elicited

through the TNFRI, rather than TNFR2 (Sommer et al. 1998; Holmes ef al. 2004). Following

peripheralnerve injury, expression of TNFRI has been shown to be upregulated on neuronal

cells and non-neuronal cells within DRG while TNFR2 expression occurs exclusively on

non-neuronal cells (Li et al. 2004; Inglis et al. 2005).

In vitro studies show that exogenous TNF-cr in DRG elicits higher and longer-lasting

neuronal discharges in afferent fibers after nerve injury indicating sensitization to

endogenous TNF-a may be essential for the development and maintenance of neuropathic

pain (Schafers et al. 2003). Injection of TNF-a into DRG in vivo induces animals to a state of

allodynia, whereby non-noxious stimuli are perceived as pain. Further, if an injured DRG

was injected, a significantly lower dose of additional TNF-cr is needed to induce allodynia

with an even faster onset (Schafers et al. 2003). Thus, both in vivo and in vitro evidence

imply that injured nerve fibers are sensitized to the excitatory effects of TNF-o.

Following peripheral nerve injury neuronal apoptosis is found to occur within the DRG

(Zhou eT. al. 2005). Recent researches have shown that the neuronal apoptosis can be

suppressed by Ca2* channel antagonists (Kobayashi and Mori 1998). Moreover, Azlse et al

reported that the sensory neuronal apoptosis can be fully blocked by MK-801, a known

NMDA receptor antagonist (Azkue et al. 1998). Based on these findings, apoptosis of

sensory neurons due to PNI may create a central state neuronal hyperexcitability at the level

of spinal cord and thereby activate ascending pain transmission pathways which further result
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in the development of chronic neuropathic pain. Although cell death is known to occur

post-injury current research suggests that TNF-cr may be an integral factor involved in the

injury-induced destruction/apoptosis of sensory neurons housed within the DRG (Robertson

et al. 20Ol). Since death of sensory neurons is already linked to neuropathic pain, TNF-cx

appears to be a viable target for attenuation of this type of chronic pain syndrome.

Downstream effects of TNF-cx in neuronal apoptosis are mediated mainly through the

mitogen-activated protein kinases (MAPKs) and nuclear factor-rB (NF-KB) signaling

parhways (Figure 1, van Vliet et al. 2005). Following peripheral nerve injury TNF-cr binds

to TNFRI, and promotes association of the adaptor protein TNFR-associated death domain

(TRADD), which in turn recruits other proteins such as Fas-associated death domain protein

(FADD), the adaptor protein TNFR-associated factor 2 (TRAF2), and the serine and

th¡eonine protein kinase receptor-interacting protein type 1 (RIPI). All th¡ee MAPK

subgroups, the extracellular signal-regulated kinases (ERKs), the stress-activated c-Jun

N-terminal kinases (JNKs), and the p38 kinases are then activated by TRAF2 and RIPI

(Devin et al. 2003). The activated MAPKs are effrcient inducers of caspase-8, which

subsequently leads to activation of caspase-3 that can cleave multiple cellular proteins,

resulting in apoptosis of neuronal cells (Baud and Karin 2001).

Conversely, at normal physiological concentrations TNF-d may exert neuroprotective

functions within the designated tissues by triggering NF-KB pathway. At normal

physiological conditions, the interaction of TNF-o and TNFRI initiates activation of
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TRADD, TRAF2, and zuPl. Both TRAF2 and RIPI are involved in the activation of NF-rB

by recruiting the inhibitor of rcB kinase (IKK) (Baud and Karin 2001). NF-KB resulrs in

anti-apoptotic response through the induction of cellular inhibitors of apoptosis (cIAPs),

which function as specific caspase inhibitors (Deveraux and Reed 1999).

Increasing evidence implicates dysregulation of TNF-o expression or signaling in the

pathology of many diseases, including rheumatoid arthritis, Crohn's disease, and MS

(Balkwill et al. 2000). Th¡ee TNF-a antagonists, adalimumab (Abbott), infliximab

(Schering-Plough), and etanercept (Amgen), are now licensed by the FDA for clinical use in

rheumatoid arthritis and Crohn's disease (Nestorov 2005). Adalimumab and infliximab are

human anti-TNF-c monoclonal antibodies, while etanercept is a soluble dimeric fusion

protein containing the ligand-binding domain of TNFR2. In consistent with that monotherapy

with antibody against TNF-o reduces hyperalgesia in animal models of neuropathic pain

(Schafers et al. 2001; Sommer et al. 2001), preliminary clinical studies suggest that TNF-cr

antibodies, such as etanercept, are also useful for providing pain relief in patients with

rheumatoid arthritis and cancer-induced neuropathic pain (Tobinick 2003; Flagg et al. 2005).

In addition, infliximab has been found to reduce temporomandibular joint pain in rheumatoid

arthritis (Kopp et al. 2005). Furthermore, there are three drugs have been approved in

immunomodulatory treatment for relapsing-remitting MS (RRMS), including Avonex

(IFN-pla, Biogen), Rebif (lFN-pla, Serono), and Betaseron (IFN-p1b, Berlex) (Vartanian et

aL.2004). These three drugs inhibitThl activities and subsequently suppress the functions of

pro-inflammatory cytokines, such as IL-12, IFN-y, and TNF-cr (sega et al. 2004). They all
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reportedly reduce the frequency of attacks and the progression of chronic pain syndromes in

RRMS (Ryan and Piascik 2002).

Based on the above background information, the DRG is known to have a critical role in the

development of neuropathic pain. Although the exact underlying etiology of neuropathic pain

is still unknown, death of sensory neurons within the DRG leads to its development

(Zimmermann 2001). Death of sensory neurons can occur via d*9, disease, or

injury-induced causes (Fischer et al.200l; Leinninger et aI.2004; Kuo et aI.2005).

Specifrcally, peripheral nerve injuries, such as constriction, crush, ligation, and axotomy,

intemrpt nutritive support obtained for DRG sensory neurons from their respective peripheral

targets (skin, muscle, joints, etc.), and subsequently lead to neuronal death (Zimmennann

2001; Dowdall et al.2005). In addition, following such nerve injuries, inflammatory

cytokines such as TNF-cr are known to be involved in the development of neuropathic pain

through its downstream cell signaling pathways by activating capase 8 and capase 3 that

eventually result in neuronal apoptosis (Baud and Karin 2001; Ji and Stricharrz 2004).

Although TNF-o has also been known to exert beneficial functions at normal physiological

concentrations (Deveraux and Reed 1999), it is assumed that peripheral nerve injury may

trigger an abnormal burst of TNF-cx that facilitates the early developmental cascade of

neuropathic pain (Ji and Strichartz 2004). Henceforth, our current research has focused on

determining the effect that peripheral nerve axotomy has on TNF-cr expression within the

DRG so that we can better understand their involvement in underlying pathogenesis of

neuropathic pain, and thereby provide new avenues for possible therapeutic intervention.
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2. HYPOTHESIS

Sciatic nerve axotomy induces the upregulation of TNF-cr within the DRG

3. AIMS

3.I To determine if TNF-cr is upregulated within the DRG following sciatic nerve axotomy.

3.2To determine the cellular source of TNF-o within the DRG

4. MATBRIALS AND METHODS

A variefy of experimental animal models of neuropathic pain have been developed in the past

decade (Eaton 2003; Gabay and Tal 2004; Erichsen et al. 2005). The most common used

animal models include: the ch¡onic constriction injury, the spinal nerve ligation, the partial

sciatic nerve ligation, the tibial and sural transaction, and the complete sciatic nerve axotomy

(Wall et al. 1979; Bennett and Xie 1988; Seltzer et al. 1990; Kim and Chung 1992; Lee ef al.

2000; Dowdall et al. 2005). In order to obtain robust results, here we deicided to use sciatic

nerve axotomy model which is able to completely disconnect the DRG from its peripheral

neurotrophic sources.

Juvenile, male and female Sprague-Dawley rats (ll days old,30-359 body weight) were

purchased from Central Animal Breeding Facility of the University of Manitoba, and

maintained under temperature controlled conditions (20"C) of an artificial l2 hour lighldark

cycles with food and water ad libitum.In conducting the research described in this report, all

animals received humane care in compliance with the guidelines of the animal care and use
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committee of the University of Manitoba (Animal Protocol number: F02-020), which is in

accordance to the Canadian Council on Animal Care criteria. A total of 24 rats were

randomly divided into th¡ee experimental groups: naive control (n:6), sham (n:6), and

peripheral nerve lesion (PNI, n=12). The PNI group underwent unilateral axotomy of sciatic

nerve after being anesthetized with inhaled isoflurane (Pharmaceutical Parlners of Canada,

Richmond Hill, ON). The transected sciatic nerve was ligated to prevent reinnervation. The

sham group underwent surgery to only expose the sciatic nerve without manipulation or

touching. The naïve control group had no surgical manipulation. Animals were sacrificed at

day 8 or 15 (Table 1). Both ipsilateral and contralateral DRG were harvested for

immunohistochemical and reverse transcriptase-polymerase chain reaction (RT-PCR)

analysis. At the day of tissue harvesting, half amount of the animals underwent

cardiac-perfusion-fixation. The DRG obtained from these animals were designated for

immunohistochemical analysis. The DRG obtained from the remaining animals were rapidly

collected without fixation for RT-PCR purposes (Figure 2).

Table l: Flow chart of tissue harvesting

NaTve control Sham PNI

Number of Animals

Sacrifìced date

6

day 8

6

day 8 day 8 day 15

4.1 Immuno his tochemis try

Double-immunofluorescence staining was conducted according to previously established

methods in order to localize TNF-c¿ expression within the DRG (Namaka et al. 2001)
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4.1.1 Preparation of pre-fix solution

To prepare l00ml pre-fix solution, 0.99 NaCl (Sigma, St. Louis, MO), 0.lg NaNO3 (Fisher,

Fair Lawn, NJ), and 100 ru heparin (Leo, Denmark) were added into 80ml distilled water,

and stirred to dissolve, then qs to l00ml with distilled water.

4.1.2 Preparation offixative solution

4.1.2.1 Preparation of 0.5M phosphate stock solution

To make I liter 0.5M phosphate stock solution, 70.979 of sodium phosphate dibasic

anhydrous (NazHPO¿, MW:141.96, Sigma, St. Louis, MO) was added into 900m1of distilled

water, and warmed to dissolve well, then cooled to room temperature, qs to l000ml (solution

#1). While the initial solution was cooling, a second solution (#2) was prepared by dissolving

17 .339 of sodium phosphate monobasic monohydrate (NaH2PO¿'HzO, MW:137.99, Sigma,

St. Louis, MO) in 200m1 of distilled wate¡ and qs to 250m1. The solution #l was then added

to solution #2 until a pH of 7.4 was achieved. The resultant solution mixture was then stored

at room temperature.

4.1.2.2 Preparation of fixative s olution

To make l00ml fìxative solution, 49 paraformaldehyde (Fisheç Fair Lawn, NJ) was added

into 50ml distilled water, and heated to 65'C while stirring. The solution was then cleared

with l-2 drops of 10N NaOH while cooling to room temperature. 20ml 0.5M phosphate

buffer solution was then added, and filtered with #l filter paper (Whatman, Maidstone,

England). pH was adjusted to 7.0 with 1N HCl, and qs to l00ml with distilled water.
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4.1.3 Preparation of post-fix solution

To make l00ml post-fix solution, l0g sucrose (Boehringer Mannhem, Hawthome, NY) and

0.lg sodium azide (Mallinckrodt, Paris, KY) were added into 80ml fixative solution, and

stirred to dissolve, 4s to l00ml with fixative solution.

4.1.4 Preparation of phosphate buffer saline (PBS)

To make I liter PBS solution, 99 NaCl was dissolved in l00ml distilled water. 200m1 0.5M

phosphate buffer stock solution was then added, qs to l000ml. The solution was filtered with

0.22¡m membrane (Whatman, Maidstone, England), and stored in autoclaved bottle at 4oC.

4.1.5 Preparation of PBS-Triton (PBS-T) solution

To make l00ml PBS-T solution, 0.3m1 Triton X-100 (Sigma, St. Louis, MO) was gently

added into l00ml PBS solution, and stirred to mix well.

4.1.6 Preparation of 51mM Tris-HCl solution

4.1.6.1 Preparation of I M Tris-HCl stock solution

To make 500m1 tM Tris-HCl stock solution, 60.559 Tnzma base (Sigma, St. Louis, MO)

was added into 200m1 distilled water and stirred to dissolve well, 6N HCI was then slowly

added until pH 7 .4 was achieved, be careful when adding HCI close to pH 7 .4 because it may

jump up quickly at that point. qs to 500m1 with distilled water, and stored at room

temperafure.
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4.1.6.2 Preparation of 5)mM Tris-HCl solution

To make 100m1 50mM Tris-HCl solution, 5ml lM Tris-HCl stock solution was added to

95ml distilled water, and stirred to mix well.

4.1.'7 Immunohistochemical staining

Half amount of the animals designated for immunohistochemical analysis underwent

cardiac-perfusion-fìxation using perfusion pump (Cole-Parmer Instrument, Anjou, QC) with

pre-fix followed by fixative solution. DRG were then surgically extracted and immersion

fixated in fixative solution for another I hour. The harvested tissue was subsequently stored

in post-fix solution at 4oC. The L4 DRG was then cryostat sectioned at a lO¡rm thickness and

mounted on frosted slides (Fisher, Fair Lawn, NJ), stored at -20"C. Immunofluorescent

analysis of DRG cryostat sections was conducted to detect the expression of TNF-cr as

previously described (Murata eI al. 2004). In brief, the slides were washed with PBS-T three

times by 20 minutes intervals, and incubated with the mixture of primary antibody against

TNF-cx (1:100, R & D system, Minneapolis, MN), primary antibody against Neun (l:1000,

Chemicon, Temecula, CA), and sheep serum (l:100, Sigma, St. Louis, MO) in 4"C for two

days. The primary antibody against TNF-o localized TNF-cr expression, while Neun labeled

the nuclei of the neurons (Collombet et al. 2006). Following incubation with primary

antibodies, the slides were washed with PBS-T three times, and incubated with the mixture of

secondary antibodies (donkey anti-goat IgG, l:100, Molecular Probes, Eugene, OR; goat

anti-mouse FITC, l:50, Jackson, West Grove, PA) and sheep serum (l:100) at room

temperature for 1.5 hours. As a result, TNF-cr was visualized as red, while the nuclei of the
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sensory neurons were visualized as green under fluorescent microscope. The slides were then

washed with PBS-T once and 50mM Tris-HCl twice. Following the removal of Tris-HCl,

one drop of mounting medium (Vector Labs, Burlingame, CA) was added to the tissue which

was subsequently sealed with a coverslip using nail polish. The slides were stored at -20"C.

An Olympus BX5l fluorescent microscope and Alexa 568 fluorescent cube (Olympus, Japan)

was employed to visualize the double staining. The picture processing and cell measurements

were performed using the software Image Pro Express (Media Cybemetics). The

quantifrcation of TNF-o, positive neurons from each respective section of DRG tissue was

identif,red based on the definitions of TNF-o positive and negative neurons illustrated in

Figure 6.

4.2 RT-PCR

The other half amount of animals designated for RT-PCR analysis were sacrificed by

decapitation following a lethal dose of ketamine (20mgl100g body weight, Bimeda-MTC,

Cambridge, ON) and xylazine (2m!100g body weight, Bayer, Shawnee' KS)' The DRG

were rapidly collected, gathered and frozen in dry ice (Praxair, Wiruripeg, MB), and removed

to -70oC within 60 minutes. RT-PCR was conducted according to previously established

methods in order to determine TNF-cr expression within the DRG (Shen et al. 2003).

4.2.1 Total RNA isolation

Tissue samples were homogenized in I ml Trizol Reagent (Invitrogen, Carlsbad, CA) using a

power homogenizer (Brinkmann, Switzerland). The homogenized samples were then
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incubated at room temperature for 5 minutes to permit the complete dissociation of

nucleoprotein complexes followed by the addition of 0.2 ml of chloroform (Fisher, Fair

Lawn, NJ). Sample tube caps were securely fastened to prevent leakage and sample loss. The

sample tubes were then shaken vigorously by hand for 15 seconds and incubated at room

temperature for 2 to 3 minutes. The samples were then centrifuged at 12,0009 for 15 minutes

at 4"C by using a microcentrifuge (International Equipment, Needham heights, MA).

Following centrifugation, the mixture separates into a lower red, phenol-chloroform phase,

an interphase, and a colorless upper aqueous phase. RNA remains exclusively in the aqueous

phase which is about 60% of the volume. The aqueous phase was extracted and transferred to

a fresh tube where the total RNA was precipitated by mixing with 0.5 ml isopropyl alcohol

(Sigma, St. Louis, MO). The samples were then incubated at room temperature for l0

minutes and centrifuged at 12,0009 for 10 minutes at 4"C. The RNA precipitate, which was

invisible before centrifugation, forms a gel-like pellet on the side and bottom of the tube. The

supernatant was removed, and the RNA pellet was washed once with I ml of 75o/o ethanol

(Fisher, Fair Lawn, NJ). The sample was mixed by vortexing, and centrifuge at 7,5009 for 5

minutes af 4oC. The resultant RNA pellet was then air-dried for l0 minutes. Following this,

the RNA was dissolved in RNase-free water by passing the solution a few times through a

pipette tip, and incubating for l0 minutes at 60oC. At the end of the procedure, the

concentration of total RNA was determined using ultraviolet (IJV) spectrometer (Smart

spectrum 3000, Bio-rad, Hercules, CA). The RNA was then quantitatively diluted to a

concentration of I pglpl with RNase-free water, and subsequently stored in -70'C.
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4.2.2 Reverse transcriptase (RT)

After thawing the total RNA stock solution on ice, to each of lpg RNA (lpl), added lpl

oligo(dT)rz-¡s primers (Beckdon Dickinson, Palo Alto, CA), lpl lOmM deoxl,nucleoside

triphosphate (dNTP) mix (Invitrogen, Carlsbad, CA), and RNase-free water to l2pl. The

resultant mixture was then heated at 65oC for 5 minutes and quickly chilled on ice. The

contents of the tube were then collected by brief centrifugation. Added 4¡rl 5x First-strand

buffer (Invitrogen, Carlsbad, CA), 2pl 0.lM dithiothreitol (DTT, Invitrogen, Carlsbad, CA),

and I pl RNaseOUT recombinant ribonuclease inhibitor (40units/pl, Invitrogen, Carlsbad,

CA), then mixed the contents of the tube gently by a pipette tip and incubate at 37"C for 2

minutes. Added lpl moloney-murine leukemia virus reverse transcriptase (M-MLV RT,

Invitrogen, Carlsbad, CA), and mixed by pipetting. Incubated at 37oC for 50 minutes, and

then inactivated the reaction by heating at70"C for 15 minutes. At the end, 80pl RNase-free

water was added into the tube to make the total volume I00pl. The cDNA was then ready to

be used as a template for polymerase chain reaction (PCR) amplif,rcation.

4.2.3 PCR

4.2.3.1 Design of primers

In PCR amplification, a pair of small pieces of synthetic DNA, that are complementary of the

target sequence, serve as primers. The primers were designed based on the target sequence

published at Genbank (http://www.ncbi.nlm.nih.govlenÍrezlquery.fcgi?db=Nucleotide), using

a software called Oligo 5.0 (Cambio). At the search engine of Genbank, find the

corresponding sequence and copy. Open Oligo 5.0, click 'FileÀ,lew', click 'Edit/Paste' to
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paste the sequence into Oligo. Click 'AcceplDiscard/Accept'. Click 'search/for primers and

probes'. At the window of 'Search./for primers and probes', check all the items except

'compatible with the upper primer', 'compatible with the lower primer', 'sequencing

primers', 'hybndization probes', and 'continue false priming search in other file(s)'. Keep

search mode at 'mark'. Click 'parameters' at the window of 'search for primers and probes'.

At the window of 'search parameters', set search stringency at'very high' and 'automatically

change stringency'. Check 'adjust length to match Tm's', uncheck 'inverse PCR', and set the

parameters as following:

Oligonucleotide length: 20 nt

Acceptable 3'-dimer delta G: -2.OkcaVmol

Maximum length of acceptable dimers: 2 base pairs

3'-terminal nucleotides checked for dimers: 20

3'-terminal stability runge: -6.5 to -9.OkcaVmol

GC clamp stability: -1l.Okcal/mol

Minimum acceptable loop delta G: OcaVmol

Oligo Tm range [45.5 to 82.6]: 54.8 to 73.3"C

Max acceptable false priming eff,rciency: 150 points

At the window of 'search parameters', click 'search ranges'. At the window of 'search

ranges', set 'PCR product length' at 150-400, and leave the other parameters as they are.

Click 'OK' for both windows, the system will perform primer search. At the window of

'search status', hit 'primer pairs'. All the possible primers that match the settings are listed.

Highlight either one of the primers, open up analyzing windows by clicking 'AnalyzelDuplex
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Formation/Upper Primer', 'AnalyzelDuplex Formation /Lower Primer', and

'AnalyzelDuplex Formation/Upper/Lower'. Choose different primers on the list while

keeping the th¡ee analyzíng windows and the window of 'PCR'open. The applicable primers

are selected according to following criteria: l7 -22 bases in length, the percentage of G+C is

less than 600/o, amealing temperature between 50-70oC. Three or more Cs or Gs at the 3' end

of primers, self-complementarity (hairpin structure), and complementarity btween the two

primers at 3' end should be avoided.

4.2.3.2 Preparation of Tris-borate-EDTA €BE) bufer

To prepare I liter TBE buffer, 108g Tris base (Sigma, St. Louis, MO), 55g boric acid (Sigma,

St. Louis, MO), and 9.8g Na2EDTA. 2H2O (Sigma, St. Louis, MO) were added to I liter

water. The solution was heated to dissolve, and stored at room temperature.

4.2.3.3 Preparation of loading bufer

To prepare l00ml loading buffer, 0.2m1 12.5% bromphenol (Sigma, St. Louis, MO), 0.2m1

12.5% xylene cyanole (Sigma, St. Louis, MO), and 259 Ficoll 400 (Sigma, St. Louis, MO)

were dissolved in l00ml water. The solution v/as filtered through 0.4p¡n membrane, and

stored at 4"C.

4.2.3.4 Preparation of Agarose gel

0.7g Agarose (Sigma, St. Louis, MO) was weighed in a bottle. 70ml19/o TBE buffer was then

added. The solution was heated for l:20 in microwave with the cap of the bottle loosen. A
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volume of ethidium bromide solution that equivalent to 35¡rg ethidium bromide (Sigma, St.

Louis, MO) was added. The resultant solution was then poured into elecfrophoresis tray, and

allowed to cool down for I hour with the comb on.

4.2.3.5 Amplification

In order to ensure the tissues are processed correctly, the expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a housekeeping gene found in all

tissues at high level, needed to be detected prior to analyzing the expression of TNF-c.

Added the followin E'to a PCR reaction tube for a final reaction volume of 50p1, using water

as negative control and rat spleen as positive control:

0.5¡lJ Taq DNA polymerase (Qiagen, Hilden, Germany)

10¡rl Q buffer (Qiagen, Hilden, Germany)

5pl PCR l0X buffer (Qiagen, Hilden, Germany)

4pl 50 mM MgCl2 (Qiagen, Hilden, Germany)

lpl l0 mM dNTP (lnvitrogen, Carlsbad, CA)

I pl upper primer for GAPDH (Table 2, Invitrogen, Carlsbad, CA)

lpl lower primer for GAPDH (Table 2, Invitrogen, Carlsbad, CA)

22.5 p,l RNase-free water

5pl cDNA (from the RT reaction)
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Table 2: sequence of GAPDH primers (Genbank number: NMO17008):

Sequence Temperature length

upper 5'TTC TTG TGC ACT GCC AGC CTC GTC 3'

6ooc 2o3bp

lower 5' GCC GTT GAA CTT GCC GTG GGT AGA 3'

Gently mixed the contents and mount the tubes to PCR thermal cycler (Mastercycler,

eppendo{ Westbury NY) for amplification. Since 38 cycles were required for the

amplification, the temperature program was set as following:

l. 95oC 5 minutes

2.95"C I minute

3. 60"C 0.5 minutes

4.72"C 1.5 minutes

repeat the step 2 to step 4 for another 37 cycles

5.72"C 8 minutes

6. Hold at 4"C

Following the amplification finished, the tubes were briefly centrifuged. lOpl PCR products

(double-stranded DNA) and Zp,l loading buffer were gently mixed on wax paper, and loaded

onto lo/o agarose gel that contains O.Spg/ml ethidium bromide. Electrophoresis was run in

TBE buffer for 15 minutes. The agarose gel was viewed under UV light. Photograph was

taken if necessary. Only if the luminosity of the GAPDH bands looked very similar, the

TNF-o assay can be started.
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To determine the expression of TNF-c¿, followed the same procedure but replace the primers

for GAPDH by primers for TNF-a (Table 3, Invitrogen, Carlsbad, CA). Since 32 cycles of

the PCR amplification were required, the temperature program was set as following:

1. 95'C 5 minutes

2.95"C I minutes

3. 59'C 0.5 minutes

4. 72"C 1.5 minutes

repeat the step 2 to step 4 for another 3l cycles

5.72"C 8 minutes

6. Hold at4"C

Table 3: sequence of TNF-o primers (Genbank number: AF329982)

Sequence Temperature length

upper 5'AGC CCA TTT GCC ATT TCA TAC CAG 3'

59oC 247 bp

lower 5'CAC GCCAGT CGC TTC ACA GAG 3'

The photographs were taken with instant camera (DS34, Polaroid), then scaned and

electronically saved. The luminosity of the electrophoresis bands was analyzed by ImageJ

I . 3 4 (Shareware, can be downloaded at http ://rsb. info. nih. gov/ijl downl oad. html).

4.2.3.6 Data analysis using ImageJ

Open ImageJ, impori the picture by clicking 'File/Open'. The picture should be shown as
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white bands on black background. Select all the bands using 'Rectangular Selections' tool.

Hit'Analyze/Gels/Select first lane', and then click 'AnalyzelGels/Plot lanes'. The luminosity

of the bands is converted to curve. Draw a straight line along the bottom of the peaks using

'straight line selections'to make each peak a closed area. Click 'Wand (tracing) tool', select

every individual peak one by one. The value of peak area is shown in a new window. Graph

is made based on the value of area using Excel. In brief, imageJ converts the luminosity of

the bands to a curve. The area under the curve quantifies the relative luminosity of the bands.

Expression of TNF-o was then normalized by comparing the area under the curve of TNF-a

as a ratio to that of endogenous GAPDH.

4.3 Real-time PCR

In order to fully quantifu TNF-cr expression within the DRG, Real-time PCR was performed

using Real-time PCR thermal cycler (Lightcycler, Roche diagnostics, Mannheim, Germany),

with QlAquick PCR purification kit (Qiagen, Hilden, Germany) and Lightcycler FastStart

DNA Master SYBR Green I kit (Roche diagnostics, Mannheim, Germany).

4.3.1 Purification of double-stranded DNA

According to QlAquick PCR purification kit (Qiagen, Hilden, Germany) manufacturer's

instruction, 5 volumes of buffer PB was added to I volume of the TNF-o PCR products. A

QlAquick spin column was placed in a provided 2ml collection tube. The sample was applied

to the QlAquick column and centrifuged for 30 seconds. The flow-th¡ough was discarded.

The QlAquick column was then placed back into the same collection tube. 0.75m1 buffer PE
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was added to the QlAquick column and centrifuged for 30 seconds. The flow-through was

discarded again. The QlAquick column was placeed back in the same collection tube. The

column was centrifuged for an additional I minute. The QlAquick column was then placed in

a clean l.5ml microcentrifuge tube. To elute DNA, 25pl buffer EB was added to the center of

the QlAquick membrane and centrifuged the column for I minute, this step was done twice

to ensure complete elution of bound DNA. The purified double-stranded DNA of TNF-cr was

collected in the l.5ml microcentrifuge fube.

4.3.2 Standard curves

Real-time PCR thermal cycler is programmed to determine the fluorescence of the reaction at

each cycle of the amplification, which is able to fully quantifu the double-stranded DNA

concentrations by making cycle dependent curves. Standard curves represent known

concentrations. The purpose of standard curves is to compare the known concentrations with

the unknown concentration of each tested sample. In detail, the concentration of purified

double-stranded DNA was measured three times using IIV spectrometer, and the average was

calculated. Following equations were applied to make different concentrations of double-

stranded DNA:

Known molecular weight of I base pair (bp) of double-stranded DNA:660Da (Roche

Applied Science Lab FAQs, 2nd edition, Roche Diagnostics, Penzberg, Germany, 2002).

Known Avogadro's number: lg:6.023x1023 Da, lDa:1.660x 10-'o g

Therefore, I bp:660Dax1.660x lO-24 glDa:L 096x10-2r g
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Hence, 1 copy of double-stranded DNA:lengthx l.096x tO-tt g/bp

I copy of TNF-cx double-stranded DNA=2 47 bpxl.096x l}-2t g/5p:2107*10'te g

Since the average concentration obtained from LIV spectrum of TNF-cr double- stranded

DNA is | 12.7 9 pgl ml:l | 2.7 9 xl 0-e g/¡rl.

Therefore, the concentration of TNF-cr double-stranded DNA in copies is:

fiz.:gxrc-e p,lt/-

z 707æ;æ =  'lTxlorr coPies/¡rl

Take2.40¡tl (t0r2copies) above solution, add97.60¡tl PCR gtade water and mix, to make

l0lo copies/pl stock.

Take 1¡rl t0r0 copies/pl, add 99pl PCR grade water and mix, to make 108 copies/pl.

Take t pl 108 copies/¡rl, add 99¡rl PCR grade water and mix, to make l0ó copies/pl.

Take I pl 106 copies/pl, add 99pl PCR grade water and mix, to make l0a copies/pl.

Use PCR grade water as Ocopy/¡r.I.

According to manufacturer's instruction of Lightcycler FastStart DNA Master SYBR Green I

kit (Roche diagnostics, Mannheim, Germany), the "Hot Start" reaction mix was prepared as

described following. One vial 1a containing the Lightcycler FastStart Enzyme and one vial

1b containing the Lightcycler FastStart Reaction Mix SYBR Green I were briefly centrifuged.

A total volume of lOpl was tmsfered from vial la into vial lb. The resultant solution was

gently mixed by pipette. Vial lb was relabled with the new labels provided with the kit (vial

l: Lightcycler FastStart DNA Master SYBR Green I), one for the top of the cap and one for

the side of the vial. The vial was protected from light by wrapping with aluminum foil.
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To obtain TNF-o standard curve of Real-Time PCR, the following were added to a

microcentrifuge tube for a final reaction volume of 20¡rl:

9.4p1PCR grade water

l.6pl MgCI2

I pl upper primer for TNF-cr

lpl lower primer for TNF-a

2pl SYBR mix (vial l)

5pl double-stranded DNA (108, 106, 104, 0 copies/pl, respectively)

The contents of each tube were mixed gently by pipette and transfered to a Lightcycler

capillary (Roche diagnostics, Mannheim, Germany). The Lightcycler capillaries were briefly

centrifuged to ensure the contents stay at the bottom end of the capillaries without any air

bubble. The capillaries were then mounted into Real-time PCR thermal cycler. The

temperature parameters at the computer that connects to the thermal cycler were set

according to manufacturer's instruction (See appendix #l for detail), then run the Real-time

PCR thermal cycler. The data of standard curves (Figure 3) was saved in the computer

connecting to the cycler. The black, red, green, and blue curve represents 108, 106, lOa, and 0

copies/pl double-stranded DNA, respectively.

4.3.3 Amplification of samples

The following were added to a microcentrifuge tube for a final reaction volume of 20¡rl:
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9.4p1 PCR grade water

1.6¡rl MgCl2

lpl upper primer for TNF-u

lpl lower primer forTNF-o

2pl SYBR mix (vial 1)

5pl cDNA (RT products) of the samples

The contents of each tube were mixed, and carefully transfered to a Lightcycler capillary.

The capillaries were then briefly centrifuged, and mounted into Real-time PCR thermal

cycler with 108, 106, 104, and 0 copies/pl standard curve stocks. The temperature parameters

were set same as those of standard curve. Run the Real-time PCR thermal cycler. The data of

tested samples was saved in the computer.

5. RESULTS

5 . I Immuno his t o chemis try

Photographs were taken at lQx,20x, and 40x (Figure 4). Consistent higher level of TNF-u

was found in both ipsi- and contralateral DRG of PNI animals that euthanized at day 8.

TNF-c¿ fluorescence was consistently lower at naïve control, sham groups, and animals of

active lesion, euthanized at day 15. In addition, it appeared that the neuronal cells

predominantly contribute to TNF-cr expression compare to the non-neuronal cells within the

DRG obtained from nerve-injured animals. Furthermore, by counting the TNF-a positive and

negative neurons in the photographs of 20x, the percentage of TNF-a positive neurons were

depicted in Figure 6. The percentage of TNF-o positive neurons in the both ipsi- and
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contralateral DRG of PNI animals that euthanized at day 8 (66%,73%) was markedly higher

than other goups (ll%-49%, Figure 6). Moreover, by measuring the diameter of the neurons,

size of TNF-o positive neurons of every individual group was obtained (See appendix #2 for

raw data). The mean diameter of the TNF-cr positive neurons in the bilateral DRG of PNI

animals that were euthanized at day 8 was 23.9p-m, which was significantly smaller than that

of uninjured animals (naïve and sham groups, average:29.0pm) (rD<0.05, Figure 5). The

result suggested that these smaller diameter neurons may conespond to Aô and C fibers that

are responsible for pain transmission.

5.2 Rr-PCR

The eclectrophoretic bands of TNF-a and GAPDH were shown on Figure 7. By comparing

the luminosity of the TNF-cr bands as a ratio to those of GAPDH, the results showed that

TNF-cr was upregulated in both ipsilateral and contralateral DRG of PNI, euthanized at day 8

animals, and diminished to normal level at day 15 (Figure 8).

5.3 Real-time PCR

Real-time PCR results were shown on Figure 9 and Figure 10, and then analyzed by one

way ANOVA using statistical software SAS (SAS Institute Inc., Cary NC, Table 4). The

TNF-cr expression of both ipsi- and contralateral DRG for PNI day 8 animals was

significantly higher than other groups (p<0.05, n:6). There was no statistical different

between these fwo (p>0.05, n=6). There was no significant difference between sham and

naiVe control, neither between sham and PNI day 15 (p>0.05, n:6) (Figure 11). The

Real-time PCR results were consistent with the immunohistochemical and RT-PCR results.
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6. DISCUSSION

6.1 Upregulation of TNF-awithin DRGfollowing axotomy

Our results show signif,rcant TNF-cr upregulation within the DRG during the initial 8 days

post-axotomy. These results suggest that TNF-cr is an early modulator involved in the

downstream development of neuropathic pain. In this capacity, TNF-c may serve as an

indirect catalyst that facilitates subsequent cellular sequences involved in the cascade of

events that lead to this fype of chronic pain syndrome, alternatively, TNF-cr may play a direct

role via its ability to induce cellular apoptosis. Irrespective of its potential pathogenic roles in

neuropathic pain, any strategies targeting the attenuation of its early release during the first

week post-injury may have significant clinical impact in terms of preventing the

development of neuropathic pain.

6.2 Transient upregulation of TNF-a

Following PNI, the released TNF-ct binds its receptors to exert biological functions. The

receptor-bound TNF-cx is rapidly internalized by monocytes and degraded intracellularly to a

principal molecular species (Aranguez et al. 1995). In addition, extracellular TNF-cr can be

degraded by a variety of proteolytic enzymes, such as neutrophil elastase and cathepsin G

(Mezyk-Kopec et al. 2005). Further, TNF-cx has capacity to undergo retrograde and

anterograde axonal transport following injury which also enhances the dissipation of TNF-a

from the principle site of itrjury (Shubayev and Myers 2002).In addition, by quantifying the

radioactive signal corresponding to TNF-o mRNA, its half-life was estimated to be 44-50

minutes in macrophages culture, indicating that TNF-o is short-lived in vitro (Mijatovic et al.
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2000). Henceforth, based on these elimination mechanisms, it is not surprising that our

results depict only a transient trme period of elevated TNF-cx expression aI day 8 post-injury.

However, the significance of our research is that we were able to define a definite time period

post-injury when treatment intervention is critical. As such, early treatrnent intervention

during this narrow window of opportunity represents a critical step towards intemrpting the

downstream cellular events involved in the pathophysiology of neuropathic pain.

6.3 Contralateral TNF- a upregulation

In human, neuronal dysfunction such as mirror movements and mirror pain provide evidence

for point-to-point bilateral matching of neural function (Forss et al. 2005; Merello et al.

2005). Following unilateral PNI in animal models, there are well-documented events that

affect the contralateral uninjured side (Koltzenburg et al. 1999; Jaaskelainen et al. 2005).

Ruohonen et al reporled increased expression of IL-lp, transforming growth factor-pl

(TGF-PI), IL-10, and TNF-o in contralateral sciatic nerve following unilateral nerve

transection (Ruohonen et al. 2002). However, other studies by Kleinschnitz ¿¡ al

demonstrated that contralateral levels of IL-lB and IL-10 were significantly increased, while

TNF-cr expression remained unchanged (Kleinschnifz et aL. 2005). These contradictory

findings may be the result of the timing of tissue analysis post-injury where the fransient

effects of TNF-o may not have been fully captured.

Immunohistochemical analysis and fully quantitative Real-time PCR conclusively

demonstrate that TNF-o expression is upregulated in both ipsilateral and contralateral DRG
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following unilateral sciatic nerve transection. However, the exact molecular and anatomical

pathways that link peripheral nerve responses between both sides of the body are unclear

(Kleinschnitz et al. 2005). Most likely, the damage of unilateral DRG leads to a signal

transferred into the CNS, which thereby activates contralateral neurons through some sort of

unknown compensatory mechanism in response to nerve injury. Plausible mechanisms for

cell signaling between ipsi- and contralateral side may be explained upon advanced

understanding of the complex anatomical neuronal network within the CNS and between the

CNS and PNS. For example, anatomical studies suggest that the two sides of the spinal cord

are connected by commissural intemeurons (Matsuyama eT al. 2004). These neurons remain

silent or show low activity in normal conditions and become activated when the excitability

of the fargef neurons is increased such as occurs post-injury (Sotgiu et al. 2004). After

unilateral nerve injury signals from the ipsilateral DRG could reach corresponding

contralateral DRG with a precise homonymous anatomical representation by the connections

of these commissural interneurons, and evoke symmetrical responses (Jankowska et al.2005).

In fact, it has been shown that the neuronal hyperexcitability following unilateral PNI can be

reduced by contralateral administration of lidocaine and U50,488H, a r-opioid receptor

agonist (Bileviciute-Ljungar et al. 2001; Bileviciute-Ljungar and Spetea 2004), which may

suggest a new plausible target against neuropathic pain.

6.4 Cellular source of TNF-ø expression

Our results demonstrate that the majority DRG neurons involved in TNF-c¿ expression

following sciatic nerve axotomy are small to medium sized (15-30pm in soma diameter,
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average:23.9pm, Figure 5), corresponding to Aô and C nociceptive neurons. Based on our

immunohistochemical analysis, there appears to be a consistent switch in TNF-cx expression

from predominant satellite cell and peripheral baseline neuronal source in uninjured animals

to a source of predominant smaller (p<0.05) neurons with peripheral satellite cell background

(Figure 4, 5). This apparent change in cellular source in response to injury correlates with

our quantitative Real-time PCR data that clearly demonstrate statistically significant

elevations in TNF-c expression in the injured us uninjured animals. As such, our results

indicate that an injury-evoked TNF-cr expression from predominantly nociceptive sensory

neurons represents yet another plausible target for attenuating pain.

6.5 Lim it ations and future res earch cons iderations

Besides TNF-cr, other proinflammatory cytokines, such as IL-12 and IFN-y, are found to be

associated with modulation of apoptosis as well as the development of neuropathic pain (Fan

et al. 2002; Song et al. 2005). IL-12 is an important regulatory cytokine that has the capacity

to regulate the differentiation of naive T-cells into Thl cells from which IFN-y is secreted. To

investigate the responses of IL-12 and IFN-y and T-cell involvement following PNI is

beneficial to better understanding of the underlying pathogenesis of neuropathic pain.

Murata et al reported significantly higher expression of TNF-o in the DRG at l, 3, 7, and 14

days after experimental disc herniation surgery (Murata et al. 2004). In a tourniquet model,

TNF-cx upregulation was found even only one hour after injury (Mizusawa et al. 2003).

However, other studies have shown that the highest expression peak of TNF-o was observed

62



in the contralateral endoneurium of sciatic nerve on day 35 after unilateral sciatic nerve

transection (Ruohonen et al. 2002). Although our study depicts a transient upregulation of

TNF-cr during the first 8 days that diminished to baseline level by day 15, the variation of

TNF-cr expression demonstrated in other studies may be influenced by severity and type of

nerve injury or anatomical structure (DRG vs endoneurium of sciatic nerve) that is used to

study TNF-o expression. Optimal mapping of TNF-o expression in response to injury may

be better achieved by assessing animals at more frequent time intervals that cover a longer

period of time. Henceforth, future research design should include more time points, such as

one hour, 12 hours, 2, 3, 12, and 2l days post-injury, to better demonstrate the

time-dependent changes of TNF-o expression.

In addition, in order to quantitatively and clinically evaluate the pain responses experienced

by animals post-injury, pain behavior tests may be used in future studies. Pain behavior tests

allow us to measure the degree of pain and pain relief by measuring animal responses and

reaction time to various stimuli. One of the most popular animal models is to measure the

animal's reaction time to heat (hot plate) applied to its paw, thermal nociceptive thresholds

were determined using a sensitive thermal-testing device (D'Amour and Smith l94l;

Abdel-Salam and El-Batran 2005; Ding et al. 2005). Another model, which is called von Frey

hair testing, assesses the animal's paw withdrawal response to mechanical pressure (von Frey

1894; Duarte et al. 2005; Murata et al. 2005). Additionally, in Randall-Selitto test, the

inflamed and the non-inflamed hind paw were exposed to an increasing force until the

nociceptive reaction (vocalization or paw withdrawal) was reached (Randall and Selitto
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1957). Elaborate electronic models of these testing devices have been developed in past

decades, which have made these tests the standard methods for behavioral testing for the

degree ofpain (Eaton 2003).

7. CONCLUSIONS

Notwithstanding these limitations, the results of our current research indicated that following

unilateral sciatic nerve transection, TNF-ct expression was upregulated within both ipsi- and

contralateral DRG The upregulation of TNF-cr expression occurred in a transient time period,

within the first 8 days postinjury which subsequently diminished to baseline level by day 15.

In addition, the transient upregulation of TNF-cx expression was associated with a switch in

cellular source from a predominant baseline satellite cell source to that which was largely

driven by sensory neurons.

Despite the predominant satellite cell source of TNF-a expression in naïve and sham control

animals, very few large diameter neurons (average:29 OU¡n) also contributed to the baseline

expression of TNF-o. However, when compared to the injured animals, the numerous

neurons that produced TNF-a were in the smaller size (average=23.9¡rn,p<0.05). As a result,

there may be a shift in the neuronal subtypes responsible for producing TNF-o in response to

injury. Alternatively, the neuronal size reduction that we reported may simply be due to

neuronal atrophy following peripheral nerve axotomy.

In addition, our findings also indicated that the traumatic injury to the skin and/or muscle
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during sham operation did not result in the upregulation of TNF-a within DRG. This

suggested that the in:ury of the collateral branches of peripheral nerves which funervate

peripheral targets were not involved in the development of neuropathic pain, while injury to

the major peripheral nerve branches, such as sciatic nerve, was proven to trigger the burst of

TNF-a expression, which may subsequently result in neuropathic pain.

Based on our findings, treatment strategies of neuropathic pain should focus on timing and

cellular source following injury. Specifically, in order to attenuate neuropathic pain,

treatment strategies have to be designed immediately following major peripheral nerve injury

within the first week. In addition, because we had demonstrated that the TNF-cr upregultion

were found at both ipsi- and contralateral DRG, treatment strategies should consequently

focus on both sides to the injury. Futhermore, our findings revealed that there appeared to be

a shift in cellular source of TNF-cx expression from satellite cells to neuronal cells in

response to injury. Target treatments that could deliver TNF-cr inhibitors to this particular

subpopulation of neuronal cells might specifically intemrpt the cascade events leading to the

development of neuropathic pain. Ideally, the ability to identify exact neuronal

subpopulations that were responsible for injury-induced TNF-cr production would be

beneficial for developing specific treatrnent strategies against neuropathic pain.
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Appendix #l

Temperature parameters setting for Real-time PCR analysis of TNF-cr, using TNF-cr primers

shown at Table 3

Program I : he-incubation

Program 2: Amplification

Cycle program Data Value

Cycles I

Analysis Mode None

TþmÞerature Târgets Segment 1

Target temperature (oC) 95

Incubation Time (min) l0:00
Temperature Transition Rate ("C/s) 20.0

Secondary Tarset TemDerature ('C) 0

Step Size ('C) 0.0

Step Delay (cycles) 0

Acquisition Mode None

Cycle program Data Value

Cycles 45

Analysis Mode Quantification
Têmperature Targets Segment I Segment 2 Segment 3

Target temperature ("C) 95 s9 72

Incubation Time (s) t0 5 l0
Temperature Transition Rate ("C/s) 20.0 20.0 20.0

Secondary Target Temperature ('C) 0 0 0

Step Size ("C) 0.0 0.0 0.0

Step Delay (cycles) 0 0 0

Acquisition Mode None None Sinele
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Program 3: Melting curve analysis

Program 4: Cooling

Cycle program Data Value

Cycles

Analvsis Mode Meltine curves

Temperature Tarqets Seement I Sesment 2 Sesment 3

Target temperature ('C) 9s 65 72

Incubation Time (s) 0 l5 0

Temperature Transition Rate ('Cls) 20.0 20.0 0.1

Secondary Target Temperature CC) 0 0 0

Step Size ("C) 0.0 0.0 0.0

Step Delay (cycles) 0 0 0

Acquisition Mode None None Cont.

Cvcle program Data Value

Cycles I

Analysis Mode None

Temperature Targets Segment 1

Target temperature (oC) 40

Incubation Time (s) 30

Temperature Transition Rate ('Cls) 20.0

Secondarv Tarset Temperature ('C) 0

Step Size ('C) 0.0

Step Delay (cycles) 0

Acquisition Mode None
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Appendix #2

Raw data of TNF-o positive neurons diameter measurement

l. NaiVe control

Serial number of
TNF-o positive neurons

Diameter (¡rm)

I 39.4

2 23.2

3 3 r.0

4 24.6

5 33.1

6 37.3

7 17.6

8 13.4

2. Sham, ipsilateral-DRG

3. Sham, contralateral-DRc

Serial number of
TNF-o positive neurons

Diameter (¡"rm)

27.9

2 37.9

3 3s.0

4 21.4

5 30.7

6 16.4

7 27.t

Serial number of
TNF-a positive neurons

Diameter (pm)

I 37.3

2 40.1

J 23.2

4 29.6

5 31.7

6 39.4

7 23.2

8 15.5

9 33.8

l0 3s.2
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4. PNI, ipsilateral-DRG, euthanized at day 8

Serial number of
TNF-o positive neurons

Diameter (¡-rm)
Serial number of

TNF-o positive neurons
Diameter (pm)

27.9 27 t7.9

2 17.9 28 15.7

3 24.3 29 21.4

4 r0.0 30 21.4

5 13.6 3l 28.6

6 14.3 32 39.3

7 23.6 33 ))o
8 19.3 34 15.0

9 t7.9 35 25.7

0 24.3 36 17.t

I 17.9 31 40.7

2 11.4 38 t5.7

3 27.1 39 30.0

4 26.4 40 19.3

5 25.7 4t 25.0

6 20.0 42 38.6

7 t6.4 43 23.6

8 40.7 44 15.0

9 25.0 45 23.6

20 32.9 46 23.6

21 23.6 47 7.9

22 35.0 48 9.3

23 14.3 49 1.4

24 13.6 50 5.0

25 20.1 5l 2s.0

26 15.7 52 t5.7
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5. PM, contralateral-DRc euthanized at day 8

Serial number of
TNF-o positive neurons

Diameter (¡rm)
Serial number of

TNF-o positive neurons
Diameter (¡"rm)

I 36.6 20 22.5

2 19.l 21 39.4

3 21.1 22 31.7

4 25.4 23 31.0

5 21.1 24 t3.4
6 36.6 25 35.9

7 28.9 26 26.1

8 27.5 27 24.6

9 39.4 28 16.9

l0 31.0 29 13.4

n 14.8 30 33. r

12 16.2 3l 21.8

J 27.5 32 26.0

4 27.5 -tJ 23.2

5 16.2 34 38.0

6 28.9 35 43.7

7 33.8 36 9.2

8 JJ. I 37 19.7

t9 28.2
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