Show simple item record

dc.contributor.authorNejatali, Abdolhosseinen_US
dc.date.accessioned2007-05-15T15:19:59Z
dc.date.available2007-05-15T15:19:59Z
dc.date.issued1997-06-01T00:00:00Zen_US
dc.identifier.urihttp://hdl.handle.net/1993/877
dc.description.abstractVarious imaging procedures, providing different types of information and based on different physical properties of the tissues, are characterized by specific complexities, degrees of hazard, resolutions and price. Electrical impedance tomography (EIT) has the advantage of a low price and simplicity, as well as of not having any known hazards, such as ionising radiation, which makes it particularly attractive. However, it has the disadvantage of a low resolution. The information provided by EIT could be used directly for medical diagnosis or in combination with other imaging systems. In EIT the electric current is applied to the periphery of the body and the corresponding voltage is measured in order to find the internal distribution of conductivity and permittivity. In this thesis, the EIT performance has been improved in three different aspects: (1) improving the network approximation method for solving the electrode voltages when the distribution of conductivity and permittivity within the object as well as injecting current pattern are known, namely, the forward problem; (2) utilizing neural networks in an iterative procedure for solving the conductivity distribution when the electrode voltages as well as injecting current pattern are known, namely, the inverse problem; and (3) improvising a new method for image fusion based on fuzzy set theory to be used in a multifrequency scheme to increase certainty and accuracy.en_US
dc.format.extent7626156 bytes
dc.format.extent184 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleElectrical impedance tomography with neural networks and fuzzy setsen_US
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typedoctoral thesisen_US
dc.degree.disciplineElectrical and Computer Engineeringen_US
dc.degree.levelDoctor of Philosophy (Ph.D.)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record