• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unique determination of quadratic differentials by their admissible functions

    Thumbnail
    View/Open
    Kim Hye Seon.pdf (543.6Kb)
    Date
    2011-09-28
    Author
    Kim, Hye Seon
    Metadata
    Show full item record
    Abstract
    Let f be an analytic and one-to-one function on the unit disk such that f(0)=0. Let Q(w)dw^2 be a quadratic differential. Suppose that f maps into the complex plane or the unit disk minus analytic arcs w(t) satisfying Q(w(t))(dw/dt)^2<0. We are interested in the question: if Q is unknown but of a specified form, does f determine the quadratic differential Q uniquely? Our main result is that for functions mapping into the unit disk and quadratic differentials with a pole of order 4 at the origin, the quadratic differential is uniquely determined up to exceptional cases. This question arises in the study of extremal functions for functionals over classes of analytic one-to-one maps.
    URI
    http://hdl.handle.net/1993/4947
    Collections
    • FGS - Electronic Theses and Practica [25532]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV