• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fourier Transform Microwave Spectroscopic and ab Initio Study of the Rotamers of 2-Fluorobenzaldehyde and 3-Fluorobenzaldehyde

    Thumbnail
    View/Open
    Main article (1.482Mb)
    Supporting Information (400.4Kb)
    Date
    2018-02-06
    Author
    Sun, Wenhao
    Lozada, Issiah B.
    van Wijngaarden, Jennifer
    Metadata
    Show full item record
    Abstract
    The rotational spectra of 2-fluorobenzaldehyde (2-FBD) and 3-fluorobenzaldehyde (3-FBD) were recorded using Fourier transform microwave (FTMW) spectroscopy from 4 to 26 GHz. Two planar rotamers were observed for each species which correspond to structures in which the carbonyl bond is directed toward (O-cis) or away from (O-trans) the C1-C2 bond. Observation of transitions due to heavy atom isotopes (13C, 18O) in natural abundance allowed derivation of the ground state effective (r0) structures and mass dependence (rm) structures for the lowest energy rotamer of 2-FBD (O-trans) and both rotamers of 3-FBD which compare favourably with ab initio estimates of the equilibrium (re) geometries at the MP2/aug-cc-pVTZ level. The resultant parameters are consistent with the introduction of bond length alternation in the benzene ring which is dependent on the orientation of the aldehyde group. Careful study of the experimental structure and results of natural bond orbital (NBO) analysis do not support the presence of intramolecular hydrogen bonding as the source of its stabilization of O-trans 2-FBD over its cis counterpart. Furthermore, calculations of the interconversion pathways between rotamers suggest that despite being 9.39 kJ/mol higher in energy, the O-cis 2-FBD moiety is metastable in the molecular beam which has allowed the observation of its microwave spectrum for the first time.
    URI
    http://hdl.handle.net/1993/36037
    DOI
    10.1021/acs.jpca.7b11673
    Collections
    • Faculty of Science Scholarly Works [209]
    • University of Manitoba Scholarship [1981]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV