Evaluation of warm mix asphalt technology for urban pavement rehabilitation projects

Loading...
Thumbnail Image
Date
2020-01-02
Authors
Materu, Salvatory
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Warm Mix Asphalt (WMA) technology has the capability of lowering the temperature at which the asphalt is mixed and compacted by 30°C or more without compromising the performance of asphalt pavement. The reduced difference between asphalt mix and ambient temperature results in a lower cooling rate thus allows for long haul, sufficient compaction time and late season projects compared to the conventional Hot Mix Asphalt (HMA). In northern climate, asphalt paving season is relatively short and paving is often done late in the season when weather conditions are less than ideal. The potential benefit of WMA, among others, is an extended paving season for the City of Winnipeg. Reduction in production temperature also comes with other positive impacts both economically and environmentally. The objective of this study is to evaluate the installation of WMA, compile experiences with this technology and evaluate their effects on construction methods and performance. The study further attempts to evaluate the effectiveness of the WMA chemical additives and its dosage rate as liquid anti-strip agents on the properties of WMA mixtures through field and laboratory testing programs. In addition to the overall effectiveness of WMA, the study aimed to evaluate its economic cost relative to Hot Mix Asphalt (HMA). A chemical additive was used at three different dosages (0.3, 0.5 and 0.7 percent by weight of asphalt cement). The additive has the ability to improve mixing, aggregate coating, workability, compaction and adhesion with no change in materials or job mix formula required. The study showed that WMA could be successfully placed using conventional HMA paving practices and procedures. Among the different additive dosages used, 0.5% had a better overall performance. The moisture sensitivity tests indicated the highest Tensile Strength Ratio (TSR) at this dosage, suggesting the lowest moisture damage susceptibility. All four mixtures had low rutting resistance potential with no significant difference among them. The WMA showed a higher cracking resistance compared to HMA. The WMA price was between 2% to 11% higher than conventional HMA including the costs of additional testing as well as the WMA additives.
Description
Keywords
Warm Mix Asphalt, Chemical Additive, Pavement Performance, Moisture Susceptibility, Dynamic Modulus, Hamburg Wheel-Tracking, Cracking Resistance.
Citation