dc.contributor.supervisor Chipalkatti, Jaydeep (Mathematics) en dc.contributor.author Mohammed, Tagreed dc.date.accessioned 2009-09-04T19:11:28Z dc.date.available 2009-09-04T19:11:28Z dc.date.issued 2009-09-04T19:11:28Z dc.identifier.uri http://hdl.handle.net/1993/3190 dc.description.abstract This thesis is devoted to a problem in the representation theory of the symmetric group over C (the field of the complex numbers). Let d be a positive integer, and let S_d denote the symmetric group on d letters. Given a partition k of d, the Specht module V_k is a finite dimensional vector space over C which admits a natural basis indexed by all standard tableaux of shape k with entries in {1, 2, ..., d}. It affords an irreducible representation of the symmetric group S_d, and conversely every irreducible representation of S_d is isomorphic to V_k for some partition k. Given two Specht modules V_k, V_t their tensor product representation is in general reducible, and hence it splits into a direct sum of irreducibles. This raises the problem of describing the S_d equivariant projection morphisms (alternately called S_d-homomorphisms) in terms of the standard tableaux basis. In this work we give explicit formulae describing this morphism in the following cases: k=(d-1, 1), (d-2, 1,1), (2, 1,... ,1). Finally, we present a conjecture formula for the q-morphism in the case k=(d-r, 1, ..., 1). en dc.format.extent 379353 bytes dc.format.mimetype application/pdf dc.language.iso eng en_US dc.rights info:eu-repo/semantics/openAccess dc.subject Representations en dc.subject characters en dc.subject Tableaux en dc.subject Specht-morphisms en dc.subject Equivariant-morphisms en dc.subject Q-forms en dc.title Equivariant Projection Morphisms of Specht Modules en dc.type info:eu-repo/semantics/masterThesis dc.type master thesis en_US dc.degree.discipline Mathematics en_US dc.contributor.examiningcommittee Kocay, William (Computer Scince) Krause, Guenter (Mathematics) Stokke, Anna (University of Winnipeg) en dc.degree.level Master of Science (M.Sc.) en_US dc.description.note May 2009 en
﻿