Show simple item record

dc.contributor.supervisor Chipalkatti, Jaydeep (Mathematics) en
dc.contributor.author Mohammed, Tagreed
dc.date.accessioned 2009-09-04T19:11:28Z
dc.date.available 2009-09-04T19:11:28Z
dc.date.issued 2009-09-04T19:11:28Z
dc.identifier.uri http://hdl.handle.net/1993/3190
dc.description.abstract This thesis is devoted to a problem in the representation theory of the symmetric group over C (the field of the complex numbers). Let d be a positive integer, and let S_d denote the symmetric group on d letters. Given a partition k of d, the Specht module V_k is a finite dimensional vector space over C which admits a natural basis indexed by all standard tableaux of shape k with entries in {1, 2, ..., d}. It affords an irreducible representation of the symmetric group S_d, and conversely every irreducible representation of S_d is isomorphic to V_k for some partition k. Given two Specht modules V_k, V_t their tensor product representation is in general reducible, and hence it splits into a direct sum of irreducibles. This raises the problem of describing the S_d equivariant projection morphisms (alternately called S_d-homomorphisms) in terms of the standard tableaux basis. In this work we give explicit formulae describing this morphism in the following cases: k=(d-1, 1), (d-2, 1,1), (2, 1,... ,1). Finally, we present a conjecture formula for the q-morphism in the case k=(d-r, 1, ..., 1). en
dc.format.extent 379353 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.subject Representations en
dc.subject characters en
dc.subject Tableaux en
dc.subject Specht-morphisms en
dc.subject Equivariant-morphisms en
dc.subject Q-forms en
dc.title Equivariant Projection Morphisms of Specht Modules en
dc.degree.discipline Mathematics en
dc.contributor.examiningcommittee Kocay, William (Computer Scince) Krause, Guenter (Mathematics) Stokke, Anna (University of Winnipeg) en
dc.degree.level Master of Science (M.Sc.) en
dc.description.note May 2009 en


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics