• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deuterium NMR study of liquid crystals

    Thumbnail
    View/Open
    MQ53139.pdf (4.461Mb)
    Date
    2000-07-01
    Author
    Cheng, Mowei
    Metadata
    Show full item record
    Abstract
    Deuterium nuclear magnetic resonance (NMR) spectroscopy was used to explore molecular motions in the mesophases of S-4-(2-methylbutyloxy)carbonylphenyl1 4-(10-undecenyloxy)-benzoate(MBPUB-d2), and a mixture of 4-n-octyloxy-4 '-cyanobiphenyl (80CB-d17) and 4-n-hexyloxy-4 '-cyanobiphenyl (6OCB). The deuteron quadrupolar and Zeeman spin-lattice relaxation times were measured as a function of temperature in the nematic, smectic A and reentrant nematic phases of the mixture and in the smectic A phase of MBPUB at two different Larmor frequencies. For MBPUB, the quadrupolar and proton-deuteron dipole splittings of the ring were also measured. The derived spectral densities of motion at different temperatures were analyzed simultaneously using a small-step rotational diffusion model. Internal ring rotations were superimposed onto the overall motion. For this particular chiral molecule, we found an anomalous behaviour (' D'? > 'D'∥) which is different from non-chiral rodlike liquid crystals. For the 8OCB/6OCB mixture, the additive potential method is employed to model the quadrupolar splittings, from which the potential of mean torque is parametrized, and the order parameter tensor for an "average" conformer is determined. A decoupled model is used to describe correlated internal motions of the end chain, which are independent of the molecular reorientation. The latter motion is treated using the small-step rotational diffusion model, while the former motion is described using a master rate equation. In addition, the order director fluctuations were also taken into account in order to fit experimental results in the nematic phase.
    URI
    http://hdl.handle.net/1993/2318
    Collections
    • FGS - Electronic Theses and Practica [25517]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV