Show simple item record

dc.contributor.author Li, Ben Pak Ching en_US
dc.date.accessioned 2007-05-18T12:16:05Z
dc.date.available 2007-05-18T12:16:05Z
dc.date.issued 1999-05-01T00:00:00Z en_US
dc.identifier.uri http://hdl.handle.net/1993/1660
dc.description.abstract Given parameters 'n, k, p, t', an ('n, k, p, t ') Lotto design is a collection of 'k'-sets, such that any arbitrary 'p'-set, which are chosen from an 'n'-set, intersects at least one 'k'-set in the collection in at least ' t' elements. The number 'L'('n, k, p, t') is size of the minimal ('n, k, p, t') Lotto design. We prov de constructions and techniques for determining upper and lower bounds for ' L'('n, k, p, t'). We also provide computer programs that generate upper bounds for 'L' ('n, k, p, t'). en_US
dc.format.extent 11360971 bytes
dc.format.extent 184 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.language en en_US
dc.language.iso en_US
dc.title Some results on lotto designs en_US
dc.degree.discipline Computer Science en_US
dc.degree.level Doctor of Philosophy (Ph.D.) en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics