Show simple item record

dc.contributor.authorLi, Ben Pak Chingen_US
dc.date.accessioned2007-05-18T12:16:05Z
dc.date.available2007-05-18T12:16:05Z
dc.date.issued1999-05-01T00:00:00Zen_US
dc.identifier.urihttp://hdl.handle.net/1993/1660
dc.description.abstractGiven parameters 'n, k, p, t', an ('n, k, p, t ') Lotto design is a collection of 'k'-sets, such that any arbitrary 'p'-set, which are chosen from an 'n'-set, intersects at least one 'k'-set in the collection in at least ' t' elements. The number 'L'('n, k, p, t') is size of the minimal ('n, k, p, t') Lotto design. We prov de constructions and techniques for determining upper and lower bounds for ' L'('n, k, p, t'). We also provide computer programs that generate upper bounds for 'L' ('n, k, p, t').en_US
dc.format.extent11360971 bytes
dc.format.extent184 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSome results on lotto designsen_US
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typedoctoral thesisen_US
dc.degree.disciplineComputer Scienceen_US
dc.degree.levelDoctor of Philosophy (Ph.D.)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record