Show simple item record

dc.contributor.author Cule, Dino en_US
dc.date.accessioned 2007-05-17T12:34:23Z
dc.date.available 2007-05-17T12:34:23Z
dc.date.issued 1998-05-01T00:00:00Z en_US
dc.identifier.uri http://hdl.handle.net/1993/1378
dc.description.abstract A Lattice-Gas Automaton (LGA) is an unconditionally stable discrete system in which particles with a small and finite number of states move about on a regular lattice. The dynamics of this system are governed by a reversible and deterministic rule which is applied to the entire system simultaneously. An LGA is a discreet approximation to molecular dynamics. This study was partially motivated by the possibility of exploiting alternative computer architectures. Using a two-dimensional HPP-LGA model, electromagnetic fields in homogeneous and inhomogeneous media have been simulated on a special-purpose computing device, referred to as a Cellular Automata Machine (CAM-8). The quantitative analysis of an HPP-LGA absorbing boundary condition is presented. Quantitative numerical results for scattering of electric fields from various homogeneous and inhomogeneous regions are provided. For most simulations, comparisons with the Symmetric-Condensed Transmission-Line method (TLM) or analytical solutions are provided. An example of the possible application of HPP-LGA to the analysis of electromagnetic wave interaction with biological media is submitted. en_US
dc.format.extent 1218257 bytes
dc.format.extent 184 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.language en en_US
dc.language.iso en_US
dc.title HPP lattice-gas automata for computational electromagnetics en_US
dc.degree.discipline Electrical and Computer Engineering en_US
dc.degree.level Master of Science (M.Sc.) en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics