• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive algorithms for hypertext clustering

    Thumbnail
    View/Open
    MQ32276.pdf (7.714Mb)
    Date
    1998-07-01
    Author
    Vlajic, Natalija J.
    Metadata
    Show full item record
    Abstract
    Artificial neural networks (ANNs) based on unsupervised learning have a powerful ability to organize themselves to learn categories of patterns, and then to recognize subsequent patterns in terms of learned categories. However, a number of results obtained, and presented in this work, show that some ANN algorithms, such as the self-organizing map (SOM) algorithm and hard competitive learning (HCL), produce results dependent on the input data distribution density, and therefore may not be appropriate for document clustering tasks. On the other hand, a modified adaptive resonance theory (ART2) is shown to overcome the main drawbacks of the SOM and HCL, and provide perfectly stable multi-hierarchical clustering. Moreover, ART2 in conjunction with competitive Hebbian learning (CHL) exhibits a very interesting ability to preserve the topology of input data, and enable the retrieval of related or relevant groups of documents. The main problem of combined hyper-text clustering is regarding the requirement for the multi-space representation of Web documents. The adaptive hypertext clustering (AHC) algorithm, based upon the modified ART2, is shown to successfully cope with this problem, and depending on the required mode of operation may produce either pure text-based, hyper dimension-based, or combined hypertext clustering. (Abstract shortened by UMI.)
    URI
    http://hdl.handle.net/1993/1333
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV