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Abstract

Saunders, D. E., B.Sc., M.Sc., The University of Manitoba, 2003

Effects of Mimic@ Bioinsecticide on the Species Diversity of Non-target

Lepidoptera in an Operational Spruce Budworm (Lepidoptera: Tortricidae:

Ch ori ston e u ra fu m ife ran a Clemens) S uppression Prog ram i n NoÍhwestern

Manitoba.

Major Professor: A.R. Westwood

A new biochemical insecticide, Mimic@ (Dow Agrochemicals), has recently

been registered in Canada for the control of lepidopteran defoliators in forest

ecosystems. The active ingredient, tebufenozide, mimics the insect molting

hormone, 20-hydroxyecdysone, in larvae of some species of Lepidoptera

inducing a premature molt, causing death. To date there has been only one

published study on the effects of an operational spray program that has

addressed the effects of Mimic@ on non-target Lepidoptera in hardwood forest,

and none in the boreal forest. Butler et al. (1997) found significant reductions in

richness and abundance of non-target, larual macrolepidoptera of a hardwood

forest following Mimic@ application for control of gypsy moth, Lymantria dispar

(L.). ln 1999 and 2000, Manitoba Conservation applied Mimic@ to areas of the

boreal forest in northwestern Manitoba as part of an operational spruce budworm

suppression program. ln 2000 and 2001, moths and laruae were collected from

twelve study sites within the spray area to determine the effect of Mimic@ on

spruce budworm and non-target Lepidoptera. Three 70 m2 plots were within
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spray blocks sprayed once with 70g Al in 2.0 L/ha in June of 1999; three 70 m2

were within spray blocks sprayed once in June of 2000 and six were in

unsprayed areas. Variables measured within the study sites included percent

defolíation for1999 and 2000, spruce budworm larvae per45-cm branch, spruce

budworm adults, number of understorey larvae, number of macrolepidoptera

moths, and moth species richness, log series alpha diversity, evenness, and

Berger-Parker dominance. A total of 178 macrolepidoptera species were

collected in Luminoc@ light traps over two field seasons, with 36 species making

up 7ilo/oof the total catch and being considered common to both sprayed and

unsprayed sites. Mimic@ significantly reduced spruce budworm populations in

sprayed plots versus unsprayed plots. Significant spray effects on number of

moths and species richness were found at one year post spray for those sites

sprayed in 1999. There were no significant spray effects on non-target

Lepidoptera species diversity in either year of the study. Even spray plots that

appeared to have been sprayed more effectively did not have significantly lower

numbers of moths, species richness or diversity than the unsprayed plots. While

36 of the common non-target species appeared unaffected, two species from the

Family Arctiidae and one from the Family Geometridae were consistently less

abundant in sprayed plots in both sampling seasons 2000 and 2001. These

results, along with Butler's (1997) study, indicate that aerial applications of this

insecticide may have a negative impact on certain non-target lepidopteran

species but not on overall diversity.
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CHAPTER I

INTRODUCTION

Large scale aerial spraying of insecticides to control defoliating caterpillar

pests (e.9. spruce budworm, Choristoneura fumiferana (Clemens);jack pine

budworm, Choristoneura pinus Freeman; and forest tent caterpillar, Malacosoma

disstria Hübner) in Canada's forests has been used as a management tool to

slow the spread of these pests and to prevent tree mortality for over five decades

(Armstrong & lves 1995). ln Manitoba, insecticides have been employed to

protect commercialtimber supplies, preserue parks and natural areas from large-

scale tree mortality, and to protect areas used for recreation and cottage

subdivisions.

A new biochemical insecticide, Mimic@ (Dow Agrochemicals), has recently

been registered in Canada for the control of lepidopteran defoliators in forest

ecosystems. Mimic@ has been tested in Manitoba since the mid 1990s and the

first large scale commercial applications began in Manitoba in 1997 . Over

100,000 hectares of forest have been experimentally and operationally sprayed

with Mimic@ in Manitoba since 1994 and the product has also been applied

under experimental permits in other provinces during the last several years.

Manitoba is the only area in Canada with sufficient Mimic@ usage to date to carry

out an intensive investigation on the non-target eflects of this product when used

at a commercial scale. ln 1999 and 2000, Manitoba Conseruation applied



Mimic@ to areas of the boreal forest in northwestern Manitoba as part of an

operational spruce budworm suppression program.

The use of Mimic@ is part of a trend that began in the late 1970s and early

1980s to move away from broad-spectrum synthetic insecticides, which killed a

wide variety of forest insects, to narrow spectrum biologically based products,

which are more pest specific and environmentally acceptable (Armstrong & lves

1995). By the mid 1980s, Bacillus thuringíensis Berliner var. kurstaki (Btk), a

naturally occurring insect bacterium, had replaced synthetic insecticide use to

suppress defoliating caterpillars in Canadian forests (Bendall et a|.1986; Miller

1990; Miller 1992; Nealis et al. 1992; Otvos & Vanderveen 1993; van

Frankenhuyzen 1993; Barber et al. 1995). By 1996, Btk was the only product

registered in Canada for aerial application to suppress defoliating forest pests

(Westwood 1997, 1998). Past performance of Btk has been erratic in certain

instances across Canada and there have been ongoing efforts to increase its

reliability and to search for more efficacious products with a similar narrow

spectrum of activity (Westwood 1997,1998).

The active ingredient in Mimic@, tebufenozide, mimics the insect molting

hormone, 20-hydroxyecdysone, in some larual ínsects and induces a premature

molt. lt appears to provide higher levels of pest insect control than Bfk, and thus

provides better protection to trees (Retnakaran 1995; Westwood 1997;

Westwood 1998). ln Canada, Mimic@ has been tested mostly against spruce

budworm and proved to be very effective (Smagghe & Degheele 1994).
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Mimic's@ narrow spectrum of activity make it an attractive alternative to

other insecticides for forest insect pest suppression. However, limited studies

have indicated that susceptible non-target Lepidoptera species might also be

adversely affected. The widespread use of tebufenozide in the suppression of

spruce budworm and other forest insect defoliators could lead to undesirable

ecological effects. ln forests, indiscriminate reduction of immature Lepidoptera

could have a detrimental effect on trophic pathways and food chains.

Unlike Btk, there have been relatively few attempts to document the

effects of tebufenozide on non-target lepidopteran communities under field

conditions. Morris et al. (1975), Miller (1990, 1992), Sample et al. (1993), and

Johnson et al. (1995) have all reported significant reductions in both species

abundance and richness of non-target Lepidoptera following applications of Btk.

Only one published study has addressed effects of Mimic@ on non-target

Lepidoptera. Butler et al. (1997) found significant reductions in richness and

abundance of non-target, canopy-dwelling larval macrolepidoptera of a hardwood

forest following Mimic@ application for control of gypsy moth, Lymantria dispar

(L.). lt is essential that the effect of Mimic@ on non-target lepidopteran diversity

in the boreal forest be carefully analyzed and understood. No study has been

published to date that examines the effects of Mimic@ (when applied under

operational conditions) on non-target moths in Canada's nodhern boreal forest.

This study tests the null hypothesis that Mimic application does not reduce

species diversity of nontarget moths in sprayed areas of boreal forest when

compared with unsprayed areas.



CHAPTER II

LITERATURE REVIEW

2.1 - Boreal Forest Characteristics

The boreal forest covers over 2.6 x 106 km2 in Canada forming a

continuous, primarily coniferous belt from Newfoundland and Labradorto the

Rocky Mountains and Alaska (Danks & Foottit 1989). ln the borealforest of

northwestern Manitoba, the summers are short and warm and the winters long

and cold, with an annual mean temperature of 0 oC; a mean summer temperature

(June to August) of 16 oC; and a mean winter temperature (September to May) of

-5.5 
oC (Environment Canada, 2003). The growing season is short with

approximately 157 frost-free days accumulated between June and September.

The average annual precipitation is approximately 46 cm, with approximately 21

cm in rain between June and August and approximately 15 cm in snowfall

(Environment Canada, 2003).

There is heterogeneity at the local scale of vegetation and this variation

recurs consistently throughout the boreal forest (Danks & Foottit 1989) creating a

considerably diverse ecosystem (Graham & Jain 1998).

Disturbance is increasingly recognized as the driving ecological force in all

forest ecosystems (Píckett & White 1985) leading to and maintainíng variatíon,

especially in boreal ecosystems (Shugart et al. 1995). Barnes et al. (1998, p.

410) interpret a disturbance as "any relatively discrete event in time that disrupts



ecosystems, their composition, structure, and function". Disturbances, such as

fire, insect outbreaks and disease, are natural factors in the boreal forest whose

effects in disrupting forest stand structure have long been incorporated in

species' adaptations and ecosystem dynamics (Sousa 1984).

ln the boreal forest a vegetation mosaic leading to plant and animal

diversity is primarily the result of wildfires burning over diverse plots (Bonan &

Shugart 1989). Wildfires play an important role in shaping the structure and

composition of boreal forests creating a mosaic of conditions that allow a mixture

of uneven-aged tree species to thrive (Graham & Jain 1998).

ln some areas of the boreal forest, fire frequency is low and C. fumíferana

(spruce budworm) outbreaks are considered the most important disturbance. ln

the last 70 years in Canada , 48o/o of the boreal forest was disturbed by fire, 39%

by insects (mainly spruce budworm in eastern Canada) and 1 0% by logging

(Bergeron et al. 1998). Fires (Payette 1992) and outbreaks of spruce budworm

(Bergeron et al. 1998) are widespread disturbances in the eastern Canadian

boreal forest. These disturbance regimes are not independent, and changes in

one regime can affect the others (Bergeron et al. 1995).

2.2 - Spruce Budworm

The eastern spruce budworm, C. fumiferana, is the most important

defoliator of coniferous forest trees in Noñh America (Talerico 1984; Fleming

1990). Probably no species of Lepidoptera has been studied more intensively

(Powell 1995). It is native to North America and a principal pest of balsam fir,

Abies balsamea (Linnaeus) Miller, white spruce, Picea glauca (Moench) Voss,
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black spruce Picea mariana (Mill.) BSP and red spruce, Pícea rubens Sargent

(Mattson et al. 1988). The impact of the spruce budworm can be considerable,

including growth loss by aflecting photosynthesis, top kill, cone and seed

mofiality, increasing susceptibilíty of trees to secondary factors and widespread

tree moftality (Kulman 1971; Maclean 1980). Any spruce-fir stand in eastern and

central North America is susceptible to spruce budworm feeding (Mattson ef a/.

1988). Spruce budworm outbreaks have more effect on structure and function of

the spruce-fir forests of eastern Canada than virtually any other factors

(Baskervil le 197la:Maclean 1985, 1990).

Choristoneura fumiferana occupies forests of the east and central parts of

the continent, associated mostly with the boreal forest, but also with the Great

Lakes-St. Lawrence and Acadian forest regions (Rowe 1972). The range of C.

fumiferana coincides almost completely with the range of its major hosts, balsam

fir and red and white spruce (Mattson et al.1988; Sanders 1991).

Spruce budworm larual stages mine old needles, and feed on buds and

the current year's needles from early May to late June. Balsam fir trees often die

following three or four years of severe defoliation. White spruce, which is more

tolerant of budworm feeding, may die after five or six years of severe defoliation

(lves 1974; Manitoba Conservation 2003).

The spruce budworm is univoltine (one generation per year), has six larval

instars, and over winters as a diapausing 2nd instar larva (Morris 1963; Mattson ef

a/. 1988). Emphasis is put on the feeding behaviour of spruce budworm larvae

because the effectiveness of many of the insecticides used in management
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protocols depends on the ingestion of the active ingredient (van Frankenhuyzen

1990). The last three of the six larval instars feed openly on the rapidly

expanding shoots and are usually the targets for control (Prebble 1975). Eighty to

ninety percent of total larual food consumption occurs during the sixth-instar

larval stage so depletion of current-year foliage is unlikely to happen prior to the

budworm's sixth instar (Retnakaran1983; Carisey & Bauce 1997).

2.2.1 - Outbreaks

Populations of spruce budworm have reached outbreak levels on a more

or less regular basis over extensive areas of northeastern and north central North

America for at least the past three centuries (Blais 1954,1965, 1981; Brown

1970: Kettela 1983; Morin et al. 1993). Periodic outbreaks of the budworm in

eastern Canada are known to have occurred since the early 1700s (Blais 1965;

Blais 1968; Blais 1983; Stedinger 19S4). The most extensive and destructive

outbreaks have occurred in the Maritime ProvÍnces (New Brunswick, Nova

Scotia, Nevrrfoundland), Quebec, Ontario, Maine and the Great Lakes states

(Haruey 1985; Mattson et al. 1988).

Outbreaks have two dimensions: time period between outbreaks and the

geographical extent of the outbreak. Generally, when no treatment is applied,

outbreaks last from five to fifteen years and non-outbreak periods average about

35 years in eastern Canada (Blais 1983, 1985a; Simmons et al. 1984; Solomon

1ee1).

Outbreaks seem to be controlled by a complex interaction of factors

(Morris 1963; Solomon 1991; Sanders 1995). lt appears that the natural enemies
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of the budworm operate within a complex system along with other factors such

as the composition, density and maturity of the forest (Maclean 1980; Mattson ef

al. 1988; Bergeron et al. 1995; Su et al. 1996; Maclean & MacKinnon 1997;

Bergeron & Leduc 1998) and variations in weather (Wellington et a\.1950;

Greenbank 1956; lves 1 974; Hardy et al. 1983; Blais 1985b; Mattson et a1.1988).

There are variations in the influence of the budworm on the trees and the

subsequent reverse action of the food supply upon the budworm population

(Blais 1985b; Mattson et a1.1991). Outbreaks are also influenced by the long-

distance movements of great numbers of adults (Greenbank et al. 1980). These

interactions are further complicated by the use of insecticides and forest

management practices designed to suppress outbreaks (Solomon 1991).

Outbreaks may start in epicenters, or foci, from which they spread by moth

migration or even larval dÍspersal into neighboring budworm-free forest (Hardy ef

al. 1983; Blais 1985b). Others believe the spruce budworm is a cyclical outbreak

species where populations go through more or less regular cycles or oscillations

(Royama 1984;Wallner 1987:Régnière & Lysyk 1995).

The last countrywide spruce budworm ínfestation in Canada ended in the

late 1980s but pockets have continued at very high intensities in Manitoba and

Saskatchewan and to a lesser extent northern Alberta during the 1990s

(Knowles, pers.com.). In northwestern Manitoba, the most recent spruce

budworm outbreak began in 1995 and has continued to present. ln 2002,

approximately 1 11,480 hectares of spruce/fir forests experienced moderate to



severe defoliation by spruce budworm in Manitoba (Manitoba Conseryation

2003).

2.3 - Spruce Budworm Management

The spruce budworm is one of the most destructive forest insects in North

America and consequently the target of most of the insecticides that are applied

to boreal forests in Canada (Cadogan et a1.1997). The objective of forest

protection spraying in Canada is to prevent or reduce damage to the trees and

forest stand (Prebble 1975).

Aerial insecticide applications, particularly the bacterial insecticide Btk and

tebufenozide (Mimic@), are registered in Canada for managing spruce budworm.

Decisions to implement spruce budworm control activities are usually based

upon assessments of stand susceptibility (the probability that a stand will be

attacked by the spruce budworm) and vulnerabílity (the probability of tree

mortality resulting from a given level of budworm attack) to spruce budworm and

assessments of spruce budworm numbers (Mott 1963; Maclean 1980; Lynch ef

a/. 1985). These assessments are used to determine whether a stand should be

sprayed in the current or next year and also to determine areas for protection,

harvesting or salvage (Ennis & Caldwell 1991).

ln general, in commercial forestry, the only options when faced with a

budworm outbreak are: 1)to prevent tree mortality by insecticide spraying, 2) to

do nothing and allow the timber to die and deteriorate, or 3) to embark upon pre-
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salvage (before moftality) or salvage (after moftality) programs in the affected

stands (Maclean 1980).

Spruce budworm suppression programs usually target 4th and sth instar

laryae in order to lower levels of defoliation. Spruce budworm larvae are typically

at these stages in early June in northwestern Manitoba. Non-target Lepidoptera

species are most susceptible to Mimic@ if their larual feeding periods are within

this timing window of application. Sometimes adverse weather conditions restrict

insecticide applications to 6th instar larvae (mid to late June) and defoliation

protection is sacrificed for population suppression (Volney & Cerezke 1992).

Since 1980, there has been a dramatic increase in eastern Canada in the

use of microbial insecticides based on the bacterium Bt (Albert 1991). There was

an increase from 1% of the total area treated with Btk for C. fumiferana in 1979 to

52% in 1985 and 63% in 1986 (Morris ef al. 1986: Hulme 1988; Ennis & Caldwell

1991 ; Sanders 1995).

Bacillus thuringiensis is a naturally occurring spore-forming bacterium that

produces a crystalline toxin during sporulation (Angus 1971; Fast and Dimond

1984). Btk is toxic to larvae of Lepidoptera (Fast & Régnière 1984). While the

mode of Btk gives it considerably more specificity than the more broad spectrum

insecticides like diflubenzuron (Dimilin@) (Martinat ef al. 1988,1993; Sample ef

al. 1995; Butler 1995b), non-target Lepidoptera are also directly susceptible to

Btk. Miller (1990) noted that Btk treatments for the gypsy moth in western Oregon

reduced species richness and larual abundance for up to two years within a guild

of native, non-target Lepidoptera feeding on oak. ln 1992, Miller also observed


