Investigation of Protection Problems due to Geomagnetically Induced Currents

by

Rohitha Prashad Jayasinghe

A Thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada.

© October, 1996
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-23614-5
INVESTIGATION OF PROTECTION PROBLEMS DUE TO GEOMAGNETICALLY INDUCED CURRENTS

BY

ROHITHA PRASHAD JAYASINGHE

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Rohitha Prashad Jayasinghe 1997 (c)

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.
to my parents
and family
Acknowledgements

I wish to express my deep appreciation to Professor Peter McLaren for suggesting this topic as well as his counsel, guidance, patience and encouragement during the course of this work.

The author is indebted to Professor Rohan Lucas at the University of Moratuwa and Dr. Dennis Woodford of the Manitoba HVDC Centre for their suggestions in transformer modelling.

Dr. Thilak Siyambalapitiya of the Ceylon Electricity Board is thanked for his encouragement to do higher studies and arranging the opportunity to do so.

Tom Molinski of Manitoba Hydro is also thanked for providing the recorded waveforms in the Dorsey–Forbes–Chisago system. The author also wishes to thank Tom Gouldsborough for his valuable input as an advisor to this project from Manitoba Hydro.

Financial support from the Manitoba Hydro, the University of Manitoba and the National Sciences and Engineering Research Council are also acknowledged.

This acknowledgement would be incomplete without thanking the author’s wife and parents for their continuous support, understanding and encouragement in all ways.
Abstract

Geomagnetically Induced Currents (GIC), flowing in power systems during Solar Magnetic Disturbances (SMD), can cause severe offset saturation of power system transformers. Continuous saturation of transformers can result in transformer overheating, and cause harmonic currents to be injected into the system. Relay and protection systems are affected by harmonic currents passing through the system.

A considerable amount of study has been done using analog and/or digital simulations of transformer half-cycle saturation to predict the transformer response to DC excitation. These methods used simplified transformer core models to represent the excitation-flux relationships.

This thesis includes the development of an accurate transformer core model. The accuracy of the model is validated by comparing the recorded waveforms during GIC events with the simulated waveforms using the model. Then the model is used to investigate the other system quantities at different GIC conditions. As well, the performance of several protection schemes under GIC are evaluated. The study is performed using an electromagnetic transients simulation program.
Table of Contents

Acknowledgements .. i

Abstract ... ii

Table of Contents ... iii

List of Figures .. vi

List of Tables .. x

1. Introduction .. 1
 1.1 Geomagnetically Induced Currents .. 1
 1.1.1 The origin and cyclic nature ... 1
 1.1.2 Interaction with power systems 2
 1.2 Effect on power systems .. 3
 1.3 Vulnerability of power systems .. 5
 1.4 Modelling of GIC ... 6
 1.4.1 Estimation of GIC .. 6
 1.5 Scope of the thesis .. 6

2. Modelling .. 8
 2.1 Transformers .. 8
 2.1.1 Transformer modelling in EMTP 10
 2.1.2 Ideal transformer model in EMTDC 11
 2.1.3 Transformer core .. 13
 2.1.3.1 Saturation characteristics 15
 2.1.3.2 Core losses ... 21
 2.1.4 Overall model for the transformer core 22
 2.1.5 Different transformer configurations 22
 2.1.5.1 Single phase units .. 23
 2.1.5.2 Three phase conventional transformers 24
 2.1.5.3 Three phase five limb transformers 28
 2.1.5.4 Three phase three limb transformers 29
 2.2 Transmission lines .. 30
 2.2.1 Bergeron model ... 30
 2.2.2 Marti model .. 34
 2.2.3 Mutually coupled transmission lines 38
 2.3 Simulation of earth surface potential 38

3. Validity of the models ... 40
 3.1 Response of the transformer core 40
 3.2 Initial simulations .. 42
 3.2.1 delta-star three single phase bank model 43
 3.2.2 star-star three single phase bank model 44
 3.2.3 three phase conventional star-star transformer 47
 3.2.4 three phase conventional delta-star transformer 48
 3.2.5 three phase five limb star-star transformer 51
B. More details on Dorsey–Forbes–Chisago before compensation

B-1	Waveforms in 230kV side — high power flow	153
B-2	Waveforms in 230kV side — low power flow	154
B-3	Effect of GIC on Distortions and Harmonics — voltage waveforms	156
B-4	Effect of Power Flow on Harmonics — Waveforms at other GIC Levels	158

C. More details on Dorsey–Forbes–Chisago after series compensation

| C-1 | Waveforms in the 230kV side — High Power Flow | 160 |
| C-2 | Current Waveforms in 230kV Feeders at High Power Flow — Current flowing to Drayton | 163 |
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Cyclic Nature of Geomagnetic Activity</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>ESP between grounded Y transformer neutrals and the resultant GIC in transmission lines</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The shift of operating point on the magnetization characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Generation of harmonics due to the non-linearity of the transformer core</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Two mutually coupled windings</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Power series curve representation of magnetization characteristics</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Conversion of rms values into instantaneous values</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Basic Model for the Transformer Core</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Final Model of the Transformer Core</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Shell form and Core form Single Phase Transformers</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Single Phase Model of a Transformer</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Three phase conventional transformer core configuration</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Equivalent magnetic circuit of the three phase conventional transformer</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Equivalent Circuit for 3 phase Conventional Transformer</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Three phase Five limb transformer core configuration</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Equivalent Circuit for 3 phase 5 limb Transformer</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Three phase Three limb transformer core configuration</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Equivalent Circuit for 3 phase 3 limb Transformer</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>A lossless transmission line</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Norton representation of the lossless transmission line</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Development of Norton representation for a lossy transmission line</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>Norton representation of the lossless transmission line</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.20</td>
<td>Frequency dependence model in the time domain</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.21</td>
<td>Equivalent circuit in the time domain</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.22</td>
<td>Norton representation of the frequency dependent transmission line</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Test system used to investigate the response of the core model</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Transformer core current referred to the 230 kV side at no load conditions</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Flux Linkage — Current loop referred to the 230 kV side during no load condition</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Transformer core current referred to 230 kV side during energization of the transformer</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>System used in initial simulations</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Line Currents and Phase Voltages in the three single phase bank of delta-star transformer for 100A GIC</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Line Currents and Phase Voltages in the three single phase bank of star-star transformer for 100A GIC</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Fourier Analysis of the line current on the 500 kV side of a single phase bank of a 3 phase transformer for star-star configuration</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Fourier Analysis of the line current on the 500 kV side of a single phase bank of a 3 phase transformer for delta-star configuration</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Line Currents and Phase Voltages in the three phase conventional star-star transformer for 100A GIC</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Line Currents and Phase Voltages in the three phase conventional delta-star transformer for 100A GIC</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Fourier Analysis of the line current on 500 kV side of a 3 phase conventional star-star transformer</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 3.13: Fourier Analysis of the line current on 500 kV side of a three phase delta-star conventional transformer ... 50
Figure 3.14: Line Currents and Phase Voltages in the three phase five limb star-star transformer for 100A GIC ... 52
Figure 3.15: Line Currents and Phase Voltages in the three phase five limb delta-star transformer for 100A GIC ... 53
Figure 3.16: Fourier Analysis of the line current on 500 kV side of a three phase five limb star-star transformer ... 54
Figure 3.17: Fourier Analysis of the line current on 500 kV side of a three phase five limb delta-star transformer ... 54
Figure 3.18: Line Currents and Phase Voltages in the three phase three limb star-star transformer for 100A GIC ... 56
Figure 3.19: Line Currents and Phase Voltages in the three phase three limb delta-star transformer for 100A GIC ... 57
Figure 3.20: Fourier Analysis of the line current on 500 kV side of a three phase three limb star-star transformer ... 58
Figure 3.21: Fourier Analysis of the line current on 500 kV side of a three phase three limb delta-star transformer ... 58
Figure 3.22: Recorded line current on 500 kV side at Dorsey 59
Figure 3.23: Simulated line current on 500 kV side at Dorsey 60
Figure 3.24: Recorded voltage waveform on 500 kV side at Dorsey 61
Figure 3.25: Simulated voltage waveform on 500 kV side at Dorsey 61
Figure 3.26: Recorded line current on 500 kV side 62
Figure 3.27: Simulated line current on 500 kV side 62
Figure 3.28: Harmonic composition of recorded and simulated current waveforms 63
Figure 4.1: Single line diagram of Dorsey–Forbes–Chisago system 67
Figure 4.2: Geographical layout of the 500 kV transmission line 69
Figure 4.3: Voltage waveforms on 500 kV side of Dorsey at high power flow 73
Figure 4.4: Fourier analysis of 500 kV voltage waveforms at high power flow 73
Figure 4.5: Current waveforms on 500 kV side of Dorsey at high power flow 74
Figure 4.6: Fourier analysis of 500 kV current waveforms at high power flow 75
Figure 4.7: Voltage waveform on 500 kV side of Dorsey at low power flow 77
Figure 4.8: Fourier analysis of 500 kV voltage waveforms at low power flow 78
Figure 4.9: Current waveforms on 500 kV side of Dorsey at low power flow 78
Figure 4.10: Fourier analysis of 500 kV current waveforms at low power flow 79
Figure 4.11: Fourier analysis of 500 kV side currents with a typical high power flow ... 80
Figure 4.12: Fourier analysis of 500 kV side currents with a typical low power flow ... 80
Figure 4.13: THD Factor of 500 kV side currents 81
Figure 4.14: Fourier analysis of 500 kV side currents at Dorsey with 105A GIC per phase ... 82
Figure 4.15: Fourier analysis of 500 kV side phase voltages at Dorsey with 105A GIC per phase ... 82
Figure 4.16: Harmonic Distortion of current with the Load Flow 83
Figure 4.17: Harmonic Distortion of voltage with the Load Flow 84
Figure 5.1: Single line diagram of Dorsey–Forbes–Chisago system after series compensation ... 87
Figure 5.2: Geographical layout of the 500 kV transmission line 89
Figure 5.3: Voltage waveform on 500 kV side of Dorsey at low power flow 93
Figure 5.4: Current waveforms on 500 kV side of Dorsey at low power flow 93
Figure 5.5: Fourier analysis of 500 kV side voltage waveforms at low power flow 94
Figure 5.6: Fourier analysis of 500 kV side current waveforms at low power flow 95
Figure 5.7: Voltage waveforms on the 230 kV side of Dorsey at low power flow 96
| Figure 5.8 | : Current waveforms on the 230 kV side of Dorsey at low power flow | 96 |
| Figure 5.9 | : Fourier analysis of 230kV voltage waveforms at Dorsey at low power flow | 97 |
| Figure 5.10 | : Fourier analysis of 230kV side current waveforms at Dorsey at low power flow | 97 |
| Figure 5.11 | : Current on Dorsey–Drayton line at Dorsey at low power flow | 98 |
| Figure 5.12 | : Current on Dorsey–Moranville line at Dorsey at low power flow | 98 |
| Figure 5.13 | : Fourier analysis of current flowing to Drayton at low power flow | 99 |
| Figure 5.14 | : Fourier analysis of current flowing to Moranville at low power flow | 100 |
| Figure 5.15 | : Voltage waveforms on 500 kV side at high power flow | 102 |
| Figure 5.16 | : Current waveforms on 500 kV side of Dorsey at high power flow | 102 |
| Figure 5.17 | : Fourier analysis of 500kV voltage waveforms at high power flow | 103 |
| Figure 5.18 | : Fourier analysis of 500kV current waveforms at high power flow | 104 |
| Figure 5.19 | : Current on Dorsey–Moranville line at Dorsey at high power flow | 105 |
| Figure 5.20 | : Fourier analysis of current flowing to Moranville at high power flow | 106 |
| Figure 6.1 | : High Pass Filter current at Dorsey with 105A GIC per phase and with a high power flow | 109 |
| Figure 6.2 | : High Pass Filter current at Dorsey with 105A GIC per phase and with a low power flow | 109 |
| Figure 6.3 | : Fourier analysis of high pass filter current waveforms at 105A GIC per phase on 500kV side | 110 |
| Figure 6.4 | : High Pass Filter current at Dorsey with a high power flow | 112 |
| Figure 6.5 | : High Pass Filter current at Dorsey at low power flow | 112 |
| Figure 6.6 | : Fourier analysis of currents in high pass filter | 113 |
| Figure 6.7 | : 13th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow | 114 |
| Figure 6.8 | : 13th Harmonic Filter current at Dorsey with 105A GIC per phase and with a low power flow | 115 |
| Figure 6.9 | : Fourier analysis of currents in 13th harmonic filter before compensation | 115 |
| Figure 6.10 | : 5th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow | 116 |
| Figure 6.11 | : 5th Harmonic Filter current at Dorsey with 105A GIC per phase and with a low power flow | 117 |
| Figure 6.12 | : Fourier analysis of currents in 5th harmonic filter before compensation | 117 |
| Figure 6.13 | : 13th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow | 120 |
| Figure 6.14 | : 13th Harmonic Filter current at Dorsey | 121 |
| Figure 6.15 | : Fourier analysis of currents in 13th harmonic filter after compensation | 121 |
| Figure 6.16 | : 5th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow | 122 |
| Figure 6.17 | : 5th Harmonic Filter current at Dorsey | 123 |
| Figure 6.18 | : Fourier analysis of currents in 5th harmonic filter after compensation | 123 |
| Figure 6.19 | : CT Response for 105A GIC per phase, low power case | 127 |
| Figure 6.20 | : Magnitude of the harmonics in current waveforms at low power flow | 128 |
| Figure 6.21 | : Phase of the harmonics in current waveforms at low power flow | 128 |
| Figure 6.22 | : Flux Density of the CT for 105A GIC per phase, low power case | 129 |
| Figure 6.23 | : Core current of the CT for 105A GIC per phase, low power case | 129 |
| Figure 6.24 | : CT Response for 105A GIC per phase high power case | 130 |
| Figure 6.25 | : Magnitude of the harmonics in current waveforms at high power flow | 130 |
| Figure 6.26 | : Phase of the harmonics in current waveforms at high power flow | 131 |
| Figure 6.27 | : Phase of the harmonics for 105A GIC per phase, high power case | 131 |
Figure 6.29: Core current of the CT for 105A GIC per phase high power case 132
Figure 6.30: A Simple Negative Sequence Filter 133
Figure 6.31: Positive Sequence Output for 315A GIC high power case 134
Figure 6.32: Negative Sequence Output for 105A GIC per phase, high power case 135
Figure 6.33: Zero Sequence Output for 105A GIC per phase, high power case 136
Figure 6.34: Positive Sequence Output for 315A GIC low power case 136
Figure 6.35: Negative Sequence Output for 105A GIC per phase, low power case ... 137
Figure 6.36: Zero Sequence Output for 105A GIC per phase, low power case 138
Figure 6.37: Effect of positive sequence harmonics on positive sequence filter 139
Figure 6.38: Effect of negative sequence harmonics on positive sequence filter ... 139
Figure 6.39: Transformer differential current seen from CT for 105A GIC per phase, high power case ... 140
Figure 6.40: Transformer differential current seen from CT for 105A GIC per phase, low power case ... 140
Figure 6.41: Fourier analysis of differential current at high power flow 141
Figure 6.42: Fourier analysis of differential current at low power flow 141
Figure A-1: Simplified Flow Chart for Calculating Non-Linear Current 152
Figure B-1: Voltage waveforms on 230 kV side at high power flow 153
Figure B-2: Fourier analysis of 230 kV side voltage waveform at high power flow ... 154
Figure B-3: Voltage waveform on 230 kV side at low power flow 155
Figure B-4: Fourier analysis of 230kV side voltage waveform at low power flow ... 155
Figure B-5: Fourier analysis of 500 kV side phase voltages with a typical high power flow ... 156
Figure B-6: Fourier analysis of 500 kV side phase voltages with a typical low power flow ... 157
Figure B-7: THD Factor of 500 kV side phase voltages 157
Figure B-8: Fourier analysis of 500 kV side currents with 150A GIC 158
Figure B-9: Fourier analysis of 500 kV side currents with 400A GIC 158
Figure B-10: Fourier analysis of 500 kV side phase voltages with 150A GIC ... 159
Figure B-11: Fourier analysis of 500 kV side phase voltages with 400A GIC ... 159
List of Tables

Table 4.1: Pre-GIC system conditions for high power flow study - 500kV side .. 70
Table 4.2: Pre-GIC system conditions for low power flow study - 500kV side .. 70
Table 4.3: System conditions after saturation for high power flow ... 71
Table 4.4: Reactive Power Flow at Dorsey for high power flow ... 72
Table 4.5: Details on the 500kV side phase voltage ... 73
Table 4.6: Details on the 500kV side line current ... 74
Table 4.7: System conditions after saturation for high power flow ... 76
Table 4.8: Reactive Power Flow at Dorsey ... 76
Table 4.9: Details on the 500kV side phase voltage ... 77
Table 4.10: Details on the 500kV side line current ... 79
Table 5.1: Pre-GIC system conditions for low power flow study - 500kV side .. 90
Table 5.2: Pre-GIC system conditions for low power flow study - 230kV side .. 90
Table 5.3: Pre-GIC system conditions for high power flow study - 500kV side ... 91
Table 5.4: Pre-GIC system conditions for high power flow study - 230kV side ... 91
Table 5.5: Post-GIC system conditions for low power flow study - 500kV side .. 92
Table 5.6: Post-GIC system conditions for low power flow study - 230kV side .. 92
Table 5.7: The details on the 500 kV side voltage at Dorsey after saturation ... 94
Table 5.8: The details on the 500 kV side current at Dorsey after saturation ... 94
Table 5.9: The details on the 230 kV side voltage after saturation ... 96
Table 5.10: The details on the 230 kV side current at Dorsey after saturation .. 97
Table 5.11: The details on the current flowing to Drayton after saturation ... 99
Table 5.12: The details of the current flowing to Moranville after saturation .. 99
Table 5.13: Post-GIC system conditions for high power flow study - 500kV side ... 101
Table 5.14: Post-GIC system conditions for high power flow study - 230kV side ... 101
Table 5.15: The details on the 500 kV side voltage after saturation .. 103
Table 5.16: The details on the 500 kV side current after saturation .. 103
Table 5.17: The details on the current flowing to Moranville after saturation .. 105
Table 6.1: Analysis of high pass filter currents at different power flows before series compensation 111
Table 6.2: Analysis of high pass filter currents at different power flows after series compensation 113
Table 6.3: Analysis of currents through the tuned harmonic filters for a high power flow 118
Table 6.4: Analysis of currents through the tuned harmonic filters for a low power flow 119
Table 6.5: Apparent increase of rms magnitudes when based on peak values ... 120
Table 6.6: Analysis of currents though the tuned harmonic filters for a high power flow 124
Table 6.7: Analysis of currents though the tuned harmonic filters for a low power flow 124
Table 6.8: Apparent increase of rms magnitudes when based on peak values ... 125
Table B.1: Details on the 230 kV side phase voltage at high power flow .. 154
Table B.2: Details on the 230 kV side phase voltage at low power flow ... 155
Table C.1: The details on the 230 kV side voltage after saturation ... 161
Table C.2: The details on the 230 kV side current after saturation .. 161
Table C.3: The details on the current flowing to Drayton after saturation .. 163
Chapter 1
Introduction

1.1 GEOMAGNETICALLY INDUCED CURRENTS

1.1.1 THE ORIGIN AND CYCLIC NATURE

The sun is continuously discharging a thin plasma of protons and electrons into interplanetary space which is known as solar wind. The solar wind is affected by three categories of solar phenomena: solar flares, coronal holes and disappearing filaments.[1][2]

When one of those phenomena cause fluctuations in the solar wind, then the interaction of the solar wind with the earth’s magnetic field can produce auroral currents, or electrojets which follow circular paths around the earth’s geomagnetic poles at altitudes of 100km or more.

These auroral currents disturb the earth’s normally dormant magnetic field and when the disturbances are of sufficient severity they are termed Geomagnetic Storms. On average, solar activity, which is measured by the number of sunspots in a month, follows
an 11–year cycle. Figure 1.1 shows both the Number of geomagnetically disturbed days per year and the sunspot number measured between 1932 and 1986 [3][4]. Figure 1.1 clearly shows the cyclic nature of geomagnetic activity with a period of roughly 11 years.

![Figure 1.1: Cyclic Nature of Geomagnetic Activity](image)

1.1.2 INTERACTION WITH POWER SYSTEMS

During Geomagnetic storms, a potential difference is induced on the surface of the earth due to the earth’s geomagnetic field fluctuations. The resulting earth surface potential (ESP) acts as a voltage source applied between the grounded neutrals of wye connected transformers or auto–transformers that may be located at opposite ends of a long transmission line as shown in Figure 1.2. This ESP produces a current, known as Geomagnetically Induced Current (GIC), through the grounded neutrals of transformers or auto–transformers and flowing along the transmission line.
Figure 1.2: ESP between grounded Y transformer neutrals and the resultant GIC in transmission lines.

The magnitude of the per-phase GIC can be many times larger than the RMS ac magnetizing current of the transformer. The GIC has a frequency of millihertz and appears as a quasi–dc in comparison to the normal power system frequencies.

1.2 EFFECT ON POWER SYSTEMS

The first known written report of the adverse effects of magnetic storms on electric power systems was made by W. F. Davidson in 1940 [4][5]. The report was based on information obtained from 22 electric utility companies in North America for the magnetic storm of March 24, 1940.

Geomagnetically Induced Current enters the transformer through its grounded neutral and flows along its windings. This builds up a dc flux and shifts the operating point on the transformer magnetization characteristics away from the origin, as shown in Figure 1.3, saturating only in one half of each cycle. This effect is known as half cycle saturation of a transformer. The half cycle saturation is the source of nearly all the operating and equipment problems caused by GIC's during magnetic storms.
Figure 1.3: The shift of operating point on the magnetization characteristics

The consequences of transformer half cycle saturation can be classified as follows [3][4]:

1. Generation of both odd and even harmonics in transformers.

 This may result in several adverse effects on the power system.

 (a). Shunt capacitor banks are seen as low impedance paths for the higher harmonics. This will cause a major portion of the harmonic currents to go through capacitor banks. Since some protection schemes could see this as an overload, it is possible to trip out capacitor banks due to overload protection.

 (b). The undesired operation of other protective relays that may respond to sequence voltages or currents but are not frequency selective. Undesired operations can be of three types; detection of fault where none exists, failure to detect a fault and failure to detect a fault in an adequate time period.
2. An increase in reactive power drawn by transformers.

Some of the adverse effects due to this increase can be:
(a). Intolerable system voltage depressions.
(b). Unusual swings in active and reactive power flow along transmission lines
(c). Problems with generator reactive power limits in some instances.

3. A possible drastic leakage flux effect in the transformer with resulting excessive localized heating which could result in the following:

(a). Increase in losses
(b). Degradation of insulation

The complete blackout of the Hydro–Quebec system during a GIC event on March 13th 1989 is an example of how disastrous the effects of GIC can be [2][6]. During this geomagnetic storm excessive harmonics flowed into static voltampere reactive compensators, which provide rapid voltage regulation. The capacitive legs of the Static VAR Compensator’s (SVC) act as a sink to the harmonics. The harmonics quickly loaded the capacitors to such an extent that protective systems sensed a false overload and took the SVC off-line to prevent equipment damage. This caused severe voltage regulation problems and subsequently the entire Hydro–Quebec network collapsed.

1.3 VULNERABILITY OF POWER SYSTEMS

Normally the GIC which flows in the power system is proportional to the ESP impressed between neutral grounding points. The ESP in turn, varies with the distance between grounding points. Today’s power systems have very long transmission lines and inter-connections between regional power grids are becoming very common. Thus the distances between grounding points has increased, leading to a greater likelihood of significant GIC levels.
1.4 MODELLING OF GIC

The power system model for the flow of GIC is basically a dc conducting path model through the station ground mat resistances, the transformer windings, and the interconnecting transmission line network. While there are similarities between the path taken by GIC and zero sequence currents in a power system, there are also important differences in the connective topology representing transformers in the two instances[7]. The GIC transformer models are not concerned with leakage reactance values, but only with paths through the transformer that could be followed by dc current.

In simulation of GIC in an electromagnetic transient simulation package, GIC has to be simulated as a dc potential difference between two substations rather than an injected dc current through the grounding points in the substation.

1.4.1 ESTIMATION OF GIC

During a geomagnetic storm, the portions of the earth which experience an appreciable time rate of change of the geomagnetic field will have induced ESP. Analytical methods have been developed to estimate the ESP based on geomagnetic field fluctuation data and a multi–layered earth conductivity model [8]. Towle et. al.[9] proposed a method by modelling ionospheric current as a gaussian distributed current sheet above the earth and dividing the surface of the earth into different earth resistivity regions. The resulting ESP at each power system substation is then calculated. Rackliffe et. al.[10] quantified the GIC on a power system by a simulated magnetohydrodynamic–electromagnetic pulse.

1.5 SCOPE OF THE THESIS

This study is aimed at modelling the transformer core to represent the saturation characteristics and transformer losses accurately and develop the model to represent different core configurations.
The Dorsey–Forbes–Chisago 500kV system is taken as a case study and an evaluation of some protection schemes are carried out under GIC conditions. The effects of GIC on this system after series compensating the 500kV lines are also studied. The capacitors in series block the d.c. path in the 500 kV line and restrict the GIC into the parallel 230 kV lines.

The study is primarily based on modelling transformers and evaluating some protection schemes. Maximum recorded GIC current levels and predicted maximum GIC current levels are used for the study. The maximum predicted value used in the thesis was based on calculations done assuming an uniform electric field model that is not considered realistic today. However, at the time levels were chosen, there was no other information available.
2.1 TRANSFORMERS

To assess the power system response in the presence of GIC, a simulation package such as EMTDC[11] has to be used but several improvements are necessary before it is entirely suitable. It is clear that simulation results are going to depend very much on how the transformers are modelled since the effects on the power system due to GIC are due primarily to transformer half cycle saturation.

The way the transformer core, including saturation characteristics, eddy current losses and hysteresis losses, is modelled is very important since the cause of harmonic generation are in fact the non-linearities of the core of the transformer. This is further illustrated by figure 2.1.
Figure 2.1: Generation of harmonics due to the non-linearity of the transformer core

GIC appears as a quasi–dc current giving rise to a dc flux, provided a low reluctance path exists for dc flux. This will drive the transformer into half cycle saturation. A three phase three limb transformer is an example where there is no low reluctance path for dc flux, therefore exhibit no significant effects. This is an example of how different core models behave in different ways in response to the GIC. Before going into details of transformer modelling let us first understand how the transformers are represented in simulation packages such as EMTP[12] and EMTDC[11].
2.1.1 TRANSFORMER MODELLING IN EMTP

In principle, any N winding transformer can be described as N coupled coils. And it can be represented by the following equation for the a.c. steady state

$$V_i = \sum_{k=1}^{N} Z_{ik} I_k \quad \text{or} \quad [V]_{x\times1} = [Z]_{x\times N} [I]_{x\times1} \quad (2.1)$$

and for the transient state

$$v_i = \sum_{k=1}^{N} R_{ik} i_k + \sum_{k=1}^{N} L_{ik} \frac{di_k}{dt} \quad \text{or} \quad [v]_{x\times1} = [R]_{x\times N} [i]_{x\times1} + [L]_{x\times N} \frac{d}{dt} [i]_{x\times1} \quad (2.2)$$

The matrix Z in equation 2.1 is symmetric. Elements of that matrix can be measured in no load tests. If coil k is energized and all other coils are open circuited, then the measured values of I_k and V_1, \ldots, V_n produce the kth column of the matrix Z.

$$Z_{ik} = \frac{V_i}{I_k} \quad (2.3)$$

Unfortunately the short circuit input impedances which describe the more important transfer characteristics of the transformer are insignificant in such no load measurements. Large transformers are tightly coupled with a coupling coefficient very close to unity making it impossible to calculate short circuit impedance with a reasonable accuracy[12].

Thus matrix Z is calculated in a different way. Let the transfer characteristics be expressed in the form of voltage drops between coil i and a reference N. Then,

$$V_i = \frac{w_i}{w_n} V_N = \sum_{k=1}^{N} \left(Z_{ik} - \frac{w_i}{w_n} Z_{ik} \right) I_k \quad \text{where} \quad w_i \text{ is the number of turns in coil } i. \quad (2.4)$$

Because the exciting magnetomotive force (m.m.f.) is negligible for the short circuit test, we have m.m.f. balance,

$$\sum_{k=1}^{N} w_k I_k = 0 \quad (2.5)$$
Combining equations 2.4 and 2.5 and eliminating I_N,

$$V_i - \frac{w_i}{w_s} V_N = \sum_{k=1}^{n-1} Z_{ik}^* I_k \quad 1 \leq i \leq (N-1) \quad (2.6)$$

or

$$[V']_{(a-1)\times 1} = [Z']_{(a-1)\times (a-1)} [I]_{(a-1)\times 1}$$

The elements of Z' can be found directly from short circuit test data [12].

Then the matrix Z' is inverted

$$[I]_{(a-1)\times 1} = [Y]_{(a-1)\times (a-1)} [V']_{(a-1)\times 1} \quad (2.7)$$

and by adding equation 2.5 and re-arranging

$$[I]_{a\times 1} = [Y]_{a\times a} [V]_{a\times 1} \quad (2.8)$$

2.1.2 IDEAL TRANSFORMER MODEL IN EMTDC

To understand how ideal transformers are modelled in EMTDC [11], let us first understand the theory of mutual coupling. To simplify the study let us consider two mutually coupled windings as shown in Figure 2.2.

![Figure 2.2: Two mutually coupled windings](image)

The voltages across the first and second windings are E_x and E_y respectively whereas the currents going into the windings are I_x and I_y. The self inductances of the windings x and y are denoted as L_{xx} and L_{yy} respectively whereas mutual inductance between the two windings is denoted as $M_{xy} = M_{yx} = M$. Equation 2.9 can be written to describe this circuit.

$$[E_x \ E_y] = \begin{bmatrix} L_{xx} & M \\ M & L_{yy} \end{bmatrix} \frac{d}{dt} [I_x \ I_y] \quad (2.9)$$
In order to solve for the currents, the inductance matrix needs to be inverted.

\[
p \begin{bmatrix} I_x \\ I_y \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} L_{yy} - M^2 & M \\ -M & L_{xx} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \end{bmatrix}
\]

where \(p = \frac{d}{dt} \)

\[
\Delta = L_{xx}L_{yy} - M^2 = L_{xx}L_{yy}(1 - k_{xy}^2)
\]

\[
k_{xy} = \frac{M}{\sqrt{L_{xx}L_{yy}}}
\]

The coupling coefficient \(k = 1 \) when the windings are ideally coupled. In a practical power transformer \(k \geq 1 \), but \(k < 1 \) which enables the inverse of the inductance matrix to be finite. For closely coupled coils, turns ratio 'a' is defined as shown below.

\[
a = \frac{E_1}{E_2} = \sqrt{\frac{L_{xx}}{L_{yy}}} \quad (2.11)
\]

\(L_{xx} \) and \(L_{yy} \) can be determined by doing standard open circuit tests on the two windings. For example when winding y is open circuited,

\[
I_y = 0
\]

\[
E_x = L_{xx} \frac{d}{dt} I_x \quad (2.12)
\]

If the applied voltage \(E_x \) is assumed to be sinusoidal, with rms voltage \(V_x \), and an angular frequency of \(\omega \), and if it produces a rms current of \(I_x \) then,

\[
L_{xx} = \frac{V_x}{\omega I_x} \quad (2.13)
\]

Similarly the mutual inductance between coils \(x \) and \(y \) can be found by shorting coil \(y \) and applying a rms voltage \(V_x \) to coil \(x \) so that rated rms current \(I_x \) flows in coil \(x \). Then
\[E_x = 0 \]

\[E_x = L_{xx}pI_x + M_{xy}pI_y \]

\[0 = M_{xy}pI_x + L_{yy}pI_y \] \hspace{1cm} (2.14)

\[E_x = (L_{xx} - \frac{M_{xy}^2}{L_{yy}})pI_x = L_{xx}(1 - k_{xy}^2)pI_x \]

\[\frac{V_x}{I_x} = \omega L_{xx}(1 - k_{xy}) \]

since \(k_{xy} \) is very close to one,

\[\frac{V_x}{I_x} = 2\omega L_{xx}(1 - k_{xy}) \] \hspace{1cm} (2.15)

\[= X_{xy} \]

Hence,

\[k_{xy} = 1.0 - \frac{X_{xy}}{2\omega L_{xx}} \]

and

\[M_{xy} = k_{xy}\sqrt{L_{xx}L_{yy}} \] \hspace{1cm} (2.16)

From equations 2.13, 2.15 and 2.16 when the rated voltages of the windings, MVA rating of the transformer, leakage reactances between windings and the frequency are given, one can calculate the inductance matrix.

From equation 2.10 the inverse of the matrix can be written as follows by substituting 'a' and letting \(k_{xy} = 1 \) within the matrix

\[
\begin{bmatrix}
L_{xx} & M_{xy} \\
M_{xy} & L_{yy}
\end{bmatrix}^{-1} = \frac{L_{yy}}{L_{xx}L_{yy}(1 - k_{xy}^2)}\begin{bmatrix}
L_{yy} & -M_{xy} \\
-M_{xy} & L_{xx}
\end{bmatrix}
\] \hspace{1cm} (2.17)

\[
= \frac{1}{\omega X_{xy}}\begin{bmatrix}
1 & -a \\
-a & a^2
\end{bmatrix}
\]

2.1.3 TRANSFORMER CORE

When an ideal transformer is modelled, iron core non linearities and winding resistances are not represented. These have to be added separately. The most prominent iron
core non-linearity is the saturation followed by eddy current loss and hysteresis loss [13],[14]. The simplest and most commonly used method to represent core losses is to add a shunt resistance across one winding. For most of the studies using EMTP or EMTDC, core and winding losses can be neglected because of the little significance to the result [11]. But for studying the effects of GIC, where the cause of the problem is the non-linearity of the core, the transformer core has to be modelled accurately.

Many studies including transformers do require saturation to be adequately modelled. It can be represented in either of two ways;

1. Varying inductance
2. non-linear current source across a winding

If the saturation is modelled by the varying inductance method the conductance matrix corresponding to that particular subsystem has to be re-computed and inverted again whenever there is a change in the inductance. The advantage of using a non-linear current source is that there is no requirement for re-computation and inversion of the conductance matrix but the voltage available for calculation of current is one time step old and hence some sort of prediction is used to get the present voltage.

In most of the models representing the saturation, non-linearity is represented as a combination of several linear sections. EMTDC uses a combination of a curve and a straight line section [11]. This kind of representation is quite adequate for most of the studies. But for studying the effects of GIC, where the results are highly dependent on transformer saturation characteristics, it is not sufficient.

As for core losses, Swift has shown that eddy current losses are greater than hysteresis losses and eddy current effect can be closely approximated in a linear way for power system transients [13].
2.1.3.1 SATURATION CHARACTERISTICS

There are several models in use but almost all of them are only accurate up to a certain degree of saturation. Representation of magnetization characteristics over a wide range having a smooth variation of incremental permeability is feasible only by representing the saturation as a non-linear current source. The variable inductance method will not be feasible as this will force a repeated number of computations and inversions of the conductance matrix.

Then the problem is finding a suitable mathematical expression which gives the magnitude of the non-linear current. There were several attempts to represent the magnetization characteristics as a polynomial series, rational fraction polynomial series[15] or a non–integer power series[16]. Although polynomial series and rational fraction polynomial give a fairly good representation, incremental permeability is not represented accurately even giving rise to negative values. The non–integer power series method proposed by Lucas[16] ensures a smooth and realistic variation of incremental permeability.

The magnetization curve of transformer steel has a low incremental permeability at low magnetizing fields, increasing to a peak value and then decreasing as saturation is increased. Lucas has shown that field intensity H can be expressed by a power curve of flux density B of the form given by

$$H = \sum K_i B^{\alpha_i} \quad \text{with } K_i > 0 \text{ and } \alpha_i > 0 \text{ for all } i \quad (2.18)$$

Alternatively this may be expressed in terms of flux linkage λ and magnetizing current i_m at time $t = n \Delta t$ as in equation 2.20.

$$\frac{N i_m}{I} = \sum K_i \left(\frac{\lambda}{NA}\right)^{\alpha_i} \quad \text{with } K_i > 0 \text{ and } \alpha_i > 0 \text{ for all } i \quad (2.19)$$

where

- $N =$ Number of turns
- $I =$ mean length of the flux path
- $A =$ cross sectional area of the core
This simplifies to,

\[i_{m.s} = \sum k_i \lambda_{\alpha_i} \quad \text{with } k_i > 0 \text{ and } \alpha_i > 0 \text{ for all } i \]

where

\[k_i = \frac{1}{N} \frac{K_i}{(NA)^{\alpha_i}} \quad (2.20) \]

The coefficients \(K_i \) and hence \(k_i \) are deliberately chosen to be positive to ensure that both \(H \) and incremental permeability \(\frac{dB}{dH} \) vary smoothly without oscillations. The indices \(\alpha_i \) need not be integers but are chosen to be integers for convenience. The first index \(\alpha_1 \) is really a decimal fraction close to half which represents the ankle region of the magnetization characteristics[17]. Since the ankle region is not of great importance for this study \(\alpha_1 \) is chosen as unity for ease of computation.

The coefficient \(K_i \) is calculated by plotting \(\log B \) vs. \(\log H \) and then applying a least square method for the initial region. After solving \(K_i \) for \(\alpha_1 = 1 \), the rest of the indices \(\alpha_i \) and coefficients \(K_i \) can be found by using logarithmic plots [16]. Typically 3 terms of the power curve give a very good representation over a wide range of values.
Figure 2.3: Power series curve representation of magnetization characteristics

\[k_1 = 3.99654 \times 10^{-6} \ i_{FL} \left(\frac{\omega}{V_R} \right) \]
\[k_2 = 1.76417 \times 10^{-6} \ i_{FL} \left(\frac{\omega}{V_R} \right)^{15} \]
\[k_3 = 1.40763 \times 10^{-8} \ i_{FL} \left(\frac{\omega}{V_R} \right)^{57} \]

where \[\omega = \text{frequency in rad/s} \]
\[i_{FL} = 400\text{MVA full load current} \]
\[V_R = \text{rated voltage (rms)} \]

(2.21)
Figure 2.3 shows the magnetization characteristics obtained for the 230/500/46kV 240/400MVA/phase transformer at Dorsey for 60 Hz frequency. The vertical axis shows rms voltage as a percentage of rated voltage and the horizontal axis shows the rms current as a percentage of full load current. The two graphs show the actual data and the calculated power series curve. The values of \(k_i \)'s and \(a_i \)'s for the graph in Figure 2.3 are given by Equation 2.21.

The "Reluctance" \(S_n \) of the magnetic core of the transformer is defined for convenience in this study in terms of flux linkage \(\lambda \), rather than the flux, as in equation 2.22

\[
i_{m_n} = S_n \lambda_n
\]

Hence \(S_n \) may be expressed as in equation 2.23

\[
S_n = \sum k_i \lambda_i^a_i
\]

Since the values of \(k_i \)'s and \(a_i \)'s have been based on rms measurements (\(V_{rms} - I_{rms} \) curve) they cannot be used with instantaneous values of \(i \) and \(\lambda \). There are some methods to convert \(V_{rms} - I_{rms} \) to instantaneous or peak values [14][12]. All these methods are applicable only for modelling saturation characteristics in piecewise linear sections and are not suitable for power series curve representation of saturation characteristics.

The following heuristic approach is used to modify \(k_i \)'s and \(a_i \)'s. Note that there will be no difference in the coefficient \(k_i \) when it is converted into an instantaneous value. This is because we chose \(a_1 = 1 \), which describes the linear portion of the relationship between voltage and current and hence there is no change in the proportionality coefficient whether it is instantaneous, peak or rms value.

For the first step, the coefficients \(k_i \)'s and indices \(a_i \)'s previously obtained from logarithmic plots of measured characteristics are used to give an estimated saturation characteristic of \(i \) and \(\lambda \). The rms current is then calculated using this saturation characteristic with a sinusoidal input voltage \(V_{rms} \) of varying magnitude at rated frequency. Using these new values of \(V_{rms} \) and \(I_{rms} \), a new curve was drawn. Then a similar logarithmic
analysis is done on this new curve and a new set of coefficients \((k_{\text{new}}) \) is found keeping indices \((\alpha_i) \) as before. Then a new coefficient for the second term of eqn. 2.23 is found by multiplying the original coefficient \((k_{2-\text{orig}}) \) of the second term by the ratio \(k_{2-\text{orig}} / k_{2-\text{new}} \). With this modification the new \(V_{\text{rms}}-I_{\text{rms}} \) curve falls within close proximity to the measured curve over the region dominated by first and second terms of the power series. This procedure is repeated until the characteristic described by the power series coincides with the measured characteristics over the region dominated by the first and second terms.

Then a similar process is done for the coefficient of the third term of the power series. Figure 2.4 shows rms voltage as a percentage of rated voltage vs. rms current as a percentage of 400MVA full load current for different stages of converting coefficients into instantaneous values.

After determining new coefficients \(k_i \)'s to suit instantaneous values, \(S_n \) can be represented as in equation 2.24

\[
S_n = k_1 + \sum k_i \lambda_i^{n-1} \quad \text{where} \quad \alpha_i = 1
\]

(2.24)

The portion of reluctance which is represented by \(k_1 \) in eqn. 2.24 can be represented as an inductor across a winding. The advantage of representing it as an inductance in a time domain simulation is that current drawn by it in the present time step is based on the voltage at the present time step.

Note that although coefficients \(k_i \)'s and indices \(\alpha_i \)'s can be found to get the relationship between \(i_{m,n} \) and \(\lambda_n \), computations are done using values of \(B \) rather than \(\lambda \) to avoid numerical problems when handling powers of very large or very small numbers.
The instantaneous current of the non-linear current due to magnetization characteristics are given by

\[i_{\text{mag}(NL)} = S'_{n} B_{0} \lambda \quad \text{and} \]

\[S'_{n} = \sum B_{i} (B_{i})^{\alpha_{i}} \quad \text{where} \quad \alpha_{i} = 1 \]

where \[B_{0} = \frac{1}{N A} \quad \text{and} \quad B_{i} = \frac{1}{N} K_{i} \]
This is accompanied by a linear inductance L_{mag} which represents the linear portion of the magnetization current.

$$L_{\text{mag}} = \frac{1}{k_1} = \frac{NNA}{\mu_0 K_1} = \frac{1}{B_0 B_1} \quad (2.26)$$

2.1.3.2 Core Losses

There are two forms of losses which occur in the transformer core;
1. eddy current loss
2. hysteresis loss

At steady state conditions eddy current loss linearly increases with approximately B^2 whereas hysteresis loss varies with approximately B^ϕ. Thus the loss current may be written as

$$i_{\text{en}} = k_h B^{\phi - 1} + \frac{V}{R_e} \quad (2.27)$$

where k_h is a proportionality constant for the hysteresis current, ϕ is the Steinmetz index and R_e is the eddy current resistance. R_e and k_h will in general be frequency dependent but at present they are set to a value suitable for fundamental frequency. At present ϕ is set to 1.6 which is typical.

Because of the linear relationship between current representing the eddy current loss and the voltage, the eddy current loss can be modelled by a resistance across the winding. But the hysteresis loss current component has to be represented as a current source.

The value of R_e can be shown

$$R_e = \frac{NA^2 \rho}{l^2 c^3} \quad (2.28)$$

where N is the number of turns in the coil, A is the cross sectional area of the core, l is the mean length of the flux path, c is the thickness of the lamination and ρ is the resistivity of the material.[18]
2.1.4 OVERALL MODEL FOR THE TRANSFORMER CORE

Considering all the above facts discussed in sections 2.1.3.1 and 2.1.3.2, the transformer core can be represented as in Figure 2.5.

![Figure 2.5: Basic Model for the Transformer Core](image)

Hysteresis loss current and the non-linear magnetizing current due to flux dependent reluctance are represented as a current source, giving the equivalent circuit as shown in Figure 2.6.

![Figure 2.6: Final Model of the Transformer Core](image)

A flow chart of the simplified algorithm for calculating non-linear current is given in the appendix A.

2.1.5 DIFFERENT TRANSFORMER CONFIGURATIONS

The main difference which affects the transformer half cycle saturation between different transformer configurations is the magnetic flux path taken by zero sequence flux and non-zero sequence flux. If the zero sequence flux path is the same as the positive and negative sequence flux path, then the magnetization characteristics are the same.
for all sequences. Then the core can be modelled by attaching a simple core model to any one of the windings.

If the zero sequence flux path is different from the positive and negative sequence flux path, then a complex core model can be developed by adding an extra winding and connecting core models corresponding to different limbs of the transformer in an appropriate way according to the principle of duality between electric and magnetic circuits.[18]

2.1.5.1 SINGLE PHASE UNITS

Single phase transformer cores can be of two types; shell form or core form. These two forms are illustrated in figure 2.7. In the shell form the coils are wound in the centre limb whereas in the core form the coils are wound on two side limbs.

![Shell form Core form](image)

Figure 2.7: Shell form and Core form Single Phase Transformers

A single phase unit, or a three phase transformer comprised of single phase units whether it is core type or shell type should behave in a similar fashion on exposure to GIC. The single factor linking these two types of transformer is that the magnetic circuit of the core accommodates zero sequence flux and its path is the same as that of positive and negative sequence flux. Therefore saturation characteristics of zero sequence are the same as that of positive and negative sequence. This is the most simple model of possible transformer configurations. Figure 2.8 shows the single phase multi winding transformer model for cases where zero sequence flux shares the same path with positive and negative
sequence fluxes. Three phase transformers made up of single phase units can be assembled from this by connecting them appropriately.

![Ideal Transformer Model in EMTDC](image)

Figure 2.8: Single Phase Model of a Transformer

2.1.5.2 THREE PHASE CONVENTIONAL TRANSFORMERS

A typical three phase shell form transformer core is shown in figure 2.9 [19][20]. Three phase coils are wound on three middle limbs with the coils in the middle limb wound in the opposite direction to the other two. Usually the cross sectional areas of the yokes and the outer limbs are half of that of main limbs. In the case of zero sequence flux, zero sequence flux produced by two sets of coils shares the two middle yokes giving a higher zero sequence flux density in the middle yokes.

![Three phase conventional transformer core configuration](image)

Figure 2.9: Three phase conventional transformer core configuration
In a case like this where the paths taken by different sequence fluxes are different, a core model can be developed by making an additional winding and connecting them with different core elements which represent the limbs and yokes in the transformer core in an appropriate way according to the principle of duality between magnetic and electric circuits.

The magnetic equivalent circuit for the transformer core configuration shown above can be represented as in figure 2.10.

![Figure 2.10: Equivalent magnetic circuit of the three phase conventional transformer](image)

In a magnetic equivalent circuit, around any closed path, the total magnetomotive force of the windings is equal to the sum of the products of reluctance and flux.

\[\sum F = \sum S \phi \quad (2.29) \]

The continuity of magnetic flux in the magnetic field is represented by equating the sum of the fluxes entering any junction of magnetic paths in the equivalent circuit to zero.

\[\sum \phi_{\text{into}} \bigg|_{\text{junction}} = 0 \quad (2.30) \]

For the above circuit using the symmetry of the circuit between the upper and lower half,
\[\phi_n = \phi_{n+1} \]
\[S_n = S_{n+1} \]
\[F_n = F_{n+1} \quad \text{for } n = 1, 3, 5, 7, 9, 11, 13 \]

Using the equation 2.29,
\[F_a' = S_a \phi_a + S_1 \phi_1 + S_3 \phi_3 + S_5 \phi_5 \]
\[F_b' = S_b \phi_b + S_9 \phi_9 + S_7 \phi_7 + S_5 \phi_5 \]
\[F_c' = S_c \phi_c + S_9 \phi_9 + S_{11} \phi_{11} + S_{13} \phi_{13} \]

Using the equation 2.30 we have,
\[\phi_a = \phi_1 + \phi_2 \]
\[\phi_1 = \phi_3 \]
\[\phi_5 = \phi_3 + \phi_7 \]
\[\phi_a + \phi_b = \phi_5 + \phi_6 \]
\[\phi_9 = \phi_7 + \phi_{11} \]
\[\phi_b + \phi_c = \phi_9 + \phi_{10} \]
\[\phi_{11} = \phi_{13} \]
\[\phi_c = \phi_{13} + \phi_{14} \]

Equation 2.32 can be rewritten as,
\[F_a' = F_a + F_1 + F_3 + F_5 \]
\[F_b' = F_b + F_9 + F_7 + F_5 \]
\[F_c' = F_c + F_9 + F_{11} + F_{13} \]

Let us consider each of these magnetomotive force components to be produced by corresponding components of current in N-turn coils. These current components are then related by the expression
\[i_a' = i_a + i_1 + i_3 + i_5 \]
\[i_b' = i_b + i_9 + i_7 + i_5 \]
\[i_c' = i_c + i_9 + i_{11} + i_{13} \]

Suppose all fluxes link an N-turn coil. Then corresponding voltages produced in the coils can be related by using equation 2.33 as follows.
Also using the symmetry we have,
\[e_n = e_{n+1} \]
\[i_n = i_{n+1} \quad \text{for } n = 1, 3, 5, 7, 9, 11, 13 \]

This gives us an equivalent circuit as shown in figure 2.11.

![Equivalent Circuit for 3 phase Conventional Transformer](image)

Figure 2.11: Equivalent Circuit for 3 phase Conventional Transformer

The three voltages are applied to the circuit by adding another three phase winding and connecting the windings and the elements in series as shown in the equivalent circuit. The elements correspond to the actual limbs in the transformer. Each element is subjected to a voltage corresponding to the flux passing through the corresponding limb of the transformer core. Therefore eddy current loss resistance and hysteresis current source can be incorporated into this model. This makes each circuit element in the equivalent circuit
correspond to a parallel combination of resistor, inductor and a current source as marked in dotted lines in figure 2.6.

2.1.5.3 THREE PHASE FIVE LIMB TRANSFORMERS

Core configuration of a typical three phase five limb transformer is shown in figure 2.12. The coils are wound on the three middle limbs and no coils are wound on the two outside limbs. The cross sectional area of an outer limb is usually half of that of a main limb and the cross sectional area of yokes are about 70% of that of a main limb.

The zero sequence flux flows through the outside limbs thus making them susceptible to saturation due to zero sequence flux. The main limbs provide a path for all fluxes irrespective of the sequence of the flux.

Figure 2.12: Three phase Five limb transformer core configuration

Doing a similar analysis as for the conventional transformer, we can develop an equivalent electric circuit for a three phase five limb transformer. The equivalent circuit is shown in the figure 2.13.
Core configuration of a typical three phase three limb transformer is shown in figure 2.14. The coils are wound in the three vertical limbs. There is no low reluctance flux path for the zero sequence flux.

More accurate equivalent circuits can be developed if the flux paths outside the core material are considered. For this study flux paths outside magnetic material are not considered since this is the least affected transformer core configuration due to GIC.

Doing a similar analysis as for the conventional transformer, we can develop an equivalent electric circuit for a three phase three limb transformer. The equivalent circuit is shown in the figure 2.15.
Modelling of transmission lines plays an important role in studying the effects of GIC since transmission line response is frequency dependent. Since GIC gives rise to harmonics, proper representation of transmission lines for a wide frequency spectrum is very important. There are two methods used in modelling transmission lines in electromagnetic transient programs.

1. Bergeron model
2. Marti's frequency dependent line model

In order to appreciate the concept of a distributed transmission line, a single conductor overhead transmission line is considered. Multi phase and mutually coupled transmission lines follow similar concepts.

2.2.1 BERGERON MODEL

Let us first consider a lossless transmission line. Lossy transmission lines can be derived from the lossless model with certain assumptions. For a lossless line,
\[-\frac{\delta v}{\delta x} = L \frac{\delta i}{\delta t} \quad (2.38)\]
\[-\frac{\delta i}{\delta x} = C \frac{\delta v}{\delta t}\]

where \(L \) = inductance per unit length
\(C \) = capacitance per unit length
\(v \) = voltage
\(i \) = current
\(t \) = time
\(x \) = distance along the line

d'Alembert's solution to equation 2.38 is;

\[
v(x, t) = Z_c \left(f_1(x - at) - f_2(x + at) \right) \quad (2.39)\]
\[
i(x, t) = f_1(x - at) + f_2(x + at)\]

where phase velocity \(a = \frac{1}{\sqrt{LC}} \)

characteristic impedance \(Z_c = \frac{1}{\sqrt{LC}} \)

rearranging the equation 2.39,

\[
v(x, t) + Z_c i(x, t) = 2 Z_c f_1(x - at) \quad (2.40)\]
\[
v(x, t) - Z_c i(x, t) = -2 Z_c f_2(x - at)\]

From equation 2.40 it is clear, that an observer moving at velocity \(a \) along the line will see the quantity \(v + Z_c i \) constant, because for that person, \(x - at \) is constant.

![Figure 2.16: A lossless transmission line](image)

Let the observer leave \(m \) at time \(t - \tau \) and arrive at \(k \) at time \(t \), where \(t = d/a \),
\(d \) being the line length. Thus,
\[v_m(t - r) + Z_c \, i_{m,4}(t - r) = v_d(t) - Z_c \, i_{m,4}(t) \]

(2.41)

rearranging equation 2.41,

\[i_{m,4}(t) = \frac{1}{Z_c} v_d(t) + I_d(t - r) \]

(2.42)

where \(I_d(t - r) = -\frac{1}{Z_c} v_d(t - r) - i_{m,4}(t - r) \)

similarly,

\[i_{m,4}(t) = \frac{1}{Z_c} v_d(t) + I_d(t - r) \]

(2.43)

\[\text{where } I_d(t - r) = -\frac{1}{Z_c} v_d(t - r) - i_{m,4}(t - r) \]

Thus we have the Norton representation of the transmission line as shown in figure 2.17.

![Figure 2.17: Norton representation of the lossless transmission line](image)

For a lossy transmission line, this method can be modified to include the total series resistance \(R \) of the transmission line for a given frequency. It is assumed that the conductance to the ground is negligible. This could be easily implemented by dividing the line section into two equal sections and having a one fourth of \(R \) in series with the Norton equivalent circuit as shown in figure 2.18.

![Figure 2.18: Development of Norton representation for a lossy transmission line](image)

The Norton representation shown in figure 2.18 can be simplified into that shown in figure 2.19.
The values of $I_k(t-\tau), I_m(t-\tau)$ and Z shown in figure 2.19 are given by the following equations 2.44.

$$I_k(t-\tau) = \frac{1 + h}{2}\left[-\frac{1}{2}v_k(t-\tau) - i_{m}(t-\tau)\right] + \frac{1 - h}{2}\left[-\frac{1}{2}v_k(t-\tau) - i_{m}(t+\tau)\right]$$

$$I_m(t-\tau) = \frac{1 + h}{2}\left[-\frac{1}{2}v_m(t-\tau) - i_{m}(t-\tau)\right] + \frac{1 - h}{2}\left[-\frac{1}{2}v_m(t-\tau) - i_{m}(t-\tau)\right]$$

where $h = \frac{Z_c - R/4}{Z_c + R/4}$

$Z = Z_c + R/4$

However, the above expressions are approximate only for a fixed frequency. When a transmission line is transiently disturbed it will oscillate with various frequencies depending on its length and terminating network. The lowest natural frequency of the line and the system usually dominates. Transmission line resistance at its normal steady state frequency and also at its dominating natural frequency can be found if that frequency is known or can be estimated.

In EMTDC, both the above line resistances are used. Low and steady state frequencies are filtered through the transmission line resistance found at steady state frequency. Transient and higher frequencies of oscillation are filtered through the line resistance found at a selected higher frequency [11].

Though this way of representing the transmission line is very simple, the drawback is that it is only accurate for one frequency. All the higher harmonics are assumed to have a higher series resistance than that of the operating frequency. But the higher resistance is assumed as constant for all the higher frequencies.
With proper selection of frequencies for operating frequency and higher frequency, this gives a good representation of transmission line especially for fundamental steady state and transient studies. But for studying the effects of GIC which involve a larger frequency spectrum in the steady state this representation is not sufficient.

2.2.2 Marti Model

The other widely used transmission line model was developed by Marti and was derived using a different approach. To understand, consider a transmission line in the frequency domain, then the voltages and currents at both ends are related as shown in equation 2.45.

\[
V_k = \cosh \gamma l V_m - Z_c \sinh \gamma l I_m \\
I_k = \frac{1}{Z_c} \sinh \gamma l V_m - \cosh \gamma l I_m
\]

where \(\gamma = \sqrt{Z Y} \)

\[Z_c = \sqrt{\frac{Y}{Z}}\]

\[l = \text{length}\]

The forward and backward propagation functions can be defined as,

\[
B_k(\omega) = V_k(\omega) - Z_c I_k(\omega) \quad (2.46)
\]

\[
B_m(\omega) = V_m(\omega) - Z_c I_m(\omega)
\]

\[
F_k(\omega) = V_k(\omega) + Z_c I_k(\omega)
\]

\[
F_m(\omega) = V_m(\omega) + Z_c I_m(\omega)
\]

The forward and backward propagation functions can be shown to be related as in equation 2.47.

\[
B_k(\omega) = A_1(\omega) F_m(\omega) \quad (2.47)
\]

\[
B_m(\omega) = A_1(\omega) F_k(\omega)
\]

where propagation function \(A_1(\omega) = e^{-\gamma l} \)

\(F_k(\omega)\) and \(F_m(\omega)\) in equation 2.46 can be simplified to

\[
F_k(\omega) = V_k(\omega) + E_k(\omega) \quad (2.48)
\]

\[
F_m(\omega) = V_m(\omega) + E_m(\omega)
\]

where \(E_k(\omega) = I_k(\omega) Z_c(\omega)\)

\(E_m(\omega) = I_m(\omega) Z_c(\omega)\)
Since $Z_c(\omega)$ is the response of a linear network, the time domain representation of equations 2.47 and 2.48 can be found by means of Inverse Fourier Transform, that is,

\[
b_1(t) = v_1(t) - e_1(t) = a_1(t) * f_1(t) \quad \text{(2.49)}
\]

\[
b_n(t) = v_n(t) - e_n(t) = a_i(t) * f_i(t)
\]

where \(e_1(t) = z_c(t) * f_1(t) \)

\[e_n(t) = z_c(t) * f_n(t) \]

Equation 2.49 defines the equivalent circuit shown in figure 2.20.

![Figure 2.20: Frequency dependence model in the time domain](image)

The propagation function \(a_1(t) \) in the time domain can be expressed as

\[
a_1(t) = p(t - \tau) \quad \text{(2.50)}
\]

where \(p(t) \) has the same shape as \(a_1(t) \) but displaced \(\tau \) time units from the origin.

In the frequency domain \(A_1(\omega) \) can then be expressed as

\[
A_1(\omega) = P(\omega) e^{-j\omega \tau} \quad \text{(2.51)}
\]

The function \(P(\omega) \) can be approximated by rational function of the form

\[
P(s) = \sum_{i=1}^{m} \frac{k_i}{s + \beta_i} \quad \text{(2.52)}
\]

Therefore in the time domain \(a_1(t) \) becomes

\[
a_1(t) = \sum_{i=1}^{m} k_i e^{-\beta_i (t-\tau)} \quad \text{(2.53)}
\]
with \(a_1(t) \) in the form given in equation 2.53, and the convolutions in equation 2.49 can be solved by recursive integration methods. Since \(a_1(t) = 0 \) for \(t < \tau \)

\[
b_k(t) = \int_{t}^{\infty} f_u(t - u) a_s(u) \, du \tag{2.54}
\]

Introducing equation 2.53,

\[
b_k(t) = \sum_{i=1}^{n} b_{k,i}(t) \tag{2.55}
\]

where \(b_{k,i}(t) = \int_{t}^{\infty} f_u(t - u) \, k_i e^{-\beta (t-u)} \, du \)

The integral in equation 2.55 can be broken into two parts.

\[
b_{k,i}(t) = \int_{\tau}^{\tau + \Delta t} f_m(t - u) \, k_i e^{-\beta (t-u)} \, du + \int_{\tau + \Delta t}^{\infty} f_m(t - u) \, k_i e^{-\beta (t-u)} \, du \tag{2.56}
\]

\[
= \int_{\tau}^{\tau + \Delta t} f_m(t - u) \, k_i e^{-\beta (t-u)} \, du + e^{-\beta \Delta t} b_{k,i}(t - \Delta t)
\]

The first integral of equation 2.56 can be evaluated numerically using the trapezoidal rule. After some algebraic manipulations it can be shown that,[12]

\[
b_k(t) = \sum_{i=1}^{m} \left[g_i b_{k,i}(t - \Delta t) + c_i f_m(t - \tau) + d_i f_m(t - \tau - \Delta t) \right] \tag{2.57}
\]

where \(g_i = e^{-\beta \Delta t} \)

\(h_i = \frac{1 - g_i}{\beta \Delta t} \)

\(c_i = \frac{k_i}{\beta_i} (1 - h_i) \)

\(d_i = -\frac{k_i}{\beta_i} (g_i - h_i) \)

Similar derivation can be made to solve \(b_m(t) \). The solutions of \(e_k(t) \) and \(e_m(t) \) can be found by using the same approach.

The function \(Z_c(\omega) \) can be approximated as,

\[
Z_c(s) = k_o + \sum_{i=1}^{\omega} \frac{k_i}{s + a_i} \tag{2.58}
\]
Using equation 2.58, \(e_k(t) \) can be solved as,

\[
e_k(t) = R_k i_k(t) + e_{ke}(t - \Delta t) + e_{ke}(t - 2\Delta t)
\]

where \(R_k = k_0 + \sum_{i=1}^{m} p_i \)

\[
e_{ke}(t - \Delta t) = \sum_{i=1}^{m} q_i i_k(t - \Delta t)
\]

\[
e_{ke}(t - 2\Delta t) = \sum_{i=1}^{m} m_i e_{ke}(t - \Delta t)
\]

\[
m_i = e^{-a_i \Delta t} \\
n_i = \frac{1 - m_i}{a_i \Delta t}
\]

\[
p_i = \frac{k_i}{a_i} (1 - n_i)
\]

\[
q_i = -\frac{k_i}{a_i} (m_i - n_i)
\]

Similarly \(e_m(t) \) can be found. From equations 2.57 and 2.59, the equivalent circuit of figure 2.20 can be simplified as shown in figure 2.21.

![Equivalent circuit in the time domain](image)

Figure 2.21: Equivalent circuit in the time domain

Using elementary circuit transformations, this equivalent circuit can be transformed into the circuit of figure 2.22, which is compatible with electromagnetic transients programs.

![Norton representation of the frequency dependent transmission line](image)

Figure 2.22: Norton representation of the frequency dependent transmission line

The values of the current sources are given by,
The equivalent circuit in figure 2.22 can be solved by recording the past history values of equation 2.60.

This method gives a better representation for a wider frequency spectrum and is therefore better for studying the effects of GIC.

2.2.3 MUTUALLY COUPLED TRANSMISSION LINES

So far what we have discussed are transmission lines with one conductor or mode only. Generally transmission lines consist of several mutually coupled phases or conductors. These have to be broken into modes. Each mode can be treated as a single phase transmission line. This method allows mutually coupled transmission lines to be modelled.

This is achieved by transforming the phase quantities to mode quantities using a matrix diagonalization method making each mode independent of other modes. Then the transmission line model is applied to these modes. An inverse transformation is done to convert the modal quantities back to phase quantities for Norton current injection in the electromagnetic transient program.

2.3 SIMULATION OF EARTH SURFACE POTENTIAL

During a GIC event, Earth Surface Potential (ESP) varies at a frequency in the millihertz range. Therefore for normal power frequency considerations, ESP can be treated as a dc voltage. Therefore the ESP effect can be simulated by a dc voltage source connected to the transformer neutral of value such that the injected current reaches the desired value. It should be noted that not only the transformer neutral, but other system
components connected to the ground in the vicinity of the transformer neutral should also be fed with the same magnitude dc voltage source to simulate Geomagnetically Induced Currents. Otherwise dc currents or GIC will circulate within the same subsystem rather than flowing in the transmission line.

It should be noted that the methodology of using ESP as the driving force for GIC is not considered valid today, as it provides accurate results only if the electric field caused by electrojet currents is uniform. This is not the case in reality. However for simulation purposes, the essential feature is to produce a current of particular magnitude by some means or other. Therefore a dc voltage source can be used provided it is chosen to produce the predetermined level of GIC current.
Chapter 3
Validity of the models

3.1 RESPONSE OF THE TRANSFORMER CORE

To investigate how the transformer core model behaves under normal conditions, a simple test system as shown in Figure 3.1 is used.

Figure 3.1: Test system used to investigate the response of the core model

Figure 3.2 shows the magnetizing current of the transformer when it was energized from the 230kV side. Figure 3.3 shows the flux linkage—current loop obtained at this no load condition.
Both figures show the typical characteristics of transformer exciting current and flux linkage—current characteristics. Figure 3.4 show the inrush current experienced by the transformer when it was energized by the 230kV side. This also follows a typical inrush current characteristic.
3.2 Initial Simulations

Test models were developed for eight different transformer configurations. They are namely: star-star and star-delta configurations for three single phase banks, three phase five limb transformers, three phase conventional transformers[19][20] and three phase three limb transformers. Simulations were done for a system as shown in Figure 3.5.

The test system consists of a 230kV, 60Hz source with an equivalent source impedance represented by a parallel combination of 5.79Ω and 11.3mH feeding a 240MVA
per phase 230/500kV transformer. The 500kV side of the transformer is feeding a 120MVA per phase 0.8 lagging power factor load represented by a parallel combination of a resistor and an inductor. The 500kV side transformer neutral is connected to a dc source which represents Earth Surface Potential applied on the transformer.

The following sections describe how the test models for various transformer configurations behaved under GIC conditions.

3.2.1 DELTA–STAR THREE SINGLE PHASE BANK MODEL

Figure 3.6 shows both 230kV and 500kV side line currents and also 500kV side phase voltage when there is a flow of 100A GIC in the 500kV side neutral. As expected there is half cycle saturation and due to this there is some distortion in the waveforms.
Figure 3.6: Line Currents and Phase Voltages in the three single phase bank of delta–star transformer for 100A GIC.

3.2.2 STAR–STAR THREE SINGLE PHASE BANK MODEL

As in the delta–star transformer, the three phase bank of single phase transformers under star–star configuration also gives rise to half cycle saturation under GIC.
conditions. Here zero sequence impedances are different than the delta–star configuration and hence the waveforms are different than those obtained for the star–delta case. Figure 3.7 describes how a star–star transformer configured with three single phase banks behaves under 100A of GIC in it's 500kV side neutral.

Figure 3.7: Line Currents and Phase Voltages in the three single phase bank of star–star transformer for 100A GIC.
Figures 3.8 and 3.9 show the harmonic response of the line current on the 500kV side of a single phase bank of a three phase transformer for star–star and delta–star configurations. The harmonics are classified according to their sequence.

The waveforms of the three phases are very similar in shape. This is due to the fact that all three phases are subjected to the same saturation behaviour. This is further explained by distribution of harmonics according to their sequence. The harmonic distribution for star–star and delta–star is almost the same except for the zero sequence. The delta–star configuration provides less zero sequence harmonics in the 500kV side due to the
additional path provided by the delta winding. The average total harmonic distortion factor for the preceding waveforms is about 4.6%.

3.2.3 THREE PHASE CONVENTIONAL STAR–STAR TRANSFORMER

Figure 3.10 shows how a conventional three phase star–star transformer behaves when 100A of GIC flows in its neutral. Line current and Phase voltage of the high voltage side and the line current in the low voltage side are presented in this figure.
3.2.4 THREE PHASE CONVENTIONAL DELTA–STAR TRANSFORMER

Figure 3.11 shows both the 230kV and 500kV side line currents and also the 500kV side phase voltage when there is a flow of 100A GIC in the 500kV side neutral.
As expected there is half cycle saturation and due to this there is some distortion in the waveforms. The delta winding provides an additional path for zero sequence currents and less zero sequence currents appear in the 500kV side line currents.

![Graphs showing line currents and phase voltages in the three phase conventional delta-star transformer for 100A GIC.](image_url)

Figure 3.11: Line Currents and Phase Voltages in the three phase conventional delta-star transformer for 100A GIC.
Figures 3.12 and 3.13 show the Fourier analysis of the 500kV side line current for a three phase conventional transformer when subjected to a 100A of GIC in its neutral. Fourier analysis is presented for both star-star and delta-star configurations and the analyses are classified according to their sequence components.

Unlike in the previous case of a three phase transformer made of single phase transformer units, this provides non-traditional sequences of harmonic components. For example there is a considerable amount of negative sequence fundamental, third harmonic and seventh harmonic components. This is due to the fact that the effect of the saturation of
the limbs in the transformer core on individual phases is not the same. The average total harmonic distortion factor for the above two cases is 2.84%.

3.2.5 THREE PHASE FIVE LIMB STAR–STAR TRANSFORMER

Figure 3.14 shows how a five limb three phase star–star transformer behaves when 100A of GIC flows in its neutral. Line current and Phase voltage of the high voltage side and the line current in the low voltage side are presented in this figure.
Figure 3.14: Line Currents and Phase Voltages in the three phase five limb star-star transformer for 100A GIC

3.2.6 THREE PHASE FIVE LIMB DELTA–STAR TRANSFORMER

Figure 3.15 shows both the 230kV and 500kV side line currents and also the 500kV side phase voltage when there is a flow of 100A GIC in the 500kV side neutral.
As expected there is half cycle saturation and due to this there is some distortion in the waveforms. The delta winding provides an additional path for zero sequence currents and less zero sequence current appears in the 500kV side line currents.

![Graph showing line currents and phase voltages](image)

Figure 3.15: Line Currents and Phase Voltages in the three phase five limb delta-star transformer for 100A GIC.
Figures 3.16 and 3.17 show the Fourier analysis of the 500kV side line current for a three phase conventional transformer when subjected to 100A of GIC in its neutral. Fourier analysis is presented for both star-star and delta-star configurations and the analyses are classified according to their sequence components.

Figure 3.16: Fourier Analysis of the line current on 500 kV side of a three phase five limb star-star transformer

Figure 3.17: Fourier Analysis of the line current on 500 kV side of a three phase five limb delta-star transformer

Unlike the previous case of a three phase transformer consisting of single phase transformer units, this provides non-traditional sequences of harmonic components. For example there is a considerable amount of positive sequence fifth and third harmonic components. This is due to the fact that the effect of the saturation of the limbs in the
transformer core on individual phases is not the same. The average total harmonic distortion factor for the above two cases is 0.84%.

3.2.7 THREE PHASE THREE LIMB STAR–STAR TRANSFORMER

Figure 3.18 shows how a three limb three phase star–star transformer behaves when 100A of GIC flows in its neutral. Line current and Phase voltage of the high voltage side and the line current in the low voltage side are presented in this figure. As expected there is no half cycle saturation due to the non existence of a low reluctance flux path for zero sequence flux.
Figure 3.19 shows both the 230kV and 500kV side line currents and also the 500kV side phase voltage when there is a flow of 100A GIC in the 500kV side neutral.
As expected there is no half cycle saturation due to the non existence of low reluctance flux path for zero sequence flux.

Figures 3.19: Line Currents and Phase Voltages in the three phase three limb delta-star transformer for 100A GIC.

Figures 3.20 and 3.21 show the Fourier analysis of the 500kV side line current for a three phase conventional transformer when subjected to a 100A of GIC in its
neutral. Fourier analysis is presented for both star–star and delta–star configurations and the analyses are classified according to their sequence components.

Figure 3.20: Fourier Analysis of the line current on 500 kV side of a three phase three limb star–star transformer

Figure 3.21: Fourier Analysis of the line current on 500 kV side of a three phase three limb star–star transformer

Since there is no saturation due to the zero sequence GIC applied, the transformers do not get saturated. The harmonic analysis of the current waveform shows that it does not contain any harmonics.
3.3 COMPARISON WITH RECORDED EVENTS

To prove the validity of the model, it is necessary to compare the recorded waveforms with simulated waveforms for the same conditions. Two sets of recordings with significant distortion are chosen for this purpose.

The recordings were taken at the 500kV substation at Dorsey. This 500 kV transmission line system connects three utility companies: Manitoba Hydro, Northern States Power and Minnesota Power. The recordings were taken at the 500kV side of the 720/1200 MVA transformer. A detailed description of the 500 kV transmission line system is provided in the following chapter. A single line diagram of the system is shown in figure 4.1.

3.3.1 EVENT ON SEPTEMBER 10, 1992

On the 10th of September 1992 the recently installed Sunburst recorder[21] at the Dorsey substation took a snapshot of the 500kV line voltage and current of the secondary side of the current and voltage transformers. The time of the recording was 03.26 GMT and the corresponding GIC in the transformer neutral was 45A. The power flow out of Dorsey was 102.5 MW and -147.5 MVar. Figures 3.22 and 3.23 show the recorded and simulated waveforms of line currents in the 500 kV side respectively.

![Figure 3.22: Recorded line current on 500 kV side at Dorsey](image-url)
The analysis of the recorded line current shows that it has a peak-to-peak magnitude of 681.2 A with an absolute maximum peak of 361.8 A. It also has a fundamental component of 284.1 A peak with a total harmonic distortion factor of 31.5 %. Similar analysis on the simulated waveform shows that it has a peak-to-peak magnitude of 628.2 A with an absolute maximum peak of 319.8 A. It also has a fundamental component of 277.8 A with a total harmonic distortion factor of 24.3 %.

The basic shapes of the two waveforms are similar with two peaks in the upper half of the wave, the second larger than the first, and a single peak followed by a ripple in the lower half cycle.

The corresponding voltage waveforms are presented next with Figure 3.24 showing the recorded waveforms and Figure 3.25 showing the simulated waveform of the 500 kV side.
The voltage waveforms have very little distortion due to the low harmonic impedance of the Dorsey source. In fact, the harmonic distortion factor is only 2.9% for both voltage waveforms. The recorded waveform has a peak-to-peak magnitude of 860.4 kV with an absolute maximum peak of 433.2 kV. It also has a fundamental component with a peak of 429.4 kV. The corresponding figures for the simulated waveform are 869.5 kV, 445.9 kV and 429.8 kV respectively.
3.3.2 EVENT ON OCTOBER 5, 1993

On the 5th of October 1993 the Sunburst recorder at the Dorsey substation took a snapshot of the 500kV line voltage and current of the secondary side of the current and voltage transformers. The time of the recording was 04.59 GMT and the corresponding GIC in the transformer neutral was 30A. The power flow out of Dorsey was −53.2 MW and −137.1 MVar. The power flow out of Forbes was −100.1 MW and −34.8 MVar. Figures 3.26 and 3.27 show the recorded and simulated waveforms of line currents in the 500 kV side respectively.

Figure 3.26: Recorded line current on 500 kV side

Figure 3.27: Simulated line current on 500 kV side
The peak-to-peak magnitude of the recorded current waveform is 492.4A with an absolute maximum of 247.9A whereas the corresponding values for the simulated waveform are 514.5A and 259.4A respectively. The recorded waveform has a rms value of 167.87A with a fundamental rms component of 167.16A whereas the simulated waveform has a rms value of 167.58A with a fundamental rms component of 166.95A. The total harmonic distortion factors of the recorded and the simulated waveforms are 9.26% and 8.59% respectively.

The harmonic analysis of the two waveforms are shown in the Figure 3.28. The harmonic composition of the two waveforms are more or less the same. The significant differences are shown only in the 3rd and 5th harmonics. The 3rd harmonic in the simulated waveform is more than that of the recorded waveform and the 5th harmonic in the simulated waveform is less than that of the recorded waveform.

The voltage waveforms associated with the waveforms are not presented here since they are more or less harmonic free as in the case described in the previous subsection 3.3.1.
3.4 CONCLUSIONS

3.4.1 SUSCEPTIBILITY OF DIFFERENT TRANSFORMER CONFIGURATIONS TO GIC

Looking at the Fourier analysis of the waveforms obtained for different transformer configurations, susceptibility of transformers to GIC can be listed in the following descending order.

1. Single phase transformers
2. Three phase shell form conventional transformers
3. Three phase five limb transformers
4. Three phase three limb transformers

This observation agrees with the experimental results obtained by Takasu et al. [22] and Kappenman [23]. A theoretical analysis done by McNutt [20] also agrees with this observation.

3.4.2 DIFFERENCES INRecorded AND SIMULATED WAVEFORMS

The differences between the recorded and simulated waveforms can be attributed to several reasons. The ESP difference between Forbes and Chisago was assumed to be zero since there was no information to decide otherwise. The other unknown was the history of the GIC current at Dorsey. The history is important since the bias flux in the transformer builds up very slowly when the d.c. current in the windings is held constant. Apart from making it impossible to know the exact state of the bias when given the GIC value at any given instant, this slow build up results in very long times for emtp simulations before the steady state is reached. Simulation runs are usually accelerated towards the steady state by some means and in the present case this is achieved by starting the runs with a remanent flux in the same direction as the bias.
Given a more precise information about the conditions at the time of recordings, the ESP distribution and with perhaps more detail of the source at Dorsey converter station, it is probable that the simulation could be improved still further. Nonetheless it was decided to proceed with the present model to investigate numerous other system currents and voltages.

Chapter 4
Dorsey–Forbes–Chisago 500kV system

4.1 DESCRIPTION OF THE SYSTEM

This 500kV transmission line system connects three utility companies as shown in Figure 4.1. The northern section of the system is 528km long and it connects Manitoba Hydro’s Dorsey HVDC Converter station to Northern States Power’s Forbes substation. The southern section of the system is 220km long and it connects Forbes substation to Minnesota Power’s Chisago substation.

Three phase shunt reactors with sizes 225 MVars, 300 MVars and 150 MVars are installed in the Dorsey, Forbes and Chisago substations respectively. Neutral reactors with sizes 425Ω, 325Ω and 1250Ω are located in Dorsey, Forbes and Chisago respectively. The Dorsey–Forbes section is transposed at 4 locations and Forbes–Chisago section is transposed at 3 locations along the route.
Figure 4.1: Single line diagram of Dorsey–Forbes–Chisago system
The auto–transformer at Dorsey consists of three single phase units and each separate unit is a two winding transformer. The windings are connected to form a 230/500/46kV three phase unit with the 230kV and 500kV windings connected as an auto–transformer. The 230kV and 500kV windings are star connected and grounded whereas the 46kV winding is connected as a delta winding. The transformer is rated for 720MVA without cooling and 1200MVA with cooling. The auto–transformer at Forbes is a similar one with the exception that the tertiary winding is rated for only 13.8kV.

In the Dorsey Substation, filters are connected on the 230kV side to minimize the harmonics introduced by the HVDC converter station. There is also a delta connected bank of capacitors of 15.3μF each connected to the 46kV tertiary winding. For the simulations, an Earth Surface Potential is applied between Dorsey and Forbes forcing a GIC current to go into the transformer neutral at Dorsey and to go through the northern section of the transmission line finally leaving the system at Forbes transformer neutral.

Several assumptions were made in the modelling, sometimes due to lack of data and sometimes to make the system simpler. The Chisago subsystem is represented as a 500kV source with an internal inductance, though in reality transformers and reactors are present. It is assumed further that the transformer at Forbes follows the same saturation characteristics as that of the Dorsey transformer.

It was assumed that the ESP difference between Forbes and Chisago is negligible compared with that between Dorsey and Forbes. The northern section of the 500 kV line is closer to the north pole giving rise to higher ESP gradient than the southern section. Furthermore the northern section runs in NW–SE direction whereas the southern section runs mainly in N–S direction thus giving less ESP gradient in the southern section than the northern section. The geographical layout of the transmission line is given in Figure 4.2.[24]
4.2 WORST CASE SCENARIO

The maximum recorded GIC flow for the Dorsey–Forbes line was 105 A per phase at the Dorsey end [25][26]. This occurred in 1982 before the Sunburst recorder was
installed and no waveform recordings are available for this event. The predicted maximum GIC flow for this line is 223 A per phase on the 500 kV side at Dorsey [25].

4.3 SIMULATIONS AT DIFFERENT CONDITIONS

For this presentation, two GIC levels are chosen; one at the recorded maximum GIC level, and one typical level below the maximum recorded. Occasionally another GIC level which is more than the recorded maximum but less than the maximum predicted was also chosen for some comparisons.

These simulations are carried out for two different power flow conditions; one is a typically high power flow and the other a relatively low power flow. These pre-GIC power flows are described in the tables 4.1 and 4.2 respectively.

Table 4.1: Pre-GIC system conditions for high power flow study — 500kV side

<table>
<thead>
<tr>
<th></th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>521.4</td>
<td>503.1</td>
<td>506.1</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>-39.8</td>
<td>-51.5</td>
</tr>
<tr>
<td>Current (A)</td>
<td>1209.0</td>
<td>397.1</td>
<td>796.4</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>1062.0</td>
<td>-280.7</td>
<td>-698.1</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>251.4</td>
<td>202.9</td>
<td>-6.2</td>
</tr>
</tbody>
</table>

Table 4.2: Pre-GIC system conditions for low power flow study — 500kV side

<table>
<thead>
<tr>
<th></th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>534.4</td>
<td>519.8</td>
<td>506.4</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>-0.76</td>
<td>0.98</td>
</tr>
<tr>
<td>Current (A)</td>
<td>96.6</td>
<td>192.2</td>
<td>299.4</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>39.0</td>
<td>-110.7</td>
<td>107.5</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>-80.5</td>
<td>-133.0</td>
<td>-239.5</td>
</tr>
</tbody>
</table>
The voltage and current waveforms at the 500 kV side for the two different power flow conditions selected are presented in this chapter. The corresponding system quantities at the 230 kV side are presented in appendix B and follow a similar pattern.

4.3.1 A TYPICAL HIGH POWER FLOW

Two simulations are presented here with the typical high power flow conditions described in Table 4.1. The GIC flows are taken as 50 A per phase and 105 A per phase (which is the maximum recorded).

When the transformers at both ends were saturated due to the applied ESP, the system conditions changed to that shown in Table 4.3 assuming that the sources were kept constant. The fundamental components of the voltage and the current, relative phase of the fundamental component of the voltage and the active and reactive power produced by fundamental components are given in the table.

Table 4.3 : System conditions after saturation for high power flow

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>DORSEY 515.7</td>
<td>DORSEY 509.7</td>
</tr>
<tr>
<td></td>
<td>FORBES 497.9</td>
<td>FORBES 491.9</td>
</tr>
<tr>
<td></td>
<td>CHISAGO 503.9</td>
<td>CHISAGO 501.6</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>-40.0</td>
<td>-40.2</td>
</tr>
<tr>
<td></td>
<td>-51.8</td>
<td>-52.0</td>
</tr>
<tr>
<td>current (A)</td>
<td>1200.0</td>
<td>1190.0</td>
</tr>
<tr>
<td></td>
<td>376.7</td>
<td>355.7</td>
</tr>
<tr>
<td></td>
<td>789.7</td>
<td>782.3</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>1043.0</td>
<td>1022.0</td>
</tr>
<tr>
<td></td>
<td>-271.5</td>
<td>-262.4</td>
</tr>
<tr>
<td></td>
<td>-689.0</td>
<td>-678.3</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>249.0</td>
<td>246.1</td>
</tr>
<tr>
<td></td>
<td>178.3</td>
<td>151.8</td>
</tr>
<tr>
<td></td>
<td>17.75</td>
<td>42.8</td>
</tr>
</tbody>
</table>

There is an increased reactive power demand from the transformers due to the saturation. At 50A GIC condition, the voltages at Dorsey, Forbes and Chisago dropped by 1.1%, 1.0% and 0.4% respectively due to the increased reactive power demand. The voltage drops were increased to 2.2%, 2.2% and 0.9% when the GIC flow was increased to 105A.
There are a number of definitions in use for reactive power during distorted conditions [27]. Emmanuel recommends separate treatment of fundamental and harmonic reactive power [28]. A definition of reactive power limited to the fundamental frequency positive sequence voltage and current components has a distinct advantage in effective application of the reactive power relationships discussed in this study. Because only fundamental currents have significant impact on the system voltage profile, the narrow definition is used here. Also this definition is consistent with the analysis tools used by the utility industry [27].

The net reactive power consumed at the Dorsey end by the transformers and tertiary capacitors combined is increased by 64.2 MVar at 50 A GIC per phase and it further increased to 128.3 MVar when the GIC level was increased to 105 A as described in the Table 4.4.

<table>
<thead>
<tr>
<th></th>
<th>230kV side</th>
<th>500kV side</th>
<th>Net consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before saturation</td>
<td>331.6</td>
<td>251.4</td>
<td>80.2</td>
</tr>
<tr>
<td>low GIC</td>
<td>393.4</td>
<td>249.0</td>
<td>144.4</td>
</tr>
<tr>
<td>maximum recorded GIC</td>
<td>454.6</td>
<td>246.1</td>
<td>208.5</td>
</tr>
</tbody>
</table>

It can be observed that the active power flow is dropped due to the drop in the voltages. Active power flowing out of Dorsey dropped by about 1.8% at low GIC conditions due to the change in magnitudes of the voltages. The active power flow drop increased to 3.8% at maximum recorded GIC conditions.

4.3.1.1 WAVEFORMS IN 500KV SIDE

Figure 4.3 shows the simulated voltage waveforms on the 500kV side of the Dorsey transformer when the transformers at Dorsey and Chisago were fully saturated due to the GIC currents of 50 A and 105 A.
The rms magnitude, the maximum and the minimum peaks of the voltage waveforms are given in Table 4.5. The Fourier analysis of these waveforms is shown in Figure 4.4.

Table 4.5: Details on the 500kV side phase voltage

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>298.7</td>
<td>297.1</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>415.7</td>
<td>416.1</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-431.0</td>
<td>-452.7</td>
</tr>
</tbody>
</table>

Figure 4.4: Fourier analysis of 500 kV voltage waveforms at high power flow
The most prominent harmonic component is the 6th followed by the 2nd and 4th. The waveform has a total harmonic distortion factor of 6.56% at 50A per phase GIC and 13.13% at 105 A per phase GIC.

Figure 4.5 shows the corresponding current waveforms in the 500kV side when the transformers at both ends are saturated due to the applied 50A per phase GIC and 105 A per phase GIC.

![Waveform Diagram]

Figure 4.5: Current waveforms on 500 kV side of Dorsey at high power flow

The details of the current waveforms such as rms magnitude, maximum and minimum peaks are given in table 4.6. The Fourier analysis of the waveforms is shown in Figure 4.6.

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>1204.5</td>
<td>1209.8</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>1750.0</td>
<td>1871.0</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-1770.0</td>
<td>-1861.0</td>
</tr>
</tbody>
</table>
The most prominent harmonic component is the 4th followed by the 5th. The waveforms obtained for 50 A per phase GIC and 105 A per phase GIC have a total harmonic distortion factor of 8.36% and 18.27% respectively.

4.3.2 A TYPICAL LOW POWER FLOW

Two simulations are presented here with the typical low power flow conditions described in Table 4.2. The GIC flows are taken as 50 A per phase or 150A in the transformer neutral and 105 A per phase or 315A in the transformer neutral which is the maximum recorded.

When the transformers at both ends were saturated due to the applied ESP, the system conditions changed to that shown in Table 4.7 assuming that the sources were kept constant.
There is an increased reactive power demand from the transformers due to the saturation. At 50A GIC, the voltages at Dorsey, Forbes and Chisago dropped by 1.1%, 1.0% and 0.5% respectively due to the increased reactive power demand. The voltages were further dropped by 2.4%, 2.3% and 1.0% when the GIC flow was increased to 105A.

The net reactive power consumed at the Dorsey end by the transformers and capacitors in the tertiary winding is increased by 62.0 MVar at 50 A per phase GIC and it further increased to 124.6 MVar when the GIC level was increased to 105 A per phase as described in the Table 4.8.

It can be observed that the active power flow is dropped due to the drop in the voltages and the power lost due to harmonic currents. Active power flowing out of Dorsey dropped by about 0.8% at low GIC conditions and it dropped by about 5.9% at maximum recorded GIC conditions.
4.3.2.1 WAVEFORMS ON THE 500kV SIDE

Figure 4.7 shows the simulated voltage waveform on the 500kV side of the Dorsey transformer when transformers at Dorsey and Forbes were fully saturated due to the 50A and 105A per phase GIC.

![Figure 4.7: Voltage waveform on 500 kV side of Dorsey at low power flow](image)

The details of the 500kV side phase voltage such as rms magnitude, maximum and minimum peak values for both waveforms are given in table 4.9. The Fourier analysis of these waveforms is shown in Figure 4.8.

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>307.2</td>
<td>308.4</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>434.5</td>
<td>470.1</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-492.9</td>
<td>-520.9</td>
</tr>
</tbody>
</table>
For both waveforms, the most prominent harmonic component is the 4th followed by the 3rd and 6th. The waveform at 50A per phase GIC has a total harmonic distortion factor of 11.70% and that at 105A per phase GIC has a THD factor of 22.10%.

Figure 4.9 shows the corresponding current waveforms in the 500kV side when the transformers at both ends are saturated due to the applied GIC.

The details of the waveforms of the 500kV side line currents for the two different GIC conditions considered are given in Table 4.10. The Fourier analysis of the two waveforms are shown in Figure 4.10.
Table 4.10: Details on the 500kV side line current

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>205.8</td>
<td>328.8</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>412.5</td>
<td>650.8</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-342.7</td>
<td>-495.6</td>
</tr>
</tbody>
</table>

Figure 4.10: Fourier analysis of 500kV current waveforms at low power flow

When the power flow is low, there are harmonic components in the current which are greater than the fundamental component. The most prominent harmonic component is the 4th followed by the 3rd and 5th. The 4th harmonic component in the current at low GIC conditions and the 4th and 3rd harmonic components in the current at maximum recorded GIC conditions are more than the corresponding fundamental components in the current. The waveform at low GIC conditions has a total harmonic distortion factor of 185.48% whereas the waveform at maximum recorded GIC conditions has a THD factor of 331.22%.
4.4 EFFECT OF GIC ON DISTORTIONS AND HARMONICS

This subsection describes the effects on harmonics due to a change in applied GIC. The harmonic composition of the line currents and phase voltages at the 500 kV side is presented for different GIC levels.

Figure 4.11 shows the harmonic composition of the 500 kV line currents at Dorsey for different GIC levels for a typical high power flow whereas Figure 4.12 shows the harmonic composition of the 500 kV line current for a different GIC under a typical low power flow condition.

![Figure 4.11: Fourier analysis of 500 kV side currents with a typical high power flow](image)

![Figure 4.12: Fourier analysis of 500 kV side currents with a typical low power flow](image)
It is clear that the pattern of harmonic composition for a particular power flow remains more or less the same, but the magnitudes of harmonics other than the fundamental increase with the increase of the level of GIC. There is a slight decrease in the magnitude of the fundamental component with the increase of the GIC.

Figure 4.13 shows the total harmonic distortion of the 500 kV line current for different GIC levels for the two different power flows considered.

![Graph showing THD Factor of 500 kV side currents](image)

The total harmonic distortion of the waveforms increases with the applied level of GIC, but the distortion factor for the waveform obtained during a low power flow condition is much more than that obtained during a high power flow condition for the same GIC level. This is to be expected due to the decreased level of the fundamental.

A similar analysis is done on the 500 kV side voltage waveforms and the results are presented in appendix B. The difference in THD factors for low and high power flow conditions is not as high as in the current waveforms. This is to be expected since the level of the fundamental is more or less the same unlike in the current.
4.5 EFFECT OF POWER FLOW ON HARMONICS

This subsection describes the effects on harmonics due to the change of power flow for a given GIC. The harmonic composition of the line currents and phase voltages at the 500 kV side is presented for different power flow conditions.

Figures 4.14 and 4.15 show the harmonic composition of the 500 kV line currents and voltage respectively for the two different power flow conditions considered at the maximum recorded GIC level. The harmonic analysis done for waveforms obtained at two other GIC levels are presented in appendix B.

![Harmonic Analysis Chart](image)

Figure 4.14: Fourier analysis of 500 kV side currents at Dorsey with 105A GIC per phase

![Harmonic Analysis Chart](image)

Figure 4.15: Fourier analysis of 500 kV side phase voltages at Dorsey with 105A GIC per phase
It can be seen that the magnitudes of the harmonic currents are more or less the same irrespective of the level of power flow for any given level of GIC. In fact, the harmonic magnitudes are slightly more in the case of low power flow condition. This could be due to the fact that the voltage applied to the transformers is slightly more in the low power flow case. Out of all the waveforms considered, it is clear that the most prominent harmonic is the 4th harmonic.

Figures 4.16 and 4.17 show the total harmonic distortion factor as a function of the current in the 500 kV side for 500 kV line current and phase voltage respectively. The Total Harmonic Distortion factor of the waveforms for the three different GIC levels are presented.

![Harmonic Distortion of current with the Load Flow](image)

Figure 4.16: Harmonic Distortion of current with the Load Flow
It can be observed that the total harmonic distortion decreases as the level of power flow increases. It can also be observed that the distortion of the current waveform is much more than the distortion of the voltage waveform.

4.6 CONCLUSIONS

It is seen from tables 4.4 and 4.8 that the increase in reactive power consumption of the transformer for a given GIC is more or less the same irrespective of the amount of power flow. The slight difference is due mainly to the difference in reactive power consumption in the leakage inductance for different power flow conditions. Otherwise, reactive power drawn by the transformer due to half cycle saturation due to a specific amount of GIC is more or less the same irrespective of the power flow, provided the voltage applied to the transformers is more or less the same. This is usually true.

It is also seen that the 4th harmonic is the most prominent harmonic for a number of system waveforms during GIC conditions.

The magnitude of the harmonics in various waveforms increases with the amount of GIC. The relationship between harmonic magnitudes with the GIC is roughly linear. The magnitude of the harmonics is more or less the same or slightly decreases with
an increase in power flow. It can be concluded that by decreasing the amount of power flow during a geomagnetic storm, the likelihood of a protection system malfunction increases due to the increased distortions in the waveforms. But the whole system could be made stable since the loss of power is small in the event of a false trip.

More waveforms related to the studies presented in this section are given in appendix B.
Chapter 5
Dorsey–Forbes–Chisago after series compensation

5.1 DESCRIPTION OF THE SYSTEM

For the studies of the Dorsey–Forbes–Chisago system after series compensation, the same system described in 4.1 is used with a detailed 230 kV system. In the previous work, the 230 kV system was included as an equivalent source.

In addition to the 500 kV line, two 230 kV transmission lines from Dorsey connect to Northern States Power. These two lines run almost parallel to the 500 kV line. The two lines are 141 km and 187 km long. The longer line connects Dorsey to Moranville and the shorter one connects Dorsey to Drayton.
Figure 5.1: Single line diagram of Dorsey–Forbes–Chisago system after series compensation
The northern section of the 500 kV transmission line is 50% series compensated at the second transposition location 193km from Dorsey. The southern section is series compensated at Chisago. The transformers at Dorsey, Forbes and Chisago were doubled to match the increased power capacity of the transmission line.

The 230 kV Dorsey–Moranville transmission line runs almost parallel to the 500 kV Dorsey–Forbes transmission line in a NW–SE direction. Therefore the ESP gradient at Dorsey–Moranville was assumed the same as that of the Dorsey–Forbes line. The 230 kV Dorsey–Drayton lies almost in a N–S direction. Thus the ESP gradient at Dorsey–Drayton line was assumed as 12.86% of that of Dorsey–Forbes line based on the previous studies done by Albertson [7]. The converter transformers at Dorsey were also considered since part of the GIC that flows in the 230 kV system flows through their neutrals.

A single line diagram of the Drayton–Moranville–Dorsey–Forbes–Chisago system used in the simulation is shown in the Figure 5.1. Geographical layout of the system is shown in the Figure 5.2.
5.2 SIMULATIONS UNDER DIFFERENT CONDITIONS

Simulations for two different power flows are studied and also two different ESP levels are chosen. The Earth Surface Potentials at various substations are chosen so that
one ESP gradient is the same as that which caused the maximum recorded GIC flow in the 500 kV transmission line before it was series compensated, and the other ESP gradient is the one which would have given the predicted maximum GIC [25][33]. The two different power flows are; one typical low power flow and one typical high power flow.

Tables 5.1 and 5.2 show the pre-GIC system conditions of the 500 kV and 230 kV sides respectively for the low power flow study whereas tables 5.3 and 5.4 show the pre-GIC system conditions of the 500 kV and 230 kV sides respectively for the high power study.

Table 5.1: Pre-GIC system conditions for low power flow study – 500kV side

<table>
<thead>
<tr>
<th></th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>510.9</td>
<td>500.4</td>
<td>496.4</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>-5.2</td>
<td>-11.2</td>
</tr>
<tr>
<td>current (A)</td>
<td>355.0</td>
<td>166.7</td>
<td>435.2</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>266.6</td>
<td>123.6</td>
<td>-353.2</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>-166.1</td>
<td>-74.9</td>
<td>-123.4</td>
</tr>
</tbody>
</table>

Table 5.2: Pre-GIC system conditions for low power flow study – 230kV side

<table>
<thead>
<tr>
<th></th>
<th>DORSEY</th>
<th>DRAYTON</th>
<th>MORANVILLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>233.1</td>
<td>232.9</td>
<td>234.6</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.8</td>
<td>-3.8</td>
<td>-3.7</td>
</tr>
<tr>
<td>current (A)</td>
<td>163.4</td>
<td>119.8</td>
<td></td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>-65.9</td>
<td>-48.4</td>
<td></td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>3.0</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3: Pre-GIC system conditions for high power flow study – 500kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>497.4</td>
<td>495.9</td>
<td>503.0</td>
<td></td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>-29.9</td>
<td>-47.4</td>
</tr>
<tr>
<td>current (A)</td>
<td>1610.0</td>
<td>609.6</td>
<td>1167.0</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>1387.0</td>
<td>-255.8</td>
<td>-1009.0</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>32.0</td>
<td>456.8</td>
<td>127.1</td>
</tr>
</tbody>
</table>

Table 5.4: Pre-GIC system conditions for high power flow study – 230kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>DORSEY</th>
<th>DRAYTON</th>
<th>MORANVILLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>230.2</td>
<td>226.8</td>
<td>224.2</td>
<td></td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>4.4</td>
<td>-19.8</td>
<td>-9.3</td>
</tr>
<tr>
<td>current (A)</td>
<td>835.5</td>
<td>360.4</td>
<td></td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>-316.5</td>
<td>-139.9</td>
<td></td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>87.1</td>
<td>2.9</td>
<td></td>
</tr>
</tbody>
</table>

5.2.1 A TYPICAL LOW POWER FLOW

Two simulation studies at a typical low power flow are studied here. The two earth surface potentials are chosen as one that gave the maximum recorded GIC before series compensation and the other that would have given the maximum predicted GIC for this particular system.

Tables 5.5 and 5.6 show the post-GIC system conditions of the 500 kV and 230 kV sides respectively when the transformers at Dorsey are fully saturated due to the applied ESP that corresponds to both the maximum recorded and maximum predicted GIC levels.
Table 5.5: Post-GIC system conditions for low power flow study – 500kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>MAXIMUM RECORDED ESP</th>
<th>MAXIMUM PREDICTED ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DORSEY</td>
<td>FORBES</td>
</tr>
<tr>
<td>509.6</td>
<td>500.0</td>
<td>496.3</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.0</td>
<td>-5.2</td>
</tr>
<tr>
<td>Current (A)</td>
<td>358.1</td>
<td>165.6</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>266.4</td>
<td>123.6</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>-170.0</td>
<td>-72.8</td>
</tr>
</tbody>
</table>

Table 5.6: Post-GIC system conditions for low power flow study – 230kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>MAXIMUM RECORDED ESP</th>
<th>MAXIMUM PREDICTED ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DORSEY</td>
<td>DRAYTON</td>
</tr>
<tr>
<td>232.4</td>
<td>232.6</td>
<td>234.2</td>
</tr>
<tr>
<td>Angle (degrees)</td>
<td>0.8</td>
<td>-3.8</td>
</tr>
<tr>
<td>Current (A)</td>
<td>163.3</td>
<td>119.6</td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>-65.8</td>
<td>-48.3</td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>-1.5</td>
<td>-4.9</td>
</tr>
</tbody>
</table>

The voltages at all the substations dropped very slightly. The voltage drops at maximum recorded ESP level are: Dorsey by 0.3%, Forbes by 0.1%, Drayton by 0.1% and Moranville by 0.2%. The corresponding voltage drops were increased to 0.6%, 0.2%, 0.3% and 0.4% respectively when the ESP level was increased to the maximum predicted. There was no GIC flowing in the 500kV line due to the high resistance for dc created by series capacitors in the line. There is a 15A per phase GIC flowing in the 230kV side of the 230/500kV transformer at Dorsey. This current increased to 31A when the ESP was increased to the maximum predicted. This 31A per phase GIC matches with the maximum predicted GIC flow in the low voltage side of Dorsey [33]. The active power flowing out from Dorsey dropped slightly, as does the active power received at other substations. The
reactive power flow out of the 500kV side of Dorsey dropped slightly but the reactive power flow out from Forbes, Chisago, Drayton and Moranville increased slightly.

5.2.1.1 WAVEFORMS ON THE 500KV SIDE

Figures 5.3 and 5.4 show the simulated phase voltage and the line current on the 500 kV side when the transformers are fully saturated due to the GIC created by the applied ESP.

Figure 5.3: Voltage waveform on 500 kV side of Dorsey at low power flow

Figure 5.4: Current waveforms on 500 kV side of Dorsey at low power flow

Tables 5.7 and 5.8 show the rms magnitudes, maximum and minimum peak values of the two waveforms shown in the two preceding figures.
Table 5.7: The details on the 500 kV side voltage at Dorsey after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>294.9</td>
<td>294.2</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>415.4</td>
<td>413.5</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-421.3</td>
<td>-428.9</td>
</tr>
</tbody>
</table>

Table 5.8: The details on the 500 kV side current at Dorsey after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>358.5</td>
<td>366.8</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>540.1</td>
<td>600.2</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-490.4</td>
<td>-508.1</td>
</tr>
</tbody>
</table>

The Fourier analysis of the 500kV side voltage and current waveforms at Dorsey are shown in Figures 5.5 and 5.6 respectively.
The distortions of the waveforms are much less compared to the distortions of the waveforms obtained for pre-compensated study. The voltage waveform has a THD factor of 1.96% and 4.45% at maximum recorded and maximum predicted ESP conditions respectively. The corresponding figures for the current waveform are 7.96% and 18.16%. The most prominent harmonic for both the waveforms is the 4th harmonic.

5.2.1.2 WAVEFORMS ON THE 230KV SIDE

Figures 5.7 and 5.8 show the simulated phase voltage and the line current on the 230 kV side when the transformers are fully saturated due to the GIC created by the applied ESP.
Tables 5.9 and 5.10 show the rms magnitudes, maximum and minimum peak values of the two waveforms shown in the two preceding figures.

Table 5.9: The details on the 230 kV side voltage after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>134.5</td>
<td>134.2</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>188.5</td>
<td>186.7</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-193.0</td>
<td>-197.4</td>
</tr>
</tbody>
</table>
Table 5.10: The details on the 230 kV side current at Dorsey after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>819.7</td>
<td>829.0</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>1178.0</td>
<td>1230.0</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-1154.0</td>
<td>-1238.0</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>15.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

The Fourier analysis of the 230kV side voltage and current waveforms are shown in Figures 5.9 and 5.10 respectively.

Figure 5.9: Fourier analysis of 230kV voltage waveforms at low power flow

Figure 5.10: Fourier analysis of 230kV side current waveforms at Dorsey at low power flow
The THD factors of the two voltage waveforms at the 230 kV side is 2.36% and 5.39% respectively for maximum recorded ESP and maximum predicted ESP conditions. The corresponding figures for the current waveforms are 8.33% and 19.57%. For all the waveforms, the most prominent harmonic is the 4th harmonic.

5.2.1.3 CURRENT WAVEFORMS IN 230KV FEEDERS

Figures 5.11 and 5.12 show the waveform of the current flowing to Drayton and Moranville respectively.

Figure 5.11: Current on Dorsey–Drayton line at Dorsey at low power flow

Figure 5.12: Current on Dorsey–Moranville line at Dorsey at low power flow
Table 5.11 shows the rms and peak values of the current flowing to Drayton at Dorsey whereas table 5.12 shows the corresponding values of the current flowing to Moranville at Dorsey.

Table 5.11: The details on the current flowing to Drayton after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>174.7</td>
<td>176.6</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>255.9</td>
<td>268.1</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-235.5</td>
<td>-227.8</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>4.1</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Table 5.12: The details of the current flowing to Moranville after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>140.5</td>
<td>141.8</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>194.5</td>
<td>200.9</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-205.2</td>
<td>-217.2</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>32.8</td>
<td>69.7</td>
</tr>
</tbody>
</table>

The Fourier analysis of the current flowing to Drayton is shown in Figure 5.13 whereas Figure 5.14 shows the Fourier analysis of the current flowing to Moranville.

Figure 5.13: Fourier analysis of current flowing to Drayton at low power flow
The THD factor of the current flowing to Drayton at the 230 kV side of Dorsey is 4.18 % and 9.06% respectively for the waveform at maximum recorded ESP and maximum predicted ESP. The most prominent harmonic is the 2nd harmonic followed by the 4th.

The THD factors of the two waveforms of the current flowing to Moranville at the 230 kV side of Dorsey are 3.41% and 8.76% respectively for the maximum recorded ESP and the maximum predicted ESP conditions. The most prominent harmonic is 4th harmonic followed by the 8th and the 2nd.

5.2.2 A TYPICAL HIGH POWER FLOW

Two simulation studies at a typical high power flow are studied here for the same GIC levels as in the low power flow case (5.2.1). The two earth surface potentials chosen are the one that gave the maximum recorded GIC before series compensation and the other that would have given the maximum predicted GIC for this particular system.

Tables 5.13 and 5.14 show the post-GIC system conditions of the 500 kV and 230 kV sides respectively when the transformers at Dorsey are fully saturated due to the applied ESP.
Table 5.13: Post-GIC system conditions for high power flow study—500kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>MAXIMUM RECORDED ESP</th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
<th>MAXIMUM PREDICTED ESP</th>
<th>DORSEY</th>
<th>FORBES</th>
<th>CHISAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle (degrees)</td>
<td>496.0</td>
<td>495.5</td>
<td>503.0</td>
<td>494.3</td>
<td>495.0</td>
<td>503.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>current (A)</td>
<td>1610.0</td>
<td>610.8</td>
<td>1165.0</td>
<td>1610.0</td>
<td>612.1</td>
<td>1162.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>1383.0</td>
<td>-254.3</td>
<td>-1006.0</td>
<td>1378.0</td>
<td>-252.4</td>
<td>-1004.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>28.0</td>
<td>458.3</td>
<td>129.3</td>
<td>22.9</td>
<td>460.1</td>
<td>131.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.14: Post-GIC system conditions for high power flow study—230kV side

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>MAXIMUM RECORDED ESP</th>
<th>DORSEY</th>
<th>DRAYTON</th>
<th>M’VILLE</th>
<th>MAXIMUM PREDICTED ESP</th>
<th>DORSEY</th>
<th>DRAYTON</th>
<th>M’VILLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle (degrees)</td>
<td>229.5</td>
<td>226.6</td>
<td>232.8</td>
<td>228.7</td>
<td>226.3</td>
<td>223.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>current (A)</td>
<td>835.2</td>
<td>360.2</td>
<td>834.7</td>
<td>359.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (MW)</td>
<td>-315.6</td>
<td>-139.6</td>
<td>-314.5</td>
<td>-139.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Power (MVar)</td>
<td>88.4</td>
<td>3.6</td>
<td>90.6</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The voltages at all the substations dropped very slightly. The voltage drops at the maximum recorded ESP level are; Dorsey by 0.3%, Forbes by 0.1%, Drayton by 0.1% and Moranville by 0.2%. The voltage drops at the maximum predicted ESP level are; Dorsey by 0.6%, Forbes by 0.2%, Drayton by 0.2% and Moranville by 0.4%. There was no GIC flowing in the 500kV line due to the high resistance for dc created by series capacitors in the line. There is a 15A per phase GIC flowing in the 230kV side of the 230/500kV transformer at Dorsey. This current increased to 31A when the ESP level was increased to the maximum predicted. This 31A per phase GIC matches with the maximum predicted GIC flow in the low voltage side of Dorsey [33]. The active power flowing out from Dorsey dropped slightly. So does the active power received at other substations. The reactive power flow out of the
500kV side of Dorsey dropped slightly but the reactive power flow out from Forbes, Chisago, Drayton and Moranville increased slightly.

5.2.2.1 WAVEFORMS IN 500KV SIDE

Figures 5.15 and 5.16 show the simulated phase voltage and the line current on the 500 kV side respectively when the transformers are fully saturated due to the GIC created by the applied ESP.

![Voltage waveform](image1)

Figure 5.15: Voltage waveforms on 500 kV side at high power flow

![Current waveform](image2)

Figure 5.16: Current waveforms on 500 kV side of Dorsey at high power flow

Tables 5.15 and 5.16 show the rms magnitudes, maximum and minimum peak values of the two waveforms shown in the two preceding figures.
Table 5.15: The details on the 500 kV side voltage after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>286.9</td>
<td>286.9</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>404.0</td>
<td>400.0</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-411.7</td>
<td>-419.4</td>
</tr>
</tbody>
</table>

Table 5.16: The details on the 500 kV side current after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>1610.6</td>
<td>1609.1</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>2293.0</td>
<td>2305.0</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-2304.0</td>
<td>-2340.0</td>
</tr>
</tbody>
</table>

The Fourier analysis of the 500 kV side voltage and current waveforms are shown in Figures 5.17 and 5.18 respectively.

Figure 5.17: Fourier analysis of 500kV voltage waveforms at high power flow
Figure 5.18: Fourier analysis of 500kV current waveforms at high power flow

The distortions of the waveforms are much less compared to the distortions of the waveforms obtained for the pre-compensated study. The voltage waveform has a total harmonic distortion factor of 1.99% and 4.08% at maximum recorded and maximum predicted ESP conditions respectively. The corresponding figures for the current waveform are 1.75% and 4.08%. For both waveforms, the most prominent harmonic is the 4th harmonic.

The waveforms on the 230 kV side follow a similar pattern. The distortions in them are also less in this high power flow condition. The voltage and current waveforms on the 230kV side are presented in appendix C.

5.2.2.2 CURRENT WAVEFORMS IN 230KV FEEDERS

Figure 5.19 shows the waveforms of the current flowing to Moranville at Dorsey at a typical high power flow for two different GIC conditions when the transformers are fully saturated due to the applied ESP.
Figure 5.19: Current on Dorsey–Moranville line at Dorsey at high power flow

Table 5.17 shows the rms magnitudes, maximum and minimum peak values of the two waveforms shown in the Figure 5.19.

Table 5.17: The details on the current flowing to Moranville after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>364.6</td>
<td>366.3</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>519.6</td>
<td>522.9</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-516.5</td>
<td>-520.8</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>32.8</td>
<td>69.7</td>
</tr>
</tbody>
</table>

Figure 5.20 show the Fourier analysis of the waveforms shown in the Figure 5.19.
Figure 5.20: Fourier analysis of current flowing to Moranville at high power flow

At low ESP conditions, the THD factor of the current flowing to Moranville at the 230 kV side of Dorsey is 1.29% whereas the corresponding figure at maximum predicted ESP conditions is 3.37%. The prominent harmonics are the 4th and the 8th.

The current flowing to Drayton shows less distortions as in the low power flow case. They are presented in appendix C.

5.3 CONCLUSIONS

Series compensation of the 500kV line completely blocks the GIC flow in the 500kV line. But there is still a small amount of GIC which flows through the 230kV side of the transformers at Dorsey. During the series compensation upgrade an additional set of transformers were also introduced in order to facilitate the increased power flow. This gives a further decreased GIC current per phase per transformer. Thus the effects of GIC are further reduced.

However, there is still some distortion of waveforms because of the small amount of GIC passing through the 230kV side of the transformer. At the maximum predicted ESP conditions, some waveforms have THD factors close to 20%. This could be even more if the power flow is less than the presented case of low power flow.
The 230kV transmission line to Moranville carries more GIC than the line to Drayton mainly due to the fact that there is a high ESP gradient along the line to Moranville.

More waveforms related to the studies presented in this chapter are presented in appendix C.
Chapter 6
Protection Considerations

6.1 CURRENT IN HARMONIC FILTERS

At the Dorsey converter station, there are filters tuned to the 5th, 7th, 11th and 13th harmonics. In addition there are high pass filters to filter out higher harmonics generated at the converter station. These high pass filters also provide the additional reactive power demand by the converter station. When the transformers are saturated due to the GIC, the harmonics produced will flow through these harmonic filters since it has a low impedance path.

6.1.1 HIGH PASS FILTER CURRENTS

6.1.1.1 BEFORE SERIES COMPENSATION AT MAXIMUM RECORDED ESP

Figures 6.1 and 6.2 show the current passing through the equivalent high pass filter for the high power flow and low power flow conditions respectively. These
simulated waveforms occur when the transformers are fully saturated at the maximum recorded GIC level.

![Graph](image)

Figure 6.1: High Pass Filter current at Dorsey with 105A GIC per phase and with a high power flow

![Graph](image)

Figure 6.2: High Pass Filter current at Dorsey with 105A GIC per phase and with a low power flow

The high pass filter current at high power flow conditions has a rms magnitude of 937.7 A with a maximum positive peak of 2045 A and a maximum negative peak of -1993 A whereas the high pass filter current at low power flow conditions has a rms magnitude of 1270 A with a positive peak of 2586 A and negative peak of -3338 A.

Figure 6.3 shows the harmonic composition of the high pass filter currents at two different power flows and at the maximum recorded GIC level.
The harmonic composition follows more or less the same pattern irrespective of the level of power flow. The most dominant harmonic is the 4th harmonic. In the low power flow case, the 4th harmonic is even bigger than the fundamental. Other noticeable harmonics are the 6th, 15th, 12th, 14th and 16th.

Looking at the harmonic analysis of the high pass filter current waveforms in figure 6.3, it is very clear that a lot of harmonics non characteristic to a HVDC converter station exist in these currents. In fact, characteristic harmonics in these waveforms are very minimal due to the presence of filters tuned for those harmonics. There is a significant portion of fundamental component in these waveforms. This is due to the fact that the high pass filters at the Dorsey end are also used to give voltage support at Dorsey. The ratios of the total rms magnitude to that of the fundamental component is 126.7% and 174.7% for high power flow and low power flow conditions respectively when the GIC flow is 105A per phase. These values change to 136.5% and 195.2% respectively when the GIC flow is increased to 133A per phase.

At both GIC levels considered, it is clear that more harmonic currents flow through the high pass filter when the power flow is low. Table 6.1 shows the analysis of high pass filter currents obtained at maximum recorded GIC conditions.
Table 6.1: Analysis of high pass filter currents at different power flows before series compensation

<table>
<thead>
<tr>
<th>power flow</th>
<th>(I_{\text{rms}})</th>
<th>(I_{1-\text{rms}})</th>
<th>(\frac{I_{\text{rms}}}{I_{1-\text{rms}}}) as a %</th>
<th>positive peak</th>
<th>negative peak</th>
<th>rms based on max.peak</th>
<th>(\frac{I_{\text{peak-rms}}}{I_{\text{rms}}}) as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>938</td>
<td>740</td>
<td>126.7</td>
<td>2045</td>
<td>-1993</td>
<td>1409</td>
<td>150.2</td>
</tr>
<tr>
<td>low</td>
<td>1270</td>
<td>727</td>
<td>174.7</td>
<td>2586</td>
<td>-3338</td>
<td>2360</td>
<td>185.9</td>
</tr>
</tbody>
</table>

If the waveforms are assumed to be sinusoidal and if the rms magnitude is derived from the absolute peak magnitude, then rms values are 1409A and 2360A respectively for high and low power flow conditions. These figures are 50.2% and 85.9% more than the actual rms magnitude of their corresponding waveforms for high and low power flow conditions respectively.

Therefore, if these high pass filters are protected by an overcurrent measurement based on peak detection, it would see a very high increase in the apparent rms value. This could trip the filters unnecessarily.

6.1.1.2 AFTER SERIES COMPENSATION AT MAXIMUM PREDICTED ESP

Figure 6.4 shows the current going through the high pass filter at high power flow conditions when the transformers are fully saturated due to the applied ESP which is set to the maximum predicted.
The high pass filter current has a rms magnitude of 714.7 A, a positive peak of 1191 A and a negative peak of -1242 A. Figure 6.5 shows the current going through the high pass filter at low power flow conditions when the transformers are fully saturated due to the GIC created by the same ESP.

The high pass filter current has a rms magnitude of 722.4 A, a positive peak of 1201 A and a negative peak of -1254 A. The Fourier analysis of these two waveforms are shown in Figure 6.6.
Figure 6.6: Fourier analysis of currents in high pass filter

The harmonic composition is almost the same irrespective of the level of power flow for this low saturation condition. The most dominant harmonic is the 4th harmonic. Other noticeable harmonics are the 6th and 2nd.

Table 6.2 shows the analysis of the high pass filter currents obtained at the maximum predicted GIC conditions for two different power flows.

Table 6.2: Analysis of high pass filter currents at different power flows after series compensation

<table>
<thead>
<tr>
<th>power flow</th>
<th>I$_{rms}$</th>
<th>I$_{1-rms}$</th>
<th>I${rms}$/I${1-rms}$ as a %</th>
<th>positive peak</th>
<th>negative peak</th>
<th>rms based on max. peak</th>
<th>I${peak-rms}$/I${rms}$ as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>715</td>
<td>699</td>
<td>102.3</td>
<td>1191</td>
<td>-1242</td>
<td>878</td>
<td>122.8</td>
</tr>
<tr>
<td>low</td>
<td>722</td>
<td>707</td>
<td>102.1</td>
<td>1201</td>
<td>-1254</td>
<td>887</td>
<td>122.8</td>
</tr>
</tbody>
</table>

If the waveforms are assumed to be sinusoidal and if the rms magnitude is derived from the absolute peak magnitude, the waveforms see magnitudes 878A and 887A respectively for high and low power flow conditions. These figures are 22.8% more than the actual rms magnitude of their corresponding waveforms for both high and low power flow conditions.
Therefore, if these high pass filters are protected by an overcurrent measurement based on peak detection, the protection device would see an increase in the apparent rms value. This could trip the filters unnecessarily.

6.1.2 CURRENT IN TUNED FILTERS

The tuned filters at the Dorsey converter station were introduced in two stages. In the first stage four tuned filters tuned to the 5th, 7th, 11th and 13th harmonics were introduced for the 6 pulse bridge installed. Another set of 11th and 13th tuned harmonic filters were introduced in the second stage for the 12 pulse bridge installed.

6.1.2.1 BEFORE SERIES COMPENSATION AT MAXIMUM RECORDED ESP

Figure 6.7 shows the current going through one of the 13th harmonic tuned filters installed in the second stage when the power flow is high and the GIC is 315 A.

![Figure 6.7: 13th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow](image)

The current waveform has a rms magnitude of 239 A with a positive peak of 470.8 A and a negative peak of -682.6 A. The 13th harmonic component of the current flowing through the filter is 38.3 A. Figure 6.8 shows the current going through the same filter at the same GIC level when the power flow is low.
The current waveform has a rms magnitude of 357.1 A with a positive peak of 666.5 A and a negative peak of 926.7 A. The 13th harmonic component flowing through the filter has a magnitude of 48.2 A. Figure 6.9 shows the Fourier analysis of the two current waveforms flowing through the same tuned filter for the two different power flow conditions.

In both cases, the significant harmonics are the 4th, 6th, 12th, 13th, 14th and 15th. In the high power flow case, the dominant harmonic is the 12th. But in low power flow
case, the 4th harmonic became the dominant harmonic. In the latter case, the 4th harmonic is even bigger than the fundamental component in that current.

Figure 6.10 shows the waveform of the current flowing through the 5th harmonic tuned filter which was installed at the first stage. The waveform is taken at high power flow conditions and at a 315 A GIC level.

![Graph showing 5th harmonic filter current waveform](image)

Figure 6.10: 5th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow

The current waveform has a rms magnitude of 294.5 A with a positive peak of 658.7 A and a negative peak of -539.2 A. The 5th harmonic component flowing through the filter is 237.6 A. Figure 6.11 shows the current flowing in the same filter when the power flow was changed to the low power flow condition described before.
The current waveform has a rms magnitude of 340.3 A with a positive peak of 609.9 A and a negative peak of −738.2 A. The 5th harmonic component flowing through the filter is 154.5 A. Figure 6.12 shows the Fourier analysis of the two current waveforms flowing through the same tuned filter for the two different power flow conditions.

In both cases, the significant harmonics are the 4th, 5th and 6th. In the high power flow case, dominant harmonic is the 5th. But in the low power flow case, the 4th harmonic became the dominant harmonic. In both cases, the 4th and 5th harmonics are bigger than the corresponding fundamental component.
Tables 6.3 and 6.4 show the detailed analysis of currents flowing through tuned filters for both high power flow and low power flow conditions respectively. The analysis was done for the waveforms obtained for 105 A GIC per phase condition. The tables give the details of the rms magnitude of the current waveform with their positive and negative peak values, the rms magnitudes of the fundamental frequency component and the tuned frequency component and also the rms magnitude of the combined fundamental and tuned frequency components.

Table 6.3: Analysis of currents through the tuned harmonic filters for a high power flow

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>Positive Peak (A)</th>
<th>Negative Peak (A)</th>
<th>RMS (A)</th>
<th>RMS of fundamental component (A)</th>
<th>RMS of tuned frequency component (A)</th>
<th>RMS of fundamental and tuned frequency components (A)</th>
<th>RMS of harmonics other than fundamental and tuned frequency components (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>658.7</td>
<td>-539.2</td>
<td>294.5</td>
<td>91.8</td>
<td>237.7</td>
<td>254.8</td>
<td>147.7</td>
</tr>
<tr>
<td>7</td>
<td>286.0</td>
<td>-403.3</td>
<td>176.8</td>
<td>45.9</td>
<td>153.1</td>
<td>159.8</td>
<td>75.6</td>
</tr>
<tr>
<td>11</td>
<td>270.7</td>
<td>-195.5</td>
<td>103.8</td>
<td>69.7</td>
<td>30.3</td>
<td>76.0</td>
<td>70.7</td>
</tr>
<tr>
<td>13</td>
<td>148.2</td>
<td>-237.5</td>
<td>79.6</td>
<td>49.8</td>
<td>22.4</td>
<td>54.6</td>
<td>57.9</td>
</tr>
<tr>
<td>11</td>
<td>766.9</td>
<td>-595.4</td>
<td>313.1</td>
<td>218.2</td>
<td>48.2</td>
<td>223.5</td>
<td>219.3</td>
</tr>
<tr>
<td>13</td>
<td>470.8</td>
<td>-682.6</td>
<td>239.0</td>
<td>154.0</td>
<td>38.3</td>
<td>158.7</td>
<td>178.7</td>
</tr>
</tbody>
</table>
Table 6.4: Analysis of currents through the tuned harmonic filters for a low power flow

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>Positive Peak (A)</th>
<th>Negative Peak (A)</th>
<th>RMS (A)</th>
<th>RMS of fundamental component (A)</th>
<th>RMS of tuned frequency component (A)</th>
<th>RMS of fundamental and tuned frequency components (A)</th>
<th>RMS of harmonics other than fundamental and tuned frequency components (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>609.9</td>
<td>-738.2</td>
<td>340.3</td>
<td>90.2</td>
<td>154.5</td>
<td>178.9</td>
<td>289.5</td>
</tr>
<tr>
<td>7</td>
<td>354.5</td>
<td>-408.3</td>
<td>200.0</td>
<td>45.1</td>
<td>171.7</td>
<td>177.5</td>
<td>92.1</td>
</tr>
<tr>
<td>11</td>
<td>374.8</td>
<td>-309.3</td>
<td>144.8</td>
<td>68.5</td>
<td>49.0</td>
<td>84.2</td>
<td>117.8</td>
</tr>
<tr>
<td>13</td>
<td>231.5</td>
<td>-319.9</td>
<td>117.8</td>
<td>48.9</td>
<td>28.1</td>
<td>56.4</td>
<td>103.4</td>
</tr>
<tr>
<td>11</td>
<td>1046.0</td>
<td>-974.7</td>
<td>430.6</td>
<td>214.4</td>
<td>71.0</td>
<td>225.9</td>
<td>366.6</td>
</tr>
<tr>
<td>13</td>
<td>665.5</td>
<td>-927.3</td>
<td>357.1</td>
<td>151.2</td>
<td>48.2</td>
<td>158.7</td>
<td>319.9</td>
</tr>
</tbody>
</table>

From the analysis of the harmonic content of the current flowing in the tuned filters as illustrated by the tables 6.3 and 6.4, it is clear from the last column of the tables, that the total harmonic content of frequencies other than the fundamental and the tuned frequency is significant. It is appropriate to consider the ratios between the rms magnitude of the waveform with the rms magnitude of combined fundamental component and the tuned frequency component since those two frequencies are the frequencies that are expected to flow in the tuned filters at normal operating conditions. The ratios of the rms magnitude of the waveform to the rms magnitude of the combined fundamental and the tuned frequency varies between 111% to 150% in the case of the high power flow condition. It varies between 113% to 225% in the case of low power flow condition. The harmonic content of frequencies other than the fundamental and the tuned frequency is more when the power flow is low.

Table 6.5 shows an analysis of the apparent increase of magnitudes seen if the rms magnitudes are derived from peak values of the waveforms for both high and low power flow conditions.
Table 6.5: Apparent increase of rms magnitudes when based on peak values

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>max. abs. peak (A)</th>
<th>rms based on peak (A)</th>
<th>max. abs. peak (A)</th>
<th>rms based on peak (A)</th>
<th>apparent increase %</th>
<th>apparent increase %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>658.7</td>
<td>465.8</td>
<td>738.2</td>
<td>522.0</td>
<td>58.2</td>
<td>53.4</td>
</tr>
<tr>
<td>7</td>
<td>403.3</td>
<td>285.2</td>
<td>408.2</td>
<td>288.6</td>
<td>61.6</td>
<td>44.3</td>
</tr>
<tr>
<td>11</td>
<td>270.7</td>
<td>191.4</td>
<td>374.8</td>
<td>265.0</td>
<td>84.4</td>
<td>83.0</td>
</tr>
<tr>
<td>13</td>
<td>237.5</td>
<td>167.9</td>
<td>319.9</td>
<td>226.2</td>
<td>110.9</td>
<td>92.0</td>
</tr>
<tr>
<td>11</td>
<td>766.9</td>
<td>542.3</td>
<td>1046.0</td>
<td>739.6</td>
<td>73.2</td>
<td>71.8</td>
</tr>
<tr>
<td>13</td>
<td>682.6</td>
<td>482.7</td>
<td>927.3</td>
<td>655.7</td>
<td>102.0</td>
<td>83.6</td>
</tr>
</tbody>
</table>

6.1.2.2 After series compensation at maximum predicted ESP

Figure 6.13 shows the current passing through the 13th harmonic filter installed in the second stage, when the potential difference between Dorsey and Forbes is set to the same potential difference that would have produced the maximum predicted GIC before the series compensation.

![Figure 6.13: 13th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow](image-url)
The waveform has a rms magnitude of 151.0 A with a positive peak magnitude of 268.3 A and a negative peak magnitude of −276.7 A.

Figure 6.14 shows the current passing through the 13th harmonic filter installed in the second stage, when the potential difference between Dorsey and Forbes is set to the same potential difference that would have produced the maximum predicted GIC before the series compensation. This waveform was obtained at low power flow conditions.

The waveform has a rms magnitude of 152.6 A with a positive peak magnitude of 270.5 A and a negative peak magnitude of −279.8 A. The Fourier analysis of these waveforms are shown in the Figure 6.15.

Figure 6.15: Fourier analysis of currents in 13th harmonic filter after compensation
The current passing through the 13th harmonic tuned filter contains mostly fundamental and a significant contribution from the 4th harmonic. It also has slight contributions from the 6th, 12th and 14th harmonics. The harmonic compositions of both waveforms are almost the same irrespective of the level of power flow.

Figure 6.16 shows the current passing through the 5th harmonic tuned filter at high power flow conditions when the transformers are fully saturated due to the applied ESP.

![Graph showing 5th Harmonic Filter current](image)

Figure 6.16: 5th Harmonic Filter current at Dorsey with 105A GIC per phase and with a high power flow

The waveform of the current going through the 5th harmonic filter is highly distorted. It has an rms magnitude of 113.7 A with a positive peak of 195.5 A and a negative peak of -212.4 A.

Figure 6.17 shows the current passing through the 5th harmonic tuned filter during the low power flow condition when the transformers are fully saturated due to the applied ESP.
The waveform of the current going through the 5th harmonic filter is highly distorted. It has an rms magnitude of 114.3 A with a positive peak of 196.8 A and a negative peak of −212.7 A. The Fourier analysis of these waveforms is shown in figure 6.18.

The waveforms contain not only the fundamental and the tuned 5th harmonic, they contain a lot of 4th harmonic and a significant amount of 6th, 2nd and 3rd harmonic components. At this low saturation condition, the harmonic composition of both waveforms is almost the same irrespective of the power flow.

Table 6.6 and Table 6.7 show the results of analysis of the currents going through the tuned filters when the transformers are fully saturated due to the applied ESP at
high and low power flow conditions respectively. The analysis was done for the waveforms obtained for the maximum predicted ESP condition. The tables give the details of the rms magnitude of the current waveform with their positive and negative peak values, the rms magnitudes of the fundamental frequency component and the tuned frequency component and also the rms magnitude of the combined fundamental and tuned frequency components.

Table 6.6: Analysis of currents though the tuned harmonic filters for a high power flow

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>Positive Peak (A)</th>
<th>Negative Peak (A)</th>
<th>RMS (A)</th>
<th>RMS of fundamental component (A)</th>
<th>RMS of tuned frequency component (A)</th>
<th>RMS of fundamental and tuned frequency components (A)</th>
<th>RMS of harmonics other than fundamental and tuned frequency components (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>195.5</td>
<td>-212.4</td>
<td>113.7</td>
<td>86.7</td>
<td>58.1</td>
<td>104.4</td>
<td>45.1</td>
</tr>
<tr>
<td>7</td>
<td>110.5</td>
<td>-110.2</td>
<td>57.4</td>
<td>43.4</td>
<td>34.1</td>
<td>55.2</td>
<td>15.8</td>
</tr>
<tr>
<td>11</td>
<td>124.7</td>
<td>-118.0</td>
<td>68.4</td>
<td>65.9</td>
<td>6.7</td>
<td>66.2</td>
<td>17.2</td>
</tr>
<tr>
<td>13</td>
<td>84.2</td>
<td>-90.9</td>
<td>48.9</td>
<td>47.0</td>
<td>3.7</td>
<td>47.2</td>
<td>12.9</td>
</tr>
<tr>
<td>11</td>
<td>378.5</td>
<td>-356.7</td>
<td>213.3</td>
<td>206.1</td>
<td>10.6</td>
<td>206.4</td>
<td>53.8</td>
</tr>
<tr>
<td>13</td>
<td>268.3</td>
<td>-276.7</td>
<td>151.0</td>
<td>145.5</td>
<td>6.3</td>
<td>145.6</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Table 6.7: Analysis of currents though the tuned harmonic filters for a low power flow

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>Positive Peak (A)</th>
<th>Negative Peak (A)</th>
<th>RMS (A)</th>
<th>RMS of fundamental component (A)</th>
<th>RMS of tuned frequency component (A)</th>
<th>RMS of fundamental and tuned frequency components (A)</th>
<th>RMS of harmonics other than fundamental and tuned frequency components (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>196.8</td>
<td>-212.7</td>
<td>114.3</td>
<td>87.7</td>
<td>57.8</td>
<td>105.0</td>
<td>45.1</td>
</tr>
<tr>
<td>7</td>
<td>111.4</td>
<td>-111.1</td>
<td>57.9</td>
<td>43.8</td>
<td>34.3</td>
<td>55.6</td>
<td>15.9</td>
</tr>
<tr>
<td>11</td>
<td>125.7</td>
<td>-119.1</td>
<td>69.1</td>
<td>66.6</td>
<td>6.7</td>
<td>66.9</td>
<td>17.3</td>
</tr>
<tr>
<td>13</td>
<td>85.0</td>
<td>-92.1</td>
<td>49.7</td>
<td>47.6</td>
<td>3.7</td>
<td>47.7</td>
<td>13.0</td>
</tr>
<tr>
<td>11</td>
<td>381.2</td>
<td>-360.1</td>
<td>215.6</td>
<td>208.5</td>
<td>10.7</td>
<td>208.7</td>
<td>54.0</td>
</tr>
<tr>
<td>13</td>
<td>270.5</td>
<td>-279.8</td>
<td>152.6</td>
<td>147.1</td>
<td>6.4</td>
<td>147.2</td>
<td>40.3</td>
</tr>
</tbody>
</table>
At this low saturation condition, the fundamental frequency component and the tuned frequency component make up the major portion of the current going through the tuned filters.

Table 6.8 shows an analysis of the apparent increase of magnitudes seen if the rms magnitudes are derived from peak values of the waveforms for both high and low power flow conditions.

Table 6.8: Apparent increase of rms magnitudes when based on peak values

<table>
<thead>
<tr>
<th>Tuned Filter</th>
<th>high power flow</th>
<th>low power flow</th>
<th>apparent increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max. abs. peak (A)</td>
<td>rms based on peak (A)</td>
<td>rms (A)</td>
</tr>
<tr>
<td>5</td>
<td>212.4</td>
<td>150.2</td>
<td>113.7</td>
</tr>
<tr>
<td>7</td>
<td>110.5</td>
<td>78.1</td>
<td>57.4</td>
</tr>
<tr>
<td>11</td>
<td>124.7</td>
<td>88.2</td>
<td>68.4</td>
</tr>
<tr>
<td>13</td>
<td>90.9</td>
<td>64.3</td>
<td>48.9</td>
</tr>
<tr>
<td>11</td>
<td>378.5</td>
<td>267.6</td>
<td>213.3</td>
</tr>
<tr>
<td>13</td>
<td>276.7</td>
<td>195.7</td>
<td>151.0</td>
</tr>
</tbody>
</table>

There is an apparent increase of about 30%, if the rms magnitudes were derived from the peak magnitudes of the waveforms irrespective of the level of power flow. This could change at a higher level of saturation but it is very unlikely since the presented data is simulated under maximum predicted ESP conditions which is approximately twice the level of the maximum recorded level.

6.1.3 SUMMARY

From the analysis of waveforms of currents going through the harmonic filters at maximum recorded GIC level before series compensation the following
observations can be made. A significant portion, sometimes a major portion, of the waveform is comprised of harmonics which are uncharacteristic to a DC converter station. Comparison of peak values and rms magnitudes of the waveforms show that peak detection overcurrent protection schemes are not suitable for harmonic filters when GIC is present. A peak detection method can give a false indication 210% from the actual rms magnitude at maximum recorded GIC level. Another observation is that the peak detection method gives a larger error in the 11th and 13th harmonic filters than the 5th and 7th harmonic filters.

After series compensation, the level of saturation was greatly reduced due to the increased resistance to dc due to the series capacitors in the GIC path. Therefore the amount of harmonic distortion is less even at maximum predicted ESP level which is more than twice the maximum recorded ESP level. The contribution of the uncharacteristic harmonics in currents going through the harmonic filters is low. The error of calculating rms based on peak value is about 30% even at the maximum predicted ESP conditions.

It should be noted that these waveforms do not contain the harmonic currents generated at the converter station. This is because the converter station is modelled as an equivalent AC source. Actual harmonic currents of 5th, 7th, 11th and 13th harmonics are different than the simulated waveforms. This difference is small at the low power flow condition since the characteristic harmonic currents produced by the HVDC converter station at low power flow is much smaller[29]. All the other harmonics will remain more or less the same.

6.2 INSTRUMENT TRANSFORMER RESPONSE

Instrument transformers are used to transform large magnitude voltages and currents to smaller magnitudes for metering and protection devices. Voltage transformers (VT) or Capacitive Voltage Transformers (CVT) are used for voltage transformation whereas Current Transformers (CT) are used for current transformation. This section looks into the effects of GIC on these instrument transformers.
6.2.1 CURRENT TRANSFORMER RESPONSE

Current Transformer ratios for protection systems are determined by the available load current. But the physical size of the transformer core is determined by the available fault current. When this axiom is followed, it is unlikely that the CT saturates before the saturation of the power transformer where the physical size of the core is determined by the available fault current.

To investigate the effect of GIC on CTs under no fault GIC conditions, a model of the CT on the 500 kV line[17] is fed with the waveforms obtained for the maximum recorded GIC level. A 15 VA 0.85 power factor burden at 5 A is used as the burden for the CT. The CT burden is small giving a slow rate of build up of dc bias. But the steady state dc bias of the CT is not affected by the size or the power factor of the burden.

Figure 6.19 shows the CT response to the 500 kV line current obtained for the maximum recorded GIC conditions and at low power flow conditions before series compensation. The two waveforms presented are the input current referred to the secondary and the output current of the CT for the burden chosen.

![CT Response for 105A GIC per phase, low power case](image)

Both waveforms follow the same pattern. The GIC current in the input waveform is not transformed to the secondary. The difference between the two waveforms...
is the magnetising current referred to the secondary of the CT. Figure 6.20 shows the harmonic magnitudes of both waveforms.

![Harmonic Magnitudes Graph](image)

Figure 6.20: Magnitude of the harmonics in current waveforms at low power flow

There is hardly any difference in harmonic magnitudes. In fact the difference in magnitudes for different harmonics was always less than 6 mA. Figure 6.21 shows the phase shift of harmonics when the waveform is transformed through the CT.

![Phase Angle Graph](image)

Figure 6.21: Phase of the harmonics in current waveforms at low power flow

For all the harmonics whose magnitudes are greater than 12 mA the phase shift compared to the input waveform is less than 2 degrees. It is clear that the distortions caused by the non-linearity of the CT is very insignificant compared to the distortions caused by the non-linearity of power transformers under no fault GIC conditions.
Figures 6.22 and 6.23 show the flux density and the magnetizing core current of the current transformer for the low power flow conditions respectively.

The current transformer operates at a higher flux density due to the GIC current in the input waveform.

Figure 6.24 shows the CT response to the 500 kV line current obtained for the maximum recorded GIC conditions and at the high power flow condition before the series compensation. The two waveforms presented are the input current referred to the secondary and the output current of the CT for the burden chosen.
Both waveforms follow the same pattern. The GIC current in the input waveform is not transformed to the secondary. Figure 6.25 shows the harmonic magnitudes of both waveforms.

There is hardly any difference in magnitudes. In fact the difference in magnitudes for different harmonics was always less than 6 mA. Figure 6.26 shows the phase shift of harmonics when the waveform is transformed through the CT.
Figure 6.27: Phase of the harmonics in current waveforms at high power flow

For all the harmonics whose magnitudes are greater than 50 mA the phase shift compared to the input waveform is less than 2 degrees. It is clear that the distortions caused by the non-linearity of the CT are very insignificant compared to the distortions caused by the non-linearity of the power transformers under no fault GIC conditions.

Figures 6.28 and 6.29 show the flux density and the magnetizing core current of the current transformer for the high power flow condition.

Figure 6.28: Flux Density of the CT for 105A GIC per phase, high power case
By analyzing the waveforms in Figures 6.19 - 6.29, it can be concluded that at steady state, the distortions introduced by current transformers are very minimal even at very high GIC levels. But if a fault occurs during a GIC event, and if that fault creates a dc bias of the current towards the same direction as the dc bias created by GIC, then the CT will saturate sooner. This might cause the relay to take a longer time to detect the fault.

6.2.2 VOLTAGE TRANSFORMER RESPONSE

Voltage transformers have such a relatively high resistance that very little of the GIC will flow in the primary winding. In addition there will be other low impedance paths in the vicinity such as grounded power transformers. Capacitively coupled Voltage transformers (CCVT) are even less susceptible to the saturation due to GIC because the capacitors will act as an open circuit for the DC current thus avoiding DC current flow to the voltage transformer of the CCVT. The effect of passing voltage waveforms through a model of the CCVT [17] was not noticeable and hence not presented here.

6.3 SEQUENCE NETWORK PROBLEMS

Modern line protection systems which utilize sequence voltage or current quantities for fault determination can be susceptible to misoperation when the protected line
currents contain harmonics generated during a GIC event. AC harmonics of the order 3n+1,
3n+2 and 3n where n is an integer have the phase sequences of positive, negative and zero
respectively. Both zero and negative sequence currents are commonly used in direction
comparison overcurrent schemes and in the time overcurrent backup function[25].

To investigate the behaviour of sequence filters, waveforms obtained from
the high and low power flow cases at maximum recorded GIC conditions were fed into a
simple sequence filter. The circuit diagram of the simple sequence filter used is shown in
Figure 6.30.

![Figure 6.30: A Simple Negative Sequence Filter](image)

The relationship among the main circuit parameters, resistance R,
capacitance C and inductance L is given by equation 6.1.

$$\sqrt{3} R = \frac{1}{\omega C} = \omega L \quad (6.1)$$

Given R, the values of inductance L_i and capacitance C_i are chosen
according to the quality factor. The relationship among them with resistance R and quality
factor of the filter Q is given by equation 6.2.

$$\frac{R}{Q} = \omega L_i = \frac{1}{\omega C_i} \quad (6.2)$$

If three voltages V_X, V_Y and V_Z whose frequency is ω are applied to X, Y
and Z then using Kirchoff's current law,

$$\frac{V_x - V_y}{R} + \frac{V_y - V_z}{2RL - 60} + \frac{V_z - V_x}{2RZ 60} = 0 \quad (6.3)$$
This can be re-written as,

\[V_M = \frac{V_X + 0.5 \ V_Y \angle 60 + 0.5 \ V_Z \angle -60}{1 + 0.5 \angle 60 + 0.5 \angle -60} \quad (6.4) \]

It can be shown that \(V_M \) becomes zero when balanced three phase voltages are applied to the points X, Y and Z with the sequence A, C and B thus giving voltage across X and M as the voltage applied to X. It also can be shown that if the phase sequence is reversed, then \(V_M \) will be the same as \(V_X \) thus giving zero voltage across X and M.

Figure 6.31 shows the output of a positive sequence filter for the 500 kV side currents obtained for 105 A GIC per phase, high power case before the series compensation. To get the positive sequence output the same filter shown in Figure 6.30 is used with the reversed phase sequence. Outputs were taken for different quality factors of the filter.

The three waveforms were taken at three different quality factors 0, 10 and 20. The rms magnitudes of the waveforms for the quality factors 0, 10 and 20 are 1207.8 A, 1191.6 A and 1190.7 A respectively. If the sequence components were calculated after filtering digitally though a FFT, then the positive sequence magnitude is 1190.3 A.
Figure 6.32 shows the negative sequence output using the same filter. The waveforms fed in were the 500 kV line currents obtained for high power flow, 105 A GIC per phase condition before the series compensation.

![Graph showing negative sequence output for 105A GIC per phase, high power case.](image)

Figure 6.32 : Negative Sequence Output for 105A GIC per phase, high power case

The three waveforms were taken at three different quality factors. The rms magnitudes of the output waveforms for the quality factors 0, 10 and 20 are 160.7 A, 9.5 A and 5.8 A. It is clear that the rms magnitude is very dependant on the quality factor. The negative sequence component obtained through FFT filtering and then calculating gives the magnitude as 3.7 A.

Figure 6.33 shows the zero sequence output of the 500 kV line current obtained for high power flow, maximum recorded GIC conditions. To obtain the zero sequence, the three waveforms were added and fed into a tuned filter.
The rms magnitudes of the output waveforms for the quality factors 0, 10 and 20 are 34.9 A, 1.58 A and 1.12 A. It is clear that the rms magnitude is very dependant on the quality factor. The zero sequence component obtained by filtering the waveforms digitally by a FFT and then calculating gives the magnitude as 1.06 A.

Figure 6.34 shows the positive sequence output of the filter when fed with the 500 kV current waveforms obtained for low power flow maximum recorded GIC conditions.

With a quality factor of 0, the rms magnitude of the output waveform of the filter is 281.9 A. When the quality factor increased to 10, the rms magnitude decreased to
96.6 A. With a quality factor of 20, it decreased further to 95.6 A. If the input current waveforms were subjected to a FFT and then sequence components were derived, then the rms magnitude is 95.2 A.

Figure 6.35 shows the negative sequence output using the same filter. The waveforms fed in were the 500 kV line currents obtained for low power flow, 105 A GIC per phase condition.

![Graph showing negative sequence output](image)

Figure 6.35: Negative Sequence Output for 105A GIC per phase, low power case

The output waveforms obtained for three quality factors 0, 10 and 20 gives the rms magnitudes as 216.6 A, 11.15A and 5.63 A respectively. Using a FFT to filter the individual waveforms and then calculating the sequence components gives the rms magnitude of negative sequence as 0.48 A.

Figure 6.36 shows the zero sequence output waveforms obtained by adding the waveforms together and then feeding through a tuned filter.
The rms magnitudes of the output waveforms for the quality factors 0, 10 and 20 are 118.5 A, 4.27 A and 2.17 A respectively. It is clear that the dependency on the quality factor of the filter is very high. Zero sequence component obtained through a FFT gives the magnitude as 0.39 A.

In the high power flow case, a quality factor of 20 gives a reasonable accuracy for all the sequence components. But in the low power flow case, only the positive sequence filter gives a reasonable accuracy at quality factor 20. In the low power flow simulation, where the harmonic components in the current are more than the fundamental component, negative and zero sequence filters give a very poor accuracy. From these results it can be concluded that if analog filters are used to extract sequence components, then it could give rise to an unnecessary trip during GIC conditions.

To see the effects of harmonics on a simple analog sequence filter, different harmonics were injected into the filter and the output responses were taken. Figure 6.37 shows the effect of positive sequence harmonic signals on the positive sequence filter (or negative sequence harmonics on negative sequence filter) whereas Figure 6.38 shows the effect of negative sequence harmonic signals on the positive sequence filter (or positive sequence harmonics on negative sequence filter).
Since there is a significant gain at lower order harmonics even at higher quality factors, a considerable amount of lower order harmonics are reflected in sequence outputs.

6.4 TRANSFORMER DIFFERENTIAL PROTECTION

Universal transformer protection practice consists of comparing the current entering the transformer input winding with the currents leaving the secondary windings.

There are, however, two well known instances where the differential criteria will indicate
a fault condition although none exists. These are the presence of inrush current and over excitation.

The present or most popular design practice is to measure second or fifth harmonic content in the differential current in order to probe for an inrush or an over excitation condition. Should the ratio of harmonic component magnitude over differential current magnitude exceed a minimum threshold, a blocking signal will prevent the protection from operating.

Figures 6.39 and 6.40 show the transformer differential current obtained for maximum recorded GIC conditions for high and low power flow conditions respectively.

Figure 6.39: Transformer differential current seen from CT for 105A GIC per phase, high power case

Figure 6.40: Transformer differential current seen from CT for 105A GIC per phase, low power case
The corresponding Fourier analysis of the waveforms obtained for high and low power flow situations are shown in Figures 6.41 and 6.42 respectively.

For both low power flow and high power flow cases, there is a fundamental component of 0.104 per unit based on 400 MVA in the transformer differential current. The second harmonic components are 0.099 per unit and 0.096 per unit for high and low power flow conditions respectively. In both cases, the second harmonic component is more than 90% of the fundamental. The 5th harmonic components are 0.071 p.u. and 0.072 p.u. for high and low power flow cases respectively. The fifth harmonic component is more than 65% of the fundamental for both cases. The second harmonic restraint is normally set to 15% of
the fundamental[30][31]. The second harmonic component in the differential current of a transformer during an internal fault is usually less than 5% of the fundamental[31]. Since there is a large amount of second harmonic component in the differential current (way above the threshold of 15% of the fundamental in the no fault condition), there is a need to investigate whether GIC induced 2nd harmonic currents have a significant effect during an internal fault situation.
Chapter 7
Conclusions

Transformer models for different transformer configurations were developed with reasonable accuracy to study the protection problems due to saturation of the transformers. Single phase transformers are the most susceptible to GIC whereas three phase three limb transformers are the least susceptible to GIC. Three phase conventional transformers seem to be more susceptible to GIC than the three phase five limb transformers. This observation verifies experimental results obtained before [22][23]. Unfortunately today's transmission systems with large power flow capabilities contain single phase transformers to maintain the reliability economically. The test system used in this study also contains single phase transformers.

The results obtained using the models are shown to be in close agreement with recorded GIC events in the Dorsey–Forbes–Chisago 500kV system. The model derived for the Dorsey–Forbes–Chisago system was then used to study the voltages and currents in the system for different conditions. Several power flow conditions and several GIC conditions were studied. System conditions at maximum recorded GIC level were presented.
for two different power flow conditions. Unfortunately there are no recorded line current or voltage waveforms for this maximum recorded GIC event. The predicted maximum GIC for this system is roughly twice the maximum recorded GIC level. The effects at an ESP level corresponding to the maximum predicted GIC is studied on a revised model of the Dorsey–Forbes–Chisago system since it was series compensated recently.

Before series compensation, line currents show more distortions than the phase voltages at both low and high power flow conditions. It is also seen that the fundamental reactive power consumed by the transformers is more or less the same irrespective of the power flow. The slight difference mainly comes from different reactive power consumption by leakage inductance. Otherwise, reactive power drawn by transformers due to half cycle saturation due to a specific amount of GIC is more or less the same irrespective of power flow provided the level of energization of transformers is more or less the same which is usually true.

The distortions of the waveforms increase with the amount of GIC as expected. The relationship between harmonic magnitudes with the GIC is roughly linear. At the low power flow conditions, the distortions of the waveforms are higher for the same GIC level than the distortions of the waveforms obtained at high power flow. With the decrease of power flow, harmonic distortions increase. Current waveforms show a higher rate of increase than the voltage waveforms. It can be said that by decreasing the amount of power flow during a geomagnetic storm, the likelihood of a protection system maloperation increases due to the increased distortions in the waveforms. But the whole system would be more stable since the possible loss of power is less.

Series compensation of the 500kV line greatly reduces the effects of GIC on the system since it blocks the GIC flows completely in the 500kV line. But there is still a small amount of GIC flow in the 230kV side of the transformers at Dorsey. Another reason for smaller effects is the introduction of an additional set of transformers. It gives a further
decreased GIC current per phase per transformer. Thus the effects of GIC on the transformer and hence the overall effects are further reduced.

However, there is still some distortion of the waveforms because of the small amount of GIC passing through the 230kV side of the transformer. At the maximum predicted ESP conditions, some waveforms have THD factors close to 20%. This could be even more if the power flow is further reduced.

The 230kV transmission line to Moranville carries more GIC than the line to Drayton mainly because it has a higher ESP gradient along the line. The Dorsey–Moranville line lies in a direction of NW–SE whereas Dorsey–Drayton line lies in a direction of N–S thus giving a higher ESP gradient on Dorsey–Moranville line.

Both before and after series compensation, the most prominent harmonic in the system during GIC conditions is the 4th harmonic. Before the series compensation, the line current obtained at low power flow conditions has more 4th harmonic than even the fundamental component.

Before the series compensation, a significant portion of the currents flowing in the harmonic filters was comprised of harmonics which are uncharacteristic to a DC converter station. Comparison of the peak values of the waveforms and actual rms magnitudes of them show that the peak detection scheme to evaluate the current is not suitable for harmonic filters when GIC is present. A peak detection method can give a false indication of as high as 210% of the actual rms magnitude at maximum recorded GIC level.

After series compensation, the level of saturation was greatly reduced due to the increased resistance for dc. Therefore the amount of harmonic distortion is less even at the maximum predicted ESP level which is more than twice the maximum recorded ESP level. The contribution of uncharacteristic harmonics in currents going through harmonic filters is low. The error in evaluating current based on peak current is about 30% even at the maximum predicted ESP conditions.
Series compensation and the addition of another set of transformers greatly reduces the effects of GIC. But still there is a possibility of maloperation of protection schemes due to the distortion created by half cycle saturation. The risk seems to be higher during low power flow conditions.

Investigation of instrument transformer response during GIC events shows that voltage transformers are immune to saturation because of higher resistance for dc in VT’s and CCVT’s. At steady state operation during GIC events, current transformers also perform very satisfactorily mostly because the physical dimensions of the magnetic cores of the CT’s are determined by available fault current and not by load current and hence a load current with GIC would not drive the CT deep into saturation. It was seen that the distortion introduced by CT saturation is very minimal even at high GIC levels. But if a fault occurs and if that fault creates a dc bias of the current towards the same direction as the dc bias created by GIC, then the CT will saturate sooner. This might cause the relay to take a longer time to detect the fault.

Modern line protection schemes which utilize sequence components for fault determination can be susceptible to misoperation when the protected line currents contain harmonics generated during a GIC event. Both zero and negative sequence currents are commonly used in direction comparison overcurrent schemes and in time overcurrent backup functions. Feeding of waveforms obtained during a GIC event into a generic sequence filter shows that unless the output is filtered through a tuned or a low pass filter with a very high quality factor, it could produce sequence component magnitudes which are much more than the actual values. This could cause the protection devices to misoperate. This could be either an unnecessary trip or a blocking of a necessary trip signal.

Universal transformer protection practice consists of comparing the current entering the transformer input winding with the currents leaving the secondary windings. However in the presence of inrush current or over excitation this criteria is violated. Present
design practice is to measure the second or fifth harmonic content in the differential current in order to probe for an inrush or an over excitation condition. Should the ratio of harmonic component magnitude over differential current magnitude exceed a minimum threshold, a blocking signal will prevent the protection device from operating. Investigation of transformer differential current obtained at maximum recorded GIC level before series compensation shows that the transformer differential current during no fault condition has a second harmonic component much more than the typical threshold limit. The operation of differential protection during an internal fault under GIC conditions needs to be further investigated.

To summarize the conclusions,

1. Transformer models for different transformer configurations were developed with reasonable accuracy.
2. The results obtained using the models are shown to be in close agreement with the recorded GIC events.
3. The simulation results could be used to assess the protective relay settings in the system.
4. The distortions of the waveforms increase with the amount of GIC. They also increase with the decrease of power flow. By decreasing the power flow in the event of a GIC, the likelihood of protection system maloperation increases. But the whole power system would be more stable since the loss of power is small in the event of a false trip.
5. Series compensation greatly reduces (not completely) the effects of GIC in the system.
6. The 4th harmonic is the most prominent harmonic in the system under GIC conditions.
7. Peak detection algorithms used to measure magnitude are not suitable under GIC conditions.
8. Voltage transformers do not show any effects under GIC and the effects of Current transformers are negligible compared to the effects introduced by saturation of power transformers.
9. Analog sequence filters could produce erroneous outputs in the event of GIC and could cause protection schemes to misoperate.
10. There is a need to investigate the effects of GIC induced second harmonic currents on transformer differential protection schemes during an internal fault situation.
References

[22] Nobuo Takasu, Tetsuo Oshi, Fumihiko Miyawaki, Sadamu Saito, Yasuo Fujiwara, "Experimental Analysis of DC Excitation of Transformers by Geomagnetically Induced Currents", IEEE PES Summer Meeting 1993, 93 SM 393–9 PWRD

Appendix A
Flow Charts

A-1 ALGORITHM FOR CALCULATING THE NON-LINEAR CURRENT IN THE CORE
Flux
Mage
at
time
t

\[\text{Flux}(t) = \text{Flux}(t - \Delta t) + \frac{V(t) + V(t - \Delta t)}{2} \Delta t \]

Flux Density at time t

\[B(t) = \frac{B_{op}}{\sqrt{2}} \text{Flux}(t) \]

'Reluctance' at time t

\[S_{nc}(t) = \sqrt{2} \frac{B_{op}}{\sqrt{2}} (B_2 B_\alpha(t) + B_3 B_\alpha(t)) \]

Non-Linear Magnetizing Current at t

\[C_{mag}(t) = \left(\frac{C_{mag}(t - \Delta t)}{S(t - \Delta t)} + \frac{V(t) + V(t - \Delta t)}{2} \Delta t \right) S(t) \]

Hysteresis Loss current

\[I_{hy}(t) = k_4 \theta^{\alpha - 1}(t) \]

Non Linear current

\[I_{nc}(t) = C_{mag}(t) + I_{hy}(t) \]

Figure A-1: Simplified Flow Chart for Calculating Non-Linear Current
Appendix B

More details on Dorsey–Forbes–Chisago before compensation

B-1 WAVEFORMS IN 230KV SIDE – HIGH POWER FLOW

Figure B-1 shows the simulated voltage waveform on the 230kV side of the Dorsey transformer when transformers at Dorsey and Chisago were fully saturated due to the 50A and 105A per phase GIC.

![Voltage waveform on 230kV side at high power flow](image)

Figure B-1: Voltage waveforms on 230 kV side at high power flow

The rms magnitudes, maximum and minimum values of the waveforms are given in table B-1. The Fourier analysis of the waveforms are given in figure B-2.
Table B-1: Details on the 230 kV side phase voltage at high power flow

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>142.0</td>
<td>141.9</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>203.3</td>
<td>208.1</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-210.4</td>
<td>-221.4</td>
</tr>
</tbody>
</table>

Figure B-2: Fourier analysis of 230 kV side voltage waveform at high power flow

The most prominent harmonic component is the 4th followed by the 6th and 2nd. The waveform at 50 A per phase GIC has a total harmonic distortion (THD) factor of 7.53% and that at 105 A per phase GIC has a THD factor of 15.92%.

B-2 WAVEFORMS IN 230KV SIDE – LOW POWER FLOW

Figure B-3 shows the simulated voltage waveform on the 230kV side of the Dorsey transformer at low power flow conditions when the transformers at Dorsey and Chisago were fully saturated due to the 50A and 105A per phase GIC.
The rms magnitudes, maximum and minimum values of the waveforms are given in table B-2. The Fourier analysis of the waveforms are given in Figure B-4.

Table B-2: Details on the 230 kV side phase voltage at low power flow

<table>
<thead>
<tr>
<th></th>
<th>50A GIC</th>
<th>105A GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>141.3</td>
<td>143.8</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>197.8</td>
<td>222.5</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-229.3</td>
<td>-248.1</td>
</tr>
</tbody>
</table>

Figure B-3: Voltage waveform on 230 kV side at low power flow

Figure B-4: Fourier analysis of 230kV side voltage waveform at low power flow
For both waveforms, the most prominent harmonic component is the 4th harmonic. The waveform at 50A per phase GIC has a THD factor of 16.86% whereas the waveform at 105A per phase GIC has a THD factor of 30.83%.

B-3 EFFECT OF GIC ON DISTORTIONS AND HARMONICS - VOLTAGE WAVEFORMS

Figure B-5 shows the harmonic composition of the 500 kV phase voltages for different GIC levels for a typical high power flow whereas the Figure B-6 shows the harmonic composition of the 500 kV phase voltage for different GIC under a typical low power flow condition.

![Harmonic Composition Graph]

Figure B-5: Fourier analysis of 500 kV side phase voltages with a typical high power flow
Figure B - 6: Fourier analysis of 500 kV side phase voltages with a typical low power flow

Again, it is clear that the pattern of harmonic composition for a particular power flow remains more or less the same, but the magnitudes of harmonics other than the fundamental increase with an increase of the level of GIC. The magnitude of the fundamental component decreases slightly with an increase of the amount of GIC.

Figure B - 7 shows the total harmonic distortion of the 500 kV phase voltage for different GIC levels for the two different power flows considered.

The total harmonic distortion of the waveforms increase with the applied level of GIC, but the distortion factor for the waveform obtained during low power flow...
condition is more than that obtained during high power flow condition for the same GIC level.

B-4 EFFECT OF POWER FLOW ON HARMONICS — WAVEFORMS AT OTHER GIC LEVELS

Figures B-8 and B-9 show the harmonic composition of the 500kV line currents for the two different power flows considered for 150A and 400A GIC levels respectively.

Figure B-8: Fourier analysis of 500 kV side currents with 150A GIC

Figure B-9: Fourier analysis of 500 kV side currents with 400A GIC
Figures B-10 and B-11 show the harmonic composition of the 500 kV phase voltages for the two different power flow conditions considered for 150A and 400A GIC levels respectively.

Figure B-10: Fourier analysis of 500 kV side phase voltages with 150A GIC

Figure B-11: Fourier analysis of 500 kV side phase voltages with 400A GIC

Again, it is clear that the amount of dependency of harmonic magnitudes on the amount of power flow is very low. Out of all the waveforms considered, it is clear that the most prominent harmonic is the 4th harmonic.
Appendix C

More details on Dorsey–Forbes–Chisago after series compensation

C-1 WAVEFORMS IN THE 230KV SIDE – HIGH POWER FLOW

Figures C-1 and C-2 show the simulated phase voltage and the line current on the 230 kV side respectively when the transformers are fully saturated due to the GIC created by the applied ESP.

Figure C-1: Simulated voltage waveform on the 230 kV side
Figure C-2: Current waveform on 230 kV side of Dorsey at high power flow

Tables C-1 and C-2 show the rms magnitudes, maximum and minimum peak values of the two waveforms shown in the two preceding figures.

Table C-1: The details on the 230 kV side voltage after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (kV)</td>
<td>132.5</td>
<td>132.7</td>
</tr>
<tr>
<td>maximum peak (kV)</td>
<td>186.4</td>
<td>184.1</td>
</tr>
<tr>
<td>minimum peak (kV)</td>
<td>-190.8</td>
<td>-195.3</td>
</tr>
</tbody>
</table>

Table C-2: The details on the 230 kV side current after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>3497.0</td>
<td>3499.0</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>4949.0</td>
<td>4949.0</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-4990.0</td>
<td>-5046.0</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>15.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

The Fourier analysis of 230kV side voltage and current waveforms are shown in Figures C-3 and C-4 respectively.
For all the waveforms, the most prominent harmonic is the 4th harmonic. The THD factor of the voltage waveform obtained at the maximum recorded ESP conditions is 2.37% and that of the voltage waveform obtained at the maximum predicted ESP conditions is 5.47%.

The current waveforms are presented without the GIC component of current in them. The GIC components of 15A and 31A were subtracted from their respective current waveforms obtained at maximum recorded ESP conditions and maximum predicted ESP conditions.

Figure C-3: Fourier analysis of 230 kV voltage waveforms at high power flow

Figure C-4: Fourier analysis of 230 kV side current waveforms at high power flow
The THD factors of the current waveforms at the 230 kV side of the transformer when the transformers at Dorsey are saturated due to the GIC created by the maximum recorded ESP conditions and maximum predicted ESP conditions respectively are 1.94% and 4.56%.

C—2 CURRENT WAVEFORMS IN 230KV FEEDERS AT HIGH POWER FLOW—CURRENT FLOWING TO DRAYTON

Figure C—5 shows the waveforms of the current flowing to Drayton at Dorsey at a typical high power flow for two different GIC conditions when the transformers are fully saturated due to the applied ESP.

![Waveform Graph](image)

Figure C—5 : Current on Dorsey–Drayton line at Dorsey at high power flow

Table C—3 shows the maximum and minimum values, rms magnitude and the amount of per phase GIC in the waveforms shown in the preceding figure.

Table C—3 : The details on the current flowing to Drayton after saturation

<table>
<thead>
<tr>
<th></th>
<th>Max. Rec. GIC</th>
<th>Max. Pred. GIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms magnitude (A)</td>
<td>843.2</td>
<td>846.7</td>
</tr>
<tr>
<td>maximum peak (A)</td>
<td>1203.0</td>
<td>1213.0</td>
</tr>
<tr>
<td>minimum peak (A)</td>
<td>-1186.0</td>
<td>-1178.0</td>
</tr>
<tr>
<td>per phase GIC (A)</td>
<td>4.1</td>
<td>8.7</td>
</tr>
</tbody>
</table>
The Fourier analysis of the two waveforms shown in Figure C—5 are shown in Figure C—6.

Figure C—6: Fourier analysis of current flowing to Drayton at high power flow

The total harmonic distortion factors of the two current waveforms are 0.86% and 1.89% respectively for maximum recorded and maximum predicted conditions. The most prominent harmonic of both the waveforms is the 2nd harmonic followed by the 4th.