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Abstract  

The shear horizontal wave propagation and vibration of piezoelectric coupled structures under an 

open circuit electrical boundary condition are studied. Following the studies on the dynamic 

response of piezoelectric coupled structures, the repair of both crack/notch and delaminated 

structures using piezoelectric materials are conducted. The main contribution was the proposed 

the active structural repair design using piezoelectric materials for different structures. 

An accurate model for the piezoelectric effect on the shear wave propagation is first proposed to 

guide the application of piezoelectric materials as sensors and actuators in the repair of 

engineering structures. A vibration analysis of a circular steel substrate surface bonded by a 

piezoelectric layer with open circuit is presented. The mechanical models and solutions for the 

wave propagation and vibration analysis of piezoelectric coupled structures are established based 

on the Kirchhoff plate model and Maxwell equation.  

Following the studies of the dynamic response of piezoelectric coupled structures, a close-loop 

feedback control repair methodology is proposed for a vibrating delaminated beam structure by 

using piezoelectric patches. The electromechanical characteristic of the piezoelectric material is 

employed to induce a local shear force above the delamination area via an external actuation 

voltage, which is designed as a feedback of the deflection of a vibrating beam and a delaminated 

plate, to reduce the stress singularity around the delamination tips. Furthermore, an experimental 

realization of an effective repair of a notched cantilever beam structure subjected to a dynamic 

loading by use of piezoelectric patches is reported. A small piezoelectric patch used as a sensor 
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is placed on the notch position to monitor the severity of the stress singularity around the notch 

area by measuring the charge output on the sensor, and a patch used as an actuator is located 

around the notch area to generate a required bending moment by employing an actuation voltage 

to reduce the stress singularity at the notch position. The actuation voltage on the actuator is 

designed from a feedback circuit process. Through the analytical model, FEM simulation and 

experimental studies, the active structural repair method using piezoelectric materials is realized 

and proved to be feasible and practical.  
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1 Intro duction  

1.1 Background  

Damages such as a crack, notch or delamination in aerospace, mechanical, civil and offshore 

structures due to fatigue, corrosion or accidence are inevitable during services. Such damages 

will grow at an alarming rate due to the stress/strain concentration around the damage locations 

and cause possible failures of structures (Jones and Callinan 1981, Suiker and Fleck 2006, Zou et 

al 2000, Tay et al 2003, Kitamura et al 2003, Turon et al 2006). Fig. 1-1 shows typical structural 

failures on a vehicle chassis and a delaminated structure due to the existence of the crack and 

delamination, respectively. Thus, structural repair has become an important and practical 

research topic since the last several decades and attracted much attention in academy and 

industry. The effective repair method is to reduce the stress/strain concentration at the damaged 

location so as to control the growth of the damage and reinforce the damaged structures. 

Structural repair with bonded materials has been the most traditionally used technology to 

increase the service life of damaged structures (Baker and Jones 1988). The traditional method 

was to meld or mount additional high stiffness patches onto the damaged area to improve the 

mechanical function of a damaged structure. The major problem of the repair process is that 

additional stress concentration may possibly be induced at the bonding area (Sun et al 1996). 

Different numerical simulations, such as boundary element method and finite element method 
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(FEM) (Young et al 1992, Chue et al 1994), have been conducted to investigate this issue. 

Moreover, the repair method using normal additional patch cannot adjust newly induced damage 

due to unexpected external loadings. 

In view of the limitations of structural repair with traditional methods, smart materials have 

been employed in applications of structural enhancement and repair due to their adjustable 

mechanical property. Applications of smart materials in engineering structures have drawn 

serious attentions recently. Smart materials are the materials that have one or more properties 

that can be significantly changed in a controlled fashion by external stimuli, such as 

stress, temperature, electric, or magnetic fields. Piezoelectric material is one of the mostly 

common used smart materials. Different patches made of Lead zirconate titanate (PZT), which is 

the most commonly used piezoelectric material, are shown in Fig. 1-2. Piezoelectric materials 

refer to substances that have the electro-mechanical coupling effect: i.e. an electric charge will be 

produced when an external load is applied on a piezoelectric material, and conversely a 

mechanical force will be generated by applying an electric field to the piezoelectric material. 

Owning to the active electro-mechanical property, piezoelectric materials have been widely used 

as sensors and actuators in engineering structures. 

Due to the active electric-mechanical coupling effect that can be significantly changed in a 

controlled fashion, the piezoelectric material has been widely used in structural control and 

repair. Meressi and Paden (1993) investigated the buckling control of flexible beams using 

piezoelectric materials. The principle of their work is to apply a controlled voltage to 

piezoelectric materials to induce a reactive moment at the beam centre. Wang (2001) presented 

an analytical model to investigate the potential of piezoelectric materials on buckling 

http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Magnetic_field
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enhancement of column structures subjected to compressive loadings. The principle of the work, 

however, was to apply a pre-determined follower tensile force, based on an analytical model, 

excited by a pair of piezoelectric patches mounted on the surface of a column structure to 

counteract the external compressive force so as to enhance the buckling capacity of the column. 

Applications of piezoelectric materials have also been considered in structural repair. The key 

objective on repair of cracked/notched and delaminated structures introduced in this work is to 

reduce the stress/strain concentration at the damaged part so that possible propagation or growth 

of the crack/notch and delamination can be restrained and the function of the damaged structures 

can be reinstated. Wang et al (2002) first presented a study on repair of a cracked beam under a 

static transverse loading. A voltage, which was obtained from a analytical model of a simply 

supported beam, was applied to a piezoelectric patch bonded on the beam to ensure the reduction 

of the stress around the crack. Liu (2008) used the plane strain finite element method to analyze 

the crack repair via a piezoelectric actuator estimated by slope continuity and facture mechanics. 

Moreover, the electromechanical characteristics of piezoelectric materials were also employed 

for repair of notched and cracked structures under dynamic loadings. A feedback control repair 

methodology for a vibrating notched beam structure using a piezoelectric patch was induced by 

Wang et al (2004). The resonant frequency of the noted beam after repair was employed as the 

criterion for identifying the actuation voltage applied to the piezoelectric patch. In addition, 

repair of delaminated structures has also attracted much attention. In composite materials, 

delamination is a major damage that requires intense attention. Studies on delaminated 

composites have been broadly reviewed by Wilkins et al (1982). Wang and Quek (2004) 

presented a analytical model for repair of a delaminated beam subjected to a static loading with 

piezoelectric patches.  
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To apply piezoelectric materials for the repair of damaged structures under both static and 

dynamic loadings, piezoelectric patches usually need to be bounded on the surface or embedded 

in the host structure to induce shear force between the piezoelectric patch and the host structure. 

Particularly when the damaged structure is under dynamic loading, the analysis of wave 

propagation and vibration of structures bonded with the piezoelectric layer is indispensible for 

researchers to understand the electrical and mechanical dynamic responses of piezoelectric 

coupled structures well and will provide guidance on the design of the structural repair via 

piezoelectric materials. Following investigations of the wave propagation and vibrations analysis 

of piezoelectric coupled structures, different repair methods via piezoelectric materials on 

delaminated beam and plate structures subjected to static and dynamic loadings are proposed. In 

addition, an accurate criterion for the repair of a cracked beam structure, and an experimental 

verification for this process are studied as well in this thesis. 

1.2 Constitutive relations of piezoelectric materials  

In this section, the linear piezoelectric constitutive equations, which are most commonly used in 

engineering applications discussed in the review, are introduced briefly. The well known man 

made piezoelectric materials include Gallium orthophosphate, Barium titanate and Lead 

zirconate titanate (PZT).  

1.2.1 Various forms of piezoelectric materials  

Piezoelectric materials have been known as a simple, low cost, light weight and easy-to-control 

smart material for the structural actuation application. For its diverse applications in different 

structures, piezoelectric materials can be manufactured into various forms such as patches, thin 
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films, stack cylinders and fibers. De Faria and Donadon (2010) proposed different designs of the 

surface mounted piezo-patch actuators to study the effects of the shape of the piezo-patch to its 

actuation behaviour. Maukherjee and Chaudhuri (2002) used a stack multi-layered piezoelectric 

film as both the sensor and actuator to enhance the stability of column structures. Both FEM and 

experimental studies were carried out to show the effect of axial force on sensing and actuation 

mechanisms of piezoelectric materials and to demonstrate the active control of column type 

structures using these materials. As an ideal embedded material for the reinforcement of different 

structures, the study on piezoelectric fibers has also been studied. Etches et al (2006) presented 

an exploiting functional piezoelectric fiber by inducing hard magnetic powder materials into the 

hollow glass fiber cores to provide an active ferromagnetic function. Their study outlined the 

feasibility of embedding piezoelectric fibers directly into a composite lay-up, thereby allowing a 

composite laminate to deform due to internal actuation. 

1.2.2 Linear piezoelectric constitutive equations (LPCE)  

Studies on nonlinear theory of dielectrics were proposed by Nelson (1978) and Baumhaue and 

Tiersten (1973). According to Ehlers and Weisshaar (1990), nonlinear piezoelectric effects 

become significant only in applications involving high electric fields and cyclic fields which 

result in hysteresis. In addition, the constitutive equations are greatly simplified since the 

gradient of polarization and magnetization is zero within the scope of the linear piezoelectric 

theory and the body force generated by the electric field will also be ignored. Thus, only the 

linear piezoelectric constitutive equations, which are most related to the research works reviewed 

in this paper, are briefly outlined in this section.  
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LPCE can be derived from the macroscopic/phenomenological theory of piezoelectricity 

based on thermodynamic principles (Chee et al 1998). From energy considerations (Tiersten 

1969), we can have following expressions, 

 
DdETdSdH

DdESdTdG

-=

+=
  ,                                                   (1-1) 

where G and H are the Gibbs free energy and enthalpy, respectively; T and S stand for the 

mechanical stress and strain vectors, respectively. E and D are the electric field and electric 

displacement vectors.  

Based on eq. (1-1), two common formulations of the linear constitutive model can be 

established to illustrate the piezoelectric effect, in which the mechanical and electrical variables 

contribute independently. The stress formulation is given as: 

k

S

lkjljl

kkijiji

EeD

EeC

X+=

-=

e

es
 ,                                                  (1-2) 

while the strain formulation can be expressed as: 

k

T

lkjljl

kkijiji

EdD

EdS

X+=

-=

s

se
 .                                                (1-3) 

where is  and je are the stress and strain vectors; kE  is the electric field vector; lD  is the 

electric displacement vector; ijC  is the elastic stiffness matrix; ijS  is the elastic compliance 

matrix; ije and kid are the piezoelectric stress/charge and strain/charge vectors, respectively; and 

S

lkX  and T

lkX  are the piezoelectric permittivity matrices in stress and strain form, respectively.  

Both stress and strain formulations describe the same physical model and are easily 

interchangeable. The two sets of material parameters are related as follows: 
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ijij

njljnjlj

ljijli

ljijlj

SC

edde

dSe

eCd

=

=

=

=

-1)(

 .                                                       (1-4) 

The relationships in eq. (1-4) are valid provided that the compliance or stiffness matrix is non-

singular. The stress formulation is often applied in finite element calculations, where the strain is 

the natural variable. In studies involving other physical models or when using plane stress 

assumptions in plate/laminate models, the strain formulation is preferred. 

1.3 Literature review  

In this section, the previous studies on the surface wave propagation and vibration of the 

piezoelectric coupled structures are reviewed first. The accurate analytical models of dynamic 

responses of the piezoelectric coupled plate with an open electrical boundary condition are found 

to be desirable. The review of previous repair works of different damaged structures using 

piezoelectric materials is followed.  

1.3.1 Surface wave propagation in  piezoelectric coupled structures  

Surface wave propagation in a piezoelectric plate has become a topic of practical importance, as 

piezoelectric materials are used as sensors and wave actuators more and more commonly for the 

applications of the health monitoring and the dynamic repair in engineering structures (Viktorov 

1967 and 1981 and Curtis and Redwood 1973). One of the applications of using surface wave 

propagation in piezoelectric materials and structures is to achieve time delay effect for acoustic 

application. Wave propagation and vibration analysis in a pure piezoelectric plate have received 

considerable attention previously as exhibited by the work of Mindlin (1951), Tiersten (1963c 
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and 1963d) and Bleustein (1969).  Parton and Kudryavtser (1988) studied the piezoelectric 

surface wave in a semi-infinite piezoelectric media surface covered with a layer of isotropic 

conducting material. Cheng and Sun (1975) presented plane strain wave propagation in a two-

layered piezoelectric plate by three-dimensional theory of piezoelectricity and approximation 

theories.  

The use of piezoelectric sensor and actuator patches has been widely studied (Kim et al 

1996, Crawley and Deluis 1987, Sun and Zhang 1995 and Varadan et al 1996). Wang and Quek 

(2000e and 2000f) presented the model of wave propagation in piezoelectric coupled beams and 

plates by different kinematics assumptions. The embedded and surface mounted sensor and 

actuator patches have been used in engineering applications such as health monitoring of 

structures by MEMS-IDT sensors (Varadan V.K. and Varadan V.V. 2000).  An accurate model 

for the piezoelectric effect in a coupled structure is significant to the application of piezoelectric 

materials as sensors and actuators in engineering structures. 

The linear response of piezoelectric materials is related to electrical boundary conditions 

significantly (Jaffe 1971). Chang and Ouyang (2002) have conducted the open-circuit test on a 

PZT. Their research concentrated on electrical characteristic of the PZT vibrator. The result 

showed that open circuit condition should be proposed aiming to test the surface current and the 

amplitude of transient response.  Accordingly, under high-power excitation, an open-circuit test 

was proposed to elucidate complete terminal transient responses of vibrators (Chang and Ouyang 

2002). Guillon et al (2004) conducted the research about the tensile behaviours of a PZT in both 

short and open circuit conditions. It has been found that nonlinear stressïstrain curves are greatly 

affected by the electric field which appears in the open circuit condition. Recently, the dynamic 

property of piezoelectric sensors with preamplifiers has been studied by Liu et al (2007) in open 
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and short circuit states. Their research demonstrated that the stiffness of piezoelectric materials is 

rather different when the electrodes are in different states. As an actuator, the piezoelectric 

material would have different working ranges at different electrode states also. This could be 

easily understood while the PZT has different resonant frequencies with shorted and open circuit 

states (Liu et al 2007). Wang and Varadan did research on SH wave propagation in piezoelectric 

coupled plates using an interdigital transducer (Wang and Varadan 2002g). In addition, further 

research on wave propagation in piezoelectric coupled plates with short circuit was carried out 

(Wang and Varadan 2002h). Note that the wave propagation in a piezoelectric layer with open-

circuit should have different characteristics compared with the shorted piezoelectric layer.  

1.3.2 Vibration of piezoelectric coupled structures  

A metal substrate surface bonded or embedded by a piezoelectric layer has been intensely 

studied during last two decades for practical designs of actuators, sensors and absorbers because 

of the electromechanically coupling characteristics. Examples include the actuation analysis of 

piezoelectric fiber composites (Bent et al 1995), vibration and buckling of piezoelectric coupled 

laminated structures (Heyliger and Ramirez 1999 and Varelis and Saraanos 2004), and wave 

propagation in piezoelectric coupled cylinder structures (Wang and Liew 2003). The analyses 

about the structural vibration and control were also conducted with different piezoelectric 

coupled structures (Kapuria et al 2003, Duan et al 2005, Liew et al 2002, Liew et al 2004 and 

Zhang et al 2006). 

Fundamental mechanical models for analysis of piezoelectric coupled structures are 

indispensable and have been attracted much attention. Crawley and deLius (1987) developed a 

uniform strain model for a beam with surface bonded and embedded piezoelectric actuator 
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patches accounting for the shear lag effects of the adhesive layer between the piezoelectric 

actuator and the host beam.  A model to account for the coupling effect was later proposed based 

on the Euler beam assumption (1989).  Based on Hamiltonôs principle, Leibowitz and Vinson 

(2003) derived a model in which the elastic layers, soft-core layers or piezoelectric layers are 

included. A meshfree model was constructed by Liew et al. (2002) for the static analysis of 

laminated composite beams and plates with integrated piezoelectric layer based on the element-

free Galerkin (EFG) method.  

Piezoelectric materials with both closed and open circuit boundary conditions are widely 

applied in engineering applications. For example, the closed circuit piezoelectric materials are 

mostly used for the design of ultrasonic motors and resonators, and the open circuit piezoelectric 

materials are employed for the design of vibration sensors, actuators and absorbers. Wang and 

Quek (2000e) presented a study of a free vibration of a piezoelectric sandwich beam structure, in 

which the piezoelectric effect on resonance frequencies of the structure and the distribution of 

the electric potential were investigated and analyzed. In addition, a quadratic electrical 

distribution in thickness direction of the piezoelectric layer was proposed by Wang et al. (2001) 

in analysis of a piezoelectric coupled circular plate with closed circuit condition. In analysis of 

the open circuit piezoelectric materials, Davis and Lesieutre (2000) studied a vibration absorber 

using a piezoelectric material, and found the effective stiffness of the piezoelectric material 

would increase when the electric surface condition changes from closed to open circuit. Corr and 

Clark (2002) employed the high stiffness of the structure induced by the open circuit 

piezoelectric material to increase the structure damping and potential energy. Chevallier et al 

(2008) experimentally presented a benchmark for free vibration and effective coupling of thick 

piezoelectric smart structures. Liu, Pan, Heyliger and Ding (Liu 2001, Pan and Heyliger 2002, 
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Heyliger and Saravanos 1995 and Ding et al 2000) studied the free vibration process of 

piezoelectrically coupled plate with both open and closed circuit electric surface conditions 

based on the basic study of free vibration of piezo-plate given by Tiersten (1969). Their research 

showed that the coupled plate vibration response with open circuit piezoelectric layer is far 

different from the one with closed circuit piezoelectric layer. Most of the available research 

studied the open circuit piezoelectric coupled plates through finite element method (FEM) 

simulations and experimental investigations. An accurate physical model of the piezoelectric 

coupled plate with open circuit electric boundary condition, especially the electrical potential 

distribution along the thickness direction of the piezoelectric layer, needs to be developed.   

1.3.3 Structural repair using piezoelectric materials  

As an efficient structural maintenance process, repair of damaged structures to reinstate them to 

their normal function and to avoid possible structure failures has been widely studied during the 

last few decades. A key objective in a repair design is to lessen the stress/strain concentration at 

the damaged part of a structure to reinforce the damaged structure. With the development of 

smart materials and structures, the employment of piezoelectric materials in structural repair has 

been investigated with remarkable and interesting research findings. This section is to introduce 

the recent developments on applications of piezoelectric materials in repair of cracked, notched 

and delaminated structures.  

I. Repair of cracked and notched structures 

A notch is defined as a geometric discontinuity that has a definite depth and root radius, whereas 

a crack is the geometric discontinuity with its root radius approaching a mathematical zero (in 
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the engineering terms, 10
-9
m) (Wang 1996). However, the main reason leading to a material 

failure due to the two types of damage is similar, i.e. the stress concentration, only with different 

severity, at the crack/notch root. For the repair aim of both cracked and notched structures, a 

piezoelectric patch used as an actuator is located around the crack/notch area to generate the 

active counteracting bending moment to decrease the stress concentration at the crack/notch tip. 

Since both notches and cracks induce stress concentration leading a possible structural failure, 

repair works of cracked and notched structures using piezoelectric materials will be discussed 

simultaneously in this section. Details of technologies are introduced and different repair 

processes for the cracked and notched beams subjected to static and dynamic loadings are 

provided and reviewed. 

(i) Repair of cracked/notched beams under static loading. In this section, research findings on 

repair of cracked beams under static compressive and transversal loadings are introduced, 

respectively. When a compressive force reaches the critical buckling load of a beam, a bending 

shape is identified at its buckling mode. The critical buckling load of a cracked beam due to the 

crack effect will be decreased compared with the healthy one. The piezoelectric material was 

employed for the repair of a cracked beam structure under a compressive loading by Wang and 

Quek (2005). In the research, an analytical model for the design of the actuation voltage applied 

to the piezoelectric patches for repair of the cracked column with different boundary conditions 

was introduced. The decreased buckling capacity of the cracked column was efficiently 

compensated due to the local bending moment induced by the actuated piezoelectric patch. This 

approach offered significant advantages over passive repair design methods with the ability to 

use a wide variety of applied voltages to repair column structures with cracks with various 

locations, depths and intensities.  



 

13 

 

In repair of carked structures subjected to transverse loadings, Wang et al (2002) studied 

repair of a cracked simply supported beam under an external transversal loading by employing a 

piezoelectric material to induce a local moment following the principle introduced based on eq. 

(7). The Euler-Bernoulli beam theory was employed in modelling. An external actuation voltage, 

which was obtained from an equation containing variables such as the applied force and the 

geometric and material properties of the beam and the piezoelectric material, was applied to a 

piezoelectric patch bonded on the beam to decrease the stress concentration induced by the crack.  

Fig. 1-3 shows the slop profile of a cracked simply supported beam before and after the repair 

using a piezoelectric patch. It can be seen that the slop difference at the crack position due to 

bending of the beam structure can be erased efficiently by the piezoelectric patch subjected to a 

suitable actuation voltage. Furthermore, no discontinuities of the deflection and slope of the 

beam were observed with the applied repair method and hence the stress concentration at the 

crack/notch position is removed.  

It was further pointed out that the actuation voltage can be adjusted to follow the variation 

of the external loading and boundary conditions. This proposed method realized an active repair 

for cracked structures under different working conditions. On the other hand, it has to be noted 

that using higher voltage that is larger than the required one may induce reverse effect because it 

will enlarge the stress concentration near the crack tip in the opposite direction of the beam 

before repair. The problem was pointed out in the studies by Liu (2007 and 2008). Therefore, a 

proper model in obtaining an appropriate actuation voltage is indispensable in repair of cracked 

structures. A new fracture mechanics repair criterion was proposed in Liuôs papers. Crack 

contact analyses and fracture mechanics in the crack tip field were considered in the plane strain 

finite element analyses. 
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The above studies are based on the assumption that piezoelectric patches are bonded 

perfectly on the surface of the host structures. Alaimo et al (2009) used boundary element 

method to analyse bonding of piezoelectric patches on the host structures. The fracture 

mechanics behaviour of the structures was analyzed for both perfect and imperfect interface 

between the piezoelectric patches and the host beams. It was concluded that the adhesive 

condition affects the repair performance significantly as any loss of the shear stress transfer at 

the imperfect interface between the host structure and the patch would bring a reduction of the 

actuation capability of a piezoelectric patch.  

(ii) Repair of cracked and notched beams under dynamic loading. The electromechanical 

characteristics of piezoelectric materials can also be employed for repair of cracked and notched 

structures under dynamic loading as the voltage applied on the piezoelectric actuator can be real-

time adjusted to reduce the stress concentration at the crack/notch tip in a vibrating structure. A 

study on smart-patch repair of cracked aircraft panels was addressed by Sekine (2006). The 

patching efficiency in cracked aircraft panels repaired with piezoelectric patches was examined, 

and the enhancement of patching efficiency due to the activation of piezoelectric actuators was 

presented. A close-loop feedback control repair method using piezoelectric patch for repair of a 

notched beam subjected to a dynamic loading was proposed by Wang et al (2004) and is 

introduced and reviewed here. The piezoelectric patch was used for both vibration sensor and 

repair actuator in the close-loop feedback control process. A feedback factor was defined as a 

value to be multiplied to the feedback voltage developed on the sensor to generate the actuation 

voltage on the actuator. The actuation voltage was applied to the piezoelectric patch bonded 

around the notch area of the beam to decrease the stress/strain concentration at the notch tip 

under dynamic loading. Such a process would lead the strengthening of the notched beam and 
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hence increase its resonant frequency back to the frequency of its healthy counterpart. Hence the 

adjustment of the resonant frequency of the notched beam by employment of the piezoelectric 

patch was measured to evaluate the effectiveness of the repair strategy. A cantilever beam used in 

reference is employed to demonstrate the repair methodology. The dynamic response of the tip 

displacements before and after repair predicted by the proposed model is shown in Fig. 1-4 (a) 

and (b). It can be seen that the vibration amplitude of the notched beam before repair is around 

two times larger than that of the healthy one because of the softening effect by the notch. The 

dynamic response of the notched beam after repair and its difference from that of the healthy one 

are shown in Fig. 1-4 (c) and (d), respectively. The largest difference of the vibration deflection 

of the notched beam after repair and that of the healthy one is only 2.14% showing the recovery 

of the stiffness of the beam structure with the use of the piezoelectric patch. Although the 

recovery of the stiffness or the adjustment of the resonant frequency of the notched beam can be 

viewed as an indication of reinforcement of the structure, a complete reduction of the 

stress/strain concentration at the notch tip cannot be viewed or guaranteed with the model, and 

further the possible reduction of the stress concentration was not verified.  

To overcome the above problem, a new experimental study was conducted by Wu and 

Wang (2011). In the research, a dynamic analytical model of a notched beam bonded with a 

piezoelectric patch was first built to find the vibration deflection of the notched beam subjected 

to a dynamic loading. The reduction of the slop discontinuity at the notch position, which 

directly represented the intensity of the stress concentration at the notch tip, was to be achieved 

in finding the feedback factor that was to be multiplied to the feedback voltage from the 

vibration sensor for an actuation voltage. Details of this research will be given in chapter eight. 

Another study on active reduction of the crack propagation using piezoelectric patch was 
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proposed by Platz et al (2011). As shown in Fig. 1-5 (a), piezoelectric patch was applied directly 

to the crack area to lower the cyclic stress intensity factor at the crack tip so that the crack 

propagation can be reduced. Fig. 1-5 (b) shows a significant statistically assessed reduction rate 

of about 20% in crack propagation when an acted piezoelectric actuator patch was mounted near 

the crack tip with respect to an applied but passive actuator on a similar specimen under similar 

boundary conditions.  

In addition, Ariaei et al (2010) developed a method for repair of cracked beams subjected to 

a moving mass with piezoelectric materials. The adjustment of the resonant frequency of the 

cracked beam was also used as the criterion of the repair to find the suitable actuation voltage.  

II. Repair of delaminated structures  

Delamination is another common damage type especially in composite structures. Studies on 

delaminated materials have been extensively reviewed by Wilkins et al (1982) and the 

accompanying problems of instability of delaminated composites have been widely studied. In 

this section, research findings on repair of delaminated beams and plates, mainly by the first 

author and his research group, are particularly introduced.  

 (i) Repair of delaminated beams.  

(a) Repair of delaminated beams under static loading. In this section, research findings on 

repair of delaminated beams subjected to both the compressive force and transversal force 

are introduced. The application of piezoelectric materials in repair of delaminated beam 

structures subjected to a compressive loading was investigated by Wang et al (2005). A 

comprehensive mechanical analysis was provided to calculate the actuation voltages on 

the piezoelectric layers to erase the shear stress discontinuity at the tips of the 
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delamination. From the numerical simulations, the derivation of the buckling load of the 

delaminated beam with different boundary conditions and the actuation voltages applied 

to the piezoelectric patches were conducted. This research first highlighted the practical 

potential of piezoelectric materials in repair of delaminated beam structures under the 

compressive force.  

The repair of a delaminated beam subjected to a transversal static loading with a 

piezoelectric patch was studied by Wang and Quek (2004). According to eq. (9), the 

repair force induced by the piezoelectric patch was identified to be equal to the negative 

value of the compressive/tensile force generated on the delamination layer due to the 

bending of the delaminated structure. Although the research provides a guideline on repair 

of delaminated beams, the verification of the proposed repair methodology based on 

theoretical work needs to be provided either by FEM or experimental work. Duan et al 

(2008) employed an FEM model to facilitate a design of repair of delaminated beams with 

piezoelectric patches. Based on both the analytical and the FEM modal, parametric studies 

on the delaminated beam and piezoelectric materials with various geometry and material 

properties were performed numerically to demonstrate the effectiveness of the proposed 

repair methodology. Fig. 1-6 illustrates the FEM simulation on the stress concentration at 

the delamination tip. It can be found that the stress concentration can be reduced 

efficiently when a suitable actuation voltage was applied to the piezoelectric patches. The 

repair method for the delaminated beam structures under static load via the piezoelectric 

materials proposed in the references (Wang et al 2004, Duan et al 2008) was proven to be 

efficient and practical from the FEM simulation.  
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(b) Repair of vibrating delaminated beams. Based on the repair principle of the 

delaminated structures provided by Wang and Quek (2004), repair of a vibrating 

delaminated beam structure with piezoelectric materials was investigated by Wu and 

Wang (2010f). In the research, piezoelectric patches were employed to be bonded above 

the delamination area to reduce the shear stress discontinuity at the delamination tips of 

the bending beam. A close-loop feedback control repair methodology for the vibrating 

delaminated beam structure by use of piezoelectric patches was presented. Details of this 

research will be discussed in chapter six.  

(ii)  Repair of delaminated plates. Wu and Wang (2010e) developed a repair design of a 

delaminated plate under a static loading with piezoelectric patches by an analytical model and 

FEM. Unlike the repair of delaminated beam structures, the repair for the delaminated plate 

involves an analysis on a two dimensional problem. The stress concentrations of a bending 

delaminated plate are not uniformly distributed along the delamination edges when the plate was 

under a point loading. Thus, an analytical model was first built to obtain the distributions of the 

tensile and compressive forces on the upper and lower layers of the delamination. Then, a design 

of discrete electrodes on the patches was developed, and the voltages on the electrodes were 

calculated based on the analytical model for repair of the delaminated plate by eliminating the 

tensile and compressive forces along the edges of delamination layers. Details of this research 

will be given in chapter seven. It is noted the analytical model provided is only suitable for the 

static analysis. An accurate model for repair of the delaminated plate under dynamic loading with 

piezoelectric materials needs to be developed. Actually, a dynamic finite element model based on 

the refined higher-order-theory has already been developed for modeling the dynamic response 

of delaminated smart composite plates by Chattopadhyay et al (1999). This theory provided an 
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accurate description of displacement field and the satisfaction of stress-free boundary conditions 

at all free surfaces including delamination interfaces. The results proposed by Chattopadhyay can 

be a reference to study the repair of the delaminated plate under dynamic loading using the FEM.  

Repair of other damaged structures have also been studied by researchers using 

piezoelectric materials. Rabinovitch (2007c) proposed an analytical model of piezoelectric 

control of edge deboning in beams strengthened with composite materials. The original 

contribution of the study was in addressing the challenge of using piezoelectric active materials 

in presenting a potential solution to the edge-debonding failure problem. From an analytical 

model, the response of a full-scale strengthened beam to mechanical loads and to different 

schemes of piezoelectric actuation was investigated in terms of the localized stresses near the 

edge of the bonded composite strip. Following this research, Rabinovitch (2007d) also presented 

the failure criteria and optimization design of the piezoelectric control of the edge debonding 

failure in the reinforcement beam by composite patches. A numerical optimization study that 

focused on the ability of different combinations of piezoelectric actuators to control the edge 

debonding failure was presented. A systematic approach was provided to optimize the 

piezoelectric control under different debonding failure criteria and in demonstrating the 

feasibility of using the piezoelectric system in the full-scale civil engineering structure. 

Future works on structural repair using piezoelectric materials may focus on the following 

issues. Stronger piezoelectric materials, such as stack piezoelectric patches, need to be employed 

for repair of thicker damaged structures, which requires larger repair forces or moments. In 

addition, for structures with multiple delaminations, the use of piezoelectric patches embedded in 

the structure would be a more effective and efficient way. 
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1.4 Objectives and scope of studies  

Owing to the active electro-mechanical property of piezoelectric materials, the shear force 

generated by a piezoelectric patch is expected to be used for repair of damaged structures 

subjected to static and dynamic loadings. From literature review, it can be seen that most of 

previous studies of dynamic responses of piezoelectric coupled structures with open circuit 

electric boundary condition were conducted with FEM simulations or experiments and could not 

provide the accurate electric distribution along the thickness of the piezoelectric layer. Thus, the 

studies of wave propagation and vibration of structures bonded with piezoelectric layers under 

open circuit electric boundary condition using an accurate numerical model are desired to help to 

understand the dynamic responses of piezoelectric coupled structures. The electro-mechanical 

coupling effect and the interaction between the host structure and piezoelectric layers with open 

circuit electric boundary condition found in the studies will provide a guidance on the design of 

the structural repair. Form table 1-1, it is found that all previous repair methods using 

piezoelectric materials were applied mainly to beam structures. The active repair for a 

delaminated plate using piezoelectric materials has not been studied. In addition, there is few 

studies on repair methods developed for vibrating delaminated beam structures, and the criterion 

for repair of a cracked beam under dynamic loadings still needs to be improved. From the 

discussion given above, the scope of this PhD study mainly concentrate on: (a) studies on the 

wave propagation and vibration of piezoelectric coupled structures; (b) studies on structural 

repair of delaminated beam and plate structures under static and dynamic loading via 

piezoelectric materials with the analytical model and the finite element model (FEM); (c) studies 

on structural repair of cracked beam structures under dynamic loading with a new criterion, 

which is defined as the slop discontinuity at the crack position, and verifications of the 
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effectiveness of the proposed repair methodology through an experimental process. Experimental 

verification focuses on the repair of the cracked beam using the piezoelectric layer mounted on 

the crack area. The contributions of this research work include the followings: (a) developing 

accurate numerical models of piezoelectric coupled structures with open circuit electric boundary 

condition to analyse the piezoelectric effect on the dynamic responses of the piezo-coupled 

structures so as to guide the design of structural repair using piezoelectric materials; (b) 

providing an active feedback control repair method and an accurate criterion for the structural 

repair via piezoelectric materials for different damages on different structures; (c) proving the 

efficiency and feasibility of the active structural repair via piezoelectric materials experimentally.  
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Table1- 1 Most related studies of the structural repair using piezoelectric materials 

Resources Contributions Applications & Limitations 

Liew et al 

(2002) 

A dynamic control method was 

proposed by using self-monitoring 

sensor and self-controlling actuators.  

Only FEM simulation is 

proposed.  

Varelis and 

Saravanos 

(2003 and 

2004) 

The effects of the adhesive properties on 

the variation of the stress concentration 

at the crack tip were highlighted. 

No accurate numerical model, 

passive repair. 

Alaimo et al 

(2009)  

Acitive repair on a cracked structure via 

piezoelectric patch was analyzed by the 

boundary element method 

The method is Applied to a 

cracked structure. No accurate 

analytical model to explain the 

repair process. 

Wang and 

Quek (2004) 

An accurate analytical model for the 

repair of a delaminated beam was 

developed. 

This study is on the repair of a 

delaminated beam under static 

loading. 

Duan et al 

(2008) 

FEM was employed to prove the 

efficiency of the repair of a delaminated 

beam using piezoelectric patches.  

This study is on the repair of a 

delaminated beam under static 

loading. 

Duan et al 

(2005) 

A analytical model was built to analysis 

the repair for a notched beam under 

dynamic loading via a piezoelectric 

patch. 

Resonant frequency of the 

repaired beam was used as 

criterion of the repair, which is 

still needed to be improved.  

Table 1- 1 
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(a)                                                   (b) 

Fig. 1- 1 Structure failure on (a) a vehicle chassis and (b) a delaminated structure. 

 

Fig. 1- 2 Smart materials: PZT patches. 
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Fig. 1- 3 Slop of a cracked beam before and after repair (adopted from Fig. 4 (b) in Wang et al 

2002) 

 

Fig. 1- 4 Dynamic response of the tip displacement predicted by the proposed model for (a) the 

healthy beam, (b) the notched beam before repair, (c) the notched beam after repair, and (d) the 

difference between the notched beam after repair and the healthy beam. (Adopted from Fig. 4 in 

Wang et al 2004) 

 

 

After repair 

Before repair 
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(a)                                                                   (b) 

Fig. 1- 5 (a) cracked specimen mounted with piezoelectric actuator (adopted from figure 6 and 

Fig. 7, Platz et al 2011), (b) Summarized mean (ðð) and mean deviation (ï ï ï) curves of 

crack length propagation versus load cycles before and after repair (adopted from Fig. 14, Platz 

et al 2011). 

(a) (b) (c)  

Fig. 1- 6 Von-Mises stress distribution around the crack tip at different applied voltages on the 

piezoelectric patches (a) 0 V, (b) 300 V and (c) 480 V. (Adopted from Fig. 5 in Duan et al 2008) 

 

 
Fatigue crack 
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2  Study on wave propagation in a 

piezoelectric coupled structure  

Shear force is generated between the piezoelectric patch and the host structure when deformation 

takes place on the piezoelectric coupled structure or an extra voltage is applied to the 

piezoelectric material. This could be used as an active repair force for a damaged structure under 

both static and dynamic loading. Thus, an accurate model for the piezoelectric effect during the 

shear wave propagation is significant to the application of piezoelectric materials as sensors and 

actuators in engineering structures. Simulation of shear horizontal (SH) wave propagation in an 

infinite metal plate surface bonded by a piezoelectric layer with open electrical circuit is 

presented. The objective is to study the mode shapes and dispersion characteristics of the shear 

horizontal wave propagated in a metal core bonded by a layer of piezoelectric material for the 

potential of health monitoring and repair of structures. The dispersive characteristics and mode 

shapes of the deflection, electric potential and electric displacement of the piezoelectric layer are 

theoretically derived. The results from numerical simulations show that the phase velocity of the 

piezoelectric coupled plate tends to the bulk shear wave velocity of the substrate at high 

wavenumbers. It is also found that thinner piezoelectric layer in the steel-PZT coupled plates will 

increase the phase velocity and frequency of the structure especially at smaller wave numbers, 

whereas the effect by the thickness of the PZT layer plays less role in the gold-PZT coupled plate. 
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This will help to design piezo-actuator for the structural repair with different host materials. The 

mode shapes of electric potential and deflection of the piezoelectric layer with steel substrates 

change from a shape with few zero nodes to a shape with more zero nodes at higher 

wavenumbers and with thicker piezoelectric layer. For the coupled plate with gold substrates at 

higher wavenumbers, the electric potential is found to jump from null at the interface of the 

piezoelectric layer and the substrate to a constant at the surface of the piezoelectric layer along 

the thickness direction. The electric potential and deflection are found to be closer to be linearly 

distributed along the thickness direction of the piezoelectric layer when thinner piezoelectric 

layer is mounted on the host structure. Results from the numerical simulation could be used as a 

guidance for the design of the structural repair using piezoelectric materials.  

2.1 Numerical modeling for a piezoelectric coupled 

plate  

2.1.1 Analytical model of a piezoelectric coupled plate  

Consider a metal plate covered by a layer of piezoelectric material as illustrated in Fig. 2-1.  The 

propagation of SH wave in the host metal is governed by: 
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E
Gc  is the shear modulus, r¡ the mass density, u the Poisson ratio, E the 

Youngôs modulus of the host medium, 3u¡ the deflection of the host medium in the 3x -direction, 

and 2Ð  the Laplace operator given by 
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The poling direction of the piezoelectric layer is in the flexural 3x -direction, thus the coupling 

equation for the piezoelectric layer is written as (Viktorov 1981), 
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where ( )2/221144 ccc -=  is the elastic modulus, 15e  the piezoelectric coefficient, 11X  the 

dielectric constant, and r the mass density of the piezoelectric layer, 3u  the deflection of the 

piezoelectric layer in the x3 direction, and f the electric potential. The shear stress in the 

piezoelectric layer is expressed by, 
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Since the piezoelectric layer is surface bonded on the metal substrate, the electric potential 

on the interface of the layer and substrate is null. Meanwhile, since the piezoelectric layer abuts 

the vaccum, i.e. the surface of the piezoelectric layer is totally isolated and insulated, it is 
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appropriate to model the electric displacement approximately to be zero at the surface. Thus, the 

boundary condition at the surface of the piezoelectric layer could be expressed as  

).(0,0 12232 hxD -=== s .                                         (2-5) 

The boundary conditions of the interface between the piezoelectric layer and the host plate 

and the surface of host plate could be expressed as 
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)H.(0 223 ==¡ xs                                                            (2-7) 

The solution of wave propagation in 1x -direction for the metal core can be solved following the 

calculation process in (Wang and Varadan 2002),  
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cc  is the piezoelectrically stiffened elastic constant. The solution of Eq. (2-9) 

for the piezoelectric layer can be obtained as 
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where 
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v = .   The electric displacement along  2x  direction is 
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ccy and c/1 wc= (Parton and Kudryavtser 1988). The electric 

potential and shear stress components can be solved by substituting Eqs. (2-10) and (2-8) into 

Eqs. (2-2~2-4), 
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2.1.2 Dispersion relati ons of a piezoelectric coupled plate  

Substituting the solutions for the metal core and the piezoelectric layer in eqs. (2-8), (2-10) and 

(2-12)-(2-16) into the boundary conditions in eqs. (2-5)-(2-7) will result in an eigen-value 

problem from which the dispersive characteristics for this piezoelectric coupled plate may be 

deduced. 

For the case when vcv <<¡ , the condition of non-trivial solutions for iA , iB , and iC  

)2,1( =i  can be studied via an eigen-value problem, whose solution can be directly provided 

following the similar process in (Wang and Varadan 2002): 
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For the case of vvc >¡>  or vvc ¡>> , we can have the following equation for the condition of 

nontrivial solutions of iA , iB , and iC  )2,1( =i : 
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2.1.3 Mode shapes in a piezoelectric layer  

The mode shapes of the deflection, electric potential, and electric displacement in thickness 

direction of piezoelectric layer may be obtained from characteristic equation of eq. (2-17) or (2-

18) as follows, when vcv <<¡ , eqs. (7) and (13) imply 
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HAA atan21 =                                                    (2-19) 

Thus 1C  and 2C  can all be expressed in term of 2A , and the mode shapes of the host plate and 

piezoelectric layer can be derived in term of eqs. (2-8), (2-10a), (2-11) and (2-12) as follows, 

( )2223 cossintan xxHAu aaa +=¡                                      (2-20) 

ö
÷

õ
æ
ç

å -
+-+ö

÷

õ
æ
ç

å +
+=

-

2

1
tan

22

1
tan

2

21

2

21

23
2222

M
H

M
eA

M
H

M
eAu

xx aa cc          (2-21) 

( )
( ) 3

11

152

2

11

15

2
211121

111
u

e
eee

e

e
A

xhx

h X
++

+X
-=

- ccc

c
f              (2-22) 

( )
( )211121

11

2

2

11

115

22
1

xhx

h
eee

e

e
AD

ccc

c

c
-

+X
-=

-                   (2-23) 

where the over bar indicates the spatial components of the variables. 

When vvc >¡>  or vvc ¡>> , mode shape of the host plate remain the same with that in eq. (2-

20), and the mode shapes of the piezoelectric layer are obtained as follows in the similar ways, 

ù
ú

ø
é
ê

è

ö
ö
÷

õ
æ
æ
ç

å ¡
+-+=

244

44

2222223 tansincos
c

a
acc

c

c
HMxxAu                (2-24) 

( )
( ) 3

11

152

2

11

15

2
212121

111
u

e
eee

e

e
A

xhx

h X
++

+X
-=

- ccc

c
f          (2-25) 

( )
( )212121

11

2

2

11

115

22
1

xhx

h
eee

e

e
AD

ccc

c

c
-

+X
-=

-                        (2-26) 

It is noted that the electric potential and electric displacement in eqs. (2-25) and (2-26) have the 

same expressions with eqs. (2-22) and (2-23).  
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Numerical simulations were performed to illustrate the results of the dispersive 

characteristics and the mode shapes obtained above and presented in the following section. 

2.2 Numerical simulations and d iscussions 

The bulk shear wave velocities of steel, aluminium and gold as substrates and PZT-4 surface 

bonded on the substrates are calculated as smv
steel

/1632=¡ , smv
al

/ 3066=¡ , 

smv
gold

/1202=¡  and smv
PZT

/ 2352
4
=  from the material properties provided in Table 2-1.  

The dispersion curves for the steel-PZT-4, aluminium-PZT-4 and gold-PZT-4 piezoelectric 

coupled plates are plotted in Figs. 2-2 to 2-4. The non-dimensional phase velocity is taken as 

vcc ¡= /  and the non-dimensional wave number as pxx 2/1h= . The ratio of the thickness of 

the PZT-4 layer to that of the host metal is taken as 0.1, i.e. 1.01 ==
H

h
n .  The dispersion curves 

for the first five modes of wave propagation for all the three cases indicate that the wave phase 

velocity approaches the bulk-shear wave velocity of the host metal at high wavenumbers.  This 

conclusion is consistent with the fact that when the wavelength is much smaller compared to the 

thickness of the plate, the behaviour of wave propagation in the piezoelectric plate will be similar 

to that in an infinite metal media.  Figs. 2-2 to 2-5 and 2-2 to 2-6 plot the dispersion curves of the 

steel-PZT and gold-PZT plates at different ratios of the thickness of the piezoelectric layer.  It is 

noted from Fig. 2-5 that the phase velocity decreases very slightly with increase of the thickness 

of the piezoelectric layer as the stiffness of PZT is smaller than that of steel.  Nevertheless, the 

thickness of the piezoelectric layer has less effect on the dispersion characteristics of the plate 
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with gold as core material, seen from Fig. 2-6. The asymptotic velocities at high wavenumbers 

for all thickness remain to be the bulk shear wave velocity of the metal core.  

The first mode shapes of the deflection, electric potential and electric displacement in the 

piezoelectric layer for steel-PZT-4 coupled plate with thickness ratio of 0.3 are presented in Figs. 

2-7 and 2-8 at the non-dimensional wavenumber of 0.3 and 2.3, respectively, along the thickness 

direction.  It can be seen that all the boundary conditions related to the electric potential and 

electric displacement are satisfied completely.  At the higher non-dimensional wave number of 

2.3, more zero nodes in the distribution of the electric potential and deflection are observed, 

consistent with the finding by Wang and Quek [30].The thickness of the piezoelectric layer also 

affects the distribution of the above variables, seen from Figs. 2-9 and 2-10 in which the fifth 

mode shapes are plotted for non-dimensional wave number of 2.3 with thickness ratios of 0.3 

and 0.1.  More zero nodes are observed for the thicker piezoelectric layer. From Figs. 2-7 to 2-10, 

it can also be found that the mode shapes of the deflection and electric potential are consistent 

especially near the PZT surface, which is a characteristic of piezoelectric material with open 

circuit. The result is obviously different from the finding by Wang and Varadan (2002) of a 

piezoelectric plate with short circuit condition. In the study of the close circuit condition, the 

mode shapes of the deflection and electric potential all keep similar close to the interface of 

piezoelectric layer and the host metal for a wide region of wave numbers before breaking away 

to approach to a shape with large gradient near the surface of electric layer. In addition, our 

current research shows that the SH wave propagation presents higher wave velocity in open 

circuit piezoelectric coupled plates than in the short circuit plate, when the same wave number is 

considered. That means the frequency of wave propagation in open circuit piezoelectric coupled 

plate is higher than the one with short circuit condition as well.  
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For the gold-PZT-4 coupled plate, Figs. 2-11 and 2-12 show the first mode shapes at n=0.3 

and non-dimensional wavenumber of 0.5 and 2.0, respectively.  Different from the results in 

steel-PZT-4 coupled plate, the zero nodes of the distribution of the electric potential and 

deflection do not increase with higher wave numbers. Besides, the results show that even at the 

high non-dimensional wave number of 2.0, the electric potential is found to jump from null at the 

interface of the piezoelectric layer and gold to a constant at the surface of the piezoelectric layer 

along the thickness direction. 

It is concluded from the simulations that close to surface of the piezoelectric layer of the 

gold-PZT coupled plate, the electric potential reaches an almost maximal constant and such a 

characteristic is indispensable for a possible displacement sensor design based on the coupled 

plate structure as the electrical potential can be used as an output and viewed as a representative 

index of the displacement variation on the surface of an engineering plate.  

2.3 Conclusions 

This chapter presents the research on SH wave propagation in a piezoelectric coupled plate with 

open circuit. The dispersion characteristics of the coupled structure and the mode shape of the 

deflection, electric potential and electric displacement of the piezoelectric layer are investigated 

by numerical simulations. The results show that the asymptotic solution of wave propagation in 

the plate with steel, aluminium, and gold as core plates is the bulk shear wave velocity of the 

substrate. The effect of the ratio of thickness of the piezoelectric layer is studied as well. It shows 

that thicker piezoelectric layer in the steel-PZT coupled plates will reduce the phase velocity of 

the structure, whereas the effect by the thickness of the PZT layer plays less role in the gold-PZT 

coupled plate.  
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In the study of the mode shapes of the piezoelectric layer of steel-PZT coupled plates, it is 

found that the zero nodes of the mode shapes of the electric potential and deflection along the 

thickness of the piezoelectric increase at higher wavenumbers and with thicker piezoelectric 

layer. Otherwise, the mode shapes of deflection and electric potential are accordant especially 

near the PZT surface. For the gold-PZT 4 coupled plate even at higher wavenumbers, the electric 

potential is found to jump from null at the interface of the piezoelectric layer and gold to a 

constant at the surface of the piezoelectric layer along the thickness direction.  
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Table 2- 1 Material properties and geometric size of the piezoelectric coupled plate 

 Host 

Structure 

(Steel) 

Host 

Structure 

(Aluminum) 

Piezoelectric layer 

Youngôs module 

(N/m
2
) 

E = 200³10
9
  

 

E = 70³10
9
 

 
11

EC = 11c =132³10
9
 

12

EC = 12c =71³10
9
  

33

EC = 33c =115³10
9
 

13

EC = 13c =73³10
9
 

EC44= 44c =26³10
9
 

Ep=78.6³10
9
 

Poisson ratio 3.0=u  3.0=u  -
 

Mass density (kg/m3) 7.8³10
3
 2.8³10

3
 7.5³10

3
 

e31 (C/m
2
) - -4.1 

e33 (C/m
2
) - 14.1 

e15 (C/m
2
) - 10.5 

X11 (F/m) - 7.124³10
-9
 

X33 (F/m) - 5.841³10
-9
 

r0 (mm) 600 

H (2*h) (mm) 10 

h1 (mm) 2 
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Fig. 2- 1 A semi-infinite metal plate surface covered by a layer of piezoelectric material with 

open circuit. (the plate is semi-infinite along 3x  direction) 

 

 

 

Fig. 2- 2 Dispersion Curves for steel-PZT at n=0.1. 

 

Piezoelectric 

layer 

Host media plate 

3x  

1x  

2x  

1h  

H  
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Fig. 2- 3 Dispersion curves for aluminium-PZT at n=0.1. 

 

 

 

Fig. 2- 4 Dispersion curves for a gold-PZT coupled plate at n=0.1. 
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Fig. 2- 5 Variation of dispersion characteristics of a Steel-PZT plate by different thickness rates. 
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Fig. 2- 6 Variation of dispersion characteristics of a Gold-PZT plate by different thickness rates. 

 

 

Fig. 2- 7 First mode shape of the PZT layer in a steel-PZT coupled plate at n=0.3 and non-

dimensional wave number 0.3. 
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Fig. 2- 8 First mode shape of the PZT layer in a steel-PZT coupled plate at n=0.3 and non-

dimensional wave number 2.3. 
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Fig. 2- 9 Fifth mode shape of the PZT layer in a steel-PZT coupled plate at n=0.3 and non-

dimensional wave number 2.3. 
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Fig. 2- 10 Fifth mode shape of the PZT layer in a steel-PZT coupled plate at n=0.1 and non-

dimensional wave number 2.3. 
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Fig. 2- 11 First mode shape of the PZT layer in a gold-PZT coupled plate for the second type of 

wave propagation at n=0.3 and non-dimensional wave number 0.5. 
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Fig. 2- 12 First mode shape of the PZT layer in a gold-PZT coupled plate for the second type of 

wave propagation at n=0.3 and non-dimensional wave number 2.0. 
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3 Free vibration analysis of a  

piezoelectric coupled plate  

Because of the active electro-mechanical property, piezoelectric materials are usually used as 

sensors and actuators for the dynamic repair of damaged structures. The analysis of both 

electrical and mechanical dynamic responses of piezoelectric coupled structures is significant for 

the design of structural repair via piezoelectric materials. A vibration analysis of a circular steel 

substrate surface bonded by a piezoelectric layer with open circuit is presented to study the 

piezoelectric effect on the dynamic response of the host structure. A solution for the electrical 

potential along the thickness direction of the piezoelectric layer satisfying the open circuit 

electric boundary condition is developed for the first time. The mechanical model and solutions 

for the vibration analysis of the piezoelectric coupled circular plate are then established based on 

the developed electrical potential, Kirchhoff plate model, and Maxwell equation. The first four 

mode shapes and the corresponding resonant frequencies of the plate with two standard boundary 

conditions are presented in numerical simulations and compared with those of a piezoelectric 

coupled plate with the closed circuit condition. The simulations show that the resonant 

frequencies of the open circuit piezoelectric coupled plate are higher than those of the closed 

circuit piezoelectric coupled plate. In additional, the electric potential is approximately to be 

linear distributed along the thickness direction of the piezoelectric layer at the first vibration 
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mode of the piezoelectric coupled plate, while non-linear electric potential distributions are 

found at higher modes.  

3.1 Mechanical models for a piezoelectric ally  coupled 

circular plate with open circuit condition  

In the following vibration analysis of the cylinder plate, the cylindrical coordinate system is 

adopted. Axis z indicates the thickness direction. 

3.1.1 Kinematics and constitutive relations  

In this section, basic kinematics and constitutive equations of the piezoelectric layer and the host 

plate are simply provided for derivations of the free vibration of the coupled plate in later 

sections. The structure of a piezoelectric coupled circular plate with radius 0r  is shown in Fig. 3-

1. The thickness of piezoelectric layer and the half thickness of the host plate are denoted as 1h  

and H . In application of Kirchhoff thin plate theory, the displacements and strains of the plate 

are provided: 
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where uz, ur, and qu  are the displacements in the transverse z-direction, radial r-direction and 

tangential q-direction of the plate, respectively. 

The stress components in the host plate are thus expressed as 
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The piezoelectric material is assumed to be polarized in the z-direction. The stress 

components in piezoelectric layer can be written as 

2
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where the superscripts 1 and 2 represent the variables in the host structure and the piezoelectric 

material, respectively; 11

EC , 12

EC  and 31e  are transformed reduced material constants of 

piezoelectric medium for plane stress problem, and are given by 
( )
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EE
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33

2

13
1111 -= ,  
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33

2

13

1212 -= , 
E

E

C

eC
ee

33

3313
3131 -=  [56]. E is the Youngôs modulus of beam material; 11

EC  and 

12

EC  are the elastic modulus of piezoelectric material in the radial and tangential directions 

measured at constant electric field; and 31e  is the piezoelectric constant of the piezoelectric layer. 

3.1.2 Electric potential distribution in the piezoelectric layer  

Each piezoelectric layer has electrodes mounted on both surfaces to facilitate the application of 

voltage to actuate the structure.  When an external voltage is applied, the electric potential 

distribution on the surface of the electrode remains constant.  When electrodes at the two 

surfaces of the piezoelectric layer are shortly connected, the electric potential is zero throughout 

the surfaces. 

In the research of Wang et al (2001), they proposed a quadratic variation of the electric 

potential in the transverse direction of close circuit piezoelectric layer. The assumption was 

verified by finite element analysis in their paper. Thus, potential distribution function in 

thickness direction of close circuit piezoelectric layer can be written as 
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where z is measured from the mid-plane of the host plate in the global z-direction, h1 is the 

thickness of the piezoelectric layer, and ( , , )r tf q  is the electric potential on the mid-surface of 

the piezoelectric layer.  

Since the piezoelectric layer is surface bonded on the metal substrate, the electric potential on 

the interface of the layer and substrate is null. However, for the open-circuit condition, the 

electric potential on the surface opposite to the interface is not zero. Thus the quadratic variation 

of the electric potential is not applicable for un-shorted connected piezoelectric layer. The 

potential function in thickness direction of open-circuit piezoelectric layer is assumed as  
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where X  is a linear function of z, BzAX +Ö= . A and B are the parameters which should 

satisfy the open-circuit electric boundary condition. For the open-circuit piezoelectric plate, the 

electric displacement at the surface can be approximated to be zero. Eq. (3-14) should satisfy the 

following boundary condition,  
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where fis the electric potential, and zD  is the corresponding electric displacement along z 

direction. The components of electric field E and electric displacement D as well as the satisfied 

electric boundary condition will be discussed as follow.  

Submitting Eq. (3-14) into the functions of the components of the electric field E  and 

electric displacementD , E and D  can be written as 
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where 11X  and 33X  are reduced dielectric constant of the piezoelectric layer for plane stress 

problem, which are given by 1111 X=X , 
EC

e

33

2

33
3333 +X=X , rE , Eq, and zE  are the electric field 

intensity in the r, q and z directions, respectively; rD , Dq and zD  are the corresponding electric 

displacements; 11X  and 33X  are the dielectric constants of the piezoelectric layer; D is Lapace 

operator and is given by 
2 2

2 2 2r r r r q

µ µ µ
D= + +
µ µ µ

. 

Submitting Eqs. (3-14) and (3-21) into electric boundary condition Eq. (3-15), the unknown 

constants A and B in Eq. (3-14) can be solved out. Then, Eq. (3-14) is transformed to  
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Eq. (3-22) is the electric distribution function along the thickness direction of open-circuit 

piezoelectric layer. 

Submitting Eq. (3-22) into Eqs. (3-16)-(3-21), the components of the electric field E  and electric 

displacement D  are rewritten as 
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3.2 Analysis of piezoelectric coupled circular plate  

Submitting electrical field zE given by Eq. (3-25) into Eqs. (3-10~3-12), the stress components of 

piezoelectric layer can be solved as
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Thus, the moments of coupled plate could be expressed as 
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where 2h is the thickness of the host plate is, h1 is the thickness of piezoelectric layer; the 

piezoelectric layer is measured from z = h to z = h+h1 and 
3

1 2
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The resultant shear forces are herein written as: 
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Substituting Eqs. (3-35) and (3-36) into governing equation of Kirchhoff plate model, 
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We can get the governing equation for open-circuit piezoelectric couple plate, 
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where )2(4 1313 hheD +-= , 
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1131
4

]))[((

X

-++
=

hhhhhe
D ; 1r and 2r are material densities of 

the host plate and piezoelectric layer, respectively.  

Submitting Eqs. (3-26~3-28) into Maxwell equation, 
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Then an electric filed differential equation can be found, 
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j is solved by Eqs. (3-38) and (3-40), 
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Applying Lapace operator to Eq. (3-41), we get 
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Submitting Eq. (3-42) into Eq. (3-38), we get the deflection differential equation, 
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For wave propagation in the circumferential plate, the deflection ( , , )w r tq  can be written as, 

( )Ĕ( , , ) ( ) i p tw r t w r e q wq -=            (3-44) 

where Ĕ( )w r  is the amplitude of the z-direction displacement as a function of radial distance only; 

wis the natural frequency of the coupled plate; and p is the wave number in q-direction. Eq. (3-

43) in terms of Ĕ( )w r can be rewritten as, 
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where the operator D is given by 
2 2
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d d p

dr rdr r
D= + -. 

Using the principle of superposition, the solution to Eq. (3-45) can be written as the sum of 

terms governed by three different types of Bessel equation as follows: 

 321 wwww ++=                            (3-46) 

( )1 1
Ĕ 0x wD- =         (3-47) 

( )2 2
Ĕ 0x wD- =             (3-48) 

( )3 3
Ĕ 0x wD- =            (3-49) 
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ix  ( i=1,2,3) are roots of the following cubic characteristic equation, 
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Use the following transformation, 
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the Eq. (3-50) can be written in a reduced form as follow 
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The discriminate of the cubic equation in Eq. (3-52) is 
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It is can be proven that d<0 can always be satisfied. Thus, according to Cardanoôs formula 

(Wang et al 2001), the characteristic equation shown in Eq. (3-50) has three distinct real roots as 

follows
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In view of the non-singularity of wĔ at the center of the plate, the solution of Eq. (3-45) can be 

written as 

)()()()(Ĕ 333222111 rZArZArZArw aaa ++=                         (3-57) 

iA is the unknown parameter.  
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where )(AJ  is the first type Bessel function and )(AI is the modified first type Bessel function.  

ĔwD  and ĔwDD can be written as 
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where 1s , 2s  and 3s  are the signs of the 1x , 2x  and 3x . 

The resonance frequencies and mode shapes for the coupled plate structure can be solved as 

an eigen value problem based on certain boundary condition. ( , , )r tj q  can be expressed as 

following when wave propagation is studied, 

 
( )Ĕ( , , ) ( ) i p tr t r e q wj q j -=                                              (3-61) 

where )(Ĕrj  is the spatial variation of the electric potential in the radial direction. Submitting Eqs. 

(3-61) and (3-44) into Eq. (3-41), )(Ĕrj  can be rewritten as, 
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The solution of )(Ĕrj  can be obtained by substituting Eqs. (3-57), (3-59) and (3-60) into Eq. (3-

61), and is solved as, 
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Eqs. (3-57) and (3-63) are the solution in radial direction for open-circuit piezoelectric coupled 

circular plate based on Kirchhoff plate model. They can be transformed to the whole cylinder 

coordination by Eqs. (3-44) and (3-61).  

3.3 Displacement and electric fields solution for 

open-circuit piezoelectric coupled circular plate in 

different boundary conditions  

Based on given boundary condition, the mode shape of the structure can be found from Eqs. (3-

57) and (3-63). Two boundary conditions, clamped and simply supported, are discussed as 

follow. 

3.3.1 Clamped circular plate  

For clamped circular plate, the boundary condition is expressed as, 

0'Ĕ,0'Ĕ,0Ĕ === jww .                                              (3-64) 
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It is our willing to solve iA  (i=1, 2, 3) in Eq. (3-57) and Eq. (3-63). To make Eq. (3-64) solvable, 

the characteristic equation is given by 
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From Eq. (3-65), structure resonant frequencies of different modes can be solved. Based on 

certain frequency, the mode shapes of flexural variable wĔ and electric potential jĔ are 
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From Fig. 3-2 illustrates the first four vibration mode shapes of clamped open-circuit 

piezoelectric coupled plate.  

3.3.2 Simply supported circulate plate  

For simply supported circulate plate, boundary condition is given by 

0'Ĕ,0Ĕ,0Ĕ === jrrMw .                                         (3-69) 

The characteristic equation is expressed as 
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iiM is given by (i=1, 2, 3) 
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The deflection and electrical potential related with órô are expressed as  
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Fig. 3-4 shows the first four deflections mode shapes of the simply supported couple plate.  

3.4 Numerical simulations and discussions 

In the following simulations, steel and PZT4 are employed as the host structure and piezoelectric 

layer, respectively. The material properties and geometric sizes of piezoelectrically coupled plate 

are provided in table 2-1. The layout of the piezoelectrically coupled plate is shown in Fig. 3-1.  

Table 3-1 lists the first four resonance frequencies of both closed and open circuit 

piezoelectric coupled structures with clamped boundary condition when the thickness ratio (h1 

/2h) is 1/10. We can find that the resonant frequencies of the open and closed circuit 

piezoelectric coupled plates are increased by 6.73% and 3.77% respectively compared to the 

frequencies of the substrate steel.  Such different increases in resonant frequencies of the two 

plates indicates that the effective stiffness of the open circuit piezoelectric coupled plate is larger 

than that of the closed circuit one, which coincides with the experimental results by Corr and 

Clark (2002) and Chevallier et al (2008). In order to investigate the physical interpretation of the 

different increases, Table 3-2 lists the fundamental resonant frequencies of the open and closed 

circuit piezoelectric coupled plates with host plat thickness of 20 mm and various piezoelectric 

layers at =2h/1h 1/10, 1/8, and 1/5 respectively. The second column is calculated by removing 
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the piezoelectric effect, or setting the piezoelectric coefficients to be null, to represent the only 

stiffening effect of the piezoelectric layer. Therefore, the percentages of the increase in the 

resonant frequency on columns 4 and 6 establish the piezoelectric effect clearly. From the table it 

is expectedly seen that the piezo-effect is obvious when the host plate is coupled with thicker 

piezoelectric layer for both closed and open circuit conditions. In addition, the piezo-effect of 

closed circuit piezoelectric layer is found to be almost negligible, whereas piezo-effect of open 

circuit one plays a major role in increasing the frequency of the coupled plate. Such a 

phenomenon is attributed to the different electric potential distributions along thickness direction 

of the open and closed circuit of the piezoelectric layers. Fig. 3-3 shows the electric potential 

distributions in thickness direction of open and closed circuit piezoelectric layers. The electric 

potential of the closed circuit piezoelectric layer reaches maxima at the mid-plane of 

piezoelectric layer, then begins to decrease and returns to zero on the surface of piezoelectric 

layer. On the other hand, for the open circuit electric surface condition, the electric potential 

keeps growing to maxima towards the surface of piezoelectric layer. The distributions show that 

when a piezoelectric layer is shortly connected, the electric potential on both surfaces of the 

piezoelectric layer vanish, and hence the electric energy is released by the closed circuit 

electrode status, which would reduce the piezo-effect of the piezoelectric layer on the stiffness of 

the coupled plate. On the other hand, the electric potential of an open circuit piezoelectric layer 

cannot be released during any vibration of the coupled plate, and is continually converted to 

mechanical energy because of the piezo-effect. Such a process enlarges the increase of effective 

stiffness of the coupled structure. Therefore, higher piezo-effect could be observed from the open 

circuit piezoelectric layer. 
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The first four resonance frequencies of the piezoelectric coupled plate with simply supported 

boundary condition are shown in table 3-3. The thickness ratio of piezoelectirc layer to the host 

beam is 1/10, which is the same as the thickness ratio used in table 3-1. Although the frequencies 

are found to be much lower than those of the plate with clamped boundary condition, higher 

increases in resonance frequencies of the open circuit piezoelectric layer than those of the closed 

circuit piezoelectric plate is again observed. Such a result coincides with that of the clamped 

coupled plate. Table 3-4 lists the fundamental frequencies of the simply supported open and 

closed circuit piezoelectric coupled plates with various thickness piezoelectric layers when the 

thickness of the host beam is 20 mm. Similar observations on the differences of the piezo-effect 

between open and closed circuit piezoelectric layers are also obtained.  

3.5 Conclusion s 

A mechanical model for the analysis of an open circuit piezoelectric coupled circular plate is 

developed. The solution for the electric potential along thickness direction of the piezoelectric 

layer is provided for the first time to strictly satisfy the open circuit electric boundary condition. 

Based on the developed electric potential solution and the Kirchhoff plate model and Maxwell 

equation, the free vibration solution for the piezoelectric coupled plate is presented.  

The numerical simulations show that the resonance frequencies and stiffness of the open 

circuit piezoelectric coupled plate are higher than those of the closed circuit counterpart, because 

the piezoelectric effect of the open circuit piezoelectric layer is larger compared with the closed 

circuit one. A linear electric potential distribution along the thickness of the piezoelectric layer is 

found for the first vibration mode of the piezoelectric coupled structure, while non-linear 

distributions can be seen for higher modes. The piezo-effects of the open and closed circuit 
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piezoelectric layers are particularly investigated and found that the effect from the open circuit 

piezoelectric layer is much larger than that from the closed circuit one, which is almost 

negligible. Such a difference is owing to the different electric energy processes of the two 

piezoelectric layers during vibrations.  
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Table 3- 1 First four resonance frequencies of piezoelectric coupled plates with a clamped 

boundary condition. 

Mode 

No. 

Substrate 

plate 

Piezoelectric Coupled Plate 

Closed circuit 

(Wang et al 

2001) 

Increments (%) 

closed circuit 

Open circuit Increments (%) 

open circuit 

1 
869.691 902.479 3.77 928.23 6.73 

2 
1809.87 1878.17 3.77 1931.76 6.73 

3 
2969.34 3081.08 3.76 3169.00 6.724 

4 
3385.71 3513.43 3.77 3613.69 6.73 

 (* Thickness ratio (h1/2h) is 1/10) 
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Table 3- 2 Effect of the circuit condition on the fundamental resonance frequencies of the 

piezoelectric coupled plate with clamped boundary condition at different thickness ratios. 

 

(* Thickness of host plate is 20mm) 

 

 

 

Table 3- 3 First four resonance frequencies of piezoelectric coupled plates with a simply 

supported boundary condition 

Mode 

No. 

Pure 

Structure 

Piezoelectric Coupled 

Closed circuit 

(Wang et al 

2001) 

Increments (%) 

closed circuit 

Open circuit Increments (%)  

open circuit 

1 
420.33 435.6 3.63 448.067 6.74 

2 
1183.75 1227.5 3.70 1262.53 6.66 

3 
2181.51 2262.4 3.70 2327.03 6.67 

4 
2531.36 2625.2 3.75 2700.2 6.67 

 

Thickness 

ratio 

(h1/2h) 

Without 

piezoelectric 

effect 

With piezoelectric effect 

Closed circuit Increment 

(%) 

Open circuit Increment 

(%) 

       1/10 902.40 902.479 0.0087 928.23 2.86 

1/8 914.483 914.617 0.0147 946.45 3.50 

1/5 957.87 958.356 0.0488 1007.5 5.19 
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Table 3- 4 Effect of the circuit condition on the fundamental resonance frequencies of the 

piezoelectric coupled plate with simply supported boundary condition at different thickness 

ratios. 

 

(* Thickness of host plate is 20mm) 

Thickness 

ratio 

(h1/2h) 

Without 

electric 

contribution 

With electric contribution 

Closed circuit 

(Wang et al 

2001) 

Increment 

(%) 

Open circuit Increment 

(%) 

     1/10       435.54 435.63 0.0206 448.067 2.88 

1/8 441.30 441.42  0.027 456.91  3.54 

1/5 462.04   462.34 0.065 486.73  5.34 
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Fig. 3- 2 First four mode shapes of the displacement of the open circuit piezoelectric coupled 

plate with a clamped boundary condition. 

 

Fig. 3- 1 Layout of a circular plate with two piezoelectric layers mounted on its 

surfaces. 
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Fig. 3- 3 First mode electric potential distributions in thickness direction of the open and closed 

circuit piezoelectric layers. 
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Fig. 3- 4 First four mode shapes of the displacement of the open circuit piezoelectric coupled 

plate with a simply supported boundary condition. 

 



 

73 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

thickness of piezoelectric layer in Z direction

N
o
n
-d

im
e
n
s
io

n
a
l 
e
le

c
tr

ic
 p

o
te

n
ti
a
l 
in

 Z
 d

ir
e
c
ti
o
n

 

 

Second mode

Third mode

 

Fig. 3- 5 Electric potential distributions in thickness direction of the open circuit piezoelectric 

layer at the second and third vibration modes. 
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4 Study on repair  of a vibrating 

delaminated beam  

Following the studies of the dynamic mechanical and electrical responses of the piezoelectric 

coupled structures, the repair of vibrating engineering structures using surface bonded 

piezoelectric materials can be conducted. This chapter provides a close-loop feedback control 

repair methodology for a vibrating delaminated beam structure by use of piezoelectric patches. 

The electromechanical characteristic of the piezoelectric material is employed to induce a local 

shear force above the delamination area via an external voltage, which is designed as a feedback 

of the deflection of the vibrating beam, to reduce the stress singularity around the delamination 

tips. Moreover, finite element method (FEM) is employed to verify the effectiveness of the 

proposed design and repair methodology for delaminated beams with various sizes and 

alignments of delaminations.  

4.1 Model of repair of a delaminated beam via 

piezoelectric patches  

A delaminate beam structure is shown by Fig. 4-1. While deflection takes place along the beam 

structure, axial elongation and compression on the two layers will be induced due to the bending 
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of the beam. It is assumed that the tensile force p1and compressive force p2 are induced on the 

top and bottom layers of the delaminate beam. The values of p1 and p2 are given by Wang and 

Quek (2004) 
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t is the thickness of upper layer of the delaminate beam, E is the youngôs module of the host 

beam structure, b and H are the width and height of the beam, respectively. a is the length of the 

delaminate area, Lw is the flexural deflection of the beam element at the left side of the 

delaminate area, while Rw  is the flexural deflection  of the beam element at the right side of the 

delaminate area. 

At the tip of the delaminate area, tensile and compressive forces are induced at the upper 

and lower parts of the tip due to the bending of the beam, as shown in Fig. 4-1. The induced 

tensile and compressive forces will lead to the discontinuity of the shear force at the tip of the 

delaminate area, which will definitely result in shear force singularity and therefore lead to the 

sliding mode of fracture at the tip of the delaminate area. Therefore, to eliminate the singularity 

at the tip of the delaminate area and this forms the basis of the proposed repair methodology. 

Piezoelectric patches will be applied to induce shear force at the interface between the 

piezoelectric layer and the host delaminated beam by applying a suitable voltage so that the 

sliding fracture mode at the tip of the delaminate area can be controlled and hence the beam can 

be repaired accordingly.  
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4.1.1 Design of repair of vibrating delaminated beam  

For the need of active repair and feedback control method, the piezoelectric parches are used as 

sensor and actuator at the same time. The charge generated by the piezoelectric layer when the 

beam is deflected is given by Lee and Moon (1990), 
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1
31ñ
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-=                                                         (4-2) 

where H is the height of the repaired beam, h1 is the thickness of piezoelectric layer, b and a are 

the width and length of the beam structure covered by piezoelectric layer, respectively, e31 is the 

piezoelectric constant and w  is transverse displacement. The output voltage of piezoelectric 

patch, Vo, is given by Lin and Hsu (1999), 
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where Cv is the electric capacitance of piezoelectric patch.  

When the piezoelectric layer is used as a collocated sensor and actuator, the voltage applied 

back to the piezoelectric layer, Vg, can be written as 
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where g is the feedback control gain factor and p is defined as repair coefficient ( vCbgp /*= ). 

The axial stress along the piezoelectric layer induced by the applied controlled voltage is 

presented by Sun et al (1999), 
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The bending moment caused by the piezoelectric layer on the host beam can be written as, 
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For the piezoelectric patches bonded on the delaminate beam structure shown in Fig. 4-1, the 

gained voltage and stress in the piezoelectric layers are given as follow, 
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where t is the thickness of upper layer. Depending on eq. (4-1), the repair coefficient of lower 

layer 'p  is set to be 
( )
( )1

1

htH

ht
p

+-

+
 to generate same value of upper and lower repair forces. The 

interfaces between the host plate and piezoelectric patches are grounded. As gained voltages are 

applied on the upper and lower surfaces of the composed plate structure, inverted repair forces 

will be generated by upper and lower piezoelectric layers.  

The bending moments caused by upper and lower piezoelectric patch can be expressed as 
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4.1.2 Response of the repaired vibrating delaminated beam  

To reveal the effect of the delamination on the sliding fracture mode of the beam structure, a 

mechanics analysis will be conducted here. The delaminated part will be studied via Eulerï

Bernoulli beam theory by considering two layers of beam elements connected at the two ends. It 

is assumed that tiny gap exists between upper and lower layers when delamination takes place in 

the beam structure so that the two layers can be analyzed as two separated beam elements.  

For the analysis of structure dynamic properties, the delaminated beam structure coupled 

with piezoelectric patches is separated into 4 sections which are illustrated by Fig. 4-1.  

The bending moment of the first section is given by, 
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The subscript of the deflection w stands for the section number. 

Based on Euler-Bernoulli beam theory, the governing equation for the first section can be 

expressed as, 
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where ris the density of the host beam and w is the vibration angular velocity of the structure. 

Similar with the first section, the bending moment and the governing equation for the forth 

section is given by, 
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Coupled with piezoelectric layer, the bending moment of the second section can be expressed as  
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where pE  is the effective youngôs module of the piezoelectric layer, xpus is the stress generated 

by the piezo-effect when extra voltage is applied on the piezoelectric layer, which is given by Eq. 

(4-8). 

With the assumption
2

H
t¢ , the bending moment of the third section can be written as, 

dy
dx

wd
yEbydy

dx

wd
bEyM

htH

htH xplp

htH

htH ññ
--

-

+-
-

+-

--
-

--+-= 2

2

2

3

3

2

2

2

2

3

3

2
2

3

1

1

1

1

1
)( s .        (4-15) 

Based on Eq. (4-1), the required value of the repair forces generated by piezoelectric layers on 

upper and lower delaminate layers is the same.  Thus, the voltages at the upper and lower 

piezoelectric layers should be applied with the same magnitude but with different alignments of 
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the poling direction of the piezoelectric patch so that the inverted forces with same value can be 

induced (shown by Fig. 4-1). 

The governing equations of the second and third sections are given by, 
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where 1r is the density of the piezoelectric layers.  

To characterize the dynamic system given by Eqs. (4-11, 4-13, 4-16 and 4-17), the free 

vibration solution of the delaminate beam is first obtained, which can be written as 
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and 1C ~ 16C  are unknown constants.  

Depending on the boundary conditions of cantilever beam and the continue conditions at the 

two ends of the delaminated layers, the boundary conditions of the four sections of the 

delaminate beam structure are listed below:  
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Submitting Eqs. (4-18~4-21) into Eqs. (4-10, 4-12, 4-14 and 4-15) and the boundary 

conditions, 16 linear equations can be obtained. The solutions for constants1C ~ 16C  with given 

feedback control repair coefficient p are able to be solved based on the agen value problem of the 

linear system of equations.  

4.1.3 Finite element model for verification of repair design  

The finite element analysis software ANSYS 10.0 is used to verify the effectiveness of the 

proposed design and repair methodology. The study of the free vibration process of the 

delaminated beam is proposed using the transient analysis module provided by Ansys 10.0.   

The finite element model is shown in Fig. 4-2 (a). Normal plane element plane 42 and 

coupled field element plane 223 are used to mesh the host beam structure and the piezoelectric 

patches. Different colors showed in the Fig. 4-2 stand for different elements and material 

properties used for the beam and piezoelectric patches. All displacement degrees of freedom of 

the fixed end of the host beam are restrained. The host beam structure is assumed to be made of 

metal material, therefore, the voltage of the interfaces between piezoelectric layers and host 
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beam is set to be zero as the host beam structure is grounded. The piezoelectric patches are poled 

along the y direction so that, when transverse displacement of the bending beam structure takes 

place, there will be voltage output on the surfaces of the piezoelectric layers.  

Meshing of the delamination tip area is shown in Fig. 4-2 (b). Finer meshing density is 

applied to the tip area. The determination of the repair coefficient of the feedback control voltage 

applied to the piezoelectric patches will be determined from the finite element simulations by 

removal of the stress singularity at the tips of the delamination. The determined repair coefficient 

from FEM will then be compared with the optimal repair coefficient from the numerical model 

to verify its effectiveness.  

Transient analysis module of ANSYS 10.0 is used for the vibration analysis. A small initial 

displacement of 0.005 m (the length of the host beam is set to be 0.6m, L=0.6m) is applied to the 

free end of the cantilever beam for the first 0.1 second of analysis. The free vibration analysis is 

separated into 150 sub-steps during 0.1 to 0.4 seconds. For each sub-step, the shear stresses on 

the delamination tips are recorded.  

4.2 Numerical simulations and discussions  

The host beam is made of aluminum, and the piezoelectric patches are made of PZT4. The 

material properties and geometric size of the piezoelectric coupled delaminated beam structure 

are listed in table 4-1.  

To verify the accuracy of the analytical model for the repair design of the delaminated beam 

proposed in section 4.1.2, Table 4-1 provides the comparison of the first three resonant 

frequencies of delaminated beam with different lengths bonded with the piezoelectric patches, at 
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l=0.3 m, H=0.015 m, t=0.0075 m and a=0.1 m from the analytical model developed for the 

repair design and FEM. Deviation between the FEM and repair design model for the first three 

resonant frequencies is less than 6%. The largest deviation for the fundamental resonant 

frequency is 3.9% for the longest delaminated beam, at L= 0.8 m. Such excellent agreements of 

the results indicate the accuracy of the analytical model in vibration analysis of delaminated 

beams. 

The non-dimensional gradient difference at the two tips of the delamination is defined as the 

ratio of the gradient difference of the repaired beam to the un-repaired beam, or given as 
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 which can be solved by Eq. (4-14). Fig. 4-3 

illustrates the variation of the non-dimensional gradient differences at the two tips of the 

delamination versus the repair coefficients at different delamination lengths with L=0.6 m, l=0.3 

m, H=0.015 m and t=0.0075 m. The optimal repair coefficients could be identified when the 

lowest gradient differences are found to be, i.e. 0.062 m/nF, 0.082 m/nF, 0.114 m/nF and 0.164 

m/nF with delamination lengths of 0.14 m, 0.12 m, 0.10 m and 0.08 m, respectively. It is found 

that the repair coefficients are higher for beams with longer delaminations. 

Time domain FEM analysis is provided to provide a free vibration analysis in Fig. 4-4 for 

the first 0.4 s of a delaminated beam to verify the repair coefficients obtained from the analytical 

model in Fig. 4-3. Fig. 4-4 shows the variation of the shear stresses at the left tip of delamination 

of the repaired beam structure at L=0.6m, l=0.3m, H=0.015m, t=0.0075m, a=0.1m with different 

repair coefficients of 0.114 m/nF, 0.155 m/nF and 0.172 m/nF, respectively. It can be seen that 

the shear stress on the left delamination tip is reduced obviously by the piezoelectric patches at 
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the optimal repair coefficient 0.114 m/nF that is predicted from Fig. 4-3. Compared with the un-

repaired delaminated beam, or with repair coefficient being zero, the shear stress is decreased by 

66% at 0.38 s. When the repair coefficient is set to be 0.155 m/nF, the shear stress on the same 

point is first enlarged in the first 0.18 s, although it finally is reduced obviously after 0.22 s of 

vibration. At 0.12 s of the vibration of the repaired beam with repair coefficient of 0.155 m/nF, 

the shear stress on the left delamination tip point is increased even by 140% compared with the 

un-repaired beam. Moreover, when the repair coefficient is increased to be 0.172 m/nF, the shear 

stress on the left delamination tip if found to keep growing. At t=0.36 s, the shear stress is found 

to be increased to be 400% of the un-repaired beam.  In summary, the optimal repair coefficient, 

p=0.114 m/nF, for the delaminated beam structure from the analtyical model in Fig. 4-3 is 

verified to be very accurate. Fig. 4-5 shows the deflection variation for the same delaminated 

beam structure in Fig. 4-4 with the repair coefficients. It is noted that the vibration deflection of 

the free end of the delaminated beam is obviously decreased with all of the repair coefficients of 

0.114 m/nF, 0.155 m/nF and 0.172 m/nF, although the stress singularity can only be erased with 

the optimal repair coefficient of 0.114 m/nF as indicated in Fig. 4-4. Based on the results shown 

in Figs. 4-4 and 4-5, it can be found that although larger repair coefficients could reduce the 

vibration deflection of the delaminated beam, the stress singularity cannot be erased 

simultaneously.  

In the following discussions, the effect of some key factors on the optimal repair coefficient 

will be analysed by both of analytical model for the repair design and FEM. Fig. 4-6 shows the 

relationship between the optimal repair coefficient and the delamilation length of the beam 

structure with L=0.6 m, l=0.3 m, H=0.015 m and t=0.0075 m. Both FEM and the design model 

results indicate that the repair coefficients decrease from 0.089 m/nF to 0.021 m/nF. When the 
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delamination lengths change from 0.06 m to 0.15 m showing the decrease of the optimal repair 

coefficient with the increase in the delamination length. Fig. 4-7 shows the variation of the repair 

coefficient versus the increase in the thickness of the host beam, while other geometry of the host 

beam is fixed, i.e. L=0.6 m, l=0.3 m, t=H/2. The optimal repair coefficients match the FEM 

results very well when the thickness of host beam is less than 0.015 m. For the beam with the 

thickness of 0.02 m, the deviation of the repair coefficients between the result from the analytical 

model and FEM results is only 5.8%.  The optimal repair coefficients increase from 0.041 m/nF 

to 0.114 m/nF when the thickness of host beam is changed to be 0.015 m from 0.005 m. From 

both the analytical model and FEM results, it can be found that a larger repair coefficient is 

needed for the repair of a thicker delaminated beam. Fig. 4-8 shows the effect of the location of 

the delamination in thickness direction of the beam on the repair coefficient. The deviation of the 

repair coefficients between the analytical model and FEM results vanishes when the 

delamination is getting closer to the mid-surface of the host beam. The deviation is bigger when 

the delaminiation is further away from the middle, and the repair coefficient becomes smaller 

accordingly as evidenced from the figure. From both Figs. 4-7 and 4-8, it is noted that the 

deviation of the optimal repair coefficients between the analytical model and FEM results is 

smaller when the ratios of the thickness of the beam sections to the length of the beam sections 

are smaller. This phenomenon is attributed to the applicability of the EulerïBernoulli beam 

theory we used for the repair design. Euler-Bernoulli beam theory is more applicable while the 

ratio of beam thickness to beam length is smaller.   
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4.3 Conclusions  

The piezoelectric patches are employed for the feedback control repair of vibrating delaminated 

cantilever beams. The design of the repair coefficient for the voltage induced by the piezoelectric 

patches by virtue of their electromechanical characteristics is developed to remove the shear 

stress singularity induced by bending of the delaminated beam. A mechanics analysis model is 

developed for the design of the feedback control repair of the vibrating delaminated cantilever 

beam structure bonded with piezoelectric layers, and FEM is conducted to verify the 

effectiveness of the coefficients from the analytical model. The designed repair coefficient based 

on Euler-bernoulli beam theory is more accurate for thinner beam with longer delamination, 

which happens close to the mid-surface of host beam. It is also found that smaller repair 

coefficient is needed when the delamination area is longer or the host beam is thinner.   
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Table 4- 1 First three resonant frequencies of the delaminated beam bounded with piezoelectric 

by FEM and the analytical model. 

l=0.3m, H=0.015m, t=0.0075m, 

a=0.1m 

(no electric gain on piezoelectric  

patches)  

 FEM analytical model 

1st 2
nd

 3rd 1st 2nd 3
rd
 

L=0.6m 31.63 154.83 522.78 31.82 164.08 533.11 

L=0.7m 22.51 118.51 415.65 23.19 123.06 421.15 

L=0.8m 16.83 96.61 314.01 17.49 98.83 316.07 

 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

Fig. 4- 1 Layout of the repaired delaminated beam and the piezoelectric patches. 
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 (a) 

 

  
(b) 

Fig. 4- 2 Finite element model of the delaminated beam bonded with piezoelectric patches. (a) 

Overall view of the modeling of the delaminated beam; (b) Meshing of the delamination area. 








































































































