Characterization of Natural Organic Matter and Trihalomethane Formation Potential for NOM Fractions Isolated From Two Surface Water Sources in Manitoba

By

Charles D. Goss

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

Department of Civil Engineering

University Of Manitoba

Winnipeg, Manitoba

Copyright© Charles D. Goss 2011
Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.
Abstract

The objective of this study was to evaluate the removal of natural organic matter (NOM) fractions, from the Portage la Prairie water treatment plant (PPWTP), which uses the Assiniboine River as a source, and the Morris water treatment plant (MWTP), which takes water from the Red River, to establish the NOM removal efficiency. The PPWTP sample set for total DOC removal by the plant found the granular activated carbon (GAC) filter was inefficiently removing dissolved organic carbon (DOC) from the water, often with concentrations increasing post-GAC. It was found that one sample set from the MWTP showed that NOM was not being removed by the nano filter with NOM increasing post-nano filtration, from 8.7mg/L to 10.2 mg/L. However, it was found that most of the time the nano filter was operating as manufacturer design showing a reduction of NOM post nano filter to <0.5mg/L.
Acknowledgements

I would like to thank my friends and family, especially Miss. Lesley Sellwood for all her patients with the many long hours away from home and for taking care of the numerous duties I left unattended during the experimentation and writing of this thesis.

I would like to thanks to my colleagues at the University Of Manitoba Department Of Civil Engineering: Mr. Victor Wei, Mr. Justin Rak-Banville, Mr. Steven Cho, and Mr. Arman Vahedi for their invaluable input into the preparation of this work. I would also like to thank my many friends and professors at the University Of Winnipeg Department Of Chemistry for giving me the tools and experience needed to conduct this research.

I would like to give special thanks to my advisor, Dr. Beata Gorczyca (University of Manitoba), Dr. Peter Hombach (Orsono Enterprises Inc.), Dr. Housseini Coulibaly (Manitoba Office of Drinking Water), Dr. Charles Wong (University of Winnipeg), Mr. Jake Fehr and the operators at the Pembina Valley Water Cooperative Inc, Mr. Kelly Braden and Mr. Doug Campbell (Portage la Prairie Water Treatment Plant), Mr. Ken Anderson and Mr. Jeff O’Driscoll (Associated Engineering), Mr. Morley Nagle (Manitoba Aboriginal and Northern Affairs) and Mr. Don Michalyk (Manitoba Office of Drinking Water) for providing me with the guidance, time, and valuable insight into this project.

Thank you.
Dedication

I would like to dedicate this work to the environmental chemists and engineers who dedicate their lives to improving the quality and safety of our drinking water.
Table of Contents

Authors Declaration .. ii

Abstract .. iii

Acknowledgements... iv

Dedication ... v

Table of Contents .. vi

List of Tables ... ix

List of Figures .. x

List of Abbreviations ... xiii

Part 1: RESEARCH OBJECTIVES .. 17

 CHAPTER 1: PROBLEM STATEMENT ... 17

Part 2: LITERATURE REVIEW ... 20

 CHAPTER 2: NATURAL ORGANIC MATTER .. 20

 2.1 Composition of Natural Organic Matter in Aquatic Environments 20

 2.2 Brief History of NOM Fractionation Methods ... 23

 2.3 Natural Organic Matter in Potable Water Treatment 25

 2.3.1 Removal of NOM by Various Water Treatment Processes 26

 2.3.2 Removal of NOM by Coagulation .. 26

 2.3.3 Removal of NOM by Slow Sand Filtration and GAC Filtration 30

 2.3.4 Removal of NOM by Membranes ... 33

 CHAPTER 3: TRIHALOMETHANES ... 40

 3.1 Formation of Trihalomethanes from NOM .. 40

 3.1.2 Relationship between THMs and Specific UV Absorbance 46

 3.2 Health Concerns Associated With THMs .. 47
List of Tables

Table 1: USEPA Stage 1 Disinfectant and Disinfection By-product Rule guidelines for chlorine disinfectants and THMs (Table values found in USEPA, 2001) .. 54

Table 2: Summary of the Stage 2 Disinfection By-products Rule maximum concentration level guidelines (Table values found in USEPA, 2007) .. 55

Table 3: Water quality for the Assiniboine River and PPWTP for samples collected in May 1999. Guidelines presented here are according to the Canadian Drinking Water Quality Guidelines for 2001 (Table adapted from Anderson, 2003) ... 62

Table 4: THM concentrations at the Portage la Prairie Water Treatment Plant from 2007-2008. Data supplied by the Portage la Prairie Water Treatment Plant .. 63

Table 5: November 23rd, 2010 and February 28, 2011 water quality tests for the Red River. All testing was conducted at the University of Manitoba Environmental Laboratory .. 74

Table 6: Expected composition of natural organic matter in relation to SUVA values (Table adapted from Edzwald and Tobiason, 1999) .. 74

Table 7: November 8, 2010 water quality tests for the Assiniboine River. All testing was conducted at the University of Manitoba Environmental Laboratory. Testing was conducted by M. Hooshiar in part of M.Sc. work (Hooshiar, 2010) .. 74

Table 8: Dissolved organic matter fractions collected from the Red River over a 9 month sampling period from September, 2010 to June 2011 .. 76

Table 9: Dissolved organic matter fractions of the Assiniboine River collected in April, 2011 and September, 2011 ... 79

Table 10: Dissolved organic carbon removal from the Morris water treatment plant for samples collected on November 23, 2010 form the Red River and throughout the treatment plant 81

Table 11: DOC fraction removal (mg/L DOC) at the Morris water treatment plant for samples collected on November 23, 2010 .. 82

Table 12: DOC fraction removal (% DOC) at the Morris water treatment plant for samples collected on November 23, 2010 .. 82

Table 13: Removal of DOC fractions (mg/L) at the Morris water treatment plant for February 28, 2011 ... 84

Table 14: Changes in DOC, pH, Turbidity, UV$_{254}$ and SUVA for samples collected from the Assiniboine River and throughout the Portage la Prairie water treatment plant for samples collected November 23, 2010 .. 85

Table 15: Fractionation results for DOC samples collected on January 20, 2011 from before and after the GAC filter at the Portage la Prairie water treatment plant ... 87
Table 16: Dissolved organic matter fractionation results for samples collected April 2, 2011 from the Assiniboine River and Portage la Prairie water treatment plant ... 88

Table 17: Trihalomethane formation of fractions collected on August 15, 2011 from the Red River at the University of Manitoba campus. Concentrations of THMs (µg) were normalized to the concentration of DOC (mg/l) of that fraction of organic matter ... 92

Table 18: Trihalomethane formation of fractions collected on September 1, 2011 from the Assiniboine River taken from the Portage la Prairie water treatment plant. Concentrations of THMs (µg) were normalized to the concentration of DOC (mg/l) of that fraction of organic matter 94

Table 19: Red River chlorine dioxide trihalomethane formation potential results for samples collected on August 15, 2011 from the University of Manitoba campus ... 96

Table 1A: Raw and treated water quality for Waterhen Water Treatment Plant and Waterhen River. Analysis was conducted in July, 2010 by ALS Laboratories .. 121

Table 2A: THM results for treated water collected from the bathroom tap at the Waterhen water treatment plant. Samples were collected on May 31st, 2011. Analysis was conducted at the University of Manitoba Environmental Laboratory ... 124

Table 3A: General water quality parameters for samples taken from the Waterhen River and throughout the Waterhen water treatment plant. Samples were collected on May 31st, 2011. Analysis was conducted at the University of Manitoba Environmental Laboratory ... 125

Table 4A: Dissolved organic carbon removal at the Waterhen water treatment plant after the implementation of HCl for the adjustment of pH .. 128

Table 5A: Total THM results for samples taken on November 2nd, 2011 from the Waterhen treatment plant (tap) and from the Waterhen Community Center located on the south east side of Waterhen .. 129

List of Figures

Figure 1: Chemical Structures for SPE sorbents used in the Ratpukdi et al. NOM fractionation method. [A] Bond Elute ENV-styrene divinylbenzene polymer [B] Strata XC- benzene sulfonic acid [C] Strata X-AW- primary and secondary amines .. 25

Figure 2: Fractionation method by Carroll et al. (2000). Figure adapted from Carroll et al., 2000.... .. 37

Figure 3: Proposed degradative pathway of fulvic acids and resorcinol (Adapted from Rook, 1977)... 41

Figure 4: Proposed membrane process for Morris Water Treatment Plant ... 64
Figure 5: Sampling locations for Portage la Prairie water treatment plant. (1) Assiniboine River (2) after ACTIFLO ballasted flocculation (3) after lime softening (4) after recarbonation (5) after ozonation (6) after sand filtration (7) after sand filter reservoir (8) after GAC (9) Finished water 66

Figure 6: DOC SPE fractionation setup (Adapted from Ratpukdi et al., 2009) 71

Figure 7: DOC fractions, in % total DOC, of the Red River for the four sampling periods: (1) September 25, 2010, (2) November 23, 2010, (3) February 28, 2011, and (4) June 7, 2011 77

Figure 8: Concentrations of DOC fractions (mg/L) at the Morris water treatment plant for November 23, 2010 samples.. 82

Figure 9: DOC fraction removal (% DOC) at the Morris water treatment plant for samples collected on November 23, 2010.. 83

Figure 10: Changes in DOC during treatment at the Portage la Prairie water treatment plant for samples collected on November 23, 2010 .. 86

Figure 11: Dissolved organic matter fractionation results for samples collected April 2, 2011 from the Assiniboine River and Portage la Prairie water treatment plant... 89

Figure 12: Standard calibration curves for four trihalomethane measured using gas an Agilent 7890A gas chromatograph equipped with electron capture detection... 109

Figure 13: THM concentration for blank sample of Red River water collected August 15, 2011 using GC/ECD.. 110

Figure 14: THM concentration for method blank sample of Red River water collected August 15, 2011 using GC/ECD ... 110

Figure 15: THM concentration for HPON fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 111

Figure 16: THM concentration for HPOB fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 111

Figure 17: THM concentration for HPOA fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 112

Figure 18: THM concentration for HPIB fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 113

Figure 19: THM concentration for HPIA fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 113

Figure 20: THM concentration for HPIN fraction sample of Red River water collected August 15, 2011 using GC/ECD ... 114

Figure 21: THM concentration for raw sample of Red River water collected August 15, 2011 using GC/ECD ... 114
Figure 22: Trial 1-THM concentration from chlorination with chlorine dioxide for raw sample of Red River water collected August 15, 2011 using GC/ECD. ... 115

Figure 23: Trial 2-THM concentration from chlorination with chlorine dioxide for raw sample of Red River water collected August 15, 2011 using GC/ECD. ... 115

Figure 24: Trial 3-THM concentration from chlorination with chlorine dioxide for raw sample of Red River water collected August 15, 2011 using GC/ECD. ... 116

Figure 1A: Treatment process at the Waterhen Water Treatment Plant ... 122

Figure 2A: THMFP of citric acid chlorinated with 50mg/L sodium hypochlorite................................. 126

Figure 3A: Locations for the addition of chlorine disinfectant and citric acid at the Waterhen Water Treatment Plant .. 127

Figure 4A: Solubility of poly-aluminum chloride .. 128
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Micrograms</td>
</tr>
<tr>
<td>Act Ar-R</td>
<td>Activated Aromatic Ring</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>BDCM</td>
<td>Bromodichloromethane</td>
</tr>
<tr>
<td>CIP</td>
<td>Clean In Place</td>
</tr>
<tr>
<td>ClO⁻</td>
<td>Hypochlorite anion</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>D/DBPR</td>
<td>Disinfectant/Disinfection By-product Rule</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>DBCM</td>
<td>Dichlorobromomethane</td>
</tr>
<tr>
<td>DBP(s)</td>
<td>Disinfection By-Product(s)</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved Organic Carbon</td>
</tr>
<tr>
<td>DOM</td>
<td>Dissolved Organic Matter</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GAC</td>
<td>Granular Activated Carbon</td>
</tr>
<tr>
<td>GCDWQ</td>
<td>Guidelines for Canadian Drinking Water Quality</td>
</tr>
<tr>
<td>GC-ECD</td>
<td>Gas Chromatography Electron Capture Detection</td>
</tr>
<tr>
<td>GDWQ</td>
<td>Guidelines for Drinking Water Quality</td>
</tr>
<tr>
<td>HAA(s)</td>
<td>Haloacetic Acid(s)</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HOCl</td>
<td>Hypochlorous Acid</td>
</tr>
<tr>
<td>HPI</td>
<td>Hydrophilic</td>
</tr>
<tr>
<td>HPIA</td>
<td>Hydrophilic Acid</td>
</tr>
<tr>
<td>HPIB</td>
<td>Hydrophilic Base</td>
</tr>
<tr>
<td>HPIN</td>
<td>Hydrophilic Neutral</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Pressure Liquid Chromatography</td>
</tr>
</tbody>
</table>
PAS Polyaluminum Sulfate
POM Particulate Organic Matter
ppb Parts per billion
ppm Parts per million
PPWTP Portage la Prairie Water Treatment Plant
PVDF Polyvinylidene Fluoride
RO Reverse Osmosis
s Second
SDWA Safe Drinking Water Act
SEM Scanning Electron Microscope
SPE Solid Phase Extraction
SUVA Specific Ultraviolet Absorbance at 254 nanometers
TBM Tribromomethane
TCM Trichloromethane
TCU True Color Unit
TDI Total Daily Intake
TDS Total Dissolved Solid
TFE Tetrafluoroethylene
THM(s) Trihalomethane(s)
THMFP Trihalomethane Formation Potential
TMP Trans-membrane Pressure
TOC Total Organic Carbon
TOX Total Organic Halide
TTHM Total Trihalomethane
UF Ultrafiltration
USA United States of America
USEPA United States Environmental Protection Agency
UV Ultraviolet
UV$_{254}$ Ultraviolet Absorbance at 254 nanometers
WHO World Health Organization
| WTP(s) | Water Treatment Plant(s) |