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Abstract 
[bookmark: _Hlk493014817]Appropriate grazing management ensures sustainable productivities of grassland ecosystems while maintaining grassland services. Thus, it is important to understand the influences of grazing management on grassland ecosystems, which can be monitored by measuring grassland response (e.g. Leaf area index [LAI]) to grazing management. However, the measured grassland response includes the impact not only of grazing management, but also of other factors and their interactions, such as climate variability and fire. Therefore, to better study the effects of grazing management, grassland response to grazing needs to be quantified separately from that of other factors which influence grasslands and their interactions. The aim of our research was to quantify these interactions using Landsat TM images with long-term datasets at a regional scale. We studied vegetation using a manipulative grazing experiment that applied a range of low to high cattle stocking rates from 2008 to 2011 in a northern native mixed-prairie in Saskatchewan. Results show that precipitation, temperature, interaction between temperature and precipitation, cattle density, interaction between temperature and cattle density, and the interaction among cattle density and climate parameters explained 65.5, 14.5, 9.8, 1.7, 1.4 and 0.5% of the variation in grassland LAI, respectively; thus, precipitation has the dominant effect in mixed-grass prairies, while temperature and the interaction between temperature and precipitation have only moderate effects, and grazing intensity and the interaction between grazing intensity and climate variations have relatively low effects. The results also suggest that grassland response to grazing can be quantitatively separated from that of climate variability with the prior knowledge of grazing intensity, even though the influences of precipitation on LAI overrode the effects of short term grazing. 
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Introduction

Grasslands are subject to strong spatial and temporal dynamics (Hovick et al. 2015). Spatial heterogeneity due to primary succession, which can take centuries (Begon et al. 2006), is mainly regulated by abiotic factors (e.g. soil, climate and topography). Long-term temporal dynamics resulting from climate change can occur at the scale of millennia (Alexandre et al. 1997; McClaran and Umlauf, 2000; Kerns et al. 2001) and decades (Parton et al. 1995; Alward et al. 1999). Even in months, grasslands are very sensitive to climate fluctuation. At a regional scale, human activities and natural disturbances can also alter spatial and temporal heterogeneity (Seabloom et al. 2005; Collins and Smith 2006). Interactions between human and grassland ecosystems, including grassland reclamation (land cover change from grassland to cropland) and grassland management, have increased in the past 50 years (Chapin III and Matson 2011), possibly influencing grassland diversity both temporally and spatially. To evaluate whether grassland management maintains or improves grasslands, and at what extent, grassland response to management need to be monitored over time. Leaf area index (LAI) is a widely used indicator to evaluate grassland response (He et al. 2006; Flanagan and Adkinson 2011; Bresloff et al. 2012).
Remotely sensed imagery have been proved to be a great technique to measure LAI in various temporal and spatial scales (Franklin et al. 1997; White et al. 1997; Zheng and Moskal 2009). More importantly, remote sensing (RS) approaches with detailed spatial information on grassland condition have been widely used in monitoring the influence of grassland management, especially grazing management (Yang et al. 2012). Research into the impacts of grazing management using RS techniques have generally focused on two areas: quantification of grazing intensity (Kawamura et al. 2005), and assessment of grassland response to grazing through the measurement of net primary productivity (NPP) (Wang et al. 2008; Huang et al. 2016), biomass (Numata et al. 2007), LAI (Bresloff et al. 2012), vegetation cover (Archer 2004), and carbon and nitrogen cycling (Schuman et al. 1999). This has largely been achieved using multispectral images of Moderate Resolution Image Spectroradiometer (MODIS) (Kawamura et al. 2005), Advanced Very High-Resolution Radiometer (AVHRR) (Archer, 2004), Landsat Multi-Spectral Scanner (MSS) (Pickup et al. 1994) and Landsat Thematic Mapper (TM) (Saltz et al. 1999). 
In the literature, many studies have emphasized the importance of understanding grassland response to management and climate fluctuation separately in the context of RS analyses (Pickup et al. 1994; Archer, 2004; Zhang et al. 2007), and Hoffmann et al. (2016) and Dalgleish and Hartnett (2009) concluded the approach of analyzing effect of grazing separately was a challenge. Among all the research in the field of evaluate the influences of management and climate separately, the methodology aligns in three major types: the first is assuming that certain climate condition provides the potential productivity while human activity consume the productivity in grasslands (Xu et al. 2016); the second is to test the relationship or correlation between the indicator(s) and management intensity or climate variables separately to conclude negative or positive influences of the two factors (Silletti and Knapp 2002; Gartzia et al. 2016);  besides the correlation test, the third is using analysis of variance (ANOVA) to evaluate the difference and interactions of the impact of the two factors on grasslands qualitatively (Dalgleish and Hartnett 2009; Cheng 2011). However, nearly no research separates the portion of grassland response to climate fluctuation and that to management quantitatively. More importantly, the effects of one driving factor or one type of disturbance on grassland ecosystems are not detectable because of the overriding influences of other driving factors or disturbance (Mashiri et al. 2008). Therefore, the purpose of this study was to quantify the influence of grazing, climate variation and even their slight effects on semi-arid mixed-grass prairies (“mixed grasslands”) that are sensitive to climate fluctuation. To achieve this goal, more specific objectives were 1) to extract LAI, as an indicator of grassland response, using Landsat images and field data; and 2) to identify and distinguish the effects of grazing management, climate variability and their interactions on LAI. 
Material and methods

Study area 
The study area was in the East Block of Grasslands National Park (GNP), located in the southern part of Saskatchewan, Canada (49o3′36″N, 106o42′0″W). The study area was acquired by the park in 1990 and 1991, at which point livestock, which had previously been present at light stocking rates, were removed from the study area. Livestock grazing was reintroduced through a manipulative grazing experiment within nine pastures from early June to the middle of September each year from 2008–2011. Among the nine pastures, six pastures had different cattle densities, ranging from low to high grazing intensities for the area (AUM·ha-1: animal unit month per hectare; one animal unit month means the amount of forage needed for one animal unit for one month) while the other three were control pastures without livestock grazing (Figure 1).
Datasets
[bookmark: OLE_LINK2][bookmark: OLE_LINK3]Leaf Area Index (LAI) was collected during 8 to 10 am and 3 to 5 pm on June 30 (sunny, wind speed: 8 km h−1), July 1 (sunny, wind speed: 6 km h−1), July 2 (sunny, wind speed: 10 km h−1) and July 7 (sunny, wind speed: 20 km h−1), 2007 for pasture 8 and 9, pasture 5, 6 and 7, pasture 1, 2 and 3, pasture 4, respectively, prior to the introduction of livestock to the field sites, using ACCUPAR LP-80 (Decagon Devices, Inc., Pullman, WA, USA) in ten random sample sites for each pasture (Figure 1). At each sample site, six LAI replicate measures were taken randomly (see descriptive statistics in Table SX1 of Supporting Information). Four repeated measures without the maximum and minimum values were averaged as the LAI value for each sample site. 
[bookmark: OLE_LINK23][bookmark: OLE_LINK24]Twelve Landsat TM images from June to September 2007 to 2011 (see acquiring date in Table SX2 of Supporting Information) were downloaded from USGS website (https://earthexplorer.usgs.gov/). All images were Level 1 Products that are geometrically corrected. Atmospheric correction was conducted for all images using ATCOR2 algorithm (Yang et al. 2015) in PCI Geomatica (PCI Geomatics, Toronto, Ontario, Canada).
Weather station temperature and precipitation data were used as the climate variables in this study. Daily climate data from the Val Marie Southeast climate station (49°3’21.8”N, 107°35’11.5”W), including total precipitation and mean temperature, were downloaded from Environment Canada (http://climate.weather.gc.ca/).
Methods
In this study, ANOVA table from linear model (lm() fuction) in R software version 3.2.2 (R Core Team 2015) was used to calculate the percentage of explained variation of LAI from grazing, climate variables and their interactions (Figure 2). The R software gives specific results of the variation of response variable explained by each explanatory variable and their interaction as well as the unexplained variation by residuals of the linear model. 
Estimating LAI using field measured LAI and remote sensing imagery 
[bookmark: OLE_LINK20]To evaluate the most suitable vegetation index to apply to LAI, the spatial linear regression from the spatial statistics toolbox (Ordinary Least Squares) in ArcGIS 10.2 (ESRI, Redlands, California, USA) was used to test the relationship between field-measured LAI (average LAI for each sample site) and Normalized Different Vegetation Index (NDVI) (Rouse et al. 1974) which is the most commonly used vegetation index, and some soil adjusted vegetation indices using soil line parameter, including Adjusted Transformed Soil Adjusted Vegetation Index (ATSAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), and Perpendicular Vegetation Index (PVI) (see equations of vegetation indices in Table SX3 of Supporting Information). After the most appropriate vegetation index was selected based on their spatial correlation with field-measured LAI, the LAI maps were generated based on the Landsat TM images (see acquiring time in Table SX2 of Supporting Information). Then the mean value of LAI was extracted from all the pixels in each experimental pasture using zonal statistics of spatial analyst toolbox in ArcGIS 10.2. The area influenced by fire of 2006 was masked out in pasture 5 (Figure 1) before zonal statistics were applied. Zonal statistics is a method built in ArcGIS spatial statistics to measure the descriptive statistics (mean, minimum, maximum, sum and standard deviation) for one attribute in one area. Jarque-Bera Statistic and Koenker BP Statistic from the diagnostic results of ordinary linear regression in ArcGIS are used to test the normality of residuals and whether the relationship is stable over different locations respectively. If the p value (the probability for a give statistical method when the null hypothesis is true) of Jarque-Brea test is less than the significance level (e.g. 0.05), then the residuals of the linear regression does not fit normal distribution (normality of residuals is a very important assumption of linear model); if the p value of Koenker BP Statistic is less than the significance level (e.g. 0.05), then the relationship is not stable over different locations or the pattern of residuals fits heteroscedasticity.
Calculating temperature and precipitation variables based on their lag effects
Based on previous work by Li and Guo (2012), precipitation has a longer lag effect than temperature on LAI in GNP. From their study, precipitation is the primary factor that influences LAI with a lag of 40 days (cumulative precipitation in the last 40 days); the mean temperature (oC) in the previous 10 day period is the second factor with effects on variation in LAI (Li and Guo 2012). In this study, temperature and precipitation were calculated as two climate variables based on Li and Guo’s (2012) results. The time periods used to calculate these two variables were associated with the image-acquiring dates (see acquiring dates in Table SX2 of Supporting Information) because the image-acquiring dates were linked with the status of LAI. 
Calculating the percentage variation of LAI explained by grazing, temperature, precipitation and their interactions separately based on the linear model in R software
Before all datasets were analyzed, variables were standardized using equation 1 to derive common units for each variable. 

                               (1)
where is the standardized unit-free variable;  is the values of the original variable;  is the mean value of the original variable; and  is the variance of the original variable. 
To evaluate the effects of climate variability and grazing management on LAI, a linear model was applied. In the linear model, LAI was included as the response variable, and temperature, precipitation and cattle density were included as explanatory variables (Table 1). The column “Sum Sq” in the ANOVA table (one result from linear model in R software) contains the variation of response variable (LAI in this case) explained by each explanatory variable and their interactions, as well as the unexplained variation of the response variables because of residuals. The summary of explained variation of the response variable by all the explanatory variables, the interactions and unexplained variation is the variation of the response variable (sum square of the difference from the mean value of the variable). The percentage of the variation explained by each explanatory variable and their interaction was calculated as “Explained Variation” (Eqn 2) 
                  (2)
where “Sum Sq” is the explained variation of LAI by each explanatory variable and interaction in the linear model; “Total Sum Sq” is the total variation of LAI, which is  where LAI is the mean LAI value for each pasture estimated using Landsat images,  is the mean value of LAI for the 9 pastures.
[bookmark: _Hlk486871034]Because not all the explanatory variables and their interactions (including temperature, precipitation, cattle density and their interactions) would predict LAI significantly in the linear model, the “Relative Effects” were generated to evaluate the percentage of the explained variation of LAI by each significant variable and interaction relative to the total explained variation of significant explanatory variables and interactions (Eqn 3). To understand whether the variables and their interactions negatively or positively predict LAI and their ability to predict LAI, the standardized coefficient of each explanatory variable and interaction was tested using “QuantPsyc” library (Author: Tomas D. Fletcher; version: 1.5; https://cran.r-project.org/web/packages/QuantPsyc/index.html) in R Software.
      (3)
where “Explained Variation” is the results from Equation 2; “Total Explained Variation of Significant Variables” is the summary of “Explained Variation” of significant explanatory variable and interactions.
In order to evaluate how much variation was explained by autocorrelation the spatial and temporal autocorrelation of the vegetation index (response variable in the polygon data) was tested by Moran’s I (a measure of spatial autocorrelation developed by Patrick Alfred Pierce Moran) using spatial statistics toolbox in ArcGIS 10.2 and lag variable, respectively. For Moran’s I, “inverse distance” was selected as conceptualization and “Euclidean” as the distance method. To create the lag variable, mean value of the vegetation index for each pasture was with that for the same pasture at the corresponding dates with the time interval of half a month, one month, and one and a half months.
Results

Estimation of LAI using PVI extracted from Landsat images
[bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: OLE_LINK18]PVI has a stronger spatial relationship (R2 = 0.50, adjusted R2 = 0.50, p < 0.05, see Figure SX1 in Supporting Information) with LAI than other vegetation indices including NDVI (R2 = 0.47, p < 0.05), TSAVI (R2 = 0.46, p < 0.05), ATSAVI (R2 = 0.48, p < 0.05). The spatial linear relationship between PVI and LAI is stationary across locations as indicated by the Koenker BP test (p > 0.05) because p value larger than 0.05 for Koenker BP test indicated the relationship is consistent for all the location in the study area and the pattern of residuals fit the homoscedasticity assumption for linear regression. And residuals from this spatial linear relationship were normally distributed (Jarque-Bera, p > 0.05), which fit another assumption for linear regression (normality of the distribution of residuals).
The maximum growing season in the study area is around late June to early July every year. In 2009, both grassland-shrub vegetation communities along the rivers and grasslands in the study area have higher LAI value in June 23 than the LAI values in August 10 and September 27 (Figure 3) because vegetation in the study area started to senescence from late July to early October which prints in the three LAI maps acquired in 2009 (Figure 3: LAI in 2009-06-03 > LAI in 2009-08-10 > LAI in 2009-09-27). This phenology phenomena for the vegetation in the study area was shown more clearly in the four LAI images measured in 2011 (Figure 3: LAI in 2011-07-15 > LAI in 2011-06-13 > LAI in 2011-07-31 > LAI in 2011-08-16). Vegetation senescence faster in 2007 comparing with year 2009 and 2011 (Figure 3: LAI images in 2007-07-04 and 2007-08-05). The Landsat images for growing season in 2008 and 2010 have cloud cover, which makes them unavailable to record the Phenology signatures during the grazing experiment period in 2008 (Figure 3). The comparisons between the images from maximum growing season (Figure 3: LAI images measured in 2007-07-04, 2009-06-23 and 2011-07-15) showed the largest LAI appeared in 2011 in the study area and the lowest was in 2009 among these three years. Figure 3 (LAI images in 2007-08-05, 2008-08-07, 2009-08-10 and 2011-08-16) also indicated that “LAI in 2011 > LAI in 2009 > LAI in 2008 > LAI in 2007” in the middle senescence season. In the late senescence season, LAI images reveals larger LAI in 2010 comparing to 2009 (Figure 3: LAI image in 2009-09-27 and 2010-09-30).
The effects of temperature, precipitation, grazing intensity and their interaction
The significant variables (cattle density, temperature, precipitation, the interaction between cattle density and temperature, the interaction between temperature and precipitation, and the interaction between temperature, precipitation and cattle density) explained 93.5% of the variation in LAI (Table 1). Among all the significant variables, precipitation explained 65.5% of the variation in LAI, while temperature, the interaction between temperature and precipitation, cattle density, the interaction between cattle density and temperature, and the interaction between cattle density, temperature and precipitation explained 14.5, 9.8, 1.7, 1.4 and 0.5% of variation in LAI, respectively (Table 1). Grazing in the study area and the interaction between grazing, temperature and precipitation has slightly negative relationship with LAI, while climate factors and the interaction between climate factors have positive influence in LAI (Table 1). 
The results from spatial autocorrelation test indicated that the LAI data for each pasture were not spatially autocorrelated at a significance level of 0.01 (see Table SX4 in Supporting Information). However, LAI had significant temporal autocorrelation (R2 = 0.66, p < 0.05, Figure 4). Because of the temporal autocorrelation, the variation in LAI explained by the significant variables among climate variables, grazing and their interactions may be less than the results presented (Table 1); however, the total variation explained by the significant variables does not affect their relative effects.
Discussion 

In northern mixed grasslands, vegetation indices adjusted for soil line parameters, including PVI and ATSAVI, have slightly better ability to predict green vegetation than normal band ratio vegetation indices (e.g. NDVI). This finding is consistent with previous research in the mixed grasslands (He et al. 2007). We also found that the relationship between vegetation indices and LAI is consistent among all the locations within our study area because Koenker BP test indicates a stable spatial relationship between LAI and PVI for different pixels within the study area.
Precipitation had the largest positive effect on LAI, supporting the notion that precipitation is the primary factor determining grassland productivity in semi-arid grasslands. Heisler et al. (2008) found that increasing precipitation during the growing season has a positive influence on ANPP. In semi-arid savannas, precipitation is also the most influential parameter determining vegetation productivity (Fynn and O'Connor 2000). The positive influence of precipitation on LAI in this study was recorded in the estimated LAI maps (Figure 3). In the growing season, the study area has much larger LAI in 2011 rather than year 2007 and 2009 because the accumulated precipitation 40 days before 2011-07-15 (precipitation lag effects: see “Method” section “Calculating temperature and precipitation variables based on their lag effects”) is 127.6 mm while that before 2007-07-04 is 60 mm and that that before 2009-06-23 is 41.7 mm, which also indicates 2007 has larger LAI than 2009 in the growing season is also due to precipitation. Year 2007 has a quicker senescence season because it has the lowest precipitation (21.1 mm) in middle senescence season, comparing to year 2008 (39.1 mm) and 2009 (75.6 mm). In the late senescence season, precipitation also has great impacts in LAI value which was reveals by the comparison between 2009 (12.2 mm) and 2010 (50.8 mm).
[bookmark: OLE_LINK14][bookmark: OLE_LINK19]The significance of this study is to put the interactions between different disturbance or driving factors (in this case: grazing and climate fluctuation) of grasslands under consideration, which is different from the studies test the relationship between each factor and ecosystem response separately (Silletti and Knapp 2002; Gartzia et al. 2016). More importantly, this study catches slight changes in LAI by short term seasonal grazing (early June to the middle of September each year from 2008–2011) when the influence of climate variables (precipitation and temperature) override the impact of grazing, which fill the research gap that grazing effect on vegetation dynamic is not detectable because of the overriding influences of precipitation (Mashiri et al. 2008). In our research, precipitation, temperature and the interaction between them explained over 90% of the relative impact on LAI among climate variables, grazing and their interactions, because semi-arid grasslands with light grazing intensity are sensitive to climate fluctuation. In our study, grazing intensity between 0.24−0.83 AUM ha−1 has negative effects on LAI, but LAI was increasing from 2007 to 2011, probably because of combined effects of climate factors and grazing management. Previous studies have demonstrated that overgrazing in semi-arid grasslands altered vegetation communities and then reduced grassland productivity, which overrode the impact of precipitation (Fynn and O'Connor, 2000). However, our results suggest that climate factors may overcome the slight negative effects of grazing. In our study, this may be because our sites were grazed for only 4 years. Light grazing has positive influence in grassland ecosystem, such as enhancing nutrient recycling, increasing species richness and productivity by increasing light intensities under layer, perhaps explaining enhanced LAI in our study (McNaughton 1979; Patton et al. 2007). Other studies showed that long term light stocking rates do not affect rangeland condition, but long term moderate stocking rates reduce rangeland condition (Dormaar et al. 1989; Douwes and Willms 2012). Nonetheless, even though our study area was grazed for only four years, the negative impact of grazing was statistically significant. Similarly, Dormaar et al. (1989) also observed effects of cattle grazing on vegetation structure after only a few years of grazing. Further research is required to determine the temporal threshold after which effects of grazing on vegetation structure might change or reverse. Cattle density may also interact with temperature as the changes in temperature might alter animal behavior (Fynn and O'Connor 2000). 
Temporal autocorrelation might be caused by seasonal effects related to phenology (Dente et al. 2013). The temporal lag variable with the one-month lag of LAI in 2007 (year prior to livestock reintroduction) was lower the LAI, but, the value of the lag variable and LAI was similar during 2008–2011 (years following livestock reintroduction, Figure 4). However, it seems likely that this was driven by climate variability instead of grazing intensity, because both control and grazed pastures cluster together with the same year and the same time interval. Previous studies also suggest that precipitation is the primary factor which influence the grassland productivities under light grazing intensity (Milchunas et al. 1994).

Conclusions 

In semi-arid mixed-grass prairies of the Northern Great Plains, 1) precipitation has large effects on LAI; 2) temperature and the interaction between temperature and precipitation had a moderate effect on LAI; and 3) grazing intensity and the interaction between grazing and climate variables has a low effect on LAI. However, grassland response to grazing is still measurable, suggesting that grazing management may alter vegetation and affect habitat suitability for many grassland species. 
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[bookmark: _Toc441928713]Table 1 Percent of variability in LAI explained by climate, management and their interactions in southern Saskatchewan, Canada, 2007-2011 (Results based on the climate data from weather station Opheim were presented in Supporting Information)
	Val Marie Southeast
	Standardized coefficient
	Sum Sq
	F
	P
	Explained variation
	Relative effects

	CattleDensity
	-0.080 
	0.12
	25.96
	<0.001
	1.7%
	1.8%

	Temperature
	0.020 
	1.03
	221.08
	<0.001
	14.5%
	15.5%

	Precipitation
	0.991 
	4.69
	1002.60
	<0.001
	65.5%
	70.1%

	CattleDensity:
Temperature
	0.010 
	0.10
	21.36
	<0.001
	1.4%
	1.5%

	CattleDensity:
Precipitation
	-0.018 
	0.00
	0.15
	0.695 
	0.0%
	

	Temperature:
Precipitation
	0.308 
	0.70
	150.24
	<0.001
	9.8%
	10.5%

	CattleDensity:
Temperature:
Precipitation
	-0.095 
	0.04
	8.24
	0.005 
	0.5%
	0.6%

	Residuals
	
	0.47
	
	
	6.5%
	

	Total
	
	7.16
	
	
	93.5%
	100.0%




Figures Legends

[bookmark: OLE_LINK9]Figure 1 Study area (Landsat TM image was acquired in September 3rd, 2006; the dark areas are burn scars from a 2006 wildfire).
[bookmark: _Toc441928789]Figure 2 The methodology devloped in this study (the linear regression model in R was used to evaluate the percent of variablity in LAI explained by climate, grazing and their interactions; LAI was measured by the calibration of field measured LAI and vegetation indices; temperature and precipitation data was calculated under the consideration of lag effects with 10 and 40 days respectively).
Figure 3 The simulated maps of Leaf Area Index (LAI) using Perpendicular Vegetation Index (PVI) based on the combining data source of Landsat images and field measured LAI. Grazing experiment within nine pastures from early June to the middle of September each year from 2008–2011. Refer to Figure 1 for more information about grazing intensity for each pasture. 
Figure 4 Temporal autocorrelation of the mean value of Leaf Area Index (LAI) for each pasture (pasture 1–9, Figure 1) in southern Saskatchewan, Canada, 2007–2009.
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