Beneficial Effects of Germinated Brown Rice on Cardiovascular Risk Factors in LDL Receptor Knockout Mice

by

Nora Ghazzawi

A Thesis Submitted to the Faculty of Graduate Studies of the University of Manitoba

In Partial Fulfillment of the Requirements for the Degree of Masters of Science

Department of Human Nutritional Sciences, Faculty of Agricultural and Food Science

University of Manitoba

Copyright © 2017 by Nora Ghazzawi
ABSTRACT

Based on accumulating evidence, adequate intake of whole grains is associated with reduced cardiovascular disease CVD risk. Germinated brown rice (GBR) has been used in East Asian countries as an alternative grain. Preliminary studies suggest GBR has potential health benefits, including reducing CVD risk, but the mechanism remains unclear. The hypothesis of the project is that long-term consumption of GBR would reduce atherogenic risk factors in low-density lipoprotein receptor knockout (LDLr-KO) mice. To test the hypothesis, three groups of male LDLr-KO mice were fed with one of the following diets for 24 weeks: (a) commercial mouse chow, used as the control diet; (b) chow was replaced with 60% (w/w) Chinese white rice (CWR); and (c) chow was replaced with 60% (w/w) GBR. All diets were supplemented with 0.06% (w/w) dietary cholesterol to accelerate atherogenesis. Blood samples, hearts, livers and feces were collected and used for biochemical and histological analyses. The results demonstrated that no significant difference was detected in body weights, plasma or fecal lipid profiles and antioxidant enzyme activities among groups. However, GBR consumption significantly decreased atherosclerotic lesion ($P = 0.003$) in the aortic roots as compared with that in the CWR group, but there was no significant difference as compared with that in the control group ($P = 0.4$). In addition, GBR significantly decreased monocyte adhesion to the aorta in LDLr-KO mice as compared to that in the CWR group ($P=0.0001$), but not with the control group. These data suggested that GBR may be beneficial for the prevention of vascular inflammation and atherogenesis in LDLr-KO mice. Additional studies in animal models and humans may further investigate the mechanisms of the beneficial effects of GBR on vascular inflammation and atherogenesis.
ACKNOWLEDGMENTS

This work was always made easier and more pleasant by the generous support and assistance of both individuals and institutions.

I owe a debt of gratitude to my supervisor, Dr. Mohammed Moghadasian, for his great efforts, advice, patience, encouragement and support throughout my research. The completion of this research would not have been possible without his encouragement and constant guidance.

I express my warm thanks to my co-supervisor, Dr. Garry Shen, for his supervision, encouragement and support throughout my program, and grants or in-kind support by Canadian Diabetes Association and Yuanwang Fuqi Agricultural Products Inc., through Dr. Shen, on the experiments using germinated brown rice. Dr. Shen kindly shared his ideas and experience on laboratory analysis and allowed me to learn many advanced analytical skills in his laboratory. I would also like to thank my committee members, Dr. Trust Beta and Dr. Michael Eskin for taking their time to advise me during the work on my thesis.

Also, I am thankful to my colleagues at Dr. Moghadasian's Lab. Special thanks to Khuong Le, the Pathology Research Lab manager, Kabo Masisi, who supported, assisted and trained me from head to toe in mastering animal research, as well as in a variety of other laboratory experiments. I also would like to acknowledge Dr. Ruozhi Zhao in Dr. Shen’s laboratory for technical support and sharing his data for my thesis work.

I would like to thank the Canadian Centre for Agri-Food Research in Health and Medicine (CCARM) for providing us with a great research facility. Finally, I would like to express my deepest sincere thanks to The Ministry of Higher Education in Saudi Arabia and the Saudi Arabian Culture Bureau in Canada for their generous financial support, which give me the opportunity to achieve my goals.
DEDICATION

For the four pillars in my life: GOD, parents, husband and kids.

GOD, I am very speechless for all the joys you give me in my life.

Mom and Dad, I am extremely proud to dedicate this work to both of you for your sincere praying and great help throughout my study.

My husband and my kids, who stand with me shoulder-to-shoulder, support me and absolutely love me. I am pleased to call you Unknown Soldiers because without your unconditional love, help and support, this work would not have been done.
Table of contents

ABSTRACT ... II

ACKNOWLEDGMENTS ... III

DEDICATION ... IV

TABLE OF CONTENTS ... V

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS .. X

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 4
 2.1 CARDIOVASCULAR DISEASES ... 4
 2.2 ATHEROSCLEROSIS ... 4
 2.3 CHOLESTEROL .. 5
 2.3.1 Chylomicrons 9
 2.3.2 High-density lipoprotein 9
 2.3.3 Low-density lipoprotein 9
 2.4. WHOLE GRAINS .. 10
 2.4.1. Whole grains and their phytochemicals 12
 2.5. GERMINATED BROWN RICE ... 13
 2.5.1 Nutritional composition of GBR 16
 2.5.2 Potential health benefits of germinated brown rice 19
 2.6. LOW-DENSITY LIPOPROTEIN RECEPTOR KNOCKOUT (LDLR-KO) MICE 23
 2.7. ANTIOXIDANT PROPERTIES OF GBR .. 23

3. RESEARCH PLAN ... 24
 3.1. STUDY RATIONALE ... 24

4. STUDY HYPOTHESIS AND OBJECTIVES: ... 25
4.1. HYPOTHESIS ... 25
4.2. OBJECTIVES .. 25

5. MATERIALS AND METHODS ... 26
 5.1. ANIMALS AND DIETS: .. 26

6. DATA COLLECTION .. 29
 6.1. FOOD INTAKE AND BODY WEIGHT .. 29
 6.2. BLOOD SAMPLING AND TISSUE COLLECTION ... 29
 6.3. TOTAL CHOLESTEROL (TC) .. 29
 6.4. TRIGLYCERIDES (TG) .. 30
 6.5. HDL-CHOLESTEROL .. 30
 6.6. LDL-CHOLESTEROL .. 30
 6.7. VLDL-CHOLESTEROL ... 31
 6.8. GLUTATHIONE PEROXIDE (GPx) ASSAY ... 32
 6.9. CATALASE (CAT) ASSAY .. 33
 6.10. SUPEROXIDE DISMUTASE (SOD) ASSAY ... 33
 6.11. FECAL LIPID EXTRACTION ... 34
 6.11.1 Derivatization of fecal sterols .. 34
 6.12. HISTOLOGICAL EXAMINATION ... 35
 6.13. MONOCYTE ADHESION TO MOUSE AORTA .. 36
 6.14. STATISTICAL ANALYSIS ... 37

7. RESULTS ... 37
 7.1. FOOD INTAKE, BODY WEIGHTS AND TISSUE WEIGHTS 37
 7.2. TOTAL CHOLESTEROL CONCENTRATIONS .. 41
 7.3. TOTAL TRIGLYCERIDE CONCENTRATIONS .. 41
 7.4. PLASMA LIPOPROTEIN PROFILES .. 41
 7.5. ANTIOXIDANT ENZYME ACTIVITIES ... 45
 7.6. TOTAL FECAL LIPID CONCENTRATIONS .. 49
 7.6.1. Fecal sterols ... 49
 7.7. ATHEROSCLEROTIC LESION SIZE .. 52

8. DISCUSSION ... 56
8.1. Effects of dietary GBR administration .. 56
8.2. Food intake, body weight and abdominal fat ... 56
8.3. Plasma and fecal lipid profiles ... 57
8.4. Histology and atherosclerosis development ... 58
8.5. Strengths and limitations ... 59
8.6. Recommendations for future research .. 60
8.7. Conclusions ... 60

REFERENCES .. 62

APPENDIX: COPYRIGHT LICENSE FOR USE OF TABLES FROM PUBLISHED ARTICLES ... 74
LIST OF TABLES

TABLE 1: Common sources of dietary cholesterol ... 7

TABLE 2: Recommended numbers of servings for grain products per day 11

TABLE 3: Concentrations of ASG, GABA, oryzanol and phenolics in germinated brown rice (GBR), compared with in white rice (WR) and brown rice (BR) 18

TABLE 4: Physiological effects of GBR .. 21

TABLE 5: Summary of the experimental groups and their diets... 28

TABLE 6: Organ weights (g) of LDLr-KO mice after 20 weeks of experimental diet treatments .. 40

TABLE 7: Amounts of individual fecal sterols (mg/g feces) from LDLr-KO mice after 20 weeks of experimental diet treatments ... 51
LIST OF FIGURES

Figure 1: Cholesterol structure .. 6

Figure 2: Flow chart illustrating GBR processing .. 15

Figure 3: Experimental design of this study ... 27

Figure 4: Food intakes of LDLr-KO mice after 20 weeks of experimental diet treatments. The mice fed with GBR had higher food intakes at weeks 4, 12 and 20 as compared to mice in the control group ... 38

Figure 5: Mean body weights of LDLr-KO mice after 20 weeks of experimental diet treatments. All groups showed consistent weight gains .. 39

Figure 6: Plasma total cholesterol concentrations ... 42

Figure 7: Plasma total triglyceride concentrations .. 43

Figure 8: Plasma lipoprotein profiles .. 44

Figure 9: Glutathione peroxide activities .. 46

Figure 10: Catalase activities .. 47

Figure 11: Superoxide dismutase activities .. 48

Figure 12: Total fecal lipid concentrations for LDLr-KO mice after 20 weeks of experimental diet treatments ... 50

Figure 13: Atherosclerotic lesion sizes ... 53

Figure 14: Histopathology of aortic roots from LDLr-KO mice. Control group (Panel A); Chinese white rice group (Panel B); germinated brown rice group (Panel C). 54

Figure 15: Monocyte adhesion ... 55
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN-93G</td>
<td>American Institute of Nutrition</td>
</tr>
<tr>
<td>ASG</td>
<td>Acylated steryl glycoside</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BR</td>
<td>Brown rice</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CNTRL</td>
<td>Control</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular diseases</td>
</tr>
<tr>
<td>CWR</td>
<td>Chinese white rice</td>
</tr>
<tr>
<td>DF</td>
<td>Dietary fiber</td>
</tr>
<tr>
<td>FA</td>
<td>Ferulic acid</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-amino-butyric acid</td>
</tr>
<tr>
<td>GAD</td>
<td>Glutamate decarboxylase</td>
</tr>
<tr>
<td>GAE/gdw</td>
<td>Gallic acid equivalent/dry weight</td>
</tr>
<tr>
<td>GBR</td>
<td>Geminated brown rice</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's balance salt solution</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HF</td>
<td>High fat</td>
</tr>
<tr>
<td>HFD</td>
<td>High fat diet</td>
</tr>
<tr>
<td>HF-GB</td>
<td>High fat with germinated brown rice</td>
</tr>
<tr>
<td>HF-GW</td>
<td>High fat with germinated white rice</td>
</tr>
<tr>
<td>HF-NB</td>
<td>High fat with normal brown rice</td>
</tr>
<tr>
<td>HF-NW</td>
<td>High fat with normal white rice</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilane</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LDLr-KO</td>
<td>LDL Receptor Knockout mice</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen gas</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate hydrogen</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>NC</td>
<td>Normal control</td>
</tr>
<tr>
<td>ND</td>
<td>Normal diet</td>
</tr>
<tr>
<td>PR</td>
<td>Polished rice</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
</tbody>
</table>

xi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>High cholesterol diet with simvastatin</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TC</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TMCS</td>
<td>Trimethylchlorosilane</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>WG</td>
<td>Whole grains</td>
</tr>
<tr>
<td>WR</td>
<td>White rice</td>
</tr>
</tbody>
</table>
1. Introduction

Cardiovascular diseases (CVD) may contribute to one-third of morbidities and mortalities in Canada, and their prevalence is expected to increase in the next decade most likely because of increasingly sedentary lifestyles (Genest et al., 2009). According to Public Health Agency of Canada, in 2007, 1.3 million Canadians aged ≥12 years had heart disease, while 317,500 Canadians were living with stroke (Public Health Agency of Canada, 2009). CVD are chronic diseases resulting from the interaction of health behaviors, genetics and environmental factors. CVD can be reduced by quitting cigarette smoking, performing regular physical activity, stress management, healthy nutrition and weight control, as well as by early recognition and treatment of high blood pressure, diabetes and hypercholesterolemia (Pearson, 2011).

Hypercholesterolemia is a classical risk factor for CVD (Glass & Witztum, 2001). Cholesterol lowering is the most common management for atherosclerotic CVD (Kane et al., 1990). High cholesterol levels in the plasma can be decreased by suppression of cholesterol absorption within the intestine, thereby preventing atherosclerosis development (Moghadasian et al., 1997). Lowering plasma cholesterol can be achieved by different types of foods, including grains (Wolff et al., 2011). Consumption of whole grains was shown to reduce high cholesterol concentrations in the plasma (Chou et al., 2009; Davis, 2014; Lichtenstein et al., 1994).

Accumulating evidence suggested that intake of whole grains is a protective factor against CVD risk; the exact mechanisms however, are still not clearly understood (de Munter et al., 2007; Jacobs & Gallaher, 2004; Liese et al., 2003; Sahyoun et al., 2006; Steffen et al., 2003). Whole grain products are rich sources of fiber, minerals, small amounts of vitamin E (Liese et al., 2003), B vitamins and phytochemicals (Davis, 2014). Further, potential anti-carcinogenic
and cardio protective properties of those components can lead to beneficial impacts on health, for example, decreased inflammation and improved immune system (Chen et al., 2016). Whole grains include barley, oats, rice, wheat and maize (Hu, 2003).

Intake of brown rice (BR) decreases cholesterol and triglyceride levels and body weight gain, because it is rich in vitamins, fibers, fatty acids and minerals (Quagliariello et al., 2016). Furthermore, BR consumption has beneficial health effects on diabetes, chronic inflammation, cancer and heart disease because of its bioactive compounds, including tocopherols, tocotrienols, \(\gamma\)-oryzanol, phytic acid and other phenolic compounds (Jun et al., 2012). Germination of BR further increases its nutritional and functional values. Over the past few decades, there has been an increasing demand for natural foods containing highly active compounds with antioxidant potential. As a result, products such as germinated brown rice (GBR) gradually became popular in East Asia for health improvement. In addition, GBR is a good example of a functional food because of its ability to reduce the risk of a number of diseases and improve health (Cornejo et al., 2015).

GBR is created by a biological process promoted by soaking brown rice in water, under specific temperature and certain humidity conditions, for several hours (Chen et al., 2016). GBR is popular because it contains considerably more gamma-amino-butyric acid (GABA) than brown rice does (Liu et al., 2013). Also, GBR is a good source of dietary fiber, inositol, ferulic acid, phytic acid, tocotrienols, magnesium, potassium, zinc and \(\gamma\)-oryzanol (Latifah et al., 2010). GBR was reported to have health benefits including weight reduction, anti-hypertension, anti-depression, hypocholesterolemic and anti-diabetic actions, improved learning and memory and anti-cancer effects (Cho & Lim, 2016).
There have been few studies on effectiveness of GBR against risk factors for atherosclerosis (Choi et al., 2006; Ho et al., 2012; Hsu et al., 2008; Lee et al., 2007; Lo et al., 2016). Therefore, the purpose of this study was to investigate the effectiveness of GBR on atherosclerosis risk factors in LDLr-KO mice. Plasma and fecal lipid profiles were analyzed to assess effects of GBR on lipid metabolism. Moreover, activities of endogenous antioxidant enzymes, such as glutathione peroxide, catalase and superoxide dismutase, were determined in plasma samples. Also, histological examination of the aortic roots and atherosclerotic lesion area calculations were performed.

White rice (WR), the most widely consumed type of rice, was used as a control treatment diet. This is because WR is a commonly used refined grain in the daily diet, served either as a main rice dish, side dish or ingredient in various mixed dishes. It is also sometimes ground into WR flour to make products, such as rice crackers and pasta.
2. Literature review

2.1 Cardiovascular diseases

CVD refers to a group of disorders of the heart and blood vessels, including atherosclerotic coronary heart disease (CHD), cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep vein thrombosis and pulmonary embolism (Genest et al., 2009; WHO, 2015). CVD is one of the major causes of illness and death in the world (Stocker, 2004). In Canada, in the past several decades, the number of deaths resulting from CHD was decreased by nearly 40% (Genest et al., 2009). Risk factors contributing to CHD can be divided into two classes: modifiable and non-modifiable risk factors. Modifiable risk factors for CHD include smoking, physical inactivity, alcohol abuse, unhealthy diet, diabetes mellitus, obesity, high blood pressure and hypercholesterolemia. Non-modifiable risk factors include age, gender and genetics (Buttar et al., 2005).

2.2 Atherosclerosis

Atherosclerosis is the primary underlying pathology of CHD and the most prevalent cause of death and illness in the Western world. Atherosclerotic CHD develops when cholesterol-rich plaque builds up in the arterial walls, narrowing arteries and hindering blood flow (Soltero-Perez, 2002). Elevated circulating cholesterol concentrations were identified as a primary risk factor for atherosclerosis. A positive relationship of atherosclerosis with elevated low density lipoprotein (LDL) cholesterol levels and its inverse association with high density lipoprotein (HDL) cholesterol concentrations were detected in CHD patients (Mascarenhas-Melo et al., 2013).
2.3 Cholesterol

Cholesterol is a type of sterol present in plasma or cells, with crucial functions in cellular membrane, bile acids and vitamin D metabolism. In addition, cholesterol is a precursor of sterol hormones (Bellows & Moore, 2012). It contains 27 carbon atoms, 46 hydrogen and one hydroxyl group and, also, is an unsaturated lipid with 1 double bond. Figure 1 shows the chemical structure of cholesterol. Cholesterol in the body is derived from both endogenous and dietary sources. Approximately 30% of this cholesterol comes from diet and the other 70% is produced in vivo. Table 1 summarizes the major sources of dietary cholesterol (Kapourchali et al., 2016). A high blood cholesterol level is a significant risk factor for CHD. Some genetic disorders, such as abnormalities in LDL receptors can increase blood cholesterol levels, a condition commonly known as familial hypercholesterolemia (Varbo et al., 2014). As a result, Health Canada, (2011) recommended that dietary cholesterol intake not to exceed 300 mg/day for healthy people and 200 mg/day for cardiovascular patients (Health Canada, 2011a). Cholesterol is hydrophobic, therefore, is transported in the blood by incorporation into lipoproteins. The four major lipoproteins in humans are chylomicrons, high density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) (Varbo et al., 2014).
Figure 1: Cholesterol structure

Adopted with permission from Miao et al., (2002)
Table 1: Common sources of dietary cholesterol

<table>
<thead>
<tr>
<th>Meat</th>
<th>Food</th>
<th>Cholesterol content (per 100 g serving)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>Ground beef, extra lean, well done</td>
<td>78 mg</td>
</tr>
<tr>
<td></td>
<td>Brain, fried</td>
<td>1995 mg</td>
</tr>
<tr>
<td></td>
<td>Liver, fried</td>
<td>381 mg</td>
</tr>
<tr>
<td></td>
<td>Tenderloin, lean, broiled</td>
<td>78 mg</td>
</tr>
<tr>
<td></td>
<td>Animal fat</td>
<td>109 mg</td>
</tr>
<tr>
<td>Pork</td>
<td>Bacon, fried</td>
<td>113 mg</td>
</tr>
<tr>
<td></td>
<td>Brain, braised</td>
<td>2552 mg</td>
</tr>
<tr>
<td></td>
<td>Liver, fried</td>
<td>355 mg</td>
</tr>
<tr>
<td></td>
<td>Ham, cured, lean, roasted</td>
<td>55 mg</td>
</tr>
<tr>
<td></td>
<td>Animal fat</td>
<td>95 mg</td>
</tr>
<tr>
<td>Chicken</td>
<td>Breast or thigh, skinless, roasted</td>
<td>75 mg</td>
</tr>
<tr>
<td></td>
<td>Egg, whole, poached</td>
<td>364 mg (approx. 2 large eggs)</td>
</tr>
<tr>
<td></td>
<td>Egg yolk, cooked</td>
<td>119 mg (1 yolk = 17g)</td>
</tr>
<tr>
<td></td>
<td>Liver, fried</td>
<td>564 mg</td>
</tr>
<tr>
<td></td>
<td>Animal fat</td>
<td>85 g</td>
</tr>
<tr>
<td>Fish/Seafood</td>
<td>Atlantic salmon, farmed, baked</td>
<td>63 mg</td>
</tr>
<tr>
<td></td>
<td>Walleye, baked</td>
<td>110 mg</td>
</tr>
<tr>
<td></td>
<td>Shrimp, boiled</td>
<td>195 mg</td>
</tr>
<tr>
<td></td>
<td>Snow crab, boiled</td>
<td>71 mg</td>
</tr>
<tr>
<td></td>
<td>Lobster, boiled</td>
<td>72 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Other</td>
<td>Lamb, shank, lean,</td>
<td>70 mg</td>
</tr>
<tr>
<td></td>
<td>cooked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caribou, cooked</td>
<td>109 mg</td>
</tr>
<tr>
<td></td>
<td>Deer, roasted</td>
<td>112 mg</td>
</tr>
<tr>
<td></td>
<td>Bison, roasted</td>
<td>82 mg</td>
</tr>
<tr>
<td></td>
<td>Goose, meat only,</td>
<td>96 mg</td>
</tr>
<tr>
<td></td>
<td>roasted</td>
<td></td>
</tr>
</tbody>
</table>

Adopted with permission from Kapourchali et al., (2016)
2.3.1 Chylomicrons

Chylomicrons are triglyceride-rich lipoproteins formed after a meal in the small intestine. Therefore, people who are fasting may not have chylomicrons in their serum. The central lipid core of chylomicrons primarily consists of triglycerides and monoglycerides (85%–92%), cholesterol (1%–3%), phospholipids (6%–12%) and traces of fatty acids (Julve et al, 2016). The main function of chylomicrons is to transport triglycerides and other fats to the liver and other tissues in the body.

2.3.2 High-density lipoprotein

Increasing HDL-cholesterol levels was found to be negatively associated with cardiovascular risk. Therefore, HDL is known as "good cholesterol" (Remaley, 2015). HDL is a primary extracellular acceptor, thus promoting efflux of cholesterol via membrane transporters (AbuMweis & Jones, 2008). The major role of HDL is to transport cholesterol from the peripheral tissues to the liver. This is the main reason HDL cholesterol levels are inversely correlated with the risk of atherosclerosis (American Heart Association, 2016). The normal HDL cholesterol level in healthy people is 1.0 mmol/L for men and 1.3 mmol/L for women. Low HDL levels increase the risk of CHD in adults (Health Canada, 2013a).

2.3.3 Low-density lipoprotein

Low-density lipoprotein (LDL) carries cholesterol from the liver to various tissues. In the bloodstream, LDL is formed from very low density lipoproteins (VLDL) (Gitlin et al., 1958; Fernández-Higuero et al., 2014). LDL levels should be less than 3.4mmol/L (Health Canada,
Higher levels of LDL cholesterol may result in atherosclerotic plaques in the arterial walls, leading to CHD (Chung & Vafai, 2014).

2.4. Whole grains

U.S. Food and Drug Administration (FDA) and Health Canada define whole grains (WG) as "cereal grains that consist of the intact, ground, cracked or flaked kernel, which includes the bran, the germ and the innermost part of the kernel (the endosperm)." Major sources of WG are wheat, oatmeal, corn, rice, barley, rye and buckwheat. These grains can be either whole or refined products (FDA, 2006; Health Canada, 2013b). Table 2 summarizes the daily-recommended intake of WG. Medical studies showed that increasing daily intake of WG reduced the risk of diabetes mellitus, obesity, high blood pressure, colorectal cancer and CVD (Johnsen et al., 2015). WG kernels are divided into three parts, the bran, the germ and the endosperm. However, in refined grains, the germ and bran are removed. Thus, refined grains have fewer nutrients because the germ and the bran contain dietary fiber, vitamins, minerals and phytonutrients, while the endosperm contain most of the starch, which provides energy (Willem van der Kamp et al., 2014; Steffen et al., 2003). Therefore, it is highly recommended that whole grain products be consumed.
Table 2: Recommended numbers of servings for grain products per day

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>Grain products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Children</td>
<td></td>
</tr>
<tr>
<td>2–3</td>
<td>3</td>
</tr>
<tr>
<td>4–8</td>
<td>4</td>
</tr>
<tr>
<td>9–13</td>
<td>6</td>
</tr>
<tr>
<td>Teens</td>
<td></td>
</tr>
<tr>
<td>14–18</td>
<td>7</td>
</tr>
<tr>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>19–50</td>
<td>8</td>
</tr>
<tr>
<td>51+</td>
<td>7</td>
</tr>
</tbody>
</table>

Adopted with permission from Health Canada, (2013b)
2.4.1. Whole grains and their phytochemicals

Phytochemicals are bioactive non-nutrient plant compounds present in fruits, vegetables, whole grains and other plant foods. The most essential groups of phytochemicals in WG are phenolic compounds including ferulic acid, syringic acid, caffeic acid, vanillic acid, p-coumaric acid, anthocyanidins, sinapic acid, flavonols, quinines and flavones (Liu, 2007), also carotenoids, vitamin E, γ-oryzanol, dietary fiber and β-glucan (Okarter & Liu, 2010). Adequate intakes of WG are associated with a decreased risk of major chronic diseases like CVD, diabetes, obesity and cancers (Jonnalagadda et al., 2011). Of these phytochemicals, ferulic acid (FA) is found in most grains in its bound form, accounting for 70%–90% of the phenolic acid. This bound form resists digestion in the upper gastrointestinal tract and has limited bioavailability (Turner et al., 2015). Moreover, FA was reported to decrease oxidative stress (Yogeeta et al., 2006). However, food processing, such as milling, pasteurization, fermentation and thermal processing, help to release the bound phenolic acids and, hence, increase bio-accessibility of these phytochemicals (Ragaee et al., 2014).

Furthermore, WG is a good source of dietary fiber (DF). DF is the edible part of plants and is resistant to digestion and absorption in humans. Also, DF undergoes partial or whole fermentation in the large intestine (Trowell, 1976). Consumption of adequate amounts of DF is strongly recommended to reduce the risks of CVD, high blood pressure, high blood glucose, obesity and certain gastrointestinal disorders (Anderson et al., 2009). The most important components of DF are cellulose, hemicelluloses, lignin and β-glucan (Okarter & Liu, 2010).

In addition, WG contains vitamin E (α-, β-, γ-, and δ-tocopherols and tocotrienols), mostly in the germ, which is removed during the refining process (Jensen et al., 2004). Also, each particular grain contains different concentrations of vitamin E (Do et al., 2015). Vitamin E
acts as a robust, fat-soluble antioxidant in the human body and has important properties, including anticancer, hypocholesterolemic, cardio-protective, neuro-protective and gastro-protective activities (Yu et al., 2016).

WG also contains phytosterols and γ-oryzanol, with different types and amounts depending on the type of WG (Trautwein et al., 2003). Phytosterols are also found in some vegetables and fruits, vegetable oils, seeds and nuts (Moghadasian & Frohlich, 1999). Phytosterols decrease cholesterol absorption because their structures are similar to that of cholesterol, enabling them to compete with cholesterol for micelle formation (Calpe-Berdiel et al., 2009). γ-oryzanol, abundant in rice bran oil, is a ferulic acid esterified sterol (Sawadikiat & Hongsprabhas, 2014).

2.5. Germinated brown rice

Germination is a biological procedure caused by stimulation of the remaining enzymes (Cho & Lim, 2016). BR germination involves soaking the rice in water to develop sprouts and enhance nutrient levels. This process also improves the texture of the BR, when cooked (Xu et al., 2012). GBR was marketed beginning in 1995 (Cornejo et al., 2015). In the 1970s, Japanese people consumed BR in abundance because of its richness in nutrients, but it was commonly prepared in a pressure cooker, giving it poor texture and little flavor. Therefore, GBR offered a solution, because it can be cooked in a normal rice cooker with improved organoleptic properties. BR can be germinated by soaking it in warm water (35–40 °C) for 10–12 hours. To prevent spoilage, the water should be changing every 3–4 hours and the temperature should be maintained. After this soaking, the rice is kept under moist conditions for 20–24 hours. At this point, a 0.5–1-mm-long sprout will grow. Figure 2 illustrates the processing of GBR. The
moisture is important for germination of BR and there are two methods providing sufficient moisture. One is simply soaking the BR in water and the other is a temporary immersion, followed by atmospheric germination. The process of atmospheric germination can produce longer roots and sprouts because it facilitates a higher degree of germination than the simple water soaking method (Lu et al., 2010).
Soaking BR in warm water
35–40 °C 10–12 h

Changing water
every 3–4 h

Draining water
20–24 h

0.5–1-mm-long sprout

Figure 2: Flow chart illustrating GBR processing
2.5.1 Nutritional composition of GBR

During germination, the nutritional contents of brown rice are completely changed. GBR contains GABA, dietary fiber, inositol, ferulic acid, phytic acid, tocotrienols, magnesium, potassium, zinc, γ-oryzanol and prolyl endopeptidase inhibitor (Latifah et al., 2010). In addition, GBR contained more total ferulic acid (126%), total dietary fiber (145%), soluble dietary fiber (120%) and insoluble dietary fiber (150%) than BR (Ohtsubo et al., 2005), as well as fewer calories, sugar and fat than BR (Trachoo et al., 2006). Table 3 shows that several bioactive compound concentrations in GBR were significantly higher than those in either BR or WR (Imam et al., 2013). Furthermore, GBR has higher protein content than BR, which potentially attributes to the synthesis of enzymes during germination, and the production of amino acids during protein synthesis (Uwaegbute et al., 2000).

GBR is a good source of GABA. GABA, a free amino acid widespread in nature, is the main inhibitory neurotransmitter in the mammalian central nervous system (Komatsuzaki et al., 2007). GABA is produced primarily by decarboxylation of L-glutamic acid, catalyzed by the enzyme glutamate decarboxylase (GAD) (Mayer et al., 1990). Low GABA levels are associated with anxiety, depression, hyperactivity, epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, stiff man syndrome and various other motor diseases (Awad et al., 2007). Furthermore, GABA has beneficial effects on human health, including blood pressure lowering (Saikusa et al., 1994) and inhibition on cancer cell proliferation (Komatsuzaki et al., 2007).

GBR also contains potassium, magnesium and zinc. Potassium is the most important intracellular ion in the body. A lack of potassium is uncommon because it is present in most foods, including all meats, some types of fish, fruits, vegetables, legumes, dairy products and cereals. Potassium decreases heart failure and is crucial for skeletal and smooth muscle
contraction (Lanham-New et al., 2012). Moreover, magnesium is the second most abundant intracellular ions, after potassium. Half the total magnesium in the body is in the bones and the other half in soft tissue, with only 1% in the blood. A lack of magnesium is associated to obesity, diabetes mellitus, CVD, high blood pressure and cancer (Crosby et al., 2013). In addition, zinc is an essential trace metal for humans. Whole grain products are good sources of zinc, as are shellfish, red meat, beans and nuts. Zinc is involved in improving immune function and bone health. It also was reported to decrease cancer and oxidative stress (Huang et al., 2015).

Furthermore, γ-oryzanol is one of the most important nutritional compound in GBR (Jayadeep & Malleshi, 2011). Free ferulic acids are released during its digestion and can induce the biological activity of γ-oryzanol (Mancuso & Santangelo, 2014). The health benefits of γ-oryzanol were demonstrated. For example, it decreases high cholesterol levels by inhibiting cholesterol absorption (Lichtenstein et al., 1994). It also has antioxidant, anticancer (Hirose et al., 1994), anti-diabetic, and anti-inflammatory properties (Sohail et al., 2016).
Table 3: Concentrations of ASG, GABA, oryzanol and phenolics in germinated brown rice (GBR), compared with white rice (WR) and brown rice (BR)

<table>
<thead>
<tr>
<th>Bioactive compound</th>
<th>GBR</th>
<th>BR</th>
<th>WR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASG (mg/g)</td>
<td>0.465 ± 0.055</td>
<td>Undetected</td>
<td>Undetected</td>
</tr>
<tr>
<td>GABA (mg/g)</td>
<td>0.36 ± 0.04</td>
<td>0.09 ± 0.02</td>
<td>Undetected</td>
</tr>
<tr>
<td>Phenolics (GAE/gdw)</td>
<td>20.5 ± 0.01</td>
<td>3.17 ± 1.68</td>
<td>0.60 ± 0.45</td>
</tr>
<tr>
<td>Oryzanol (mg/100 g)</td>
<td>30.38–64.22</td>
<td>13.01–22.37</td>
<td>Undetected</td>
</tr>
</tbody>
</table>

ASG = acylated steryl glycoside; GABA = gamma amino butyric acid; GAE/gdw = gallic acid equivalent/dry weight
Adopted with permission from Imam et al., (2013)
2.5.2 Potential health benefits of germinated brown rice

GBR and its products are available in China and Japan and have become a common food because of their flavor and nutritional advantages. Many studies reported nutritional value and health benefits of GBR. High levels of GABA, γ-oryzanol, dietary fiber and other antioxidant compounds in GBR reportedly have beneficial physiological effects, such as, anti-hypertension, hypolipidemic as well as decreased risk of cancer, diabetes, CVD, and Alzheimer’s disease (Wu et al., 2013). Therefore, GBR is potentially an effective functional food for decreasing CVD risk by preventing LDL oxidation (Chotimarkorn et al., 2008). GBR also has antihypertensive effects. Its ability to lower high blood pressure may be due to its ferulic acid content, which is increased after germination and was reported to decrease blood pressure in an in vivo study (Ardiansyah et al., 2008).

As noted, GBR decreases cancer risk. Cancer chemoprevention is one way to limit cancer, by ingesting chemicals that lower the risk of carcinogenesis (Steele, 2003). GBR can potentially decrease mutations because of its production of phenolic compounds during germination (Tian et al, 2004). The bran portion of rice grains mostly contains biologically active compounds exhibiting the various chemo-preventive and antitumor properties attributed to rice (Hudson et al., 2000). Furthermore, GABA, enriched in GBR, was reported to inhibit tumor development in small airway epithelium; therefore, GBR extracts enriched in GABA suppressed leukemia cell proliferation and enhanced cancer cell apoptosis (Oh & Oh, 2004).

Furthermore, GBR contains high concentrations of dietary fiber (DF), therefore its consumption decreases blood glucose levels and the incidence of diabetic vascular complications (Seki et al., 2005). In addition to dietary fiber, GABA produced during germination of BR and
the vitamins, minerals and unknown bioactive lipids in the bran and the germ layer of GBR may also be associated with decreased blood glucose and diabetic complications (Chou et al., 2009).

GBR also decreases risk of CVD. High blood pressure and LDL cholesterol are intermediary biomarkers for assessing CVD risk and GBR has the beneficial effects of lowering both blood pressure and LDL cholesterol. As a result, GBR was implicated in CVD prevention (Kendall et al., 2010). Regular intakes of GBR have beneficial effects on increasing metabolism in the brain, preventing headaches, and decreasing Alzheimer’s disease risk (Chanlat et al., 2011). Table 4 illustrates various physiological effects of GBR, such as blood pressure regulation and decreased obesity and blood cholesterol levels in vivo and in vitro (Cho & Lim, 2016).
<table>
<thead>
<tr>
<th>Physiological effects</th>
<th>Subjects</th>
<th>Dietary interventions</th>
<th>Main results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-obesity</td>
<td>Obese, hypercholesterolemia-induced male Sprague-Dawley rats</td>
<td>AIN-76 (lard 15%, Ch 0.5%); WR (50% diet), BR (50% diet), or GBR (50% diet), substitution in AIN-76</td>
<td>↓TG, TC, HDL-Ch, total lipids (liver), ↑Fecal excretion of Ch, lipids?, TG</td>
<td>(Choi et al., 2006)</td>
</tr>
<tr>
<td>Hypotensive</td>
<td>Spontaneously hypertensive rats</td>
<td>AIN-76; BR (50% diet) or GBR (50% diet), substitution in AIN-76</td>
<td>↓FER, SBP, TG</td>
<td>(Choi et al., 2006)</td>
</tr>
<tr>
<td>Antidepressant-like</td>
<td>Male ICR mice</td>
<td>AIN-93G; WR or GBR substitution for corn starch in AIN-93G</td>
<td>↓Immobility time (forced swimming test), escape failures (learned helplessness paradigm), 5-HIAA/5-HT (frontal cortex), ↑5-HT (frontal cortex)</td>
<td>(Mamiya et al., 2007)</td>
</tr>
<tr>
<td>Hypocholesterolemic</td>
<td>Hepatoma-bearing male Donryu rats</td>
<td>AIN-93G; WR, BR or GBR substitution for corn starch in AIN-93G</td>
<td>↓TBARS, TC, (VLDL-Ch + LDL-Ch), AI, ↑HDL-Ch, fecal steroid excretion, hepatic Ch 7a-hydroxylase activity</td>
<td>(Miura et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>Hypercholesterolemic Sprague-Dawley rats</td>
<td>High cholesterol diet; high cholesterol + WR, BR or GBR diet</td>
<td>↓TC, LDL-Ch, ↑HDL-Ch</td>
<td>(Roohinejad et al., 2009)</td>
</tr>
<tr>
<td></td>
<td>Hypercholesterolemic male Sprague-Dawley rats with high-cholesterol diet</td>
<td>AIN-76; BR (81.1 g/100 diet), or GBR (83.2 g/100 diet) substitution for corn starch in AIN-76</td>
<td>↓Liver, kidney, lung weights, AI TBARS levels in plasma, liver, heart, kidney, lung, plasma GOT and GPT levels, ↑Plasma HDL-Ch, fecal Ch excretion, bile acid excretion, hepatic antioxidant enzyme (SOD, CAT, GPx) activities</td>
<td>(Lee et al., 2007)</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Measurements</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Antidiabetic</td>
<td>Human subjects with type 2 diabetes</td>
<td>Cooked WR, GBR [↓ TC, TG, FBG, fructosamine levels, ↑ HDL-Ch]</td>
<td>(Hsu et al., 2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy human subjects</td>
<td>Cooked WR, BR, GBR [↓ GI, IAUC-Glc120]</td>
<td>(Ito et al., 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male OLETF rats</td>
<td>AIN-93G; WR or GBR substitution for corn starch in AIN-93G [↓ Blood glucose levels, HbA1c, plasma PA I-1, TNF-α, adipocytokine concentrations, ↑ Adiponectin]</td>
<td>(Torimitsu et al., 2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptozotocin-induced diabetic male Wistar rats</td>
<td>AIN-93G; WR or GBR substitution for corn starch in AIN-93G [↓ Blood glucose levels, plasma PAI-1, lipid peroxide concentrations]</td>
<td>(Hagiwara et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Learning and memory deficits</td>
<td>β-Amyloid peptide treated male ICR mice</td>
<td>AIN-93G; WR or GBR substitution for corn starch in AIN-93G [↓ Escape latencies (water maze test), ↑ Spontaneous alternation behavior (Y-maze test)]</td>
<td>(Mamiya et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Anticancer</td>
<td>Azoxymenthan-induced colon cancer in male Sprague-Dawley rats</td>
<td>Commercial basal diet + 2.5, 5.0, 10.0 g (rice)/kg (rat weight) [↓ Aberrant crypt foci (ACF), β-catenin expression, COX-2 expression, ↑ Inhibition of colon cancer]</td>
<td>(Latifah et al., 2010)</td>
<td></td>
</tr>
</tbody>
</table>

AIN, American Institute of Nutrition; BR, brown rice; Ch, cholesterol; GBR, germinated brown rice; WR, white rice. AI, atherogenic index ([total cholesterol]-[HDL-cholesterol])/[HDL-cholesterol]; CAT, catalase; COX-2, cyclooxygenase 2; FBG, fasting blood glucose; FER, food efficiency ratio (body weight gain (g/week)/food intake (g/week)); GI, glycemic index; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; GPx, glutathione peroxidase; HbA1c, hemoglobin A1c; HDL-Ch, high-density lipoprotein cholesterol; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine; IAUC-Glc-120, incremental areas under the glucose curves over 120 min; MDA, malondialdehyde; OLETF, Otsuka Long Evans Tokushima fatty rat; PAI-1, type-1 plasminogen activator inhibitor; SBP, systolic blood pressure, SOD, superoxide dismutase; TBARS, thiobarbituric acid-reactive substances; TC, total cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor-α; VLDL, very-low-density lipoprotein.

Adopted with permission from Cho & Lim, (2016).
2.6. Low-density lipoprotein receptor knockout (LDLr-KO) mice

Mice are small mammals, easy to handle and maintain in laboratories and their tissues are easily harvested, stored and processed for analysis (deLuna, 2008). Mice do not develop significant atherosclerosis, because they have high levels of HDL and low levels of LDL and VLDL (Daugherty, 2002). Thus, mouse models for atherosclerotic CVD rely on disruption of normal lipoprotein regulation and metabolism, through diet or genetic manipulations, enabling development of extensive and mature atherosclerotic lesions. One of the most widely used dyslipidemic models of atherosclerosis is the LDLr-KO mice (Kowala et al., 2000). The LDLr-KO mouse is a model mimicking familial hypercholesterolemia (Potteaux et al., 2007), and these mice have plasma lipoproteins profiles similar to those in humans with this disorder (Reardon & Getz, 2001). When LDLr-KO mice are fed a high fat diet, they exhibit elevated LDL and VLDL cholesterol levels, because of an absence of hepatic LDL receptors (Daugherty, 2002) that disables hepatic clearance of these circulating lipid particles (Ishibashi et al., 1993). As a result, the dyslipidemic profile of these mice is suitable for studies investigating effects of lipid profile changes on atherosclerotic lesions (Zadelaar et al., 2007).

2.7. Antioxidant properties of GBR

Oxidative stress is involved in pathogenesis and progression of chronic diseases including cancer, diabetes and cardiovascular diseases. Antioxidants from natural products, especially from dietary sources, are known to decrease oxidative stress by inhibiting effects of oxidative free radicals (Mayne, 2003). Several of these antioxidant-rich dietary sources, including GBR, have been studied for their potential roles in management of oxidative stress related chronic diseases. GBR was reported to have high antioxidant capacity, hence decreasing
oxidative stress (Imam et al., 2012). Furthermore, GBR has stronger antioxidant activity than WR or BR (Rashtchizadeh et al., 2008). In addition, the beneficial effects of the numerous phenolic compounds present in GBR are attributed to their antioxidant activities. Moreover, *in vivo* and *in vitro* studies demonstrated that GBR and BR had strong protective effects against oxidative stress induced liver injury, through their antioxidant activities. Also, an *in vivo* study demonstrated that GBR consumption led to decreased oxidative stress, increased plasma antioxidant levels and increased antioxidant enzyme activities in the liver, which may prevent the formation of atherosclerotic plaques (Esa et al., 2013).

3. RESEARCH PLAN

3.1. Study Rationale

Based on growing evidence, intake of WG, including Chinese germinated brown rice, has a protective effect against CVD risk factors. Such benefits of GBR and other WG are attributed to their bio-functional components. However, little is known about the benefits of GBR on CVD risk factors. Therefore, understanding the anti-atherogenic benefits of GBR might support selection of germinated WG for inclusion in healthy diets and as functional food ingredients in new products. This study was, therefore, performed to examine the effectiveness of Chinese GBR for decreasing cardiovascular risk factors in LDLr-KO mice.
4. STUDY HYPOTHESIS AND OBJECTIVES:

4.1. Hypothesis

Long-term consumption of Chinese GBR will reduce atherogenic risk factors in LDLr-KO mice.

4.2. Objectives

The main goal of this study was to investigate effects of Chinese GBR on cardiovascular risk factors in LDLr-KO mice.

This study was designed to:

1. Investigate the effects of the Chinese GBR on plasma total cholesterol (TC), triglyceride (TG), HDL, LDL and VLDL cholesterol levels.
2. Determine the activities of antioxidant enzymes, glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) in plasma from LDLr-KO mice
3. Determine the effects of Chinese GBR on fecal lipid excretion.
4. Determine the effects of Chinese GBR on atherosclerotic lesion development in aortic roots of LDLr-KO mice.
5. MATERIALS AND METHODS

5.1. Animals and Diets:

The experimental design for this study is summarized in Figure 3. Twenty-four male LDLr-KO mice, 4 weeks old were obtained from Jackson’s Laboratory (Bar Harbor, ME, USA). The mice were housed at room temperature (22-24 °C) with a 12:12-h dark-light cycle. LDLr-KO mice are a well-established mouse model for studying LDL oxidation and atherosclerosis (Daugherty, 2002; deLuna, 2008; Reardon & Getz, 2001). After one-week adaption, the mice were randomly divided into three groups (n=8 each group).

Group I: control group, fed a chow diet. **Group II:** fed the chow diet supplemented with 60% (w/w) Chinese WR. **Group III:** fed the chow diet supplemented with 60% (w/w) Chinese GBR. All diets were also supplemented with 0.06% (w/w) cholesterol to accelerate atherosclerosis. Diet treatments are summarized in Table 5. The diets were based on an AIN-93G purified rodent diet.

Chinese WR and GBR were provided by Yuanwang Fuqi Agricultural Products Inc. Nanjing, China. The study period was 24 weeks and, during the study, diets were stored in a cold room (0-4 °C).

5.2. Ethics

This study was approved by the Animal Protocol and Care Committee at the University of Manitoba.
Twenty-Four LDL receptor knockout mice, 4 wk old

1 wk adaption
Baseline
Blood collection/biochemical analysis

Start Dietary Treatments

Control (CTRL)
Chinese White Rice (CWR)
Chinese Germinated Brown Rice (GBR)

wks 4, 8, 12, 16, 20 and 24

Wk 24: Animals sacrificed; Blood, fecal and tissue samples collected

Figure 3: Experimental design of this study
Table 5: Summary of the experimental groups and their diets

<table>
<thead>
<tr>
<th>Experimental Groups</th>
<th>Diet Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=8)</td>
<td>Control diet + 0.06 (w/w) dietary cholesterol</td>
</tr>
<tr>
<td>Chinese white rice (n=8)</td>
<td>Control diet + 0.06 (w/w) dietary cholesterol + 60% (w/w) CWR</td>
</tr>
<tr>
<td>Chinese germinated brown rice (n=8)</td>
<td>Control diet + 0.06 (w/w) dietary cholesterol + 60% (w/w) GBR</td>
</tr>
</tbody>
</table>
6. Data collection

6.1. Food intake and body weight

Body weights of the animals were measured weekly. The 24-hour food intake was estimated every 4 weeks. In each cage, food given and that remaining were weighed to calculate food consumption.

6.2. Blood sampling and tissue collection

At baseline, fasting blood samples were drawn. Subsequently, blood samples were collected every 4 weeks until week 24, when mice were sacrificed. All mice were fasted for 4 hours prior to blood collection. Blood was drawn through the jugular veins of lightly anesthetized animals, using heparinized syringes, by a certified animal technician at the R. O. Burrell Lab, St Boniface Albrechtsen Research Centre. After collection, blood samples were centrifuged at 4 °C (5000 rpm for 15 minutes) to separate plasma. Plasma aliquots were stored at -80 °C until analyses. At week 24, mice were euthanized using carbon dioxide gas and final blood samples were collected via cardiac puncture.

The hearts, livers, kidneys, and abdominal fat tissue samples were collected, weighed and stored at -80 °C until analysis. For future analysis, portions of each tissue were fixed in 10% buffered formalin and sectioned.

6.3. Total cholesterol (TC)

A standard enzymatic kit (Genzyme Diagnostic Chemicals, Ltd., Charlottetown, PE, Canada) was used to measure plasma total cholesterol levels, following manufacturer’s instructions. The principle of the enzymatic assay is the simultaneous production of hydrogen peroxide (H$_2$O$_2$) with cholest-4-en-3-one, as a result of hydrolysis and oxidation of cholesterol.
esters. In the presence of peroxidase, hydrogen peroxide combines with hydroxybenzoic acid and 4-aminoantipyrine to yield a chromogenic product. Briefly, 3 µL of each standards and plasma samples were added to 250 µL of TC reagent and tubes incubated at room temperature for 20 minutes. Next, absorbance at 500 nm was measured. All experimental samples were analyzed in duplicate.

6.4. Triglycerides (TG)

In this assay, plasma TG are hydrolyzed, phosphorylated and oxidized to produce H$_2$O$_2$. H$_2$O$_2$ is then reacted with p-chlorophenol and 4-aminoantipyrine to produce a red quinoneimine complex, with color intensity proportional to TG concentration in the sample. A standard enzymatic kit (Genzyme Diagnostic Chemicals Ltd.) was used to assess plasma TG concentrations. The manufacturer provided a standard solution (200 mg/dL), used to generate a linear response curve. Aliquots of 5 µL plasma samples and standards plus 300 µL kit reagent were added to each well. After incubation at room temperature for 10 minutes, absorbance values were determined at 540 nm. All experimental samples were analyzed in duplicate and averaged.

6.5. HDL-cholesterol

A standard enzymatic kit (HDL Ultral Sekisui Diagnostics, LLC) was used to quantify plasma HDL-cholesterol (HDL-C) levels, following the manufacturer’s instructions. First, to prepare the standards, the calibrator provided in the kit was equilibrated at room temperature before reconstitution. After it reached room temperature (~ 1 hour), distilled or deionized water was added and the mixture incubated for 20 minutes. Next, it was swirled gently to dissolve
completely and avoid foaming. A 200 µL aliquot of this standard solution was placed into each 1.5 ml centrifuge tube and these were stored at -80 °C for up to 4 weeks. To measure HDL-cholesterol, 1.5 µL samples, standards or controls were pipetted into wells of a 96-well plate. Then, 150 µL Reagent 1 was added, and the plate incubated at 37 °C for 5 minutes in a heating block (IsoTemp 125D). After incubation, 50 µL Reagent 2 was added and the plate incubated again at 37 °C for 5 minutes. Absorbance values were then read at 630 nm every 10 minutes for 40 minutes, using a BioTek reader. All experimental samples were analyzed in duplicate and averaged.

6.6. LDL-cholesterol

A standard enzymatic kit (LDL Ultral Sekisui Diagnostics, LLC) was used to quantify plasma LDL-cholesterol (LDL-C), following the manufacturer’s instructions. To prepare standards, the calibrator provided in the kit was equilibrated at room temperature before reconstitution. After it reached room temperature (~ 1 hour), distilled or deionized water was added and the mixture incubated for 5 minutes. Then, the contents were fully dissolved by gentle swirling to avoid foaming. Aliquots of 200 µL were placed in 1.5 ml centrifuge tubes and stored at -80 °C, unless used that day. To measure LDL-cholesterol, 1.5 µL samples, standards or controls were added in duplicate to a 96-well plate. Then, 150 µL Reagent 1 was added to each well and the plate incubated at 37 °C for 5 minutes in the incubator. Next, 50 µL Reagent 2 was added to each well and the plate incubated again at 37 °C for 5 minutes. Absorbance values were then read at 546 nm every 10 minutes for 40 minutes.
6.7. VLDL-cholesterol

VLDL-cholesterol (VLDL-C) levels were calculated according to the Friedewald formula $VLDL-C = (TG/5)$ (Friedewald et al., 1972). When the plasma TG concentration is less than 400 mg/100 mL, this formula can be used to calculate either VLDL-C or LDL-C (Friedewald et al., 1972).

6.8. Glutathione peroxide (GPx) assay

GPx activities in plasma samples were analyzed using a GPx assay kit (Item no. 703102, Cayman Chemical Company, Ann Arbor, MI, U.S.A.) following the manufacturer’s instructions. Production of oxidized glutathione by GPx was accompanied by decreased hydroperoxide, and glutathione was then recycled to its reduced state by glutathione reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH). NADPH oxidation was then monitored spectrophotometrically. Aliquots of 120 µL assay buffer and 50 µL co-substrate mixture were loaded into 20 µL of three wells in the micro-plate reader. In addition, 20 µL diluted GPx, 100 µL assay buffer and 50 µL co-substrate mixture (control) were added to other three wells. The reaction was initiated by adding cumene hydroperoxide to all wells. After that, 100 µL assay buffer, 50 µL co-substrate mixture and 20 µL samples were loaded into all wells. The plate was covered and incubated for a few seconds and absorbance was measured at 340 nm.
6.9. Catalase (CAT) assay

CAT activities in plasma samples were analyzed using a catalase assay kit, (Item no. 707002, Cayman Chemical Company), following the manufacturer’s instructions. The process is based on the reaction of the enzyme with methanol in the presence of H₂O₂. The purple color upon oxidation results from formaldehyde produced, forming a bicyclic heterocycle with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole (Johansson & Borg, 1988). Aliquots of 30 µL methanol and 100 µL assay buffer were added to 20 µL aliquots of standards and samples in a 96-well plate. The reaction was initiated by adding 20 µL diluted hydrogen peroxide to all wells. Then, the plate was covered and incubated on a shaker for 20 minutes at room temperature. After that, 30 µL potassium hydroxide was added to each well to terminate the reaction, followed by 30 µL of the chromogen. The plate was covered and incubated for another 10 minutes. Next, 10 µL potassium periodate was added to each well and plates incubated for 5 minutes. Absorbance was then measured at 540 nm.

6.10. Superoxide dismutase (SOD) assay

SOD activities in plasma samples were analyzed using an SOD assay kit (Item no. 706002, Cayman Chemical Company), following the manufacturer’s instructions. This assay utilizes a tetrazolium salt to detect superoxide radicals generated by xanthine oxidase and hypoxanthine. Diluted radical detector (200 µL) was added to 10 µL aliquots of standards and samples in a 96-well plate reader. Then, 20 µL diluted xanthine oxidase was added. The plate was covered and incubated on a shaker for 20 minutes at room temperature. Absorbance was then measured at 440–460 nm.
6.11. Fecal lipid extraction

Lipid extraction from fecal samples was performed as described previously (Folch et al., 1957) with slight modification (Surendiran et al., 2013). About 0.5 g fecal samples were weighed and immersed in 5 mL 0.025% calcium chloride (CaCl₂) overnight. Samples were then vortexed, using a mini vortex (VWR, Mississauga, ON, Canada), for 3 minutes to homogenize the softened fecal samples. To extract the lipids, 25 mL chloroform: methanol (2:1, v/v) was added and samples vortexed for 1 minute. The samples were then centrifuged at 2000 rpm for 10 minutes at 4 °C in a Centrifuge 5804 R (Eppendorf Canada, Mississauga, ON, Canada) to separate the extracted lipid fraction from the sample matrix. The lipid extracts were collected and dried at 55 °C on a heating block (IsoTemp. 125D, Fisher Scientific, Pittsburgh, PA, USA) using an evaporating unit (Model 18780 REACTI-VAP evaporating unit, Pierce, Rockford, IL, USA) and nitrogen gas (N₂). Dried lipids were stored at -20 °C until analysis. The lipids were analyzed for TC, TG (The procedures of TC and TG determinations were similar with that of plasma TC/TG assays as described above) and sterol contents. Gas chromatography was used to identify specific sterol components.

6.11.1 Derivatization of fecal sterols

Fecal lipid extract samples were reconstituted in 1 mL chloroform: methanol (2:1, v/v). Then 100 µL of each reconstituted sample was dried at 55 °C on a heating block using an evaporating unit and N₂, followed by addition of 200 µL 1,1,1,3,3,3-hexamethyldisilane (HMDS), trimethylchlorosilane (TMCS) and pyridine, chlorotrimethylsilane, hexamethyldisilazane, sylon™ HTP, trimethylchlorosilane, trimethylsilyl chloride (HMDS:TMCS:Pyridine, 3:1:9 (Sylon™ HTP)). The mixture was dried and then reconstituted in
300 µL hexane, vortexed and left to sit for 15 minutes before centrifuging at 3000 rpm for 1 min at 4 °C. The supernatant was transferred to the newly labeled GC vials. Fecal sterol GC analysis was performed using a previously described method (Wu et al., 2009).

6.12. Histological examination

At sacrifice, specimens of the basal part of each heart, containing the aortic root, were collected and fixed in 10% buffered formalin. The fixed aorta and liver tissue samples were dehydrated with graded alcohol concentrations, 70%, 80%, 95% and 100% (each for 1 hour). After drying, samples were washed twice for 1 hour with 100% xylene to remove the alcohol and were allowed to air dry. The dried tissue samples were placed in TRUFLOW™ tissue cassettes (Fisher Scientific, Ottawa, ON, Canada) and embedded by submerging in 100% pre-melted paraffin wax for 3 hours at 70 °C using a Barnstead electro-thermal paraffin section mounting bath (Thermo Scientific, Conroe, TX, USA). The samples were then removed from the cassettes and molded into tissue blocks using metal mold and fresh pre-melted paraffin wax, then placed on ice to harden the tissue blocks. To visualize tissues in detail, at the single cell level, tissue blocks were sectioned at 5 µm with a Shandon Finesse 325 microtome (Thermo Scientific Inc, Philadelphia, PA, USA). Selected sections were placed in a water bath (60 °C) and floated onto microscope slides. For each mouse, six sections were cut from different levels of the aortic sinus and sections were also prepared from the liver tissue. The slides were air dried overnight to allow binding of the paraffin wax to slides and ensure good staining. To stain the sections, dried slides were incubated at 65 °C on a heating block for 20 minute to melt the paraffin, followed by incubation in 100% xylene for 10 minutes to remove paraffin, then in 95% and 100% alcohol (each for 10 minutes) to remove xylene. Thereafter, slides were washed about 5 times with water and stained with hematoxylin (a nuclear stain) for 10 minutes, washed with water, and then
incubated in 2% sodium bicarbonate (NaHCO₃) and washed with water again. The slides were then stained with alcoholic eosin for 30 seconds and washed with water, then submerged in 100% alcohol, 95% alcohol and 100% xylene (each for 5 minutes). Finally, they were mounted with coverslips, using Permount and dried overnight. The six sections, spanning the whole aortic root length, were used for morphological and morphometrical analysis of atherosclerotic lesions (Moghadasian et al., 1999), using light microscopy and an Image ProPlus digitizing system, respectively. Atherosclerotic lesions were identified and quantified using the imaging software. The lesion area can be determined at specific distances from the aortic sinus at 40–50-µm intervals, depending on the thickness of each section. A plot of these area measurements versus distance gives a profile of the atherosclerotic lesion. The area under the curve represents an estimate of the total atherosclerotic lesions.

6.13. Monocyte adhesion to mouse aorta

Monocyte adhesion was assessed as previously described (Zhao et al., 2014). Perivascular adipose tissue was isolated from each aorta and submerged in ice-cold Hank's balance salt solution (HBSS). Within 1 hour after harvesting, each aorta was opened lengthwise with fine ophthalmological scissors and fixed, with 27-gauge needles, on the bottom of a 35-mm culture dish containing 2 mL ice-cold HBSS. Free dye was removed from cells by centrifugation. Fluorescently labeled monocytes were added to each plate containing an aortic strip. Then, aortic strips with mouse monocytes were incubated on a rotating mixer at room temperature for 30 minutes. Non-adhered monocytes were removed with two washes of HBSS. Adhered monocytes on the strips were fixed in HBSS with 2% glutaraldehyde. Monocytes adhered to the intima of each aorta were counted under a fluorescence microscope, using a 10× objective. From each
aortic strip, monocytes in at least five fields were counted and these counts were averaged (Zhao et al., 2014).

Data were analyzed using one-way analysis of variance (ANOVA) with the SAS program (SAS Institute, JMP Statistical discovery, 2016). Means from different groups were compared using Tukey-Kramer multiple comparisons test and were considered significantly different at $P < 0.05$. Results were expressed as means ± standard error (SE).

7. Results

7.1. Food intake, body weights and tissue weights

Mean food intake is summarized in Figure 4. The mice fed with GBR had higher food intakes at weeks 4, 12 and 20 as compared to mice in the control group.

The mean body weight ranges were comparable among all groups, as shown in Figure 5. The final body weights of mice were not significantly different among groups ($P = 0.3733$).

At end of the study, all tissues, including liver, kidneys, heart and abdominal fat, were weighed. Table 6 shows these organ weights. Similar to the body weights, these values were not significantly different among the groups.
Figure 4: Food intakes of LDLr-KO mice after 20 weeks of experimental diet treatments.

The mice fed with GBR had higher food intakes at weeks 4, 12 and 20 as compared to mice in the control group.

Control; CWR = Chinese white rice; GBR = germinated brown rice

Data are means ± SE.

* P < 0.05; # P < 0.001
Figure 5: Mean body weights of LDLr-KO mice after 20 weeks of experimental diet treatments. All groups showed consistent weight gains.

Control; CWR = Chinese white rice; GBR = germinated brown rice

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Table 6: Organ weights (g) of LDLr-KO mice after 20 weeks of experimental diet treatments.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Control</th>
<th>CWR</th>
<th>GBR</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (g)</td>
<td>1.53±0.07</td>
<td>1.52±0.12</td>
<td>1.41±0.07</td>
<td>0.4600</td>
</tr>
<tr>
<td>Kidney (g)</td>
<td>0.40±0.016</td>
<td>0.41±0.014</td>
<td>0.38±0.013</td>
<td>0.1866</td>
</tr>
<tr>
<td>Heart (g)</td>
<td>0.17±0.008</td>
<td>0.17±0.010</td>
<td>0.15±0.006</td>
<td>0.0660</td>
</tr>
<tr>
<td>Abdominal Fat (g)</td>
<td>0.80±0.12</td>
<td>0.89±0.14</td>
<td>0.70±0.08</td>
<td>0.8478</td>
</tr>
</tbody>
</table>

Data are means ± SE.

P < 0.05 was used to determine significant differences in means among groups.
7.2. Total cholesterol concentrations

Figure 6 shows the TC concentrations at baseline and at 4, 8, 12, 16 and 20 wk. Total cholesterol concentrations were comparable among all groups, throughout the study.

7.3. Total triglyceride concentrations

Figure 7 shows TG levels at baseline and during the experimental course. Plasma TG concentrations were comparable among all groups, throughout the study.

7.4. Plasma lipoprotein profiles

Mean HDL-, LDL- and VLDL-cholesterol concentrations at wk 20 are shown in Figure 8. Overall, there were no significant differences among the groups.
Figure 6: Plasma total cholesterol concentrations.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Figure 7: Plasma total triglyceride concentrations.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Figure 8: Plasma lipoprotein profiles.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
7.5. Antioxidant enzyme activities

GPx, CAT and SOD activities were comparable among all groups. GPx activities are shown in Figure 9, CAT in Figure 10, and SOD in Figure 11. There were no statistically significant differences in antioxidant enzyme activities among the groups.
Figure 9: Glutathione peroxide activities.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Figure 10: Catalase activities.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Figure 11: Superoxide dismutase activities.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
7.6. Total fecal lipid concentrations

Fecal samples were collected for lipid extractions and fecal lipid percentages of fecal mass were calculated. As shown in Figure 12, there were no statistically differences among the groups.

7.6.1. Fecal sterols

Table 7 summarizes the results of fecal sterol analyses, performed at the end of study.
Figure 12: Total fecal lipid concentrations for LDLr-KO mice after 20 weeks of experimental diet treatments.

Data are means ± SE.

$P < 0.05$ was used to determine significant differences in means among groups.
Table 7: Amounts of individual fecal sterols (mg/g feces) from LDLr-KO mice after 20 weeks of experimental diet treatments.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control</th>
<th>CWR</th>
<th>GBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5α-Cholestan</td>
<td>35.4±5.1</td>
<td>33.6±5.2</td>
<td>29.3±3.5</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>28.8±5.1</td>
<td>33.6±4.2</td>
<td>30.0±2.9</td>
</tr>
<tr>
<td>Demosterol</td>
<td>8.1±2.0</td>
<td>6.6±0.5</td>
<td>8.0±0.2</td>
</tr>
<tr>
<td>Latosterol</td>
<td>5.5±1.4</td>
<td>4.4±0.2</td>
<td>4.3±0.4</td>
</tr>
<tr>
<td>Campesterol</td>
<td>34.1±5.5</td>
<td>29.1±1.2</td>
<td>34.1±1.7</td>
</tr>
<tr>
<td>Stigmastanol</td>
<td>16.4±3.3a</td>
<td>6.0±2.5b</td>
<td>9.3±1.8ab</td>
</tr>
<tr>
<td>β-Sitosterol</td>
<td>18.1±3.9</td>
<td>14.5±1.1</td>
<td>18.6±1.6</td>
</tr>
</tbody>
</table>

Values are means ± SE (n=8).

Letters (a, b) within a row indicate significant differences at P < 0.05, determined by the Tukey–Kramer multiple range test (a > b).
7.7. Atherosclerotic lesion size

Figure 13 shows atherosclerotic lesion sizes in the aortic roots. GBR consumption significantly decreased atherosclerotic lesion development in the aortic roots, as compared with that in the CWR group \((P = 0.0018)\). On the other hand, CWR significantly increased atherosclerotic lesion development in the aortic roots as compared to the control group \((P = 0.02)\).

Representative photomicrographs of atherosclerotic lesions in the aortic roots of treated and control mice are shown in Figure 14.

Advanced atherosclerotic lesions in the aortic root of a control mouse are shown in Figure 14A. Also, a corresponding section from a CWR treated animal is shown in Figure 14B. In contrast to A and B, a section from a GBR treated mouse shows only a limited lesion formation in the aortic root Figure 14 C.

7.8 Monocyte adhesion to aortic intima

The number of monocytes adhered to the surface of aorta from GBR treated LDLr-KO mice were significantly lowers than those from CWR mice as shown in Figure 15 \((P=0.0001)\). This finding is in agreement with atherosclerotic lesion size among the experimental groups.
Figure 13: Atherosclerotic lesion sizes.

Values are means ± SE ($n = 8$).

$P < 0.05$ was used to determine significant differences in means among groups.
Figure 14: Histopathology of aortic roots from LDLr-KO mice. Control group (Panel A); Chinese white rice group (Panel B); germinated brown rice group (Panel C).

Arrows indicate atherosclerotic lesions.
Figure 15: Monocyte adhesion.

Values are means ± SE ($n = 8$).

$P < 0.05$ was used to determine significant differences in means among groups.
8. Discussion

8.1. Effects of dietary GBR administration

The main objective of this study was to investigate whether dietary GBR would decrease the risk of atherosclerosis in an atherosclerotic mouse model. Our results showed that dietary GBR slowed atherosclerosis progression in LDLr-KO mice. The consumption of GBR significantly decreased atherosclerotic lesion in the aortic roots. Moreover, monocyte adhesion to aorta was significantly lower in LDLr-KO mice fed with GBR than in those fed with CWR, but was not significantly different from those fed the control diet.

8.2. Food intake, body weight and abdominal fat

Food consumption was significantly different among the three groups at some time points of the study. This was inconsistent with results reported by Han et al. (2012). Similarly, Surendiran et al. (2013) did not report changes in food consumption when wild rice (WR) was tested in six groups of mice that fed either control diet, WR diet, or wild rice diet for 24 weeks all showing no significant differences in average food intake among groups. Mean body weight and abdominal fat mass values in our study did not significantly differ among groups. This is consistent with our previous report, that body weight and abdominal fat mass of mice fed wild rice were no different from those of other diet groups (Surendiran et al., 2013). Similar observations were made by Shirai et al. (2010) with no significant differences in average final body weights among groups. However, our findings were contrary to those of Ho et al. (2012). In that study, mice were fed three diets, normal diet (ND), high fat diet (HFD) or germinated brown rice (GBR) diet. Body weights were significantly higher in the HFD, compared with in the ND group, and were significantly lower in the GBR than in the HFD group. In another study, by
Chung et al. (2014), six groups of mice were fed different diets for seven weeks. These diets were normal control (NC), high fat (HF), HF supplemented with instant normal white rice (HF-NW), HF with normal brown rice (HF-NB), HF with germinated white rice (HF-GW) and HF with germinated brown rice (HF-GB). The HF and NC fed groups had significantly higher body weight and body fat values, while these parameters were markedly decreased in the HF-GB diet group.

8.3. Plasma and fecal lipid profiles

Associations between serum cholesterol concentrations and CVD risk were previously reported. In our study, there were no significant differences among groups in plasma TC, VLDL, LDL cholesterol and TG concentrations. Similarly, in another study, no changes in lipid profiles were detected, after 4 weeks, in groups consuming polished rice (PR), brown rice (BR) and germinated brown rice (GBR) (Shirai et al., 2010). In contrast, Ho et al. (2012) reported significantly decreased plasma TC and significantly elevated HDL-C in the GBR group, compared with the HF and NC diet groups. Also, TC and TG levels were lower in the mice fed HF-GB. Moreover, HDL-C concentrations in these mice were significantly higher than those in fed HF diet alone. Furthermore, our study showed no significant differences in fecal lipid excretion among all groups. However, in a previous report, obese rats were fed with NC, high fat diet (HFD) or high fat supplemented with germinated brown rice (HF+GB) and fecal lipid excretion was significantly elevated by the HF+GB diet (Lim et al., 2016). In addition, Lo et al. (2016) observed a significant increase in fecal TC and TG levels in ovariectomized Sprague–Dawley rats, comparing a group fed NC with one fed NC supplemented with 200.0 g non-germinated and germinated brown rice, for nine weeks.
8.4. Histology and atherosclerosis development

Atherosclerosis is associated with chronic inflammation and characterized by accumulation of fatty substances and cholesterol in the vessel wall. The deposition of cholesterol-rich lipoprotein in vascular wall is the consequence of vascular inflammation, characterized by monocyte adhesion/migration and the conversion of monocytes to macrophage in vascular wall. Macrophages are able to incorporate cholesterol-rich lipoproteins to form atherosclerotic lesions (Stary et al., 1995; Ross, 1999; Soltero-Perez, 2002). Antioxidant phytochemicals are expected to inhibit LDL oxidation (Stocker, 2004). Decreased LDL oxidation is associated with an attenuated inflammatory state. Altogether, antioxidant agents would be expected to prevent development of advanced atherosclerotic lesions. GBR is rich in phenolic antioxidants, compounds believed to produce health benefits through their antioxidant properties (Burlando & Cornara, 2014). Consequently, atherosclerotic lesions were significantly decreased in animals fed GBR. Our findings are consistent with those in our previous study, where LDLr-KO mice were fed wild rice for 24 weeks and showed significantly attenuated atherosclerotic lesions, compared with those on a control diet (Surendiran et al., 2013). These findings are also consistent with a study performed by Esa et al. (2013). This study used six groups of rabbits, either on a NC diet or the following experimental diets: NC with high cholesterol (PC), high cholesterol diet with white rice powder (WR), high cholesterol diet with brown rice powder (BR), high cholesterol diet with GBR or high cholesterol diet with simvastatin (SG). Rabbits fed the GBR diet had attenuated plaque formation, compared with those fed the BR or WR diets. Decreased lesion areas in the aortic root of GBR fed mice may be related to the presence of oryzanol, tocopherols and tocotrienols in the outer layer of GBR (Esa, et al., 2011), as well as the large amounts of GABA (Kayahara et al., 2001). Moreover, high
levels of non-enzymatic antioxidants (vitamin E including tocopherols and tocotrienols) in GBR should also help to decrease oxidative stress in the blood (Esa et al., 2013).

Atherosclerotic plaque formation is a long, very complex process. Atherosclerosis development occurs at the site of endothelium with injury or highly stressed. Although it is clinically manifested in later adults, the initial signs of plaque formation can be detectable in the much younger age (Chatzizisis et al., 2007). Although the endothelium consists of only one layer of cells, it plays an important role in atherosclerosis development. The endothelium produces a wide range of factors influencing vascular tone, cellular adhesion, vessel wall injury, thromboresistance and smooth muscle cell proliferation (Pamukcu et al., 2010). Adhesion and migration of monocytes occurs at the beginning of atherosclerotic plaque formation. These cells later differentiate into tissue macrophages, leading to development and stabilization of local inflammation and their transformation into foam cells. Previous studies indicated that monocyte adhesion was enhanced under atherosclerotic conditions (Pamukcu et al., 2010; Tropea et al., 1996). Our study demonstrated increased adhesion of normal monocytes to the aorta in LDLr-KO mice fed with CWR, suggesting that CWR enhances vascular inflammation at the surface of endothelium in aorta of LDLr-KO mice. Monocyte adhesion was significantly decreased in LDLr-KO mice fed the diet supplemented with GBR, compared with in those fed CWR. This implied that monocyte adhesion to the aorta in LDLr-KO mice was attenuated by dietary administration of GBR.

8.5. Strengths and limitations

LDLr-KO mice were chosen as a dyslipidemia and atherosclerosis model for our study (Getz, 2005). The plasma lipoprotein profiles of these mice mimic familial hypercholesterolemia in humans (Zadelaar et al., 2007). Atherosclerosis is a chronic condition, reported to worsen with
time. Therefore, we performed this study over a relatively long period, 24 weeks, a time length that should be sufficient to observe effects of both time and diet on any risk factors measured.

Our study, like many others, has potential limitation. There were no wild-type C57BL/6 mice to serve as controls, which limits us to detect the difference between normal animals and CWR-fed and GBR-fed high cholesterol-fed LDLr-KO mice or other cardiovascular risk factors (Zadelaar et al., 2007).

8.6. Recommendations for future research

Future studies to understand the effects of GBR on cardiovascular risk factors and its underlying mechanisms of actions are needed. One potential area of investigation would address the degree of absorption, metabolism and distribution of dietary phenolic compounds from GBR and their impacts on atherosclerosis prevention. Additional studies are also required to understand effects of germination on the characteristics of the metabolic changes in bioactive components during germination. Monocyte adhesion is an early event in vascular inflammation, and it is regulated by a large number of cellular proteins and signaling pathways. Identification of inflammatory molecules and interactions between blood and vascular cells will help to clarification the anti-atherosclerotic effect of GBR.

8.7. Conclusions

Our study showed that dietary GBR slowed atherosclerosis progression in LDLr-KO mice. Consumption of GBR did not improve plasma lipid profiles, fecal cholesterol excretion or antioxidant enzyme activities in LDLr-KO mice. However, histological examination demonstrated that GBR attenuated atherosclerotic lesions in the aortic root compared to CWR diets.
The anti-atherosclerotic effect of GBR potentially attributed from the functional components of GBR, which may inhibit inflammatory events in vascular wall.

In conclusion, long-term consumption of GBR reduced atherosclerotic development in the aortic root, compared with CWR diets, which is associated with attenuated vascular inflammation in GBR-fed mice.
References

Awad, R., Levac, D., Cybulska, P., Merali, Z., Trudeau, V. L., & Arnason, J. T. (2007). Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) system. This article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. *Canadian Journal of Physiology and Pharmacology, 85*(9), 933-942

Appendix: Copyright license for use of tables from published articles

Title: The Role of Dietary Cholesterol in Lipoprotein Metabolism and Related Metabolic Abnormalities: A Mini-review

Author: Fatemeh Ramezani Kapourchali, Gangadaran Surendiran, Amy Goulet, et al

Publication: Critical Reviews in Food Science and Nutrition

Publisher: Taylor & Francis

Date: Oct 25, 2016

Copyright © 2016 Taylor & Francis

Thesis /Dissertation Reuse Request
Taylor & Francis is pleased to offer reuses of its content for a thesis or dissertation free of charge contingent on resubmission of permission request if work is published.

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com
Ref: HC2016-0465

Mrs. Nora Ghazzawi
University of Manitoba
66 Chancellors Circle
Winnipeg, MB
R3T 2N2

Email: ghazzawn@myumanitoba.ca

Whole Grains – Get The Facts
Canada’s Food Guide

Dear Mrs. Ghazzawi,

On behalf of Health Canada (HC) I am pleased to grant you permission to adapt and reproduce, in whole or in part, Health Canada’s material entitled: “Whole Grains – Get the Facts” for both your educational and non-commercial purposes.

This permission is non-exclusive and non-transferable, and is valid for the uses described herein only. If subsequent reproductions, translations, adaptations, editions, revisions, and/or reprints are required in the future, a new application for copyright clearance on Government of Canada works must be submitted at that time.

You must acknowledge the Crown’s work as follows:

Health Canada does not assume any responsibility for any errors or omissions which may result from modifications, revisions, adaptations and/or translation.

Should you have any questions, or if I can be of further assistance, please do not hesitate to contact me.

Yours sincerely,

Louise Sicard
Publishing, Licensing & Copyright Officer
Publication/Distribution Marketing & Creative Services Division
cc Mark Grantham, Publications and Distribution Centre, CPAB
Christina Beemans, ONPP, HPFB

A.L.1947B Édifice Jeanne Mance Building Ottawa K1A 0K9
FAX E-mail: PubsAdmin@hc-sc.gc.ca
INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Elsevier and Copyright Clearance Center).
Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com.

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows: "Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.
6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above: Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:
- Immediately via their non-commercial person homepage or blog by updating a preprint in arXiv or RePEc with the accepted manuscript via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group directly by providing copies to their students or to research collaborators for their personal use for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period via non-commercial hosting platforms such as their institutional repository via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:
- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. Posting to a repository: Authors are permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.
Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee. Commercial reuse includes:
- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons
Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9
Questions? customercare@copyright.com or +1 855 239 3415 (toll free in the US) or +1 978 646 2777.
This Agreement between Nora S Ghazzawi ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4075141072364
License date
Licensed Content Publisher Elsevier
Licensed Content Publication Journal of Food Composition and Analysis
Licensed Content Title Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder
Licensed Content Author Ken’ichi Ohtsubo, Keitaro Suzuki, Yuji Yasui, Takafumi Kasumi
Licensed Content Date June 2005
Licensed Content Volume 18
Licensed Content Issue 4
Licensed Content Pages 14
Start Page 303
End Page 316
Type of Use
reuse in a thesis/dissertation
Portion
figures/tables/illustrations
Number of figures/tables/illustrations 1
Format electronic
Are you the author of this Elsevier article? No
Will you be translating? No
Order reference number
Original figure numbers 1
Title of your thesis/dissertation
Beneficial Effects of Germinated Brown Rice on Cardiovascular Risk Factors in LDL Receptor Knockout Mice
Expected completion date
May 2017
Estimated size (number of pages) 100
Elsevier VAT number GB 494 6272 12
Requestor Location
Nora S Ghazzawi
23 Beachham Cres
Winnipeg, MB R3Y0A8
Canada
Attn: Nora S Ghazzawi
Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows: "Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC’s Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.
Authors can share their accepted author manuscript:
Immediately via their non-commercial person homepage or blog by updating a preprint in arXiv or RePEc with the accepted manuscript via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group directly by providing copies to their students or to research collaborators for their personal use for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
After the embargo period via non-commercial hosting platforms such as their institutional repository via commercial sites with which Elsevier has an agreement
In all cases accepted manuscripts should:
link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom
teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. Posting to a repository: Authors are permitted to post a summary of their chapter only in their institution's repository.

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal
publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:
- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons
- Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:
v1.9

Questions? customercare@copyright.com or +1 855 239 3415 (toll free in the US) or +1 978 646 2777.
Molecular structures of cholesterol (top) and lanosterol (bottom). (A) Chemical structures; (B) space-filling models. The three additional methyl groups on lanosterol are indicated in (B) as 14-CH₃, 4-.
INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows: "Reprinted from Publication title, Vol / edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and
conditions or any of CCC’s Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC’s Billing and Payment terms and conditions. These terms and conditions, together with CCC’s Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC’s Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.
Authors can share their accepted author manuscript:
immediately
via their non-commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
directly by providing copies to their students or to research collaborators for their personal use for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
After the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement
In all cases accepted manuscripts should:
link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding
publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. Posting to a repository: Authors are permitted to post a summary of their chapter only in their institution's repository.

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:
- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons
- Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.