Transcriptional Regulation of Ski and Scleraxis in Primary Cardiac Myofibroblasts

by

Matthew R. Zeglinski

A Thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba
in partial fulfilment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Physiology and Pathophysiology
University of Manitoba
Winnipeg

Copyright © 2016 by Matthew R. Zeglinski
Abstract

Transforming growth factor-β1 (TGFβ1) is a mediator of the fibrotic response through activation of quiescent cardiac fibroblasts to hypersynthetic myofibroblasts. Scleraxis (Scx) is a pro-fibrotic transcription factor that is induced by TGFβ1-3 and works synergistically with Smads to promote collagen expression. Ski is a negative regulator of TGFβ/Smad signaling through its interactions with Smad proteins at the promoter region of TGFβ regulated genes. To date, no studies have examined the direct DNA:protein transcriptional mechanisms that regulate Scx expression by TGFβ1-3 or Ski, nor the mechanisms that govern Ski expression by Scx. We hypothesize that Ski and Scx regulate one another, and form a negative feedback loop that represses gene expression and is a central regulator of the fibrotic response in cardiac myofibroblasts.

Primary adult rat cardiac myofibroblasts were isolated via retrograde Langendorff perfusion. First passage (P1) cells were infected with adenovirus encoding HA-Ski, HA-Scx, or LacZ at the time of plating. Twenty-four hours later, cells were harvested for Western blot, quantitative real-time PCR (qPCR), and electrophoretic gel shift assays (EMSA). NIH-3T3 or Cos7 cells were transfected with equal quantities of plasmid DNA for 24 hours prior to harvesting for luciferase, qPCR, and EMSA analysis.

Ski overexpression in P1 myofibroblasts resulted in a reduction in both Scx mRNA and protein levels. Overexpression of Scx had no effect on Ski expression. Luciferase reporter assays demonstrated that Scx was induced by TGFβ1 treatment in a concentration dependent manner. However, ectopic Smad2/3 expression was unable to transactivate the Scx promoter in a luciferase reporter assay. Inhibition of p44/42-
MAPK signaling modestly counteracted the effect of TGFβ₁ on Scx expression. Scx had no effect on Ski promoter expression, however, both tumor necrosis factor-α (TNFα) and p65 expression repressed the Ski promoter and correlated with reduced Ski mRNA levels.

We conclude that Ski is a repressor of Scx and that Scx expression is partially mediated through a Smad-independent, p44/42-MAPK pathway in cardiac myofibroblasts. Furthermore, this study proposes a role for TNFα/p65 NF-κB signaling in the regulation of Ski gene expression in the cardiac myofibroblast.
Acknowledgments

I would like to recognize and offer my sincerest gratitude to the many people who contributed to my PhD training and development of my thesis. First and foremost, I would like to thank my supervisors Dr. Ian Dixon and Dr. Davinder Jassal for their patience and guidance over the past 4 years. Without your dedication and effort towards bettering me as a student, researcher, and person, I could not have accomplished all that I have. To my advisory committee, Dr. Michael Czubryt, Dr. Lorrie Kirshenbaum, and Dr. Jeffrey Wigle, thank you for taking the time to push me outside my comfort zone and forcing me to consider the “big” picture. Finally, I offer my thanks to my external examiner, Dr. Bruce Allen, for taking the time to review my thesis and for contributing to my oral examination.

Without continuous funding from the Heart and Stroke Foundation of Canada, Research Manitoba, the Canadian Institutes of Health Research, the University of Manitoba (including the Institute of Cardiovascular Sciences, the Faculty of Graduate Studies, and the Graduate Students Association), and the St. Boniface Hospital Foundation for personal and research financial support, this work would not be possible. I thank you for your generosity.

To my labmates, past and present, in the Molecular Cardiology Laboratory, Sunil Rattan, Dr. Mark Hnatowich, Morvarid Kavosh, Krista Filameno, Natalie Landry, Shivika Gupta, Jared Davies, Steve Jones, and Megan Kynoch, I owe you my deepest gratitude and thanks for your continuous support, kindness, and tolerance for my shenanigans on a daily basis. More specifically, to Sunil Rattan, a huge thank you for your friendship, help, and training in the countless number of rat hearts that we
hung and keeping the lab running smooth. Furthermore, I am forever in debt to Dr. Mark Hnatowich for teaching me the “ins and outs” of molecular biology, in particular gene cloning, site-directed mutagenesis, and DNA sequencing. Without your ongoing support and aide, I may still be trying to isolate the Ski promoter. Thank you a thousand times over for everything you have done to support my training and career.

To the members of R.O. Burrell, Dr. Jassal, Dr. Czubryt, Dr. Pierce, Dr. Wigle, Dr. Singal, and Dr. Kardami’s labs, thank you for sharing equipment, reagents, kindness, and life experiences. It has been an honour and pleasure to work alongside you. I wish you all the best in the future and look forward to working with all of you in the future when we are the ones in charge.

Finally, none of what I have accomplished would have been possible without the loving support of my family. To my loving family Cindy, Bob, and Amanda Zeglinski (mom, dad, and sister), thank you for your continued support during my pursuit of my doctorate here in Manitoba even though it meant another 4 years of being far away. To my grandparents Pat and Lou Spado, and Paul and Helen Zeglinski, thank you for your ongoing support and efforts to make my life just a little easier as I completed my degree. Finally, to my fiancée, Jessica Beaton, thank you for your continued love and ongoing patience and support with me working way too many weekends and prolonging our stay in Manitoba. I could not have completed this journey without you and I look forward to all the new and exciting journeys we get to embark on in our life together.
Dedication

To the love of my life and my best friend, Jessica.
Table of Contents

Abstract .. i
Acknowledgments .. iii
Dedication ... v
Table of Contents ... vi
List of Tables ... x
List of Figures ... xi
List of Abbreviations ... xiv
Chapter 1: Literature Review ... 1
 Prevalence and Epidemiology of Cardiovascular Disease ... 1
 Risk Factors for Cardiovascular Disease .. 2
 Cardiac Fibrosis as a Primary Cause of Heart Failure .. 3
 Fibrotic Remodelling and Cardiovascular Disease .. 3
 Wound Healing Following Myocardial Infarction .. 5
 The Extracellular Matrix ... 9
 The Cardiac Fibroblast and Myofibroblast ... 11
 Transforming Growth Factor β ... 14
 Smad-Dependent Signaling .. 16
 Smad Structure and Regulation ... 21
 Smad-Dependent Mechanisms and Fibrosis ... 23
 Smad-Independent Signaling Initiated by TGFβ1 .. 25
 TGFβ1-Mediated p38 Mitogen-Activated Protein Kinases (p38-MAPK) Signaling 25
 TGFβ1-Mediated Phosphatidylinositol 3-Kinase (PI3K)/Akt Signaling 29
 TGFβ1-Mediated Rho/ROCK Signaling .. 33
 TGFβ1-Mediated Extracellular Signal-Related Kinase 1/2 (Erk1/2) Signaling 36
 Smad-Independent Mechanisms and Fibrosis .. 39
 Tumor Necrosis Factor α ... 43
 Nuclear Factor-κB Signaling .. 44
 TNFα, NF-κB, and Fibrosis .. 44
Ski ... 46
History and Identification ... 46
Protein Structure ... 48
Transcriptional and Post-Translational Regulation of Ski ... 50
Ski in Development and Disease .. 52
Ski and TGFβ Signaling ... 54
Scleraxis .. 58
History and Identification ... 58
Protein Structure ... 58
Regulation of Scleraxis .. 59
Chapter 2: Overall Study Rationale, Hypothesis, and Aims 60
Chapter 3: Transcriptional Regulation of Scleraxis ... 62
Rationale, Hypothesis, and Objectives .. 62
Methodology ... 63
Animal Ethics ... 63
In silico Analysis of the Scleraxis Promoter ... 63
Cloning of the Human Scleraxis Promoter ... 64
Luciferase Assay ... 65
Isolation of Primary Cardiac Myofibroblasts ... 66
Protein Isolation and Quantification ... 68
Western Blotting ... 69
Generation of Expression Vectors .. 70
Scleraxis .. 70
Ski ... 73
Cell Fractionation ... 73
Electrophoretic Mobility Shift Assay (EMSA) ... 74
Immunoprecipitation ... 76
Chromatin Immunoprecipitation ... 77
Quantitative Real-Time PCR .. 80
Inhibition of MEK1/2 ... 82
Rat Model of Myocardial Infarction ... 82
Echocardiography .. 83
List of Tables

Table 1. Previously Reported Smad Binding Elements (SBE).................................18
Table 2. PCR Cycling for Cloning Human Scleraxis into pcDNA3..........................71
Table 3. Electrophoretic Mobility Shift Assay Probes..75
Table 4. ChIP Primers...79
Table 5. qPCR Primers..81
Table 6. qPCR Cycling Conditions..81
Table 7. Primer Sequences for the Synthesis of the Human Ski Proximal Promoter..136
Table 8. PCR Reaction Composition for the Synthesis of the Human Ski Proximal Promoter..137
Table 9. Thermocycling Profile for Amplification of the Human Ski Proximal Promoter from a Bacterial Artificial Chromosome...138
Table 10. Nested PCR Reaction..140
Table 11. Nested PCR Cycling Conditions...140
Table 12. Real-time qPCR Cycling Conditions..144
Table 13. Real-time qPCR Primer Sequences..145
Table D-1. Ski Proximal Promoter ChIP Primers...231
Table D-2. Ski Proximal Promoter ChIP PCR Profile..232
List of Figures

Figure 1. Phases of Human Myocardial Wound Healing Post-MI...8
Figure 2. Canonical TGFβ1/Smad-Dependent Signaling..20
Figure 3. Protein Structure of Smad Proteins...22
Figure 4. TGFβ1/Smad-Independent Signaling: p38-MAPK..27
Figure 5. TGFβ1/Smad-Independent Signaling: PI3K/Akt..32
Figure 6. TGFβ1/Smad-Independent Signaling: Rho/ROCK..35
Figure 7. TGFβ1/Smad-Independent Signaling: Extracellular Signal-Related Kinase 1/2 (Erk1/2)..38
Figure 8. Protein Structure of Ski..50
Figure 9. Ski Mediated Repression of TGFβ1/Smad Signaling..57
Figure 10. Overall Visual Hypothesis..60
Figure 11. Equation for Plating of NIH-3T3 Cells..65
Figure 12. Rat MI Randomization Scheme and Surgery Timeline...83
Figure 13. Overexpression of Ski in Primary P1 Cardiac Myofibroblasts.................................85
Figure 14. mRNA Expression of Fibrillar Collagens in Ski Overexpressing P1 Myofibroblasts...86-88
Figure 15. Scleraxis Protein and mRNA Expression in Ski Overexpressing Myofibroblasts...89-90
Figure 16. Conserved SBE of the Mouse, Human, and Rat Scleraxis Promoter..............91
Figure 17. TGFβ1 Stimulation of Scleraxis..93
Figure 18. Activation of the Human Scleraxis Promoter by TGFβ1..95
Figure 19. hSmad2/3 Luciferase Assay of the Human Scleraxis Promoter

Figure 20. Electrophoretic Mobility Gel Shift Assay of the Distal and Proximal SBE of the Human Scleraxis Promoter

Figure 21. Temporal Phosphorylation of p44/42 by TGFβ1 and its Effect on Scleraxis Protein Expression

Figure 22. U0126 Treatment of P1 Cardiac Myofibroblasts and Scleraxis Expression

Figure 23. Phosphorylation of MAPK Proteins Following Ski Expression

Figure 24. Interactions between Ski, c-Jun, and the Scleraxis Promoter

Figure 25. Echocardiographic M-Mode Images of the Sham Operated and Ligated Left Ventricle

Figure 26. Cardiac Function in the Post-MI Heart

Figure 27. In vivo Expression and Phosphorylation of MAPK Proteins Post-MI

Figure 28. Graphic Depiction of the Human Scleraxis Promoter and Putative Transcription Factor Binding Sites

Figure 29. Proposed Mechanism for the Regulation of Scleraxis by p44/42 (Erk1/2) and Ski

Figure 30. Formula for Calculating DNA Concentration

Figure 31. Scleraxis Regulation of the Human Ski Proximal Promoter

Figure 32. Scleraxis Overexpression in Primary Cardiac Myofibroblasts and Ski Expression
Figure 33. p65/TNFα Mediated Regulation of the Human Ski Proximal Promoter………………………………………………………………………………… 151-154
Figure 34. Schematic Summary for the Transcriptional Regulation of Ski and Scleraxis in the Primary Cardiac Myofibroblast and its Proposed Role in Fibrogenesis…162-163
Figure A-1. Clustal W of the Mouse, Human, and Rat Scleraxis Proximal Promoter…………………………………………………………………………………215-217
Figure A-2. Clustal W of the Mouse, Human, and Rat Scleraxis Distal Promoter…………………………………………………………………………………218-221
Figure B-1. Fractionation of Cos7 Cells…………………………………………………222
Figure B-2. Electrophoretic Mobility Gel Shift Assay of the Distal and Proximal SBE of the Human Scleraxis Promoter in Cos7 Cells……………………………223
Figure C-1. Clustal W of the Mouse, Human, and Rat Ski Proximal Promoter. …………………………………………………………………………………………225-227
Figure C-2. Clustal W of the Mouse and Human Ski Proximal Promoter………………………………………………………………………………………228-230
Figure D-1. ChIP Analysis of the Interaction of the NF-κB p65 Subunit with the Cos7 Ski Proximal Promoter………………………………………………………232
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Amino Acid</td>
</tr>
<tr>
<td>AP1</td>
<td>Activator Protein 1</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATF2</td>
<td>Activating Transcription Factor 2</td>
</tr>
<tr>
<td>α-SMA</td>
<td>α-Smooth Muscle Actin</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial Artificial Chromosome</td>
</tr>
<tr>
<td>bHLH</td>
<td>Basic Helix-Loop-Helix</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone Morphogenetic Protein</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>C-Terminal</td>
<td>Carboxyl-Terminal</td>
</tr>
<tr>
<td>CAD</td>
<td>Canadian Dollar</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic Adenosine Monophosphate</td>
</tr>
<tr>
<td>CAMK</td>
<td>Calcium-Calmodulin Dependent Kinase</td>
</tr>
<tr>
<td>CAT</td>
<td>Chloramphenicol Acetyltransferase</td>
</tr>
<tr>
<td>CBP</td>
<td>CREB-Binding Protein</td>
</tr>
<tr>
<td>Cdc42</td>
<td>Cell division cycle-42</td>
</tr>
<tr>
<td>ChIP</td>
<td>Chromatin Immunoprecipitation</td>
</tr>
<tr>
<td>CK2</td>
<td>Casein Kinase 2</td>
</tr>
<tr>
<td>Co-Smad4</td>
<td>Co-mediator Smad4</td>
</tr>
<tr>
<td>Col 1α1</td>
<td>Collagen type 1α1</td>
</tr>
<tr>
<td>Col 1α2</td>
<td>Collagen type 1α2</td>
</tr>
<tr>
<td>Col 3α1</td>
<td>Collagen type 3α1</td>
</tr>
<tr>
<td>CoIP</td>
<td>Co-Immunoprecipitation</td>
</tr>
<tr>
<td>CTGF</td>
<td>Connective Tissue Growth Factor</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DHD</td>
<td>Dachshund Homology Domain</td>
</tr>
<tr>
<td>DN</td>
<td>Dominant Negative</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ED-A FN</td>
<td>Extra Domain-A Fibronectin</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EMSA</td>
<td>Electrophoretic Mobility Shift Assay</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithelial-to-Mesenchymal Transition</td>
</tr>
<tr>
<td>EndoMT</td>
<td>Endothelial-to-Mesenchymal Transition</td>
</tr>
<tr>
<td>Erk1/2</td>
<td>Extracellular Signal-Regulated Kinase 1/2</td>
</tr>
<tr>
<td>ESC</td>
<td>Embryonic Stem Cells</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-Phosphate Dehydrogenase</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
</tbody>
</table>
PBS
Phosphate Buffered Saline

PDGF
Platelet Derived Growth Factor

PI3K
Phosphatidylinositol 3-Kinase

PKA
Protein Kinase A

PKC
Protein Kinase C

PPARδ
Peroxisome-Proliferator Activated Receptor δ

PPRE
PPAR Response Element

PVDF
Polyvinylidene Fluoride

R-Smad
Receptor-Smad

RGD
Arginine-Glycine-Aspartic Acid

RHD
Rel Homology Domain

rhTGFβ1
Recombinant Human TGFβ1

rhTNFα
Recombinant Human TNFα

RIPA
Radioimmunoprecipitation Assay Buffer

ROS
Reactive Oxygen Species

rpm
Revolutions Per Minute

SAND
Sp100, Autoimmune Regulator 1, NucP41/75, Deformed Epidermal Autoregulator Factor 1

SARA
Smad Anchor for Receptor Activation

SBE
Smad Binding Element

Scx
Scleraxis

SDS
Sodium Dodecyl Sulfate

SDS-PAGE
Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

SE
Standard Error

SGS
Shprintzen-Goldberg Syndrome

ShcA/B/C
Src Homology 2 Containing Protein A/B/C

Ski
Cellular Ski

SLC
Small Latency Complex

SMEM
Spinner-Modified Minimum Essential Media

SMemb
Smooth Muscle Embryonic Myosin Heavy Chain

SMRT
Silencing Mediator for Retinoid and Thyroid Receptors

Smurf2
Smad Ubiquitin Regulatory Factor 2

SOS
Son of Sevenless

Sp1
Specificity Protein 1

SRF
Serum Response Factor

SSXS
Serine/Serine/Any/Serine

TACE
TNFα Converting Enzyme

TAK1
TGF Activating Kinase

TβR
TGFβ Receptor

TβRI
TGFβ Receptor Type I

TβRII
TGFβ Receptor Type II

TBS-T
Tris-Buffered Saline + Tween-20

TGFβ
Transforming Growth Factor β
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFα</td>
<td>Tumor Necrosis Factor α</td>
</tr>
<tr>
<td>TNFR1/2</td>
<td>Tumour Necrosis Factor α Receptor 1 and 2</td>
</tr>
<tr>
<td>TRAF6</td>
<td>TNF receptor associated factor 6</td>
</tr>
<tr>
<td>TSP1</td>
<td>Thrombospondin-1</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic Echocardiography</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/Volume</td>
</tr>
<tr>
<td>v-Ski</td>
<td>Viral Ski</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/Volume</td>
</tr>
<tr>
<td>WCL</td>
<td>Whole Cell Lysate</td>
</tr>
<tr>
<td>Wk</td>
<td>Week</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WT</td>
<td>Wild Type</td>
</tr>
</tbody>
</table>
Chapter 1: Literature Review

Prevalence and Epidemiology of Cardiovascular Disease

Cardiovascular disease (CVD) is a major burden to societies worldwide in terms of morbidity, mortality, and financial costs1-4. The World Health Organization (WHO) defines CVD as “disorders of the heart and blood vessels that includes coronary heart disease (heart attacks), cerebrovascular disease (stroke), hypertension, peripheral artery disease (PAD), rheumatic heart disease, congenital heart disease, and heart failure”5. Cardiovascular disease is the leading cause of non-communicable disease worldwide and was estimated to be responsible for over 17 million deaths in 2008 and 20121,6 and is expected to exceed 22 million deaths annually by 20306. The WHO reported that not only was CVD responsible for 37\% of all non-communicable disease related deaths6, but was directly accountable for 31\% of all-cause mortality worldwide1. Within this population, coronary heart disease (i.e., acute myocardial infarction (MI)) accounted for nearly 46\% and 38\% of death in males and females, respectively1.

In Canada, CVD annually accounts for 20\% of all-cause mortality, with coronary heart disease representing approximately half of this population7. In the United States, more than 82 million (greater than 1 in 3) Americans are afflicted with at least one type of CVD8,9. Of these individuals, approximately 92\% are hypertensive, and 20\% have some form of coronary heart disease of which MI represents half of this population8,9.

The cost of treatment and care of patients with CVD in Canada exceeds $20 billion CAD annually10,11. Medical costs associated with CVD in the United States and the United Kingdom exceed $180 billion USD ($189 billion CAD) and €169 billion...
Euro12 ($272 billion CAD) annually, respectively. Irrespective of the societal impact of cardiovascular disease, the toll on the affected individuals and their families is inestimable.

Risk Factors for Cardiovascular Disease

Cardiovascular disease is a worldwide epidemic afflicting individuals of both sexes, all races, and all social-economic classes. Men are at a higher risk for CVD than women, and low-middle class families have a significantly greater life time risk for developing CVD as compared to the upper classes8,13. It is important to note that while CVD affects everyone, the risk for developing CVD is disproportionate amongst these groups.

Risk factors for CVD can be broken down into two broad categories that include: i) non-modifiable, and ii) modifiable risk factors14. Non-modifiable risk factors include congenital malformations, genetic deficiencies8, age1, race, and a family history of CVD8,15-17. Conversely, modifiable factors include relative physical inactivity8, obesity8, alcohol, and tobacco8,18 abuse. These factors lead to a spectrum of metabolic and physiological changes that include hypertension, diabetes, and dyslipidemia. In turn, these maladaptive physiological changes result in progressive damage to the systemic and coronary blood vessels due to the development of atherosclerotic plaques. The size and distribution of these plaques within the vasculature will then have an influence on cardiac function and patient mortality.

The majority of CVD cases worldwide can be attributed to modifiable risk factors and thus are largely preventable through proper diet, physical activity, and lifestyle modifications such as quitting smoking and drinking. A common message in
 todays popular media focuses on health maintenance and nutrition. It is well established that healthy eating habits and physical activity19 can delay and/or prevent the onset of CVD and has been demonstrated to significantly reduce ones’ risk for having a cardiovascular event as they age, even after years of unhealthy eating and physical inactivity. Thus, raising awareness is a popular trend for health organizations to reduce morbidity and mortality due to CVD worldwide. This notwithstanding, simple changes to diet and exercise are insufficient to provide curative solutions to heart failure.

Cardiac Fibrosis as a Primary Cause of Heart Failure

Cardiac fibrosis results from the excessive deposition of extracellular matrix (ECM). Cardiac fibrosis research is a burgeoning field with a large increase in research interest in the past decade. This is not surprising as cardiac fibrosis is a primary cause of heart failure, and despite the recognition of this as a contributor to heart disease, cardiac fibrosis *per se* is essentially currently untreatable, with no specific druggable targets identified for translatable cures. While most current lines of basic cardiovascular science investigations in this field are focused solely on endogenous fibroproliferative mechanisms, the current topic of investigation reflects our focus on proteins with pro-fibrotic (Scleraxis)20 and anti-fibrotic (Ski) properties21, 22. The discovery of Ski’s anti-fibrotic role, is at the centre of the current concept to investigate the reciprocal negative regulation between Ski and Scleraxis.

Fibrotic Remodelling and Cardiovascular Disease

Many CVD states have been associated with remodelling of the ECM23. For the purpose of this discussion, we distinguish between remodelling of the entire heart (i.e. hypertrophy including inappropriate growth of the cardiac myocytes) and remodelling
of the cardiac interstitium (i.e. cardiac fibrosis). For example, systemic hypertension is associated with elevated left ventricular (LV) afterload, which in turn, increases ventricular wall tension and thus ventricular workload. Acutely, the heart is able to temporarily cope with the increased hemodynamic stress with attendant growth i.e., hypertrophy24, 25. However, the chronically overloaded myocardium is unable to maintain compensated forward output with each contraction and thus begins to decompensate26, 27, 28-30 and ultimately results in heart failure.

A second example of maladaptive remodelling of the heart is that which follows the loss of viable myocardium after a large MI, wherein cardiomyocyte necrosis leads to the activation of resident cardiac fibroblasts, an inflammatory response, and the synthesis of fibrillar collagens23. Acutely, this process is known as wound healing and is necessary to form a collagen base scar to fill the denuded area and provide tensile strength in the absence of parenchymal cells (cardiomyocytes). The myocardium has essentially no significant intrinsic functional regenerative capacity, and thus without scar formation myocardial rupture and sudden death is inevitable31-33.

Despite the many different etiologies of CVD, elevated fibrillar collagen expression is now considered to be a primary contributor to altered cardiac function based on its adverse influence on electrical signal transduction, myocardial stiffness, and impaired cardiac lusitropic function, also known as heart failure with preserved ejection fraction (HFpEF)34-37. The wide acceptance of HFpEF by clinicians and researchers as a distinct pathogenic mechanism of heart failure is relatively recent37. The underlying mechanisms responsible for the production and secretion of fibrotic
collagens in the damaged or stressed heart requires more work to identify the underlying molecular mechanisms.

Wound Healing Following Myocardial Infarction

Coronary artery occlusion results in the death of a large number of cardiomyocytes through apoptosis and necrosis. The heart’s ability to regenerate functional myocardial tissue is very low, thus the rapid loss of cardiomyocytes poses a significant risk to cardiac survival following an MI\(^3^1\). Necrosis of the myocardium is the primary initiator of the inflammatory and reparative process known as wound healing. Myocardial wound healing can be divided into four distinct but overlapping phases (Figure 1)\(^3^8\). Theses phases include i) death of cardiomyocytes, ii) acute inflammation, iii) cell proliferation, and iv) scar maturation\(^2^3, 3^9, 4^0\). There is much debate over whether cardiomyocyte death constitutes a phase of its own or whether it is better placed as the initial event in acute inflammation as myocyte necrosis stimulates the inflammatory response as the cytosolic content of the cell is released into the extracellular space\(^4^1\). Despite the controversy, all mechanistic pathways are in agreement that inflammation, proliferation, and scar maturation form the core events in the wound healing response.

The first phase of the wound healing process begins immediately following MI and is characterized by cardiomyocyte necrosis and apoptosis (Figure 1)\(^4^2\). Hallmarks of this phase include the release of troponin-T, creatine kinase, and serum glutamic-oxaloacetic transaminase into the blood and can be used as biomarkers for the early detection of an MI\(^4^2\). Apoptosis tends to peak 6-8 hours post-infarction after which secondary necrosis begins as the surrounding cells are unable to phagotose the large
number of dying cells42, 43. As cell loss progresses, hemostasis occurs at the site of injury to reduce blood loss by the formation of a fibrin clot44. With the necrotic loss of cardiomyocytes, the second phase of wound healing begins through activation of the complement system promoting acute inflammation (Figure 1)45. This process begins approximately 6 hours post-MI and can continue for up to 6 days42. During this time, there is a rapid increase in pro-inflammatory cytokines and chemokines including interleukin-1, -6, and -8 (IL-1, -6, -8), as well as tumor necrosis factor-\textgreek{a} (TNF\textgreek{a})46, 47. The primary characteristic of acute inflammation is the recruitment of granulocytes, lymphocytes, and macrophages to the infarcted region. There they remove cellular debris \textit{via} phagocytosis41. Additionally, the ECM is degraded through increased production of matrix metalloproteinases (MMP) -1, -2, and -948. Removal of necrotic cells and apoptotic bodies in addition to the loss of ECM components sets the stage for phase 3 (the formation of granulation tissue) of the wound healing process (Figure 1)41. Monocytes and macrophages secrete growth factors including (but not limited to) transforming growth factor \textgreek{b} (TGF\textgreek{b}), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) to promote fibroblast proliferation, phenoconversion, and migration44. Fibroblasts become activated myofibroblasts and migrate towards the area of damage wherein they begin producing and secreting large quantities of ECM. Although it may seem logical that myofibroblasts arise solely from the resident fibroblast population in the heart through the activation process known as phenoconversion, myofibroblasts have been documented to arise from numerous sources including circulating progenitor cells49, 50, cells undergoing epithelial and endothelial-to-mesenchymal transition (EMT and EndoMT respectively)44, 51 and
perivascular pericytes. Activation of fibroblasts typically begins on the second or third day post-MI and continues for up to one month following the initial injury. In addition to the formation of granulation tissue, the proliferative phase of wound healing also includes angiogenesis and re-epithelialization to restore tissue perfusion and improve structural strength to the infarct.

The final stage of post-MI cardiac wound healing is scar formation and expansion of interstitial remodelling of the remnant heart, remote to the infarct scar (Figure 1). These events do not begin for several (2-3) weeks post-MI and may continue for many years following the initial injury. Scar maturation is characterized by collagen cross linking and decellularization through myofibroblast apoptosis and removal by macrophages. Although the majority of myofibroblasts are removed from the scar tissue, there is a subpopulation of myofibroblasts that persists within the scar and continually produces collagen fibers. The chronic expression and deposition of collagen fibres leads to progressive cardiac stiffening and heart failure.
Figure 1. Phases of Human Myocardial Wound Healing Post-MI. Depicted are the four phases of myocardial wound healing that transpire following a myocardial infarction (MI). Note the overlap amongst inflammation, formation of granulation tissue, and scar formation. Note that murine MI models share these landmark events of myocardial wound healing however at a significantly accelerated temporal rate.
The Extracellular Matrix

Traditionally the ECM was thought of as a simple scaffold to hold tissues and cells together. It is now widely accepted that the cardiac ECM is a highly organized network that contains large structural proteins including fibrillar collagens type I and III, proteoglycans, fibronectins, and laminin that provide a framework for which cells can adhere to and may alter intracellular signaling pathways\(^{20, 44, 56-58}\). The primary function of the ECM in the myocardium is to coordinate myocyte-generated contractile forces in addition to preventing overextension or rupture of the myocardium during cardiac contraction and relaxation\(^{59, 60}\). Collagens type I and III account for the majority of the cardiac ECM and help to maintain the myocardial structure and the overall shape of the heart\(^{24, 60}\).

Collagens are synthesized and secreted by cardiac fibroblasts and myofibroblasts as pro-peptides that are cleaved into mature collagen molecules and subsequently cross-linked into fibres by lysyl oxidase in the extracellular space\(^{61-63}\). Fibres of collagen type I account for a majority of the myocardial stiffness and is comprised of two molecules of Col 1α1 and one Col 1α2 to form a triple helix\(^{60, 64, 65}\). Collagen type III is less abundant than type I in the heart and forms thinner fibres which are comprised of three molecules of Col 3α1. Ultimately, myocardial stiffness is a measure of the ratio of type I to type III fibres\(^{66}\). Under pathological conditions, this ratio significantly increases and is directly related to the decline in cardiac function and stiffening of the myocardium\(^{67-71}\). Pathological hypertrophy of an injured heart is associated with perivascular and interstitial fibrosis of the non-infarcted regions of the heart and replacement fibrosis of necrotic tissues. Ongoing replacement fibrosis
following wound closure may contribute to decompensated heart failure in severe cases.

In addition to collagen, glycoproteins such as fibronectin are an important component of the ECM. Fibronectin is a large, multi-domain ECM glycoprotein that binds cell membrane integrins in addition to other ECM proteins such as fibrins and collagens72, 73. It exists as a homodimer of two 250 kilodalton (kDa) monomers containing repetitive subunits72, 74. Alternative splicing of fibronectin can yield more than 20 different isoforms72, 75. Following cardiac injury, there is an upregulation of the extracellular domain-A splice variant of fibronectin (ED-A FN) that plays an important role in fibroblast activation and wound closure76, 77. Following MI, cardiac fibroblasts secrete fibronectin which serves as a base for a more organized, cell-derived matrix during the wound healing process77.

The ECM also plays a prominent role as a cytokine storage depot78. Numerous cytokines and growth factors such as TGFβ and FGF78 are stored in the ECM and can be made available through proteolytic cleavage or mechanical release from their associated latency complexes78-81. Storage of such molecules within the ECM allows for a rapid and direct response rather than relying on the rapid production of the necessary cytokine.

Another class of peptides capable of regulating cell phenotype and function are matrikines and matricryptins82-85. Matrikines are peptides derived from cleaved ECM macromolecules that have the capacity to bind to cell surface receptors and regulate a variety of cellular activities83, 86, whereas matricryptins have been described as “enzymatic fragments of the ECM containing exposed matricryptic sites” not visible in
the parent molecule85. Elastins, collagens, and glycoproteins such as thrombospondin-1 (TSP1) and fibronectin have all been identified to be a source for matrikines and matricryptins. Proteolytic cleavage of elastin gives rise to a VGVAPG (valine, glycine, valine, alanine, proline, glycine) repeated motif that has been shown to stimulate MMP-2 expression in human fibroblasts87. Thrombospondin-1 is a glycoprotein that produces several matrikines that participate in TGFβ activation as well as regulate angiogenesis88. Cleavage of fibronectin exposes an RGD domain that is recognized by α5β1 and αvβ3 integrins and alters cell adhesion, migration, proliferation, and survival. Due to the low prevalence or absence of matrikines in normal tissues, identifying the presence of matrikines as biomarkers in disease has become a rapidly expanding field89.

The Cardiac Fibroblast and Myofibroblast

The heart is made up of numerous cell types including smooth muscle cells, endothelial cells, cardiomyocytes, and fibroblasts90. Although cardiomyocytes occupy the majority of spatial volume within the heart, cardiac fibroblasts are the most numerous cell type in the heart. The exact number/percentage of fibroblasts that are found within the myocardium is unknown, but studies estimate that more than 70% of the cells found in the adult heart are of the fibroblast phenotype, although these estimates have been challenged90, 91.

Morphologically, fibroblasts are flat, spindle shaped cells that lack a basement membrane92. The fibroblast is found within the cardiac interstitium25 and is derived from a mesenchymal origin during development92. Fibroblasts are considered sentinel cells as they are highly responsive to a variety of stimuli *in vitro* and *in vivo* including TGFβ93-95, angiotensin II96-98, endothelin-199, mechanical stress, electrical signaling,
and seeding at low densities100. Under normal physiological conditions, fibroblasts are relatively quiescent cells that maintain matrix homeostasis, and play a role in the biochemical, mechanical, and electrical properties of the myocardium101, 102. Pathologically, however, these cells become activated and undergo phenoconversion where they become hypersynthetic and hypersecretory cardiac myofibroblasts. Morphologically, myofibroblasts are spatially larger than their quiescent counterparts103. These “activated” cells produce numerous matrix components including α-smooth muscle actin (α-SMA), ED-A FN, non-muscle myosin heavy chain-b (SMemb), vimentin, periositin, TGFβ receptors (TβR’s), and fibrillar collagens (type I and III)22, 77, 104-109. It is important to note that a small population of myofibroblasts exists within the healthy heart, however, these cells are isolated to the valve leaflets. Within the valve leaflets myofibroblasts help maintain and preserve valve structure and durability from the constant hemodynamic stress that they are under during ventricular contraction (inotropism) and relaxation (lusitropism)110.

Functionally, myofibroblasts are contractile cells that impart isometric tension within the granulation tissue of the healing heart111. This phenomenon has been demonstrated in numerous \textit{in vitro} and \textit{in vivo} models and is considered one of the hallmarks of the myofibroblast phenotype111, 112. Myofibroblast contraction is critical during myocardial wound healing as tensile force distorts the ECM to oppose the retractile forces of the myocardium and promote scar contraction post-MI. Transmission of cellular tension occurs through focal adhesions, which form strong connections with collagen fibres and fibronectin113 while increased α-SMA expression enhances myofibroblast contraction114. As cardiac myofibroblasts are neither
smooth/skeletal muscle nor cardiomyocytes, it is likely that they use a unique model of cellular contraction. An alternative model proposed by Castella et al.115 suggests that myofibroblast contraction is the cumulative sum of intracellular Rho-ROCK signaling and calcium-mediated transients. Myofibroblasts have a spontaneous calcium transient of approximately 100 seconds (220 seconds in quiescent fibroblasts)115 and express critical ion channels including L-type Ca2+ channels and the sodium calcium exchanger116 on their cell surface membranes to mediate calcium flux115. Additionally, these cells are electrically coupled to cardiomyocytes through connexin-43 and connexin-45117-119. In Castella’s proposed model, Rho-Rock signaling produces and maintains isometric tension on stress fibres while calcium entry plays a role in further enhancing cell tension and stabilizes the contracture115. These additive events help the cell to stabilize and support the load that it faces and may allow for re-spreading, resulting in multiple cycles of contracture115. Collectively, it is suggested that this may lead to wound contracture at a rate of 1.0 centimeter per month111,115.

Myofibroblasts are a heterogeneous population that are found within nearly all tissue and organ systems but display marked phenotypic and topographical diversity120. Furthermore, it has been recognized that not only do fibroblasts differ in phenotype from tissue to tissue, but fibroblasts isolated from different regions of the same organ tissue have different physiological characteristics120. For example, fibroblasts isolated from the superficial and deep dermis regions displayed different matrix protein expression profiles for versican, decorin, collagen type I, and type III thus demonstrating a topographical diversity in matrix protein expression amongst fibroblasts within the same tissue121,122.
Traditionally, the appearance of myofibroblasts in the post-MI heart comes from the activation of resident cardiac fibroblasts. This hypothesis has recently been supported wherein data showed that two resident fibroblast lineages are responsible for the fibrosis that accompanies pressure overload induced hypertrophy, and that they could be targeted for alleviation of pathological fibrosis. Through cell lineage tracing, it is now increasingly recognized that myofibroblasts originate from a variety of sources including endothelial and epithelial cells through EndoMT and EMT, pericytes, bone-marrow derived cells and circulating fibrocytes. However, there remains much debate regarding the contribution and true pathological importance for these alternative sources for myofibroblasts within the remodelling heart. This notwithstanding, myofibroblasts are important in the infarcted heart for the deposition of matrix proteins to provide structural strength to the healing myocardium to prevent cardiac rupture.

Transforming Growth Factor β

Transforming Growth Factor β (TGFβ) is an evolutionary ancient and highly conserved cytokine that plays a critical role in processes ranging from development to pathological wound healing. The TGFβ superfamily consist of over 30 family members which include activins, nodal, bone morphogenetic proteins (BMP), inhibins, Müllerian inhibiting substance (MIS), and TGFβ to name a few. Mammalian TGFβ is found as three distinct isoforms, TGFβ1, TGFβ2, and TGFβ3. Each isoform arises from a distinct gene locus: in humans TGFβ1 arises from a region of chromosome 19, TGFβ2 from chromosome 1, and TGFβ3 from chromosome 14.
Despite its origin, each cytokine is released to the extracellular space as an inactive dimer due to its non-covalent association with a latency-associated protein (LAP)139, 140. This LAP is produced from the N-terminal region of the TGFβ gene product via cleavage from the nascent protein to form the small latency complex (SLC). The SLC is bound to the large latent TGFβ binding protein (LTBP) via a disulfide link in the endoplasmic reticulum to form the large latency complex141. Although the LTBP is not necessary for TGFβ latency, it has been implicated in the secretion and storage of TGFβ in the ECM142 through its interactions with fibronectin and cell membrane bound integrins143.

Release of active TGFβ from the latency complex requires cleavage of the LAP. Cleavage can occur through a variety of mechanisms including direct interaction with proteases (eg, MMP’s, plasmin, thrombin)144-146, interaction with other proteins (eg, TSP1, integrin αvβ6)147 80, reactive oxygen species (ROS)147-149, low pH147, 150, or shear-mechanical stress151. Mechanical stress induced through myofibroblast contraction has recently been demonstrated to play a significant role in TGFβ release151. Integrins containing the αv-subunit bind to the LAP via the RGD (arginine-glycine-aspartic acid) motif and myofibroblast contraction has been demonstrated to pull the complex sufficiently to release active TGFβ from the matrix79, 80.

Active TGFβ\textsubscript{1} signals through a pair of membrane bound serine/threonine kinase receptors known as TGFβ receptor type I (TβRI) and type II (TβRII)136, 152-155. Free, active TGFβ\textsubscript{1} binds to the TβRII homodimer which then recruits TβRI to form a heterotetrameric receptor complex152, 154, 156. These receptors have an intrinsic affinity for one another as it has been demonstrated that they are capable of spontaneously
forming active complexes when the receptors are overexpressed in vitro in the absence of TGFβ. Physiologically, binding of extracellular TGFβ to TβRII induces receptor autophosphorylation and increases the affinity of TβR’s for each other which ultimately leads to TβRII recruitment. TβRII then activates TβRI through phosphorylation of serine residues that provide a docking site for receptor-mediated Smad (R-Smad) proteins within the cytosol to induce a Smad-dependent signaling cascade. Alternatively, receptor stimulation may lead to activation of several Smad-independent signaling events, thus highlighting the biological importance of this signaling pathway.

Smad-Dependent Signaling

R-Smads were named due to their significant homology to sma and mad proteins from *Caenorhabditis elegans* and *Drosophila melanogaster* respectively. The R-Smad family consists of two functional classes of proteins, i) those that induce gene expression, and ii) those that repress gene expression. Those that induce gene expression include R-Smad 1, 2, 3, 5, 8 and co-mediator Smad4 (Co-Smad4) while Smad 6 and 7 are potent negative regulators of TGFβ signaling. R-Smads 1, 5, and 8 are linked to BMP-mediated signaling events through TβR’s while R-Smads 2 and 3 are associated with TGFβ-mediated signaling. Co-Smad4 is a common mediator for both BMP and TGFβ signaling. It forms a complex with phosphorylated R-Smad proteins and together translocate to the nucleus to influence gene expression. Smad 6 and 7 are known as inhibitory Smads (I-Smad) due to their ability to form a negative feedback loop on BMP/TGFβ signaling to turn off R-Smad dependent signaling events.
R-Smad proteins are sequestered in the cytoplasm near the plasma membrane in close proximity to the TβR’s by the two FYVE-domain (a cysteine rich protein comprised of Fab1, YOTB, Vac1 and EEA1) containing proteins, Hgs172 and Smad Anchor for Receptor Activation (SARA)173. Upon receptor activation, TβRI induces phosphorylation of R-Smad proteins at their SSXS (Serine, Serine, X, Serine where X can be any amino acid (aa)) motifs, at their C-termini155, 174. Phosphorylation of R-Smads releases them from SARA, which allows them to complex with Co-Smad4 and, together, translocate to the nucleus and alter gene expression156, 175. The Smad complex is a transcription factor that is capable of binding directly to DNA by recognizing a specific DNA sequence known as a Smad binding element (SBE)176. The precise definition of a SBE is an ever evolving one as Smad complexes have been shown to bind to a variety of DNA sequences that vary in composition and length (Table 1). However, all variants of putative SBE seem to contain a conserved \textit{CAGAC} DNA sequence that is likely key with respect to Smad complexes recognizing specific gene promoters176.
<table>
<thead>
<tr>
<th>SBE Sequence</th>
<th>Reference</th>
</tr>
</thead>
</table>
| CAGACA | Chen et al.177
Bagchi and Czubryt20
Ghosh et al.178 |
| GTCT or AGAC | Chen et al.179
Shi et al.180 |
| CAGAC | Chen et al.179 |
| CAGA | Dennler et al.181 |
| GTCTAGAC | Zawel et al.176 |

Table 1. Previously Reported Smad Binding Elements (SBE). A selection of putative SBE that have been previously reported to play a role in directing Smad-mediated gene expression.

Once bound to the promoter region of TGFβ regulated genes, the Smad complex can recruit transcriptional co-activators (p300/CBP, P/CAF, Fast1, SMIF)20,182-185 and/or co-repressors (Ski, SnoN, N-CoR, SMRT, mSin3A, HDACs)21, 22, 186-188 to either promote or repress gene expression. Cessation of Smad signaling occurs through ubiquitination of Co-Smad4 by Ectodermin/TIF1γ within the nucleus (Figure 2)189, 190. Once ubiquitinated, Co-Smad4 can be recycled back into the cytoplasm where it is promptly de-ubiquitinated by FAM/Usp9x191 and primed for another round of signaling. Additionally, phosphorylated R-Smads in the nucleus are de-phosphorylated.
upon release from Co-Smad4 by PPM1A192,193 and may also be recycled back into the cytoplasm and associate with SARA (Figure 2).

I-Smad proteins differ from R-Smads in that they are not transcription factors. Rather, I-Smad7 serves as a negative feedback mechanism in response to TGFβ signaling194,195 by binding to and facilitating the degradation of TβRI, thus inhibiting R-Smad activation196. Recruitment of Smad ubiquitin regulatory factor 2 (Smurf2), an E3 ubiquitin ligase, leads to ubiquitination of TβRI which targets it for degradation (Figure 2)197. Ski, an endogenous inhibitor of Smad signaling, recruits a negative regulatory complex to TGFβ-regulated promoters to prevent gene expression. The mechanisms associated with this process are discussed in greater detail later in this thesis.
Figure 2. Canonical TGFβ1/Smad-Dependent Signaling. Extracellular TGFβ1 binds to its cell surface receptor TβRII and promotes recruitment of TβRI. Formation of a heterotetrameric complex promotes R-Smad phosphorylation by TβRI which releases them from SARA. Phosphorylated R-Smads form an active complex with Co-Smad4 and together translocate to the nucleus where they recognize specific DNA binding sites known as SBE. There the Smad complex promotes gene expression of TGFβ1.
regulated genes such as I-Smad7. I-Smad7 negatively feeds back on TGFβ signaling as it is shuttled to the cytoplasm and promotes destruction of TβRI. Dissociation of the Smad complex in the nucleus is mediated by Ectodermin/TIF1γ through ubiquitination of Co-Smad4. Ubiquitinated Co-Smad4 is shuttled to the cytoplasm where it can be de-ubiquitinated by FAM/Usp9x and recycled. Free phosphorylated R-Smads in the nucleus are dephosphorylated by PPM1A and recycled back to the cytoplasm where they re-associate with SARA to be used again. Ski is an endogenous inhibitor of Smad signaling that prevents Smad mediated gene expression at the promoter region of TGFβ1 regulated genes.

Smad Structure and Regulation

Smad proteins contain two well conserved domains located at either end of the protein. At the N-terminus is the Mad Homology 1 (MH1) domain (Figure 3). It is highly conserved amongst both R-Smads and Co-Smad4 and plays a critical role in Smad nuclear transport and DNA binding167. The N-terminus of the I-Smads however have little to no similarity to that of R-Smads and Co-Smad4167. In contrast to the N-terminal domain, the C-terminus contains a Mad Homology 2 (MH2) domain that is well conserved amongst all Smad proteins, including the I-Smads (Figure 3)167. This region mediates Smad oligomerization, recognizes TβRI’s, and interacts with transcriptional co-activators (p300/CBP, AP1)20,182-185 and co-repressors (Ski, SnoN)21,22,186-188 within both the cytoplasm and nucleus. Between the N- and C-termini lies a linker region that connects the Mad homology domains198. This region has no identifiable similarity or homology from Smad to Smad whether it is an R-Smad, Co-Smad4, or I-Smad167. The linker region varies in sequence and length but has been shown to play an important role in Smad regulation and nuclear accumulation167,199,200.21
Figure 3. Protein Structure of Smad Proteins. Smad proteins contain regions of both high homology and divergence. All Smad proteins contain an MH2 domain which plays an important role in Smad activation and interaction with other proteins. R-Smads and Co-Smad4 proteins also contain an MH1 that is highly conserved and plays a critical role in nuclear translocation and DNA binding. Additionally, they contain a linker region that can be modified (i.e. via phosphorylation) by other proteins (such as p38-MAPK) to regulate R-Smad and Co-Smad4 function. I-Smad7 does not contain a DNA binding domain.

The C-terminus of R-Smads contain several serine residues that are critical to Smad signaling. Specifically, there is an evolutionarily conserved SSXS motif that must be phosphorylated in order to allow Smad oligomeric complexes to propagate the TGFβ signal from the cell surface receptor to the nucleus. TβRI’s demonstrate substrate selectivity as TGFβ and activin receptors will phosphorylate R-Smad2/3, whereas BMP receptors will phosphorylate R-Smad1/5/8. The basis for this receptor selectivity lies in the L45 loop in the TβRI and L3 loop of the R-Smad proteins. The detailed mechanisms of this signaling selectivity, however, goes beyond the scope of this literature review.

Detailed analysis of endogenous Smad proteins has revealed that there are more than 10 Smad phosphopeptides suggesting that other kinases may play a role in Smad regulation. This has been found to be the cause of phosphorylation of serine
residues within the linker region between the MH1 and MH2 domains. Phosphorylation of these sites is mediated through several different kinases including Extracellular Signal-Related Kinase 1/2 (Erk1/2), p38-MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), RhoA/ROCK, and calcium-calmodulin dependent kinase (CAMK). Studies in the late 1990’s by Kretzschmar et al. demonstrated that R-Smad1/2/3 were phosphorylated by Erk1/2 which led to nuclear exclusion and accumulation of R-Smads in the cytoplasm. Site-directed mutagenesis of Erk1/2 phosphorylation sites prevented phosphorylation of the Smad-linker region, and rescued the growth inhibitory effects of TGFβ. CAMK has also been demonstrated to phosphorylate the linker region of R-Smad2 to prevent nuclear translocation. Furthermore, induction of protein kinase C (PKC) has been demonstrated to promote phosphorylation of the R-Smad3 linker region. Interestingly, rather than preventing nuclear translocation, phosphorylation by PKC prevented gene expression by inhibiting the DNA-binding ability of R-Smad3. It is clear from these examples that there is considerable cross-talk between the TGFβ/Smad-dependent pathway and those pathways regulated by the kinases described above that ultimately play a role in R-Smad localization and function. This only further highlights the importance of TGFβ signaling and its significance to cell homeostasis and pathogenesis.

Smad-Dependent Mechanisms and Fibrosis

It has been recognized for some time now that TGFβ/Smad-dependent signaling plays a critical role in promoting tissue fibrogenesis through the production of fibrillar collagens and ECM. In 1999, Poncelet et al. isolated the human collagen
α2 promoter and found that promoter expression could be stimulated by TGFβ1 and R-Smad3 overexpression in human mesangial cells209. A follow up study in 2001 by this group also demonstrated that Specificity Protein 1 (Sp1) is a co-activator of Col 1α2 gene expression207. Specifically, they found that Sp1 and R-Smad3 acted in a synergistic manner to promote collagen 1α2 expression and could be co-precipitated with one another from cell extracts207. They noted that Sp1 on its own could not affect collagen production suggesting that R-Smad3 was a rate limiting factor in enhancing collagen expression207. More recently, Scleraxis (Scx), a basic helix-loop-helix (bHLH) transcription factor, was also found to act in a synergistic manner with R-Smad3 to promote Col 1α2 gene expression20, 210.

In the post-MI heart, there is a significant increase in the amount of R-Smad2/3 phosphorylation which has been shown to coincide with Smad nuclear accumulation208 and collagen deposition96, 211. In a model of parasitic liver fibrosis, there was a significant increase in collagen production and secretion as determined by hydroxyproline incorporation and Masson’s Trichrome staining212. Furthermore, there was a significant increase in mRNA transcripts for pro-fibrotic markers including collagen type I and III, and α-SMA which could be correlated with increased expression and activation of R-Smad proteins, TGFβ1 cytokine, and TβR’s in those animals with Clonorchis sinensis infections212. Recently, in a carbon tetrachloride (CCl\textsubscript{4}) rat model of hepatic fibrosis, CCl\textsubscript{4} treatment promoted collagen type I mRNA and protein expression which followed the same pattern of increased R-Smad3 expression213. They found that while R-Smad3 promoted collagen expression, R-Smad2 overexpression repressed collagen expression, suggesting that R-Smad2 was protective against
TGFβ1/Smad-mediated collagen expression and hepatic fibrosis213. This protective effect of R-Smad2 against TGFβ1/R-Smad3 mediated fibrosis has also been described in a model of renal fibrosis214.

Smad-Independent Signaling Initiated by TGFβ\textsubscript{1}

In addition to its ability to stimulate Smad-dependant signaling events, TGFβ\textsubscript{1} has been shown to promote several Smad-independent signaling cascades through TβR’s including p38 mitogen-activated protein kinase (p38-MAPK)152, 159, 164, 215, 162, 216-220, Erk1/2162, 216-220, SAPK/JNK1158, 221, phosphatidylinositol 3-kinase (PI3K)/Akt160, 163, 222-224, and RhoA/ROCK158, 161, 225-228. In response to TGFβ\textsubscript{1} stimulation, these pathways have been shown to play key roles in multiple cellular and sub-cellular events including EMT, actin polymerization, proliferation, migration, differentiation, collagen production, fibrosis, and regulation of Smad-dependent signaling. The ability of TGFβ to induce multiple signaling pathways demonstrates the complexity of TGFβ-dependent signaling and the diverse roles that it plays in regulating homeostasis and disease pathogenesis.

TGFβ\textsubscript{1}-Mediated p38 Mitogen-Activated Protein Kinases (p38-MAPK) Signaling

Of the various kinases that have been shown to play an important role in TGFβ/Smad-independent signaling, p38-MAPK signaling has been extensively investigated. Mammalian p38 is activated by 2 specific upstream kinases, MAPK kinase -3 and -6 (M KK3 and M KK6)159, 229-231. In response to TGFβ\textsubscript{1} stimulation, TβRI induces ubiquitination of the receptor associated TNF receptor associated factor 6 (TRAF6). TRAF6 then associates with and phosphorylates TGFβ activating kinase-1 (TAK1) which in turn phosphorylates M KK3/6 (Figure 4)164. Upon phosphorylation of
p38 by MKK3/6, p38 itself phosphorylates numerous downstream transcription factors including activating transcription factor-2 (ATF2), CHOP, and CREB (Figure 4)159.
Figure 4. TGFβ1/Smad-Independent Signaling: p38-MAPK. In addition to its role in stimulating a Smad-dependent pathway, extracellular TGFβ1 can stimulate a Smad-independent pathway through TβR’s. TGFβ1 promotes ubiquitination of TRAF6 which in turn phosphorylates and forms a complex with TAK1. This activated complex induces phosphorylation of MKK3/6 which activates p38 kinase through phosphorylation. Activated p38 then has the capability to phosphorylate downstream
transcription factors such as ATF2, CHOP, and CREB or the linker region of R-Smad proteins to regulate their function.

Several elegant studies conducted in the early 2000’s demonstrated the importance of p38-MAPK signaling in mediating fibroblast differentiation, migration, and EMT159, 232. Using a TβRI mutant that lacked the ability to activate R-Smads but retained its kinase ability, Yu \textit{et al.} demonstrated that TGFβ\textsubscript{1} stimulation of NMuMG mouse mammary epithelial cells induced prominent phosphorylation of p38 in the absence of R-Smad signaling232. Furthermore, they showed that p38 alone was sufficient to induce TGFβ\textsubscript{1}-mediated apoptosis. They observed that activation of p38 in the absence of R-Smad signaling was unable to promote EMT in these cells, suggesting that input from R-Smad signaling is necessary to induce EMT232. They confirmed their results by using a kinase deficient TβRI and saw that loss of receptor kinase activity led to complete loss of p38 phosphorylation232. At the same time, Bakin \textit{et al.} were evaluating the role that p38-MAPK specific inhibitors had on TGFβ\textsubscript{1}-dependent p38 signaling159. As little as 2.0 ng/mL TGFβ\textsubscript{1} led to rapid (15 minutes) induction of p38-MAPK signaling resulting in the phosphorylation of the transcription factor ATF2 and promoted EMT. This was evident through morphological changes in cell shape, actin cytoskeleton structure, and cell migration characteristic of mesenchymal cells159. Conversely, the p38 specific inhibitors SB203580 and SB202190 prevented the morphological and phenotypic changes in cell structure and ATF2 phosphorylation without affecting R-Smad phosphorylation159. This data was in line with previous data from this group where they had demonstrated that dominant-
negative mutants of the upstream kinases MKK3/6 impaired TGFβ-mediated phosphorylation of p38-MAPK and EMT233.

TGFβ\textsubscript{1}-Mediated Phosphatidylinositol 3-Kinase (PI3K)/Akt Signaling

TGFβ stimulation has also been demonstrated to induce activation of the PI3K/Akt signaling pathway through TβR’s in several cell types163. Incorporation of 32P-labelled phosphatidylinositol phosphate (PIP) has been shown to occur within 15 minutes of TGFβ stimulation of AKR-2B fibroblasts with a maximal signal occurring within 60 minutes163. This response is similar to those seen in previous studies that demonstrated that as little as 2.0 ng/mL TGFβ\textsubscript{1} was able to rapidly induce Akt phosphorylation160. Immunoprecipitation studies in the late 1990’s demonstrated that PI3K was physically associated with both type I and type II TβR’s234. Several independent groups showed that p85, the regulatory subunit of PI3K, was part of a complex that was associated with both TβR’s and TGFβ\textsubscript{1} stimulation led to rapid and robust phosphorylation of Akt, a downstream component of PI3K signaling (Figure 5160,234-236). Expression of a dominant-negative form of p85 (DN-p85) led to a significant reduction in basal Akt phosphorylation levels and TGFβ\textsubscript{1} stimulation of cells expressing DN-p85 demonstrated significantly less reporter activity159. Functionally, the role of PI3K in cell migration was evaluated using a PI3K specific inhibitor159. Inhibition of PI3K in mouse tumor cells (which are highly responsive to TGFβ\textsubscript{1} stimulation) using the small molecule inhibitor LY294002 blocked TGFβ\textsubscript{1} mediated cell migration, while having no effect on cell proliferation160. PI3K/Akt signaling was found to be sufficient to disrupt cell junctions, but did not promote morphological changes in NMuMG epithelial cells associated with EMT160. Disruption of cell
junctions is an early event in EMT and thus PI3K may be a critical mediator of the early responses to TGFβ1-mediated EMT. Other events, however, such as cytoskeletal reorganization may not be regulated through PI3K.

The precise role and outcome of PI3K/Akt signaling in response to TGFβ1 has been inconsistent. The majority of the early studies in this area used epithelial and cancer cells undergoing EMT to evaluate the role of PI3K/Akt signaling159,160,163. More recently, Wilkes \textit{et al.} compared several fibroblastic (NIH3T3, Swiss3T3, AKR-2B) cell lines to epithelial (HeLa, Mv1Lu, MDCK) cell types to elucidate the importance of PI3K/Akt-mediated signaling in response to TGFβ in a mesenchymal cell type163. They found that TGFβ stimulation induced phosphorylation of Akt in fibroblastic but not epithelial cell lines. The fact that the epithelial cells demonstrated no Akt activation in response to TGFβ differs from that of previous reports in NMuMG and mouse tumor cells and suggests a cell dependent dichotomy for TGFβ regulation of PI3K/Akt163. With respect to R-Smad signaling, inhibition of PI3K using LY294002 had no effect on TGFβ-dependent R-Smad2 phosphorylation or nuclear localization indicating a separation in the pathways163. Furthermore, using R-Smad3 null mice (R-Smad3-/-) they found that lack of R-Smad activation had no effect on PI3K/Akt signaling in response to TGFβ163. To further elucidate the differences between PI3K/Akt signaling in cells of mesenchymal and epithelial origin, Wilkes and colleagues evaluated the activation of p21-activated kinase (PAK2)163. PAK2 has previously been shown to be stimulated in a R-Smad-independent manner in cells of mesenchymal origin but not epithelial cells163. Wilkes found that TGFβ stimulation of AKR-2B fibroblasts induced PAK2 stimulation and inhibition of PI3K completely blocked PAK2 phosphorylation163.
Specific inhibition of Akt had no effect on PAK2 phosphorylation and thus suggests that PI3K may activate 2 independent pathways (Figure 5), Akt and PAK2, and that the PAK2 pathway is required for the transformation and proliferation163.
In addition to its role in stimulating a Smad-dependent pathway, extracellular TGFβ1 can stimulate a Smad-independent pathway through TβR’s. TGFβ1 promotes phosphorylation of PI3K which in turn phosphorylates Akt and PAK2. Signaling down an Akt pathway leads to cell migration, whereas signaling through a PAK2 dependent pathway leads to morphological transformation and cell proliferation.
TGFβ1-Mediated Rho/ROCK Signaling

Rho signaling plays a critical role in mobilization of the actin cytoskeleton and has been shown to be induced by TGFβ1\(^{161}\). Within 5 minutes of TGFβ1 stimulation several cell types including NMuMG, Mv1Lu, and primary mouse keratinocytes demonstrate activation of RhoA, which produced a maximal signal of GTP-bound RhoA within 10 minutes\(^{161}\). This lead to activation of ROCK and the formation of stress fibers and a fibroblastic morphology in NMuMG cells following TFGβ1 treatment\(^{161}\).

Other Rho GTPases, including Rac1 and Cdc42, may be involved in TGFβ1-mediated signaling through Smad-independent mechanisms. Cells transfected with wildtype (WT) Rac1, dominant-negative Rac1 (DN-Rac1), and Cdc42, however, displayed a phenotype equivalent to that of untransfected cells in response to TGFβ1, which included cell flattening, membrane ruffles, and stress fibres\(^{225}\). Conversely, transfection of the dominant-negative Cdc42 (DN-Cdc42) completely inhibited the formation of stress fibers despite TGFβ1 stimulation\(^{225}\). This result was recapitulated with WT and DN-RhoA suggesting important roles for Cdc42 and RhoA, but not Rac1 in TGFβ1-mediated stress fiber formation\(^{225}\). Further studies using small molecule inhibitors and dominant-negative forms of ROCK were also able to prevent the formation of stress fibers in response to TGFβ1\(^{225}\). Inhibition of p38, a downstream effector of Cdc42, also prevented stress fiber formation\(^{225}\), thus demonstrating the extreme complexity and cross-talk that occurs within TGFβ1-mediated signaling pathways.

Actin reorganization and stress fiber formation has been found to be independent of R-Smad signaling as dominant-negative Co-Smad4 (DN-Co-Smad4)
had little to no effect on reorganization of the actin filament system in response to TGFβ1\(^{225}\). Studies have extended the importance and role of the RhoA/ROCK pathway and indicate that LIM kinase (LIMK) stabilizes F-actin through inhibition of coflin\(^{237}\).\(^{238}\), while mDia1 promotes actin assembly (Figure 6)\(^{237}\). Furthermore, phosphorylation of ROCK has been found to activate myocardin related transcription factor (MRTF) which is then capable of forming a complex with serum response factor (SRF)\(^{226}\). Together, MRTF/SRF form a transcription factor complex that translocates to the nucleus where it can regulate gene expression in addition to its well documented role in inducing actin cytoskeleton reorganization (Figure 6)\(^{226}\).
Figure 6. TGFβ1/Smad-Independent Signaling: Rho/ROCK. Actin organization, stabilization, and stress fibre formation are potently regulated by TGFβ1 signaling through a Smad-independent pathway. Activation of TβRI promotes the activation of RhoA. RhoA can then induce the activity of both mDia1 and ROCK by phosphorylation. ROCK activation leads to phosphorylation of MRTF and the formation of a complex with SRF. Additionally, ROCK stimulates LIMK which
represses coflin. Collectively, these pathways lead to actin cytoskeleton organization, F-actin stabilization, and stress fibre formation.

TGFβ1-Mediated Extracellular Signal-Related Kinase 1/2 (Erk1/2) Signaling

TGFβ1 and TGFβ2 treatment has been shown to promote Erk1/2 signaling through activation of several adaptor proteins that ultimately lead to a kinase signaling cascade that includes MAP Kinase Kinase 1/2 (MEK1/2) and Erk1/2. TGFβ1 treatment of 3T3-Swiss fibroblasts has been shown to directly phosphorylate Src homology 2 containing protein A (ShcA) through TβRI. Shc adaptor proteins are key components of receptor tyrosine kinases, but have been shown to be regulated through other receptors, albeit at lower levels. There are multiple isoforms of Shc (ShcA, ShcB, ShcC), however, ShcA is ubiquitously expressed while ShcB and ShcC are restricted to neuronal tissues. Phosphorylated ShcA is able to form a complex with growth factor receptor binding protein 2 (Grb2) and son of sevenless (SOS) (Figure 7). It is important to note that while TGFβ1 can induce complex formation, it does so at a much lower level than observed through activation of tyrosine kinase receptors in response to epidermal growth factor (EGF). Formation of the Shc/Grb2/SOS complex ultimately leads to Ras activation by exchanging GDP for GTP and induction of c-Raf, MEK1/2, and Erk1/2.

Similar to the relative confusion in the literature with respect to TGFβ-mediated PI3K/Akt signaling, there are conflicting reports regarding TGFβ’s ability to promote Erk1/2 signaling. TGFβ has been reported to both promote and inhibit Erk1/2 signaling. These conflicting results may arise due to the cell type specific responses that are elicited by TGFβ, which in turn reflects the pluripotent nature of this factor. To this
end, Suzuki et al. undertook a study to investigate the ability of TGFβ2 to stimulate Erk1/2 signaling in cells of epithelial and fibroblastic origins219. They found that stimulation of cells from a fibroblastic origin with TGFβ2 induced rapid (10 minutes) activation of Ras, whereas epithelial cells displayed no Ras activation even after 240 minutes of stimulation219. Furthermore, they found that Ras activation lead to Erk1/2 phosphorylation within 20 minutes of TGFβ2 treatment and remained active for more than 120 minutes219. This prolonged activation of Erk1/2 coincided with phosphorylation and activation of the downstream transcription factor Elk1. These results were confirmed using a dominant-negative Ras (DN-Ras) to show that lack of Ras activation prevented TGFβ2-induced phosphorylation of Erk1/2 and did not have any effect on TGFβ2-mediated R-Smad phosphorylation219. Conversely, using R-Smad3 deficient MEF cells, they showed that R-Smads played no role in the activation of either Ras or the phosphorylation of Erk1/2 as Elk1 dependent signaling remained unaltered in these cells219. Furthermore, they found that inhibition of PI3K and PAK2 activity prevent TGFβ2-induced Erk1/2 phosphorylation to a comparable extent that was seen with DN-Ras219. This may be due to the fact that PI3K is a known effector of Ras242,243, thus there may be significant cross-talk between both pathways. More recent studies have shown that Ras activation by TβR’s is mediated through an adaptor protein complex that contains ShcA/Grb2/SOS as discussed above (Figure 7)162,219.
Figure 7. TGFβ1/Smad-Independent Signaling: Extracellular Signal-Related Kinase 1/2 (Erk1/2). Erk1/2 is a well described TGFβ1 triggered signal pathway that is Smad-independent. TGFβ1 stimulation of its receptors leads to the phosphorylation of the adaptor protein Shc. Active Shc forms a complex with Grb2 and SOS which is capable of promoting Ras activation by exchanging GDP for GTP. Activation of Ras leads to a MAPK signaling cascade which ultimately leads to phosphorylation of
Erk1/2 through MEK1/2. Erk1/2 can then phosphorylate transcription factors such as Elk1 to modify gene expression.

Smad-Independent Mechanisms and Fibrosis

There is an abundance of evidence to support the model that TGFβ/Smad-independent mechanisms are responsible for increased collagen production and tissue stiffening. In normal skin fibroblasts, TGFβ1 significantly increased collagen 1α1 and 1α2 gene transcription and protein expression whereas inhibition of PI3K signaling using LY294002 nearly completely inhibited collagen production. This effect was found to be due to an inhibition of R-Smad3 phosphorylation which has previously been identified as a key transcription factor required for the induction of collagen transcription. Fibroblasts that have been isolated from patients with scleroderma have been shown to synthesize significantly more collagen proteins when compared to normal fibroblasts. Similar studies showed that TGFβ1 stimulation of collagen production was inhibited by LY294002. This compound also significantly inhibited collagen production in fibroblasts from scleroderma patients. Analogous to the effects of TGFβ1 in dermal fibroblasts, TGFβ1, but not platelet derived growth factor (PDGF) stimulation of human mesangial cells was shown to promote collagen 1α2 gene expression through a PI3K/Akt dependent mechanism. This again was thought to be due to TGFβ1’s ability to stimulate R-Smad3 phosphorylation whereas PDGF stimulation could not. Inhibition of PI3K/Akt signaling with LY294002 prevented R-Smad3 phosphorylation and collagen 1α2 gene expression, again demonstrating significant cross talk between these two pathways in response to TGFβ1 stimulation.
p38-MAPK signaling has also been linked to the development of tissue fibrosis. Activation of p38 by TGFβ1 has been shown to promote epithelial injury in idiopathic pulmonary fibrosis and stimulate EMT. Interleukin-17 (IL-17) has been shown to stimulate airway epithelial cells to synthesize TGFβ1 and promote autocrine signaling to stimulated EMT through a TGFβ1-p38-MAPK dependent mechanism. This also resulted in the production of collagen V. Hepatic stellate cells (HSC) have been shown to play a prominent role in the progression of liver fibrosis characterized by the loss of retinoid content, production of ECM, and formation of a myofibroblast-like phenotype. Furukawa et al. demonstrated that TGFβ1 stimulation of HSC induced phosphorylation of the R-Smad3 linker region and that inhibition of p38-MAPK signaling with the small molecule inhibitor PD169316 diminished the phenoconversion to a myofibroblast phenotype. This effect was found to be independent of Erk1/2 signaling as small molecule inhibitors of MEK1 activity still resulted in R-Smad3 phosphorylation. Additionally, Furukawa’s group found that phosphorylation of R-Smad3’s linker region was sufficient to promote collagen 1α2 gene expression. Furthermore, in vivo, normal HSC demonstrated no phosphorylation of the R-Smad3 linker region. Three-weeks after CCl4 treatment, however, there was an increased number of myofibroblast-like cells which correlated with significant phosphorylation of the R-Smad3 linker region whereas phosphorylation of the C-terminus remained unchanged. Ultimately, it appears from this study that phosphorylation of the Smad-linker region in response to p38-MAPK activation plays a significant role in promoting HSC to become a myofibroblast-like cell type in an in vivo model of chronic liver injury.
In cardiac fibroblasts, Erk1/2 signaling has been shown to play a prominent role in the production of ECM and fibrillar collagens\(^{217}\). Liu et al. demonstrated that TGFβ stimulation of primary adult rat cardiac fibroblasts led to significant increases in collagen type I, collagen type III, and α-SMA protein levels as compared to unstimulated controls\(^{217}\). They also showed that MEK1 inhibition had no effect on R-Smad2 phosphorylation, yet was able to significantly repress collagen type I and type III production. In an in vivo rat unilateral ureteral obstruction model of renal fibrosis, Erk1/2 activation was found to be significantly elevated and corresponded to an increase in both fibrillar collagen and α-SMA expression\(^{218}\). Using Madin-Darby canine kidney (MDCK) cells to model polycystic kidney disease, cells treated with TGFβ\(_1\) demonstrated rapid induction of R-Smad, Erk1/2, and p38 pathways reaching a maximal level at 60 minutes\(^{247}\). Pre-treatment of cells with the MEK1 inhibitor PD98059 significantly inhibited the expression of connective tissue growth factor (CTGF), fibronectin, and collagen type I\(^{247}\). Interestingly, pre-treatment with forskolin inhibited TGFβ\(_1\)-mediated induction of Erk1/2 but had no effect on R-Smads or p38-MAPK\(^{247}\). Forskolin’s ability to induce cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling could prevent TGFβ\(_1\)-mediated phosphorylation of Erk1/2 and the downstream production of fibronectin and collagen type I\(^{247}\). These results are in agreement with previously published reports including those studies conducted in cardiac fibroblasts\(^{217}\).

In the post-MI heart, ROCK signaling has been demonstrated to be an important player in the activation and phenoconversion of fibroblasts to myofibroblasts. Mice lacking myocardin-related transcription factor-A (MRTF-A) that are subjected to
permanent ligation of the left-anterior descending coronary artery (LAD-CA) were protected from scar expansion as compared to WT animals226. It was later found that MRTF-A is an important regulator of collagen expression and the myofibroblast expression of smooth muscle cell markers in the post-MI heart226. Small \textit{et al.} demonstrated that TGFβ\textsubscript{1} induced ROCK phosphorylation which in turn activated MRTF-A and promoted its nuclear translocation226. Inhibition of ROCK using the small molecule inhibitor Y-27632 prevented MRTF-A nuclear translocation and collagen 1α2 expression (mRNA and protein)226. Notably, there was no difference in animal survival or cardiac function between the groups. Both \textit{in vitro} and \textit{in vivo} studies of idiopathic pulmonary fibrosis (IPF) have shown that TGFβ\textsubscript{1} stimulation of pulmonary fibroblasts promotes phenoconversion to a myofibroblast phenotype, which can be prevented by the drug Fasudil228. Fasudil has also been shown to play a prominent role in suppressing collagen production in HSC isolated from the livers of male rats248. Additionally, RhoA/ROCK signaling has been shown to be highly activated in patients of human IPF as well as murine models of bleomycin-induced lung injury228. Perivascular fibrosis has been shown to be suppressed in ROCK+/- haplo-insufficient mice249.

Collectively, these studies into the molecular mechanisms that underpin TGFβ\textsubscript{1}-mediated, Smad-independent signaling demonstrate the importance and complexity of the TGFβ\textsubscript{1} pathway. It is clear from these studies that the fibrotic remodelling of tissues during disease have numerous inputs and regulate a vast diversity of signaling pathways. What is more impressive is the fact that all of the pathways described here
can be modulated through a variety of other inputs which are beyond the scope of this literature review.

Tumor Necrosis Factor α

Tumor necrosis factor α (TNFα) was discovered in the mid 1970’s as the agent responsible for promoting haemorrhagic necrosis of tumors\(^{250}\). Since its discovery, TNFα has been implicated in numerous disease states and found to be a key component of the inflammatory response. TNFα is synthesized as an inactive 26 kDa pro-peptide that is expressed on the extracellular side of the plasma membrane. Cleavage of TNFα into its active, 17 kDa, soluble form is accomplished by TNFα converting enzyme (TACE - also known as ADAM-17)\(^{251}\). In healthy individuals, TNFα is usually undetectable, but is highly elevated in the serum and tissue of individuals with inflammatory disease or infection. While macrophages and monocytes are the primary producers of TNFα in inflammatory disease, numerous other cells such as natural killer cells, cardiac muscle cells, and fibroblasts are all capable of synthesizing TNFα\(^{252, 253}\).

TNFα signals through one of 2 trimeric membrane bound receptors called TNFα receptor 1 (TNFR1) and 2 (TNFR2)\(^{253}\). Although, TNFR1 has been shown to be constitutively expressed in most tissues and to be the key mediator of TNFα signaling, TNFR2 is highly regulated and most often found on cells within the immune system\(^{253}\). Both TNFR1 and TNFR2 contain death domains that can recruit other death domain containing proteins and lead to the activation of caspases, ultimately cumulating in apoptosis. Additionally, TNFR1 has been described as a potent activator of gene expression via recruitment of the TNF receptor-associated factors (TRAFs).
Nuclear Factor-κB Signaling

Nuclear factor-κB (NF-κB) is a group of dimeric transcription factors consisting of different combinations of members from the NF-κB and Rel families. In mammals there are 5 known members to the NF-κB/Rel family including NF-κB1/p50, NF-κB2/p52, c-Rel, RelA/p65, and RelB. These proteins share a Rel homology domain (RHD) that mediates protein-protein interactions, DNA binding, and sub-cellular localization254.

Under basal conditions, I-κB proteins are bound to NF-κB dimers. Bound I-κB masks the nuclear localization signal (NLS) of NF-κB transcription factors, thus sequestering NF-κB to the cytoplasm255. Upon TNFα stimulation, I-κB proteins are phosphorylated by I-κB kinase (IKK) which leads to its ubiquitination and proteosomal degradation, thus freeing NF-κB. Free NF-κB can be further post-translationally modified, i.e. the protein can be phosphorylated, and translocate to the nucleus where it can interact with other transcription factors (such as AP1) and promote gene expression. The NF-κB transcription factor recognizes the DNA consensus sequence 5’ GGGRNNYYCC 3’ where R is any purine, Y is any pyrimidine, and N is any nucleotide. Collectively these sites are known as κB sites and they regulate the expression of a wide range of genes.

TNFα, NF-κB, and Fibrosis

The role of TNFα in ECM remodelling has been explored, however there is no consensus on the anti- and pro-fibrotic properties of TNFα. However, cell type and topographical location (i.e. dermal fibroblast vs. intestinal fibroblast) appears to be a key determinant of TNFα’s fibrotic properties. As an anti-fibrotic, concentrations of
TNFα ranging from 1.0 – 100 ng/mL, have been shown to inhibit collagen type I, collagen type III, and fibronecin protein and mRNA expression in dermal fibroblasts256-258. A study by Kouba \textit{et al.} in 1999 demonstrated that NF-κB mediates the inhibitory effect of TNFα on collagen synthesis259. Using dermal fibroblasts, Kouba showed that the collagen 1α2 promoter contained a critical κB response element that was regulated by the NF-κB (p50/p65) transcription factor259. Chloramphenicol acetyltransferase (CAT) assays demonstrated that the critical κB binding motif was found between -271 and -235 bp of the collagen 1α2 gene promoter, that when stimulated with TNFα significantly repressed (80% repression) CAT expression259. Site directed mutagenesis of this site completely abrogated the effect of TNFα, and in fact, lead to a significant (3-fold) induction of collagen expression259. Electrophoretic mobility shift assays (EMSA) extended the CAT studies and demonstrated that TNFα treated dermal fibroblasts resulted in NF-κB binding to the EMSA probe259. This group went on to show that the p50/p65 NF-κB complex was responsible for NF-κB binding to the collagen 1α2 promoter via EMSA analysis259.

In contrast to studies that support an anti-fibrotic role for TNFα/NF-κB signaling, there is growing evidence to support a pro-fibrotic role of this cytokine. A study by Theiss \textit{et al.} using murine intestine fibroblasts exposed to TNFα revealed an increase in collagen protein accumulation260. However, they found that TNFα had no effect on collagen 1α1 transcript levels. Rather, TNFα was found to significantly reduce collagen degradation through a reduction in MMP2 activity. Furthermore, they demonstrated that TNFα induced Erk1/2 signaling and that loss of TNFR2 resulted in a loss of collagen protein accumulation in murine intestinal myofibroblasts260.
Furthermore, Sullivan et al. found that TNFα treatment of primary murine lung fibroblasts (MLF) induced TGFβ1 mRNA and protein expression through an Erk1/2 dependent pathway261,262. TNFα treatment of MLFs resulted in a 200 - 400% increase in TGFβ1 protein levels as indicated by ELISA262. Within the heart, p65 has been shown to localize to myocytes and correlate with increased LV fibrotic remodeling of the myocardium263. In a murine study of pressure overload, Sun et al. demonstrated that mice that lacked TNFα (TNFα−/−) had reduced fibrosis following aortic banding as compared to WT controls264. Thus it is becoming clear that TNFα has both anti- and pro-fibrotic properties and cell type and origin play a significant role in determining the outcome of TNFα-mediated tissue fibrosis.

Ski

History and Identification

Ski is one of seven members of the Ski-Sno Superfamily of TGFβ negative regulators that was first identified as being the transforming agent of the Sloan-Kettering retroviruses265. Other members of this family include SnoN and its alternatively spliced variants SnoN2, SnoA, and SnoI, Fussel-15 and Fussel-18265-270. Although both Ski and Sno are ubiquitously expressed in human tissues, their expression levels vary from tissue to tissue266-268. Furthermore, unlike Ski and Sno, the expression of Fussel-15 and -18 are restricted to the nervous system266,267.

The Sloan-Kettering retroviruses are a group of transforming retroviruses that were isolated from cultured chicken embryos271. These retroviruses promoted focus formation in chicken embryo cell monolayers, colony formation on soft agar, and could not transform bone marrow cells *in vitro*271,272. Ultimately, the Sloan-Kettering
retroviruses were shown to contain the viral oncogene Ski (v-Ski). Additional screens using v-Ski as bait, identified several homologous proteins including a larger version that was later named cellular-Ski (Ski) as well as a highly similar, Ski-related gene that was later found to be Sno. Gene analysis of the v-Ski and Ski sequences demonstrated that v-Ski is a truncated isoform of Ski that lacks regions at both the 5’ and 3’ ends. When compared to Ski, v-Ski lacks 76 base pairs (bp) at the 5’ end and 879 bp at the 3’ end. There is also a single base difference at position 1284 that is a cytosine (C) in v-Ski and a thymine (T) in Ski which, at the level of amino acids, results in a missense mutation of an arginine in v-Ski to a tryptophan in Ski. However, this substitution appears to play no role in the transforming ability of v-Ski.

Further screens conducted by Sutrave and Hughes identified three distinct sequences of the Ski gene in chickens that were shown to arise due to alternative splicing of the parent gene. They characterized these isoforms as one full length Ski that comprised of 7 exons and two shorter versions which lacked either exon 2 or exon 6. The notion that Ski was alternatively spliced arose from studies conducted by Grimes et al. who also identified a full length version of Ski and one that lacked exon 3. Grimes and colleagues found that Ski isolated from chickens was actually comprised of 8, rather than 7 exons, as exon 7 was found to encode 2 distinct exons. In humans, Ski appears to lack exon 2. Early antibody preparations were synthesized to identify full length Ski at 90 kDa and a 60 kDa form that lacks exon 2. These studies also demonstrated that the 90 kDa Ski is extensively phosphorylated and had a half-life that was approximately 3x longer than that of the shorter 60 kDa isoform, although both proteins still localized to the nucleus. A study conducted 20 years later by
Nagata et al. showed that Ski is phosphorylated at serine 515, however this had no effect on Ski’s stability as mutant Ski (S515A) was as stable as the WT form. Another study demonstrated that Ski was phosphorylated at amino acid 458 by Akt which resulted in Ski destabilization and proteosomal degradation. Thus, protein phosphorylation appears to play an important role in Ski regulation however the importance, if any, of S515 phosphorylation has yet to be determined.

Protein Structure

Ski is a highly conserved, evolutionary ancient protein, and a known negative regulator of the TGFβ/Smad signaling pathway. Structurally, Ski and the other members of the Ski-Sno superfamily contain several domains which are critical to their function. Near the N-terminus lies the dachshund homology domain (DHD) whose function is not fully understood but is thought to play a critical role in mediating the interactions of Ski with transcriptional co-activators and co-repressors. Some studies have demonstrated that transcriptional co-repressors such as nuclear receptor co-repressor (NCoR), silencing mediator for retinoid or thyroid-hormone receptors (SMRTs), and histone deacetylases (HDACs) are capable of binding to the DHD. The crystal structure of human Ski suggests that the DHD contains structural homology to the forkhead/winged-helix family of DNA binding proteins, particularly the retinal determination protein Dachshund. However, the members of the Ski/Sno superfamily do not directly bind DNA themselves so the precise role of the forkhead/winged-helix region is not fully known. Just downstream of the DHD lies the R-Smad2/3 interaction domain while the Co-Smad4 domain lies further downstream of the R-Smad2/3 site. These two domains are absolutely critical for
Ski’s ability to modulate TGFβ/Smad signaling and will be discussed in greater detail below. The Co-Smad4 domain is comprised of an unique 88 amino acid C2H2 zinc-binding module that bears structural homology to the SAND domain, named after the sequences of Sp100, Autoimmune regulator 1, NucP41/75, and Deformed epidermal autoregulatory factor 1 homolog286, 287. What is interesting to note is that this C2H2 zinc-binding module is only found in the Ski family of TGFβ negative regulators and plays an important role in negatively regulating the TGFβ/Smad signal.

Although Ski is found in both the cytoplasmic and nuclear fractions, Ski is primarily a nuclear protein. Nagata et al. identified a key motif that may play an important role in the sub-cellular localization of Ski288. Through an in silico search of putative nuclear localization signals (NLS) they identified a PRKRKLT (proline, arginine, lysine, arginine, lysine, leucine, threonine) motif that corresponded to amino acids 452-458 of the human Ski protein288. They conducted site-directed mutagenesis and replaced the arginine and lysine residues with asparagine and glutamine (making the aa sequence PNQNQLT) residues, respectively. From this, they observed a significant reduction in the amount of nuclear staining for this mutant form of Ski as compared to WT controls288. The mutation, however, did not result in complete exclusion of Ski from the nucleus, suggesting that some other motifs or factors may play a role in the sub-cellular trafficking of Ski288. This group also found that cytoplasmic Ski was more stable than its nuclear counterpart as determined by pulse-chase assays. How Ski enters the nucleus and the importance of a more stable cytoplasmic construct is largely unknown.
The C-terminal region of Ski is less conserved than the N-terminal but has been shown to play a role in allowing Ski to form homo- and hetero-dimers with other Ski and Sno proteins through a coiled-coiled motif. To date there have been few studies that have evaluated the abundance and efficiency of Ski:Ski, Sno:Sno, and Ski:Sno homo- and hetero-dimers respectively. However a study conducted by Cohen et al. showed that hetero-dimers of Ski:SnoN formed preferentially over all other combinations and was a stronger transforming agent than homo-dimers.

Figure 8. Protein Structure of Ski. The human Ski protein is depicted above. At the N-terminus end of the protein lies a DHD, that plays a critical role in protein:protein interactions, and a R-Smad2/3 interacting domain that is important for Ski’s ability to repress TGFβ/Smad-dependent signaling. Slightly further downstream lies the unique C2H2 domain that regulates Ski’s interaction with Co-Smad4. The C-terminus end of the protein is less conserved than that of the NH2 end. However, the C-terminus plays an important role in Ski:Sno homo- and hetero-dimerization as well as nuclear translocation of Ski (PRKRKLT – nuclear localization signal (NLS)).

Transcriptional and Post-Translational Regulation of Ski

With the advancement of technology since Ski was first discovered, experiments to assess the functionality of gene transcription/regulation and protein post-translational modifications are less daunting. There is little known with regards to
the transcriptional regulation of Ski. There is but one recent study which has provided a look into the transcriptional processes that regulate Ski. In this work, Li et al. were able to PCR clone a 2258 bp (-2277 to -19 relative to the ATG start codon) region of the rat Ski promoter from genomic DNA (gDNA) isolated from rat skin fibroblasts. As the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) has recently been suggested to play a role in wound healing and Ski expression has been suggested to play a role in tissue repair and scar formation, this group aimed to understand the relationship between Ski expression and PPARδ. Using the GW502526 ligand specific for PPARδ, they found that PPARδ increased expression of a luciferase reporter gene construct which contained 2258 bp of the rat Ski promoter. The specific effects of this ligand were confirmed with the use of an irreversible inhibitor (GSK0660) of PPARδ. In silico analysis of the rat promoter revealed 9 putative PPAR response elements (PPRE). Truncations of the 2258 bp promoter identified that a region between -958 and -851 contained a functional PPRE. Site-directed mutagenesis within this region confirmed those studies using truncated promoter constructs and revealed the presence of a functional PPRE. As functionality does not necessarily mean direct DNA:protein interactions, both EMSA and chromatin immunoprecipitation (ChIP) studies were undertaken. In both cases, PPARδ was found to associate with the DNA at a region encompassing the putative PPRE. This is the first, and only study to date to identify and characterize a functional transcription factor binding site for the induction of Ski transcription. SnoN has been shown to be transcriptionally regulated by TGFβ/Smad signaling whereas no such relationship has been identified for Ski.
Unlike its transcriptional regulation, much more is known regarding the post-translational modifications and function of Ski protein. As discussed above, Ski has been demonstrated to be phosphorylated at several residues\(^{277}\). Although the exact mechanism and importance for each residue is not yet certain, at least one does appear to play a significant role in proteosomal degradation of Ski\(^{278}\). Another method by which Ski may be targeted for proteosomal degradation is through polyubiquitination by the E3 ubiquitin ligase Arkadia\(^{297, 298}\). Through a series of co-immunoprecipitation (Co-IP) studies, Arkadia was found to associate with Ski and co-localize to the nucleus. Nagano et al. also found that along with its association with Ski, Arkadia promoted protein ubiquitination and proteosomal degradation as indicated by pulse chase assays\(^{297}\). Moreover, it was found that Arkadia targeted the central region of Ski (aa 211-490) which contains the SAND domain, thus indicating an importance for this region in both protein-protein interactions and protein regulation\(^{297}\). Smurf2 has been identified as another pro-ubiquitinating agent of SnoN but not Ski\(^{299}\). SnoN has been shown to undergo SUMOylation at two lysine residues (K50 and K383) whereas Ski has no such identified regions\(^{300, 301}\). Collectively, these studies demonstrate that despite the structural and functional similarities between these proteins, they are differentially regulated potentially allowing for finer transcriptional and post-translational control of gene and protein expression.

Ski in Development and Disease

Ski has been shown to be ubiquitously expressed in all tissues of the developing mouse as well as cardiac and skeletal muscles of adults and neonates\(^{302}\). In order to better understand the role of Ski in developing and adult tissues, murine knock-in and
knock-out models have been employed302-304. Transgenic mice engineered to overexpress Ski resulted in significantly higher levels of Ski in skeletal muscles which correlated with severe muscle hypertrophy303. Most notably fast muscle fibres were significantly increased in size due to selective hypertrophy of type IIb muscle fibers whereas there was no change in either type I or IIA fibres302. Despite the significant increase in muscle size, this did not correspond to an increase in muscle strength but rather lead to muscle degeneration302, 303. Thus, these mice had large muscles but could generate little to no power as compared to WT controls303. To corroborate their functional studies, they examined the cyto-architecture and ultrastructure of muscle fibres using electron microscopy. It was found that mice overexpressing Ski contained less contractile material in the muscle fibres, as well as poor alignment of Z-discs and abnormal mitochondria303. In addition to increased muscle size, overexpression of Ski has been linked to the growth, invasion, and metastasis of several cancers in humans305-309.

In contrast to overexpression studies which demonstrated little to no effect of Ski on murine embryonic development and survival, transgenic studies in which mice lacked Ski ($Ski^{-/-}$) displayed a significantly different phenotype. During normal development Ski mRNA levels are found to increase at embryonic day 8.5-9.5 (E8.5-9.5) which correlates with the migrating neural crest310. Ski levels are also elevated at E12.5-15.5 in skeletal muscle correlating with the proliferation of secondary myoblasts and/or differentiation of primary myotubes311, 312. Mice that lack Ski have neural tube defects, crainial mesenchymal defects, as well as a reduction in skeletal muscle mass resulting in perinatal lethality304. Ultimately, perinatal lethality is a result of
exencephaly caused by a failure of the closure of the cranial neural tube during neurulation.

In humans, spontaneous mutation of the Ski gene leads to the production of a malfunctioning protein and results in a severe developmental disorder known as Shprintzen-Goldberg Syndrome (SGS). Patients that present with SGS display a phenotype resembling those afflicted with Marfan’s and Loeys-Dietz syndrome. Specifically, SGS patients present with severe skeletal and craniofacial abnormalities including dolichocephaly, proptosis, micrognathia, dolichostenomelia, pectus chest deformity, joint contractures and hypermobility. Patients also display intellectual disabilities as well as heart and brain abnormalities similar to that of Marfan syndrome.

Shprintzen-Goldberg Syndrome is an autosomal dominant mutation that most often arises due to a spontaneous mutation within exon 1 which typically, but not always, corresponds to the R-Smad interaction domain. In fact, the R-Smad binding domain has been identified as a hot spot for spontaneous, de novo mutations in Ski resulting in SGS. The prevalence of SGS is not known as the condition is extremely rare. The life span of an individual with SGS is reduced to an age of approximately 40, similar to that of a patient with Marfan or Loeys-Dietz syndrome. Typically, death is related to the underlying structural abnormalities that accompany SGS such as structural heart defects.

Ski and TGFβ Signaling

Ski has been primarily identified as a nuclear protein that plays a significant role in the regulation of TGFβ/Smad signaling. Ski interacts with R-
Smad2/3 through its N-terminal domain and with Co-Smad4 through its SAND-like domain forming a “wedge” within the Smad-complex. Within the nucleus, Ski inhibits TGFβ/Smad signaling by forming a complex with R-Smads at the promoter region of TGFβ regulated genes where it recruits transcriptional co-repressors (NCoR and HDACs) to inhibit gene expression. Furthermore, Ski stabilizes binding of the Smad-complex to DNA to prevent further binding of active Smad complexes. This model of TGFβ negative regulation by Ski was described by Suzuki et al. as the disrupting bridge hypothesis (Figure 9A). In addition to its ability to recruit transcriptional co-repressors, Ski also competes with the co-activator p300/CBP for binding to Smad complexes to prevent the formation of a co-activating complex.

Although Ski has been shown to interact with DNA while in complex with R-Smad and Co-Smad proteins, it alone cannot bind DNA. Ski can only interact with DNA when within a Smad-complex. Thus, as opposed to being described as a transcription factor, Ski rather acts as an adaptor or scaffolding protein that mediates protein-protein interactions to modulate gene expression. In an interesting set of studies, Ueki et al. inserted mutations into the R-Smad3 binding site of Ski and tested its ability to repress TGFβ/Smad signaling. They found that despite disrupting the R-Smad3 binding site of Ski, mutant Ski was still capable of repressing TGFβ/Smad dependent signaling. These results demonstrate that as long as Ski is capable of interacting with one of R-Smad3 or Co-Smad4 it is able to repress TGFβ/Smad-dependent signaling.

As described earlier in this literature review, Ski has been found to contain a putatively functional NLS that, when mutated, can cause Ski to accumulate within the
cytoplasm288. Despite the change in sub-cellular localization, cytoplasmic Ski was still capable of inhibiting TGF\(\beta\textsubscript{1}\) signaling to a similar extent to that of WT, nuclear localized Ski288. Site-directed mutagenesis of the NLS in combination with the R-Smad and Co-Smad4 regulatory regions found that this inhibitory effect was due to Ski’s ability to interact with R-Smad proteins within the cytoplasm288. Thus, Ski inhibited the nuclear translocation of the Smad complex and prevented TGF\(\beta\textsubscript{1}/\)Smad mediated gene expression (Figure 9B). Cytoplasmic retention of the Smad complex represents a novel second mechanism by which Ski can antagonize TGF\(\beta/\)Smad signaling.

In a third model of Ski mediated repression of TGF\(\beta/\)Smad signaling, Prunier \textit{et al.}, showed that cytoplasmic Ski can promote the formation of an inactive R-Smad/Co-Smad4 complex independently of TGF\(\beta\) signaling that prevents phosphorylation of Smad2/3 (Figure 9C)326. To date, the precise mechanism by which Ski is sub-cellularly localized and functions is not well understood. What is clear is the diverse and redundant ability of Ski to inhibit TGF\(\beta/\)Smad-dependent signaling thus highlighting the importance of Ski in developmental and pathological processes.
Figure 9. Ski Mediated Repression of TGFβ1/Smad Signaling. A) Ski is primarily a nuclear protein. Within the nucleus Ski can inhibit Smad dependent signaling by forming an inhibitory complex with the R-Smad/Co-Smad complex and stabilize them while bound to DNA. Ski then recruits a transcriptional inhibitory complex that includes NCoR, mSin3a, and HDACs to inhibit gene transcription. Ski can also be found within the cytoplasmic fraction of cells. Although its function has been
extensively described in the nucleus, Ski can repress TGFβ1/Smad signaling from the cytoplasm in two ways. First B) Ski can form a complex with the Smad complex and prevent nuclear translocation. Second C) Ski can prevent R-Smad phosphorylation at the level of the TβRI and prevent R-Smad complex formation at the initiating step.

Scleraxis

History and Identification

Scleraxis (Scx) is a 201 aa class “A” basic helix-loop-helix transcription factor (bHLH) that binds to the E-box consensus sequence CANNTG (cytosine, adenine, any (N), any (N), thymine, guanine)\(^{327-329}\). Scx was first identified as an important regulator in the embryonic development of collagen-rich connective tissues including tendons, ligaments, and cartilage and has become an important marker of tendons and tenocytes\(^{330-333}\). Tenocytes are cells that are responsible for the synthesis and secretion of tendon ECM\(^{334}\). Scx has been demonstrated to be an important regulator of collagen 1α1 in tenocytes whose expression is induced by TGFβ\(^{334}\). Studies using Scx null mice have shown that the loss of Scx significantly impairs the formation of load-bearing tendons and exemplifies the importance of Scx during embryonic development\(^{335, 336}\). More recent studies have described a role for Scx in development of the auditory system, Sertoli cells, cardiac valves, and the progression of fibrogenic cardiac disease\(^{337-340}\).

Protein Structure

As mentioned above, Scx is a member of the bHLH transcription factors and shares many of the same structural features as other members of this family. The bHLH protein family is divided into 6 categories (A through F) that classifies the proteins based on their evolutionary relationships, conserved motifs, and E-box binding
properties328. Class A bHLH proteins to which Scx belongs, typically form heterodimers with class B bHLH proteins and preferentially bind to \textit{CAGCTG} and \textit{CACCTG} E-box consensus sequences341,342. The bHLH motif is comprised of an N-terminal basic region and a C-terminal HLH region containing an \(\alpha\)-helix, an unstructured loop, followed by another \(\alpha\)-helix341. The amphipathic HLH region of these proteins mediates the formation of homo- and hetero-dimers with other bHLH proteins such as E12 and E47327,328,343. Relatively little else is known regarding Scx protein structure and motifs, however, recent data from the laboratory of Dr. Michael Czubryt provided evidence to suggest that Scx is phosphorylated by casein-kinase2 (CK2)344.

\textbf{Regulation of Scleraxis}

Little is known with regard to the transcriptional regulation of Scx. To date, there is no known direct transcriptional activator of the Scx gene. Several reports have evaluated the relationship between TGF\(\beta\) and Scx and have shown TGF\(\beta\) to promote Scx protein expression in numerous cell lines and models20,337,345. TGF\(\beta\)\textsubscript{3} is known to promote Scx expression in embryo-derived stem cells isolated from equine tendons345. TGF\(\beta\)\textsubscript{2} has been shown to promote Scx expression in fibroblasts isolated from murine heart valves337, while TGF\(\beta\)\textsubscript{1} has been associated with increased Scx expression in primary cardiac fibroblasts isolated from mouse and rat hearts20,210. Although all of these studies provide a correlative-link between TGF\(\beta\) stimulation, Smad signaling and Scx expression, no study to date has explored the direct DNA:protein transcriptional mechanisms that link this signal and effector protein.
Chapter 2: Overall Study Rationale, Hypothesis, and Aims

Central Hypothesis: As Ski exerts anti-fibrotic properties and Scx is a known profibrotic effector protein, we propose the existence of a regulatory balance between these proteins. We believe that this relationship is critical in maintaining matrix homeostasis in the uninjured heart, which is disrupted following a large MI. Specifically, we believe that Ski and Scx form a transcriptional negative feedback loop that represses gene expression and is a central regulator of collagen expression (Figure 10).

![Diagram showing the relationship between Ski and Scx](image)

Figure 10. Overall Visual Hypothesis. Ski and Scx form a negative feedback loop on one another that regulates gene expression. In the chronic post-MI setting, we believe that this balance is tipped in favour of Scx, which promotes repression of Ski transcription leading to remodelling of the cardiac matrix. With TGFβ1 signaling unchecked by Ski, there is a significant increase in expression of fibrillar collagens and matrix proteins that ultimately leads to interstitial fibrosis and heart failure.
Part 1: Transcriptional Regulation of Scleraxis

Aim 1: To determine whether the human Scx promoter (hScxP) is targeted by Ski protein.

Hypothesis: Overexpression of Ski in primary cardiac myofibroblasts will repress Scx gene transcription through its ability to complex with Smad proteins and form an inhibitory complex.

Aim 2: To determine whether R-Smad proteins directly target the hScxP to induce Scx gene expression.

Hypothesis: Smad protein complexes are able to bind to putative Smad binding elements (SBE) in the hScxP and promote Scx gene expression following TGFβ treatment.

Part 2: Transcriptional Regulation of Ski

Aim 3: To determine whether the bHLH transcription factor Scx directly targets the human Ski proximal promoter (hSkiPP) and negatively regulate gene expression.

Hypothesis: Overexpression of Scx in primary cardiac myofibroblasts will repress Ski transcription through its ability to bind to the promoter region of Ski at putative E-box binding (CANNTG where N is any nucleotide) domains.
Chapter 3: Transcriptional Regulation of Scleraxis

Rationale, Hypothesis, and Objectives

Ski is a potent anti-fibrotic agent. Its primary mechanism of action is to inhibit TGFβ/Smad signaling in the nucleus by stabilizing Smad transcription factor complexes on the promoter region of TGFβ regulated genes. There it recruits transcriptional co-repressors including NCoR and HDACs to form an inhibitory complex to repress TGFβ/Smad dependent gene expression.

The bHLH transcription factor Scx has been shown to be induced by TGFβ cytokines 1, 2, and 3 and R-Smad3. Scx has been implicated in promoting collagen production in numerous cell types including cardiac myofibroblasts. Moreover, Scx has been shown to work in a synergistic fashion with Smad proteins to promote collagen gene expression. R-Smad has also been implicated in transducing the TGFβ signal from the cell membrane to the nucleus to positively regulate Scx gene expression. However, despite the convincing evidence for TGFβ/Smad-induced Scx expression, no studies to date have evaluated the direct DNA:protein transcriptional mechanisms associated with TGFβ-dependent Smad signaling and Scx gene transcription.

Therefore, we sought to explore this proposed mechanism. We hypothesize that the hScxP is a direct target of Smad transcription factors that, upon TGFβ1 stimulation, bind to the promoter region and positively regulate Scx gene transcription. To address our hypothesis, we aim to:
i) Determine whether the hScxP is an indirect target of the TGFβ inhibitory protein Ski through its interactions with Smad protein complexes to inhibit Scx gene transcription.

ii) Determine whether Smad protein complexes directly interact with the hScxP and positively regulate Scx gene expression.

Methodology

Animal Ethics

All experimental protocols involving animal studies were reviewed and approved by the University of Manitoba’s Animal Care Committee following the Canadian Council on Animal Care Standards.

In silico Analysis of the Scleraxis Promoter

The mouse, rat, and human Scx gene sequences were obtained by searching the National Center for Biotechnology Information (NCBI) database using the key words “mouse Scleraxis”, “rat Scleraxis”, and “human Scleraxis”. The FASTA sequences were downloaded into a word document. Using the FASTA gene sequence as the query, mouse, rat, and human Scx were localized to their appropriate chromosomal locations using NCBI Blast. The FASTA sequences for the chromosomal regions of interest were downloaded into a word document. The translational start site (ATG) was identified for each Scx gene, as was the 5’ untranslated region (UTR), exons, introns, translational stop, and the 3’ UTR. Identification of potential Smad binding element (SBE) sequences was determined by Blast searching all SBE sequence possibilities and highlighting them within the first 10,000 base pairs upstream of the translational start of the Scx gene. Other promoter elements were also identified including, but not limited
to NF-κB binding sites (GGGRNNYYCC; where R is any purine, Y is any pyrimidine, and N is any nucleotide), E-Boxes (CANNTG), TATA, and CAAT-boxes.

To identify regions of potential significance, mouse, rat, and human promoters were aligned against each other (ClustalW, Expasy) to detect regions of high identity and similarity. Based on these alignments, the hScxP was split into 2 regions, the proximal (~1600 bp (1580 bp actual) 5’ of the ATG; Appendix A, Figure A-1) and the distal promoters (a further 2000 bp upstream of the proximal promoter; Appendix A, Figure A-2). The location and size of the proximal region of the hScxP to be examined was chosen for evaluation as it contains numerous putative transcription factor binding motifs that may be indicative of a key regulatory region of the hScx gene.

Cloning of the Human Scleraxis Promoter

The hScxP was purchased from Genecopia and cloned into the KpnI and HindIII sites of a pGL4.10 [luc2] reporter vector (Promega) by the manufacturer. Upon arrival, bacteria was streaked out on Carbenicillin containing agar plates (100 µg/mL) and incubated overnight at 37°C. Individual colonies were picked from the plate and overnight cultures grown in Luria broth (LB) containing Carbenicillin (100 µg/mL). DNA was isolated using the Qiagen mini-prep kit and subjected to restriction enzyme analysis. 200 ng of vector DNA was digested in NEB buffer 2.1 with KpnI and HindIII (New England Biolabs) for 1 hour at 37°C in a water bath. 6x DNA loading buffer (30% glycerol (v/v), 0.25% bromophenol blue (w/v), 0.25% xylene cyanol FF (w/v)) was added to each reaction to a final concentration of 1x and separated on a 1.0% agarose gel at 120 volts for 1 hour. The gel was imaged using the Bio-Rad Gel Doc system and analyzed using Quantity One Software (BioRad). The presence of a single
band at ~1600 base pairs (bp) (1580 bp actual) would suggest the presence of the insert. The insert was confirmed by DNA sequencing analysis (TCAG, Toronto, Canada).

Luciferase Assay

1.0×10^6 NIH-3T3 (American Type Culture Collection (ATCC)) cells were plated in a T-75 (Corning) cell culture flask in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco)/high glucose supplemented with 10% fetal bovine serum (FBS; Gibco), 100 U/mL penicillin (Gibco), and 100 U/mL streptomycin (Gibco). Cells were allowed to proliferate until the culture flask was approximately 60% confluent. Cells were lifted using TrypLE (Gibco) reagent. TrypLE was neutralized with 2x volume 10% DMEM-FBS and cells pelleted by centrifugation at 2000 rpm for 5 minutes at room temperature. The supernatant was discarded and the cell pellet re-suspended in fresh 10% DMEM-FBS. Cells were counted using an automated cell counter (Moxi) by diluting the concentrated suspension 10x. The reading was taken twice and the average was used to determine cell numbers. Approximately 25,000 cells were added to each well of a 6-well dish based on the following equation:

\[
A) \quad \text{Number of cells per mL} = (\text{number of cells counted} \times \text{dilution}) \\
B) \quad \text{mL of cells required} = \frac{25,000 \text{ cells}}{\text{Number of cells per mL}}
\]

Figure 11. Equation for Plating of NIH-3T3 Cells. A) Formula for calculating the number of cells in a given cell suspension, B) Formula for calculating the number of milliliters required to plate 25000 cells in a given cell culture dish.
Each well was filled to 2.0 mL using 10% DMEM-FBS. Cells were allowed to adhere and proliferate for 48 hours. Next, culture medium was removed, cells washed in 1x phosphate buffered saline (PBS), and 1.5 mL of serum/antibiotic free Opti-MEM I (Gibco) media was added to each well. For TGFβ1 studies, each well was transfected with 1.5 μL Lipofectamine 3000 (Invitrogen), 1.0 μL P3000 (Invitrogen), 250 ng hScxP pGL4.10[luc2], 250 ng empty reporter vector, and 5.0 ng renilla vector DNA for 24 hours. The next day, Opti-MEM I media was removed, cells gently washed in 1x PBS, and 1.5 mL serum free DMEM supplemented with antibiotics was added to each well. Cells were treated with recombinant human TGFβ1 (rhTGFβ1; Cell Signaling) ranging in concentration from 0.5-10 ng/mL. Luciferase assays were performed 24 hours after TGFβ1 treatment in triplicates using the Dual-Luciferase assay kit (Promega) and the GloMax luminometer (Promega). Individual samples were normalized to renilla expression and then to untreated control cells.

For studies including co-transfection of R-Smad expression vectors, Opti-MEM I media was added to each well as described above. NIH-3T3 cells were transfected with 1.5 μL Lipofectamine 3000, 1.0 μL P3000, 100 ng hScxP pGL4.10[luc2], 50-400 ng human Smad2-pcDNA3 or human Smad3-pCMV-Tag2B expression vectors, 100-350 ng empty pcDNA3 or pCMV-Tag2B (to equalize DNA mass), and 5.0 ng renilla. Twenty-four hours later, cells were harvested and read in triplicates as described by the manufacturer (Promega).

Isolation of Primary Cardiac Myofibroblasts

Primary cardiac fibroblasts were isolated from 150-250 gram Sprague-Dawley male rats via retrograde Langendorff perfusion as previously described. Rats were
anesthetized with a cocktail of ketamine:xyazine via intraperitoneal (I.P.) injection. On loss of reflex, heparin (7.0 mg/kg) was administered through the femoral vein to prevent clotting. The chest was then opened, heart removed, and placed in a 100 mm cell culture dish containing DMEM\textsubscript{F12} supplemented with 100 U/mL penicillin, 100 U/mL streptomycin, 1.2 g sodium bicarbonate, and 1.0 μM ascorbic acid. Excess tissue was removed and the heart hung from the aorta. The heart was secured to the cannula using 3-0 braided silk suture (Deknatel). Once hung, the hearts were perfused with DMEM\textsubscript{F12} for 5 minutes followed by a 6-minute perfusion with Spinner-Modified Minimum Essential Media (SHEME) to stop cardiac contraction. Following cardiac arrest, the hearts were perfused with 0.1% collagenase type II (298 U/mL; Worthington) for 20 minutes to digest the heart. After 20 minutes the hearts were removed from the cannula, placed in a 100 mm cell culture dish containing 0.05% collagenase type II (149 U/mL), and torn into small fragments using forceps. The heart was digested for an additional 15 minutes by incubation at 37°C in the cell culture dish. The collagenase reaction was then neutralized by the addition of 2x volume 10% DMEM\textsubscript{F12}-FBS supplemented with 100 U/mL penicillin, 100 U/mL streptomycin, 1.2 g sodium bicarbonate, and 1.0 μM ascorbic acid. The tissue/cell suspension was then transferred to a 50 mL conical and centrifuged at 2000 rpm for 5 minutes. The supernatant was transferred to a new 50 mL conical and centrifuged at 2000 rpm for 5 minutes. The supernatant was removed and discarded. The cell pellet was re-suspended in 10% DMEM\textsubscript{F12}-FBS and evenly distributed amongst 4x T-75 cell culture flasks and incubated for 2 hours at 37°C to allow fibroblasts to adhere. These cells are considered P0 primary cardiac fibroblasts. After 2 hours, the cells were washed twice
in 1x PBS, and 10 mL fresh 10% DMEM\textsubscript{F12}-FBS was added to each flask, and the cells returned to the incubator. Twenty-four hours later the media was removed and the cells washed with 1x PBS. Fresh 10% DMEM\textsubscript{F12}-FBS was added and the cells were incubated at 37°C in a humidified environment supplemented with 5.0% CO\textsubscript{2}. Seventy-two hours later, cells were passaged to P1 cardiac myofibroblasts. Briefly, culture medium was removed, cells washed in 1x PBS, and incubated for 5 minutes with TrypLE (Gibco) to gently lift the cells from the T-75 cell culture flask. TrypLE was neutralized with 2x volume 10% DMEM\textsubscript{F12}-FBS and cells pelleted by centrifugation at 2000 rpm for 5 minutes at room temperature. The supernatant was removed and the cell pellet re-suspended in 10% DMEM\textsubscript{F12}-FBS. Cells were counted using an automated cell counter as described above. Cells were plated as appropriate for the given experiments.

Protein Isolation and Quantification

P0 primary cardiac fibroblasts were passaged into P1 cardiac myofibroblasts and plated into 100 mm cell culture dishes. 1.0×10^6 P1 myofibroblasts were infected with adenovirus containing either haemagglutinin (HA)-human Ski (Ad-HA-Ski) or LacZ (Ad-LacZ) at the time of plating with a multiplicity of infection (MOI) of 50. Twenty-four hours later cells were harvested. Briefly, culture medium was removed and the cells washed twice in 1x PBS. Cells were left in the second wash on ice until ready for cell lysis. For cell lysis, PBS was removed and cultures treated with 100 μL radioimmunoprecipitation assay (RIPA) lysis buffer (150 mM NaCl, 1.0% nonidet P-40 (NP-40), 0.5% deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 50 mM Tris) containing protease (20 μM leupeptin, 15 μM pepstatin A, 0.80 μM aprotinin, 1.04 mM
[4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride] (AEBSF), 40 μM Bestatin, 1.4 mM E-64 (Sigma-Aldrich Corporation, St. Louis, MO)) and phosphatase (10 mM NaF, 1.0 mM Na₃VO₄, and 1.0 mM EGTA) inhibitors. Cells were scraped from the plate in RIPA buffer using a sterile plastic scraper. The protein containing solution was transferred to a 1.5 mL microcentrifuge tube and left on ice for 60 minutes. The solution was then sonicated with three, 10 second pluses with a 5-minute incubation on ice between each pulse. After the final pulse, the solution was centrifuged at 16000 xg for 20 minutes at 4°C to pellet cellular debris. The supernatant was removed and placed in a fresh 1.5 mL microcentrifuge tube and stored at -20°C until ready for protein quantification and Western blot analysis.

Protein quantification was achieved using the bicinchoninic acid (BCA) assay. Protein samples were diluted 4x in RIPA buffer and 10 μL of sample was added in triplicates to a 96-well cell culture dish. Bovine serum albumin (BSA) standards ranging from 0.0 mg/mL to 2.0 mg/mL were prepared in RIPA buffer and also added to the plate in triplicates to generate a standard curve. A 50:1 solution of bicinchoninic acid and copper (II) sulfate (ThermoFisher) was prepared and 200 μL was added to each well. The plate was sealed with parafilm and incubated at 37°C for 30 minutes before being read at 560 nm on a plate reader (BioRAD iMark).

Western Blotting

All protein samples underwent 1-dimensional 8-12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) at 150 volts for approximately 1.5 hours in a discontinuous system at room temperature. Each lane was loaded with 5-20 μg of protein. Proteins were transferred to 0.45 μm polyvinylidene fluoride (PVDF;
Bio-RAD) membrane at 300 milliAmps for 1.25 hours at 4°C on ice. Membranes were blocked in 5.0% skim milk dissolved in Tris-buffered saline with 0.1% Tween 20 (TBS-T) for 1.0 hour at room temperature with constant shaking. The membranes were washed two times for 15 minutes each in TBS-T prior to the addition of primary antibodies. Primary polyclonal antibodies for Ski (Santa Cruz Biotech), Hemagglutinin (HA; Rockland), Scleraxis (generated in the laboratory of Dr. Mike Czubryt), p44/42, phospho-p44/42, c-Jun, phospho-c-Jun, p38, and phospho-p38 (Cell Signaling) were incubated overnight in either 3.0% skim milk TBS-T or 5.0% BSA TBS-T at a concentration of 1:1000 at 4°C with gentle shaking. Loading control was accomplished using β-Tubulin (1:5000; Abcam) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:1000; Cell Signaling) in 3.0% skim milk TBS-T and 5.0% BSA TBS-T respectively. Goat-anti-mouse or goat-anti-rabbit horseradish peroxidase (HRP)-linked IgG secondary antibodies (1:2000; Jackson Laboratories) were used to detect the primary antibodies and was accomplished using Pierce ECL Western blotting substrate (Life Technologies). Protein bands were visualized using CL-Xposure blue X-ray film (Life Technologies). Film images were digitized using the GS-800 densitometer (BioRad) and protein expression determined using Quantity One Software (Bio-Rad).

Generation of Expression Vectors

Scleraxis

The cDNA open reading frame (ORF) of human Scx (hScx) was purchased from Genecopia (Massachusetts, USA). Upon arrival, bacteria were streaked onto agar plates containing Kanamycin (100 µg/mL) and were incubated overnight at 37°C. The next day individual clones were chosen and overnight cultures grown in LB containing
Kanamycin (100 µg/mL) at 37°C with constant mixing (300 rpm). Vector DNA was isolated using the Qiagen mini-prep kit and concentration determined by UV absorbance at 260 nm (GeneQuant III). Vector DNA containing hScx was then sent for sequencing to confirm the identity of the insert (TCAG, Toronto, Canada). Upon confirmation, hScx was subjected to PCR (Table 2) to add EcoRI and XhoI cloning sites for insertion into a pcDNA3 expression vector. The PCR product was stored at -20°C until ready for sub-cloning.

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C for 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 30 seconds</td>
</tr>
<tr>
<td>3</td>
<td>60°C 30 seconds</td>
</tr>
<tr>
<td>4</td>
<td>70°C 2 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Step 2 - 4 40x</td>
</tr>
<tr>
<td>6</td>
<td>70°C for 4 minutes 1x</td>
</tr>
<tr>
<td>7</td>
<td>10°C Hold</td>
</tr>
</tbody>
</table>

Table 2. PCR Cycling for Cloning Human Scleraxis into pcDNA3.

10 µg empty pcDNA3 expression vector (Stratagene) was digested with EcoRI and XhoI in NEB buffer 2.1 for 3 hours at 37°C in a water bath. Following digestion, 1/10th volume of Antarctic phosphatase buffer and 2.0 U of Antarctic Phosphatase (New England Biolabs) were added to the reaction and incubated for an additional hour at 37°C in a water bath to dephosphorylate DNA ends. Following incubation, Antarctic
Phosphatase was heat inactivated by incubation at 70°C in a heat block for 5 minutes. Linearized vector was purified using the QiaQuik PCR purification kit and samples stored at -20°C until ready for use.

The hScx PCR product from above underwent digestion with EcoRI and XhoI as described above. DNA loading buffer (6x) was added to each sample to a final concentration of 1x and subjected to electrophoresis on a 1.0% agarose gel with SYBR safe (Invitrogen) at 120 volts for 1 hour. Bands were visualized under a long wave UV light and excised from the gel using a scalpel. DNA was extracted from the gel using DNA Extraction Columns (Millipore). DNA concentration was determined via UV absorbance.

Ligation of the purified hScx ORF into pcDNA3 was accomplished using the NEB quick ligation kit. A 3:1 molar ratio of insert to vector was used per ligation. Each reaction (vector, vector + ligase, vector + insert + ligase) was incubated at room temperature for 10 minutes and 5.0 µL of reaction used to transform AG1 (Agilent) or NEB-5α (New England Biolabs) competent cells as per manufacture’s protocol. After a 30 minute incubation on ice, bacteria were heat shocked at 42°C in a water bath for 45 seconds to help transform with DNA. One milliliter of LB was added to each reaction and cells incubated at 37°C with constant mixing (300 rpm) for 1 hour. The bacterial solution was then spun at 16000 xg for 10 seconds to pellet cells. The supernatant was removed, bacteria re-suspended in 100 µL LB, and 75 µL cell suspension was spread and 25 µL streaked onto agar plates containing Carbenicillin (100 µg/mL). The plates were incubated overnight at 37°C and the next analyzed for efficiency.
Ten to twenty colonies from the vector + insert + ligase reaction were picked from the plate and overnight cultures grown in LB containing Carbenicillin (100 \(\mu \text{g/mL} \)) at 37\(^\circ\)C in a shaking incubator at 300 rpm. DNA was isolated from bacteria using the Qiagen mini-prep kit. The concentration of each clone was determined and 200 ng DNA was subjected to double enzymatic digestion in NEB buffer 2.1 with \textit{EcoRI} and \textit{XhoI} for 1 hour at 37\(^\circ\)C in a water bath. Samples were then subjected to 1.0% agarose gel electrophoresis with SYBR safe (Invitrogen) at 120 volts for 1 hour. Gels were imaged using a Bio-Rad Gel Doc imager. The presence of a single band at 600 bp confirmed the presence of hScx. Two clones were sent for sequencing (TCAG, Toronto, Canada) to confirm insert sequence.

Ski

The ORF of human Ski (hSki) was PCR’d from a pShuttle2 vector containing hSki and cloned into the \textit{BamHI} and \textit{XhoI} cloning sites of pcDNA3 as described above. Clones positive for the insertion of hSki were determined by restriction enzyme analysis and confirmed by DNA sequencing (TCAG, Toronto, Canada) as described above.

Cell Fractionation

Untreated P1 cardiac myofibroblasts and Cos7 cells were grown on 100 mm cell culture dishes in either 10% DMEM:F12-FBS or 10% DMEM-FBS respectively until they reached 70-80% confluency. Cytoplasmic and nuclear fractionation was performed using the NE-PER Cytoplasmic and Nuclear Extraction Kit (Pierce Scientific) according to manufacturer’s directions. Samples were stored at -80\(^\circ\)C until ready for protein quantification and Western Blot or EMSA analysis.
Electrophoretic Mobility Shift Assay (EMSA)

Biotinylated and non-labelled probes encompassing conserved SBE in the mouse/human/rat Scx promoter (Table 3) were synthesized commercially (Sigma). Duplexes from single-stranded probes were made by adding equal volumes of 5.0 μM stocks of complementary oligonucleotides encompassing the appropriate SBE and incubated at 95°C for 5 minutes in a heat block. The heat was then turned off and probes allowed to gradually cool to room temperature. Gel shift assays were performed according to the Lightshift Chemiluminescent EMSA kit (Pierce Scientific) as per manufacturer’s directions. Briefly, 500-1000 ng of nuclear lysate was incubated in binding buffer (10 mM Tris, 50 mM KCl, 1.0 mM dithiothreitol (DTT), 50 ng/μL sonicated salmon sperm DNA, pH 7.5) and 20 fmol biotinylated probe for 20 minutes at room temperature. For cold competitions, a 500-fold molar excess of unlabelled probe was included in the binding reactions for 20 minutes prior to the addition of biotinylated probe. For supershift reactions, 500-1500 ng of anti-Smad2 or anti-Smad3 antibodies (Cell Signaling) were incubated in binding buffer plus nuclear lysate overnight at 4°C. DNA:protein complexes were subjected to 6% native PAGE at 100 volts for 60 minutes and transferred to 0.45 μm positively charged nylon membrane (Biodyne, ThermoFisher) at 380 mA for 30 minutes. DNA was cross-linked to the membrane in a UV cross-linking oven at 120 mJ for 60 seconds. DNA was visualized using ECL and CL-Xposure blue X-Ray film (Life Technologies).
<table>
<thead>
<tr>
<th>Probe</th>
<th>Sequence (5 – 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal WT SBE Forward</td>
<td>AGGGCTCTGGGCAGCCACAGACAAGGATGACCTCATCACCC</td>
</tr>
<tr>
<td>Distal WT SBE Reverse</td>
<td>GGTGATGAGGTCATCCCTGTCTGTGGCTGCCAGAGCCCT</td>
</tr>
<tr>
<td>Distal MT SBE Forward</td>
<td>CAGGGCTCTGGGCAGCCAGCATGCGGGATGACCTCATCACCCAC</td>
</tr>
<tr>
<td>Distal MT SBE Forward</td>
<td>GTGGGATGAGGTCATCCGCATGCTGGCTGCCAGAGCCCTG</td>
</tr>
<tr>
<td>Proximal WT SBE Forward</td>
<td>CACATGGGAGGCAAAGAACAGACAAGGTCGGTCAGGCAAGC</td>
</tr>
<tr>
<td>Proximal WT SBE Reverse</td>
<td>GCTGCGCTGACCCGCACCTGTGTCTGTCTTTGCTCCCATATGTG</td>
</tr>
<tr>
<td>Proximal MT SBE Forward</td>
<td>CACATGGGAGGCAAAGAGCATGCGGGATGCGGTAGATGCCAGCAGAG</td>
</tr>
<tr>
<td>Proximal MT SBE Reverse</td>
<td>CTGCTGCGCTGACCCGCACCCGTACCTCTTTGCTCCCATATGTG</td>
</tr>
</tbody>
</table>

Table 3. Electrophoretic Mobility Shift Assay Probes. Electrophoretic Mobility Shift Assay probe sequences for the distal and proximal SBEs in the hScxP. Bold and underlined sequences identify the position of the SBE. Reproduced with permission\(^{346}\).
Immunoprecipitation

1.0×10^6 P1 cardiac myofibroblasts were plated into a 100 mm cell culture dish and infected with either Ad-LacZ or Ad-HA-Ski at an MOI of 50 at the time of plating. Twenty-four hours later, cells were washed twice in 1x PBS and lysed in 1.0 mL of IP lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1.0% NP-40, 1.0 mM EDTA pH 8.0, 5.0% glycerol) with gentle agitation for 5 minutes at room temperature. The plate was then scraped with a plastic cell scraper and the solution added to a 1.5 mL microcentrifuge tube. Samples were then centrifuged at 13000 xg for 10 minutes at 4°C to remove cellular debris. The sample volume was then split in half and added to new microcentrifuge tubes, one for antibody pull down and the other as an IgG control. c-Jun (Cell Signaling; 20 µg) primary antibody or normal rabbit IgG (Cell Signaling; 20 µg) were added to the appropriate tube and incubated overnight at 4°C with rotation to form protein:antibody complexes. The next day 200 μL Protein A agarose beads (50% slurry; ThermoFisher) was added to each tube and incubated for 2 hours at room temperature with rotation. The beads were pelleted at 2500 xg for 2 minutes, the supernatant removed, and the beads suspended in IP wash buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, pH 7.2). This process was repeated 3 times with IP wash buffer and once with DDW. After the final wash, the supernatant was removed and the beads suspended in 60 μL 3x IP loading buffer (187.5 mM Tris-HCl pH 6.8, 6% SDS (w/v), 30% glycerol, 0.03% Phenol Red, 125 mM DTT). Samples were briefly vortexed, and centrifuged at 14000 xg for 1 minute. Samples were then incubated at 95°C for 5 minutes in a heat block. Following incubation, the samples were centrifuged at 14000 xg for 1 minute and 50 µL of protein sample loaded directly onto a 10% SDS-PAGE
gel. Proteins were separated and detected as described above for standard Western blotting.

Chromatin Immunoprecipitation

1.0×10^6 P1 cardiac myofibroblasts were seeded onto a 100 mm cell culture dish and treated with Ad-LacZ, or Ad-HA-Ski at an MOI of 50 at the time of plating. Twenty-four hours later, 37% formaldehyde was added to the culture medium to a final concentration of 1.0% to cross-link DNA:protein complexes and was incubated at room temperature for 10 minutes with gentle shaking. The formaldehyde was neutralized with glycine at a final concentration of 0.25 M for 5 minutes with gentle shaking at room temperature. The culture media was then removed and cells washed twice in PBS containing protease inhibitors (Sigma) and 1.0 mM PMSF. After the final wash, 1.0 mL wash buffer was added to the plate and cells scraped from the plate and added to a 1.5 mL microcentrifuge tube. The cells were then pelleted by centrifugation at 2000 rpm for 5 minutes at 4°C. The supernatant was discarded and the pellet suspended in 200 μL SDS lysis buffer (50 mM Tris-HCl pH 8.0; 10 mM EDTA, 1.0% SDS, 0.22 μm syringe filtered) containing protease inhibitors and 1.0 mM PMSF. DNA was sheared by sonication with 3x 10 second pulses on level 4. The cells were incubated on ice for 5 minutes between each pulse. Following shearing, the samples were centrifuged at 16000 xg for 10 minutes at 4°C. The supernatant was transferred to a new microcentrifuge tube. A 10% aliquot of each sample was removed and placed in a new microcentrifuge tube and frozen to be used as an input control for PCR. The remaining sample was diluted 10-fold in ChIP IP dilution buffer (0.01% SDS, 1.1% Triton X-100, 167 mM NaCl, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 0.22 μm syringe filtered)
containing protease inhibitors. Each sample was then pre-cleared with 50 μL of Protein A agarose beads (50% slurry; ThermoScientific) to reduce non-specific binding via rotation for 60 minutes at 4°C. Agarose beads were pelleted by centrifugation of 2000 rpm for 1 minute at room temperature. The supernatant was removed and each sample split in half and placed into a new 2.0 mL microcentrifuge tube. Antibody against Ski (1:50; Santa Cruz) or rabbit IgG (1:50; Santa Cruz) was added to the appropriate tube and incubated overnight at 4°C with constant, gentle rotation. The next day, 100 μL of Protein A agarose was added to each tube and incubated at 4°C with constant rotation for an additional 60 minutes. Samples were then centrifuged at 2000 rpm for 1 minute at room temperature and the supernatant discarded. The agarose beads were washed 2x for 5 minutes each with constant rotation with 1) low salt buffer (0.1% SDS, 0.1% Triton X-100, 150 mM NaCl, 2.0 mM EDTA, 20 mM Tris-HCl pH 8.0, 0.22 μm syringe filtered); 2) high salt buffer (0.1% SDS, 0.1% Triton X-100, 500 mM NaCl, 2.0 mM EDTA, 20 mM Tris-HCl pH 8.0, 0.22 μm syringe filtered); 3) lithium salt buffer (0.5 M LiCl, 1.0% NP-40, 1.0% deoxycholic acid; 100 mM Tris-HCl pH 9.0, 0.22 μm syringe filtered); 4) TE buffer (10 mM Tris-HCl pH 8.0, 1.0 mM EDTA, 0.22 μm filtered). Agarose beads were pelleted by centrifugation at 2000 rpm for 1 minute at room temperature between each wash. After the final wash, 250 μL elution buffer (1.0% SDS, 0.1M NaHCO₃) was added to each tube and incubated for 15 minutes at room temperature with rotation. The beads were pelleted and the supernatant added to a new 1.5 mL microcentrifuge tube. The elution step was repeated to give a final eluted volume of 500 μL. DNA:protein complexes were reverse cross-linked in 0.3 M NaCl at 65°C overnight in a heat block. The next day, 5x Proteinase K buffer (50 mM Tris-
HCl pH 7.5, 25 mM EDTA, 1.25% SDS) was added to a final concentration of 1x and 60 μg/mL of Proteinase K added to each reaction and incubated at 45°C for 2 hours. An equal volume of phenol:chloroform:isoamylalcohol (Invitrogen) was added to each tube and mixed well by vortexing. Samples were centrifuged at 16000 xg for 5 minutes at room temperature. The top aqueous layer was removed and placed in a fresh 1.5 mL microcentrifuge tube. DNA was precipitated overnight with 2x volume 100% ethanol, 1/10th volume NaOAc, and 20 μg glycogen (Invitrogen) at -20°C. The next day, samples were centrifuged at 16000 xg at 4°C for 30 minutes to pellet DNA. The supernatant was removed and the pellet washed in 75% ethanol. DNA was pelleted again at 16000 xg for 10 minutes at room temperature. The supernatant was removed and discarded and the DNA pellet allowed to air dry for 10 minutes at room temperature. Each pellet was suspended in 50 μL of nuclease free water (Ambion) and the optical density at 280 nm determined to calculate DNA concentration. Samples were amplified via PCR using the primers listed in Table 4, separated on a 2% agarose gel, and visualized using a Gel Doc system (BioRad).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat Scx Distal Promoter Forward</td>
<td>GCCAGAGCTTTACCTTCACA</td>
</tr>
<tr>
<td>Rat Scx Distal Promoter Reverse</td>
<td>CAGGTTGTCTCCCTGTGTT</td>
</tr>
</tbody>
</table>

Table 4. ChIP Primers.
Quantitative Real-Time PCR

1.0×10^6 P1 cardiac myofibroblasts were seeded onto a 100 mm cell culture dish and treated with Ad-LacZ, or Ad-HA-Ski at an MOI of 50 at the time of plating. Twenty-four hours later, the medium was removed and the cells were washed twice in 1x PBS and harvested in 1.0 mL Trizol Reagent (Life Technologies). Total RNA was isolated as per manufacturer’s directions. Samples were treated with DNase I (NEB) to remove contaminating genomic DNA (gDNA) prior to cDNA synthesis. cDNA was synthesized using the BioRAD iScript Select cDNA synthesis kit using random primers as per the manufacturer’s protocol. qRT-PCR was performed using SYBR select Master Mix for CFX (Life Technologies) as per the manufacturer’s protocol on a BioRAD iQ5 or Mini-Opticon in triplicate using primers against: Scx, collagen 1α1, collagen 1α2, collagen 3α1, and GAPDH (Table 5). The cycling conditions were as outlined in Table 6. mRNA levels were calculated using the 2^{-ΔΔCt} method and normalized to GAPDH.
Table 5. qPCR Primers. * Previously published by Bagchi and Czubryt20.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scleraxis Forward*</td>
<td>AACACGGCCTTCACTGCACGCTG</td>
</tr>
<tr>
<td>Scleraxis Reverse*</td>
<td>CAGTAGCAGTTCGCCAGGCTG</td>
</tr>
<tr>
<td>Collagen 1α1 Forward</td>
<td>TGCTCCTCTTAGGGGCA</td>
</tr>
<tr>
<td>Collagen 1α1 Reverse</td>
<td>CGTCTCACAGTTAGGGACCT</td>
</tr>
<tr>
<td>Collagen 1α2 Forward</td>
<td>GTCCCCGAGGCCAGAGAT</td>
</tr>
<tr>
<td>Collagen 1α2 Reverse</td>
<td>CCTTTTTCAGAATAGCGAGC</td>
</tr>
<tr>
<td>Collagen 3α1 Forward</td>
<td>GGTTTCTCTCACCTGTCTT</td>
</tr>
<tr>
<td>Collagen 3α1 Reverse</td>
<td>GGTTCTGGCTCAGACATC</td>
</tr>
<tr>
<td>GAPDH Forward</td>
<td>TGCACCAGCAACTGCTTACGC</td>
</tr>
<tr>
<td>GAPDH Reverse</td>
<td>ACGGCCCATCAGCCAGACG</td>
</tr>
</tbody>
</table>

Table 6. qPCR Cycling Conditions.

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50°C 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 5 minutes 1x</td>
</tr>
<tr>
<td>3</td>
<td>95°C 15 seconds</td>
</tr>
<tr>
<td>4</td>
<td>61°C 30 seconds – Plate Read</td>
</tr>
<tr>
<td>5</td>
<td>3-4 40x</td>
</tr>
<tr>
<td>6</td>
<td>55°C → 95°C – Melt Curve</td>
</tr>
<tr>
<td>7</td>
<td>End</td>
</tr>
</tbody>
</table>
Inhibition of MEK1/2

P1 cardiac myofibroblasts were seeded onto a 100 mm cell culture dish with 10% DMEM/F12-FBS growth media. Twenty-four hours later the cells were washed in 1x PBS and starved in serum-free DMEM/F12 supplemented with antibiotics for 24 hours. The next day, cells were treated with 10 μM U0126 (Cell Signaling) or vehicle (dimethyl sulfoxide (DMSO)) for 2 hours followed by 10 ng/mL rhTGFβ1 for an additional 1 or 24 hours. Cells were harvested for Western Blot analysis as described above.

Rat Model of Myocardial Infarction

Rats were randomized to two groups: i) sham operated, where the animals underwent surgery but did not have ligation of the LAD-CA, and ii) ligated, where the LAD-CA was permanently occluded. The animals where then further randomized into sub-groups of 2-weeks, 4-weeks, and 8-weeks following surgery (Figure 12). Upon removal, the hearts were dissected into LV viable tissue (border zone to the infarct) and LV scar (the collagenous scar itself) in those animals that underwent ligation. The whole LV from sham operated animals was also collected as a control. Samples were flash frozen in liquid nitrogen and stored at -80°C until ready for processing (Figure 12).
Figure 12. Rat MI Randomization Scheme and Surgery Timeline. Male rats were randomized into 2 groups – sham operated and LAD-CA ligation. Animals were further randomized to be euthanized at 2, 4, or 8-weeks post-MI and tissue collected for Western blot analysis.

Echocardiography

Non-invasive transthoracic echocardiography (TTE) was performed as previously described at 2, 4, and 8-weeks post-MI. Animals were anesthetized with 3.0% isoflurane and maintained at 2.0% isoflurane. The hair from the chest was removed using an electric razor and the area cleaned with an alcohol wipe. Acoustic gel was applied to the chest and TTE was performed using a 5.0 MHz probe (Vivid 7,
GE Medical Systems, Milwaukee, MI, USA) in the parasternal short axis view at the level of the papillary muscles to acquire M-mode images. Processing of M-mode TTE images was accomplished offline using EchoPAC PC software (v.112, GE Medical Systems, Milwaukee, MI, USA).

Statistics

All data is expressed as mean ± standard error (SE). Comparisons between 2 groups was accomplished using the Students’ t-test. Differences between multiple groups were compared using either a one-way ANOVA with a Student-Newman Keuls’ post-hoc test or a two-way ANOVA with a Bonferroni post-hoc test. A P-value less than 0.05 (P < 0.05) was considered significant. All statistics were performed using Graphpad Prism 5 statistical analysis software.

Results

Ski is a Negative Regulator of TGFβ1/Smad Signaling

The primary function of Ski is to repress TGFβ signaling through disruption of Smad protein complexes at the promoter region of TGFβ/Smad-dependent genes321. It accomplishes this action through the recruitment of a transcriptional co-repressor complex that ultimately prevents gene expression280. We exposed P1 primary cardiac myofibroblasts to Ad-HA-Ski at an MOI of 50 for 24 hours. Ectopic expression of Ski resulted in an 8 to 10-fold increase (*P < 0.001; n=4) in Ski protein expression as compared to Ad-LacZ and untreated controls (Figure 13).
Figure 13. Overexpression of Ski in Primary P1 Cardiac Myofibroblasts. Using an adenoviral approach, we overexpressed Ski in P1 primary cardiac myofibroblasts for 24 hours and obtained an 8 to 10-fold increase in Ski protein levels as compared to Ad-LacZ and untreated controls. β-Tubulin was used as a loading control and HA used to demonstrate adenoviral derived Ski (*P < 0.001; n=4). Reproduced with permission346.
To determine what effect, if any, increased Ski expression had on known TGFβ1/Smad-dependent gene expression in our model system, we isolated RNA from P1 myofibroblasts and assayed for the relative abundance of mRNA for fibrillar collagens type I and type III. As predicted, we found that overexpression of Ski significantly reduced the expression of fibrillar collagens 1α1 (*\(P < 0.05; n=3\)), 1α2 (*\(P < 0.05; n=3\)), and 3α1 (†\(P < 0.01; n=3\)) by approximately 50% as compared to Ad-LacZ and non-transfected controls (Figure 14). Thus, adeno-virally delivered, ectopic expression of Ski in our system is sufficient to repress known downstream targets\(^{349-352}\) of TGFβ1/Smad-dependent signaling.

![Graph](image)

Figure 14. mRNA Expression of Fibrillar Collagens in Ski Overexpressing P1 Myofibroblasts.
B) Collagen 1α2

C) Collagen 3α1
Figure 14. mRNA Expression of Fibrillar Collagens in Ski Overexpressing P1 Myofibroblasts. mRNA was isolated from P1 myofibroblasts transfected with Ad-HA-Ski 50 or Ad-LacZ 50 and the relative abundance of pro-fibrotic collagen expression was evaluated. There was approximately a 50% reduction in collagen 1α1 (*P < 0.05; n=3), 1α2 (*P < 0.05; n=3), and 3α1 (†P < 0.01; n=3) gene expression in those cells treated with Ad-HA-Ski for 24 hours.

Ski Represses Scleraxis Expression

Scleraxis is a pro-fibrotic agent that has been shown to regulate collagen gene expression in a synergistic manner with Smad proteins20, 210, 334. Moreover, expression of Scx itself has been shown to be regulated by TGFβ and Smad proteins20, 337, 345. Thus, we wanted to know whether Ski, a potent inhibitor of TGFβ/Smad signaling, was capable of repressing Scx mRNA and protein expression. Overexpression of Ski resulted in a 50-60% reduction in Scx mRNA (*P < 0.01; n=4) and an 80-90% reduction in Scx protein (*P < 0.05; n=3) levels as compared to Ad-LacZ and untransfected controls (Figure 15).
Figure 15. Scleraxis Protein and mRNA Expression in Ski Overexpressing Myofibroblasts.
Figure 15. Scleraxis Protein and mRNA Expression in Ski Overexpressing Myofibroblasts. Overexpression of Ski in P1 myofibroblasts for 24 hours was able to significantly repress Scx A) protein (*P < 0.05; n=3) and B) mRNA (*P < 0.01; n=4) levels as compared to Ad-LacZ and untransfected controls. Reproduced with permission^346.

In silico Analysis of the Scleraxis Promoter

Previous studies indicate that Scx protein levels can be induced by TGFβ and Smad proteins^20,337,345. However, no one to date has evaluated the direct DNA:protein transcriptional mechanisms that underpin this relationship. Thus, we set forth to determine whether there are any potential regulatory elements (SBE) for which Smad proteins may be capable of interacting within the Scx promoter that might suggest a direct role for Smad proteins in promoting Scx expression. In silico analysis of the human, rat, and mouse promoter regions (~ 10000 bp 5’ to the ATG start codon)
revealed the presence of several putative SBE with the consensus sequence CAGACA. We performed a Clustal W alignment of this region and found that the 1580 bp most proximal to the ATG codon contained 2 highly conserved SBE motifs that may be functionally significant sites for Smad protein complexes to bind (Figure 16) in addition to the presence of several other putative transcription factor binding motifs. Clustering of putative transcription factor binding sites may suggest a regulatory region of the hScxP that may be important in Scx expression. Furthermore, the 5’ and 3’ regions flanking these motifs show high similarity and identity amongst the various species (Figure 16; starred (*) nucleotides) which may suggest that these play a role in protein complex docking to SBE sites.

<table>
<thead>
<tr>
<th>Putative SBEs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal:</td>
</tr>
<tr>
<td>Mm: AGTGCACATGGAGGAGAGTCAGACAGGGTGTGGCAGGCACCTCAG -445</td>
</tr>
<tr>
<td>Hs: GCACATGGGAGGCGAAGCACAGACAGGGTGTGGCAGGCACCTCAG -490</td>
</tr>
<tr>
<td>Rn: AGTGCACATGGAGGAGAGTCAGACAGGGTGTGGCAGGCACCTCAG -444</td>
</tr>
<tr>
<td>Distal:</td>
</tr>
<tr>
<td>Mm: GCCAGGCTCTGGGCAGCCACAGACAGGGATGACCTCATCGCCTAT -1260</td>
</tr>
<tr>
<td>Hs: GCCAGGCTCTGGGCAGCCACAGACAGGGATGACCTCATCAACCCAC -1211</td>
</tr>
<tr>
<td>Rn: GCCAGGCTCTGGGCAGCCACAGACAGGGATGACCTCATCGCCTAT -1297</td>
</tr>
</tbody>
</table>

Figure 16. Conserved SBE of the Mouse, Human, and Rat Scleraxis Promoter. Clustal W alignment of the mouse, human, and rat promoter regions that contain highly conserved SBE. The putative SBE is highlighted in purple. The star (*) beneath the alignment marks bp that are conserved amongst all 3 species. Reproduced with permission.
TGFβ1 Promotes Scleraxis Expression

To determine whether TGFβ1 is capable of inducing expression of Scx protein in our model system, we treated P1 cardiac myofibroblasts with rhTGFβ1 cytokine (10 ng/mL) for 24 hours followed by Western blot analysis. In line with previous reports \(^{20,337,345}\), we found that TGFβ1 induced a 2 to 3-fold increase (*P < 0.01; n=4) in Scx protein levels as compared to untreated controls (Figure 17).
Figure 17. TGFβ1 Stimulation of Scleraxis. P1 cardiac myofibroblasts were seeded into 100 mm cell culture dishes and allowed to adhere to the dish. Twenty-four hours later the cells were serum starved for an additional 24 hours. Cells were then treated with TGFβ1 (10 ng/mL) for 24 hours and harvested for Western blot analysis. There was a 2 to 3-fold increase in Scx protein levels in those cells treated with TGFβ1 as compared to untreated controls (*P < 0.01; n=4). Reproduced with permission.
We next wanted to determine the functional significance of the SBE motifs that we have identified. Approximately 1600 bp (1580 bp) of the hScxP that contained the sites of interest was purchased from Genecopia and cloned into a pGL4.10 [luc2] reporter vector (hScxP pGL4.10 [luc2]). As primary cardiac myofibroblasts are difficult to transfect with plasmid DNA, we transfected NIH-3T3 cells with hScxP pGL4.10 [luc2] using Lipofectamine 3000 for 24 hours. The next day the DNA:lipid complexes were removed and the cells treated with rhTGFβ1 (0-10 ng/mL) for 24 hours. We found that with increasing doses of rhTGFβ1 there was a dose-dependent increase in luciferase expression up to 5.0 ng/mL (Figure 18; **P < 0.01; ***P < 0.001; n=6). This result suggests that the 2 identified putative SBE may be functionally important in regulating Scx transcription.
Figure 18. Activation of the Human Scleraxis Promoter by TGFβ1. NIH-3T3 cells were transfected with 500 ng of our hScxP pGL4.10 [luc2] reporter construct and treated with increasing doses of TGFβ1. We observed a dose-dependent increase in luciferase reporter with TGFβ1 treatment that demonstrated a maximal signal with 5.0 ng/mL TGFβ1 (**P < 0.01; ***P < 0.001; n=6). Reproduced with permission^346.

TGFβ1 Promotes Scleraxis Expression in a Smad-Independent Manner

Although we demonstrated that rhTGFβ1 is capable of activating our isolated region of the hScxP, we still do not know whether Smad proteins are the major transducers of the TGFβ1 signal from the cell membrane to the promoter region of Scx. Thus, we extended our luciferase studies and evaluated the effects of human Smad2 (hSmad2) and human Smad3 (hSmad3) overexpression using pcDNA3 and pCMV-
Tag2B expression vectors in combination with our hScxP pGL4.10[luc2] reporter. Neither transfection with hSmad2 nor hSmad3 demonstrated any significant difference in hScxP promoter activation as compared to co-transfection with empty expression vector controls (Figure 19A and B; $P > 0.05; n=4$).

Figure 19. hSmad2/3 Luciferase of the Human Scleraxis Promoter.
Figure 19. hSmad2/3 Luciferase Assay of the Human Scleraxis Promoter. Co-transfection of NIH-3T3 cells with hSmad2 and hSmad3 expression vectors with our hScxP reporter construct. Neither A) hSmad2 (P > 0.05; n=4) nor B) hSmad3 (P > 0.05; n=4) could promote luciferase expression of our reporter construct regardless of the amount of expression vector that was transfected. S2 – Human Smad2; S3 – Human Smad3. Reproduced with permission.346

A second question that we addressed was whether Smad proteins could bind to the hScxP but could not activate it. To evaluate this relationship, we conducted electrophoretic mobility gel shift assays (EMSA) using the nuclear extract from Cos7 (Appendix A, Figure A-2) and primary P1 cardiac myofibroblasts (Figure 20). Biotinylated probes encompassing both conserved putative SBE were synthesized. Protein lysates were incubated overnight with antibodies against Smad2 and Smad3 to form DNA:protein complexes to show a supershift reaction, indicative of DNA:protein
binding. Unlabelled and mutant SBE probes were synthesized as negative controls. As seen in Figure 20, incubation of nuclear cell lysate from P1 myofibroblasts resulted in a shift in the labelled probe (Figure 20 arrow; n=3), however, pre-incubation with Smad2 and Smad3 antibodies (for supershift reactions) demonstrated no further shift of the labelled probe. Furthermore, although our unlabelled probe (in 500 molar excess) prevented shifting of the biotinylated probe, our mutant probes in which we disrupted the putative SBE motif (Table 3) also prevented probe shifting (Figure 20; n=3). Taken together these results indicate that R-Smad proteins may not interact (or at least not directly interact with) with this region of the hScxP.
Figure 20. Electrophoretic Mobility Gel Shift Assay of the Distal and Proximal SBE of the Human Scleraxis Promoter. Nuclear lysates from P1 cardiac myofibroblasts were incubated with biotinylated probes encompassing the 2 putative SBEs within the hScxP. To confirm DNA:protein interactions, reactions were incubated overnight with antibodies against Smad2, Smad3, or rabbit IgG control.
Incubation with just the biotinylated probe and nuclear lysate demonstrate a clear interaction with both the A) distal, and B) proximal SBEs found within the hScxP. However, co-incubation with Smad antibodies was unable to further demonstrate specific R-Smad protein binding to the probes. Furthermore, unlabelled probe that has had the SBE motif mutated was still capable of outcompeting the WT biotinylated probe. Figure is a representative of 3 individual experiments. Re-produced with permission. Triangles indicate non-specific binding; Arrows indicate DNA:protein bound complexes.

Scleraxis Expression is Modulated by p44/42 MAPK Signaling Pathway

We observed that TGFβ1 promotes Scx expression, but that this event did not occur directly via R-Smad proteins in our isolated region of the hScxP, *ergo* we explored whether a TGFβ1-mediated, Smad-independent pathway might be involved. As the Erk1/2-MAPK signaling pathway lies downstream of TβRs and has been shown to be activated in response to TGFβ1 stimulation, we determined whether this pathway plays a role in Scx gene regulation. We serum-starved P1 myofibroblasts for 24 hours to normalize culture conditions and remove cytokines from the medium that are present in the FBS. We then pre-treated primary cardiac myofibroblasts with either the MEK1/2 inhibitor U0126 (10 μM) or DMSO as a vehicle control. Three hours later we stimulated these cells with 10 ng/mL rhTGFβ1 for an additional 21 hours in the presence of the vehicle or U0126. After 24 hours of treatment we found that rhTGFβ1 stimulation induced a 2-fold increase (*P < 0.05; n=5) in Scx protein expression in the vehicle control as compared to untreated controls (Figure 21A). Pre-treatment with U0126 modestly, but not significantly (P > 0.05; n=5) blunted the effect of TGFβ1 stimulation on Scx protein expression (Figure 21A).

We next wanted to determine what degree of p44/42 inhibition we were able to acquire using U0126 over the course of 24 hours. As seen in Figure 21B we were able
to obtain a 70-80% reduction (*$P < 0.05$; n=5) in phosphorylation of p44/42 (phospho-p44/42) as compared to vehicle and untreated controls despite the presence of rhTGFβ1. However, we did not see any change in phospho-p44/42 in the DMSO + TGFβ1 treatment group as compared to untreated controls. To determine whether we missed the flux of rhTGFβ1 down the p44/42 pathway we repeated our experiment but this time harvesting cells after 1 hour of rhTGFβ1 stimulation. After 1 hour of rhTGFβ1 stimulation, we saw nearly a 1.5-fold increase (*$P < 0.05$; n=5) in phospho-p44/42 levels in the TGFβ1 + DMSO treatment group as compared to untreated controls. In those cells that were pretreated with U0126 we saw no evidence of p44/42 phosphorylation despite the presence of rhTGFβ1 (Figure 21D; †$P < 0.01$ vs. TGFβ1 + DMSO; ‡$P < 0.001$ vs. untreated; n=5). Furthermore, after just 1 hour of rhTGFβ1 stimulation with or without the presence of U0126, we saw no significant difference in the protein levels of Scx (Figure 21C; $P > 0.05$).
Figure 2. Temporal Phosphorylation of p44/42 by TGFβ1 and its Effect on Scleraxis Protein Expression
Figure 21. Temporal Phosphorylation of p44/42 by TGFβ1 and its Effect on Scleraxis Protein Expression
Figure 21. Temporal Phosphorylation of p44/42 by TGFβ1 and its Effect on Scleraxis Protein Expression
Figure 21. Temporal Phosphorylation of p44/42 by TGFβ1 and its Effect on Scleraxis Protein Expression. A) Twenty-four hours of TGFβ1 stimulation resulted in a 2-fold increase in Scx protein levels (*P < 0.05 vs. untreated; n=5). Co-treatment with U0126 (10 µM) modestly counteracted TGFβ1-mediated induction of Scx. B) U0126 significantly (*P < 0.05 vs. untreated and TGFβ1 + DMSO; n=5) repressed phosphorylation of p44/42 after 24 hours. C) After 1 hour of TGFβ1 stimulation, there was no difference in Scx protein levels amongst any of the treatment groups. D) One hour following TGFβ1 stimulation there was a significant (*P < 0.05 vs. untreated; n=5) increase in phosphorylation of p44/42 compared to untreated controls. Co-treatment with U0126 significantly repressed p44/42 phosphorylation (†P < 0.01 vs. TGFβ1 + DMSO; ‡P < 0.001 vs. untreated; n=5). Reproduced with permission346.
Finally, we wanted to understand what, if any, effect U0126 had on the basal expression of Scx protein in the absence of rhTGFβ1. Pre-treatment with either U0126 or vehicle had no effect on Scx protein level as compared to untreated controls after 24 hours (Figure 22; $P > 0.05; n=4$). Taken together these results suggest that when there is an abundance of TGFβ1 cytokine to promote TGFβ signaling, Scx expression may be induced via a Smad-independent, p44/42-MAPK signaling pathway.

Figure 22. U0126 Treatment of P1 Cardiac Myofibroblasts and Scleraxis Expression.
Figure 22. U0126 Treatment of P1 Cardiac Myofibroblasts and Scleraxis Expression. A) After 24 hours of incubation, U0126 treatment alone has no effect on the endogenous levels of Scx ($P > 0.05$; $n=4$). B) U0126 significantly ($^*P < 0.05$; $n=4$) prevented phosphorylation of p44/42 for 24 hours. Re-produced with permission.

Ski Does Not Affect Phosphorylation of MAPK Protein Kinases

Ski has been well documented as a potent inhibitor of TGFβ/Smad signaling22, 187, 321. However, as Scx does not appear to be transcriptionally regulated through Smad proteins in our hScxP reporter construct and we previously demonstrated that Ski could repress Scx expression, we undertook studies to determine whether or not Ski is capable of interfering with MAPK signaling pathways. As seen in Figure 23, ectopic expression
of Ski had no effect on the phosphorylation of either p44/42 or p38 ($P > 0.05$; n=4) as compared to Ad-LacZ and untreated controls.

Figure 23. Phosphorylation of MAPK Proteins Following Ski Expression.
Figure 23. Phosphorylation of MAPK Proteins Following Ski Expression. Overexpression of Ski for 24 hours had no effect on the phosphorylation levels of either A) p44/42, or B) p38 (P > 0.05; n=4).

Ski Interacts with c-Jun to Repress MAPK Signaling

As Ski is primarily a nuclear protein where it exerts its effects on Smad transcription factors\(^ {187,321}\) it was not surprising that Ski had no significant effect on the phosphorylation of either p44/42 or p38-MAPK kinases. However, Ski has previously been shown to form a protein:protein complex with the downstream transcription factor c-Jun\(^ {353}\). Thus, we chose to explore whether Ski was capable of forming an inhibitory
complex with c-Jun in our primary cell culture model system. We performed immunoprecipitation studies and used a c-Jun antibody to pull down complexes in LacZ and Ski overexpressing P1 myofibroblasts. In those cells which overexpressed Ski, we were able co-precipitate Ski with c-Jun whereas we saw no evidence of Ski in our pulldown lysates when cells were treated with LacZ (Figure 24A). Whole cell lysates (WCL) from P1 myofibroblasts were used as internal controls to confirm the presence of both Ski and c-Jun (Figure 24A).

![Figure 24. Interactions between Ski, c-Jun, and the Scleraxis Promoter.](image)
Figure 24. Interactions between Ski, c-Jun, and the Scleraxis Promoter. A) Immunoprecipitation studies demonstrated an interaction between c-Jun and Ski in Ad-HA-Ski treated P1 cardiac myofibroblasts. Antibody against c-Jun was able to pull down Ski with c-Jun, demonstrating an interaction between these proteins. Reproduced with permission346. B) Chromatin immunoprecipitation studies between Ski and the rat Scx promoter. Adenoviral overexpression of Ski in P1 rat cardiac myofibroblasts led to an association of Ski with the Scx promoter as indicated by PCR analysis. Approximate locations of the potential activating protein (AP1) binding site in relation to the SBE is highlighted in the graphical representation. Images are a representative of 3 individual experiments.

We saw a diminished signal for c-Jun in those cells that overexpressed Ski as compared to LacZ treated controls. This may be the result of antibody masking during the IP procedure which reduced the amount of c-Jun that could be co-precipitated, or this may be due to an actual reduction in c-Jun protein expression as c-Jun is part of the AP-1 transcription factor complex that has been shown to positively regulate its own expression. However, this relationship is speculative and requires further study.

To explore Ski’s ability to interact with the Scx promoter we performed ChIP studies in P1 cardiac myofibroblasts overexpressing Ski (Figure 24B). Using a Ski
antibody to pull down DNA:protein complexes we were able to isolate a portion of the distal rat Scx promoter that corresponded to the distally conserved SBE. The dataset presented earlier in this thesis indicate however, that Smad proteins do not play a role in the regulation of Scx. Upon closer analysis of the promoter sequence, we identified an AP1 binding site that lies within 200 bp (192 bp) of the SBE that may be important in regulating Scx (Figure 24B).

Myocardial Function in the Post-MI Heart

To provide a clinically relevant aspect to our *in vitro* studies, we undertook an *in vivo* study of experimental heart failure where we induced a MI in rats by complete ligation of the LAD-CA and followed their cardiac function for up to 8 weeks post-MI. Using non-invasive TTE, we imaged the heart in the parasternal short axis view to obtain M-mode images. We observed that the movement in the anterior wall of infarcted animals was significantly blunted as compared to that of sham operated animals (Figure 25).
Transthoracic echocardiography (TTE) was performed on animals 2, 4, and 8-weeks post-MI. Representative M-mode images of sham and ligated animals are depicted above. Note the relative akinetic motion of the anterior wall where the left anterior coronary artery (LAD-CA) was tied off to induce a MI. Images are representative of 4 individual animals. Red arrows indicate movement of the anterior wall in sham operated animals. Yellow arrows point towards the akinetic motion of the anterior wall following LAD-CA.
We also found that there was a significant (*P < 0.001; n=4) reduction in LV fractional shortening in ligated animals as compared to sham. There was no difference in the reduction in fractional shortening over time in ligated animals (Figure 26).

Figure 26. Cardiac Function in the Post-MI Heart. We performed transthoracic echocardiography on rats 2, 4, and 8-weeks following surgery. We observed a significant (*P < 0.001 vs. sham operated animals; n = 4) reduction in fractional shortening following coronary ligation. There was no significant difference in the reduction in fractional shortening over time.

MAPK Signaling is Elevated in the Post-MI Heart

In order to translate our *in vitro* findings, we used our rat MI model to explore the expression profile of MAPK proteins in the post-MI heart out to 8-weeks following surgery. We found a significant, time-dependent increase in the phosphorylation of p38 in those rats that underwent LAD-CA ligation as compared to sham operated controls.
(Figure 27A; ‡P < 0.001 vs. 8-week Sham LV and CL viable; *P < 0.001 vs. 2-week scar; †P < 0.01 vs. 4-week scar; n=3). We noted a trend in increasing phosphorylation of p44/42 but this did not reach significance (Figure 27B; P > 0.05; n=3). Furthermore, we found that there was a significant increase in phospho (*P < 0.001, †P < 0.01, ‡P < 0.05 vs. sham LV; §P < 0.01 vs. CL viable) and total (†P < 0.01, ‡P < 0.05 vs. sham LV; #P < 0.05 vs. CL viable) c-Jun expression only in those hearts that underwent ligation (Figure 27C, D, and E), and its levels were higher in the infarct scar as compared to the viable border zone tissue (Figure 27C, D, and E). As c-Jun has been shown to be a positive regulator of itself and thus increased phosphorylation (active protein) would lead to an increase in total protein, we presented this data as phospho c-Jun/GAPDH and total c-Jun/GAPDH to avoid masking of the c-Jun effect that would be seen with phospho/total c-Jun. This effect is seen in Figure 27F.
Figure 27. *In vivo* Expression and Phosphorylation of MAPK Proteins Post-MI.
Figure 27. *In vivo* Expression and Phosphorylation of MAPK Proteins Post-MI.
Figure 27. *In vivo* Expression and Phosphorylation of MAPK Proteins Post-MI.
Figure 27. In vivo Expression and Phosphorylation of MAPK Proteins Post-MI. Western blot analysis of MAPK proteins in the 2, 4, and 8-week post-MI heart. A) There was a significant increase in phospho-p38 levels at 8-weeks post-MI in the scar tissue as compared to 2 and 4-week time points (‡P < 0.001 vs. 8-week Sham LV and CL viable; *P < 0.001 vs. 2-week scar; †P < 0.01 vs. 4-week scar; n=3). B) There was no significant difference in phospho-p44/42 (P < 0.05). There was a significant increase in both C, D) phospho (⁎P < 0.001, †P < 0.01, ⁺P < 0.05 vs. sham LV; ⁹P < 0.01 vs. CL viable) and C, E) total (†P < 0.01, ⁺P < 0.05 vs. sham LV; ⁹P < 0.05 vs. CL viable) c-Jun levels in the infarct scar at all time points when compared to GAPDH. F) There was no difference in phospho/total c-Jun levels (P > 0.05; n=3).

Discussion

The current study provides data for the proposal of a novel pathway for Scx expression through a TGFβ/Smad-independent mechanism. rhTGFβ1 stimulation of primary cardiac myofibroblasts produced a robust (2-fold) increase in Scx protein expression as compared to untreated cells. Overexpression of the TGFβ/Smad inhibitor Ski was able to significantly repress Scx mRNA and protein expression indicating a role for TGFβ/Smad-dependent signaling in the regulation of Scx. We then obtained a portion of the hScxP and performed luciferase reporter gene assays using NIH-3T3
cells. Corroborating our studies in primary myofibroblasts, rhTGFβ1 stimulation of the hScxP resulted in a robust, dose-dependent increase in luciferase reporter activity up to 5.0 ng/mL of rhTGFβ1. However, we could not recapitulate this finding with the co-expression of hSmad2 or hSmad3 with hScxP in our reporter construct, suggesting that our region of the hScxP may not be regulated by Smad proteins, rather Scx transcription may be modulated in a TGFβ/Smad-independent manner. As Scx has been previously suggested to be regulated by p44/42 MAPK signaling, we explored the effects of the MEK1/2 inhibitor U0126 on Scx expression. rhTGFβ1 stimulation of P1 myofibroblasts resulted in a rapid (1 hour) induction of p44/42 phosphorylation, demonstrating the ability of TGFβ1 to signal in a Smad-independent manner in our model system. Co-treatment of P1 myofibroblasts with U0126 and rhTGFβ1 blunted the increase in Scx protein levels that were seen with rhTGFβ1 treatment alone. As Ski is primarily known for its role in regulating TGFβ/Smad signaling, and we found that Scx appears not to be significantly modulated by Smad signaling in our reporter construct, we explored a role for Ski in repressing Scx expression in a Smad independent manner. We were able to co-precipitate Ski with the transcription factor c-Jun, suggesting a protein:protein interaction between them. Furthermore, using ChIP we were able to isolate a portion of the rat Scx promoter in Ski overexpressing cells, indicating that Ski may interact with other transcription factors, such as AP1, at the promoter region of Scx to regulate gene expression. Providing a translational element to our studies, we induced an MI in rat hearts and followed the animals for 8-weeks. We found that there was increased phosphorylation of the MAPKs p38 and p44/42 as early as 2-weeks post-MI in the infarct scar. Furthermore, we found that there was
increased kinase phosphorylation in LV viable tissue (the border zone immediately surrounding the scarred region) by 2-weeks and 8-weeks post-MI for p38 and p44/42 respectively.

We are not the first group to demonstrate a role for induction of Scx expression by TGFβ1. Several other groups have identified a role for each TGFβ isoform (1, 2, and 3) in promoting Scx expression\(^ {20, 337, 345}\). A 2013 study by Barsby and Guest showed that Scx expression correlated with increased TGFβ\(_{1-3}\) in the tendons of injured horses in vivo\(^ {345}\). Using an in vitro model, they allowed undifferentiated equine embryonic stem cells (ESC) to spontaneously differentiate in the presence of TGFβ\(_{1-3}\). They found that in the presence of TGFβ\(_{1-3}\), there was a significant upregulation of Scx staining in the differentiated ESCs. Furthermore, they noted that while all 3 isoforms of TGFβ were capable of promoting Scx expression, TGFβ\(_3\) provided the greatest effect. A 2009 study by Espira et al. analyzed the effects of cell passaging and TGFβ\(_1\) on Scx production in primary cardiac fibroblasts and myofibroblasts\(^ {210}\). With each passage they found that Scx mRNA increased reaching a 4-fold increase within 2 passages as compared to unpassaged controls. Stimulating P2 myofibroblasts with 10 ng/mL of TGFβ\(_1\) resulted in a further increase in Scx mRNA and protein expression over untreated controls\(^ {210}\). A third study to demonstrate a role for TGFβ-mediated Scx expression used primary cell cultures and cell lines to describe a role for TGFβ\(_2\). Using a porcine model, they isolated myofibroblast-like interstitial cells from heart valves and treated them with 200 pg/mL TGFβ\(_2\) for 48 hours. Similar to our current study and those previously published, they found that TGFβ\(_2\) stimulation significantly increased Scx protein expression as compared to vehicle controls. This group recapitulated their
findings using NIH-3T3, C3H10T1/2, and avian valve precursor cultures. The results presented in our study are in line with those previously published and clearly demonstrate a role for TGFβ-mediated Scx expression.

Despite the overwhelming evidence for TGFβ-mediated Scx expression, no study to date has explored the direct DNA:protein transcriptional mechanisms that underpin this relationship. Therefore, we obtained approximately 1600 bp (1580 bp actual) of the hScxP and explored the relationship between TGFβ1, R-Smads, and Scx using luciferase reporter assays. We chose to explore the effects of TGFβ1 over TGFβ2 and TGFβ3 as TGFβ1 has been described as one of the driving forces behind myocardial remodelling in heart disease. Although we found that TGFβ1 could promote luciferase expression from the hScxP, overexpression of R-Smad proteins had no effect on our isolated region of the hScxP as indicated by luciferase expression. Our results here differ from those published by Bagchi and Czubryt who demonstrated that adenoviral delivery of R-Smad3 to primary rat cardiac myofibroblasts could significantly increase Scx protein expression20. Furthermore, they showed that adenoviral delivery of I-Smad7 reduced Scx protein levels by as much as 40%20. As R-Smad3 is a downstream effector of the TGFβ1 signal, and I-Smad7, an endogenous inhibitor of this signal, they proposed that Smad proteins lie downstream of TGFβ1 and that they directly regulate Scx gene expression20. There are several possibilities for the differences that we observed in our study compared to that of Bagchi and Czubryt. First, it is possible that we did not capture the functionally significant SBE for Scx in our luciferase promoter construct as we only isolated the portion that we considered to be the important regulatory region of Scx gene expression due to the abundance and clustering of
putative transcription factor binding sites as well as the high identity of the selected promoter region across mouse, human, and rat species. Second, it is possible that Smad proteins play a role in Scx expression though enhancer elements located elsewhere in the genome. Finally, it is possible that Smads do not directly regulate Scx gene expression at all, but rather act as an intermediate step towards the induction of a yet to be identified transcription factor that does directly bind to and activate the promoter of Scx.

As we did not find any functional significance for Smad proteins in the regulation of Scx, we consulted the literature to identify other regions and proteins of interest. We found but one article that described a role for MAPK signaling in mediating Scx expression in heart valves337. Thus, based on the data presented we sought to determine if p44/42 (Erk1/2) signaling played a role in Scx regulation. We utilized U1026 as a known MEK1/2 inhibitor with and without rhTGFβ\textsubscript{1} stimulation of primary cardiac myofibroblasts. As previously described, rhTGFβ\textsubscript{1} treatment increased Scx protein levels whereas co-treatment with U0126 and rhTGFβ\textsubscript{1} modestly, but not significantly, reduced Scx protein levels as compared to rhTGFβ\textsubscript{1} and vehicle treated controls. Furthermore, we found that rhTGFβ\textsubscript{1} stimulation resulted in rapid (within 1 hour) phosphorylation of p44/42, demonstrating a potential role for a TGFβ\textsubscript{1}/Smad-independent signaling pathway in the regulation of Scx. Our results contrast those previously reported by Barnette \textit{et al.}337. Using a porcine model of valvular interstitial cells they demonstrated that p44/42 MAPK signaling represses Sex expression as opposed to increases its expression as we have shown in the current dataset. In contrast to our results where we saw increased phosphorylation of p44/42 following TGFβ\textsubscript{1}
stimulation, Barnette and colleagues saw no increase in p44/42 phosphorylation after TGFβ2 treatment. Moreover, when they overexpressed MEK1 (an upstream kinase of p44/42) prior to TGFβ2 stimulation, they observed a significant reduction in Scx expression as compared to TGFβ2 stimulated cells alone. Although both studies agree on the ability of TGFβ to promote Scx expression, the mechanisms proposed by our group and that of Barnette337 are fundamentally different. First, we utilized primary cardiac myofibroblasts from adult male rat hearts. These cells have been identified to play an important role in myocardial remodelling in the wounded heart. In those studies conducted by Barnette et al. they used an embryonic mesenchymal cell type that mimics the primary cell type. Furthermore, they used avian precursor cells to provide proof-of-principle to those studies conducted in their cell line model with C3H10T1/2. The use of cell lines and embryonic cells in their study may distort the true mechanism for Scx regulation by these pathways as these cell types are immortal and not fully differentiated. Differences in developmental stage may account for the conflicting results between our 2 studies. Second, Barnette et al. used TGFβ2, whereas we utilized TGFβ1. Although these cytokines are highly similar, it may be that they elicit a different response from the TβR’s with respect to Smad-independent pathways. Finally, we used 10 ng/mL rhTGFβ1 (~400 nM) in serum starved cells, whereas Barnette’s group used 200 pM TGFβ2 in complete growth medium for 2 days. As normal growth media contains a plethora of cytokines and growth factors to maintain cell growth and viability, it would be difficult to elucidate the true role of TGFβ2 on Scx expression. The presence of multiple growth factors and cytokines would provide high background and may alter the effect of TGFβ2.
Historically, Ski is recognized as a potent inhibitor of TGFβ/Smad signaling. However, as Scx appears not to be regulated through such a mechanism we set out to define a role for Ski in our model. As Ski is not a transcription factor itself, but rather more of a scaffolding protein that binds to transcription factors we decided to look at transcription factors that lie downstream of the MAPK signaling pathways to see if Ski could interact with them to prevent Scx gene expression. A previous study published by Pessah et al. demonstrated that c-Jun directly interacts with Ski and that upon TGFβ stimulation, this complex dissociates and de-represses c-Jun. Using an AP-1 Lux luciferase reporter, they co-transfected HepG2 cells with c-Jun and Ski. They found that increasing amounts of Ski repressed c-Jun’s ability to transactivate the AP-1 Lux reporter. Co-immunoprecipitation studies demonstrated a clear protein:protein interaction between c-Jun and Ski. These results are in agreement with our current study. We found that with adenoviral overexpression of Ski we could co-precipitate Ski and c-Jun. This data, although preliminary, provides an alternative method for Ski-mediated repression of Scx through a Smad-independent mechanism. Upon closer analysis, we identified a putative AP1/CREB binding site within our isolated hScxP. We showed that Ski was part of a DNA:protein complex within the rat Scx promoter as we were able to pull down a portion of the rat Scx promoter using the ChIP technique. The region isolated correlated with the location that contained the identified AP1 transcription factor binding site. This site may play a role in TGF/Smad-independent p44/42-MAPK regulation of Scx.
The combination of our *in vitro* work and the use of a whole animal model allowed us to approach the overall hypothesis with a more clinically relevant perspective. Thus, we permanently ligated the LAD-CA to produce a large MI to mimic the clinical setting. Animals were euthanized at either 2, 4, or 8-weeks post-MI, and myocardial tissue collected for Western blot analysis. Corroborating our *in vitro* studies with TGFβ1, a well-known mediator of the chronic wound healing response, we observed that as early as 2-weeks after MI, there was induction of both the p38 and p44/42 MAPK signaling pathways as identified by kinase phosphorylation within the infarct scar (Figure 27A and B). Furthermore, we noted phosphorylation of the transcription factor c-Jun in the border zone within 2-weeks following LAD-CA ligation that was sustained out to the 8-week time point. This trend continued in the infarct scar where there was a further increase in phospho-c-Jun levels as compared to border zone tissue and sham operated controls (Figure 27C and D). Our data is supported by numerous other reports356-359. In a mouse model of MI, Yeh *et al.* noted a spatial and temporal expression pattern for phospho-p38 and phospho-p44/42 in the post-MI heart. Much akin to our current study, Yeh *et al.* found significant

Figure 28. Graphic Depiction of the Human Scleraxis Promoter and Putative Transcription Factor Binding Sites. Reproduced with permission346.
phosphorylation of p38 in areas remote to the infarct scar that progressively increased out to 12-weeks, a further 4-weeks past the latest time point in our study. Furthermore, they observed a rapid and robust increase in phospho-p38 levels in the infarct scar itself as early as 1-week post-MI, which stabilized at the 12-week time point. Analogous to our study, Yeh et al. also demonstrated a spatial and temporal distribution of phospho-p44/42. Compared to the results obtained for phospho-p38, phospho-p44/42 levels rose significantly at later time points that are typically associated with extensive fibrosis and non-myocyte proliferation (i.e. increased numbers of resident myofibroblasts). The results of our study recapitulate and mirror those of Yeh et al. with respect to both phospho-p38 and phospho-p44/42 spatial and temporal activation patterns in the post-MI heart. The role of p38 in the post-MI heart is further highlighted by a study by See et al. who subjected rats to complete ligation of the LAD-CA and treated them with the p38 inhibitor RWJ. In a more clinically relevant evaluation of the post-MI heart, those animals pretreated with RWJ had a significantly smaller infarct size (2.6% vs. 17.1% for the vehicle controls) over a 4-week period. This reduction in scar expansion also correlated with improved myocardial dimensions and functional capacity as determined by 2-dimensional transthoracic echocardiography. Collagen deposition was also significantly blunted by RWJ pre-treatment. Taken together, these results complement and extend those results presented here in our dataset, as well as that provided by Yeh et al. It is clear that MAPK signaling plays a prominent role in the post-MI heart and the chronic, maladaptive wound healing process.
Conclusions and Future Directions

Taking our *in vitro* and *in vivo* data together, we propose a new mechanism for the regulation of Scx in a Smad-independent manner (Figure 29). We believe that TGFβ1 promotes the phosphorylation of p44/42 via TβR’s which in turn promotes the expression of Scx, possibly through the c-Jun and the AP-1 transcription factor complex. Furthermore, we believe that Ski plays a significant role in mediating Scx expression and that it may exert its effects through a c-Jun dependent mechanism rather than its traditional interactions with Smad transcription factor complexes. Based on the studies presented here, we believe that Smad proteins are not directly involved in Scx regulation, however their role as an indirect mediator is still open for interpretation and requires further study.
Figure 29. Proposed Mechanism for the Regulation of Scx by p44/42 (Erk1/2) and Ski. TGFβ1 is a powerful inducer of Scx expression. We have demonstrated that TGFβ1 may exert its effects on Scx expression through a TGFβ1/Smad-independent mechanism that includes the p44/42-MAPK signaling pathway in combination with c-Jun activation in cardiac myofibroblasts. As U0126 could not completely counteract the effect of TGFβ1 on Scx protein expression, it is plausible that Smad proteins may still be involved in regulating Scx through an intermediate mechanism that has yet to be described. We have shown Ski to be a potent inhibitor of Scx signaling and we
propose that Ski exerts its effects through inhibition of p44/42 in addition to its role in preventing Smad mediated gene regulation. Reproduced with permission346.

Further work needs to be done to tease out the precise mechanism by which TGFβ\textsubscript{1} promotes p44/42 phosphorylation. A detailed and exhaustive study needs to explore whether the TβR’s are capable of promoting p44/42 phosphorylation through the previously identified Ras/Raf/MEK pathway. This will provide the missing link between p44/42 and the TβR’s in this model system and will identify the true role of TGFβ/Smad-independent pathways in regulation of Scx gene expression. Moreover, an extensive study is required to explore the effects of the other recognized MAPK signaling pathways that have been shown to be modulated through TGFβ signaling. It may be that there is extensive cross talk and input amongst these pathways such that not just one but all play a small part in regulating Scx gene expression.

Additional work to explore the mechanisms associated with Ski mediated transcriptional repression of Scx is required. While it is clear from our current studies that Ski is a potent inhibitor of Scx gene and protein expression, the inability of Smad proteins to positively regulate Scx bring into question how Ski can promote such a dominant effect. We did however provide some insight into this mystery. We were able to co-precipitate Ski with c-Jun when Ski was overexpressed as previously reported by Pessah \textit{et al.}353, suggesting a little defined role for Ski outside of TGFβ/Smad signaling. However, whether c-Jun is a potent transcriptional regulator of Scx gene expression is currently unknown and warrants further investigation.

Finally, further work is needed to explore the spatial, temporal, and sub-cellular distribution of Ski and Scx in the post MI heart. A previous study conducted in our
laboratory by Cunnington et al. demonstrated that Ski protein levels rise in the cytosolic fraction of protein isolated from rat hearts that have undergone LAD-CA ligation. The precise mechanism for the accumulation of Ski within the cytosolic fraction post-MI is currently unknown and merits further evaluation. Even less is known with regards to the sub-cellular distribution of Scx in the post-MI setting as well as its spatial and temporal compartmentalization within the infarct and border zone. A clearer understanding into the distribution and expression patterns of both Ski and Scx in the post-MI setting is needed to gain better insight into the molecular mechanisms that underpin the chronic, maladaptive wound healing response and may lead to therapeutic remedies to prevent the onset of heart failure in the post-MI patient population.
Chapter 4: Transcriptional Regulation of Ski

Rationale, Hypothesis, and Objectives

Originally identified as the transforming agent of the Sloan-Kettering retroviruses in avian fibroblasts, Ski is now better known for its role as a potent endogenous antagonist of TGFβ signaling. Functionally, Ski forms a transcriptional inhibitory complex that has been shown to include NCoR and HDAC proteins. Furthermore, site-directed mutagenesis of the NCoR binding domain within Ski, significantly represses the transcriptional repression capability of Ski. Despite widespread knowledge of Ski and its role in TGFβ signaling, relatively little is known with respect to the transcriptional mechanisms that govern the expression of Ski itself. As TGFβ is a prominent player in numerous pathologies and Ski is a natural inhibitor of TGFβ/Smad-dependent signaling, it would be beneficial to better understand the mechanisms regulating Ski expression.

A 2012 study by Li et al. found that Ski was directly regulated by PPARδ and that the rat Ski promoter contained a functional PPRE. Treatment with PPARδ resulted in an increase in Ski expression that could be significantly blunted by an irreversible inhibitor against PPARδ. Outside of this single study that shows a mechanism for regulating Ski transcription, nothing else is known with regards to other positive or negative regulators of Ski expression. As Ski is an anti-fibrotic protein that is a potent inhibitor of Scx expression we set out to explore the reverse relationship. We hypothesize that Scx is a potent inhibitor of Ski expression, and that it binds directly to the promoter region of Ski to repress Ski transcription. To explore our hypothesis, we will:
1) Determine whether the human Ski proximal promoter (hSkiPP) is a direct target of the pro-fibrotic transcription factor Scx through direct interaction with E-box binding motifs found within the hSkiPP to inhibit Ski transcription.

2) Determine whether ectopic overexpression of Scx negatively regulates Ski mRNA and protein expression in primary cardiac myofibroblasts, thus promoting a net pro-fibrotic environment.

Methodology

Animal Ethics

All experimental protocols involving animal studies were reviewed and approved by the University of Manitoba’s Animal Care Committee following the Canadian Council on Animal Care Standards.

In silico Analysis of the Ski Promoter

The mouse, rat, and human Ski gene sequences were obtained by searching the NCBI database using the key words “mouse Ski”, “rat Ski”, and “human Ski”. The FASTA sequences were downloaded into a Word document. Using the FASTA gene sequence as the query, mouse, rat, and human Ski were localized to their appropriate chromosomal locations using NCBI Blast. The FASTA sequences for the chromosomal regions of interest were downloaded into a Word document. The translational start site (ATG) was identified for each species, as were exons, introns, and the translational stop. Identification of potential E-box binding motifs were determined by Blast searching all iterations of the E-box consensus sequence (CANNTG) and highlighting them within the first 10,000 base pairs upstream of the translational start of the Ski gene. Other promoter elements were also identified including, but not limited to NF-
κB binding sites (GGGRNNYYCC; where R is any purine, Y is any pyrimidine, and N is any nucleotide), and CAAT-boxes.

To identify regions of potential significance, mouse, rat, and human Ski promoters were aligned to one another (ClustalW, Expasy) to detect regions of high identity and similarity. Based on these alignments, the hSkiPP was split into 2 regions, the proximal (~2000 bp 5’ of the ATG; Figure A-1) and the distal promoters (a further ~2000 bp upstream of the proximal promoter; Figure A-2).

Isolation of BAC DNA

Two bacterial artificial chromosomes (BAC:RP11-659D23 and RP11-719N13) containing the region of chromosome 1 containing human Ski were purchased from Invitrogen (Cat #: RPCI11.C). Upon arrival, 20 μL of the bacterial BAC stab was streaked out on an agar plate containing chloramphenicol (100 μg/mL) and incubated over night at 37ºC in a dark, humidified environment. The next day individual clones were picked from the plate and placed into a 50 mL starter culture of LB containing chloramphenicol (100 μg/mL) for 2 hours. The 50 mL starter culture was used to inoculate 1000 mL of LB in a 2.0 L Erlenmeyer flask containing chloramphenicol (100 μg/mL). The culture was incubated overnight at 37ºC with constant agitation at 300 rpm. Isolation of the BAC DNA from the bacteria was conducted using a Qiagen Large Construct Kit (Cat #12462) as per the manufacture’s directions.

The DNA pellet was re-suspended in nuclease free water and its concentration determined via its 260 nm spectrophotometry reading using the GeneQuant III.
Cloning of the 1.8 kb Human Ski Promoter

Primers were designed to amplify approximately ~2000 bp (1816 bp actual) of the human Ski proximal promoter (hSkiPP) from the BAC and were commercially synthesized (Sigma-Aldrich; Table 7).
<table>
<thead>
<tr>
<th>Probe</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Ski Proximal Promoter Forward</td>
<td>CAGTCACTCGAGGTCACGGGGCCGAAGTCTGATAAG</td>
</tr>
<tr>
<td>Human Ski Proximal Promoter Reverse</td>
<td>CAGTCAAAGCTTGTCACTTGGCGCTCTCCTTTCTTGTAG</td>
</tr>
</tbody>
</table>

Table 7. Primer Sequences for the Synthesis of the Human Ski Proximal Promoter.
Due to the high GC content of the hSkiPP, an enhancer cocktail (Table 8) was used to reduce the amount of non-specific binding and secondary structure that may occur during PCR cycling. The PCR reaction was set up as listed in Table 9 and run on a MJ Thermocycler:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Stock Concentration</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease Free Water</td>
<td>-</td>
<td>To 50 μL</td>
</tr>
<tr>
<td>Deep Vent Buffer</td>
<td>10x</td>
<td>1x</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>5.0%</td>
</tr>
<tr>
<td>Betaine</td>
<td>5.0 M</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Forward Primer</td>
<td>5.0 μM</td>
<td>300 nM</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>5.0 μM</td>
<td>300 nM</td>
</tr>
<tr>
<td>dNTP</td>
<td>2.5 mM</td>
<td>200 μM</td>
</tr>
<tr>
<td>DNA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7-deaza-dGTP</td>
<td>5.0 mM</td>
<td>50 μM</td>
</tr>
<tr>
<td>Deep Vent</td>
<td>2.0 U/μL</td>
<td>2.0 U</td>
</tr>
</tbody>
</table>

Table 8. PCR Reaction Composition for the Synthesis of the Human Ski Proximal Promoter.
Following PCR, 10 μL 6x loading buffer was added to each reaction. Fifteen microliters of each reaction was loaded onto a 1.0% agarose gel and subjected to electrophoresis at 120 volts for 60 minutes at room temperature. Bands were visualized using a Bio-Rad Gel Doc system.

The remainder of the PCR reactions that produced a band of interest were subjected to electrophoresis on a 1.0% agarose gel at 120 volts for 60 minutes at room temperature and the band visualized using a UV long wave light table and cut from the gel using a scalpel. Gel pieces containing DNA of interest were placed into a DNA spin column (Millipore) and subjected to centrifugation at 5,000 xg for 10 minutes at room temperature. Flow through from the column was purified using the QiaQuik system (Qiagen) as per the manufacture’s directions. DNA concentration was determined by UV spectrophotometry using the Gene Quant III system. 98 μL nuclease free water was used as a blank for the spectrophotometer. 2.0 μL concentrated DNA solution was

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C for 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 30 seconds</td>
</tr>
<tr>
<td>3</td>
<td>60°C 30 seconds</td>
</tr>
<tr>
<td>4</td>
<td>70°C 2 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Step 2-4 40x</td>
</tr>
<tr>
<td>6</td>
<td>70°C for 4 minutes 1x</td>
</tr>
<tr>
<td>7</td>
<td>10°C Hold</td>
</tr>
</tbody>
</table>

Table 9. Thermocycling Profile for Amplification of the Human Ski Proximal Promoter from a Bacterial Artificial Chromosome.
added to the blank and gently mixed to give a 50x dilution. The sample was read and absorbances at 230 nm, 260 nm, and 280 nm was recorded. Ratios of 260 nm/280 nm and 260 nm/230 nm were also reported to identify any possible contamination. DNA concentrations were determined (Figure 30) based on the equation below:

\[
DNA \text{ Concentration} \left(\frac{\mu g}{\mu L} \right) = \frac{A_{260} \times 50 \times 0.1}{2}
\]

Figure 30. Formula for Calculating DNA Concentration.

To create a cleaner, more specific product, the DNA of interest was used as template to conduct a nested PCR reaction (Tables 10 and 11). DNA was gel purified using spin columns (Millipore) and cleaned using the QiaQuick system (Qiagen) as described above.
<table>
<thead>
<tr>
<th>Solution</th>
<th>Stock Concentration</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease Free Water</td>
<td>-</td>
<td>To 50 µL</td>
</tr>
<tr>
<td>Deep Vent Buffer</td>
<td>10x</td>
<td>1x</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>5.0%</td>
</tr>
<tr>
<td>Betaine</td>
<td>5.0 M</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Forward Primer</td>
<td>5.0 µM</td>
<td>300 nM</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>5.0 µM</td>
<td>300 nM</td>
</tr>
<tr>
<td>dNTP</td>
<td>2.5 mM</td>
<td>200 µM</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>25 ng</td>
</tr>
<tr>
<td>7-deaza-dGTP</td>
<td>5.0 mM</td>
<td>50 µM</td>
</tr>
<tr>
<td>Deep Vent</td>
<td>2.0 U/µL</td>
<td>2.0 U</td>
</tr>
</tbody>
</table>

Table 10. Nested PCR Reaction.

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 30 seconds</td>
</tr>
<tr>
<td>3</td>
<td>60°C 30 seconds</td>
</tr>
<tr>
<td>4</td>
<td>70°C 2 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Step 2 - 4 40x</td>
</tr>
<tr>
<td>6</td>
<td>70°C 4 minutes 1x</td>
</tr>
<tr>
<td>7</td>
<td>10°C Hold</td>
</tr>
</tbody>
</table>

Table 11. Nested PCR Cycling Conditions.
2.0 μL of nested PCR DNA fragment and 1.0 μg pGL4.10 [luc2] vector were subjected to a restriction enzyme digest with HindIII and XhoI to remove the ends from the DNA and to create a splice site within the vector. The reaction was incubated for 60 minutes at 37°C in a temperature controlled water bath. The PCR fragment containing the hSkiPP was ligated into the pGL4.10 [luc2] vector using a Quick Ligation Kit (New England Biolabs) as per the manufacture’s directions. The reaction was incubated at room temperature for 5 minutes to allow for maximal vector/fragment ligations. Immediately following ligation, the DNA product was transformed into AG1 (Agilent) or NEB-5α (New England Biolabs) competent bacteria. 5.0 μL of the ligation reaction was added to 50 μL of competent bacteria and incubated on ice for 30 minutes. Transformation of bacteria was accomplished by heat shocking bacteria in a 42°C water bath for exactly 30 seconds as per the manufacture’s protocol. The solution was placed back on ice for an additional 5 minutes. Following incubation, 950 μL LB containing no antibiotics was added to the reaction and incubated at 37°C for 60 minutes with constant agitation at 300 rpm. After 60 minutes, bacteria were pelleted by centrifugation at 18,000 xg for 30 seconds. The LB supernatant was removed and the bacterial pellet re-suspended in 100 μL fresh LB. From this, 25 μL of concentrated bacteria were streaked and 75 μL spread onto Carbenicillin (100 μg/mL) containing agar plates and incubated overnight at 37°C. The next day, colonies of interest were identified and picked from the plate, and incubated in LB containing Carbenicillin (100 μg/mL) overnight. Cultures were incubated at 37°C with constant agitation at 300 rpm for at least 18 hours. The next day DNA, was isolated from the bacteria cultures using a Miniprep kit (Qiagen) as per the manufacture’s directions. To determine which of the
clones contained the insert of interest, we preformed a restriction digest in a water bath at 37°C for 60 minutes.

Following digestions, 3.0 μL 6x loading buffer was added to each reaction and 15 μL of each reaction volume was subjected to electrophoresis on a 1.0% agarose gel at 120 volts for 60 minutes. Bands were visualized using a Bio-Rad Gel Doc system with a 2.5 second exposure and analyzed using Quantity One Software (BioRad). Clones that were positive for the insert of interest were sent for sequencing to confirm that they contained the sequence of interest (TCAG, Toronto, Ontario, Canada).

Isolation of Primary Cardiac Myofibroblasts

P1 cardiac myofibroblasts were isolated as described in Chapter 3 (page 66-68) of this thesis.

Cell Culture

P1 primary rat cardiac myofibroblasts and Cos7 cells were maintained in a standard cell culture incubator at 37°C with 5.0% CO₂. P1 myofibroblasts were maintained in a 10% DMEM_{F12}-FBS solution supplemented with 100 U/mL penicillin, 100 U/mL streptomycin, 14 mM sodium bicarbonate, and 1.0 μM ascorbic acid. Cos7 cells were kept in a 10% DMEM-FBS solution containing 100 U/mL penicillin, and 100 U/mL streptomycin.

Luciferase Assay

1.0×10⁵ Cos7 cells were seeded into each well of a 6-well cell culture dish and allowed to adhere and proliferate overnight. The next day the cells were washed twice in 1x PBS and 1.5 mL of Opti-MEM cell culture medium (Gibco) was added to each well. Cells were then co-transfected with 500 ng of hSkiPP pGL4.10 [luc2] reporter
vector and 500 ng of one of hScx-pcDNA3, p65-pCMV4, or empty expression vector (pcDNA3 or pCMV-Tag2B) using Lipofectamine 3000 (Invitrogen). Twenty-four hours later, cells were harvested and analyzed using a Dual-Luciferase assay kit (Promega) and the GloMax luminometer (Promega) according to the manufacture’s directions. Individual samples were normalized to renilla expression.

For cells that were treated with recombinant human TNFα (rhTNFα; Cell Signaling), 1.0 µg hSkiPP pGL4.10 [luc2] was transfected into Cos7 cells using Lipofectamine 3000. Twenty-four hours after transfection, DNA:lipid complexes were removed and the media replaced. Cells were then treated with increasing concentrations of rhTNFα (1.0, 10, 100 ng/mL) or DMSO as a vehicle control. Twenty-four hours later, the cells were harvested for luciferase activity as previously described.

Protein Isolation and Western Blot Analysis

Whole cell protein lysate from P1 myofibroblasts and Cos7 cells was isolated, quantified, and analyzed as described in Chapter 3 (page 68-70) of this thesis. Primary antibody against p65 (1:1000; Cell Signaling) was used in a 5.0% BSA TBS-T solution overnight with constant shaking at 4°C. Secondary goat-anti-rabbit (1:20000; Jackson Labs) was diluted in a 3.0% skim milk TBS-T solution and incubated for 60 minutes at room temperature to detect the primary antibody. Blots were developed with Pierce ECL Western blotting substrate (Life Technologies). Protein bands were visualized using CL-Xposure blue X-ray film (Life Technologies). Images were acquired using the Bio-Rad densitometer GS-800 and protein expression determined using Quantity One Software (Bio-Rad).
Quantitative Real-Time PCR

1.0×10^6 P1 cardiac myofibroblasts were seeded onto a 100 mm cell culture dish and treated with Ad-LacZ, or HA-mouse Scx (Ad-HA-mScx) at an MOI of 50 at the time of plating. Twenty-four hours later the medium was removed and cells washed twice in 1x PBS and harvested in 1.0 mL Trizol Reagent (Life Technologies). Total RNA was isolated as per manufacturer’s directions. Samples were treated with DNase I (NEB) to remove contaminating genomic DNA prior to cDNA synthesis as per the manufacture’s protocol. cDNA was synthesized using the BioRad iScript Select cDNA synthesis kit using random primers as per the manufacturer’s protocol. qRT-PCR was performed using SYBR select Master Mix for CFX (Life Technologies) as per the manufacturer’s protocol on a BioRad iQ5 in triplicate. The cycling conditions were as outlined in Table 12 and primers detailed in Table 13. Ski and Scx mRNA levels were calculated using the 2^{-ΔΔCt} method and normalized to GAPDH.

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50°C 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 5 minutes 1x</td>
</tr>
<tr>
<td>3</td>
<td>95°C 15 seconds</td>
</tr>
<tr>
<td>4</td>
<td>61°C 30 seconds – Plate Read</td>
</tr>
<tr>
<td>5</td>
<td>3-4 40x</td>
</tr>
<tr>
<td>6</td>
<td>55°C → 95°C – Melt Curve</td>
</tr>
<tr>
<td>7</td>
<td>End</td>
</tr>
</tbody>
</table>

Table 12. Real-time qPCR Cycling Conditions.
<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat Ski Forward</td>
<td>CAGCATGCAGAGGCTGACC</td>
</tr>
<tr>
<td>Rat Ski Reverse</td>
<td>CCAGCTCAGCGTTGCTCTC</td>
</tr>
<tr>
<td>Scleraxis Forward*</td>
<td>AACACGGCCTTCACTGCGCTG</td>
</tr>
<tr>
<td>Scleraxis Reverse*</td>
<td>CAGTAGCAGTTGCCCAGGTG</td>
</tr>
<tr>
<td>GAPDH Forward</td>
<td>TGCACCACCAACTGCTTACG</td>
</tr>
<tr>
<td>GAPDH Reverse</td>
<td>ACGGCCATCACGCCACAGC</td>
</tr>
</tbody>
</table>

Table 13. Real-time qPCR Primer Sequences. *As previously published by Bagchi and Czubryt\(^2^0\).

Statistics

All data is expressed as mean ± SE. Comparisons between 2 groups was accomplished using a Students t-test. Differences between multiple groups was compared using one-way ANOVA with a Student-Newman-Keuls post hoc test. A P-value less than 0.05 (\(P < 0.05\)) was considered significant. All statistics were performed using Graphpad Prism 5 statistical analysis software.

Results

In silico Analysis of the Ski Promoter

Like Sex, relatively little is known with regards to the transcriptional regulation of Ski. There is but one study that has shown Ski to be negatively regulated by PPARδ\(^2^9\). Thus, we set out to determine whether the Ski promoter region contained any sites that may serve as putative transcription factor binding sites. We found that the human and mouse regions 5’ to the ATG start codon were fairly well conserved,
however the rat sequence significantly diverged from that of human and mouse (Appendix C, Figure C-1 and C-2). Using the mouse and human promoter regions, we performed a Clustal W alignment and were able to identify several putative binding sites for transcription factors including bHLH proteins (E-box), and NF-κB (Appendix C, Figure C-1 and C-2).

Scleraxis Does Not Regulate Transcription of Ski

In Chapter 3, we demonstrated that Scx is regulated at the transcriptional level by Ski not through its ability to inhibit TGFβ/Smad signaling, but through Ski’s ability to inhibit MAPK signaling through the repression of c-Jun. We next chose to explore the reverse relationship between Ski and Scx. We asked whether the Ski promoter is a direct target of the bHLH transcription factor Scx. To explore this relationship, we PCR cloned 1.8 kb of the hSkiPP into a pGL4.10 [luc2] reporter vector (hSkiPP pGL4.10 [luc2]) and conducted luciferase assays with overexpression of hScx. This region was chosen due to the presence of several potential putative transcription factor binding motifs for Scx (e.g., E-boxes) as well as sites for NF-κB. We found that there was no significant difference ($P > 0.05$; n=6) in the levels of luciferase expression between hScx and empty vector transfected cells (Figure 31).
To confirm our results in a more relevant model system, we infected primary P1 cardiac myofibroblasts with Ad-HA-mScx or Ad-LacZ at an MOI of 50. We obtained a 20-fold increase (*$P < 0.001$; n=3) in Scx mRNA expression with our adenoviral construct (Figure 32A). In agreement with our luciferase results, overexpression of Scx had no effect on Ski mRNA (Figure 32B) or protein (Figure 32C) levels in rat P1 cardiac myofibroblasts. These results taken together suggest that Ski gene expression may not be regulated by Scx.

Figure 31. Scleraxis Regulation of the Human Ski Proximal Promoter. Co-transfection of Cos7 cells with hSkiPP and hScx yielded no significant change in luciferase reporter activity as compared to empty expression vector control. ($P > 0.05$; n=6).
Figure 32. Scleraxis Overexpression in Primary Cardiac Myofibroblasts and Ski Expression.
p65-NF-κB is a Negative Regulator of Ski Gene Expression

As Scx appears not to be a critical regulator of Ski gene expression, we sought to determine whether any of the other identified putative transcription factor binding sites were able to regulate Ski gene expression. From our Clustal W alignments of the human and mouse Ski promoters we identified a well conserved NF-κB binding site that may play a role in regulating Ski. Using Cos7 cells we conducted luciferase assays using a p65-pCMV4 expression vector for 24 hours. Unlike Scx, overexpression of p65
resulted in a 50% reduction (*P < 0.01; n=6) in luciferase expression as compared to the empty vector control (Figure 33A). Western blot analysis of WCL demonstrated that we were able to obtain a 3-fold (*P < 0.001; n=4) increase in p65 protein expression over empty vector controls (Figure 33B).

We next determined whether TNFα, a well known inducer of p65, could promote a response similar to that of p65 in our luciferase reporter assay. We treated Cos7 cells that had been transfected with our hSkiPP luciferase reporter with increasing concentrations of rhTNFα (1.0 ng/mL, 10 ng/mL, and 100 ng/mL) or vehicle (DMSO) control. We observed a 50-60% reduction in luciferase reporter construct with as little as 1.0 ng/mL TNFα as compared to our vehicle treated control (Figure 33C; *P < 0.05; n=4). Furthermore, although we performed a 10-fold dose response experiment, we found that there was no further reduction in luciferase expression with either 10 ng/mL or 100 ng/mL compared to 1.0 ng/mL. This suggests that although TNFα appears to be capable of repressing Ski expression, there is a limit to its potency as a 100-fold increase in TNFα could not further affect Ski luciferase expression.

To address Ski expression in response to p65 and TNFα, we performed qPCR analysis on lysates isolated from Cos7 cells 24 hours after treatment. Both p65 and TNFα (10 ng/mL) treatment regimes resulted in a 50% reduction in Ski mRNA levels as compared to empty vector (Figure 33D; *P < 0.05; n=3) and vehicle treated (Figure 33E; #P < 0.001; n=3) controls respectively.
Figure 33. p65/TNFα-Mediated Regulation of the Human Ski Proximal Promoter.
Figure 33. p65/TNFα-Mediated Regulation of the Human Ski Proximal Promoter.
Figure 33. p65/TNFα-Mediated Regulation of the Human Ski Proximal Promoter.
A) Co-transfection of Cos7 cells with hSkiPP and p65 resulted in a 50% reduction in luciferase reporter activity (*P < 0.01; n=6).

B) Co-transfection of Cos7 with hSkiPP and p65 yielded a 3-fold increase in p65 protein expression compared to empty expression vector control (*P < 0.001; n=4).

C) Treatment of Cos7 cells transfected with hSkiPP alone for 24 hours demonstrated a 40% reduction with as little as 1.0 ng/mL of TNFα in luciferase expression as compared to untreated and DMSO treated controls (*P < 0.05; n=4). There was no significant difference in luciferase expression with increasing doses of TNFα.

D) Transfection of Cos7 cells with p65 for 24 hours resulted in a 50% reduction in Ski mRNA levels as compared to empty vector controls (*P < 0.05; n=3).

E) TNFα treatment (10 ng/mL) of Cos7 cells for 24 hours resulted in a significant (50%) reduction in Ski mRNA levels as compared to vehicle control (*P < 0.001; n=3).

Discussion

In the current study we have provided insight into the molecular mechanisms that govern the transcriptional regulation of Ski. Specifically, we have demonstrated that the bHLH transcription factor Scx has no discernible effect on Ski transcription.
Co-transfection of Cos7 cells with Scx and our hSkiPP reporter construct did not result in elevated luciferase expression suggesting that Scx does not mediate Ski transcription. As we cloned only 1.8 kb of the hSkiPP, and hence may have missed a true functional E-box for Scx, we conducted follow-up studies in primary P1 rat cardiac myofibroblasts using an adenoviral construct to overexpress Scx. Twenty-four hours of Scx expression did not alter Ski transcript (mRNA) or protein levels, thus corroborating our luciferase reporter assays. If our promoter reporter construct had excluded a functionally significant binding domain for Scx, our adenoviral studies would have conflicted those of our luciferase experiments and suggest that we need to look further upstream of the promoter region we had isolated.

Scx is a bHLH transcription factor that can form homo- and hetero-dimers with itself and other bHLH proteins such as E12 or E47334, 360-362. It is possible that in our model system, overexpression of Scx alone may not be sufficient to promote changes in Ski expression. Consultation of the literature indicates that this notion is not unreasonable, as a previous study conducted by Lejard \textit{et al.} demonstrated that Scx/E47 heterodimers formed a functional complex that bound to the TSE2 site within the collagen 1α1 minimal promoter that contained an E-box binding domain whereas Scx/E12, Scx/Scx, E12/E12, and E47/E47 hetero- and homo-dimers were unable to transactivate the promoter334. Further support for this view is provided by data from a study conducted in 2000 by Carlberg \textit{et al.} showing that Scx formed a heteromeric complex with E47 to significantly upregulate the muscle creatine kinase (MCK) promoter360. Neither Scx nor E47 on its own could promote a response as robust as Scx/E47 could when co-expressed. Scleraxis/E12 hetero-dimer complexes have also
been shown to play a role in the regulation of the MCK promoter. Cserjesi et al. found that the Scx/E12 complex can bind to the MCK enhancer element361. Furthermore, they found that Scx/E12 could transactivate their chloramphenicol acetyl transferase (CAT)-reporter construct indicating a functional role for this complex in the regulation of MCK361. Scleraxis/E47 complexes have also been demonstrated to regulate the expression of Sox-9 cooperatively with p300343.

As Scx appears not to be a major regulator of Ski expression as hypothesized, we set out to examine the potential importance of other transcription factors that were identified to contain a DNA binding motif within the hSkiPP. Careful analysis of the hSkiPP DNA sequence demonstrated the presence of a single NF-κB binding domain that was well conserved between mice and humans. Thus, we explored the effects of p65 (a subunit of NF-κB) and TNFα (an upstream cytokine to NF-κB activation) on hSkiPP expression. Co-transfection of p65 and our hSkiPP revealed a 50% reduction in luciferase expression as compared to untreated controls. Our studies using a 10-fold dilution of TNFα demonstrated the same result to that seen with p65 over expression. However, there appears to be a maximal effect for TNFα on repressing Ski expression as there was no significant difference between those cells treated with 1.0 ng/mL compared to those treated with 10 or 100 ng/mL. To evaluate whether TNFα exerted an effect on Ski transcript levels, we measured Ski mRNA levels following p65 and TNFα treatment. In both instances, we found a significant 50% reduction in Ski mRNA levels as compared to empty vector and vehicle treated controls after 24 hours, further corroborating our luciferase studies. Due to the lack of an antibody to recognize Ski protein levels within Cos7 cells (monkey kidney fibroblasts), we were unable to
measure the effect that p65 and TNFα have on Ski protein. Nevertheless, we have preliminary data that indicates that p65 is a component of a transcription factor complex that binds to a κB motif within the hSkiPP as demonstrated by ChIP (Appendix D, Figure D-1). This preliminary result suggests a DNA:protein interaction between p65 and the hSkiPP that may be important in the transcriptional regulation of Ski.

Our current study is the first to demonstrate a role for TNFα/p65 regulation of Ski. We are not, however, the first group to propose a role for p65 and NF-κB in the pathogenesis of fibrosis and heart failure. In a mouse MI model, Hamid et al. found that there was a sustained and myocyte-localized activation of p65 that correlated with increased fibrotic remodelling of the LV, increased apoptosis, and decreased animal survival. Using a myocyte specific transgenic model of chronic p65 activation, they found that p65 provoked greater tissue remodelling and reduced cardiac function as compared to WT controls. Recent studies have shown that integrin-linked kinase (ILK) can activate NF-κB and deletion of ILK results in spontaneous heart failure. A 2014 study by Thakur et al. looked at the effects of ILK in neonatal cardiac fibroblasts. They found that ILK could promote collagen gene expression and that overexpression of IkBa (an endogenous inhibitor of NF-κB signaling) could significantly repress collagen gene expression. Furthermore, knockdown of ILK significantly repressed angiotensin II mediated collagen production. Ultimately, they demonstrated that ILK promoted the activation of NF-κB and translocation of p65 to the nucleus to promote a pro-fibrotic gene program. Based on our current dataset and those previously published, it is reasonable to postulate that p65 NF-κB may play a significant role in the fibrotic remodelling process in cardiac myofibroblasts. The
precise importance of p65-mediated repression of Ski in the cardiac myofibroblasts is only now beginning to be brought to light and merits further evaluation.

We are not the first group to define a role for a transcriptional regulator of Ski. Li et al. 2012 defined a role for PPARδ in the activation of Ski gene expression\(^{291}\). They clearly demonstrated that the synthetic PPARδ ligand GW501516 could promote Ski expression at both the mRNA and protein levels\(^{291}\). Furthermore, they showed that GW501516 could promote Ski gene expression via their luciferase constructs containing the rat Ski promoter. This study provided support and further evidence to previous work published by Teunissen et al. who demonstrated that PPARδ inhibited cardiac fibroblast proliferation and phenoconversion into a cardiac myofibroblast\(^{366}\). These studies and our current dataset provide insight into the molecular mechanisms that govern Ski expression and the phenotype of cardiac fibroblasts and myofibroblasts.

Conclusions and Future Directions

For the first time, we have demonstrated a role for p65 and TNFα in the transcriptional repression of Ski. We believe that p65 NF-κB expression may play a significant role in repressing Ski following an MI, thus promoting the formation of a pro-fibrotic environment. However, more work needs to be done to further define the role of p65 and TNFα in the transcriptional regulation of Ski. Specifically, studies aimed at elucidating direct DNA:protein interactions between p65 and the promoter region of Ski need to be done to show the functional significance of p65. Moreover, translation of these findings from cell lines into a primary fibroblast and myofibroblast cell culture model would provide further strength to the relationship between p65 and Ski expression. The lack of an antibody able to detect endogenous Ski protein levels in
lysates isolated from Cos7 cells is another limitation to our current study. Translating our findings into a cell model in which our Ski antibody does detect endogenous Ski protein levels would not only strengthen our current dataset, but also provide evidence towards the conserved nature of Ski protein and its regulation by TNFα. Finally, understanding the spatial, temporal, and sub-cellular localization/expression pattern of these proteins using an in vivo animal MI model would lead to a more thorough understanding of the mechanisms associated with the regulation of anti-fibrotic genes in the post-MI heart and may lead to better therapeutic strategies to combat maladaptive cardiac wound healing.

In the current study, we also provided evidence against the transcription factor Scx as being a novel negative regulator of Ski. We could not detect any difference in Ski mRNA or protein expression with Scx overexpression in our model systems. As discussed above this may not represent the true role of Scx in the regulation of Ski as many models have shown Scx to be unable to promote gene expression as a homodimer. Scleraxis required dimerization to other bHLH proteins to form a transcriptional hetero-dimer complex to alter gene expression. Thus, further studies need to be undertaken with Scx and other bHLH proteins to better understand their role, if any, in the transcriptional profile of Ski. Co-transfection of cells with both Scx and E12 or E47 in all combinations would provide further evidence for or against bHLH proteins in the regulation of Ski. Although Scx does not appear to be a regulator of Ski expression, it may still have an effect on the sub-cellular localization of Ski. A study previously published by our laboratory demonstrated an accumulation of Ski within the cytoplasm post-MI. As both Ski and Scx are nuclear proteins, it may be possible that Scx regulates
some process that marks Ski for nuclear export, thus freeing itself and other pro-fibrotic transcription factors, such as Smads, to promote pro-fibrotic gene expression.
Increased deposition of fibrillar collagens by myofibroblasts in the injured heart is considered a primary contributor to cardiac dysfunction and heart failure. Of the many molecular mechanisms that have been described to promote the myofibroblast phenotype and production of fibrillar collagens and matrix proteins, the TGFβ pathway has been implicated as the primary contributor to the pro-fibrotic response. Data from previous studies indicate that TGFβ and Smad proteins are potent inducers of Scx however these studies neglected to evaluate the direct DNA:protein transcriptional mechanisms of this relationship. Our current data indicate that although TGFβ is indeed a potent inducer of Scx, it does so through a Smad-independent signaling pathway. This result is not overly surprising due to the large amount of cross-talk between TGFβ and other signaling pathways. However, the interplay between these vast number of molecular signaling pathways makes it difficult to suggest that any one of these Smad-independent pathways is the only contributor to Scx expression. It is likely that several of these pathways are intertwined such that in the setting of cardiac injury, Scx will be expressed to promote the wound healing response no matter what. This is ultimately a limitation of our study as we did not evaluate the effects of the 4 other well-defined TGFβ/Smad-independent signaling pathways that could be elicited by TGFβ and thus constrain the current study. Although we began to define the role for Smad proteins and p44/42 MAPK signaling in the cardiac myofibroblasts, a complete block of Scx expression following TGFβ1 stimulation using the MEK1/2 inhibitor U0126 was not observed. Thus, it is likely that there is at least one other Smad-independent pathway that may be playing a role in regulation of Scx.
Figure 34. Schematic Summary for the Transcriptional Regulation of Ski and Scleraxis in the Primary Cardiac Myofibroblast and its Proposed Role in Fibrogenesis. In the quiescent state there is a small amount of free TGFβ1 present to maintain the slow turnover of the matrix proteins. Ski is present and acts as a nuclear transcriptional repressor of pro-fibrotic signals, such as Scx, by inhibiting TGFβ1-Smad independent c-Jun mediated transcriptional activation of Scx resulting in a net negative regulation and minimized deposition of ECM in the healthy heart. During periods of injury, such as following a large MI, Ski transcription is turned off by TNFα-p65 signaling. Repression of Ski protein and the up-regulation of TGFβ1-Smad independent signaling allows for the derepression and transcription of the pro-fibrotic regulator Scx. Increase Scx protein in the cell can then act in a synergistic manner with Smad proteins to promote collagen and matrix synthesis.

Ski has been well defined as a potent, endogenous inhibitor of TGFβ/Smad signaling. It has been shown to play a role in both the cancer and chronic wound healing settings through its interactions with Smad proteins. Our laboratory has previously defined a role for Ski expression in repressing the cardiac myofibroblast phenotype. Although a role for Ski was defined in the setting of the myofibroblast, little is known with regard to the mechanisms that regulate Ski gene expression. It has been previously published that although SnoN, a member of the Ski-Sno Superfamily of TGFβ inhibitors, expression is transcriptionally regulated following TGFβ stimulation, Ski does not share this feature. Following TGFβ stimulation, SnoN is transcriptionally repressed by a negative feedback loop mechanism. The promoter region of SnoN was identified to contain critical SBE motifs that played a central role in its regulation following TGFβ stimulation. However, Ski does not contain such motifs. One recent study has demonstrated that the promoter region of rat Ski contains a functional PPRE for PPARδ that promotes Ski expression and PPARδ has additionally been shown to repress the cardiac myofibroblast phenotype. Here we have defined a role for TNFα and p65 in the negative regulation of Ski expression. Following an MI, there is a
massive influx of inflammatory cytokines (including TNFα) that initiate and propagate
the wound healing response. As Ski is a negative regulator of collagen production it is
logical to postulate that Ski might be repressed in the inflammatory setting thus paving
the way for wound closure. Our studies into the transcriptional regulation of Ski do
have several limitations. Although we defined a role for p65 in inhibiting Ski gene
expression, we did not demonstrate DNA:protein interactions that would show a direct
relationship between p65 and Ski expression. Additionally, the lack of an adequate
antibody to detect endogenous Ski protein levels limits the scope of our findings.
Furthermore, our studies in the regulation of Ski are confined to Cos7 cells. Whether
TNFα and/or p65 have any significant role in regulating Ski expression in primary
cardiac myofibroblasts merits further investigation.

Based on our studies, we conclude that:

1) Ski is central negative regulator of Scx gene expression;

2) TGFβ1 stimulation of Scx occurs through a Smad-independent pathway that
 includes p44/42 and c-Jun in primary cardiac myofibroblasts; and

3) TNFα and p65 are powerful repressors of Ski gene expression.

Further studies into the regulation of these two critical endogenous factors, which
themselves serve as regulators of the fibrotic response, may lead to the development of
novel therapeutic strategies that target one of, or both, proteins to alleviate chronic
fibrosis in the post-MI setting.
Chapter 6: References

73. Liao YF, Gotwals PJ, Koteliensky VE, Sheppard D and Van De Water L. The EIIIA segment of fibronectin is a ligand for integrins $\alpha 9\beta 1$ and $\alpha 4\beta 1$ providing a novel mechanism for regulating cell adhesion by alternative splicing. *J Biol Chem.* 2002;277:14467-74.

146. Maeda S, Dean DD, Gomez R, Schwartz Z and Boyan BD. The first stage of transforming growth factor beta1 activation is release of the large latent complex from
the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3). *Calcif Tissue Int.* 2002;70:54-65.

associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. *Cell.* 1997;89:1165-73.

275. Grimes HL, Szente BE and Goodenow MM. C-ski cDNAs are encoded by eight exons, six of which are closely linked within the chicken genome. *Nucleic Acids Res.* 1992;20:1511-6.

316. Au PY, Racher HE, Graham JM, Jr., Kramer N, Lowry RB, Parboosingh JS, Innes AM and Consortium FC. De novo exon 1 missense mutations of SKI and

350. Goffin L, Seguin-Estevez Q, Alvarez M, Reith W and Chizzolini C. Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the

Appendices
Appendix A

Clustal W of the Mouse, Human, and Rat Scleraxis Proximal Promoter

MouseScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG

HumanScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG

RatScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG

MouseScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG

HumanScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG

RatScxProm
GTCAGGGTGAATGCTCGTACTCTCGGTCAGGAAAGCTCCACAGCTGGCTATG
Figure A.1. Clustal W of the Mouse, Human, and Rat Scleraxis Proximal Promoter. Alignment of the mouse, human, and rat Scleraxis proximal promoter regions was conducted using Clustal W software from Expasy. The star (*) beneath the alignment marks bp that are conserved between both species. Green highlighted text marks the beginning of the ORF for each species. Pink highlighted sequences indicated the locations of potential SBE.
Clustal W of the Mouse, Human, and Rat Scleraxis Distal Promoter.
MouseScxPromDistal
CAGGT--GGC AGCGTGGAGA CCTTA--GAG TGTGCAGGAG GAG----GA

HumanScxPromDistal
CAGGACGGGC AGTGCGGGGC GGTCA----- GCCCAAGGCC AAGGCCCAGG

RatScxPromDistal
CAGGC--GCT AGCATGGAAA CCTTACAAG TGTACTAGAG AAG----GA

Clustal Consensus
**** ** ** ** ** ** ** ** ** ** ** ** **

MouseScxPromDistal
TACCAGGGTT CCCACCTTCT CCTTTTCAAC TAGGGATGGG ATGAAACTAC

HumanScxPromDistal
GGCTGTGTGC CCCACCTTCT CCTTCTCCAC CAGGGAGGGG ATGAAGCTGC

RatScxPromDistal
TGATGGGGCT CCCACCTTCT CCTTCTCAAC TAGGGACGGG ATGAAACTAC

Clustal Consensus
* ********** **** ** ** ***** *** ***** ** *

MouseScxPromDistal
GCTTGTCAGC TGGGCGGTGT

HumanScxPromDistal
GCTTGTCGGC CGG-------

RatScxPromDistal
GTTTGTCAGC TGG-------

Figure A-2. Clustal W of the Mouse, Human, and Rat Scleraxis Distal Promoter. Alignment of the mouse, human, and rat Scleraxis proximal promoter regions was conducted using Clustal W software from Expasy. The star (*) beneath the alignment marks bp that are conserved between both species. Pink highlighted sequences indicated the locations of potential SBE.
Appendix B

Fractionation of Cos7 Cells

Figure B-1. Fractionation of Cos7 Cells. Cos7 cells were fractionated and assayed for purity of the fractionation process. Nuclear extracts were enriched with nuclear proteins including Smad, Ski, and lamin A/C proteins. Purity of the nuclear fraction was determined by the expression of GAPDH within the nuclear fraction. Western blot shows little nuclear staining of the cytoplasmic protein GAPDH, indicating that our fractionation process was successful. WCL – Whole Cell Lysate.
Electrophoretic Mobility Gel Shift Assay of the Distal and Proximal SBE of the Human Scleraxis Promoter in Cos7 Cells.

A) hScxP Distal SBE

B) hScxP Proximal SBE

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Smad 2</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Smad 3</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Rabbit IgG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>100x Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>500x Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100x Mutant Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>500x Mutant Cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure B-2. Electrophoretic Mobility Gel Shift Assay of the Distal and Proximal SBE of the Human Scleraxis Promoter in Cos7 Cells. Similar to that seen in figure 20 of this thesis, nuclear lysate isolated from Cos7 cells were incubated with biotinylated probes encompassing the 2 putative hScxP SBE. As was with nuclear lysate from primary cardiac myofibroblasts, Cos7 nuclear lysate was incubated overnight with antibodies against Smad2, Smad3, or rabbit IgG control. Incubation the biotinylated probe demonstrated a clear interaction with both the A) distal, and B) proximal SBEs found within the hScxP. Similar to nuclear protein lysate from P1 myofibroblasts, co-incubation of Cos7 nuclear lysate with Smad antibodies was unable to show any R-Smads binding to either probe probes. Furthermore, mutated, unlabelled probes were still capable of outcompeting WT biotinylated probes. Figure is a representative of 3 individual experiments. Arrow indicates DNA:protein bound complexes.
Appendix C

Clustal W of the Mouse, Human, and Rat Ski Proximal Promoter
Figure C-1. Clustal W of the Mouse, Human, and Rat Ski Proximal Promoter.

Alignment of the mouse, human, and rat Ski proximal promoter regions was conducted using Clustal W software from Expasy. The star (*) beneath the alignment marks bp that are conserved between both species. Underlined sequence marks the Ski ORF. Green highlighted text marks the beginning of the ORF for each species. Yellow, teal, and grey highlighted sequences indicated the locations of potential NF-κB, E-Box, and CAAT binding sites, respectively.
Figure C-2. Clustal W of the Mouse and Human Ski Proximal Promoter.
Alignment of the mouse and human Ski proximal promoter regions was conducted using Clustal W software from Expasy. The star (*) beneath the alignment marks bp.
that are conserved between both species. Underlined sequence marks the Ski ORF. Green highlighted text marks the beginning of the ORF. Yellow and teal highlighted sequences indicated the locations of potential NF-κB and E-Box binding sites, respectively.
Appendix D

Chromatin Immunoprecipitation of the Ski Proximal Promoter

1.0×10⁶ Cos7 cells were seeded onto a 100 mm cell culture dish with 10% DMEM-FBS and allowed to adhere and grow for 24 hours. The next day the cells were washed in 1x PBS and 5 mL of Opti-MEM I added to each plate. Cells were then transfected with 5 µg of either empty vector pCMV4 or p65-pCMV4 using Lipofectamine 3000 as per manufactures protocol. Twenty-four hours later ChIP analysis was performed as outlined on page 77-79. Each pellet was suspended in 50 µL of nuclease free water (Ambion) and the DNA concentration determined spectrophotometrically. Samples were amplified via PCR (Table C-1) using the primers listed in table C-2, separated on a 2.0% agarose gel at 130 volts for 65 minutes, and visualized using a Gel Doc system (BioRad).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ski Proximal Promoter κB Forward</td>
<td>CAGCTGGTTTGCAGGTGTTG</td>
</tr>
<tr>
<td>Ski Proximal Promoter κB Reverse</td>
<td>CCATGCTCGACTCCGCTC</td>
</tr>
</tbody>
</table>

Table D-1. Ski Proximal Promoter ChIP Primers.
<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50°C 5 minutes 1x</td>
</tr>
<tr>
<td>2</td>
<td>95°C 5 minutes 1x</td>
</tr>
<tr>
<td>3</td>
<td>95°C 15 seconds</td>
</tr>
<tr>
<td>4</td>
<td>63.1°C 30 seconds – Plate Read</td>
</tr>
<tr>
<td>5</td>
<td>3-4 45x</td>
</tr>
<tr>
<td>6</td>
<td>65°C → 100°C – Melt Curve</td>
</tr>
<tr>
<td>7</td>
<td>End</td>
</tr>
</tbody>
</table>

Table D-2. Ski Proximal Promoter ChIP PCR Profile.

Figure D-1. ChIP Analysis of the Interaction of the NF-κB p65 Subunit with the Cos7 Ski Proximal Promoter. Preliminary data shows a direct interaction between the Ski proximal promoter and p65. p65 was overexpressed in Cos7 cells for 24 hours. Cells were then fixed in 1.0% formaldehyde for 15 minutes at room temperature to cross-link DNA:protein complexes. Cells were then isolated for ChIP analysis. The Ski proximal promoter was precipitated with p65 in p65 overexpressing cells. This interaction was not present in empty vector control treated cells when precipitated with an antibody against p65. Normal rabbit IgG was used as a control for the protein:antibody precipitation. There was a small amount of background in the IgG controls following PCR, that was taken to indicate non-specific binding to the agarose beads. Better pre-clearing of the cell lysate and shorter PCR cycles may remove this background. 10% of the total cell lysate was removed from the sample prior to the precipitation and was used as a positive control for the region of interest.