Community Intravenous Therapy Program and a treatment plan for foot infections in persons with diabetes: A clinical perspective

John M Embil MD1,2, Shurjeel H Choudhri MD1, Glenna Germaine RN3, Theresa Imlah RN3, Frank Duerksen MD2,4, Marie Darcel RN2, Hank Fong MD2,5, Joshua Koulack MD2,5, Alfred Gin Pharm D6, Sheryl Stern MD7, J Neil Simonsen MD1,2, Godfrey KM Harding MD1, Lindsay E Nicolle MD1,2

Diabetes is a multi system disease that can lead to complications such as peripheral neuropathy and peripheral vascular disease. These two complications can synergistically lead to the formation of ulcerations in the feet and lower extremities of people with diabetes. Should an ulceration develop, it may be a self-limited process healing spontaneously, or it may lead to more serious complications, such as infection of the skin, soft tissue, bone, sepsis, and possibly amputation of toes, foot or lower extremity. In 1991, 57% of all amputations involving lower extremities in Manitoba were in people with diabetes. Lower extremity amputations were 10 times higher among people with diabetes than those without diabetes. In 1991, the prevalence of diabetes in adult Manitobans was as follows: First Nations individuals 12% males and 20% females; non-First Nations individuals 7% males and 6.4% females. The Manitoba Health Services Commission record for 1993 to 1994 show 16% of lower extremity amputations in Manitoba were among First Nations individuals, and 84% were among non-First Nations individuals (J Blanchard, personal communication).

Despite great advances made in the treatment of diabetes, significant morbidity and mortality still occurs with this disease. Factors which influence the predisposition for infection include neuropathy which may lead to ulcerations; autonomic insufficiency leading to dry, cracked skin that serves as a portal for infection; vasculopathy leading to ischemia and decreased wound healing capacity; and immunopathy as a consequence of altered neutrophil function. These factors, combined with a lack of or inadequate knowledge of diabetes, can lead to serious complications. Thus, it is critical to identify people with diabetes at risk of foot complications and prevent the complications. Unfortunately, some individuals present with a foot complication as their first presentation of diabetes. In all individuals, it is important to treat quickly.

1Departments of Medicine and Medical Microbiology, Section of Infectious Diseases, University of Manitoba; 2Health Sciences Centre Diabetic Foot and Complicated Wound Clinic; 3Community Intravenous Therapy Program; 4Department of Surgery, Section of Orthopedics, University of Manitoba; 5Department of Surgery, Section of Vascular Surgery, University of Manitoba; 6Department of Pharmaceutical Services, Health Sciences Centre; 7Department of Diagnostic Imaging, Section of Nuclear Medicine, University of Manitoba, Winnipeg, Manitoba

Correspondence and reprints: Dr John M Embil, Infection Control Unit, MS 673-820 Sherbrook Street, Health Centre, Winnipeg, Manitoba R3A 1R9. Telephone 204-787-4654, fax 204-787-4699, e-mail jembil@hsc.mb.ca
and effectively the underlying infection, be it skin, soft tissue and/or bone. The goal is to minimize the risk of amputation.

THE COMMUNITY INTRAVENOUS THERAPY PROGRAMME

The current approaches that exist for providing therapy to people with diabetes with lower extremity infections are:

- oral antimicrobials administered as an outpatient;
- parenteral antimicrobials delivered as an inpatient;
- parenteral antimicrobials delivered as an inpatient therapy but then switched to oral therapy at the time of discharge; or
- parenteral antimicrobials administered through the Community Intravenous Therapy Program (CITP).

Parenteral medications administered in the outpatient setting have been shown to be safe, effective and convenient for individuals who are clinically stable with regard to their underlying disease process. In addition, cost savings are also realized (1-3). The CITP was established in the early 1980s as an adjunctive measure to patient care to prevent admission to hospital and to facilitate discharge from hospital. Criteria to establish the eligibility of an individual to receive parenteral antimicrobials administered through the CITP are as follows:

- The patient is clinically stable and can be discharged from hospital and requires ongoing parenteral antimicrobial therapy.
- Oral medications are not suitable for treatment of the current infection either because the microorganism that has been recovered from the wound is resistant to currently available oral antimicrobials or the patient is unable to tolerate oral medication.
- The patient must be compliant with non weight bearing, leg elevation and all other aspects of therapy that will be performed as an outpatient.
- More aggressive adjunctive therapy such as additional surgical debridement of skin, soft tissue or bone has already been performed or is not necessary.
- The patient must be closely followed by his or her physician to ensure that the therapy for the underlying process is achieving the desired results.
- The patient must be compliant with the policies and procedures of the CITP.
- The home and social circumstances must be conducive to receiving therapy through CITP.
- The patient must be emotionally and psychologically prepared to try therapy administered through CITP.
- Telephone access must be available.
- The safety of the CITP team must be ensured when visiting the patient’s dwelling.

Each request for the CITP is reviewed on a case by case basis by the CITP team consisting of: CITP nursing staff, pharmacists, pharmacy technicians, and infectious disease consultants. The CITP reserves the right to seek the input of an infectious disease consultant before enrolling a patient on the program.

INFECTIONS IN THE LOWER EXTREMITIES OF PEOPLE WITH DIABETES

Infections in the lower extremities of people with diabetes can be divided into those which are mild, moderate and severe and may involve skin, soft tissue, and/or bone. Numerous reports outline the management of infections in the lower extremities of people with diabetes (4-9, unpublished data). Uncomplicated lower extremity infections in people with diabetes are usually caused by aerobic Gram-positive cocci and respond well to oral outpatient therapy (4). A variety of antibiotics exist that are well tolerated orally, and can achieve suitable serum and bone levels for the treatment of deep seated infections (10). The management of osteomyelitis in the foot of PWD is more complicated, and numerous approaches have been recommended, ranging from prolonged parenteral therapy to initial parenteral therapy followed by oral antimicrobial therapy (OAT) or exclusively OAT (5-9, unpublished data).

It is important to differentiate between wound infection and colonization. Infections are usually associated with purulent discharge, edema, erythema and occasionally pain, and bacteria may be recovered from the wound base. With colonization, bacteria will be recovered from swabs of the wound base but the other signs of infection are absent. Superficial skin and soft tissue infections may arise as a consequence of direct trauma and contiguous spread of organisms. If the infection is not controlled and the ulceration progresses, the underlying bone may become involved.

Initially, aerobic Gram-positive bacteria such as Staphylococcus aureus and Streptococcus species are the most frequently isolated organisms. As the ulceration persists, more necrotic tissue is present, and Gram-negative and anaerobic bacteria soon predominate in the wound.

Specimens for culture are best obtained from infected tissue that does not communicate with the skin surface. The ideal specimen for culture assessment of infection is a curette specimen from the base of the ulcer or bone biopsy specimens if osteomyelitis is suspected. If such specimens are not available, cultures of purulent exudate from within the ulcer base or sinuses may be an alternative.

Before appropriate therapy can be provided, it is important to establish the status of the lower extremity of a person with diabetes as it relates to infection. Issues that must be considered are:

- extent of infection – mild, moderate, severe;
- presence of underlying ulcerations;
- presence of neuropathy;
- adequacy of circulation;
TABLE 1A
Antibiotic therapy for infected ulcerations in the lower extremity of people with diabetes – Skin and soft tissue

<table>
<thead>
<tr>
<th>Type of infection</th>
<th>Medication</th>
<th>Dosage†</th>
<th>Daily cost ($‡)</th>
<th>Total daily cost ($)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild infections</td>
<td>Cloxacillin</td>
<td>500 mg po qid</td>
<td>1.03</td>
<td>As per daily cost</td>
</tr>
<tr>
<td></td>
<td>Cephalixin</td>
<td>500 mg po qid</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMP/SMX</td>
<td>1 ds po bid</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clindamycin</td>
<td>300 mg po qid</td>
<td>7.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoxicillin-clavulinic acid</td>
<td>500/125 mg po tid</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>Moderate infections</td>
<td>TMP/SMX and metronidazole</td>
<td>1 ds po bid</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and clindamycin</td>
<td>500 mg po qid</td>
<td>7.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin and clindamycin</td>
<td>500 mg po qid</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin and clindamycin</td>
<td>300 mg po qid</td>
<td>12.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoxicillin-clavulinic acid</td>
<td>500/125 mg po tid</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>Severe infections</td>
<td>Clindamycin and gentamicin</td>
<td>IV 600 mg Q8h</td>
<td>40.00</td>
<td>52.00</td>
</tr>
<tr>
<td></td>
<td>Cefotetan</td>
<td>IV 2 g Q12h</td>
<td>60.00</td>
<td>As per daily cost</td>
</tr>
<tr>
<td></td>
<td>Cefazolin and metronidazole</td>
<td>IV 2 g Q8h</td>
<td>18.00</td>
<td>22.59</td>
</tr>
<tr>
<td></td>
<td>Piperacillin and tazobactam</td>
<td>IV 3.375 g Q6h</td>
<td>63.60</td>
<td>63.60</td>
</tr>
<tr>
<td></td>
<td>Clindamycin and ceftriaxone</td>
<td>IV 600 mg Q8h</td>
<td>40.00</td>
<td>67.60</td>
</tr>
<tr>
<td></td>
<td>Imipenem/cilastatin</td>
<td>IV 500/500 mg Q6h</td>
<td>97.52</td>
<td>97.52</td>
</tr>
<tr>
<td></td>
<td>Meropenem</td>
<td>IV 1 g Q8h</td>
<td>141.84</td>
<td>141.84</td>
</tr>
</tbody>
</table>

*If in doubt about the most appropriate antibiotic for the management of the diabetic foot infection, discussion with an infectious disease consultant is prudent. *Before antimicrobials are used in the person with diabetes, an evaluation of renal function must be undertaken to best guide appropriate dosing. This is particularly important with the aminoglycosides. Doses shown are for normal renal function. If using aminoglycosides it is imperative that the renal function and drug levels be monitored closely. †Approximate daily cost for oral therapy excludes the dispensing fee. These are 1998 costs based upon the Manitoba Drug Benefits and Interchangeability Formulary and the Manufacturer’s recommended dosing regimen and listed price. §In some instances, a higher dose of ciprofloxacin may be necessary. Other quinolone antimicrobial agents may be considered as alternatives, but a review of product monographs is necessary to establish optimal doses. £ Double strength; IV intravenous; po By mouth; TMP/SMX Trimethoprim/sulphamethoxazole

- presence of underlying osteomyelitis; and
- adjunctive measures.

The suggestions that follow for investigations, dressings and therapeutic interventions have been kept as simple as possible. The suggestions are to be used in conjunction with appropriate management of the underlying diabetes and other metabolic abnormalities.

Extent of infection: Tables 1A and 1B summarize the classification of infections in the lower extremities of people with diabetes and provides treatment suggestions. It is important to recall that it is advisable to use wound or bone cultures to help guide antimicrobial choices. Figure 1 provides a simplified algorithm to help determine the most appropriate treatment regimens for patients presenting with diabetic foot infections.

Neuropathy: A history of foot numbness, lack of sensation, prior amputation of the contralateral lower extremity or toes on either extremity, and prior foot ulcerations should raise the suspicion that an individual lacks protective sensation. Callouses may result from unrelieved pressure and may also lead to ulcerations due to undermining of the underlying skin. The loss of pain perception due to neuropathy leads to increased susceptibility to mechanical and thermal trauma. Injury, ulcerations and subsequent infection may go unnoticed in the insensitive foot. At every office visit, people with diabetes should be asked whether they are inspecting their feet regularly, and whether they have a current ulceration of their feet.

Adequacy of circulation: For resolution of infection and promotion of wound healing, adequate circulation is necessary. If pulses are not palpable in the lower extremity, it is important to obtain an estimate of the adequacy of circulation. The ‘ankle brachial index’ is a noninvasive method where comparison of

either the dorsalis pedis or posterior tibial blood pressure is made to the brachial artery blood pressure. Ankle brachial indexes below 0.5 indicate significant reduction in large blood vessel flow, corresponding with severe peripheral vascular disease (11). Ratios of less than 0.3 are associated with rest pain and limb-threatening ischemia (12). In some clinical presentations, ischemia is suspected even where an adequate ankle brachial index has been documented. This may be due to noncompressible vessels as a consequence of calcification (13). It may be prudent to proceed to angiography in these situations.

Status of Bone:

The diagnosis of osteomyelitis in the person with diabetes with a foot infection is difficult because it may be difficult to use standard clinical criteria. Individuals with soft tissue infections or skin ulcerations that have been present for several weeks are at high risk of contiguous bone involvement, particularly if these lesions are located over a bony prominence (5). Clinical findings that can be used to determine the pres-

TABLE 1B

Antibiotic therapy for infected ulcerations in the lower extremity of people with diabetes

<table>
<thead>
<tr>
<th>Type of infection</th>
<th>Medication</th>
<th>Dosage†</th>
<th>Daily cost ($)‡</th>
<th>Total daily cost ($)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteomyelitis</td>
<td>TMP/SMX and metronidazole</td>
<td>500 mg po bid</td>
<td>0.40</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>TMP/SMX and clindamycin</td>
<td>300 mg po qid</td>
<td>6.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoxicillin-clavulanic acid</td>
<td>500/125 mg p tid</td>
<td>4.20</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin and metronidazole</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin and clindamycin</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin† and clindamycin</td>
<td>750 mg po bid</td>
<td>6.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefazolin and metronidazole</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone and metronidazole</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Piperacillin and tazobactam</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone and metronidazole</td>
<td>500 mg po bid</td>
<td>5.02</td>
<td>5.42</td>
</tr>
</tbody>
</table>

*If in doubt about the most appropriate antibiotic for the management of the diabetic foot infection, discussion with an infectious disease consultant may be prudent.

†Before antimicrobials are used in the person with diabetes, an evaluation of renal function must be undertaken to best guide appropriate dosing. This is particularly important with the aminoglycosides. Dosages shown are for normal renal function. If using aminoglycosides it is imperative that the renal function and drug levels be monitored closely. ‡Approximate daily cost for oral therapy excludes the dispensing fee. These are 1998 costs based upon the Manitoba Drug Benefits and Interchangeability Formulary and the Manufacturer’s recommended dosing regimen and listed price. In some instances, a higher dose of ciprofloxacin may be necessary. Other quinolone antimicrobial agents may be considered as alternatives, but a review of product monographs is necessary to establish optimal doses. †§ Double strength; IV intravenous; po By mouth; TMP/SMX Trimethoprim/sulfamethoxazole

TABLE 2

Imaging techniques for identifying osteomyelitis in the feet of people with diabetes

<table>
<thead>
<tr>
<th>Test modality</th>
<th>Mean sensitivity (range) (%)</th>
<th>Mean specificity (range) (%)</th>
<th>Positive predictive value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain radiography</td>
<td>60 (28-93)</td>
<td>60 (50-92)</td>
<td>74-87</td>
</tr>
<tr>
<td>Technicium bone scan</td>
<td>86 (68-100)</td>
<td>45 (0-79)</td>
<td>43-87</td>
</tr>
<tr>
<td>Indium white blood cell scan</td>
<td>89 (45-100)</td>
<td>78 (29-100)</td>
<td>75-85</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
<td>99 (29-100)</td>
<td>83 (71-100)</td>
<td>50-100</td>
</tr>
</tbody>
</table>

Modified from references (5, 16,18-20)
ence of osteomyelitis are that the larger and deeper an ulceration is, the more likely an underlying osteomyelitis will be present (14). In another study, all ulcers in which bone was exposed either visibly or by probing had underlying osteomyelitis (15). Imaging techniques for the diagnosis of osteomyelitis vary with a wide range of sensitivity, specificity and positive predictive value. The plain radiograph, for instance, will only demonstrate bony abnormalities related to osteomyelitis 10 to 20 days after the bone infection has occurred and 40% to 70% of the bone has been resorbed (5). Although the plain radiograph findings are not pathognomonic for infection, a diagnosis of probable osteomyelitis can be made when classic radiological findings are noted (5). If plain radiographs are being used for the diagnosis of osteomyelitis, it is important to obtain a base-

TABLE 3

Diabetic foot ulcer management suggestions

<table>
<thead>
<tr>
<th>Grade</th>
<th>Wagner classification</th>
<th>Management suggestion</th>
</tr>
</thead>
</table>
| Grade 0 | Skin intact, no open lesions. Callous may be present under weight bearing areas. Callouses may act as abnormal pressure points leading to ulceration of the underlying skin. Nonblanching erythema may be present as a consequence of unrelieved pressure. | • Callouses should be pared
• Footwear should be fitted for proper weight displacement |
| Grade 1 | Superficial skin ulceration, often seen under high pressure areas (metatarsal heads, toes) | • Callouses should be pared to expose the ulcer base.
• Deep swabs or curettage specimen from ulcer base should be taken for bacterial culture to determine the etiology of underlying infection.
• Clean with saline for 3 to 10 mins with dressing changes daily.
• A hydroactive gel (Duoderm [Hydroactive Gel, Convatec, Montreal, Quebec], Intrisite [Intrasite Gel, Smith and Nephew, Lachine, Quebec]) or Tegagel (3M, London, Ontario) covered by a clean gauze is the simplest approach, saline wet to dry dressings are an alternative.
• Should necrotic tissue be present or the wound be dirty, a gauze moistened with one-quarter strength Eusol can be applied twice daily. If Eusol is used, petroleum jelly must be used to protect the skin surrounding the ulceration. Prolonged use of Eusol must be avoided because it may be toxic to granulation tissue.
• Once the wound is clean and provided that granulation tissue is present, hydroactive gel should be substituted for the Eusol.
• Infected ulcers (cellulitis) will require systemic antibiotics. Antibiotic choice can be guided by appropriately collected swabs for culture.
• Radiographs should be obtained to exclude unsuspected bone infection (if this is detected, the ulcer should be considered a grade 3 lesion).
• Pressure relief is essential for the healing of these lesions; this can be accomplished by appropriate footwear, crutches, wheelchairs and casting. If casting is considered, it must be applied by an experienced individual and monitored on a regular basis. |
| Grade 2 | Deeper ulceration, usually associated with infection/cellulitis. The ulceration does not extend to bone. | • These ulcers are deeper and often penetrate to subcutaneous tissue with local infection but have no bony involvement. These ulcerations are managed in a fashion similar to grade 1 lesions. |
| Grade 3 | Ulcerations extend to deeper tissue layers such as bone. If bone can be probed at the base of an ulceration, it is likely that osteomyelitis is present. | • Some advocate aggressive surgical debridement of all infected bone; however, in many cases, osteomyelitis may be treated conservatively.
• Appropriate systemic antimicrobials must be administered for a prolonged period. Antimicrobials may be administered orally in most patients. Only in very rare instances is the home intravenous therapy program is necessary for the management of osteomyelitis in individuals with diabetes.
• Noninvasive assessment of the adequacy of peripheral circulation (ankle brachial index) should be performed.
• Radiographs should be obtained of the affected foot to rule out foreign bodies and gas, and to establish the magnitude of bony involvement.
• A surgical opinion may be necessary if vascular insufficiency is present or if resection of infected bone and gangrenous material is necessary. |
| Grade 4 | Localized gangrene (toes, forefoot, heel) | • Management should be as for a grade 3 ulceration.
• An urgent noninvasive assessment of a peripheral circulation and vascular surgery opinion are indicated; an angiogram may be needed. Angioplasty or bypass surgery may be required if a suitable stenotic lesion is demonstrated on angiography.
• Some individuals may have vascular disease that is not amenable to any revascularization procedure. Local surgery to remove gangrenous tissue may be attempted; however, single ischemic toes should be kept dry and may be left to mummify and auto-amputate. |
| Grade 5 | Gangrene of entire foot | • Patients with more extensive gangrene require urgent assessment as outlined for grade 4 lesions.
• These individuals will require control of diabetes and infection, and will require foot-preserving surgery or amputation, guided by the level and adequacy of circulation. |
line radiograph and then follow it with another plain radiograph in 10 to 21 days to determine whether the typical bony abnormalities are present. Table 2 demonstrates the available imaging techniques for identifying osteomyelitis in the foot of people with diabetes. Initial screening investigations for osteomyelitis include the erythrocyte sedimentation rate and a plain radiograph of the affected area. A three-phase technetium bone scan (Tc-99m MDP) is sensitive for diagnosing osteomyelitis but suffers from poor specificity in diabetic foot infections due to frequent false positives from overlying soft tissue hyperemia (16). The simplest approach is to obtain a baseline x-ray and then repeat it in two to three weeks. In that intervening period, osteomyelitis should be visible radiographically. If clinical suspicion persists, a bone scan combined with a gallium scan or white blood cell study, if equivocal, may be warranted (16). The addition of gallium or white blood cell scanning to the three-phase bone scan yields improved specificity while maintaining sensitivity.

Adjunctive therapy: In addition to the antimicrobial therapy outlined in Tables 1A and 1B, ongoing care of the wound or foot ulcer is necessary. Table 3 demonstrates some suggestions for the management of these wounds. It is not clear what role, if any, topical antimicrobials play in the management of foot lesions of people with diabetes. There are insufficient, well controlled data to support the routine use of topical enzymatic debriding agents, such as collagenase, at this time.

Duration of therapy: Based upon the preceding considerations, antimicrobial therapy can be initiated as outlined in Table 1. The vast majority of mild infections can be treated with a two-week course of appropriate culture-guided OAT (4). If a culture is not available, empirical therapy will be needed. If an infection is acute and the ulcer has been present for less than two to three weeks, the most likely pathogens are *S aureus* and *Streptococcus* species (groups A and B). Therapy with a beta-lactam, such as cloxacillin or cephalexin, would be appropriate (Table 1). If the lesion has been present for a more prolonged period, the presence of a mixed flora of microorganisms is likely and empirical therapy with trimethoprim/sulfamethoxazole or cephalexin would be appropriate (Table 1). Treatment choices are shown in Table 1. Moderate infections range from those in which the patients are not toxic and can be treated with local incision, drainage and OAT, to those in patients who are critically ill or toxic and who require incision, drainage, debridement and parenteral therapy.

In those individuals with severe infections, parenteral therapy is necessary. Once the acute infection has been stabilized and an assessment of whether an underlying bone infection is present, it is prudent to step down the patient’s care to oral

Figure 2) Community Intravenous Therapy Program (CITP) form for foot infections in people with diabetes. Hgb Hemoglobin; Hgb A1C Glycosylated hemoglobin; WBC White blood cell count; plt Platelets, ESR Erythrocyte sedimentation rate
therapy if possible. If an underlying osteomyelitis is present, in the vast majority of cases, the infection can be treated with a prolonged course of antimicrobial therapy appropriately guided by culture data as outlined in Tables 1A and 1B.

The ideal duration of therapy for the treatment of osteomyelitis in the lower extremities of people with diabetes has not been precisely established. Surgical debridement, where necessary, must be adequate to remove devitalized tissue. It has been traditionally recommended that four to six weeks of parenteral therapy are sufficient. These recommendations have been based upon experimental animal models (19). However, combined regimens of parenteral therapy followed by prolonged oral therapy have had good results as have prolonged courses of OAT (20). Prolonged appropriate OAT may be an alternative to parenteral therapy for osteomyelitis (6-10, unpublished data). The decision that remains is whether to use parenteral antimicrobial therapy administered at home or whether the patient should receive an oral antimicrobial that is well absorbed from the gastrointestinal tract and which achieves high serum levels (10,21). Selecting the most appropriate antimicrobial is important because prolonged duration of therapy will be required (22). It is believed that for most antimicrobials, the concentrations achieved in bone are similar to those achieved in serum (19,21,22). The decision to use OAT for the treatment of osteomyelitis must take into account that regular follow-up of the patient with regards to their lower extremity is critical. It is important to follow the erythrocyte sedimentation rate as a marker of decreasing inflamma-

Nursing Diagnosis:
1. Altered lower extremity tissue, perfusion related to insufficient circulation secondary to diabetes mellitus.
2. Potential for sepsis.
3. Potential for infection transmission.

Nursing Goal: Patients with diabetes being treated for lower extremity infections will safely manage the administration of prescribed therapy, and will not succumb to relapses of infection.

Outcome Criteria:
- Identify factors that indicate improved peripheral circulation.
- Identify necessary specific lifestyle changes.
- Identify specific medication regimens, diet, medical management and activities which promote improved peripheral circulation.
- Demonstrate knowledge of risk factors associated with potential complications relating to venous access.
- Practice precautions to prevent infection and/or transmission of microorganisms to venous access devices.

Figure 3 Nursing care plan for lower extremity infections in people with diabetes.
tion and serial plain radiographs to ensure that bone healing and remodelling is occurring. These measures can help guide the total duration of therapy and detect relapses. If the patient does not improve or deteriorates after the initiation of OAT, re-evaluation of the treatment is critical to ensure that the appropriate therapy has been selected according to the culture data or perhaps aggressive debridement of the bone is necessary as is ensuring adequacy of circulation.

USING THE CITP

Before a person with diabetes with a lower extremity infection is enrolled in the CITP, the checklist in Figure 2 is completed to ensure that all the necessary background information is available. Once a patient is enrolled into the CITP, the program staff work in conjunction with the Home Care and Victorian Order of Nurses Visiting Services to ensure that the patient is managing with the prescribed therapy and that the intravenous catheter is working correctly. The routine visits are also an ideal opportunity for ongoing evaluation of the lower-extremity infection and wound. Figure 3 demonstrates the nursing care plan.

CONCLUSIONS

Although persons with diabetes, and acute skin and soft tissue infections can be managed in hospital, they may also be managed through the CITP provided that the patient satisfies all of the criteria for participation. For osteomyelitis, which is a chronic and indolent process, our experience has shown that osteomyelitis of the foot has been successfully treated with OAT in the vast majority of cases (80.2%) which were reviewed in a large retrospective study. In this study, 116 foci of osteomyelitis were considered in 325 persons with diabetes who presented to a multidisciplinary foot clinic for assessment and management. There were 10 foci of osteomyelitis which failed to heal with OAT. The reason for failure was that the microorganisms were resistant to the available oral antimicrobials in six patients, patient noncompliance with OAT occurred with two patients, one patient developed an allergy to the oral antimicrobials and one patient had a profoundly ischemic limb that subsequently went to amputation (unpublished data). It is, therefore, important that all parameters of the patient’s lower extremity and patient compliance be considered before enrolling an individual in an ambulatory intravenous therapy program. Prolonged OAT may be an alternative to parenteral therapy for the management of osteomyelitis in the foot of the person with diabetes.

ACKNOWLEDGEMENTS

The authors thank Mrs Sandra Brown and Mrs Carolyn Cooper for preparing this document.

REFERENCES