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Abstract 

Automotive active suspension, advanced seismic testing, and force/torque emulations of space 

manipulators are examples of applications, where the hydraulic actuator force control is required. 

In double-rod hydraulic actuators, where the piston area is equal in both the actuator chambers, 

the actuator force is the differential pressure across the actuator multiplied by the piston effective 

area. Having this proportional relationship between the actuator force and the differential 

pressure, the focus of this work is to control the actuator force of a double-rod hydraulic actuator 

by controlling the differential pressure across the actuator. The double-rod hydraulic actuator of 

this study is run by two independent circuits: 1) electro-hydraulic actuation, where a flow control 

valve and high supply pressure are employed, and 2) electro-hydrostatic actuation, where a 

fixed-displacement pump and variable speed electric motor are employed. In general, developing 

controllers for hydraulic actuators is challenging due to the presence of parametric uncertainties 

and uncertain nonlinearities in these actuators. For electro-hydraulic actuation, the hydraulic 

function becomes highly nonlinear which adds to the complexity of the control problem. In 

electro-hydrostatic actuation, high inertia of rotational parts in electric motor lowers the dynamic 

performance of the system. Also, a specific challenge in force control of hydraulic actuators is 

the limiting effect of environment dynamics on the maximum achievable tracking bandwidth.  

Considering the above challenges, in this research for the first time, quantitative feedback theory 

(QFT) is employed to control the hydraulic actuator force. Using QFT, a robust, linear, fixed-

gain, and low-order controller is designed for each actuation system which: (i) keeps the closed-

loop response within desired tracking bounds (ii ) guarantees the closed-loop stability around 

desired operating points, (iii ) rejects disturbance within desired tolerances, and (iv) achieves 

desired tracking bandwidth, despite the presence of parametric uncertainties in the hydraulic 

system and environment. Among the performance criteria, special attention is paid to achieve 

high tracking bandwidth. Trade-offs between different performance criteria towards achieving 

high tracking bandwidth, are discussed. Experimental results are presented to validate that the 

performance criteria are satisfied by the designed QFT controllers. 

The QFT controllers are synthesized based on the families of frequency responses of the 

hydraulic actuation systems. For the electro-hydraulic actuation system, the family of frequency 

responses is obtained by linearizing the hydraulic nonlinear function around operating points of 
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interest. For the electro-hydrostatic actuation system, the family of frequency responses is 

derived by applying an advanced form of fast Fourier transform on experimental input-output 

data. This means that the designed QFT controllers guarantee the stability of the closed-loop 

system, only for these families of the frequency responses. In this thesis, to investigate the 

nonlinear stability of the closed-loop systems with QFT controllers, for the first time, Takagi-

Sugeno (T-S) fuzzy modeling and its corresponding stability theory are used. The stability 

conditions are presented in the form of linear matrix inequalities (LMIs). As a result, the 

nonlinear stability of the designed QFT controllers for both the actuation systems is proven in the 

presence of parametric uncertainties.  
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Chapter 1                                

Introduction  

1.1 Motivation 

Hydraulic actuators have high force-to-weight ratio, capability of producing linear movement, 

and fast response. Hydraulic actuators have higher stiffness than electrical motors, which means 

little drop in speed when loads are applied (Merritt, 1967). Hydraulic fluid provides an 

exceptional characteristic for hydraulic actuators by taking the generated heat out to a heat 

exchanger, and due to lubricant characteristic of the fluid, the components have long life. 

Hydraulic actuators can hold a load over an extended time, without generating excessive heat, 

which is a usual case for electric actuators (Merritt, 1967). These advantages make hydraulic 

actuators appropriate choices for a wide range of industrial applications (Merritt, 1967). Some of 

these applications are crane operation (Melik-Gaikazov et al., 1975), aircraft flight-control 

surfaces (Bowers et al., 1996), automotive active suspension (Hrovat, 1997), injection molding 

devices (Newton, 1969), and force/torque emulation of space manipulators (Zhu and Piedboeuf, 

2005). In these applications, one of the following variables is controlled: (i) actuator position, (ii ) 

interacting force, and (iii ) actuator force. The difference between the actuator force and the 

interacting force is explained as follows. A typical hydraulic actuation system controls the flow 

of fluid into and out of the actuator chambers. As a result, a pressure differential, also known as 

the output pressure is built-up between the two chambers. This pressure acts on the piston 

effective area and generates the actuator force (see Figure 1.1). In double-rod hydraulic 

actuators, the actuator force is the output pressure multiplied by the piston effective area, and 

http://www.engineeringvillage.com.proxy2.lib.umanitoba.ca/controller/servlet/Controller?CID=expertSearchCitationFormat&searchWord1=%7bMelik-Gaikazov%2C+V.I.%7d+WN+AU&database=8195&yearselect=yearrange&searchtype=Expert&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWen-Hong+Zhu%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bPiedboeuf%2C+J.-C.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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therefore has a proportional relationship with the output pressure. The actuator force accelerates 

the actuator itself and deals with the friction between the piston and the cylinder walls. The rest 

of the actuator force is applied on environment and deals with external forces. This force is 

called the interacting force and can be measured by a force sensor. In real-life applications, 

attaching a force sensor at the end of the rod can be challenging (Nabulsi et al., 2007).   

  

 

 

 

Figure  1.1. Double-rod hydraulic cylinder. 

 

In this thesis, the control variable is the actuator force of a double-rod hydraulic actuator, and 

due to the proportional relationship between the actuator force and the output pressure in double-

rod hydraulic actuators, the actuator force is controlled alternatively by controlling the output 

pressure. As a result, here the two terms of the actuator force and the output pressure are 

interchangeably used.  

Developing control systems for hydraulic actuators has been challenging (Niksefat and Sepehri, 

2001). Hydraulic actuators are subjected to a great deal of uncertain nonlinearities, and 

parametric uncertainties. Examples of uncertain nonlinearities are leakage, friction, and external 

disturbances. The values of the parameters of hydraulic actuation systems (e.g. bulk modulus and 

viscous coefficient) change with time and with variations in environmental conditions such as 

temperature (Yao et al., 2000; Chinniah, 2004; Turolla, 2013). For electro-hydraulic actuators, 

where the control valve directs the fluid flow, the hydraulic function becomes highly nonlinear, 

which adds to the complexity of the control problem. Another challenge specifically associated 

with the force control of hydraulic actuators, either the actuator force or interacting force, is the 

limiting effect of environment dynamics on the maximum achievable tracking bandwidth (Dyke 

et al., 1995). The environment dynamics appear in the force dynamics through a ñnatural 

velocity feedbackò path in hydraulic systems (Alleyne and Liu, 1999; Lamming, 2009). This 

Actuator displacement 

Friction 

Pressure in chamber 1 

Pressure in chamber 2 

Actuator force Interacting force 

Force sensor 
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phenomenon causes the magnitude of the force response to drop significantly at the natural 

frequency of the environment, preventing the actuator from properly applying force at this 

frequency (Alleyne and Liu, 1999; Sivaselvan et al., 2008).  

Stability is another important criterion in the developing of actuator force control systems. 

Guaranteed nonlinear stability for the control systems developed based on Lyapunov theory has 

been achieved at the cost of complexity, high computational burden, and need for various 

sensory data (Liu and Alleyne, 2000). On the other hand, output-feedback linear controllers with 

low computational burden provide only small-signal stability around operating points (Niksefat 

and Sepehri, 2001; Banos and Horowitz, 2004). 

In addition to force control in electro-hydraulic actuators, force control of electro-hydrostatic 

actuators has been a new topic in recent literature, due to higher energy efficiency, easier 

maintenance, and lower price of electro-hydrostatic counterparts than electro-hydraulic actuators 

(Truong et al., 2007; Ahn et al., 2008; Lovrec and Kastrevc, 2011). The above advantages in 

electro-hydrostatic actuators have been obtained due to a different flow control mechanism than 

that in electro-hydraulic actuators. Electro-hydrostatic actuators utilize variable rotational speed 

motors and fixed-displacement pumps to control the flow instead of flow control valves 

connected to high supply pressure (Habibi and Goldenburg, 1999). Due to the rising price of 

energy, and the falling price of frequency inverters and servomotors, demand for electro-

hydrostatic actuators has increased (Radermacher et al., 2013). However, electro-hydrostatic 

actuators have lower dynamic performance as compared with electro-hydraulic actuators, due to 

high inertia of rotational parts in the variable speed electric motor (Lovrec and Ulaga, 2007; 

Radermacher et al., 2013). Therefore, there is a need to develop controllers that can exploit the 

maximum performance of electro-hydrostatic actuators (Radermacher et al., 2013). 

By developing stable and robust control systems that satisfy desired performance criteria in the 

actuator force response, hydraulic actuators can be considered as reliable and high performance 

sources of force. In the next section, efforts that have been done so far to control both the 

actuator force and the interacting force in electro-hydraulic actuators as well as electro-

hydrostatic actuators are presented.  

 

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSepehri%2C+N.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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1.2 Review of Force Control in Hydraulic Systems 

1.2.1 Electro-Hydraulic Actuation 

In this section, first efforts to deal with challenges in the control of the actuator force and the 

output pressure of electro-hydraulic actuators are presented. To compensate the undesirable 

effect of environment dynamics on the performance of force control systems, Conrad and Jensen 

(1988) suggested using a positive feedback from the velocity of the actuator at the point of its 

attachment to the environment. Therefore the approach required a velocity sensor. The velocity 

is then combined with the control signal in the force control loop. The above structure is known 

as the ñvelocity correction loopò (Conrad and Jensen, 1988). Dimig et al. (1999) used this 

concept to control the actuator force for the effective force testing in the seismic testing 

techniques.  

Alleyne and Liu (1999) used an example of a PID controller and explained that PID controllers 

cannot resolve the bandwidth limitation problem in the control of actuator force. Same authors 

demonstrated that in comparison to simple linear controllers, nonlinear controllers provide a 

better performance and higher tracking bandwidth in actuator force control (Alleyne and Liu, 

1999; 2000). They designed a Lyapunov-based nonlinear controller with adaptation law to 

control the actuator force, which achieved a bandwidth of 20 Hz (Liu and Alleyne, 2000). A 

limited number of uncertain parameters were considered in their work. They also employed the 

passivity theory to design a robust output pressure controller similar to the back-stepping method 

to decouple state errors, but the model of environment and full state feedback were required 

(Alleyne and Liu, 2000). Yao et al. (2012) designed a nonlinear adaptive robust actuator force 

controller for the hydraulic load simulator and increased robustness against nonlinear 

uncertainties. However, the achieved bandwidth in tracking results was around 0.25 Hz. From 

the above literature, the researchers have investigated using either simple PID controllers or 

complex nonlinear controllers for actuator force control, while PID controllers cannot resolve the 

bandwidth limitation in force control and nonlinear controllers require several sensors. The 

performance of robust fixed-gain linear controllers which are more complex that PID, but less 

complex than nonlinear controllers, have not been investigated in actuator force control, 

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bDimig%2C+J.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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especially in terms of maximum achievable bandwidth. Robust fixed-gain linear controllers are 

easier to implement and require less sensory data than nonlinear controllers. Research on using 

¤H technique to design a fixed-gain linear controller for the aerodynamic loading system showed 

a poor performance on tracking bandwidth, i.e., less than 1 Hz (Laval et al., 1996). In this thesis, 

Quantitative feedback theory (QFT), introduced by Horowitz (1993) is selected as s suitable 

technique to design robust fixed-gain linear controllers for the actuator force. The reasons of the 

suitability of this selection along with a short description on QFT technique are given as follows.  

QFT design technique guarantees robust performance and stability for the control system within 

a certain range of inputs-outputs of the system, and in the presence of bounded parametric 

uncertainties (Horowitz, 1993). The QFT controller is designed in the frequency domain using 

Nichols chart and Bode diagram. In this technique, the frequency responses of the original 

nonlinear plant within a certain input-output sets are represented in the Nichols chart, known as 

plant templates. Using these plant templates, the performance constraints such as stability, 

tracking, and disturbance rejection are graphically presented in the Nichols chart. At the end, the 

QFT controller is a transfer function that makes the loop transmission function to satisfy the QFT 

bounds in the Nichols chart. The graphical representation of design criteria and graphical 

controller design in the Nichols chart, result in a reasonable trade-off between the complexity of 

the controller and satisfying the design criteria. In addition, QFT controller is fixed-gain and 

linear, which reduces online computations as compared with nonlinear time variant robust 

control techniques. For the first time, the author of this thesis employed QFT design technique to 

improve the actuator force/output pressure tracking bandwidth, as well as satisfying tracking, 

stability, and disturbance rejection requirements in double-rod electro-hydraulic actuators 

(Esfandiari and Sepehri, 2014).  

Major efforts in interacting force control of electro-hydraulic actuators are as follows. Jacazio 

and Balossini (2005) employed velocity correction loop to control the interacting force in testing 

of flight-control surfaces in an airplane, and achieved the high accuracy in force control, in the 

presence of different disturbances. Plummer (2007) designed a load velocity feedback filter and 

employed compliance between the actuator and the environment in the form of spring to improve 

the performance of the interacting force control system and achieved a bandwidth of 30 Hz in 

aerodynamic force emulation of Formula One car test rig. In this work, uncertainty was only 

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLaval%2C+L.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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considered for the environment, and in addition to force sensor, the motion sensor was required. 

QFT was successfully used to control the interacting force in stiffness dominant environments 

(Niksefat and Sepehri, 1999; 2000). To control the interacting force in a hardware-in-the-loop 

load emulator, QFT technique was employed (Karpenko and Sepehri, 2012). The same technique 

was used for the interacting force control of a three-axis road simulator, with acceptable tracking 

performance, but no discussion was presented on the effects of environment dynamics on the 

maximum achievable bandwidth (Kim et al., 2011). Nam (2001) designed a QFT controller for 

the interacting force of aerodynamic load simulator, in which the performance of the system was 

investigated via only simulations.  

1.2.2 Electro-Hydrostatic Actuation 

For electro-hydrostatic actuators, the literature on the control of the outlet pressure of the pump 

is described here. Lovrec and Ulaga (2007) presented a detailed comparison between the outlet 

pressure responses of a pump-controlled hydraulic actuator and an electro-hydrostatic actuator, 

using PID controllers. Pump-controlled hydraulic actuators utilize constant speed motors with 

variable-displacement pumps. Authors showed that the pressure response of the electro-

hydrostatic actuator is slower than that of the pump-controlled actuation system (Lovrec and 

Ulaga, 2007). In another work, outlet pressure control was implemented by a PID controller, in a 

press-brake hydraulic machine using a combination of an induction motor and a fixed-

displacement pump within an energy-saving load-sensing drive concept (Lovrec et al., 2009). In 

the above studies, the performance of the systems was only examined via step input references; 

no results on tracking bandwidth were provided. Aside from the above work on the outlet 

pressure control of the pump in electro-hydrostatic actuators, there has not been any research on 

the robust control of differential pressure across the actuator in electro-hydrostatic actuation 

systems.  

To improve the performance of PID controllers in controlling the interacting force of electro-

hydrostatic actuators dealing with variable stiffness environments, an intelligent switching 

control technique was utilized (Ahn and Chau, 2006). In this technique, based on the value of the 

environment stiffness, a specific PID controller was selected for the control loop. The 

performance of the controller was experimentally evaluated using a set-up equipped with a fixed-
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displacement pump, an AC servomotor, and a single-rod hydraulic actuator (Ahn and Chau, 

2006). To improve the performance of PID controllers to deal with varied external loading, fuzzy 

membership functions were employed in the interacting force control of electro-hydrostatic 

actuators (Truong et al., 2007). In this technique, each gain of the PID controller was tuned by an 

independent fuzzy tuner. The resulting adaptive controller experimentally showed better tracking 

performance in the presence of varied disturbances as compared with the conventional PID 

controllers (Truong et al., 2007). In order to add learning ability to fuzzy-PID controllers, robust 

extended Kalman filter (REKF) was employed (Ahn and Truong, 2009). Using REKF the ideal 

state vector of the fuzzy PID controller was estimated for the next step based on the current error, 

the current state vector, and previous data. The experimental results of applying online tuning 

REKF fuzzy-PID controller showed significant improvement in performance and higher tracking 

precision of the control systems as compared with the conventional fuzzy-PID or the PID 

controllers (Ahn and Truong, 2009). While PID controllers are popular due to their simple design 

and implementation, above techniques improved the performance of force control systems by 

eliminating this simplicity and using nonlinear time-varying terms in PID controllers. In terms of 

fixed-gain linear controllers, QFT was utilized to control the interacting force of electro-

hydrostatic actuators in load simulators (Dinh et al., 2008). In this work, the family of linear time 

invariant transfer functions was obtained from experimental frequency responses. QFT controller 

was designed to satisfy the tracking performance, stability, and disturbance rejection for the 

family of transfer functions. The transient response specifications were set for a settling time less 

than 1 sec and overshoot less than 5% (Dinh et al., 2008). In order to improve the performance of 

QFT controllers to deal with large uncertainties in interacting force control, online tuning of the 

coefficients of QFT controllers was outlined by Truong et al. (2008).  

1.3 Objectives and Methodology  

The first objective of this thesis is to develop robust, linear, low-order, and fixed-gain controllers 

for the actuator force/output pressure of electro-hydraulic and electro-hydrostatic actuators which 

are subjected to parametric uncertainties. The controllers are required to provide high tracking 

bandwidth, disturbance rejection, stability, and acceptable time and frequency responses for the 

closed-loop system. These criteria must be satisfied despite parametric uncertainties in the 
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actuation systems and environment. This is the first attempt on the actuator force control based 

on QFT, where only the actuator chamber pressures are employed (Esfandiari and Sepehri, 

2014).    

In order to achieve the above objective, QFT is selected as the design methodology. To design 

QFT controllers, the family of frequency responses of the actuation systems for the entire range 

of parametric uncertainties is required. For the electro-hydraulic actuator, the family of 

frequency responses is obtained by linearization of the hydraulic nonlinear function around 

operating points of interest, using small-signal method. This linearization approach accurately 

represents the hydraulic dynamics around the operating points. Also it allows considering a wide 

range of parametric uncertainties in the obtained linearized models, without causing high 

computational burden. Challenges towards achieving a high bandwidth output pressure control of 

hydraulic actuators are described. This discussion is carried out by hypothetical increase in the 

tracking bandwidth, assigned in the performance criteria. It will be shown how satisfying high 

bandwidth criterion results in lowering the robust stability of the closed-loop system as well as 

deteriorating the performance in transient step response. The results of the discussion are used in 

the QFT controller design. For the electro-hydrostatic actuator, due to the lack of information on 

the uncertainty ranges of parameters, the small-signal approach cannot be employed. Instead, the 

family of frequency responses are obtained directly by applying an advanced form of fast Fourier 

transform on the experimental inputs-outputs data. The method provides high quality frequency 

responses of the electro-hydrostatic actuator. For both electro-hydraulic and electro-hydrostatic 

actuators, the results of applying the QFT controllers on the experimental set-up are presented. 

The second objective of this research is to analyze the nonlinear stability of the closed-loop 

systems. QFT controllers only guarantee the closed-loop stability for the family of frequency 

responses that the controllers were initially designed for. The family of frequency responses 

represent the real system only over specific operating conditions and input-output sets, or for 

particular values of system parameters. To investigate the nonlinear stability of the designed 

QFT controllers without the above limitations, Takagi-Sugeno (T-S) fuzzy modeling and its 

corresponding stability theory are employed. The suggested solution has been presented by the 

author of this thesis for the first time (Esfandiari and Sepehri, 2013). T-S fuzzy models are 

formed as weighted sum of linear models, which blend easily with linear QFT controllers 
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(Tanaka and Wang, 2001). This way, the nonlinear stability of the closed-loop system can be 

investigated in the presence of parametric uncertainties, friction, and internal and external 

leakages. Stability conditions are then presented in the form of linear matrix inequalities (LMIs), 

which can be solved using MATLAB LMI Toolbox (Boyd et al., 1994; Gahinet et al., 1995).  

1.4 Thesis Outline 

Chapter 2 presents the description of the electro-hydraulic and the electro-hydrostatic actuation 

systems under study. Mathematical models describing both the actuation systems are also 

presented. 

Chapter 3 presents an overview of QFT design technique, design steps, and relationship between 

performance criteria. The information presented in this chapter is used in Chapters 5 and 6 in 

order to design the robust QFT controllers.  

Chapter 4 presents T-S fuzzy modeling and its stability theory. In this chapter, a T-S fuzzy model 

for the double-rod electro-hydraulic actuator is derived. The effectiveness of the T-S fuzzy 

modeling and its stability theory to analyze the stability of the closed-loop systems of hydraulic 

actuators is verified by considering three case studies. The first two case studies are already-

developed nonlinear controllers for hydraulic actuators based on passivity and Lyapunov 

theories. In the third case study, the nonlinear stability of a recently developed QFT position 

controller for a parametrically uncertain hydraulic actuator is investigated. Overall, this chapter 

provides enough practical examples to support using T-S fuzzy modeling and its stability theory 

with confidence in analyzing the stability of QFT controllers developed through next chapters.  

In Chapter 5, a QFT controller is designed for the output pressure of the electro-hydraulic 

actuator. First, using small-signal method, the family of frequency responses of the electro-

hydraulic actuator is obtained. Using the family of frequency responses, a QFT controller is 

designed to provide acceptable time and frequency responses, disturbance rejection, and stability 

for the closed-loop system. A detailed discussion is presented next, on challenges of using QFT 

to increase the tracking bandwidth in the output pressure of electro-hydraulic actuators. The 

conflicts between performance criteria towards achieving a higher bandwidth are discussed. The 

results are used to redefine the performance criteria and then design a new QFT controller and 
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pre-filter which provide higher tracking bandwidth for the closed-loop system. The experimental 

results of applying the controller with higher tracking bandwidth, on the electro-hydraulic 

actuator are presented. After designing the QFT control system and experimental verification, the 

stability of the QFT controllers is investigated using T-S fuzzy modeling and its stability theory. 

This analysis is carried out in the presence of uncertainty in the parameters of the nonlinear 

model of electro-hydraulic actuator and the environment.  

Chapter 6 describes the design of an output pressure controller for the electro-hydrostatic 

actuator. Again QFT is employed as the design approach. The family of frequency responses of 

the electro-hydrostatic actuator is obtained by applying an advanced form of fast Fourier 

transform on experimental inputs-outputs data. Using the family of frequency responses, a robust 

QFT controller is designed. Experimental results are also presented and the nonlinear stability of 

the designed QFT controller is investigated using T-S fuzzy modeling and its stability theory. 

This stability analysis is carried out in the presence of uncertainty in the parameters of the 

system, environment, friction, and external and internal leakages. The contributions of this 

research are given in Chapter 7, along with suggestions for future research. 
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Chapter 2                                     

Hydraulic Actuation Systems 

The double-rod hydraulic actuator in the experimental set-up of this research can be controlled 

by two actuation systems: electro-hydraulic and electro-hydrostatic, shown in Figure 2.1. In the 

following sections, components, circuits, and functionality of both the electro-hydraulic and 

electro-hydrostatic actuation systems are described. In addition, the nonlinear models of these 

actuation systems are presented.  

 

 

 

Figure  2.1. Experimental set-up: electro-hydraulic circuit (right), electro-hydrostatic circuit (left). 
 

Electro-hydrostatic circuit Electro-hydraulic circuit 

Double-rod hydraulic actuator 
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2.1 Electro-Hydraulic Actuation 

2.1.1  Test-Rig 

The photograph and schematic diagram of the electro-hydraulic actuator are shown in Figure 2.2. 

The main components of this system are the double-rod actuator, a servovalve and a high 

pressure supply, also known as hydraulic power supply. The double rod hydraulic actuator is a 

heavy-duty actuator, manufactured by Parker, and has a 38.1 mm bore, annulus area of 633 mm
2
, 

and a 610 mm stroke. The fluid flow is controlled by D765, a nozzle-flapper servovalve 

manufactured by Moog with a 31 L/min (8.3 GPM) flow capacity at 17.2 MPa (2500 psi) supply 

pressure, and a rise time of 2 msec. 

  

 

 

 

 

 

 

 

Figure  2.2. Electro-hydraulic actuator, test-bed and schematic. 
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The D765 uses a linear variable differential transformer (LVDT) that measures the position of 

the spool. Using a closed-loop position control system in the servovalve, an accurate position 

control of the spool to the command signal becomes possible.  The pressures of the fluid in the 

supply and the return ports of the servovalve are measured by two Ashcroft-K1 pressure 

transducers with a 0-21 MPa range and a full-scale accuracy of ±0.5%. To measure the pressure 

at the control port of the servovalve, two Sensotech-FPG pressure transducers with a range of 0-

21 MPa and a full-scale accuracy of ±0.1% are placed. Since fluid pressure drops as a result of 

piping between the servovalve and the actuator chambers, another pair of Sensotech-FPG 

pressure transducers is installed directly for the chambers. The actuator displacement is 

measured by a rotary encoder (Bourns ENS1J-B28) with a resolution of 1024 counts/revolution. 

Maximum displacement is 0.6 m which is the length of the rod. The system consists of a fluid 

reservoir, to keep the hydraulic fluid at a low pressure and use as needed. The hydraulic power 

supply is a variable displacement pump with the nominal pressure between 17 and 21 MPa (2500 

to 3000 psi). The nominal supply pressure can be set by adjusting a pressure relief valve. The 

experimental hardware is interfaced to a desktop computer by a DAS16F inputïoutput board and 

a M5312 24-bit quadrature incremental encoder card. The desktop computer runs the Windows 

XP operating system. DAS16F inputïoutput board digitizes the analog signal and apply the 

software generated control signal to the servovalve. The nominal sampling rate of the interface 

and control software is approximately 1 kHz. 

2.1.2   Modeling  

A schematic diagram and the system variables of the electro-hydraulic actuator interacting with 

the environment are shown in Figure 2.3. The control signal activates the servovalve spool to 

move. The following first-order dynamic equation represents the relationship between the control 

signal uv and the spool displacement xv (Alleyne and Liu, 2000; Liu and Alleyne, 2000; Niksefat 

and Sepehri, 2001):  

v

sp

vv u
k

xx
t

+
t

-
=

1
#  (2.1) 

where ksp is the gain and Ű is the time constant of the servovalve. Spool displacement changes the 

fluid flows at the servovalve control ports according to the following equations:   
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Figure  2.3. Variables in electro-hydraulic actuator. 

 

where Ps and Pr are the hydraulic supply and return pressures, respectively. In equation (2.2) 

constant 5.02 -= ɟCK dv
 is the flow coefficient, w is the orifice area gradient, dC  is the 

coefficient of the discharge and ɟ is the hydraulic fluid density. The input and output flows in 

turn change the pressures in each of actuator chambers as follows:  
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where vp is the actuator velocity, ɓ is the effective bulk modulus of the hydraulic fluid, and A 

refers to the piston effective area. ki is the actuator internal (cross-port) leakage coefficient and ke 

is the actuator external leakage coefficient. The volume of the hydraulic oil in each side of the 

piston is given by variables V1 and V2 as follows: 

pAxVV += 011
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where V01 and V02 are the initial volume of the fluid in each side of the actuator. In double-rod 

hydraulic actuators, the pressure differential P1-P2 multiplied by the piston effective area A 

determines the actuator force, fa=A(P1-P2). This force accelerates the actuator itself and deals 

with friction force acting between the piston and the cylinder walls, ff, and linear viscous friction 

dhvp, where dh is the viscous damping coefficient of the hydraulic fluid. The rest of the actuator 

force is applied on the environment and deals with the external force fl. The mentioned force is 

shown by fs in Figure 2.3 and can be measured by a force sensor. Assuming a high stiffness for 

the force sensor as compared with the stiffness of the environment and the actuator, the dynamic 

equations are: 

fsphaph ffvdfxm ---=##  (2.5) 

lppespe fkxvdfxm ---=##  (2.6) 

where the total mass of the piston and rod of the actuator is shown by mh; the environment is 

represented by mass me, damping de and stiffness k. Now, the entire nonlinear model of the 

double-rod electro-hydraulic actuator based on equations (2.1)-(2.6) are written as follows: 
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where m=mh+me represents combined mass of the piston, rod, and environment, d=dh+de 

represents the total damping coefficient of the electro-hydraulic actuator consisting of the 

actuator viscous damping and the damping of environment. fd is the combination of friction ff and 

external force fl; fd =ff +fl. For friction ff, a LuGre model is considered. This model has been 

developed based on the modeling of sliding surfaces with elastic bristles which separate and 
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bond (Tran et al., 2012). When two surfaces are sliding, the bristles are deformed with deflection 

of ɖ. The rate of this deflection is represented by a spring-like behaviour as follows: 

ɖvv
dt

dɖ
pp )(ɣů0-=  (2.8) 

where, ů0, is the average stiffness of bristles
 
and )( pvy is the following nonlinear term: 

fŬ
/
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p

eFFF

v
v

-
-+

=  (2.9) 

In the above equation, Fs corresponds to the stiction force; Fc is the Coulomb friction force; Ŭf is 

a geometry dependent parameter, and vs is called Stribeck velocity. The friction force ff is 

determined by the following equation: 

( )ɖvvɖɖf ppf )(ɣůůůůůů 010110 -+=+= #  (2.10) 

In equation (2.10), parameter ů1 is the micro damping coefficient. Note that the effect of viscous 

friction has already been incorporated into the system model as dvp, and therefore is not 

considered in (2.10). The parameters of friction model were identified according to the procedure 

outlined in (Tran et al., 2012) and given in Table 2.1. The nominal values and the variation range 

of other parameters of the system are given in Table 2.1. These values were obtained from 

manufacturerôs catalogs and earlier reported investigations (Karpenko and Sepehri, 2008; 2009; 

2012). In this table, the valve flow gain ks and flow pressure coefficient kp are related to the 

linearized model of the electro-hydraulic actuator which will be explained in Chapter 5.  
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Table  2.1. Values of parameters of electro-hydraulic actuation system. 

     Parameter    Nominal Value Range 

Supply pressure, Ps  (MPa) 17.2 - 

Spring stiffness, k  (kN/m) 90 70-130 

Total mass, m  (kg) 12.3 10-14 

Total damping coefficient, d  (N.sec/m) 250 200-400 

Piston area, A (m
2
) 6.33×10

-4
 - 

Chambers initial volume, 01V and 02V
  (m

3
) 234×10

-6
 - 

Servovalve time constant, Ű  (sec) 0.0022 0.002-0.0026 

Valve orifice area gradient, w  (m
2
/m) 0.02075 - 

Spool valve position gain, ksp  (ɛm/V) 25 23.1-27 

Fluid bulk modulus, ɓ  (MPa) 689 650-700 

Flow coefficient, Kv  (m
3/2

/kg
1/2

) 0.0292 - 

Valve flow gain, ks  (m
2
/sec ) 1.5 1.34-1.73 

Flow pressure coefficients, kp (m
3
/sec/Pa) 0  0-1.09×10

-11
 

Stribeck velocity, vs  (m/sec) 0.01  - 

Coulomb friction Fc  (N) 75  - 

Stiction friction Fs  (N) 240 
 

- 

Average stiffness of bristles ů0  (N/m)    1.04×10
9 
 - 

Friction geometry parameter Ŭf     1 - 

Micro damping coefficient ů1  (N.sec/m) 100 - 

 

2.2   Electro-Hydrostatic Actuation 

2.2.1  Test-Rig 

A schematic diagram of the electro-hydrostatic actuator of this research is shown in Figure 2.4. 

The main components of this system are the double-rod hydraulic actuator, a fixed-displacement 

pump and a variable speed electric servomotor. The double-rod actuator is the same actuator 

discussed in Section 2.1.1. The features of other component and the system functioning are 

presented as follows.  

The fixed-displacement hydraulic pump that has been used in this experimental set-up is a F11-

005-HU-CV-K-000-000-0 from Parker, with the maximum speed of 4000 rpm clockwise and 

counter clockwise. The pump provides a constant flow rate in each cycle. This pump has fixed-

displacement of 4.9 cm
3
/rev, and a maximum limit of pressure rated at 5000 psi. Referring to 
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Figure 2.4, the leakage from the pump case drain goes to reservoir 1 which is manually 

connected to the pressurized reservoir 2 before an experiment starts. Reservoir 2 is pressurized 

by 120 psi using an air booster to avoid cavitation in the system. Two pressure transducers are 

also connected to the inlet and the outlet of the pump. The pump is coupled to the servomotor by 

a flexible Oldham coupler to synchronize the rotation of the pump and the servomotor, shown in 

Figure 2.5.  
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Figure  2.5. Coupling between fixed-displacement pump and servomotor. 
 

The servomotor in the experimental set-up is M-4650 made by Teknic, a permanent magnet 

rotary servomotor which is assisted by a sealed, high bandwidth, and precise differential encoder 

to measure the position of the servomotor. Since the encoder has a unique floating mount design, 

if the axial shaft moves slightly, the encoder moves with the servomotor shaft. The servomotor is 

connected to the servodrive SSt-6000-R which is interfaced to a high speed computer using an 

I/O board. The I/O board receives the pressure data from sensors installed in the actuator 

chambers and the pump inlet and outlet, as well as data from encoders that measure the actuator 

displacement and the servomotor position. The measured data by sensors and encoders are then 

available in the high speed computer for control purposes. In the high-speed computer, the 

pressure controllers are implemented in Simulink environment. In order to control the output 

pressure, the velocity of the electric motor is controlled. Corresponding to the command signal 

sent from the high-speed computer to the servodrive, it generates a PWM signal to run the 

servomotor. When the servomotor is running, based on the data sent by the attached encoder to 

the servomotor, the actual velocity of the servomotor is calculated. In servodrive, the actual 

velocity and the desired velocity are compared. Based on the velocity error, an internal control 

system in the servodrive generates a new signal to apply to the servomotor. This continues until 

velocity of the servomotor reaches the desired velocity. The servodrive internal controller 

consists of a PIV controller with dual feedforward terms, which provides a high performance 

tracking system with a settling time less than 1 msec. The servodrive utilizes an adaptive control 

algorithm called inverse modeling technique (IMT) based on neural fuzzy logic to enhance the 

robustness of the control system. The above features in servodrive have been digitally 

implemented in non-volatile EEPROM, and are accessible through a Windows based software, 
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called Quickset, developed by Teknic. This software is used to configure and diagnose the 

servodrive. The sampling rate at which the data is collected is 1 kHz. 

2.2.2    Modeling  

In Figure 2.6, the schematic and system variables of the electro-hydrostatic actuator under study 

are shown. In the electro-hydrostatic actuator, the control signal um runs the servomotor to reach 

the velocity of ɤm according to the following first order differential equation: 

m

m

m
m

m

m u
k

ɤɤ
ŰŰ

1
+

-
=#  (2.11) 

where km is the servomotor gain, and Űm is the servomotor time constant. Since, the servomotor 

and the pump are coupled together, by rotation of the servomotor, accordingly, pump rotates and 

generates the flows according to the following equations: 

UepDUip
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where QU and QD are the flow coming out and going into the pump, and PU and PD are the 

pressures at the outlet and inlet of the pump.  

 

 

 

 

 

  

 

 

Figure  2.6. Variables in electro-hydrostatic actuator. 
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In equation (2.12), Dp is the pump displacement, ɤp is the pump angular velocity which is equal 

to servomotor angular velocity; ɤp = ɤm, Cep is the external leakage coefficient of the pump, and 

Cip is the pump cross-port leakage coefficient. VU and VD are the pump section volume associated 

with its outlet and inlet ports respectively. 

The inlet and outlet of the pump are connected to the actuator chambers via some pipes which 

cause pressure drop. As a result, the relationship between pressures in the pump side and the 

actuator side are as follows: 

pipeU PPP -=1  (2.13a) 

pipeD PPP +=2  (2.13b) 

where P1 and P2 are the pressures in the actuator chambers, and Ppipe shows the pressure drop 

across the pipes. From Figure 2.6, having no leak across the pipes, QU=Q1 and QD =Q2. The 

relationship between the flows and the pressures at the cylinder side are as follows: 

Liep PkPk
dt

dP

ɓ

AxV
AvQ ++

+
+= 1

101
1  (2.14a) 

Liep PkPk
dt

dP

ɓ

AxV
AvQ +-

-
-= 2

202
2  (2.14b) 

where pv
 
is the actuator velocity. A refers to the piston effective area, ɓ is the effective bulk 

modulus of the hydraulic fluid, ki is the actuator internal leakage coefficient, and ke is the actuator 

external leakage coefficient. V01 and V02 are the initial volumes of the oil in each side of the 

actuator. The pressure differential P1 ïP2 acting on the piston effective area A generates the 

actuator force fa: 

APPfa )( 21-=
 (2.15) 

The differential pressure P1-P2 is called the output pressure of the system and is shown by PL. 

Resultant actuator force fa accelerates the actuator itself and deals with force acting between the 

piston and the cylinder walls due to friction, ff , and linear viscous friction phvd , where dh is the 

viscous damping of the hydraulic fluid. The rest of the actuator force is shown by fs in Figure 

2.6, is referred as the interacting force. This force manipulates the environment and deals with 

the external force fl. The interacting force fs is measurable by a force sensor. In Figure 2.6, the 



22 

 

environment is modeled as a mass (me)-spring (k)-damper (de), and the actuator mass is shown 

by mh. Assuming a high stiffness for the force sensor as compared with the stiffness of the 

environment and the actuator, the dynamic equation is as follows: 

flppap ffdvkxfxm ----=##  (2.16) 

where m=mh+me represents combined mass of the piston, rod, and environment, d=dh+de 

represents total damping coefficient and consists of the actuator viscous damping and the 

damping of environment. The nominal values of the system parameters are given in Table 2.2 

using manufacturerôs catalogs and earlier reported investigations (Karpenko and Sepehri, 2008; 

2009; 2012). The friction model and corresponding parameters are same as in Section 2.1.2. 

 

Table  2.2. Values of parameters of electro-hydrostatic actuation system. 

Parameter Nominal Value 

Servomotor gain, km  (rad/V.sec) 25 

Servomotor time constant, Űm  (sec) 0.001 

Spring stiffness, k  (kN/m) 90 

Total mass, m  (kg) 12.3 

Total damping coefficient, d  (N.sec/m) 250   

Fluid bulk modulus, ɓ  (MPa) 689 

Fixed pump displacement, Dp  (m
3
/rev) 4.9×10

-6 
 

Piston area, A  (m
2
) 6.33×10

-4
  

Total volume of the cylinder, V01, V02   (m
3
) 234×10

-6 
 

 

2.3 Summary   

In this chapter, features and functionality of electro-hydraulic and electro-hydrostatic actuation 

systems were described. Mathematical models of the actuation systems and their corresponding 

parameter values were presented. These models will be used in subsequent chapters for the 

design of robust output pressure controller and also nonlinear stability analysis of the control 

systems. 
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Chapter 3                                  

Quantitative Feedback Theory   

This chapter presents an overview of the quantitative feedback theory (QFT). Based on this 

theory, the designed controller guarantees robust performance and stability within a certain range 

of inputs-outputs of the system. The classical two-degree-of-freedom QFT feedback control 

system is presented, followed by the description of design steps in QFT. QFT design technique is 

used in the subsequent chapters to design robust output pressure controllers for electro-hydraulic 

and electro-hydrostatic actuators.  

3.1 Control Block Diagram 

Figure 3.1 illustrates the two-degree-of-freedom feedback structure that is used in QFT design 

technique. Note that here, two-degree-of-freedom means the presence of two measurable 

quantities, R and Y. In this thesis, no measurement is carried out on disturbance D (Yaniv, 1999).  

 

 

 

 

 

 
Figure 3.1. Two degree-of-freedom QFT control system. 
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In QFT design technique, a family of frequency responses of the uncertain nonlinear plant is 

required. These frequency responses can be obtained through different methods that will be 

explained in Section 3.2.1. In the control system shown in Figure 3.1, this family of frequency 

responses is obtained using the following transfer function:  

m
M

m

m

n
N

n

n

sq

sp

sG

)(

)(

),(

0

0

a

a

=a

ä

ä

=

=  (3.1) 

where rRËWÍŬ  is a vector of r uncertain parameters of the system. W is a compact set of 

parameter variations, given as:  

[ ]{ }r,...,1,ŬŬŬ:Ŭ 21 =Í=W ii  
(3.2) 

Each uncertain parameter ),...,1(Ŭ r=ii  varies independently within an interval (Niksefat and 

Sepehri, 2001). In control structure in Figure 3.1, the desired response is shown by R. Employing 

QFT design technique, the controller C(s) and the pre-filter F(s) must be designed such that the 

output of the control system, i.e., Y follows the desired command R within some given tolerance 

despite uncertainty in the parameters of the system and nonidealities. The nonidealities include 

measurement noise, unmodeled dynamics, and disturbance in the control system. In QFT, the 

controller and the pre-filter are designed in the frequency domain. The controller is designed 

through a loop-shaping process in the Nichols chart, and the pre-filter is designed using the Bode 

diagram. Therefore, all desired specifications should be represented as constraints in frequency 

domain. Then the constraints are demonstrated as bounds on the loop transmission function in 

the Nichols chart. This way QFT provides a quantitative relationship between desired 

specifications, and system uncertainties and nonidealities. The graphical representation of the 

design constraints in the Nichols chart helps the designer to make a better decision on the 

complexity of the controller in order to satisfy the performance criteria.  
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3.2 Design Steps 

In this section, steps for designing QFT controllers and pre-filters for plants with parametric 

uncertainties are explained in detail. These steps are generating templates, calculating bounds, 

loop-shaping, and pre-filter design. 

3.2.1 Generating Plant Templates 

The first step is to present the family of frequency responses of the uncertain nonlinear plant in 

the Nichols chart. These frequency responses can be obtained via different methods including 

small-signal (Niksefat and Sepehri, 2001), Fourier transformation (Karpenko and Sepehri, 2008), 

and Golubev (Golubev and Horowitz, 1982). To derive the frequency responses, a number of 

techniques such as small-signal method require a mathematical model of the plant, which is 

linearized around the operating points of interest. Other techniques such as Fourier 

transformation and Golubev are applied on the sets of input-output data of the system, which are 

obtained in certain operating conditions. Therefore, the derived frequency responses represent 

the original nonlinear plant within a certain input-output set or around some operating points.  

Then the magnitude and phase of the family of frequency response are plotted in the Nichols 

chart for a finite number of frequencies, known as the array of design frequencies (Borghesani et 

al. 2003). In general, the frequencies where the shape of the template shows significant 

variations should be considered in this array (Borghesani et al. 2003). At each frequency of this 

array the phase and the magnitude of the family of frequency response are marked. For example 

for the system in Figure 3.1, the magnitude and phase of the plant, i.e. G(s,Ŭ) are calculated for 

the whole combination of the parameters variation and then marked in the Nichols chart. The 

region in the Nichols chart that is covered by the data points of the family of frequency response 

in a particular frequency is called the plant template in that frequency. The templates are used to 

generate bounds on the Nichols chart for the controller design. It is required choosing one 

arbitrary frequency response corresponding to a specific vector of uncertain parameters, Ŭ0. The 

plant designated to this set of parameter values is called the nominal plant, i.e., )Ŭ,( 00 jɤG . The 

corresponding loop transfer function is also called nominal loop transfer (or transmission) 
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function, i.e., )Ŭ,()()( 000 jɤGjɤCjɤL = , where )( jɤL  is the loop transmission function, 

)Ŭ,()()( jɤGjɤCjɤL = . The nominal plant is used to calculate the QFT bounds in the next 

section, and the nominal loop is used to design the QFT controller.  

3.2.2 Design Specifications in Frequency Domain 

Representation of the performance criteria in the frequency domain is as follows: 

i) For the stability of the closed-loop system and noise rejection (Guzman et al., 2011), the 

following constraint on the complementary sensitivity function must be satisfied for the 

entire range of parameters uncertainties: 

)0[
)(1

)(
)( ¤Í"¢

+
= ɤM

jɤL

jɤL
jɤT t  (3.3) 

If Mt is a constant, it guarantees the following amount of gain margin and phase margin for the 

closed-loop system (Yaniv, 1999): 
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However guaranteed gain and phase margins, do not imply a good robust stability margin 

(Levine, 1996). Robust stability margin is determined by the inverse of the shortest distance 

between the Nyquist plot of the loop transmission function from the critical point (-1,0), i.e., 

|1+L(jɤ)|. Robust stability margin also appears in the peak of the magnitude of the sensitivity 

transfer function, i.e., max(|S(jɤ)|=1/|1+L(jɤ)|). Therefore, to guarantee the robust stability 

margin, in the next section, an appropriate upper bound on the sensitivity magnitude is imposed. 

ii)  To attenuate the effect of disturbance D on the output, and guarantee robust stability, the 

following constraint on sensitivity function must be satisfied for the entire range of 

parameters variation: 
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The complementary sensitivity and sensitivity transfer functions in a closed-loop system satisfy 

the following equation (Levine, 1996): 

1)()( =+ ww jSjT  (3.7) 

From the above equation and equations (3.3) and (3.6), the following constraint on the upper 

bound of the complementary sensitivity function, i.e., Mt and the upper bound of the sensitivity 

function. i.e. Ms is derived (Levine, 1996): 

1²+ st MM  (3.8) 

Constraint (3.8) indicates that sensitivity and complementary sensitivity functions cannot be 

small (less than 1) at the same frequency. In control systems, measurement noise becomes large 

at high frequencies, while disturbances appear at low frequencies. Therefore, a reasonable 

selection is firstly, to keep the sensitivity function as low as possible at low frequencies. 

Selection of Ms <<1, results in Mt å1, or 1)( >>jɤL , which also implies good reference tracking. 

Secondly, the complementary sensitivity function must be kept as low as possible at high 

frequencies to reject noises. Selection of Mt<<1 results in Mså1 or 1)( <<jɤL . At intermediate 

frequencies both the sensitivity and the complementary sensitivity functions must be prevented 

from being excessively large. Having Ms>>1 or Mt>>1, implies that 1)( ºjɤL and

A180)( °ºÏ wjL , and the system will be on the verge of instability (Levine, 1996). For strictly 

proper systems, the following equation holds: 

0)()(lim =
¤­

ww
w

jGjC  (3.9) 

Thus: 
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¤­ ww
w

w jGjC
jS  (3.10b) 

Equation (3.10a) shows that the complementary sensitivity transfer function has a low magnitude 

at high frequencies that is desirable in order to reject noise that happens at high frequencies. 
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Equation (3.10b) shows that the sensitivity has higher magnitude at high frequencies. For strictly 

proper systems, there is another important equation about sensitivity called Bode sensitivity 

integral, or waterbed effect as follows (Houpis et al., 2005): 

0)(ln
0

=ñ
¤

wwdjS  (3.11) 

Equation (3.10) implies the fact that if the sensitivity is close to one at high frequencies, it 

becomes close to zero at low frequencies. From equations (3.10b) and (3.11), the sensitivity is 

low at low frequencies, which is desirable to reject disturbances that normally happen at low 

frequencies. 

Therefore, the constant upper bounds on the magnitudes of the complementary sensitivity, T(jɤ) 

and sensitivity S(jɤ) are mostly effective for intermediate frequencies. According to Astrom 

(2002), to impose constant upper bounds on the magnitude of the complementary sensitivity and 

sensitivity transfer functions through whole range of frequencies, the constant must be chosen 

between 1 and 2.   

iii)  For the tracking of the desired command, the following constraint must be satisfied for the 

entire range of parameters variation. 

 [ )¤Í"¢
+

¢ 0)(
)(1

)(
)()( ww

w

w
ww jT

jL

jL
jFjT ul  (3.12) 

where the upper and lower bounds Tu(jɤ) and Tl(jɤ) are determined by the designer. The shape 

of these bounds determines the transient response of the system and the closed-loop bandwidth. 

It is important to mention that satisfying the tracking constraint is done in two steps. The first 

step is done in the Nichols chart, where only the controller is designed. Towards this step, a 

constraint which only includes the controller and can be graphically represented in the Nichols 

chart is derived from the inequality (3.12) as follows:  
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Adding the two inequalities on the left results in the following formula: 
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From the above inequality, the following relationship is derived, which relates the uncertainty in 

the plant to the tracking bounds and includes only the controller and not the pre-filter.  
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The above inequality is used to generate the tracking bounds in the Nichols chart. Still the pre-

filter must be designed to satisfy inequalities 3.14 and 3.15. These two inequalities are another 

representation of the constraint (3.12).   
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3.2.3 Generating Bounds and Loop-Shaping 

The performance constraints consisting of stability, tracking, and disturbance rejection should be 

graphically represented in the Nichols chart. These bounds are derived by moving the plant 

templates between the closed-loop magnitude contours on the Nichols chart. These bounds are 

used in loop-shaping as a guide for shaping the nominal loop transmission function. 
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Finally, once the QFT bounds are derived, the nominal loop transmission function, 

)Ŭ,()()( 000 jɤGjɤCjɤL = , should be designed by adding proper poles and zeroes to the 

controller )( jɤC , to satisfy all bounds while it should not cross the axis of positive magnitude at 

-180 □ (instability region in the Nichols chart). A typical plot of )(0 jɤL  is given in Figure 3.2. 

This means that the nominal loop transmission function must stay close to the bounds and its 

magnitude must decrease rapidly as frequency increases. The requirement of low bandwidth in 

the controller is to avoid problems with amplification of noise and unmodeled dynamics. 

 

       

 

Figure  3.2. Plant template, QFT bounds, and Loop-shaping in Nichols chart. 

3.2.4 Design of Pre-filter  

Finally, if the tracking specifications are not satisfied, then a pre-filter )( jɤF is required to 

satisfy the inequalities (3.14) and (3.15), which can be designed in Bode diagram. Figure 3.3 

shows the typical frequency responses of a system for the entire range of parametric uncertainties 

before and after a pre-filter is applied. Pre-filter moves frequency responses of system for the 

entire range of parametric uncertainties between the desired upper and lower bounds. 
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Figure  3.3. Frequency responses of closed-loop system before and after pre-filter. 
 

3.3 Summary 

The concept and design steps of QFT control systems were explained. It was shown how QFT 

provides a graphical relationship between desired specifications and system uncertainties. This 

helps the designer to make a better decision on the complexity of the controller. In Chapters 5 

and 6, QFT design technique will be used to control the output pressure of the electro-hydraulic 

and electro-hydrostatic actuators under study.  
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Chapter 4                                       

Stability Analysis Using T-S Fuzzy 

Modeling  

As described in Chapter 3, QFT controllers are designed for the family of frequency responses of 

the nonlinear plant. These frequency responses are derived based on sets of input-output data 

obtained by running the plant in specified operating conditions, or linearizing the nonlinear plant 

around some operating points. As a result, the stability of the QFT control system is valid only 

over these particular sets of input-output and/or in a small-signal sense (Horowitz, 1976). 

Methods to solve the stability limitation of QFT control systems provide approximate stability 

results or suggest very conservative conditions on controller design (Barreiro and Banos, 2000; 

Banos et al., 2002). In this chapter a new solution based on Takagi-Sugeno (T-S) fuzzy modeling 

and its stability theory (Tanaka and Wang, 2001) is provided for the nonlinear stability analysis 

of QFT control systems, which provides the stability conditions in the form of linear matrix 

inequalities (LMIs) (Esfandiari and Sepehri, 2013). This solution overcomes the issues of the 

previous approaches, presented for QFT stability analysis. Review of fuzzy systems, T-S fuzzy 

modeling and corresponding stability theory are presented in Sections 4.1 and 4.2. In Section 4.3, 

a T-S fuzzy model describing the nonlinear functions of a double-rod electro-hydraulic actuator 

is derived. The effectiveness of the T-S fuzzy modeling and its stability theory for the nonlinear 

stability analysis of the control systems of hydraulic actuators is investigated by considering 

three case studies in Section 4.4. The first case study is a robust nonlinear controller previously 

designed based on the passivity theory for the pressure control of a hydraulic actuator (Alleyne 
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and Liu, 2000). The second case study relates to a bilateral haptic control system of a hydraulic 

actuator, which was previously designed based on Lyapunov stability theory (Zarei-Nia and 

Sepehri, 2012). In the third case study, the T-S fuzzy modeling and its stability approach are 

employed to investigate the nonlinear stability of a QFT position controller for the first time. 

This QFT controller previously was designed for an electro-hydraulic actuator by Karpenko and 

Sepehri (2008).  

4.1  Fuzzy Systems 

A fuzzy system describes a nonlinear system based on fuzzy logic, where inputs are analyzed 

based on their degree of membership to defined fuzzy sets (a continuous value between zero and 

one), in contrast to classical logic, based on true or false, (a discrete value: zero or one). A fuzzy 

system consists of fuzzification, If-Then rules, inference process, aggregation, and 

defuzzification. Using a simple example, the functionality of each part in a fuzzy system is 

explained. The example is a two-input, one-output, three-rule fuzzy system to adjust the 

necessary time for irrigation of a garden. Inputs are the ambient temperature and soil moisture, 

and the output is a linguistic representation of the applied values to the lawn sprinkler system, 

which adjust how long the irrigation must be. The Following rules are defined to map inputs to 

outputs linguistically: 

If ambient temperature is low And soil is wet, Then sprinkler works for a short time. 

If temperature is high And soil is dry, Then, sprinkler works for a longer time. 

If temperature is high And soil is moist, Then, sprinkler works for an average time. 

In each rule, the part after If called antecedent, and the part after Then, is called conclusion. The 

values of temperature and moisture are measured by sensors, which are crisp values. Therefore, 

in the first step, these crisp values should be mapped to a relative fuzzy set through fuzzification 

process. The associated fuzzy values are the rating of a membership associated to a fuzzy set. For 

example, for the fuzzification of the ambient temperature t, three membership functions ɛl(t), 

ɛm(t), and ɛh(t) are defined. These three functions exemplify low, medium, and high 

temperatures, respectively (see Figure 4.1).  

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bZarei-Nia%2C+Kurosh%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSepehri%2C+Nariman%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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Figure  4.1. Fuzzy membership functions. 
 

From Figure 4.1, the crisp temperature input of t=10ęC, belongs to the fuzzy set of low 

temperature with a grade of ɛl (10ęC)=0.6, belonging to the fuzzy set of medium temperature 

with a grade of ɛm(10ęC)=0.4, and belonging to the fuzzy set of high temperature with 

ɛh(10ęC)=0.  

If the antecedent of a given rule engages more than one input using logical operations of And or 

Or, such as above example, a fuzzy operator should be applied to obtain one number that 

represents the result of the antecedent for that rule. Fuzzy operators are mathematical 

formulations that substitute And and Or in the antecedent part of a fuzzy rule. Two well-known 

operators for And are: min (minimum) and prod (product), and two well-known operators for Or 

are max (maximum) and probor (probabilistic), (Lee, 1990; Xu and Da, 2003). For the above 

example only And operator was used. Using the fuzzy operators, the result of the antecedent part 

of each rule is obtained as a single number.    

The result of the antecedent of each rule is used to reshape the fuzzy set in the conclusion part of 

that rule. This process is called fuzzy inference. For inference, two well-known methods are 

employed: min (minimum), which truncates the output fuzzy set, and prod (product), which 

scales the output fuzzy set. The result of inference process for each rule is a fuzzy set 

corresponding to that rule (Lee, 1990; Xu and Da, 2003). These fuzzy sets which represent the 

results of rules for specific input values, must be combined into a single fuzzy set. This process 

is called aggregation. The final fuzzy set is converted to a crisp value through defuzzification 

process (Lee, 1990; Xu and Da, 2003). In this example the result of the defuzzification is the 

amount of time that the sprinkler must irrigate the garden.  

   

t : 
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In the above example, in both antecedent and conclusion parts of each rule, fuzzy sets were used. 

These types of fuzzy systems are called linguistic fuzzy systems. However, if fuzzy sets are only 

used in antecedent part and the conclusion consists of crisp (non-fuzzy) functions of input 

variables in antecedent, then it is called TakagiïSugeno (T-S) fuzzy model. Due to the presence 

of linguistic variables in the first type of fuzzy systems, classical stability and design theories 

cannot be used. On the other hand, T-S fuzzy models employ crisp functions on the conclusion 

parts. Thus, a wide range of available tools in the area of classical control, stability, and 

identification can be utilized (Tanaka and Wang, 2001).  

4.2  TakagiïSugeno (T-S) Fuzzy Model 

The concept of T-S fuzzy models was introduced by Takagi and Sugeno (1985). T-S fuzzy 

models can distribute the task of modeling and control of a nonlinear system into modeling and 

control of local linear systems, which are easier to handle (Tanaka and Wang, 2001). Ultimately, 

defuzzification process integrates the local tasks and yields the overall model. It has been proven 

that any nonlinear system can be represented by a T-S model with arbitrary accuracy (Tanaka 

and Wang, 2001). The stability of T-S fuzzy systems was first investigated by Tanaka and 

Sugeno (1992). The idea was to find a common quadratic Lyapunov function for all local models 

in a T-S fuzzy system. Searching for this common Lyapunov function was stated as a linear 

matrix inequality (LMI) problem. The resultant LMI constraints can be solved by convex 

optimization algorithms, available in software like MATLAB LMI Toolbox  (Gahinet et al., 

1995). In the following sections, construction and stability conditions of T-S fuzzy systems are 

described. 

4.2.1 Construction of a T-S Fuzzy Model 

In general there are two approaches for constructing T-S fuzzy models: (i) identiýcation (fuzzy 

modeling) using input-output data and (ii ) derivation from given nonlinear system equations, 

using sector nonlinearity approach. Using sector nonlinearity approach, a nonlinear system can 

be exactly represented by a T-S fuzzy model (Tanaka and Wang, 2001; Ohtake et al., 2003). The 

goal is to find a sector [ ] )(12 txbb  to represent the nonlinear system ))(()( txftx =#  as 
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[ ] )(2211 txbɛbɛ + , where, x(t) is the system state variable, )21( ,iib = are scalars, and 1ɛand 2ɛare 

positive nonlinear membership functions such that 1
2

1

=ä
=i

iɛ . As a result, the original nonlinear 

system ))(()( txftx =#  is represented as a weighted sum of local linear models, )(1 txb  and )(2 txb . 

Note that in general x(t) can be a vector of system states, which in this case, )21( ,iib = are matrices. 

Consider the following nonlinear system with one variable x: 

[ ]54,)3( 2 -Í+= xxxx#  (4.1) 

Using T-S fuzzy modeling, it is shown that for each value of [ ]54-Íx , the nonlinear function 

(4.1) can be represented by two linear functions, b1x and b2x, with two corresponding degrees of 

memberships ɛ1 and ɛ2. This relationship is shown below: 
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where the membership functions ɛ1 and ɛ2 are defined as follows: 
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and b1 and b2 are the extremums of the nonlinear function (4.1) for [ ]54-Íx : 

28)3max( 5
2

1 =+= =xxb  (4.4a) 

3)3min( 0
2

2 =+= =xxb  (4.4b) 

The nonlinear function (4.1) is shown within the sector in Figure 4.2.  
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Figure  4.2. Sector nonlinearity approach. 
 

4.2.2 Stability Analysis of a T-S Fuzzy Model 

Consider a T-S fuzzy model, described by the following equation: 

ä
=

=
r

cl

1ɟ

ɟxAx#  (4.5) 

where r is the number of fuzzy rules or equivalently number of local linear models. The stability 

of (4.5) can be established from the corresponding local linear models i.e., [ ])1ɟ(ɟ rcl ÍxA , using 

the following theorem.  

Theorem: The equilibrium point of the continuous T-S fuzzy system described by (4.5) is 

globally asymptotically stable if there exists a common positive definite matrix P such that for

r...1ɟ= :  

    0T >=PP  

    0ɟ

T

ɟ <+ clcl PAPA  

(4.6) 

(4.7) 

Proof: (Tanaka and Sugeno, 1992; Tanaka and Wang, 2001). According to the above theorem, in 

order to prove the stability of any system described by the T-S fuzzy model (4.5), a common 

matrix P must be found that satisfies conditions (4.6) and (4.7). Fortunately, these conditions can 

be stated as linear matrix inequalities (LMIs) (Boyd et al., 1994). These LMIs can be solved 

using available LMI Toolboxes (Gahinet et al., 1995). If LMIs are found feasible, it means that 

the solution matrix P exists. Any stability results for system in (4.5) can then be extended to the 
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original nonlinear model due the exact representation (zero modeling error) of the original 

nonlinear system by the T-S fuzzy model within the corresponding sectors (Tanaka and Wang, 

2001). 

4.3 T-S Fuzzy Model of a Double-Rod Electro-

Hydraulic Actuator 

4.3.1 Nonlinear Model  

In this section, using equations (2.1)-(2.7), presented in Section 2.1.1, the nonlinear dynamic 

equations of the double-rod electro-hydraulic actuator are obtained with variables, xp, vp, PL, xv, 

and h. Combining the differential equations of P1 and P2, to derive one equation for PL, is carried 

out to avoid numerical problems when solving stability LMIs, presented in (4.6) and (4.7). It is 

also necessary for stability analysis of controllers, which will be designed for the output pressure, 

PL, in this case. To obtain a differential equation for PL, first, equation (2.3b) is subtracted from 

(2.3a). It is assumed that the piston is centered such that V01=V02=Vt/2. This assumption is made 

based on the fact that stability problems are more serious and challenging when the piston is 

centered (Merritt, 1967). It is also a valid assumption in pressure/force control applications, with 

small piston displacement around the midstroke. Also the definition and equation of the load flow 

QL are used, which are as follows: 

2

)sgn(

2
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vvL
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wxK

QQ
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=
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=  (4.8) 

As a result, the differential equation of PL is: 
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vv
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L AvPk
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wxK
V

ɓ
P --

-
=#  (4.9) 

where )
2

( e
iT

k
kk += , and is called the total leakage coefficient in the electro-hydraulic actuator. 

Then the friction in equation (2.10) is substituted for ff in equation (2.7b), and fl is considered as 

zero. The resultant equations are shown as follows:  
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where )( pvy is as follows: 
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4.3.2 T-S Fuzzy Model 

Using the procedure explained in Section 4.2.1, a T-S fuzzy model is now constructed for the 

system described by (4.10). The nonlinearity in (4.10) originates from the load flow QL and 

friction term ɣ(vp), which are assigned to variables z1(t) and z2(t), as follows: 
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Now, some sectors should be established to rewrite the nonlinear functions z1(t) and z2(t) as

[ ]vv xggxtz 121 )( and [ ]ɖɖtz 122 ŭŭ)( . First, consider the nonlinear function z1(t), which 

can be rewritten as follows: 

2121111 ))(())(()( gtzGgtzGtz +=  (4.14) 

where ))(( 1)2,1( tzG ii =  are positive membership functions defined as follows: 
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andä
=

=
2

1

1 1))((
i

i tzG . In the above equations, g1 and g2 are the extremums of z1(t): 
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(4.16b) 

To determine the above extremums, note that the value of z1(t) depends on the value of variable 

PL, the sign of the variable xv, and the values of parameters Kv, w, and Ps. For now, it is 

considered that there is no uncertainty in the above parameters, and their values can be 

substituted from Table 2.1. To find out the extremums of z1(t), the variation range for PL, is 

considered for 0²vx , [PLmin+ PLmax+], and for 0<vx , [PLmin- PLmax-]. Note that as PL increases, 

z1(t) decreases for 0²vx  and increases for 0<vx . Therefore, depending on the application, the 

extremums are found based on the following values: 
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(4.17a) 

(4.17b) 

(4.17c) 

(4.17d) 

Note that if the values of the parameters Kv, w, and Ps vary within a sector, they should be 

considered in the calculation of the extremums of z1(t) in (4.17). The same procedure is carried 

out for the nonlinear function z2(t). Having ŭ1 and ŭ2 as the extremums of z2(t), the following 

sector is defined: [ ]ɖɖtz 122 ŭŭ)( . In this sector, z2(t) can be written as follows: 

2221212 ŭ))((ŭ))(()( tzũtzũtz +=
 (4.18) 

The membership functions ))(( 2)2,1ɔ(ɔ tzũ =  are defined as follows: 
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where 1))((
2

1ɔ

2ɔ =ä
=

tzũ . Substituting equations (4.14) and (4.18), respectively instead of 

nonlinear terms z1(t) and z2(t), in equations (4.10), results in the following equations:   
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used to present equation (4.20) by a matrix form as follows: 
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where [ ]TɖxPvx vLpp=x
C

 is the vector of the hydraulic states, and Aiɔ and B are given as 

follows: 
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In derivation of (4.21), parametric uncertainties were not considered. If the uncertainty is 

bounded, a representation analogous to (4.14) or (4.18) can be considered (Du and Zhang, 2009). 

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHaiping+Du%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bNong+Zhang%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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For example, if the environment stiffness is an unknown value in sector [k2=kmin k1=kmax], it can 

be rewritten as:  

1 1 2 2( ) ( )k S k k S k k= +  (4.23)

 

where, S1 (k) and S2 (k) are membership functions defined as: 

21

2
1 )(

kk

kk
kS

-

-
=    (4.24a) 

21

1
2 )(

kk

kk
kS

-

-
=  (4.24b) 

Substituting (4.23) instead of k in dynamic equations (4.20), the resultant T-S fuzzy model has 

the following format:  
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With B as in (4.22b), and Aiɔl as follows: 
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Other uncertain parameters can also be easily included using a similar manner as for the stiffness 

case in above T-S fuzzy model. The summations in (4.25) can then be aggregated as one 

summation (Tanaka and Wang, 2001): 

( )ä
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** +=
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1ɟ

ɟɟɟ )())(()( vuttzqt BxAx
C#C  (4.27) 

where, )())(())(())(( 2ɔ1ɟ kStzũtzGtzq li= ,
 
and

 
*
rA , *

rB ,
 
 r, are as follows:  

ɔlɟ iAA =* , BB =*ɟ  (4.28) 

( )141)-ɔ(2ɟ -++= il
 

(4.29) 

Note that variable z(t) in ))((ɟ tzq , is only used to simplify addressing z1(t), z2(t), and k. Now, T-S 

fuzzy model for the electro-hydraulic actuator with equations in (4.10) is as follows: 

Model rule 1:  
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 IF           z1(t)  is G1, and z2(t) is ũ1, and  k  is  S1  

THEN   vutt *
1

*
1 )()( BxAx +=
C#C  

4 
Model rule 8:  

IF           z1(t)  is G2, and z2(t) is ũ2, and  k  is  S2  

THEN   vutt *
8

*
8 )()( BxAx +=
C#C  

4.4 Case Studies 

In this section, the T-S fuzzy modeling and its stability theorem described in previous sections 

are employed to analyze the stability of three control systems developed for hydraulic actuators. 

The first case study relates to a nonlinear pressure controller designed for an uncertain model of 

a hydraulic actuator (Alleyne and Liu, 2000). The stability of this control system was proven 

previously using the passivity theory. In Section 4.4.1, the stability is verified again using the T-

S fuzzy modeling and its stability approach. Here, this example is used to show the feasibility of 

the T-S fuzzy modeling approach. The second case study relates to the bilateral haptic control 

scheme for hydraulic actuators designed based on Lyapunov stability theory (Zarei-Nia and 

Sepehri, 2012). Stability of this control system was not discussed in the presence of parametric 

uncertainties. Using fuzzy modeling and its stability approach, the range of parameters for which 

the system remains stable is obtained thus extending the stability bounds. Finally, the approach is 

tried on a QFT position controller previously designed for the electro-hydraulic actuator by 

Karpenko and Sepehri (2008).  

4.4.1 Case Study 1 

Alleyne and Liu (2000) developed a robust nonlinear force/pressure controller for a hydraulic 

actuator with modeling errors and bounded uncertainties. In their experimental set-up, the 

cylinder is attached to a slide in contact with a linear spring. The following equations describe 

the system: 
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http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bZarei-Nia%2C+Kurosh%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSepehri%2C+Nariman%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr
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where ɝ1 and ɝ2 indicate the slide position and the velocity, respectively. x1 denotes the cylinder 

pressure differential, x2 is the valve spool position, and u is the control signal. The output to be 

controlled is the pressure differential x1. Description and the values for the parameters in (4.30) 

are provided in Table 4.1. Nonlinear functions ),(
11

xɝf , ),,(
212

xxɝf , ),(
11

xɝg and ),,(
212

xxɝg

, are used in the controller design.  

Table  4.1. Values of parameters in the system described by (4.30). 

Parameter Nominal value 

Supply pressure, Ps  (MPa) 10.3 

Hydraulic coefficient, Ŭ (N/m
3
) 1.51×10

10 

Hydraulic coefficient, ɓ (1/sec) 1.0 

Hydraulic coefficient, ɔ (kg
0.5

/m
1.5

sec
2
) 7.28×10

8 

Load spring stiffness, k  (kN/m) 16 

Mass, m  (kg) 24 

Viscous damping, b  (N.sec/m) 310 

Piston area,  A  (m
2
) 3.26×10

4
 

 

Accordingly, to achieve a stable force/pressure tracking system, the following control law was 

proposed by Alleyne and Liu (2000):  
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where x1desired and x2desired are the desired differential pressure and the desired valve spool 

displacement respectively. Errors e1=x1-x1desired and e2=x2-x2desired, scaled by controller gains k1 and 

k2 are used to determine the control signal u. To determine the controller coefficients k1 and k2, 

first the controller equations (4.31) are substituted in the system equations (4.30) to construct the 

error dynamic equations as follows: 

21111 egeke +-=#  (4.32a) 

222 eke -=#  (4.32b) 
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Using the passivity theory, the global stability of (4.32) has been proven, previously, providing 

the controller gains to be selected as )max( 11 gk =  and 0Ű/2 >= spkk  (Alleyne and Liu, 2000). To 

analyze the stability of system (4.32) by the T-S stability theorem described in Section 4.2.2, first 

(4.32) must be represented by a T-S fuzzy model. Selecting the controller gains as 

12
1211 1001.3)sgn()max( ³=-== xxPɔgk s and 1000Ű/2 == spkk  (Alleyne and Liu, 2000), the 

error dynamic equations (4.32) are represented as the following T-S fuzzy model: 
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In (4.33), the membership functions Ti(i=1,2) are defined as follows: 
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The extremums ti(i=1,2) are found for [ ][ ]MPa86.6MPa86.6)3/2()3/2( -=-Í ssL PPP . 

sP)3/2( is considered as the maximum output pressure as applied to hydraulic actuator (Merritt, 

1967): 
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LMIs are now constructed based on conditions (4.6), (4.7), and two local linear models described 

by equation (4.33). Using the MATLAB LMI toolbox, the LMIs are found feasible given the 

following common positive definite matrix P as the solution: 
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è
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-
= 81072.972.0

72.017.1
P  (4.36) 

Therefore, according to the stability theorem in Section 4.2.2, the closed-loop system is stable. 

This is exactly what was concluded based on the passivity theory used by Alleyne and Liu 

(2000). The result of this case study shows that the T-S fuzzy models and corresponding stability 

can be reliably employed to investigate the nonlinear stability of hydraulic control systems. 



46 

 

4.4.2 Case Study 2 

Case study 2 is employed to not only confirm the existing stability results, but also extend the 

results to include uncertainty in a system parameter used by the controller. Zarei-nia and Sepehri 

(2012) developed a bilateral control system which allows a hydraulic actuator to achieve a stable 

position tracking at the slave side while, at the master side, the haptic device provides the feeling 

of tele-presence to the operator. The following equations were used by them to present the 

dynamics of the whole system: 

                       21 xx =#  (4.37a) 
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                        65 vx =#  (4.37e) 
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where, at the slave side, x1, x2, x3 and x4 are the actuator position, velocity, differential pressure 

and valve spool displacement, respectively. The control input is the voltage to the servovalve of 

the hydraulic actuator, shown by u. At the master side, x5 and x6 are the haptic device 

displacement and the velocity, respectively. Fh is the input force, originated from the operator 

and Fm is the control input applied to the master.  

To implement a stable position tracking system, the following control laws were proposed 

(Zarei-nia and Sepehri, 2012):  

[ ] 3432511 )sgn()( xxPxKxxKu spp ----=  (4.38a) 

34513 )( xKxxKF ppm +-=  (4.38b) 

where Kp1, Kp2, Kp3 and Kp4 are constant gains. The description and values of the rest of the 

parameters are given in Table 4.2. To construct the closed-loop dynamic equations, the controller 

equations (4.38) were substituted into the master and the salve equations (4.37). The equilibrium 

of the closed-loop system was determined by imposing 0)6..1( ==iix# as follows: 

Slave side 

Master side 
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Table  4.2. Values of parameters in system described by (4.37). 

Parameter Nominal value 

Supply pressure, Ps  (MPa) 17.2 

Hydraulic compliance, C  (m
5
/N) 2×10

-13 

Spring stiffness, ks  (kN/m) 125 

Piston and rod mass; slave side, ms  (kg) 12.3 

Viscous damping coefficient, d  (N.sec/m) 250 

Piston area, A  (m
2
) 6.33×10

-4 

Orifice coefficient of discharge, cd 0.6
 

Hydraulic fluid density, ɟ  (kg/m
3
) 847.15 

time constant, Ű  (msec) 0.03 
Valve orifice area gradient, w  (m

2
/m) 0.02075 

Valve gain, ksp  (m/V) 2.79×10
-5 

Inertia of master, haptic, mm  (kg) 0.545 

Viscous coefficient at master side, kd  (N.sec/m) 2 

Stiffness of human arm, kh  (N/m) 1000 

 

[ ] [ ]T531
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 (4.39) 

where x1ss, x2ss and x3ss are as follows: 
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Defining eqxxe
CCC
-= , the following error states were then derived: 
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where, e1, e2, e3 and e4 are the actuator position error, velocity error, differential pressure error 

and valve spool displacement error, respectively. Error states e5 and e6 are the haptic device 

displacement error and the velocity error at the master side, respectively.  

By employing Lyapunov stability theory, the authors concluded the following conditions to 

guarantee the stability of dynamic equations in (4.41): 
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Now, the stability analysis of (4.41) is re-examined using T-S fuzzy modeling and the 

corresponding stability theorem. First using the T-S fuzzy modeling procedure discussed in 

Section 4.3.2, the only nonlinearity term in (4.41) is represented as follows: 
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Since this term appears in both the system and the controller equations, subscripts s and c are 

used to separately refer to this nonlinear term in the third and fourth differential equations in 

(4.41). Membership functions Hsi(i= 1,2) and Hcj(j= 1,2) are defined as follows: 
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Using nominal value for supply pressure given in Table 4.2, and for

[ ][ ]MPa5.11MPa5.11)3/2()3/2( -=-Í ssL PPP , the extremums hsi(i= 1,2) and hcj(j=1,2) are found as 

follows: 

Pa5310MPa11MPa2.17)))(sgn(max()))(sgn(max())(max( 3433411 =+=-=+-=== xxPxeePtzhh sssssc

 

(4.45a) 
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Substituting (4.43) in (4.41), results in the following equation: 
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 (4.46) 

Equation (4.46) accurately represents original nonlinear model (4.41). The stability theorem 

discussed in Section 4.2.2 is now employed for the stability analysis of the system represented in 

(4.46). First a set of controller gains that satisfies conditions (4.42) are substituted into (4.46);
 

05.01=pK , 10
2 102 -³=pK , 0139.03=pK , and 12

4 104.4 -³=pK . Next, linear matrix inequalities are 

constructed based on (4.6) and (4.7), and the local linear models in equation (4.46). Using the 

LMI toolbox, the common positive definite matrix P is found as follows: 
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75.031.078.052.827.027.0

1.183.049.127.024.708.0

07.248.299.127.008.021.5

P  
(4.47) 

Therefore, the proof of the stability for the controller in equation (4.38) with conditions (4.42) 

has been shown for the values of the parameters given in Table 4.2. However, the controller 

equation (4.38) requires an exact value for the supply pressure Ps. The issue of uncertainty in the 

value of supply pressure was not discussed in the reference by Zarei-nia and Sepehri (2012). 

Here, it is investigated to see whether the T-S fuzzy modeling and stability theorem can provide 

further insight into the stability of system (4.46) in the presence of uncertainty in the supply 

pressure. To incorporate such uncertainty, extremums hsi(i=1,2) are re-calculated considering 

variation of Ps from its nominal value (17.2MPa), i.e., [ ]MPa6.228.13ÍsP . The new values for the 

extremums are then determined to be hs1 =6137 and hs2= 2144. The positive definite matrix, P to 

satisfy the stability conditions (4.6) and (4.7), is determined to be:  
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(4.48) 

Selecting different gains for the controller based on condition (4.42) may extend or limit the 

allowable uncertainty ranges for the supply pressure. 

This case study shows that T-S fuzzy modeling and corresponding stability theorem are not only 

effective to conclude the stability of a given control system, but also can be useful to extend the 

previously-developed stability results to include uncertainties. 

4.4.3 Case Study 3 

The previous two case studies established that the T-S fuzzy modeling approach is effective to 

investigate the stability of hydraulically-actuated control systems. In this section the approach is 

employed to study the nonlinear stability of QFT controllers. Before this, efforts have been made 

to incorporate nonlinear stability bounds in the design process of QFT controllers. Wang et al. 

(1990) employed the Circle Criterion in the process of QFT design to study the effects of time-

varying gain on both the stability and performance of the control system. Oldak et al. (1994) 

suggested using describing function and the Circle Criterion along with QFT design to avoid 

limit cycles. Barreiro and Banos (2000) employed combined Circle Criterion and Popov 

Criterion to incorporate the Input/output (I/O) stability bounds in the process of QFT controller 

design for memoryless and sector-bounded nonlinear plants. Incorporating these stability bounds 

provide rigorous stability results, but assign very conservative restrictions on the QFT controller 

(Banos, 2007). Banos et al. (2002) employed harmonic balance and multiplier theory. Harmonic 

balance provides an approximated solution to the global stability problem, but results in very 

relaxed conditions. Multiplier theory is a less conservative version of absolute stability; however, 

finding appropriate multipliers is qualitative (Banos et al., 2002). Also, using the standard 

approach of construction of Lyapunov functions to ensure the stability of the already developed 

QFT control systems is very difficult, if not impossible. So the challenge is how to investigate 
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and ensure the stability of a QFT control system, without assigning conservative conditions on 

the QFT controller, or face the challenge of finding a Lyapanov function. Using T-S fuzzy 

modeling approach and its stability theorem, without assigning conservative conditions on QFT 

controllers, a solution for the nonlinear stability analysis of QFT controllers is provided 

(Esfandiari and Sepehri, 2013). T-S fuzzy modeling for electro-hydraulic actuators have been 

previously used in the process of designing a fuzzy static output feedback controllers based on 

parallel distributed compensation scheme (Du and Zhang, 2009). Here, T-S fuzzy model of the 

electro-hydraulic actuator is blended with the designed QFT controller to investigate the 

nonlinear stability of the closed-loop system. Using this solution, the nonlinear stability analysis 

becomes independent from the design process of QFT controllers. In this solution, a T-S fuzzy 

model for the closed-loop system with QFT controller is developed and then it is investigated 

whether the local linear systems in the corresponding T-S fuzzy model satisfy the conditions of 

the theorem, presented in Section 4.2.2. This approach provides several advantages: it does not 

assign any conditions on QFT controller, parametric uncertainties can be incorporated in the 

stability analysis, and since the stability conditions are in the form of LMIs, they can be solved 

using available numerical algorithms (Boyed, et al., 1994). In this section, the above stability 

solution is applied on the case study of a QFT position controller developed earlier for a double-

rod electro-hydraulic actuator (Karpenko and Sepehri, 2008). The equations describing the 

dynamics of the system to be controlled are shown below:  
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vv vx =#  
(4.49e) 
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(4.49f) 

where xp and vp are the position and the velocity of the hydraulic actuator respectively. P1 and P2 

denote the pressures in chambers 1 and 2, respectively. xv and vv are the position and the velocity 

of spool valve, respectively. The system input is the voltage applied to the servovalve (uv). 

Description and values for the rest of the parameters are given in Table 4.3. Note that the system 
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has parametric uncertainties for the supply pressure (Ps), bulk modulus (ɓ), total mass (m), 

viscous damping (d), stiffness of the environment (k), and valve spool gain (ksp).  

Table  4.3. Values of parameters in the system described by (4.49). 

Parameter Nominal value Uncertainty range 

Effective piston area, A  (mm
2
) 633 - 

Length of rod, L  (mm) 610 - 

Flow coefficient, Kv  (m
3/2

/kg
1/2

) 0.0292 - 

Orifice area gradient, w  (mm
2
/mm) 13.2 - 

Valve damping ratio, vɝ 0.9 - 

Valve natural frequency, ɤv  (Hz) 150 - 

Supply pressure, Ps  (MPa) 17.2 13.8-18.6 

Total mass, m  (kg) 12.3 11-13.7 

Viscous damping, d  (N.sec/m) 250 200-300 

Fluid bulk modulus, b  (MPa) 689 345-1030 

Spool position gain, spk  (mm/V) 28 25-31 

Load stiffness, k  (kN/m) 30 0-60 

 

To provide accurate position tracking for the hydraulic actuator despite parametric uncertainties, 

the following QFT controller was designed by Karpenko and Sepehri (2008): 
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where the input to the controller is the error between the desired position and the actual position, 

)( ppdesiredx xxe
p

-= , and the output of the controller is the voltage signal, uv, applied to the 

servovalve. To study the stability of the QFT controller in (4.50) for the hydraulic actuator in 

(4.49), the closed-loop system should be represented by a T-S fuzzy model. Figure 4.3 shows the 

closed-loop structure of the system using the state-space representation of the controller as 

follows: 

    )( ppdesiredcccc xx -+= BxAx
C#C  

(4.51) 
     ccvu xC

C
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where, [ ]T1 lccc xx 3
C
=x ,

 
is the state vector of the controller and Ac, Bc, Cc are given as 

follows:  
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[ ]69000000027600000=cC  (4.52c) 

 For the above state-space representation, ɚ=3.
 
The state-space representation of the controller 

will be added to the T-S fuzzy model of the hydraulic system.  

  

 

 

 

Figure  4.3. Closed-loop position control system. 

For the hydraulic actuator, the T-S fuzzy model obtained in (4.21) and (4.22) can be used after 

removing the terms related to the friction and leakages, since the system presented in (4.49) does 

not include the friction and leakages. Also, the first order servovalve equation in (4.21) and 

(4.22) is replaced with the second order equations in (4.49). The uncertain parameters are 

incorporated in the T-S fuzzy model using the approach explained in Section 4.3.2. The resultant 

T-S fuzzy model is as follows: 
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where ilnrjwA  and ilnrjwB  are as follows: 
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Note that Sl(k), Nn(d), Mr(m), Hj(ɓ), and Ww(ksp) are the membership functions related to the 

environment stiffness k, total damping d, total mass of m, effective bulk modulus ɓ, and spool 

position gain ksp. The uncertainty range of supply pressure Ps is incorporated in calculation of 

gi(i=1,2). The extremums gi(i=1,2) for [ ]ssL PPP )3/2()3/2(-Í , and [ ]MPa6.188.13ÍsP  are 

calculated as follows: 
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(4.55b) 

The summations in (4.53) can be aggregated as follows: 
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where *
rA , *

rB , ))(( tzqr ,
 
and r, are: 

ilnrjwAA =*ɟ  (4.57a) 

ilnrjwBB =*ɟ  (4.57b) 

 (4.57c) 

 
(4.57d) 

Now to present the T-S fuzzy model of the closed-loop system, the state-space equations of the 

QFT controller in (4.51) is added to the T-S fuzzy model of the hydraulic actuator in (4.53) as 

follows: 

   (4.58a) 

   (4.58b) 

Since , the above equations can be easily combined as follows:  

   (4.59) 






























































































































