The Effects of Marginal Pyridoxine Deficiency and High Protein Intakes on Vitamin B₆ Status and Enzymes in Intermediary Metabolism in Rats

By

Sara Raposo-Blouw R.D.

This thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfillment of the requirements of the degree of

Master of Science

Department of Human Nutritional Sciences

University of Manitoba

Winnipeg, Manitoba, Canada

R3L 0T3

© Sara Raposo 2015
Abstract:

Pyridoxal-5-phosphate (PLP), the active form of vitamin B6 (B6), is a co-factor for enzymes in macronutrient metabolism. Increasing protein intake may affect B6 by increasing PLP-dependent enzymes in amino acid metabolism, which may be more pronounced during moderate B6 deficiency. Decreased B6 status decreases PLP-dependent enzyme activity possibly altering macronutrient metabolism. We examined changing dietary carbohydrate: protein ratios in rats consuming recommended vs. moderately deficient intakes of pyridoxine (PN)-HCl, on plasma markers of B6 status and enzymes in intermediary metabolism. Marginal B6 deficiency decreased all plasma B6 vitamers except for pyridoxic acid. Protein intake (40% energy) significantly reduced plasma PN and tended to decrease plasma pyridoxal with no significant alterations in plasma homocysteine or cysteine. Hepatic cystathionine-γ-lyase, glycogen phosphorylase, plasma aspartate and alanine aminotransferase significantly decreased with marginal B6 deficiency and cystathionine-γ-lyase decreased with increasing protein intake. Marginal B6 deficiency significantly increased hepatic glycogen with no changes in plasma haptoglobin.
Acknowledgments:
I would like to acknowledge my advisor Dr. Jim House for being a great role model and mentor through my experience in undergrad and graduate studies. His patience and sense of humor have allowed me to learn from my valuable mistakes made along this journey. A big acknowledgment to my committee members Dr. Carla Taylor and Dr. Karmin O who have provided me with direction and guidance throughout my work, and challenged me to think from different angles. I would also like to acknowledge Dr. Huebner for giving me guidance in histology and access to his equipment to do my work throughout undergrad and graduate school. Special thanks also to the lab personnel and students who helped me learn my way around the lab. I would like to acknowledge my funding from the University of Manitoba Graduate Enhancement of Tri-Counsel Stipends (GETS), the Food Advancement Through Science and Technology (FAST) training scholarship and National Science and Engineering Research Counsel (NSERC).

Dedication:
I dedicate this body of work to my husband Ian and mom Maria de Gloria. Thank you for being my cheerleaders here and in spirit.
Foreword

The material presented in this document has been presented in abstract form at the following conferences:

Experimental Biology, April 2015: Effect of High Protein Consumption on Markers of B₆ Status in a Rodent Model of Moderate Pyridoxine Deficiency

Canadian Nutrition Society, May 2015: Effect of High Protein Consumption on Markers of B₆ Status and PLP-Dependent Liver Enzymes in a Rodent Model of Moderate Pyridoxine Deficiency
Table of Contents:

1. Literature Review ..3

1.1 Vitamin B₆ (B₆) ..3
 1.1.1 Properties and Structure ..3
 1.1.2 Sources & Bioavailability ..3
 1.1.3 Absorption and Transport ..4
 1.1.4 Body Stores and Excretion ..5
 1.1.5 B₆ Status Indicators ...6

1.2 B₆ Intake & Requirements ..8
 1.2.1 B₆ Intake & Requirements ..8
 1.2.2 B₆ Status in North America ..10

1.3 B₆ Deficiency ..13
 1.3.1 Factors Affecting B₆ Status ...13
 1.3.2 Signs & Symptoms of B₆ Deficiency ..21

1.4 B₆ Involvement in Macronutrient and Energy Metabolism and Consequences of Deficiency ..24
 1.4.1 B₆ and Enzymes Linked to Intermediary Metabolism ..24
 1.4.2. Protein Intake & its Implication on B₆ Status and Energy Regulation28
 1.4.3. Movement & Storage of Lipids During B₆ Deficiency and High Protein Intake30
 1.4.4. Impaired Liver Integrity Under B₆ Deficiency ..35

2. Research Problems and Rationale ..37

3. Research Gap ..39

4. Hypothesis and Objectives ..40

5. Materials and Methods ...41
5.1. Diets and Animals ... 41
5.2. Plasma and Tissue Collection ... 43
5.3. Markers of B\textsubscript{6} Status ... 43
 5.3.1. Plasma B\textsubscript{6} Vitamers ... 43
 5.3.2. Plasma Homocysteine (HCY) and Cysteine (CYS) 44
 5.3.3. Hepatic Cystathionine-\gamma-Lyase (CGL) 44
5.4. Histological Staining and Grading for Inflammation 45
 5.4.1. Histological Staining .. 45
 5.4.2. Histological Grading for Hepatic Injury 46
5.5. Hepatic Injury and Inflammatory Makers 48
 5.5.1. Plasma Aspartate Aminotransferase (AST) 48
 5.5.2. Plasma Aspartate Aminotransferase (ALT) 48
 5.5.3. Plasma Haptoglobin ... 49
5.6. Hepatic Steatosis and Lipid Movement 50
 5.6.1. Total Hepatic Lipids ... 50
 5.6.2. Plasma and Liver Triglycerides 50
5.7. Macronutrient Utilization .. 51
 5.7.1. Total Hepatic Glycogen .. 51
 5.7.2. Total Hepatic Glycogen Phosphorylase 52
5.8. Total Protein Determination .. 53
5.9. Statistics .. 54
6. Results .. 55
 6.1. Intakes and Growth .. 55
6.2. Plasma Markers of B₆ Status

6.2.1. Plasma B₆ Vitamers

6.2.2. Alternative Markers of B₆ Status: Plasma HCY, CYS and Hepatic CGL

6.3.2. Plasma and Hepatic TG

6.3.3. Hepatic Glycogen and Glycogen Phosphorylase

6.4. Histology for Hepatic Injury

6.5. Plasma Markers of Hepatic Injury

6.5.1. Plasma AST and ALT

6.5.2. Plasma Haptoglobin

6.6. Correlations

7. Discussion

8. Strengths and Limitations

9. Future Research

10. Major findings of Study
List of Tables

Table 1 Health Canada 2010 EAR & RDA Values for B₆ in Humans...9
Table 2 Drugs & Natural Compounds Affecting B₆ Status...16
Table 3 Stages of B₆ deficiency in Humans ...23
Table 4 AIN-93G Base Mix for 20% Protein & 40% Protein Diets (% By Weight).........................42
Table 5 Overall Biological Performances of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..57
Table 6 P-Values for Weekly Body Weight of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..59
Table 7 P-Values for Weekly Intake for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..61
Table 8 Plasma B₆ Vitamers for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..64
Table 9 Alternative Markers of B₆ Status for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..65
Table 10 Plasma and Hepatic Lipid for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..66
Table 11 Contingency Table for Protein Level Versus Central Vein Dilation in Rodents...71
Table 12 Plasma Haptoglobin for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..76
List of Figures

Figure 2 Visualization of Hepatic Lipid Droplets Between Treatment Groups (Pilot Study) ...34

Figure 3 Weekly Body Weight of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..58

Figure 4 Weekly Intake of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..60

Figure 5 Hepatic Glycogen for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..68

Figure 6 Hepatic Glycogen Phosphorylase for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ...69

Figure 7 Impacts of B₆ Status and Protein Intake on Hepatic Histology of Rodents........72

Figure 8 Plasma AST for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..74

Figure 9 Plasma AST for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake ..75
<table>
<thead>
<tr>
<th>List of Abbreviations</th>
<th>ml-Milliliter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- Adequate B₆ Intake</td>
<td>mmol-Millimolar</td>
</tr>
<tr>
<td>ALT- Alanine Aminotransferase</td>
<td>MTP- Microsomal Triglyceride Protein</td>
</tr>
<tr>
<td>AMDR- Acceptable Macronutrient Distribution Range</td>
<td>NADH- Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>Apo-C- Apolipoprotein-C</td>
<td>NHANES- National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>AST- Aspartate Aminotransferase</td>
<td>nmol-Nanomolar</td>
</tr>
<tr>
<td>CBS- Cystathionine Beta-Synthase</td>
<td>OD- Optical Density</td>
</tr>
<tr>
<td>CCHS- Canadian Community Health Survey</td>
<td>PN- Pyridoxine</td>
</tr>
<tr>
<td>CGL- Cystathionine Gamma-Lyase</td>
<td>PNP- Pyridoxine-5’-Phosphate</td>
</tr>
<tr>
<td>CHO- Carbohydrate</td>
<td>PA- Pyridoxic Acid</td>
</tr>
<tr>
<td>DRI- Dietary Reference Intakes</td>
<td>PL- Pyridoxal</td>
</tr>
<tr>
<td>EALT- Erythrocyte Alanine Transaminase</td>
<td>PLP- Pyridoxal-5’-Phosphate</td>
</tr>
<tr>
<td>EAST- Erythrocyte Aspartate Transaminase</td>
<td>PM- Pyridoxamine</td>
</tr>
<tr>
<td>EAR- Estimated Average Requirement</td>
<td>PMP- Pyridoamine-5’-Phosphate</td>
</tr>
<tr>
<td>EDTA- Ethylenediaminetetraacetic Acid</td>
<td>RDA- Recommended Daily Allowance</td>
</tr>
<tr>
<td>TG- Triglyceride</td>
<td>µg- Microgram</td>
</tr>
<tr>
<td>HPLC- High-Pressure Liquid Chromatography</td>
<td>µl- Microliter</td>
</tr>
<tr>
<td>L- Liter</td>
<td>µm- Micromolar</td>
</tr>
<tr>
<td>M- Molar</td>
<td>USA- United States of America</td>
</tr>
<tr>
<td>MD- Marginal Deficient B₆ Intake</td>
<td>VLDL- Very Low-Density Lipoprotein</td>
</tr>
<tr>
<td>mg- Milligram</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Vitamin B₆ is an important water-soluble vitamin involved in carbohydrate, protein and lipid metabolism (Said, 2011). Pyridoxal-5-phosphate (PLP) is the active form of vitamin B₆ and it is a cofactor for enzymes such as cystathionine-β-synthase and cystathionine-γ-lyase (CGL) in the transsulfuration pathway. PLP is also needed for glycogen phosphorylase in the glycogenolysis pathway and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in transamination reactions. A decrease in B₆ status (decreased plasma PLP) can decrease these PLP-dependent enzymes and impair the pathways in which they are involved. Factors lowering B₆ status include age (Morris et al., 2008; O'Leary, et al., 2011), smoking (Pfeiffer et al., 2013), inadequate intake (Institute of Medicine, 1998), food-derived inhibitors (Mayengbam, Raposo, Aliani, House, 2015), food preparation (Gregory III, 1997; Viñas et al., 2004), disease such as diabetes (Ahn, Min, & Cho 2011), hydrazine drugs (Cheng et al., 2013; di Salvo et al., 2012) and oral contraception use (Rios-Avila, et al., 2015). Vitamin B₆ status can be classified as moderate deficiency (plasma PLP 20-30 nmol/L) or severe deficiency (plasma PLP <20 nmol/L) (Institute of Medicine, 1998; Leklem, 1990). Approximately 18% of North Americans are moderately deficient, while 25% are severely deficient (Morris et al., 2008). Moderate B₆ deficiency is more commonly seen in the developed world and females and older adults seem to be at high risk (Morris et al., 2008). This can be attributed to decreased meat and overall intake as well as age, use of hydrazine drugs with age and oral contraceptives in females (Cheng et al., 2013; Lussana, Zighetti, Bucciarelli, Cugno, & Cattaneo, 2003; Garriguet, 2007).

High protein intakes in rats (70% energy as casein) decrease B₆ status by increasing B₆ requirement for protein metabolizing enzymes (Abe & Kishino, 1982; Moriya, Fukuwatari, Sano, & Shibata, 2012, Okada & Ochi, 1971; Okada et al., 1998; Pregnolato et al., 1994; Suzuki et al.,
This in turn can negatively impact PLP-dependent enzymes. It should also be noted that the acceptable macronutrient distribution range (AMDR) for protein is 10-35% of dietary energy and was set as a compliment to the already established AMDR for carbohydrates and lipid (Institute of medicine, 2008). Currently, dietary reference intakes for B₆ requirement are not considered to be influenced by protein intake (Institute of Medicine, 1998). Protein intake has been on the rise lately with the increase in popularity of high protein diets, as well as recommendations for higher protein intakes to prevent sarcopenia in older adult populations (Bauer et al., 2013; Campbell, Trappe, Wolfe, & Evans, 2001). Some of these populations consuming higher protein intakes are at risk for marginal B₆ deficiency and there is also questionable efficacy for the upper AMDR range for protein especially if one is under a marginal B₆ deficiency. Thus the extent to which protein intake near the upper AMDR range influences B₆ status measures is not clear. The further impact of moderate B₆ status in this setting is also not known. The consequences to intermediary metabolizing enzymes should be investigated.
1. Literature Review

1.1 Vitamin B₆ (B₆)

1.1.1 Properties and Structure

Vitamins are a collection of organic substances that differ in chemical structure, and need to be ingested in the diet to prevent disorders of metabolism (Pazirandeh, Lo, & Burns, 2009). Vitamin B₆ (B₆), otherwise known as pyridoxine, is a light sensitive water-soluble vitamin and consists of a group of six interchangeable pyridine compounds (also known as vitamers). They include pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL) and their 5′-phosphorylated forms (PNP, PMP and PLP), that can vary in the identity of the chemical group present at the 4′ position (Di Salvo, Contestabile, & Safo, 2011). PLP is the active form of the vitamin (Institute of Medicine, 1998; Viñas, Balsalobre, López-Erroz, & Hernández-Córdoba, 2004). PLP is an essential co-factor for over one hundred and forty enzymes in the body (Di Salvo et al., 2011), including oxidoreductases, transferases, hydrolases, lyases and isomerases, which are involved in different metabolic pathways (Percudani & Peracchi, 2003). PLP is known to participate in carbohydrate (CHO), protein, and lipid metabolism, the transsulfuration pathway, as well as the production and degradation of neurotransmitters (Allen et al., 2010; Said, 2011). PLP has a very reactive aldehyde group at the 4′ position, which accounts for its wide use as a co-factor (Di Salvo et al., 2011). Microorganisms and plants can synthesize B₆ de novo, while other organisms must obtain the vitamin from the diet. However, not all sources of B6 have the same bioavailability.

1.1.2 Sources & Bioavailability

Bioavailability of B₆ refers to the fraction of dietary vitamin B₆ absorbed and metabolically utilized (Nguyen & Gregory, 1983). In a mixed diet, B₆ bioavailability is
approximately 75% (Bowling, 2011). In animal tissues, B₆ is found primarily as PLP and PMP (Institute of Medicine, 1998; Viñas et al., 2004). In plants, B₆ exists as PN and PNP (Institute of Medicine, 1998), but the major proportion of B₆ (~80%) in plant proteins is found as pyridoxine glucoside (Hansen, Leklem, & Miller, 1996; Ollilainen, 1999). In rats the bioavailability of this form is reported to be 20-30% (Ink, Gregory III, & Sartain, 1986), while in humans it has been reported to not be absorbed as well as the other vitamers (Institute of Medicine, 1998). Human studies have observed decreased plasma PLP, decreased urinary end products of B₆ metabolism and a 15% loss of total B₆ intake when 27% of B₆ intake was pyridoxine glucoside versus 13% (Hansen et al., 1996). Although B₆ can also be produced from colonic bacteria (Mackey, Lieu, Carman, & Gregory III, 2003), this is minimal and requirements are met through dietary intake.

Food preparation is also known to affect B₆ bioavailability. Food processing can cause interconversion of B₆ vitamers, while leaching during cooking has been implicated as a major cause of losses (Viñas et al., 2004). Heating foods has also been seen to decrease B₆ content (Gregory III, 1997). Although the bioavailability of B₆ in foods can vary, when the vitamin is absorbed it goes through a series of processes to become biologically active.

1.1.3 Absorption and Transport

When B₆ is consumed in the diet, any phosphorylated forms of the vitamin must be hydrolyzed in the intestine by brush boarder phosphatases before absorption into enterocytes (di Salvo, Safo, & Contestabile, 2012; Merrill Jr. & Henderson, 1990). The vitamin is transported through the portal blood to the liver, where phosphorylation occurs again to ensure the vitamin does not leave the cell. This phosphorylation is done by the enzyme pyridoxal kinase, which is abundant throughout the body allowing for PL uptake at many tissues (Merrill Jr. & Henderson, 1990). In the liver, PNP and PMP are converted into PLP via pyridoxine-5 phosphate oxidase.
(PNP oxidase) and pyridoxamine-5 phosphate oxidase (PMP oxidase). The majority of this enzyme is found in the liver, thus most conversions of PNP/PMP are done in this organ (Merrill Jr. & Henderson, 1990). PLP is then be bound to albumin for transport through the blood to tissues. At the tissue membrane PLP will be hydrolyzed by alkaline phosphatase for uptake into tissues and re-phosphorylated once inside to the active PLP form by PL kinase (Bowling, 2011; Masse et al. 2012). This process is known as non-saturable passive diffusion (Institute of Medicine, 1998).

1.1.4 Body Stores and Excretion

PLP and PL are the main constituents of plasma B₆ (Okada, Shibuya, Akazawa, Muya, & Murakami, 1998a), but the majority of B₆ is stored in muscle as PLP in conjunction with glycogen phosphorylase (Bowling, 2011; Okada et al., 1998a). Body storage of B₆ is reported to be around 1000 µmol (206 mg PN-HCl), with the assumption that 80% of B₆ stores are located in the muscle (Coburn et al., 1988). Stored B₆ is released from body stores at a slow rate (Lui, Lumeng, Arnoff & Li, 1985). The rate of phosphorylating PN, PM and PL to PLP by PL kinase to stay in the cell is higher than converting PNP and PMP to PL by PNP oxidase for the eventual conversion to PLP to be released from liver into circulation. This would indicate a slower release of PLP originating from PN or PM rather than PL (Merrill Jr. & Henderson, 1990). Due to slow storage release and a lack of consensus on which B₆ vitamer is the best indication of B₆ body stores, it has been difficult to accurately determine B₆ status among the population. B₆ can be measured directly through analysis of plasma, blood cells and urine, or indirectly through functional enzyme tests and methionine loading (Institute of Medicine, 1998; Miller, Nadeau, Smith, & Selhub, 1994).
B₆ is mainly excreted as PA in the urine (Hansen et al., 1996; Lui, Lumeng, Aronoff, & Li, 1985; Viñas et al., 2004), and represents around 50% of the B₆ compounds present in urine. B₆ is also found in fecal matter, although colonic bacteria production has proven difficult to measure due to the lack of precision in estimating the amount of the vitamin excreted in feces (Institute of Medicine, 1998). At present time plasma PLP alone or in combination with urinary PA, and other B₆ markers are used to assess B₆ status in humans and animals (Bowling, 2011).

1.1.5 B₆ Status Indicators

B₆ can be measured directly through analysis of plasma, blood cells and urine, or indirectly through functional enzyme tests and tryptophan or methionine loading (Institute of Medicine, 1998; Miller et al., 1994). Tryptophan loading and measurement of urinary xanthurenic acid is an indirect measurement of B₆ status. PLP is involved in tryptophan metabolism and the kynurenine pathway as a cofactor for kynureninase and kynurenine transaminase. Although xanthurenic acid has been found to be weakly associated with plasma PLP, ratios of 3-hydroxykynurenine: kynurenic acid, and kynurenic acid: xanthurenic acid have showed considerably stronger associations with PLP (Ulvik et al., 2013) and are used as an indirect measure of B₆ status.

Measuring the activity of PLP-dependent transsulfuration enzymes such cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CGL), is another indirect measure used along with the transsulfuration precursor homocysteine (HCY). Studies have shown a correlation between increased plasma HCY and decreased levels of CBS activity, CGL activity and plasma PLP concentrations, indicating depleted B₆ levels impair the transsulfuration pathway (Cabrini et al., 2005; Martinez, Cuskelly, Williamson, Toth, & Gregory, 2000). The methionine loading test evaluates B₆ status on the efficiency of PLP-dependent CBS, which is shown to bind less
strongly to PLP than CGL (Martinez et al., 2000; Miller et al., 1994). PLP-dependent serine hydroxymethyltransferase (SHMT) in the transulfuration pathway has been observed to be less tightly bound to PLP than CBS and is more readily affected during B₆ depletion (Martinez et al., 2000).

Cysteine is a product of the transsulfuration pathway and is formed from homocysteine through the intermediate cystathionine (Lima et al., 2006; Martinez et al., 2000). During B₆ deficiency an increase in plasma cystathionine and HCY are observed with decreases in plasma cysteine (da Silva et al., 2013; Lima et al., 2006; Taysi et al., 2015). Other indirect measurements include PLP-dependent enzymes such as tyrosine decarboxylase and erythrocyte alanine transaminase (EALT) and erythrocyte aspartate transaminase (EAST). The activity of these enzymes have been seen to decrease and plateau in seven to eight days, and may therefore reflect an indicator of longer term B₆ status (Hansen et al., 1996; Hansen, Shultz, Kwak, Memon, & Leklem, 2001).

PLP in tissues and plasma, and PA in urine are direct B₆ status measurements. PA excretion reflects the major portion of B₆ intake that has been absorbed and metabolized (Hansen et al., 1996). Measurement of B₆ vitamers and their metabolite, PA, in plasma have been successfully determined through electrochemical coulometry detection (Marszał et al., 2009) and reversed phase high-pressure liquid chromatography with pre-column semicarbazide derivatives of B₆ (Talwar et al., 2003). These are more short-term B₆ status indicators as they can be readily impacted by diet.

1.2 B₆ Population Intakes and Requirements
1.2.1 B6 Intake & Requirements

Dietary reference intakes (DRIs) are guides to help groups and individuals meet their nutritional needs to avoid deficiency and the associated risk for disease. It is recommended that groups of individuals use the estimated average requirement (EAR) to plan and assess the adequacy of nutrient intakes (Health Canada, Dietary Reference Intake Tables, 2010). The EAR is “the daily nutrient intake value that is estimated to meet the requirements, in half the apparently healthy individuals in a group” (Institute of Medicine, 2006). The recommended daily allowance (RDA) is based on the EAR values, and is used to assess individual nutrient status (Health Canada, 2010). The RDA is “the average daily intake level that is sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) apparently healthy individuals in a particular life-stage and gender group” (Institute of Medicine, 2006). The EAR and RDA values for vitamin B6 for children, men and women in Canada are reported in Table 1 (Health Canada, 2010).

The values reported in Table 1 are based on healthy individuals eating a mixed North American diet. Multiple indicators of B6 status were used to compile the data in Table 1, but as often as possible plasma PLP of at least 20 nmol/L was used as the major indicator of adequate status. Therefore plasma PLP levels below 20 nmol/L are considered B6 deficient (Institute of Medicine, 1998). Groups consuming less than the EAR and individuals consuming less than the RDA are at risk for developing vitamin B6 deficiency.
Table 1 Health Canada 2010 EAR & RDA Values for B₆ in Humans

<table>
<thead>
<tr>
<th>Health Canada 2010 EAR & RDA Values for B<sub>6</sub></th>
<th>EAR mg/day</th>
<th>RDA mg/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children ages: 1-3 years</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Children ages: 4-8 years</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Men ages: 9-13 years</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Men ages: 14-50 years</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Men ages: 51 years and older</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Women ages: 9-13 years</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Women ages: 14-18 years</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Women ages: 19-50 years</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Women ages: 51 years and older</td>
<td>1.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1.2.2 B₆ Status in North America

Assessing B₆ status in a population can be done through analyzing food intake, measuring plasma PLP values or a combination of both. There has been a lack of data reporting large epidemiological studies on food intake in Canada and consequently it has been difficult to assess nutrient status in the Canadian population. The Canadian Community Health Survey (CCHS)-Nutrition, (2004) was the first national survey since the 1970’s to analyze Canadians’ eating habits. The survey involved a 24 hour diet recall and included 35,000 people across Canada, excluding individuals in the military, territories, Indian reserves, institutions and remote locations.

B₆ and its vitamers are found in protein rich muscle foods, like meat and fish, as well as nuts. These protein rich foods are classified as the meat and alternative food group in the 1992 Canada’s Food Guide to Healthy Eating for People Four Years Old and Over, and the 2011 Eating Well with Canada’s Food Guide. According to Garriguet (2007), in 2004, the average daily consumption of meat and alternatives in men ages 14-75 years was at least 200g. One in four men consumed more than 300 g, while all females averaged 200 g or less a day. The 2011 Canadian Food Guide (CFG) indicates a serving of meat as 75 grams, which is a smaller serving compared to the 1992 CFG serving of 100 grams in use at the time of the survey. The results indicate females on average met their serving requirements for meat and alternatives, while a large portion of men over consumed this food group. These findings suggest that males on average consumed more meat and alternative sources of B₆ than women, which was also observed in a nutritional survey by Starkey, Johnson-Down, & Grey-Donald (2001).

B₆ is also found in whole grains and vegetables. Although it is not known how much grain intake from the 2004 CCHS was whole grain, the amount considered a serving size stayed
the same between 1992 and 2011. Garriguet (2007) reported grain as the top energy provider for ages four and up, though with increasing age fewer grains were consumed on average. At age seventy-one and older, 43% of men and 60% of women consumed less than five servings of grain, which is less than the 1992 and 2011 CFG serving recommendations for that age group. This decreasing trend in grain consumption with age was also reported by Starkey et al. (2001). These findings indicate that with increasing age, B₆ consumption from grains decreases.

For fruits and vegetables, serving sizes have not changed since the 1992 CFG. A drawback of the 2004 CCHS is the unknown amount of vegetables versus fruit eaten in this food group. Garriguet (2007) described that seven out of ten children and half of the adults had less than five fruit and vegetable servings a day in 2004. This is less than the 1992 and 2011 CGF servings recommended for that food group. Starkey et al. (2001) also observed low intakes of fruit and vegetables among adult’s years earlier, which imply that consumption of fruit and vegetables in the Canadian population is low and consequently B₆ intake from this food group is also low.

B₆ intakes from food sources in the Canadian population indicate men ages 51-70 years were 10.9% and 70 years and older were 23.1% below the EAR. Females ages 14-18 years were 11.1%, 19-30 years were 9.6%, 31-50 were 15.9%, 51-70 years were 19.4% and 70 years and older were 32.5% below the EAR (Health Canada, Canadian Community Health Survey Cycle 2.2- Nutrition, 2004). These data suggests that B₆ consumption tends to decrease with age and a small portion of females tend to have lower B₆ intakes than males. B₆ requirement increases with age so the older adult population is not meeting the increased EAR for B₆ even if consumption remained the same since early adulthood. A Nutritional study of three major Canadian Arctic cultures, which are not included in the CCHS, showed nutrient intakes were significantly and
consistently higher when at least one item of traditional food, usually meat or fish, was included in daily intake compared to non-traditional foods (Kuhnlein, Receveur, Soueida, & Berti, 2008). Increased nutrient intakes included protein and pyridoxine especially for the Inuit. In these artic cultures, 40% of dietary energy was from traditional or manufactured meats and fish and this was a leading factor in determining the adequacy for intakes of protein, minerals and vitamins such as B₆ (Kuhnlein et al., 2008).

Morris et al. (2008) conducted a large national health and nutrition examination survey (NHANES) for the United States of America (USA), and examined B₆ status in the USA from the years 2003-2004. They observed similar finding in the USA population, noting that adults between the ages of 21-44 years had low plasma PLP values, and estimated that 40% of women in this age category had low plasma PLP. Men were also seen to have declining plasma PLP with age. Although Morris et al. (2008) reported a trend for decreasing B₆ intakes with age and decreased plasma PLP in women, their results indicate teenagers had the lowest B₆ intake. This was not seen in the Canadian population; instead the elderly were seen to have the lowest B₆ status. The interesting finding from the Morris et al. (2008) study was plasma PLP was often low when B₆ intake was between 2 and 2.9 mg/d, which is well above the RDA for all age groups. NHANES data over a three-year span (2003-2006) still indicate that older adults (>60 years) have lower B₆ status compared to younger adults and women continued to have lower plasma PLP than men (Pfeiffer et al., 2013). In young adults (20–39 y) 9.9% were seen to severely B₆ deficient; children and adolescents were less likely to be at risk of vitamin B₆ deficiency (<5%), and older adults were significantly more likely to be at risk (16%). This study also observed B₆ was one of the four nutrients that had the highest prevalence in persons at risk of deficiency (6–10.5%).
The 2004 CCHS analyzed B₆ intake from food, while Morris et al. (2008) analyzed intake from food and plasma PLP levels. The CCHS has limited insight on the population’s dietary intakes of B₆ and its reflection on plasma PLP values. Another limitation of the 2004 CCHS is the lack of data representing the reserve-based aboriginal population who have high rates of diabetes (Health Canada, 2000), which has been associated with depleted B₆ status (Ahn, Min, & Cho, 2011).

1.3 B₆ Deficiency
1.3.1 Factors Affecting B₆ Status

B₆ status is affected by the quantity of B₆ consumed and its bioavailability. Any reduction in the availability of PLP inside the cell causes the incomplete transformation of newly formed apoenzymes into active holoenzymes in turn affecting physiological processes dependent on those enzymes (di Salvo et al., 2012; Martinez et al., 2000). Inadequate B₆ intake is observed in North America, especially in women, and it is thought to be related to decreased intakes of protein and B₆ intakes below the RDA (Gregory III, 1997). B₆ deficiency is defined as having plasma PLP levels lower than 20 nmol/L (Institute of Medicine, 1998). Severe B₆ deficiency is rare because the vitamin is found widely in diet (Marszal et al., 2009), but as previously mentioned, the bioavailability differs. Marginal B₆ deficiency is said to be seen when plasma PLP concentration levels are 34.4 nmol/L (Rose et al., 1976), while other have suggested a range between 20-30 nmol/L (Leklem, 1990). Marginal B₆ deficiency is seen in about 18% of the population in North America and up to 50% in Europe (Haller, Lowik, Ferry, & Ferro-Luzzi, 1991; Morris et al., 2008). Health effects in marginal deficiency are usually not exhibited until much more severe deficiency occurs. PLP-dependent enzymes are widespread in many phases of metabolism; it is hard to calculate specific clinical and biochemical changes with mild deficiency
Portions of the population have been reported to be deficient as a result of smoking, inadequate intake, imbalanced diet, age, drug interactions and disease (Ahn et al., 2011; Cheng et al., 2013; Morris et al., 2008; Pfeiffer et al., 2013; Rios-Avila et al., 2015).

Smoking is known to have adverse health effects and in a recent study smoking was significantly related with lower plasma PLP (29%) and PA (18%), compared with nonsmokers (Pfeiffer et al., 2013). Lower PA indicates a decreased intake is also a contributor in smokers as PA is a short term B₆ status indicator.

A few studies have implicated oral contraceptive drug usage in lowering B₆ status (Lussana, et al. 2003; Morris et al., 2008). It has been suggested that oral contraceptives alter tryptophan metabolism, a B₆-dependent metabolic pathway (Bhagavan & Brin, 1983). A study in Australia did not see this connection with B₆ (McArthur, Tang, Petocz, & Samman, 2013), but a more recent study in the U.S.A indicated significant overall differences between oral contraceptive users and non-users, regardless of B₆ status, for B₆-dependent one-carbon metabolites (HCY) and tryptophan metabolites (Rios-Avila et al., 2015). This study indicates that oral contraceptives do play a role in altering B₆ dependent pathways leading to alterations in one-carbon and tryptophan metabolites suggesting a possible lowering of B₆ status.

Drugs and natural compounds containing an amine or hydrazine functional group (ie: dopamine, penicillamine) can react with PL, PLP or pyridoxal kinase and reduce B₆ availability (di Salvo et al., 2012). Long term use of cyclooxygenase inhibitors have been observed to reduce plasma PLP in humans and non-steroidal anti-inflammatory drugs such as naproxen have been seen to decrease tissue PLP in hamster and mouse models (Cheng et al., 2013). The drug isoniazid that is used in tuberculosis treatment has been linked to decreased B₆ status, due to the fact it is part of the hydrazine-based group of anti-tuberculosis medications (Pellock, Howell,
Kendig, & Baker, 1985; Whitehouse et al., 1982). Other hydrazine drugs are commonly used for depression, respiratory, and neurological diseases and some of these compounds are listed in Table 2. Contradictive to previous studies, one study found no evidence that doses of isoniazid influenced plasma PLP, but found human immunodeficiency virus (HIV) infection did negatively impact B₆ status (Cilliers et al., 2010).
Table 2 Drugs & Natural Compounds Affecting B₆ Status

<table>
<thead>
<tr>
<th>Name</th>
<th>Medical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillamine</td>
<td>Metabolite of penicillin prescribed for rheumatoid arthritis and treatment of Wilson’s Disease.</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>Used as a secondary treatment for severe hypertension</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Neurotransmitter used in the management of Parkinson’s disease, attention deficit hyperactive disorder, drug addiction & psychosis.</td>
</tr>
<tr>
<td>Levodopa</td>
<td>Precursor for neurotransmitters used for management of Parkinson’s Disease, encephalitis, carbon monoxide poisoning.</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>Organic compound used in the treatment of tuberculosis.</td>
</tr>
<tr>
<td>Methylxanthines</td>
<td>Bronchodilators used for the management of cardio obstructive pulmonary disease (COPD), bronchiolitis and asthma.</td>
</tr>
<tr>
<td>Ginkgotoxin</td>
<td>Neurotoxin used to treat neuronal disorders, improve brain metabolism and peripheral blood flow.</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>A psychoactive drug used in the management of anxiety, insomnia, agitation, muscle spasm, alcohol withdrawal and seizures.</td>
</tr>
<tr>
<td>Theophylline</td>
<td>Methylxanthine derivative used to treat COPD and other respiratory diseases</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>Non steroidal anti-inflammatory drug (NSAID) with an anti-platelet effect used to manage pain, fever and inflammation and prevent heart attack, stroke and blood clots.</td>
</tr>
<tr>
<td>Naproxen</td>
<td>NSAID used to relieve pain, inflammation and stiffness common in arthritis.</td>
</tr>
</tbody>
</table>

(Adapted from Cheng et al., 2013; Salvo, Safo & Contestabile, 2013)
The World Health Organization (WHO), as of 2004, recommended that vitamin B₆ be supplemented, 10 mg daily, for individuals taking Isoniazid, and under the following conditions: HIV infection, alcohol abuse, malnutrition, diabetes, and chronic liver disease in order to prevent peripheral neuropathy. These WHO recommendations are supported by evidence of connections between low B₆ status and age-related chronic diseases such as cardiovascular disease and diabetes which have been observed in humans and animals (Ahn et al., 2011; Keith et al., 2009; Martinez et al., 2000; Masse, Boudreau, Tranchant, Ouellette, & Ericson, 2012; Sakakeeny et al., 2012; Xiao et al., 2011).

Flaxseed seed has been advocated for its use in the diet as a source of alpha-linoleic acid and its beneficial effects on blood pressure (Khalesi, Irwin, & Schubert, 2015), but it contains the B₆ antagonist 1-amino-D-proline in the form of linatine which forms a hydrazine complex with the vitamin rendering it unavailable for the body (Mayengbam, Yang, Barthet, Aliani, & House, 2014). Administration of 10 mg/kg diet of 1-amino-D-proline to marginally B₆ deficient rats led to a 50% decrease in plasma PLP, a significant increase in cystathionine and HCY and a significant decrease in hepatic CGL (Mayengbam, Raposo, Aliani, & House, 2015). In humans this would be the same as consuming 25-30 g a day of flaxseed, which is suggested by some authors to reduce disease risk (Mason & Thompson, 2014; Saarinen et al., 2010). Flaxseed is one of many components common in today’s food supply as it is advocated for increased health benefits, but the risk of reducing B₆ bioavailability is not widely recognized which may lead to further reductions in B₆ status in the population.

Excessive ethanol intake is known to decrease B₆ status (Gloria et al., 1997). Recent animal studies show that ethanol consumption increases the storage of B₆ resulting in less PLP to be released into the plasma (Miyazaki, Sano, Fukuwatari, & Shibata, 2011). Malnourishment
prior to chronic ethanol consumption negatively impacted B₆ status more severely than nourished subjects (Miyazaki et al., 2011) indicating alcohol-induced malnutrition as a negative factor for B₆ status (Miyazaki et al., 2011).

Older age seems to impact B₆ status negatively. A recent study reported over half of the elderly subjects admitted to hospital were B₆ deficient and B₆ status was negatively associated with the length of hospital stay. Deficiency was most prevalent in the oldest patients (O'Leary, Flood, Petocz, Allman-Farinelli, & Samman, 2011). B₆ deficiency also coincided with malnutrition seen in elderly patients and possibly results from decreased overall intake, as usually observed in elderly people (Garriguet, 2007). Morris et al. (2008) observed 22% of the USA elderly population in their epidemiological study had B₆ deficiency. Health Canada reported B₆ intake among different age groups in Canada and illustrated B₆ status tended to decrease with age (Canadian Community Health Survey- Nutrition, 2004). Older adults are known to consume supplements regularly as they do not consume sufficient amounts of many nutrients from food alone. A recent study in Austria observed 49% of community dwelling older adults ages 70-90 years used supplements and 54% of supplement users took them daily (Fabian, Bogner, Kickinger, Wagner, & Elmadfa, 2012). Fabian and colleagues observed supplement users had better B₆ status than nonusers, yet 28% of supplement users vs. 14% nonusers had marginal B₆ status and 19% vs. 38% were severely B₆ deficient. Pfeiffer et al. (2013) using data from the 2003-2006 NHANES report estimated that supplement users at any age had 79% higher PLP concentrations compared with nonusers and they still observed a prevalence of deficient plasma PLP levels in supplement users (7.8%) although it was still lower compared with nonusers (19%). The 2004 CCHS data suggest Canadian women (>51 years) had higher supplement consumption versus men (Shakur, Tarasuk, Corey, & O'Connor, 2012).
These reports suggest as we age, B₆ status and B₆-dependent enzymes are likely to decrease, especially if food intake decreases. Supplement use may help increase B₆ status but it is not always enough to correct marginal and severe deficiency in all older adults in North America.

Vitamin B₆ is the only water-soluble vitamin that has higher recommendations for people 51 years and older. The EAR is increased due to age and gender by 0.2 to 0.3 mg of B₆ derived from food a day (Institute of Medicine, 1998). As mentioned previously, protein foods are a source of B₆. Protein requirements in the elderly have been suggested at 0.8 g/kg body weight (Institute of Medicine, 2006). However, protein requirements have been suggested to increase to 1.0-1.2 g/kg body weight (Bauer et al., 2013). The international study group PROT-AGE, which consisted of European Union Geriatric Medicine Society, the International Association of Gerontology and Geriatrics-European Region, the International Association of Nutrition and Aging and the Australian and New Zealand Society for Geriatric Medicine, reviewed protein needs with aging. They proposed that, “older adults need more dietary protein than do younger adults to support good health, promote recovery from illness, and maintain functionality” (Bauer et al., 2013). A 14-week controlled diet study in ambulatory older men and women (55 to 77 years old), showed that the consumption of 0.8 g protein /kg body weight resulted in a 1.7 cm decrease in mid-thigh area, helping support claims from PROT-AGE (Campbell, Trappe, Wolfe, & Evans, 2001). Increasing protein recommendations in the elderly where B₆ status is already seen to be low regardless of B₆ intakes at or above the RDA may promote further declines in B₆ status.

Protein quality and intake are known to increase requirements for B₆. Fisher, Willis, & Haskell (1984) used amino acid mixtures similar to maize and casein to determine effects of protein quality on B₆ status in rodents. The authors observed an average decreased weight gain
and B₆ status regardless of vitamin B₆ intake in low quality protein consuming groups. This is thought to be due to the decreased efficiency of low quality protein in replacing body protein and more amino acids were metabolized for energy, which increases energy expenditure. Whole diet proteins would require further degradation to reach these steps, increasing PLP-dependent enzymes and therefore B₆ requirements in order to do so.

Protein quantity will also affect B₆ requirements. Consuming a lower protein diet compared to normal and higher protein diets (5, 19.8 & 50% of dietary energy) but with equal B₆ supplementation significantly increases B₆ bioavailability in rodents (Nguyen & Gregory, 1983). However, high intakes of animal derived protein such as beef seemed to increase the bioavailability of B₆ as reflected by PLP status (Nguyen & Gregory, 1983). Currently, the DRI for vitamin B₆ does not take protein intake into consideration (Institute of Medicine, 1998). The argument made by the Institute of Medicine for B₆ requirements not being affected by protein intake is based on 1) increased protein intake leads to tissue retention of PLP and a subsequent decrease in plasma PLP which may not necessarily mean a decrease in B₆ status (Institute of Medicine, 1998), 2) human studies investigating protein intake (12% and 20% energy) in men and women over a wide age range showed no changes in plasma PLP and erythrocyte AST (Pannemans, van den Berg, & Westerterp, 1994), 3) previous studies that investigated differing PN and protein levels on B₆ status indicators to obtain B₆ requirement in mg, adjusting for protein intake and assuming a linear relation between B₆ and protein, which is not justified (ie: there is not a linear relationship between protein intake and B₆ requirement) (Institute of Medicine, 1998). An argument against the Institute of Medicine’s position is found in the evidence that shows a decrease in plasma PLP and retention in tissue PLP that is concurrent with decreases in other PLP-dependent enzymes (Bode et al., 1991). Also describing a state of
deficiency based on multiple functional enzyme activities along with decreases in plasma vitamers would be a more accurate reflection of B₆ status as B₆ is so widely spread in metabolism. For the second point, the current AMDR for protein intake are as high at 35% of energy, which was not explored in the human study mentioned. Furthermore, dietary fat was not kept constant between the different protein groups, which could shift the types of enzymes used to obtain energy (Pannemans et al., 1994). For the third point a linear approach may not be the best way to determine EAR recommendations based on protein consumption, but evidence exists that varying protein intake does increase PLP-dependent protein metabolizing enzymes and affects B₆ status via decreased PLP-dependent enzymes and enzymes involved in B₆ vitamer conversion (L. T. Miller et al., 1985; Okada, Shibuya, Akazawa, Muya, & Murakami, 1998b; Wei, 1999). High protein intakes and B₆ status are discussed later in further detail.

1.3.2 Signs & Symptoms of B₆ Deficiency

Biochemical and enzymatic markers of B₆ deficiency are seen prior to physical signs. Urinary PA responds immediately to changes in B₆ intake and is a good indicator of recent B₆ status (Lui et al., 1985). Urinary xanthurenic acid was one of the earliest markers for B₆ status as it is seen to increase as B₆ diminishes in the body. As mentioned previously, this is due to a decrease in PLP-dependent enzymes in the tryptophan metabolism pathway (Institute of Medicine, 1998). B₆ depletion decreases plasma and liver PLP, and CBS activity causing subsequent homocysteinemia, increased plasma cystathionine and liver homocysteine (Lamers, O'Rourke, Gilbert, Keeling, Matthews, Stacpoole, & Gregory III, 2009; Martinez et al., 2000; J. W. Miller et al., 1994).

Decreased AST is also seen during deficiency (Angel, 1980) resulting in the impairment of the gluconeogenesis pathway (Angel, 1980). Microcytic anemia is observed during depleted
B₆ states and results from a decrease in hemoglobin synthesis, a process that requires PLP for initiation (Institute of Medicine, 1998). Physical symptoms often manifest as seborrhoeic dermatitis, microcytic anemia, convulsions, depression and confusion (Miller et al., 1994).

Bhagavan & Brin (1983) describe B₆ deficiency in five stages (Table 3). B₆ deficiency in rodents has some similarities to the clinical and biochemical markers observed in humans and outlined in Table 3. In rodents these signs include unkempt fur, pain, swelling and pink colouration around paws, snout and eyes, impaired gait, dermatitis, decreased food intake and body weight (Okada, Shibuya, Yamamoto, & Murakami, 1999; Scheer, Mackey, & Gregory, 2005).

An absence of clinical B₆ deficiency signs does not necessarily indicate normal B₆ function (Bhagavan & Brin, 1983). Thus functional enzyme tests should be a more accurate interpretation of B₆ status and can be combined with clinical assessment to determine status.
<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaire</td>
<td>Preliminary</td>
<td>Inadequate availability from diet, malabsorption or abnormal metabolism</td>
</tr>
<tr>
<td>Biochemical</td>
<td>Biochemical</td>
<td>Decrease in tissue B_6, urinary excretion, enzyme and co-enzyme activity</td>
</tr>
<tr>
<td>Clinical/Observational</td>
<td>Physiological & Behavioral</td>
<td>Decrease appetite, weight loss, insomnia, irritable, and fatigue</td>
</tr>
<tr>
<td>Clinical/Observational</td>
<td>Clinical</td>
<td>Physical deficiency symptoms such as dermatitis, poor weight gain</td>
</tr>
<tr>
<td>Clinical/Biochemical</td>
<td>Terminal</td>
<td>Tissue death if not corrected immediately</td>
</tr>
</tbody>
</table>

Adapted from Bhagavan & Brin (1983)
1.4 B₆ Involvement in Macronutrient and Energy Metabolism and Consequences of Deficiency

1.4.1 B₆ and Enzymes Linked to Intermediary Metabolism

PLP serves as a co-factor for many enzymes involved in different metabolic processes. PLP is most recognized for its involvement in the transsulfuration pathway where it acts as a cofactor for the enzymes CBS and CGL in the interconversion of HCY to the amino acid CYS (Lima et al., 2006; Martinez et al., 2000). A large population based study using non-fasting plasma samples from 10,601 healthy subjects (mean age of 56 years), found PLP had the strongest inverse correlation with HCY and cystathionine, an intermediate in the transsulfuration pathway (Midttun, Hustad, Schneede, Vollset, & Ueland, 2007), indicating that as PLP concentrations decreased there are elevations in HCY and intermediates of the transsulfuration pathways. A decrease in the transsulfuration pathway would result in decreased CYS production, which is required for the synthesis of the antioxidant glutathione (Lamers et al., 2009).

Other than its recognition in sulfur amino acid metabolism, PLP also participates in all transamination reactions and some decarboxylation and deamination reactions of amino acids (Bowling, 2011; Percudani & Peracchi, 2003). PLP functions as a cofactor for the enzyme AST, involved in the transamination reaction of aspartate and α-ketoglutarate into oxaloacetate and glutamate in gluconeogenesis (Kaimoto, Shibuya, Nlshlkawa, & Maeda, 2013; Wrenger et al., 2011). Oxaloacetate is a TCA cycle intermediate and therefore contributes to energy production, but it can also be metabolized into glucose via gluconeogenesis during fasted states. Serine dehydratase is another PLP-dependent enzyme, which deaminates serine to form pyruvate that can enter the TCA cycle (Jean et al., 2001). Transamination and decarboxylation reactions are very important for the metabolism of protein for excretion or uses in the TCA cycle (Tirapegui, Ribeiro, Pires, & Rogero, 2012) or to produce gluconeogenic amino acids (Bowling, 2011). A
recent human study indicated marginal B₆ deficiency significantly increased the ratios of plasma glutamine/glutamate and 2-oxoglutarate/glutamate (reflections of amino transaminase reactions), and tended to increase acetate and pyruvate indicating increased use of these for beta-oxidation and TCA cycle intermediates (Gregory III et al., 2013). Overt B₆ deficiency has also been shown to reduce the enzyme activities of glucose-6-phosphate dehydrogenase and malic enzyme which are required to maintain nicotinamide adenine dinucleotide phosphate (NADP) used in anabolic reactions (Angel, 1975), highlighting the significance of B₆ in energy maintenance.

PLP is also an important cofactor in glucose metabolism. The phosphate group of PLP is an important cofactor that acts as a catalyst for the muscle enzyme glycogen phosphorylase. Glycogen phosphorylase catalyzes the first step in the glycogenolysis pathway in the fasted state, wherein glycogen is broken down to produce glucose-1-phosphate (di Salvo, Contestabile, & Safo, 2011). Glucose-1-phosphate is then converted to glucose-6-phosphate via phosphoglucomutase, to ultimately be converted into glucose. Impairments in this pathway can alter glucose utilization and force the body to use protein and lipid as carbon sources for energy production in the TCA cycle (Angel, 1975).

PLP is involved in lipid metabolism through its participation in endogenous carnitine synthesis, methylation of phospholipids and its involvement in the desaturation and elongation of fatty acids (Cho & Leklem, 1990; Hlais et al., 2012). Synthesis of carnitine, which is involved in transporting long chain fatty acids into the mitochondria for beta-oxidation to yield energy, occurs predominantly in the liver and kidneys. The biosynthesis of carnitine involves four enzymes; the second enzyme, 3-hydroxy-N-trimethyllysine aldolase requires PLP as a cofactor (Hlais et al., 2012; Vaz & Wanders, 2002). Serine transhydroxymethylase is another PLP dependent enzyme known to cleave the carnitine metabolite 3-hydroxy-6-N-trimethyllysine and
is implicated in overall carnitine biosynthesis (Dunn, Aronson, & Englard, 1982). Using a perfused liver model in rodents with depleted B₆, Dunn (1982) found that the precursors for carnitine accumulated including 3-hydroxy-6-N-trimethyllysine and less carnitine was produced. During B₆ deficiency carnitine synthesis is decreased and therefore energy metabolism is impaired (Cho & Leklem, 1990). These studies highlight the importance of B₆ for lipid transport and metabolizing enzymes in lipid metabolism.

Vitamin B₆ is an important water-soluble vitamin that acts as a cofactor for the enzymes glycogen phosphorylase, carnitine synthesis and AST involved in CHO, lipid and protein metabolism in the body. The products of these enzymes participate in maintaining blood glucose levels and energy production in the TCA cycle. Impairments in one or more of these pathways can lead to shifts in acquiring energy for the body, through shifts in intermediary metabolism.
Figure 1 B6 Involvement in Macronutrient Metabolism

Legend: green = glycolysis, purple = glycogenesis or lipolysis, orange = glycogenolysis, black = gluconeogenesis, red = deamination, grey = transamination, blue = amino acids entering Tricarbocylic acid (TCA) cycle

Adapted from Gropper, Smith & Groff, (2009)
1.4.2. Protein Intake & its Implication on B6 Status and Energy Regulation

The AMDR provides guidelines for allotting intake ranges of energy sources such as CHO, protein and fat, that are compatible with decreasing risks of various chronic diseases and is expressed as a percentage of energy intake (Institute of Medicine, 2006). Although the energy ranges for intakes from CHO (45-65 % energy), and fat (20-35 % energy), were based on studies that help determine decreased risk of chronic disease, the AMDR for protein (10-35 % energy) was set as a compliment to the ranges already set for CHO and fat (Institute of Medicine, 2006), making intakes at the upper AMDR for protein in reducing health risks debatable.

Healthy animals maintain glucose homeostasis over a wide AMDR range. The mechanism and signaling of insulin in skeletal muscle and adipose tissue differ during chronic intakes of different protein: CHO ratios (Devkota & Layman, 2011). Chronic higher protein intakes, around 30% energy, have been shown to decrease fasting plasma glucose and insulin secretion, as well as decrease glucose production from glycogenolysis and gluconeogenesis in humans. Moreover, gluconeogenesis was the more predominant pathway in supplying glucose to the human body (Layman, Shiue, Sather, Erickson, & Baum, 2003; Veldhorst, Westerterp-Plantenga, & Westerterp, 2009). This indicates that higher protein intakes can affect B6-dependent enzymes, possibly glycogen phosphorylase more than AST.

Protein intakes at the upper end of AMDR range, 35% as dietary energy, have been observed to induce biphasic post-prandial insulin response in rats. This is through increased protein synthesis via muscle signaling of protein kinase B, a catalyst for protein synthesis, and decreased adipose signaling (Devkota & Layman, 2011). Although no clear reason for the biphasic response was seen, PN treatment in diabetic rats has shown PLP’s role in modulating striatal insulin signaling in the forebrain through regulation of dopamine 1 and 2 receptors.
(Anitha, Abraham, & Paulose, 2012). In rodents, greater insulin sensitivity without differences in plasma insulin, lower plasma glucose and better glucose tolerance has been observed. Also, increased hepatic alanine uptake, which is an important precursor for hepatic gluconeogenesis, is observed with elevated gluconeogenic enzyme activity of serine dehydratase as well as liver function enzyme ALT with high protein intakes (Blouet et al., 2006; Jean et al., 2001; Lacroix et al., 2004; Okada et al., 1998a). These studies suggest there is an inverse positive relationship with insulin and protein intakes, and high protein intakes increase protein metabolism. This in turn increases B₆ requirement for protein metabolism, which impair B₆-dependent glycogenolytic and gluconeogenic pathways. However, glycogenolysis seems to be impacted more readily (Veldhorst et al., 2009) as gluconeogenesis becomes predominant for energy metabolism and to maintain glucose homeostasis.

Increased protein intakes in rodents have been extensively documented to negatively impact B₆ status (Abe & Kishino, 1982; Okada & Ochi, 1971; Okada et al., 1998a; Pregnolato et al., 1994; Suzuki, Nakamura, Fujita, Iwami, & Abe, 1976; Suzuki & Okada, 1982a; Suzuki & Okada, 1982b; Suzuki & Okada, 1984). Intakes of 70% casein as energy in rodents were observed to suppress plasma B₆ vitamers when compared to 20% casein as energy with equivalent B₆ intake. Varying protein intakes result in different B₆ tissue saturation. Intakes of 70% casein in rodents showed tissue saturation at 5.8 mg PN-HCl/kg, while 20% casein intake reached B₆ tissue saturation at 2.9 mg PN-HCl/kg. When B₆ intake becomes inadequate, B₆ is directed toward storage in the liver and bound to cytosolic AST (Moriya, Fukuwatari, Sano, & Shibata, 2012; Okada et al., 1998a). Moriya and colleagues (2012) found after two days of starvation vitamin B₆ concentrations in the skeletal muscle decreased by 50%, and rats starved for six to nine days had 160% higher liver B₆ levels than non-starved controls. This tendency
also results when there is an increase in PLP-dependent enzyme usage as in the case of increased protein metabolism (Ito & Okada, 1973). Increased protein intake decreases B₆ status as a result of increased usage of PLP-dependent enzymes in protein amino acid metabolism. When there is an increased demand in pathways that metabolize proteins this can negatively impact B₆. Enzymes that require B₆ as a cofactor such as CBS, CGL, glycogen phosphorylase, serine dehydratase and AST are all affected negatively when B₆ status is depleted. The decreased activities of these B₆-dependent enzymes impair pathways they are involved in: transsulfuration, glycogenolysis and gluconeogenesis. Depleted PLP-dependent enzymes ultimately impact the types of macronutrients used in energy metabolism, which can create shifts in the movement and storage of macronutrients.

1.4.3. Movement & Storage of Lipids During B₆ Deficiency and High Protein Intake

As highlighted in Appendix Table, multiple animal studies have shown that with increasing protein consumption, and under B₆ deficiency, liver lipids tend to increase, and enzyme activities of AST and glycogen phosphorylase decrease (Abe & Kishino, 1982; Okada & Ochi, 1971; Okada et al., 1998a; Pregnolato et al., 1994; Suzuki & Okada, 1982a; Suzuki & Okada, 1982b; Wei, 1999). Under severe B₆ deficiency, insulin is seen to promote lipogenesis, as a greater number of labeled dietary glucose 14C carbons are incorporated into glycerol and free fatty acids (Angel, 1975). Without insulin the effects were similar between groups. The severe B₆ deficiency caused significant decreases in glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and acetyl CoA carboxylase in both liver and adipose tissue. The study demonstrated impairment in glycogenesis as glucose-6-phosphate dehydrogenase was inhibited, so fatty acid production was steered toward lipogenesis (Angel, 1975).
Impairments in glycogen metabolizing enzymes would indicate altered glucose utilization in B₆ deficiency. Diabetes is a disease condition in which glucose utilization is also altered by way of insulin resistance (Anitha et al., 2012) causing excess plasma glucose to be stored as lipid and energy to be obtained from protein breakdown and lipid oxidation. El-Hossary et al. (2010) used injected alloxan in rodents to induce diabetes allowing one group to go untreated (N=10) and another group to be supplemented with PN in the drinking water (2g/L) (N=10) for three months. The diabetic groups developed increased mean blood glucose, serum cholesterol and TG, but PN supplementation significantly decreased mean serum cholesterol and levels compared to the non-supplemented group. PN supplementation did not significantly alter mean blood glucose levels between diabetes groups and the PN supplemented diabetes group still had significantly higher blood glucose and serum lipids compared to controls. The decrease in serum lipids when the diabetic group was supplemented with PN may be due to increased availability of PN for glycogen storage for the enzyme glycogen phosphorylase, which would allow for excess glucose to be converted to glycogen rather than lipid. This experiment helps illustrate the significant effect B₆ has on lipid movement during periods of altered glucose utilization, which is decreased in B₆ deficiency (Angel, 1980; Okada, Ishikawa, & Watanabe, 1991; Suzuki & Okada, 1982b).

Hepatic lipid accumulation in B₆ deficiency is unique because it’s induced by high protein diets whereas fatty liver induced by other conditions is often reduced by high protein diets (Suzuki & Okada, 1984). TG and cholesterol esters accumulate in liver during B₆ deficiency. The latter may be due to increased TG synthesis in liver, uptake of TG from circulation, decreased TG hydrolysis in liver, decreased fatty acid oxidation in the liver, or decreased secretion of TG from liver into circulation (Suzuki & Okada, 1984). The increase in
liver lipids during B₆ deficiency and high protein diets can translate to increases in liver weight (Abe & Kishino, 1982; Okada & Ochi, 1971; Suzuki et al., 1976) although this is not always seen (Pregnolato et al., 1994). Analysis of hepatocytes during B₆ deficiency revealed lipid droplet accumulation in hepatocytes increase with time and were also wide spread through the cytoplasm of cell (Abe & Kishino, 1982; L. W. Whitehouse, Tryphonas, & Paul, 1983). The increase in lipid droplets over time implies that the severity of fatty infiltration of the liver is associated with the length of B₆ deficiency. Lipid droplet size was seen to vary, but became smaller with time and the abnormal formation of foamy cells with small nuclei and myelin figures were observed. When PN was supplemented, liver lipids decreased and most abnormalities reversed (Abe & Kishino, 1982). Liver lipids also decreased when glucose was injected into the plasma (Suzuki & Okada, 1982a). The decrease in liver lipids and reversal of liver cell abnormalities during PN supplementation and glucose administration indicates a relationship between glucose and B₆ in the formation of liver lipids. The limitations of previous studies include the use of a model of severe deficiency, which is not seen in developed nations. We have recently documented the effects of both moderate and severe B₆ deficiency on hepatosteatosis (Raposo, unpublished data). Feeding 0.07 mg PN-HCl/kg, or 0.7 mg PN-HCl/kg dietary pyridoxine ad libitum, versus control 7 mg PN-HCl/kg diet, induced moderate and severe depleted B₆ status (Appendix Table). Decreased pyridoxine status resulted in significant hepatic lipid accumulation compared to controls, and similar hepatic lipid accumulation between the deficiency groups. (Figure 2; Raposo, unpublished data).

As mentioned above, an explanation for the increased liver lipid seen during B₆ deficiency and high protein diets is the increase in lipid movement from plasma and fat deposits into the liver as observed by Suzuki (1984) using radioactive lipid tracers. A decrease in
microsomal triglyceride transfer protein (MTP), serum very low-density lipoprotein (VLDL) and apolipoprotein-C (apo-C), TG and percent B-lipoprotein were seen. MTP, VLDL, apo-C, TG & B-lipoprotein are involved in producing lipoproteins for transport in and out of cells, and fat metabolism & transport from liver. The decreased levels of these molecules cause alterations in fat metabolism and transport, leading to the trapping of lipids in the liver. Suzuki (1982), using a rodent model of severe B₆ deficiency and high protein intake (70% casein as energy), observed elevated liver TG, cholesterol and cholesterol esters, and a decrease in serum lipoprotein, cholesterol, and cholesterol esters. This implies less TG and cholesterol being transported out of liver. An increase in radiolabeled TGs transported into the liver was also accompanied by decreases in serum VLDL, apolipoprotein-C and % B-lipoprotein, molecules responsible for lipid transport (Suzuki & Okada, 1982a; Suzuki & Okada, 1984). An inverse relationship was seen between TG and lipoproteins; as TG increased lipoproteins decreased. Therefore, more lipids are seen to move from the peripheral tissues to the visceral tissues, especially the liver, under depleted B₆ status. Synthesis of carnitine, as described earlier is involved in transporting long chain fatty acids into the mitochondria for beta-oxidation to yield energy, and B₆’s indirect involvement with its synthesis creates another lipid transport dilemma when B₆ becomes inadequate (Dunn et al., 1982; Hlais et al., 2012; Vaz & Wanders, 2002). It has been observed that carnitine synthesis is decreased during B₆ deficiency resulting in impaired energy metabolism (Cho & Leklem, 1990). This coupled with increased physiological work in amino acid metabolism is a likely cause of B₆ deficient rats having impaired growth. The above results indicate that fatty degeneration of the liver during B₆ deficiency and high protein diets is due to 1) lipids being trapped in the liver, 2) a decrease in molecules associated with lipid transportation and 3) increase of TG incorporation in the liver.
Figure 2 Visualization of Hepatic Lipid Droplets Between Treatment Groups (Pilot Study)

Microphotographs of 5 μM sliced hepatic tissue from all treatment groups. Stained with Oil Red O and hematoxylin, at 40x zoom.

Rats were fed with 7, 0.7 or 0.07 mg PN-kg diet over 5 weeks. The above microphotographs are taken on liver of 5 week old Male Sprague Dawley rats.
With all this being said, hepatic lipid accumulation is not permanent. Lipid accumulation in the liver is seen when animals consumed between 40 and 70% casein and a decrease was seen when supplemented with PN or when casein was decreased (Abe & Kishino, 1982; Suzuki et al., 1976; Suzuki & Okada, 1981). PLP has also been implicated in stopping the progression of drug-induced fatty liver (Whitehouse, Boullata, & McCauley, 2008). The studies mentioned above indicate a relationship between B₆ deficiency and lipid accumulation in the liver, and their findings are summarized in Appendix Table. Limitations of these studies described here are that they are not recent and severe B₆ deficiency is induced (0 mg).

Therefore high protein intakes, under overt B₆ deficiency, can lead to disturbances in glucose metabolism, resulting in increased hepatic lipid deposition and altered energy utilization, but also result in decreases in lipid transport proteins and enzymes resulting in decreased growth and energy production.

1.4.4. Impaired Liver Integrity Under B₆ Deficiency

B₆ intake has been associated with significant decreases in molecular expression of inflammatory markers, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and cyclooxygenase-2 as well as histological markers of inflammation in a mouse model of inflammatory bowel disease (Selhub et al., 2013). In one study looking at the offspring of the Framingham study cohort, they observed that individuals with high inflammatory markers as assessed by C-reactive protein, IL-6, TNF-α, monocyte chemoattractant protein-1, fibrinogen and p-selectin, required more B₆ intake than individuals with low or normal inflammatory scores to achieve the same level of plasma PLP (Sakakeeny et al., 2012). B₆ deficiency is also indirectly associated with the decreased synthesis of the antioxidant glutathione (Lamers et al., 2009). PL has been shown to be the most efficient B₆ vitamer in reducing iron catalyzed Fenton-
mediated lipid peroxidation, protein oxidation and DNA damage in hepatocytes, while PM has been shown to reduce reactive oxygen species related damages (Mehta, Dedina, & O'Brien, 2011). During B₆ depletion the liver may be more likely to have increased oxidative damage as glutathione is decreased, which can induce an increase in chemoattractants and cytokines from hepatic Kupffer cells. Adipocytes from white adipose tissues synthesize their own catecholamines, as well as TNF-α, which contribute to increase in possible oxidative damage (Feres et al., 2013). These two processes create a perfect storm where permanent fibrotic damage can occur within the fatty liver. These studies help illustrate the concern of B₆ deficiency on hepatic health, and overall inflammation especially in a state where fatty liver may be present.

Pro-inflammatory cytokines such as TNF-α and interleukin (IL)-6 are known to have increased affinity for the liver and represent liver inflammatory markers (Yang, Lin, Yin, Albrecht, & Diehl, 1998). After inflammatory cells infiltrate the liver hepatocyte apoptosis follows, then hepatic necrosis, and elevated serum transaminases (Simpson, Lukacs, Colletti, Strieter, & Kunkel, 1997). Serum C-reactive protein has been seen as a poor marker of acute inflammation in the rat in comparison with serum haptoglobin and plasma fibrinogen, with haptoglobin being most sensitive. It is considered that haptoglobin acts as a scavenger protein functioning to conserve hemoglobin iron released from microvascular injury during a rise in inflammation (Giffen et al., 2003). Fibrinogen is synthesized in the liver in response to stimulation by IL-6 (Steel & Whitehead, 1994). Therefore either fibrinogen or haptoglobin may be good indications of inflammation in the rat.
2. Research Problems and Rationale

It has been established that PLP is an essential co-factor for numerous enzymes involved in energy and macronutrient metabolism (Selhub et al., 2013). These include: 1) transsulfuration pathway for HCY metabolism (Yamamoto, Isa, Nakagawa, & Hayakawa, 2013); 2) glycogen phosphorylase for glycogenolysis (Bode et al., 1991; Okada et al., 1991); 3) aspartate aminotransferase and serine dehydratase for gluconeogenesis (Jean et al., 2001; Kaimoto et al., 2013); and 4) all transamination and some deamination reactions of amino acid metabolism (Bowling, 2011). PLP is also involved in the methylation of phospholipids, synthesis of carnitine for lipid transport (Cho & Leklem, 1990; Hlais et al., 2012) and overall reductions in inflammation (Sakakeeny et al., 2012).

Increased protein intake decreases B₆ status as a result of increased use of PLP-dependent enzymes in protein amino acid metabolism (Ito & Okada, 1973; Okada et al., 1998a). This results in less B₆ availability for PLP-dependent enzymes in intermediary metabolism resulting in impairment in CHO, protein and lipid metabolism pathways (Angel, 1975; Miller et al., 1994; Suzuki et al., 1976; Suzuki & Okada, 1982b). Depleted PLP-dependent enzymes ultimately impact the types of macronutrients used in energy metabolism, which can create shifts in the movement and storage of macronutrients.

Under B₆ deficiency, hepatic lipid accumulation occurs and is unique because it’s induced by high protein diets and other conditions that induce fatty liver are often reduced by high protein diets (Suzuki & Okada, 1982a). Hepatic steatosis is characterized by increased hepatic TG and cholesterol esters, reduced glycogenolysis and glucose utilization, and impaired hepatic lipid transport. Hepatic lipid accumulation coupled with decreased PLP-dependent synthesis of antioxidants can lead to an increased pro-oxidative state (Suzuki & Okada, 1982a;
Suzuki & Okada, 1984; Tanaka, Matsubara, Krausz, Patterson, & Gonzalez, 2012) and potentially result in increased inflammation (Raposo, unpublished data; Selhub et al., 2013). Therefore higher protein intakes can decrease B₆ status in otherwise healthy subjects and increase the potential for hepatic lipid accumulation and hepatic oxidative stress.

There is insufficient evidence to conclude health benefits of consuming protein at the upper limit of the AMDR. A recent study using rodents fed 35% energy as plant and animal whole proteins showed over 17 months had impaired renal health (Wakefield, House, Ogborn, Weiler, & Aukema, 2011). The AMDR range for protein (10-35% of dietary energy) was created to be complementary to CHO and lipid AMDR ranges already determined (Institute of Medicine, 2005). This presents the question of how differing AMDR ratios, specifically higher protein ratios, influence B₆ status, intermediary metabolism, and in turn liver integrity through the potential for increased inflammation. These effects may be accelerated in moderate B₆ deficiency, which is commonly seen in older adults, women and people using certain drugs and having certain diseases (Ahn et al., 2011; Keith et al., 2009; Martinez et al., 2000; Masse et al., 2012; Whitehouse et al., 1983; Xiao et al., 2011).
3. Research Gap

The extent to which protein intake near the upper AMDR range influences B₆ status is not clear. The further impact of moderate B₆ deficient status in this setting is also not known. Previous animal studies use older methodology, including the induction of severe B₆ deficiency and very high protein intakes, which are not applicable in the real world or seen in developed countries. The consequences to intermediary metabolizing enzymes have not been investigated.
4. Hypothesis and Objectives

Hypothesis:

High protein intake (40% as energy), in rats consuming adequate vs. marginal B₆ intakes, will decrease plasma markers of B₆ status and cause perturbations in enzymes involved in intermediary metabolism. Perturbations of intermediary metabolising enzymes may affect liver integrity by hepatic lipid accumulation and increased markers of inflammation.

Objectives:

To determine the impact of changing the ratio of carbohydrate and protein in the diet in control and moderately B₆ deficient rats on:

1) Markers of B₆ status, (plasma PLP and other B₆ vitamers, homocysteine, and cysteine, CBS and CGL),

2) Histological indices of fat accumulation and inflammation,

3) Liver injury markers (plasma AST and ALT),

4) Markers of inflammation (plasma haptoglobin), and

5) Effects on intermediary metabolism (plasma and hepatic triglycerides, total hepatic lipid, hepatic glycogen and glycogen phosphorylase).
5. Materials and Methods

5.1. Diets and Animals

Base diet formulations are listed in Table 4 and are based on the AIN-93G diet (Reeves, Nielsen, & Fahey, 1993). A two by two factorial design was employed using two levels of B₆ [marginally deficient (MD): 0.7 vs. adequate (A): 7.0 mg PN-HCL/kg diet], and two ratios of carbohydrate to protein energy: approximately 60%: 20% (AIN-93 standard; normal protein diet; 20% protein); and approximately 40%: 40% (AIN-93 modified, high protein diet; 40% energy as protein), while maintaining equal fat content. Soybean oil was the fat source used in both base diets and casein was the protein source in the in the 20% and 40% protein diets. The carbohydrate content of the 40% protein diet was decreased by 20%, with cornstarch, dextrose and sucrose contributing the same proportion of carbohydrates to the total percent energy as carbohydrate in both groups. Vitamin pre-mix was formulated to exclude pyridoxine, so that it could be added in prescribed amounts. Diet ingredients were obtained from Dyets INC (Pennsylvania, U.S.A.) and the diet was formulated twice throughout the experiment.

Weanling male Sprague-Dawley rats (approximately 60 grams) were received from Central Animal Care and allowed to acclimate for five days before the experiment. The rats were weighed and randomized to one of four dietary groups (n=8 per group): A-20% protein, A-40% protein, MD-20% protein, MD-40% protein for five weeks. They received food and water to permit ad libitum consumption and had a twelve-hour light: dark cycle. Feed intake was recorded daily by the use of weigh-backs, and weight was recorded weekly. During the experiment animal use protocols from the University of Manitoba Animal Care Committee were used in accordance with the guidelines of the Canadian Council of Animal Care (Canadian Council on Animal Care 1993).
Table 4 AIN-93G Base Mix for 20% Protein & 40% Protein Diets (% By Weight)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Diet Energy: 63% Carbohydrate, 20% Protein & 17% Lipid (% By Weight)</th>
<th>Diet Energy: 43% Carbohydrate, 40% Protein & 17% Lipid (% By Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornstarch</td>
<td>39.7486</td>
<td>27.1143</td>
</tr>
<tr>
<td>Casein-Vitamin Free</td>
<td>20.0000</td>
<td>40.0000</td>
</tr>
<tr>
<td>Dextrose (Maltodextrin)</td>
<td>13.2000</td>
<td>9.004</td>
</tr>
<tr>
<td>Sucrose</td>
<td>10.0000</td>
<td>6.8214</td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>7.0000</td>
<td>7.0000</td>
</tr>
<tr>
<td>Powdered Cellulose</td>
<td>5.0000</td>
<td>5.00</td>
</tr>
<tr>
<td>AIN 93G Mineral Mix</td>
<td>3.5000</td>
<td>3.5000</td>
</tr>
<tr>
<td>AIN 93G Vitamin Mix- No B₆</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>0.3000</td>
<td>0.6000</td>
</tr>
<tr>
<td>Choline Bitartrate</td>
<td>0.2500</td>
<td>0.2500</td>
</tr>
<tr>
<td>T-Butylhydroquinone</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

Calories from Macronutrients (% Dietary Energy):

<table>
<thead>
<tr>
<th></th>
<th>Diet Energy: 63% Carbohydrate, 20% Protein & 17% Lipid (%)</th>
<th>Diet Energy: 43% Carbohydrate, 40% Protein & 17% Lipid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>63%</td>
<td>43%</td>
</tr>
<tr>
<td>Protein</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>Lipid</td>
<td>17%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Both Diets listed are based on AIN-93G (Reeves et al. 1993)

Vitamin pre-mix was formulated to exclude pyridoxine, so that it could be added in prescribed amounts during the diet mixing process. Diet ingredients were obtained from Dyets INC (Pennsylvania, U.S.A.) and the diet was formulated twice throughout the experiment.
5.2. Plasma and Tissue Collection

Rats were terminated on day thirty-six, they were fasted over night, anesthetized with isofluorane and terminated by exsanguination via cardiac puncture. Blood was collected in heparinized vials, centrifuged at 4°C for ten minutes and plasma was collected and aliquoted into 1.5 ml microcentrifuge tubes and stored at -80°C. A portion of the liver was removed and fixed in 10% neutral buffered formalin for twenty-four hours and then moved to 70% ethanol where they were held for two weeks before being processed for histology. The remaining liver, kidneys and bicep femoris muscle were removed, weighed, quickly frozen in liquid nitrogen and stored at -80°C.

5.3. Markers of B₆ Status

5.3.1. Plasma B₆ Vitamers

Plasma B₆ Vitamers were analyzed by reverse phase high-performance liquid chromatography (HPLC) with pre-column semicarbazide derivitization (Talwar et al., 2003; Ubbink, Serfontein, & de Villiers, 1985). All standards and reagents were purchased from Sigma Aldrich (Ontario, Canada). A Luna C18 (2) 5 microns (250 x 4.60 mm) column (Phenomenex, U.S.A) was employed with a Varian 920-LC HPLC (Varian, U.S.A.) for analysis. All samples were prepared and analyzed under low natural light conditions, and in dark glass vials. The derivitization agent consisted of two hundred fifty mg/ml concentration of both glycine and semicarbazide. The mobile phase consisted of sixty mmol disodium hydrogen phosphate, 9.5% methanol, four hundred mL/L ethylenediaminetetraacetic acid (EDTA) disodium salt, adjusted to a pH of 6.5 and filtered through a 0.45 micron filter. Plasma, five hundred microliter (µl) was derivatized with forty µl of derivatization agent and incubated at room temperature for thirty minutes. The samples were deproteinized with 70% perchloric acid and centrifuged for ten
minutes. Then three hundred µl of supernatant was collected and stabilized with 35% sodium hydroxide. A forty µl injection volume was used for all standards and samples. The plasma vitamer concentrations were determined by comparison of the final optical density with the corresponding plasma vitamer standard curve. Plasma vitamers were reported as nanomole/liter (nmol/L).

5.3.2. Plasma HCY and CYS

Plasma total HCY and CYS concentrations were analyzed according to the reverse phase-HPLC method of Araki and Sako (1987), with modifications as suggested by Gilfix et al. (1997). All chemicals and reagents were from Fisher Scientific (Ontario, Canada) and Sigma Aldrich Canada Co. (Ontario, Canada). Plasma samples contained both protein-bound and oxidized forms of HCY, which were reduced by incubation with tris (2-carboxyethyl) phosphine. Samples were then derivatized with 7-fluorobenzofurazan-4-sulfonic acid ammonium salt. Samples and standards, forty µl, were injected into Varian 920-LC HPLC (Varian, U.S.A.) for separation on a Luna C18 (2) 5 microns (250 x 4.60 mm) column (Phenomenex, U.S.A), using an isocratic elution (98% 0.1 M acetate, pH 5.5: 2% methanol) with fluorescence detector at excitation λ = 385 nm; emission λ = 515 nm. Total HCY and CYS concentrations were determined through the use of an external standard curve. HCY and CYS were reported as micromole/liter (µm/L).

5.3.3. Hepatic CGL

Hepatic CGL activity was analyzed by colourimetric enzyme coupled kinetic assay using methods by Stipanuk & Benevenga (1997) and Stipanuk (1979). CGL catalyzes the cleavage of cystathionine to CYS, ammonia and α-ketobutyrate. This reaction oxidizes nicotinamide adenine dinucleotide (NADH), which is accompanied by a reduction in optical density at 340 nm. The rate of decrease is directly proportional to the amount of α-ketobutyrate in the sample. All
reagents, standards and chemicals were purchased from Sigma Aldrich Canada Co. (Ontario, Canada). A five-hundred mg frozen liver section was weighed and homogenized in ice cold 0.05 molar (M) phosphate buffer (pH 6.8) and centrifuged for thirty minutes at 4°C. The supernatant was collected and kept cold on ice. Twenty-five µl of sample was combined in a microplate with two hundred fifty µl of reaction mixture (one-hundred µl 0.1M phosphate buffer pH 7.5, fifty µl 20 mM L-cystathionine, fifty µl 1.6 mM NADH, fifty µl 7.5 U lactate dehydrogenase). Kinetic measurements were taken at 340 nm, for forty minutes at 37°C in a BioTek Powerwave XS2 spectrophotometer (Vermont, U.S.A.). The value of the maximum slope, also known as Vmax, for each sample well is calculated by BioTek Gen5 software. Samples were analyzed in duplicate, optimized for time and protein and were subtracted from a background reading. The optimal time was found to be forty minutes and protein concentration to be 100%. To calculate CGL activity, milli optical density was converted to optical density (OD) and the Vmax was entered into an equation, [(Vmax/min in OD)*256000nmol/L*0.275 ml]/[1000*protein (mg)], which accounted for the absorbance of NADH, the volume of the well and protein concentration. Protein was assayed by bicinchoninic acid protein assay kit (catalog number: 23225) from Pierce/Fisher Scientific (Ontario, Canada) as described in section 5.8. CGL is reported as nmol/minute incubation/mg protein.

5.4. Histological Staining and Grading for Inflammation

5.4.1. Histological Staining

Liver sections prepped for histology, as described in section 5.2, were taken to Lyonel G. Israels laboratories at the Manitoba Tumour Bank (Winnipeg, Canada) for embedding in paraffin wax, sectioning and staining. All products were purchased from Fisher Scientific (Ontario, Canada), Mallinkrodt Pharmaceuticals (St. Louis, U.S.A.) and Sigma Aldrich Canada
Co. (Ontario, Canada). Tissues were embedded in paraffin wax, cut into 5 µm sections, mounted on microscope slides and stained either for H&E or Masson’s Trichome stain using in-house protocols.

Sections stained for H&E were first deparaffinised with xylene and dehydrated through descending ethanol grades. After washing in tap water, slides were immersed in Modified Harris’ Hematoxylin to produce nuclei of cells deep blue. Slides were further washed in tap water and 1% acetic alcohol, ethanol and the nuclei further blued in Scott’s Tap Water (deionized water with ammonia). Slides were counterstained by emerging slides in 0.2% Eosin to produce a pink stain in other tissues and organelles of the hepatocyte. The slide was then stained through acceding grades of ethanol and dehydrated in absolute ethanol and isopropyl and cleared with xylene.

Sections stained for Masson’s Trichrome were first deparaffinised and dehydrated through acceding grades of ethanol, and washed in distilled water. Tissue was re-fixed in Bouin’s solution at 56°C for one hour, and washed in water. For nuclei staining, tissues were immersed in Weigert's iron hematoxylin working solution and then Biebrich scarlet-acid fuchsin solution, for plasma staining, with water rinses in between. Slides were further immersed in phosphomolybdic-phosphotungstic acid solution to differentiate structures followed by aniline blue solution for fibrous structure staining. Water and acetic acid were used to further rinse and differentiate structures of the hepatocyte and dehydrating and clearing the stains were succeeded by immersion in absolute ethanol and xylene.

5.4.2. Histological Grading for Hepatic Injury

Paraffin embedded hepatic tissues were stained as described above in section 5.4.1 and mounted on microscope slides. Sections were viewed with a Nikon Eclipse E100 microscope and
Nikon BE Plan lens 40 x/0.65 zoom (Tokyo, Japan). Pictures were taken with a Sony colour video camera (Tokyo, Japan). Grading for hepatic injury and steatosis were based on methods by Brunt et. al. (1999) and a protocol for obtaining pictures of the hematoxylin and eosin stained liver sections was created. First, the photographer was blinded from the treatments and then at four times and ten times magnification the entire slide was scanned by eye and using a printed documentation tool with visual aids, the photographer indicated if they could visually see central dilated veins and sinusoids, steatosis (macrovesicular and microvesicular), inflammation (focal or granulomatous), and necrosis (coagulation or liquefactions). Macrosteatosis was defined as cytoplasm being replaced by a large bubbles the fat that displaces the nucleus to the edge of the cell. Microvesicular steatosis was defined as cytoplasm being replaced by bubbles of fat but the fat does not displace the nucleus (Pouneh, Mofrad & Sanyal, 2003). Focal inflammation was defined as a single or multiple randomly distributed collection of inflammatory cells, while granulomatous was the presence of a significant number of aggregated inflammatory cells (US Department of Health and Human Services, National Toxicology Program, 1993). Coagulation necrosis was defined as some loss of cellular structure, while liquefaction necrosis was defined as a total loss of tissue structure with possible accompaniments of hemorrhage (US Department of Health and Human Services, National Toxicology Program, 1993). If any of these parameters was observed on the hepatic image a percent area was indicated. Grades were given to percent areas with grade 0 indicating <5% of the slide is observed to have that marker, grade one indicates 5-33% of the slide is observed to have that marker (mild), grade two indicates 33-66% (moderate) and grade three indicates greater than 66% observed (severe) (Brunt et al. 1999). At four times magnification a general picture of the hepatic slice with at least one central vein for a
pictorial representation was taken. If necrosis is present, Masson’s Trichrome stained slides were viewed under the light microscope for confirmation.

5.5 Hepatic Injury and Inflammatory Makers

5.5.1. Plasma AST

AST activity was measured by colourimetric assay kit (catalog number MAK055) and 96-well clear bottom microplate from Sigma Aldrich Canada Co. (Ontario, Canada). Plasma AST is a catalyst for the transfer of an amino group from aspartate to α-ketoglutarate to produce oxaloacetate and glutamate. The kit uses the production of glutamate as a result of AST activity to produce a colour change, which is proportional to the AST enzyme present in the sample. Plasma, a positive control and glutamate standards were incubated at 37°C with the reaction mixture in a BioTek Powerwave XS2 spectrophotometer (Vermont, U.S.A.) at 450 nm. After two minutes an initial absorbance reading was taken and then five more readings for each minute after until the most active sample exceeded the linear range of the standard curve. Final optical density was acquired by subtracting the last reading still within the linear range from the initial optical density reading. The plasma AST concentration was determined by comparison of the final optical density with the glutamate standard curve generated. All samples and standards were done in duplicate and were subtracted from a background reading. AST was reported as U/L.

5.5.2. Plasma ALT

A colourimetric 96-well microplate assay kit (catalog number 700260) from Cayman Chemical (Florida, U.S.A.) was purchased for ALT activity analysis. Plasma ALT catalyzes the transfer of an amino group from alanine to α-ketoglutarate to form pyruvate and glutamate. Pyruvate can then be metabolized to lactate via lactate dehydrogenase. This process oxidizes
NADH to NAD+. The ELISA kit monitors the conversion of NADH to oxidized NAD+ through a chromogenic agent to produce a colour change, which is associated with a decrease in absorbance at 340 nm at 37°C. The optical density is read every minute for five minutes in a BioTek Powerwave XS2 spectrophotometer (Vermont, U.S.A.). The rate of decrease is directly proportional to the ALT activity in the plasma. The change in absorbance per minute was determined subtracting the final optical density by the initial optical density and dividing by five minutes. ALT activity (U/ml) was calculated by the equation

\[\frac{\Delta A_{340}}{\text{min}} \times 0.021 \text{ ml} \div 4.11 \text{ mM}^{-1} \times 0.02 \text{ ml} \].

All samples and standards were done in duplicate and were subtracted from a background reading. ALT was reported as U/L.

5.5.3. Plasma Haptoglobin

Plasma haptoglobin was analyzed via a colourimetric enzyme-linked immunosorbent assay (ELSA) kit (catalog number 2410-2) from Life Diagnostics (New York, U.S.A), using a BioTek Powerwave XS2 spectrophotometer (Vermont, U.S.A.). The assay uses a 96 well microplate coated with anti-rat haptoglobin antibodies which bind the haptoglobin proteins present in plasma. After incubation for forty-five minutes, residual un-bound haptoglobin proteins were washed out of wells with water, and then incubated with horseradish peroxidase conjugated anti-haptoglobin antibodies for detection for an additional thirty minutes. The washing step was repeated and the wells were incubated with visualization agent 3,3',5,5'-Tetramethylbenzidine (TMB) to produce a blue colour due to the reaction between TMB and the bound enzyme. After twenty minutes 1 M HCl was used as a stop solution and the resulting colour was yellow. The optical density was measured at 450 nm, with the optical density of the test being relative to the concentration of haptoglobin. The concentration of plasma haptoglobin was determined from a standard curve generated from a reference standard. Samples were
diluted one hundred thousand times and this was accounted for in the final results, which are reported as ug/ml. All samples and standards were done in duplicate and were subtracted from a background reading.

5.6 Hepatic Steatosis and Lipid Movement

5.6.1. Total Hepatic Lipids

Total hepatic lipid extraction was preformed using a method by (Folch, Lees, & Sloane Stanley, 1957). Three grams of liver was homogenized for one minute, in a mixture of 2:1 chloroform/methanol for a final volume twenty times the volume of the tissue sample. The homogenate was filtered and washed with chloroform in two portions. This process was repeated once more, and water was added to the filtered solvent to create a phase separation. After the samples were allowed to sit overnight, the chloroform fraction was collected in a pre-weighed flask and evaporated using a rotary evaporator and water bath, set at 55°C. The fat content in the sample was determined by the difference in weight from the fat filled flask vs. the empty flask. Total hepatic lipids are reported as microgram/gram (µg/g) wet liver.

5.6.2. Plasma and Liver Triglycerides

Hepatic and plasma TG were analyzed by colourimetric 96-well clear bottom microplate assay kits (catalog number 10010303) from Cayman Chemical (Florida, U.S.A.). TG are hydrolyzed to glycerol and free fatty acids via lipoprotein lipase. The release of glycerol is measured through a series of reactions. Glycerol is phosphorylated to glycerol-3-phosphate via glycerol kinase, which is then oxidized to dihydroxyacetone phosphate and hydrogen peroxide via glycerol phosphate oxidase. A colour change occurs when hydrogen peroxide and 4-aminoantipyrine and N-Ethyl-N-(3-sulfopropyl)-m-anisidine are catalyzed by a redox-coupled reaction via peroxidase. The absorbance is then read at 540 nm and tissue and plasma TG were
determined from a standard curve generated from reference standards. All samples and standards were done in duplicate and subtracted from a background reading. Plasma samples were not diluted and were reported as mmol/L. For liver TG, four hundred mg of frozen liver tissue was weighed and homogenized with five ml of 50 mM sodium phosphate buffer pH 6.9 containing eighty mg/ml leupeptin. Homogenates were centrifuged for ten minutes at 4°C and supernatants were collected and placed in ice. The supernatant was diluted two times with 50 mM phosphate buffer and then analyzed as described above. Liver TGs were reported as µg/g wet liver weight.

5.7. Macronutrient Utilization

5.7.1. Total Hepatic Glycogen

Total liver glycogen was analyzed by a 96-well black bottom fluorometric assay kit (catalog number 700480) from Cayman Chemical (Florida, U.S.A.). Four hundred mg frozen liver tissue was weighed and homogenized with five ml of 50 mM sodium phosphate buffer pH 6.9 containing eighty mg/ml leupeptin. Homogenates were centrifuged for ten minutes at 4°C and supernatants were collected in microcentrifuge tubes and placed in ice. Supernatants were diluted twenty-five times with sodium phosphate buffer before. The kit uses amyloglucosidase to hydrolyze glycogen to form glucose, which is subsequently oxidized to hydrogen peroxide via glucose oxidase. Horseradish peroxidase was added and after incubation at 37°C with hydrogen peroxide and 10-acetyl-3,7-dihydroxyphenoxazine, the fluorescent product resorufin is formed. The fluorescence was measured using a BioTek Synergy H4 fluorescent microplate reader (Vermont, U.S.A.) at an excitation wavelength of 530 nm and emission wavelength of 585 nm. Glycogen was determined from a generated standard reference curve. Glycogen was reported as mg/g wet liver.
5.7.2. Total Hepatic Glycogen Phosphorylase

Total hepatic glycogen phosphorylase was analyzed based on the methods of Deaciuc & Spitzer (1986) and Vilela, de Oliveira, Comar, Peralta & Bracht (2014). The assay reaction begins with the activation of glycogen phosphorylase B by phosphorylase B kinase to glycogen phosphorylase A. Glycogen phosphorylase A, in combination with a phosphate molecule, cleave an α-1-4 glucosidic bonds on the terminal end of a glycogen molecule to produce a residual glycogen chain and glucose-1-phosphate. The accumulation of inorganic phosphate from glucose-1-phosphate can be used to determine the activity of glycogen phosphorylase.

Differing incubation times and protein concentrations revealed fifteen minutes and twenty µl of hepatic supernatant (66.7% protein content) were optimal for achieving enzyme activity within the linear range of the curve. One-hundred fifty mg of frozen liver was weighed and homogenized on ice in fifteen ml centrifuge tubes with three ml of solution containing 50mM Tris buffer pH 7.4, 0.5% glycogen (w/v), 20 mM EDTA, 100 mM NaF. Homogenates were centrifuged for ten minutes at 4°C and the supernatant was collected and stored on ice. The reaction was initiated by combining three-hundred seventy µl of the reaction mixture (300 mM NaF, 50 mM glucose-1-phosphate, 1 mM 5’AMP, 500mM Na2SO4, 2% glycogen (w/v) at pH 6.5) with ten µl of deionized water and twenty µl of the supernatant in a microcentrifuge tube and incubating for fifteen minutes at 30°C. The reaction was then stopped and proteins were precipitated with two hundred µl of 20% (w/v) trichloroacetic acid and four hundred µl of deionized water. Another twenty µl aliquot of supernatant was also combined with ten µl deionized water and three hundred seventy µl of reaction mixture, but the reaction was stopped immediately by the addition of 20% (w/v) trichloroacetic acid and water as described above. This aliquot was used as an initial phosphate reading (sample blank). Both samples and sample
blanks were centrifuged at room temperature for ten minutes. The supernatant was collected and diluted two times with deionized water. A 96-well clear bottom colourimetric microplate assay kit purchased from Abcam (Massachusetts, U.S.A.) was used to measure the inorganic phosphate content of the samples and sample blanks at an absorbance of 650 nm. Total glycogen phosphorylase was calculated by standards, samples and sample blanks optical density being subtracted from the assay blank to provide a corrected optical density reading. Inorganic phosphate of the samples and sample blanks were determined from a generated standard reference curve. The inorganic phosphate content of the samples was subtracted from the sample blanks to produce the total amount of inorganic phosphate released after the reaction. This would indicate total glycogen phosphorylase activity, which was measured as the release of inorganic phosphate (nmol) per minute incubation per mg protein (nmol/min/mg protein). Protein was assayed by bicinchoninic acid protein assay kit as described in 5.8.

5.8 Total Protein Determination

The total protein concentrations of liver homogenates and plasma were determined by a bicinchoninic acid protein assay kit (catalog number: 23225) from Pierce/Fisher Scientific (Ontario, Canada). Liver homogenates were obtained from the analyses described above in sections 5.3.3 and 5.7.2 and diluted nine times with deionized water before assaying in a 96-well clear bottom microplate. This kit employs the biuret reaction, which uses bicinchoninic acid, the presence of peptide bonds from protein and a cupric copper ion in an alkaline medium to reduce copper to a cuprous ion. A colour change is produced from chelation of bicinchoninic acid with cuprous ion and the absorbance is linear with protein concentrations contained in the sample. Homogenates and plasma were added to the 96-well clear bottom microplate, incubated for thirty minutes at 37°C and cooled for three minutes at room temperature before assaying in a BioTek
Powerwave XS2 spectrophotometer (Vermont, U.S.A.). The optical density of each sample was compared to a generated standard curve from bovine serum albumin standard to determine sample protein concentration.

5.9 Statistics

SPSS software was used to perform statistics on the collected quantitative and qualitative data. Graphing the data as box-plots first identified potential outliers. Data points outside the 1.5 x interquartile range were identified as potential outliers and then trimmed from the data set if they exceeded two standard deviations away from the sample mean. Data was then analyzed for normality using the Shapiro-Wilk test statistic. Only a few dependent variables in one of the four treatment groups were identified to have a non-normal distribution, but a natural and log base 10 transformation did not normalize the data due to the small sample size (n=8). Therefore, none of the data was transformed.

A general linear model was employed with a two by two-factorial design using B₆ intake (0.7 and 7 mg PN-HCl/kg diet) and percent dietary protein energy (20% or 40%) as the independent variables. The model used a significance of α < 5% to look at the main effects of B₆ and percent dietary protein energy, as well as the interaction of the two independent variables on the dependent variables. Only dependent variables with significant effects for the interaction of B₆ and percent dietary protein energy underwent a Tukey’s Post Hoc Test.

Non-parametric Pearson’s Chi Square test was used to determine significant differences between treatment groups for histological grading by level of B₆ intake or percent protein energy. A two by three contingency table with either two levels of B₆ (0.7 and 7 mg PN-HCl/kg diet), or protein level (20% or 40% protein) and three levels of grading (none, mild, or moderate) was used. The grade of severe had no data associated with it and was not included. Some cases
violated the assumption of an expected count of at least five, but the columns were not collapsed in order to prevent effects between grades from being masked. As a result the Likelihood ratio was used instead of the Pearson’s Chi Square. A significance level of \(\alpha < 5\% \) was used to determine significant difference between treatment groups.

The statistical software G*Power was used to determine the power of the study, using plasma B\(_6 \) as the primary outcome variable. Using a power of 0.80, in order to detect differences between four different dietary treatment groups, as well as the interaction between two B\(_6 \) levels and protein levels with a moderate effect size of 0.65 (Cohen, 1992) a sample size of \(n=30 \) was required. For analyzing the effect of protein and B\(_6 \) levels alone a sample size of \(n=21 \) was required. Therefore a total sample size of \(n=32 \) with four groups (\(n=8 \) per group) would achieve the desired power level of 0.80 for the study.

6. Results
6.1 Intakes and Growth

The adequate B\(_6 \) groups were observed to consume the most feed throughout the experiment, while the marginal B\(_6 \) groups ingested the least (Table 5). Marginal B\(_6 \) deficiency significantly decreased feed intake compared to groups with adequate B\(_6 \) status. Intakes of 40\% energy as protein significantly further suppressed total feed intake and average daily intake (ADI) especially in the marginally deficient B\(_6 \) groups. No significant interaction between B\(_6 \) consumption and percent energy as protein was detected.

The adequate B\(_6 \) groups had the highest final body weights, while marginal B\(_6 \) groups had the lowest (Table 5). Marginal B\(_6 \) status significantly decreased final body weight, average daily gains (ADG) and total weight gain compared to adequate B\(_6 \) status. Intake of 40\% energy as protein tended to result in lower final body weights, but only a trend was observed (\(p=0.07 \)).
Total weight gain and ADG showed a significant interaction between protein and B6 levels, which indicated the adequate and marginal B6-40% protein groups had similar average gains. Yet, under adequate B6 status, 40% energy as protein intake tended to result in lower weight gains while, under marginal B6 status, the opposite was true.

Total feed conversion efficiency (FCE%) was calculated as the total weight gain divided by total intake, multiplied by one hundred. The adequate B6-20% protein group was the most efficient at converting feed to body mass, and the marginal B6-20% protein group the least. Marginal B6 deficiency significantly decreased FEC%, with no significance resulting from protein intake alone. A significant interaction was observed with marginal B6-40% protein group being as proficient at converting feed into body mass as the adequate B6 groups.

Relative liver weights were found to be significantly decreased in marginal B6 deficiency compared to adequate B6 status while 40% as energy protein intake showed a trend (P=0.07) in decreasing relative liver weights.

Weekly body weights (Table 6) indicated marginal B6 status significantly decreased body weights compared to adequate B6 status starting at week two until the end of the study. Only in the last week of the study was a decreasing trend seen for 40% as energy protein intake. For weekly intake both marginal B6 deficiency and 40% as energy protein intake significantly reduced intake at week two until the end of the study.
Table 5 Overall Biological Performances of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th></th>
<th>0.7 mg PN/Kg Diet</th>
<th>7 mg PN/Kg Diet</th>
<th>SEM</th>
<th>P-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Protein</td>
<td>40% Protein</td>
<td>20% Protein</td>
<td>40% Protein</td>
</tr>
<tr>
<td>Total Feed Intake (g)</td>
<td>805.6</td>
<td>773.3</td>
<td>961.7</td>
<td>882.2</td>
</tr>
<tr>
<td>Total ADI (g/day)</td>
<td>22.4</td>
<td>21.5</td>
<td>26.7</td>
<td>24.5</td>
</tr>
<tr>
<td>Total Weight gain (g)</td>
<td>178.6<sup>A</sup></td>
<td>198.1<sup>AB</sup></td>
<td>272.2<sup>C</sup></td>
<td>239.8<sup>BC</sup></td>
</tr>
<tr>
<td>Final BWT (g)</td>
<td>383.2</td>
<td>371.7</td>
<td>456.1</td>
<td>425.1</td>
</tr>
<tr>
<td>Total ADG (g/day)</td>
<td>5.0<sup>A</sup></td>
<td>5.5<sup>AB</sup></td>
<td>7.6<sup>C</sup></td>
<td>6.7<sup>BC</sup></td>
</tr>
<tr>
<td>Total FCE (%)</td>
<td>22.1<sup>A</sup></td>
<td>25.8<sup>AB</sup></td>
<td>28.4<sup>B</sup></td>
<td>27.2<sup>B</sup></td>
</tr>
<tr>
<td>Relative Liver Weight (g/100g bwt)</td>
<td>3.8</td>
<td>3.7</td>
<td>4.6</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Values are given as mean ± standard error. ADI= average daily intake, BWT= body weight, ADG= average daily gain, FCE= feed conversion efficiency= (total weight gain/total intake*100). Total Feed Intake 0.7 mg PN/Kg diet 40% protein n=7 (SEM=17.59). Total ADI 0.7 mg PN/Kg diet 40% protein n=7 (SEM=0.49). Total Weight Gain 0.7 PN/Kg diet 40% protein n=7 (SEM=11.77). ADG 0.7 PN/Kg diet 40% protein n=7 (SEM=11.77).
Figure 3 Weekly Body Weight of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

MD= marginal B₆ deficiency, A= adequate B₆
Table 6 P-Values for Weekly Body Weight of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th>Week</th>
<th>B₆ level</th>
<th>Protein Level</th>
<th>B₆ level* Protein level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>0.21</td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td>Week 2</td>
<td>0.004</td>
<td>0.92</td>
<td>0.77</td>
</tr>
<tr>
<td>Week 3</td>
<td><0.001</td>
<td>0.27</td>
<td>0.89</td>
</tr>
<tr>
<td>Week 4</td>
<td><0.001</td>
<td>0.13</td>
<td>0.82</td>
</tr>
<tr>
<td>Week 5</td>
<td><0.001</td>
<td>0.07</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Figure 4 Weekly Intake of Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

MD= marginal B₆ deficiency, A= adequate B₆
Table 7 P-Values for Weekly Intake for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th>Week</th>
<th>B₆ level</th>
<th>Protein Level</th>
<th>B₆ level* Protein level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>0.63</td>
<td>0.39</td>
<td>0.87</td>
</tr>
<tr>
<td>Week 2</td>
<td><0.001</td>
<td>0.046</td>
<td>0.629</td>
</tr>
<tr>
<td>Week 3</td>
<td><0.001</td>
<td>0.027</td>
<td>0.765</td>
</tr>
<tr>
<td>Week 4</td>
<td><0.001</td>
<td>0.003</td>
<td>0.179</td>
</tr>
<tr>
<td>Week 5</td>
<td><0.001</td>
<td>0.053</td>
<td>0.284</td>
</tr>
</tbody>
</table>
6.2. Plasma Markers of B₆ Status

6.2.1. Plasma B₆ Vitamers

All plasma markers (PLP, PN, PL, PA) were significantly decreased under marginal B₆ deficiency (Table 8). Under adequate B₆ status, 40% energy as protein intakes increased all plasma B₆ vitamers except for PN, which was significantly decreased compared to the 20% energy as protein. Only plasma PN was found to be significantly decreased with 40% energy as protein in both adequate and marginal B₆ status. A significant interaction between B₆ and protein levels was observed for plasma PL, indicating a significant increase in PL for the adequate B₆-40% protein group.

6.2.2. Alternative Markers of B₆ Status: Plasma HCY, CYS and Hepatic CGL

Products of the transsulfuration pathway, HCY and CYS, were not significantly altered under marginal B₆ deficiency or with protein intake (Table 9). 40% energy as protein intake under adequate B₆ status tended to decrease HCY more so than protein intake at 20% of energy, while the opposite was seen in marginal B₆ deficiency. A trend (P=0.07), was observed for the interaction between B₆ and protein levels for HCY.

Hepatic transsulfuration enzyme CGL was significantly decreased under marginal B₆ deficiency compared to adequate B₆ status. 40% energy as protein intake significantly decreased compared to the 20% energy as protein group. No interaction effect was observed between PN intake and protein levels.
6.3. Macronutrient Utilization and Enzymes Involved in Intermediary Metabolism

6.3.1. Total Hepatic Lipid

Marginal B₆ status had no effect on total hepatic lipids in comparison to adequate B₆ status but a trend (P=0.06) was observed for 40% energy as protein, which tended to further decrease hepatic lipid content (Table 10).
Table 8 Plasma B₆ Vitamers for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th></th>
<th>0.7 mg PN/Kg Diet</th>
<th>7 mg PN/Kg Diet</th>
<th>SEM</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Protein</td>
<td>40% Protein</td>
<td>20% Protein</td>
<td>40% Protein</td>
</tr>
<tr>
<td>PA (nmol/L)</td>
<td>2.7</td>
<td>2.7</td>
<td>30.2</td>
<td>39.1</td>
</tr>
<tr>
<td>PLP (nmol/L)</td>
<td>67.8</td>
<td>53.4</td>
<td>763.7</td>
<td>859.8</td>
</tr>
<tr>
<td>PN (nmol/L)</td>
<td>181.0</td>
<td>90.0</td>
<td>235.4</td>
<td>192.6</td>
</tr>
<tr>
<td>PL (nmol/L)</td>
<td>39.3<sup>A</sup></td>
<td>21.6<sup>A</sup></td>
<td>514.8<sup>B</sup></td>
<td>636.2<sup>C</sup></td>
</tr>
</tbody>
</table>

Values are given as mean ± standard error. PA 0.7 mg PN/Kg diet, 20% protein n=4 (SEM=7.189), PA 0.7 mg PN/Kg diet, 40% protein n=5 (SEM=6.43). PA 7.0 mg PN/Kg diet, 20% and 40% protein n=7 (SEM=30.10).
Table 9 Alternative Markers of B₆ Status for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th></th>
<th>0.7 mg PN/Kg Diet</th>
<th>7 mg PN/Kg Diet</th>
<th>SEM</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Protein</td>
<td>40% Protein</td>
<td>20% Protein</td>
<td>40% Protein</td>
</tr>
<tr>
<td>Plasma CYS (µm/L)</td>
<td>280.1</td>
<td>286.8</td>
<td>281.7</td>
<td>272.3</td>
</tr>
<tr>
<td>Plasma HCY (µm/L)</td>
<td>8.5</td>
<td>10.7</td>
<td>10.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Hepatic CGL (nmol/min/mg protein)</td>
<td>6.0</td>
<td>5.3</td>
<td>10.6</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Values are given as mean ± standard error.
<table>
<thead>
<tr>
<th></th>
<th>0.7 mg PN/Kg Diet</th>
<th>7 mg PN/Kg Diet</th>
<th>SEM</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Protein</td>
<td>40% Protein</td>
<td>20% Protein</td>
<td>40% Protein</td>
</tr>
<tr>
<td>Plasma TG (mmol/L)</td>
<td>0.71</td>
<td>0.86</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Hepatic TG (µg/g wet liver)</td>
<td>6.6</td>
<td>4.6</td>
<td>9.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Total Hepatic Lipids (mg/g tissue)</td>
<td>74.7</td>
<td>60.7</td>
<td>77.1</td>
<td>71.8</td>
</tr>
</tbody>
</table>

Values are given as mean ± standard error. TG= triglyceride. Plasma TG 0.7mg PN/kg diet, 20% and 40% protein n=6 (SEM=0.12), 7mg PN/kg diet, 20 protein n=7 (SEM=1.12). Hepatic TG 0.7 mg PN/Kg diet 20% protein n=7 (SEM=6.91).

Plasma TG and hepatic TG was analyzed via colourimetric assay kits (described in section 5.51 and 5.5.2) while total hepatic lipids were analyzed via Folch method (described in section 5.6.1).
6.3.2. Plasma and Hepatic TG

Hepatic TGs were significantly decreased in moderate B₆ deficiency compared to adequate B₆ status. No other effects were observed (Table 10).

B₆ intake was the only significant effect observed for plasma TG, with the marginal B₆ deficient groups having lower plasma TG than the adequate B₆ groups.

6.3.3. Hepatic Glycogen and Glycogen Phosphorylase

Hepatic glycogen was significantly increased in marginally B₆ deficient groups compared to adequate B₆ groups (Figure 5). Protein intake had no significant effect. No significant interaction between B₆ and protein level was observed.

Glycogen phosphorylase was significantly decreased in the marginally deficient B₆ groups compared to adequate B₆ groups (Figure 6). No significant interaction between B₆ intake and protein level was observed.
Figure 5 Hepatic Glycogen for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

Main Effect Significant Differences: B₆ Level (p=<0.001); Protein level (p= 0.2)

Values are given as mean ± standard error. MD= moderately B₆ deficient, A= adequate B₆ status. Hepatic glycogen 0.7mg PN/Kg diet, 20% n=6 (SEM=2.03), 7mg PN/Kg diet, 20% n=7 (SEM=1.88). P-values for B6*protein level 0.19.
Figure 6 Hepatic Glycogen Phosphorylase for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

Main Effect Significant Differences: B₆ Level (p=0.001), Protein Level (p=0.29)

Values are given as mean ± standard error. MD= moderately B₆ deficient, A= adequate B₆ status. Glycogen Phosphorylase 7mg PN/Kg diet, normal protein n=6 (SEM=10.38) all other groups n=7. P-values for, B₆ *protein level 0.62.
6.4. Histology for Hepatic Injury

Only Central Vein Dilation was found to be significantly different with higher protein intakes (Likelihood ratio test 7.33, N=32, P=0.026). No significant differences were seen with B₆ level. A representative histological picture from each treatment group is seen in Figure 7.
Table 11 Contingency Table for Protein Level Versus Central Vein Dilation in Rodents

<table>
<thead>
<tr>
<th>Central Vein Dilation Grade:</th>
<th>Percent Protein</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>None (<5%)</td>
<td>Count</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Mild (5-33%)</td>
<td>Count</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Moderate (33-66%)</td>
<td>Count</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>16.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Figure 7 Impacts of B₆ Status and Protein Intake on Hepatic Histology of Rodents

Microphotographs of 5 µM sliced hepatic tissue from all treatment groups. Stained with Hematoxylin and Eosin, 4x zoom. Groups are as follows: 1) Marginal B₆-20% protein, 2) Marginal B₆-40% protein, 3) Adequate B₆-20% protein, 4) Adequate B₆-40% protein.
6.5. Plasma Markers of Hepatic Injury

6.5.1. Plasma AST and ALT

Both plasma AST and ALT were significantly decreased under marginal B₆ deficiency compared to adequate B₆ status (Figure 8 and 9). The ALT values were around two fold higher in the adequate B₆ groups, while AST levels were around one and a half fold higher in the adequate B₆ groups. No significant interaction between B₆ intake and protein level was observed.

6.5.2. Plasma Haptoglobin

Results for plasma inflammatory marker, haptoglobin, are presented in Table 12. Results were similar across all treatments. No significant effects were seen.
Figure 8 Plasma AST for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

Main Effect Significant Differences: B₆ Level (p=<0.001), Protein Level (p=0.33)

Values are given as mean ± standard error. MD= moderately B₆ deficient, A= adequate B₆ status. AST 0.7mg PN/Kg diet, 40% protein n=7 (SEM=11.12).
Figure 9 Plasma AST for Marginal & Adequate B₆ Rodents with 20% & 40% Protein Intake

Main Effect Significant Differences: B₆ Level (p=<0.001), Protein Level (p=0.57)

Values are given as mean ± standard error. MD= moderately B₆ deficient, A= adequate B₆ status. ALT 0.7 and 7.0 mg PN/Kg diet, 40% protein n=7 (SEM=0.99).
Table 12 Plasma Haptoglobin for Marginal & Adequate B6 Rodents with 20% & 40% Protein Intake

<table>
<thead>
<tr>
<th>Haptoglobin (µg/ml)</th>
<th>0.7 mg PN/Kg Diet</th>
<th>7 mg PN/Kg Diet</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal Protein</td>
<td>High Protein</td>
<td>Normal Protein</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>54.6</td>
<td>56.4</td>
<td>55.2</td>
</tr>
</tbody>
</table>

Haptoglobin 0.7mg PN/Kg diet, 40% protein n=6 (SEM=1.04), 7 mg PN/Kg diet 20% protein n=7 (SEM=0.96)
6.6. Correlations

All correlation discussed below were significant at an alpha of 0.05. Strong associations were described at \(r = 0.7 \) and higher, moderately strong associations were described as \(r = 0.5-0.6 \). Weak associations were described as \(r = 0.3-0.4 \).

The strongest correlations between plasma \(B_6 \) vitamers were observed between plasma PLP, PA, and PL, which were positively associated (See Appendix). Plasma PN had positive weak or moderately strong associations between the other plasma vitamers with plasma PA showing the strongest positive association with PN. Plasma \(B_6 \) vitamers had a moderately strong, positive relationship with weight gain, intake, relative liver weight and final body weight. Plasma PLP had the strongest positive relationship with hepatic CGL, while hepatic TG had the strongest positive association with plasma PL. Plasma TG had weak positive associations with plasma \(B_6 \) vitamers, while hepatic glycogen had weak negative relationships, with the exception of PA, which had almost no relationship with glycogen. Glycogen phosphorylase had weak positive associations with plasma PLP, PA and PL. Plasma AST and ALT had strong positive associations with plasma PLP and PL, and moderate associations with PA.

Average daily intake had strong positive associations with final weight, average daily gain, relative liver weight and hepatic CGL, while moderately strong positive associations were seen with hepatic TG, plasma ALT, hepatic glycogen phosphorylase. Relative liver weight was observed to have moderately strong positive relationships with hepatic and plasma TG and hepatic CGL, while a moderately strong negative association was observed with hepatic glycogen.

Interestingly, hepatic CGL had the strongest positive association with plasma ALT followed by plasma PLP. Moderately strong and weak positive associations were also seen with
hepatic CGL and plasma and hepatic TG, plasma AST and glycogen phosphorylase activity. Hepatic TGs were weakly positively associated with most variables including plasma TG for which the same was true. Hepatic glycogen had a negative association with all variables and the strongest association was with average daily gain, followed by average daily intake, which was a moderately strong association.

Plasma AST and ALT tended to differ in their associations with other variables except for plasma B₆ vitamers, for which associations tended to be similar. The association between plasma AST and ALT was positive and moderately strong. Glycogen phosphorylase had a very weak negative association with hepatic glycogen. It should be noted that both groups had data points near the two standard deviation away from the mean, which was the criteria for determining an outlier, but was still within the acceptable range to be kept in the data. This may explain the poor association observed between the two variables.
7. Discussion

Common B₆ deficiency signs in rodents, such as unkempt fur and decreased intake and body weight (Okada et al., 1999; Scheer et al., 2005) were observed in the marginal B₆ deficient group. The decrease in body weight was significant which was not observed in our pilot study establishing moderate B₆ deficiency, indicating the rodents may have been slightly more deficient than the pilot study (Raposo, unpublished data). However all other parameters (no elevations in plasma HCY and CYS, and significant decreased hepatic B₆ vitamers) were met, indicating a marginal deficiency was reached.

In the present study, 40% energy as protein showed a trend (p=0.07) towards decreasing body weight while marginal B₆ deficiency significantly decreased body weight. Devkota & Layman (2011) observed a non-significant difference for body weights in their rodents consuming a similar dietary macronutrient profile (35% energy as protein, 35% energy as carbohydrate, 30% energy as lipid versus 12% energy as protein, 60% energy as carbohydrate, 30% energy as lipid) under adequate B₆ status. The mean final body weights after ten days were 275.7 g ± 1.3g and 273.7 g ± 1.6 g for the 35% and 12% energy as protein groups respectively, and they were comparable to the body weights of the adequate B₆ groups on week two of the present study. However, Devkota and Layman (2011) mimicked human feeding schedules by providing food three times a day, while the present study free access to food. The mode of feeding (free access versus meal-fed) under overt B₆ deficiency has been observed to decrease the percentage of body fat and increase percentage body water (Angel & Song, 1973). This is thought to be due to impaired fatty acid synthesis and impaired amino acid metabolism by decreasing PLP-dependent transamination and decarboxylation activities and therefore decreasing the carbon required for gluconeogenesis and energy production (Angel & Song,
A decrease in 14C labelled glucose being incorporated into fatty acids of the liver and carcass of rodents is observed under B_6 deficiency along with decreased activity of glucose-6-phosphatase dehydrogenase and malic enzyme responsible for NADPH maintenance (Angel & Song, 1973). The present study did observe decreased transamination reactions (plasma AST and ALT) and a decrease in total body weight in the marginal B_6 groups, so this may be due to higher amounts of dietary glucose being used as energy instead of fat storage. The mode of feeding may also be a reason as to why there was a trend for decreasing body weight with increasing protein intake in the current study in comparison to Devkota & Layman (2011). Morens et al. (2011), however, used a three meal feeding approach to administer isocaloric diets with either 14% and 50% energy as total milk protein, and they did see a significant decrease in body weights which is in accordance with the present study. Morens and colleagues (2001) also observed that 50% energy as protein saturated catabolic capacities of metabolising amino acids and was associated with decreased gastric emptying, causing a decrease in intake. However, a three week trial using male rodents consuming 12% and 26% energy as protein with adequate B_6 status showed no differences in weight or intake (Tirapegui et al., 2012).

Typically, higher protein diets tend to result in less weight gain. Protein has a higher thermogenic effect (20-30%) than carbohydrate (5-10%) and fat (0-3%) (Tirapegui et al., 2012). High protein intakes in overweight humans given caloric intakes to provide 0.6 kg/week weight loss over ten weeks using a higher protein diet (30% energy as protein, 40% energy as carbohydrates, 30% energy as lipid) or a normal protein diet (15% energy as protein, 55% energy as carbohydrate, 30% energy as lipid) also showed a slightly higher weight loss with the higher protein group (Layman et al., 2003). Short term (eight weeks) and long term (six months) rodent studies observed decreased body weights, fat mass, retroperitoneal fat pad weight, white adipose
tissue weight and feed intake with higher milk protein consumption (50-53% as energy) compared to low protein intakes (14% as energy), while keeping lipid constant and diets isocaloric (Blouet et al., 2006; Jean et al., 2001; Lacroix et al., 2004). No difference in lean body mass or skeleton weight were also observed in these latter studies indicating increased body lipid as the main reason for increased weights in lower protein diets (14% as energy). Although the present study did not analyze or measure white adipose tissue or retroperitoneal fat pads, a decreased feed intake and body weight was observed. Thus the decreased body weight could result from numerous factors including decreased feed intake, increased utilization of dietary glucose as energy due to suboptimal amino acid metabolism and possible decreased carcass lipid.

The present study’s findings of increased ADG in adequate B₆ status consuming 20% energy as protein versus 40% energy as protein is comparable to findings by Morens el al. (2001) who used 14% and 50% energy as total milk protein. Interestingly, a significant interaction between protein and B₆ level for ADG was observed with ADG increasing with 40% energy as protein in moderate B₆ deficiency, while the opposite was seen in the adequate B₆-40% protein group. This is possibly due to increased body water during B₆ deficiency as described by Angel and Song (1973), as increased protein intake doesn’t necessary mean increased muscle mass (Garlick, McNurlan, & Patlak, 1999; Lacroix et al., 2004; Tirapegui et al., 2012). Tirapegui et al (2012) found that protein intake at 26% as energy over three weeks did not result in any changes in protein nutritional status as measured by serum albumin, insulin, total protein and insulin-like growth factor 1. According to the review by Garlick, McNurlan & Patlak (1999), there is an acute and long-term response to protein intake. In the acute phase increase amino acid oxidation occurs with increased energy expenditure from this process and an increased amino acid pool retained in the body. After a few days the chronic response sets in and amino acid oxidation
adapts so the body’s nitrogen balance approaches close to zero, yet no significant increase in muscle is seen in multiple studies. This is possibly due to a slow incorporation of nitrogen into muscle (Garlick et al., 1999) and no flexible storage capacity for excess amino acid intake resulting in oxidation and elimination (Tirapegui et al., 2012).

Although not significant, the present study observed plasma PLP, PA, PL increasing with adequate B₆ and 40% energy as protein (p=0.43, p=0.47, p=0.09), which has been previously observed (Nguyen & Gregory, 1983). Okada and colleagues observed the opposite effect with rodents consuming 20% or 70% energy as casein and administering equal levels of B₆ for each diet group (Okada et al., 1998a). In comparison to Okada et al. (1998), the present study’s adequate B₆-40% protein group observed plasma PLP 1.5 times higher and PL 1.4 times higher than Okada et al (1998), while plasma PLP and PL in the 20% as energy as protein group under the same B₆ conditions was comparable in both studies. This discrepancy in plasma PLP and PL at 40% and 70% energy as protein may reflect a tipping point in the balance of plasma B₆ vitamers in metabolizing protein intake above 40%. The lowering of plasma PLP at 70% energy as protein may indicate a possible increased usage or tissue storage of B₆ at protein intakes above 40%.

Along with increased plasma PLP in adequate B₆-40% protein intake, the present study also observed a significant decrease in plasma PN with 40% energy as protein intake regardless of B₆ status and a significant increase in plasma PL for the interaction of adequate B₆-40% protein intake. This phenomenon can be explained by understanding the interconversion of B₆ vitamers. When the demand for PLP-dependent enzymes increases, so does the requirement for PLP. A review by Merrill Jr. & Henderson (1990) indicates that PL kinase is readily available in many tissues facilitating the phosphorylation of PL, PM, and PN to keep them contained in
tissues. PNP/PMP oxidase however are mostly found in the liver and thus the majority of conversion of PMP and PNP to PLP by this oxidase enzyme is done there (Merrill Jr. & Henderson, 1990). An increased demand for PLP, for reasons such as increased protein intake, causes increased conversion of PMP and PNP to PLP via PNP/PMP oxidase. Non-specific alkaline phosphatase hydrolyses the bond between PL and phosphate to liberate the vitamer from tissues into circulation where PL can be taken up and re-phosphorylated to PLP by the abundant PL kinase enzyme (di Salvo et al., 2011; Merrill Jr & Henderson, 1990). Merrill Jr & Henderson (1990) indicate the rates of phosphorylating PN, PM and PL are much slower then the conversion of PNP and PMP to PLP. Feed restriction of 60% over forty weeks has been shown to lead to a decrease in B₆ plasma vitamers after ten weeks, increased retention in tissues and an increase in PNP/PMP oxidase enzyme over time (Wei, 1999), indicating increased conversion of other forms of B₆ to PLP. The increased speed of converting PNP and PMP to PLP as well as the abundance of PL kinase available to re-phosphorylate PL is a plausible reason for why we see increased plasma PLP and PL and decreased PN during increased PLP demand. The fact that the short-term indicator of B₆ intake and utilization, PA, was also increased with high protein intake under adequate B₆ status leads to the conclusion that more B₆ was being metabolized and excreted with higher protein intakes and adequate B₆ status.

As expected, marginal B₆ deficiency decreased plasma B₆ vitamers regardless of protein intake except for PA, which stayed the same. Although not significant, 40% energy as protein intake during marginal B₆ deficiency tended to decreased plasma PLP, PL, PN compared to 20% energy as protein, which was the opposite observed in the adequate B₆ group. The decrease in plasma B₆ vitamers is most likely a reflection of tissue retention of the vitamin for vital enzyme functions in animals and humans (Miller et al., 1985; Miyazaki et al., 2011; Moriya et al., 2012;
Pregnolato et al., 1994; Wei, 1999), and a decrease in B₆ utilization and excretion at any protein level as determined by PA and no significant elevations in HCY and CYS.

Although no significant elevations of HCY and CYS were observed in our study a significant decrease in hepatic CGL with marginal B₆ deficiency and also protein intake at 40% was observed. Our previous work shows similar findings, and significant decreases in hepatic CBS and CGL, as in severe B₆ deficiency, have to occur before an elevation in HCY and CYS are observed (Mayengbam et al., 2015). Thus even though the transsulfuration pathway is depressed, there is still enough activity to allow for non-significant elevations in plasma HCY and CYS.

Liver weights in the present study significantly decreased with marginal B₆ deficiency and showed a trend (P=0.06) to decrease with increasing protein intake. There are varying reports on liver weights in conditions of adequate B₆ status and high protein (50%-70% as energy) intake with some studies reporting higher weights (Morens et al., 2001), and some with no change (Jean et al., 2001; Okada et al., 1998a) and others are in agreement with our findings (Pregnolato et al., 1994). Liver weight can be a reflection of total liver lipids, which were not significantly different between groups in the present study, but a decreasing trend (p=0.06) was seen with increased protein intake. The non-significant difference between total liver lipids in marginal and adequate B₆ status was unexpected as it contradicts the findings the author’s previous pilot study, which reported an increase in total liver lipids under the same conditions (Raposo, unpublished data). This may be due to small sample size (n=4) of the pilot study, but the exact reasoning is not clear. There is a lack of data on liver lipids in marginal deficiency states, so the results are hard to compare, but work in our lab is observing a more temporal effect
of hepatic lipid accumulation in marginal deficiency, with sensitivity to stage of deficiency (Mayengbam et al., 2015).

Severe B₆ deficiency with 40% and 70% energy as protein does increase liver lipids through impaired lipid metabolism (Pregnolato et al., 1994; Suzuki et al., 1976), so the accumulation of liver lipid may be a consequence of severe B₆ deficiency more so than protein intake. Liver lipid accumulation is also observed with marginal B₆ deficiency tipping over into a severe deficiency as observed when administering 10 mg/kg of 1-Amino-D-Proline during moderate B₆ deficiency (Mayengbam et al., 2015). Decreased total liver lipid may also result from increased substrate utilization as plasma and hepatic TG were significantly decreased in marginal B₆ deficiency. During impairments in endogenous glucose utilization, increased oxidation of fatty acids from TGs are supplemented for the lack of carbon originally intended to come from glucose to enter the TCA cycle (Angel, 1975; Veldhorst et al., 2009). Marginal B₆ deficiency may provide adequate B₆ for PLP-dependent intermediary metabolic enzymes, which allows the utilization of TG for energy and not the trapping of TG in the liver as seen in severe B₆ deficiency (Pregnolato et al., 1994; Suzuki & Okada, 1984). It should be noted that no apparent changes are seen in plasma TG in rodents consuming 14% and 50% energy as protein with adequate B₆ status (Blouet et al., 2006) and administration of glucose during fatty liver induced severe B₆ deficiency reduces hepatic lipids (Suzuki & Okada, 1982b). This helps provide evidence that decreased plasma and hepatic TGs observed in marginal B₆ deficiency are most likely due to the marginal B₆ deficiency and as a result increased demand for carbon skeletons originally supplied by glucose metabolic pathways, which were impaired.

The impairment of the glucose metabolic pathways in marginal B₆ deficiency can be observed in our study by the significant increase in hepatic glycogen, significant decreases in
hepatic glycogen phosphorylase, and gluconeogenic pathways from plasma AST and ALT.

These findings are in accordance with other studies observing decreases in these enzymes and other glucose metabolising enzymes (glucokinase and hexokinase) in overt B₆ deficiency (Angel, 1980; Okada & Ochi, 1971; Okada & Hirose, 1979; Toney, 2013). Decreased B₆ status observed in aging male rodents also exhibited a decrease in active glycogen phosphorylase in muscle with only 5% of the enzyme being active (Bode et al., 1991) but the decrease in glycogen phosphorylase in muscle was not as dramatic in female rodents (Bode et al., 1991). Other aging rodent studies indicate that the severe decrease in glycogen phosphorylase activities occurs the most in young growing rats, and the degree of enzyme decrease depends on the severity of PLP depletion in the tissue (Cochary, Gershoff, Sadowski, 1991). These studies indicate that glycogen phosphorylase activity is dependent on PLP content in tissues and is decreased in specific life stages and gender.

Muscle glycogen is mostly used to provide glucose to the muscle itself while liver glycogen is more responsible for maintaining blood glucose levels (Okada, Goda, Murakami, Shibuya, 2000). Okada, et al. (2000) observed decreases in glycogen phosphorylase activity in muscle, heart and liver of severely deficient rodents consuming 70% energy as casein over five weeks, with elevated glycogen contents in muscle and liver, which is concurrent with our study’s findings. The authors added PLP to the reaction medium for determination glycogen phosphorylase activity but saw no increased effect on activity, indicating no apoenzymes were present and hypothesized that the apoenzymes for glycogen phosphorylase were degraded because their ability or synthesis of the enzyme is dependent on PLP (Okada et al., 2000). Severe B₆ deficiency has been shown to weaken rodent leg muscles and also decrease glucose utilization by the brain (Wei, Huang, Wang, 1999). Case studies of McArdle Disease in humans, a genetic
glycogenic myopathy where patients exhibit fatigue, reduced exercise tolerance and muscle weakness, oral B₆ supplementation (90 mg PN-HCl/day) has proven successful in increasing residual glycogen phosphorylase activity and improving symptoms (Izumi, et al., 2010; Sato, Takekazu, Nishino, Sugie, 2012). These studies help show the importance for vitamin B₆ in glycogen breakdown via glycogen phosphorylase, which ultimately effects energy utilization. Due to decreases in glycogen phosphorylase during B₆ deficiency, the body is not able to breakdown glycogen to glucose for maintaining blood glucose during fasting and glucose derived carbon skeletons to enter the TCA cycle for energy maintenance. Thus the body must rely on carbon skeletons form stored triglycerides and protein as well as dietary glucose intake to maintain these processes in B₆ deficiency.

No matter what tissue the glycogen is present in, PLP is a cofactor for glycogen phosphorylase and required for the optimal activity of this enzyme and glucose utilization during fasted states. Due to the increased risk of marginal deficiency in the elderly population and the effects of aging on B₆ status and PLP-dependent enzymes, this segment of the population may be at increased risk of altered glucose utilization and metabolic consequences of B₆ even with adequate B₆ intake.

Overt B₆ deficiency and overt deficiency with 70% casein has been observed to decrease plasma AST and ALT (Angel, 1980; Suzuki et al., 1976), but this is the first study, to the authors knowledge, to demonstrate a significant decrease also in marginal B₆ deficiency in a rodent model. This is an important finding as marginal B₆ deficiency is seen in about 18% of the population in North America and up to 50% in Europe (Haller et al., 1991; Morris et al., 2008) and blood AST and ALT are common indications of hepatic injury, but marginal deficiency in B₆ may not accurately reflect hepatic health. Therefore it may be beneficial for clinicians to screen
patients for B₆ status in order to determine if interpretations of blood AST and ALT are accurate or misleading.

Plasma haptoglobin showed no significant differences among the groups, which is concurrent with another study showing no major differences in inflammatory markers with 50% protein intake over six months in adequate B₆ rodents (Lacroix et al., 2004). Only increased central vein dilation was a significant histological indication for increased liver injury with increased protein intake. Yet histological indications of inflammation by observation and grading systems can be objective, which is why quantitative analysis with such methods is key in providing evidence for or against the visual observation. B₆ intake has been associated with significant decreases in molecular expression of inflammatory markers, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and cyclooxygenase-2 as well as histological markers of inflammation in a mouse model of inflammatory bowel disease (Selhub et al., 2013). PLP has also been shown to serve an important role in genome integrity in small fly cells, as deficiency resulted in increased breaks and re-arrangements in the genome and in the presence of hyperglycemia genetic damage occurred (Marzio, Merigliano, Gatti, Verni, 2014). Although studies have shown B₆ is important for reducing inflammation (Sakakeeny et al., 2012; Yamamoto et al., 2013) and genome integrity (Marzio, Merigliano, Gatti, Verni, 2014), the current study’s rodent model of marginal B₆ deficiency may not have had enough time to develop a hepatic insult, and more research into the time to develop these insults is needed.

In summary marginal B₆ deficiency decreases PLP-dependent enzymes in glycolysis, transsulfuration, and transamination. Clinicians should consider taking B₆ status into account before interpreting liver injury markers plasma AST and ALT as these were significantly decreased in marginal deficiency. Intake of 40% energy as protein, close to the upper AMDR
resulted in increased interconversion of PN to PLP, indicating increased demand for PLP during intakes of forty percent energy as protein. Some PLP-dependent enzymes, such as CGL were also negatively affected by 40% energy as protein intake. Therefore the DRI for B₆ should take into consideration B₆ requirement with protein intakes at or above the upper AMDR range, especially for the older adult population, which is more susceptible to lower B₆ status.
8. Strengths and Limitations

The limitations of the study include the discrepancy of body weight change between the present study and the pilot study in marginal B₆ deficiency. Yet all other criteria for meeting marginal deficiency were met (non-significant decrease in plasma HCY and CYS with significant decrease in plasma B₆ vitamers). This discrepancy in body weight may be due to a slightly more deficient model than the pilot study, enough to alter body composition but not plasma biomarkers. The length of time may be a limitation to our study, as liver lipid accumulation or markers of inflammation might change over a longer period in marginal deficiency. This is due to the fact that the consequences for severe deficiency takes effect right away and are visible, while the effect of marginal deficiency are less pronounced and gradual. A long-term study may be more beneficial in determining the long term affects of protein consumption on B₆ status and effects on enzymes intermediary metabolism, whereas our study may be representative of a more acute high protein intake. The other limitation is that we tested for consumption of high intake of casein as the protein source and generalized it as high protein intake. It would be beneficial to look into various forms of protein (plant and animal), to determine how varying proteins effect B₆ status. Fisher, Willis, & Haskell (1984) have observed an average decreased weight gain and B₆ status regardless of vitamin B₆ intake in rodents consuming amino acid mixtures similar to maize (low quality protein) compared to casein. Gender may also be a limitation of the study as only male rodents were used. The age of the rats is also a limitation as we had used growing rats for which the implications of marginal B₆ deficiency may be greater than rats who are in adulthood.

Strengths of this study include findings that indicate the delicate balance between vitamin B₆ and energy utilization and that there are deleterious effects to intermediary metabolising
enzymes occurring in marginal B₆ deficiency. Another strength is that the present study was able to show the novel finding of decreased liver function enzymes (AST and ALT) under marginal B₆ deficiency, which to the writer’s knowledge has not been found in the rodent model. Another strength is that we had used a previous established model for moderate vitamin B₆ deficiency, which can allow this study to be compared to others using the same model.

9. Future Research

Gender may be an important variable to investigate as aging rodent studies see differences in PL kinase activity and other B₆ related enzymes in females vs. males (Bode et al., 1991). Future research should include long term and short term comparisons of high protein intakes during marginal B₆ deficiency to determine if there are changes over time. Different protein sources and quality could investigated as casein, soybean and maize have resulted in different results in B₆ status (Fisher, Willis, & Haskell, 1984; Lu & Huang, 1997). With the increasing fad of low carbohydrate diets, another future research study could focus on elevating the protein and lipid content and determining if that diet ratio has consequences to B₆ status.
10. Major findings of Study

Marginal B₆ deficiency:

- Significantly decreases plasma B₆ vitamers and hepatic CGL without significant alterations in HCY and CYS.
- Increases hepatic glycogen and reduces glycogen phosphorylase activity.
- Lowers hepatic and plasma triglycerides.
- Decreases plasma AST and ALT.

Protein intakes at 40% diet energy under marginal B₆ deficiency:

- Further decrease in plasma PN and hepatic CGL.
- Tended to decrease plasma PL (p=0.09).

Marginal B₆ deficiency had more detrimental implications to intermediary metabolizing enzymes and B₆ status markers than protein intake at 40% of dietary energy alone (similar to the upper AMDR). Yet significant decreases in plasma PN and a decreasing trend in plasma PL under marginal B₆ deficiency and 40% protein intake suggests increased conversion of those B₆ vitamers in that condition. Therefore the DRI for B₆ should take more notice of protein intakes at or near the upper AMDR when establishing B₆ requirement.
11. References

doi:10.3945/jn.113.180588 [doi]

Devkota, S., & Layman, D. K. (2011). Increased ratio of dietary carbohydrate to protein shifts the focus of metabolic signaling from skeletal muscle to adipose. *Nutrition and Metabolism, 8*

Hlais, S., Reslan, D. R., Sarieddine, H. K., Nasreddine, L., Taan, G., Azar, S., et al. (2012). Effect of lysine, vitamin B(6), and carnitine supplementation on the lipid profile of male
patients with hypertriglyceridemia: A 12-week, open-label, randomized, placebo-controlled trial. *Clinical Therapeutics*, 34(8), 1674-1682.

glycogenolysis. *Internal Medicine (Tokyo, Japan)*, 49(15), 1623-1625.

doi:JST.JSTAGE/internalmedicine/49.3525 [pii]

Ollilainen, V. (1999). HPLC analysis of vitamin B6 in foods. *Agricultural and Food Science in Finland, 8*(6), 526-618.

10. Appendix
Pearson Correlation

<table>
<thead>
<tr>
<th></th>
<th>Plasm a PN</th>
<th>Plasm a PLP</th>
<th>Plasm a PA</th>
<th>Plasm a PL</th>
<th>Total ADI</th>
<th>Final weight</th>
<th>Total ADG</th>
<th>Relative liver weight</th>
<th>Hepatic CGL</th>
<th>Hepatic TG</th>
<th>Plasm a TG</th>
<th>Hepatic glycogen</th>
<th>Plasm a ALT</th>
<th>Plasm a AST</th>
<th>Hepatic GP Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasm a PN</td>
<td>.391*</td>
<td>.523**</td>
<td>.426*</td>
<td>.606**</td>
<td>.605**</td>
<td>.605**</td>
<td>.536**</td>
<td>.443*</td>
<td>.292</td>
<td>-.467**</td>
<td>.318</td>
<td>.296</td>
<td>.392*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasm a PLP</td>
<td>.716**</td>
<td>.964**</td>
<td>.682**</td>
<td>.499**</td>
<td>.565**</td>
<td>.499**</td>
<td>.712**</td>
<td>.682**</td>
<td>.376*</td>
<td>-.506**</td>
<td>.789**</td>
<td>.750**</td>
<td>.584**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasm a PA</td>
<td>.667**</td>
<td>.538**</td>
<td>.483*</td>
<td>.448*</td>
<td>.482*</td>
<td>.533**</td>
<td>.589**</td>
<td>.410</td>
<td>-.107</td>
<td>.553**</td>
<td>.665**</td>
<td>.732**</td>
<td>.597**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasm a PL</td>
<td>.638**</td>
<td>.558**</td>
<td>.607**</td>
<td>.675**</td>
<td>.733**</td>
<td>.428*</td>
<td>-.529**</td>
<td>.748**</td>
<td>.723**</td>
<td>.523**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total ADI</td>
<td>.794**</td>
<td>.765**</td>
<td>.795**</td>
<td>.819**</td>
<td>.689**</td>
<td>.391*</td>
<td>-.621**</td>
<td>.615**</td>
<td>.374*</td>
<td>.630**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final weight</td>
<td>.868**</td>
<td>1.000**</td>
<td>.644**</td>
<td>.596**</td>
<td>.529**</td>
<td>-.575**</td>
<td>.367**</td>
<td>.331</td>
<td>.498**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total ADG</td>
<td>.868**</td>
<td>.698**</td>
<td>.454*</td>
<td>.554**</td>
<td>-.656**</td>
<td>.513**</td>
<td>.272**</td>
<td>.423*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative liver weight</td>
<td>.645**</td>
<td>.596**</td>
<td>.531**</td>
<td>-.575**</td>
<td>.368*</td>
<td>.332</td>
<td>.498**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic CGL</td>
<td>.606**</td>
<td>.449*</td>
<td>-.425*</td>
<td>.759**</td>
<td>.525**</td>
<td>.613**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic TG</td>
<td>.413*</td>
<td>-.379*</td>
<td>.597**</td>
<td>.546**</td>
<td>.418*</td>
<td></td>
</tr>
<tr>
<td>Plasm a TG</td>
<td>-.261</td>
<td>.414*</td>
<td>.431*</td>
<td>.347</td>
<td></td>
</tr>
<tr>
<td>Hepatic glycogen</td>
<td>-.447*</td>
<td>-.176</td>
<td>-.222</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Plasm a ALT</td>
<td>.510**</td>
<td>.305</td>
<td></td>
</tr>
<tr>
<td>Plasm a AST</td>
<td></td>
<td>.446*</td>
<td></td>
</tr>
<tr>
<td>Hepatic GP Activity</td>
<td></td>
</tr>
</tbody>
</table>

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).
<table>
<thead>
<tr>
<th>Title, Author, Year</th>
<th>Description & Methods</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role of Glucose on Fatty Liver Formation in PN-Deficient Rats, Suzuki & Okada, (1982)-</td>
<td>Does glucose (glc) starvation= fatty liver in B<sub>6</sub>- rats? Rats fed 70 then 20 % casein. Pair fed. 0 mg PN vs. unknown adequate amount.</td>
<td>No sig diff plasma glc conc. but 43.9%↓ in liver. ↓ liver glycogen. ↓ active insulin=↓ glc uptake. ↓ Glukokinase & hexokinase. B<sub>6</sub>- & ↑ protein =↑ liver fat. Going from 70 to 20 % protein casein sig ↓ liver lipids. Liver lipids tended to ↓ after glc injection.</td>
</tr>
<tr>
<td>Factors affecting liver lipid content in pyridoxine-deficient rats. Dietary protein levels, Suzuki, et al., (1976)</td>
<td>Looked @ liver lipid content vs dietary protein. Trial 1= protein vs. liver lipid 10, 30, 50 70% casein. Trial 2= liver lipid vs. asp-t activity 70% casein. Trial 3= fatty liver vs. time 70% casein. Trial 4= diet change vs. liver lipid 20 & 70 % casein. Pair fed groups.0 mg PN vs. unknown adequate amount.</td>
<td>B<sub>6</sub>- = relative liver enlargement in 50-70% casein but ↓ in 10-30 % casein vs controls. Critical point observ. b/w 30-50 % casein related to liver growth in B<sub>6</sub>-. ASP-AT ↓ w/↑ protein. Liver lipid close related to level of liver ASP-AT activity. 70% casein=↑ liver lipid after 1wk, 2.3 times ↑ vs. controls @ wk 3. ↓ lipids when casein ↓ or when supplemented with PN, but liver still enlarged.</td>
</tr>
<tr>
<td>Pathogenesis of Fatty Liver in Rabbits Fed a High Protein Diet Without PN, Abe, et al. (1982)</td>
<td>Do hepatocytes (HPC) change structure in development of fatty liver in rats fed high protein diet and B<sub>6</sub>-? Rats fed 70% casein & B<sub>6</sub>-. Pair fed controls. 0 mg PN vs. unknown adequate amount. Killed at 3 D, 1, 2, 4, 8, 16 wks. PN given after 8 wks and recovery examined @ 1, 2, 3 weeks.</td>
<td>Relative liver wt ↑ in B<sub>6</sub>- & 40% ↑ liver lipids, lipid droplets in hepatocytes ↑ w/time,↑ TG conc. @ 2 wks droplets centered in hepatocyte becoming widespread w/time. Droplet size varied, larger in center, seen in cytoplasm. @ 16 wks droplets=few & smaller. Foamy cells w/small nuclei observed. No necrosis or fibrosis seen. When PN added lipid droplets in HPC disappeared after 3 wks. Control group=no lipids in HPC or abnormalities. When sufficient PN given, most abnormalities reversed, except for myelin figures in hepatocytes.</td>
</tr>
<tr>
<td>The Influence of Dietary Restriction on Vitamin B-6 Vitamer Distribution and on Vitamin B-6 Metabolizing</td>
<td>How does diet restriction (DR) influence B<sub>6</sub> metabolism, tissue concen. & B<sub>6</sub> metabolizing enzymes? 60% restriction in diet for 10, 20 &40 weeks. 0.7 g PN-HCl.</td>
<td>A ↓ body wt & food efficiency ratio. With age a relative ↓ in B<sub>6</sub> intake seen in both groups. DR groups had sig ↓ in PL kinase and PMP(PNP) oxidase activities than controls @ all times. After 20 wks DR group had 29% lower plasma PLP.</td>
</tr>
</tbody>
</table>
Enzymes in Rats, Wei (1999)

The Effect of Dietary Protein Level on Transaminase Activities and Fat Deposition in Vitamin B₆-Depleted Rat Liver, Okada & Ochi, (1971)	Diff levels of protein in diet vs. transaminase activities in B₆- & looked at fatty liver induced by B₆- Rats pair fed, 10, 20, 70 % casein. B₆ described as deficient or not.	Transaminase activities ↑ up to 7 fold in 70 % B₆+ casein group vs 10 % casein. B₆ 70 % casein=↓ activity & group liver lipids ~ double B₆ + 70 % group. 10 % casein B₆ & B₆+ = same liver lipid levels. Observed fatty degeneration of liver cells.
Studies on the Origin of Triglyceride in Fatty Liver Caused by Pyridoxine Deficiency in Rats, Suzuki (1984)	Mechanisms of lipids ↑ in liver, their transport, & origin of TG in liver in B₆- Rats pair fed, 70% casein & B₆- (0 mg PN) or unknown adequate amount. Another group pair fed, B₆- & given radioactive linoleic acid.	Plasma turbidity test in B₆- = ↓ fat in blood & ↑ into liver vs. controls. ↑ TG, ↓ microsomal TG transfer protein, serum VLDL, Apo-C, & % B-lipoprotein.
Alterations of Phospholipid and Triglyceride Metabolism in Fatty Liver Caused by Pyridoxine Deficiency in Rats, Suzuki & Okada, (1982)	Looked at B₆- on liver TG and Phospholipid metabolism. Rats were pair fed 70% casein. 0 mg PN vs. unknown adequate amount. Radioactive FA used to determine FA metabolism.	B₆- = ↓ tissue fat vs. ↑ liver fat. Relative liver enlargement. ↑ total liver fat, TG, cholesterol, cholesterol ester. No difference in serum TG & free FA, ↓ serum cholesterol & ester & phospholipid. ↑ TG incorporated into liver, as TG ↓ Phospholipids ↓. TG/phospholipid ratio not due to ↓ liver TG hydrolysis or ↑ flow of free FA from tissues to liver.
Dietary Protein as a Factor affecting Vitamin B₆ Requirement, Okada et al., (1998)	Fed rats 20 or 70% casein w/different amounts of B₆ to see B₆ requirement with varying protein intake. Exp 1=Each group was fed a 20% casein diet with 0mg/kg (Group 20-0), 1.45mg/kg (Group 20-0.5), 2.9mg/kg (Group 20-1) or 5.8mg/kg (Group 20-2) PN-HCl. EXP 2=24male weanling rats were divided into 4 groups as well. Each group was fed a 70% casein diet containing 0mg/kg (Group 70-0), 2.9mg/kg (Group 70-1), 5.8mg/kg (70-2) or 8.7mg/kg (70-3) pyridoxine hydrochloride. 4 weeks	Growth sig ↓ in in severe B6- (0 mg B₆ groups) but more in the 70-0 group. Liver wt’s didn’t differ but increased in group 70-3. Plasma PLP, PL ↑as B₆ intake ↑. 70% protein groups had more suppressed plasma B₆ vitamers vs. 20% protein @ intakes of at the same B₆ dose. There is different B₆ tissue saturation at 20 & 70% intakes. Group 20-1 and 70-2 had saturated B₆ levels.
Lipogenesis by Hepatic and Adipose Tissues from Meal-Fed Pyridoxine-Deprived Rats, Angel (1975)	Looked at B₆- on lipogenesis in liver and adipose. Meal fed 0 mg vs 22 mg PN-HCl/kg to rats over 8 weeks with pair fed controls. Used to 14C-labeled alanine or glutamate as tracers for gluconeogenesis in vivo.	both groups incorporated glucose carbon into FA and glycereide glycerol= lipogenic capacity was not altered. B₆- = small but sig ↓ in lipid in peripheral adipose tissue. B₆- = sig decrease in glc-6-phosphate dehydrogenase, 6- phosphogluconate dehydrogenase, malic enzyme and acetyl CoA carboxylase in both liver and adipose tissue (these are energy producing NADPH-generating enzymes).

Abbreviations: Sig=significant, diff=difference, wt=weight, TG=triglyceride, vs. =versus, wk=week, @=at, concen=concentration, B₆- = B₆ deficiency, glc=glucose.