ASPECTS OF THE CRYSTAL CHEMISTRY OF THE

TOURMALINE-GROUP MINERALS

 $\mathbf{B}\mathbf{Y}$

CHRISTINE M. CLARK MCCRACKEN

A Thesis

Submitted to the Faculty of Graduate Studies

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences

University of Manitoba

Winnipeg, Manitoba

© August 22, 2002

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre rélérence

Our file Notre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-79842-9

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION PAGE

ASPECTS OF THE CRYSTAL CHEMISTRY OF THE TOURMALINE-GROUP MINERALS

BY

CHRISTINE M. CLARK MCCRACKEN

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

Doctor of Philosophy

CHRISTINE M. CLARK MCCRACKEN © 2002

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

Tourmaline is a complex borosilicate with the general formula: ${}^{[9]}X {}^{[6]}Y_3 {}^{[6]}Z_6 {}^{[4]}T_6$ O₁₈ (${}^{[3]}BO_3$)₃ V₃ W; it is common as an accessory mineral throughout the rock cycle. Due to complexities in the chemical composition, including the presence of the light elements B, H and (often) Li, transition-metals in multiple valence states, and chemical heterogeneity, tourmaline is not as well understood as other common accessory minerals.

Tourmaline normalization procedures have been compared to determine which schemes provide the most accurate mineral formula when there is undetermined information. Normalization on 31 anions, assuming OH values if necessary, produces a more useful formula than schemes that ignore F or B. Iteration of Li may give a first approximation of Li content; Li₂O may be added to the calculations until Y + Z + T = 15*apfu*.

A number of potential new tourmaline species have been described, including "fluordravite", ideally Na Mg₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F; "fluorschorl", ideally Na Fe²⁺₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F; "fluorelbaite", ideally Na (Li_{1.5}Al_{1.5}) Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F; "hydroxyuvite", ideally Ca Mg₃ (Al₅Mg) (Si₆O₁₈) (BO₃)₃ (OH)₃ (OH)₃ (OH); and "cralpoite", ideally Na Cr³⁺₃ (Al₄Mg₂) (Si₆O₁₈) (BO₃)₃ (OH)₃ O.

A suite of chromian tourmalines were investigated, with Cr_2O_3 values ranging up to ~35 wt%. Comparison of SREF and EMPA data show details of Cr site assignment. Included in this suite are "cralpoite" and chromdravite, whose approved formula may need to be revised to show Cr dominant at both the Y- and Z-sites. Problems remain with some of the chromian tourmaline analyses, which may not be resolved until accurate H-values can be determined.

Comparison of SREF and EMPA data for povondraite show the best method for distributing species between the octahedral sites involves filling the Z-site in the order Al, Mg, Fe^{3+} ; there is indication that minor amounts of Fe^{2+} also occur. Povondraite has the most K reported for any species of tourmaline, and in some analyses (Na + K) exceeds the structural maximum of 1 *apfu*. The nature of the excess alkalis has not yet been resolved, but cannot be real as no additional electron-density is seen in the refined crystal structures.

The triangular (BO₃) groups in tourmaline have thus far been assumed to be relatively constant in dimensions. SREF and EMPA data for a suite of 99 tourmalines indicate that the B-O2 and B-O8 bond lengths are not constant, but vary according to the chemical composition of the tourmaline. Statistical analysis of the bond-valence contributions for the *X*-O2, *Y*-O2, *Z*-O8 and *Z*'-O8 bonds as they relate to the B-O2/B-O8 bond-valence indicate that the geometry of the (BO₃) triangle is most influenced by the *Z*'-O8 bond.

ACKNOWLEDGMENTS

I would like to thank my advisor, Frank Hawthorne.

Additionally, I would like to thank the members of both my advising and examination committees; Drs. Petr Černý, Norman Halden, Roy Roshko, Adrienne Larocque, Helene Perreault, and Lee Groat.

The completion of this degree would have been impossible without the assistance, encouragement and support of the members of the Department of Geological Sciences, faculty, staff and students.

I would like to acknowledge the personal financial support provided by the University of Manitoba Graduate Fellowship and the International Centre for Diffraction Data Crystallography Scholarship. Research and additionally funding was provided by NSERC operating grants to F.C. Hawthorne.

Finally, I would like to thank my family and friends for their unwavering belief in me.

Thank you.

iv

TABLE OF CONTENTS

ABST	RACT				•	•		•	•	11
ACKN	NOWLE	DGMENTS								iv
TABL	E OF C	ONTENTS								ν
LIST	OF FIG	URES .								ix
LIST	OF TAE	BLES .								х
CHAF	TER 1:	INTRODUCI	ION							
1.1	Gener	al information	•							1
1.2	Tourm	aline chemistr	y and n	omencl	ature	•				2
	1.2.1	General form	ula							2
	1.2.2	Tourmaline n	omencl	ature		•		•		3
	1.2.3	Tourmaline s	olid-sol	utions						5
	1.2.4	Minor elemer	nt chem	istry	•		-			6
1.3	The cr	ystal structure	of touri	naline						7
1.4	Tourm	aline propertie	S.						•	9
	1.4.1	Physical prop	erties							9
	1.4.2	Optical prope	rties					·	•	9
	1 4.3	Polar properti	es							9
15	Tourm	aline occurren	ces							10
1.5	151	Igneous occur	rences							10
	1.5.7	Sedimentary (occurre	nces	•	•				11
	153	Metamorphic	occurre	ences	·	•	•	•	·	11
	1.5.5	Hydrotherma		ences	·	•	•	·		12
16	Object	ives	locouri	enees	•	•	•	•	•	12
1.0	Object			·	•	•	•	•	•	1 22
CHAF	TER 2.	EXPERIMEN	TAL N	1ETHO	DS					
21	Analy:	tical technique			20					14
2.1	211	General infor	mation	•		•				14
	212	Sample prepa	ration	•	·	•	•		·	14
22	Single	-crystal structu	re refin	ement	(SREF)	•	•	•	•	15
2.2	Flectro	n-microprobe	analysi	S		•	•	•	•	17
2.5	Powde	on-interoprove	unary 51	J.	•	•	•	•	•	19
2.4	Analy	sis of light eler	nents	·	•	•	•	•	·	19
4.5	2.5.1	H extraction	line	٠	•	•	•	•	•	10
	2.5.1	Secondary io:		enaatro	notry (ANNEN	•	•	•	20
	2.3.2	Secondary-10	mass	spectro	meny (511412)	•	•	•	20
СНУГ	יג מבדת	STRUCTIP	T -EOr	MIII /		רא זו די	NOI			
2 1	Introd	officer officer			A CALC					22
2.1	Metho	de of structure	Laformu	la calci	Ilation	•	•	•	•	22
2.2	Struct	us of situciula	loulatio	na carce	nation	•	•	•	•	25 24
2.2 2.1	Concl	nai-ionnuia ca	icutati	112	•	•	•	•	•	24
<u>ז א</u>	COHCH	1210112 -								ر ر

'TER 4:	POTENTIAL NEW S	SPECIES	S OF TO	DURMA	LINE			
Criteri	a for new mineral spe	cies		•		•		36
"Fluor	dravite".					•		37
4.2.1	Occurrence .							37
4.2.2	Physical and optical	propertie	es					38
4.2.3	Chemical composition	n						38
4.2.4	Crystal structure						•	39
4.2.5	Discussion .						•	40
"Fluor	elbaite".					•	•	41
4.3.1	Occurrence .					•		41
4.3.2	Physical and optical	propertie	es		•		•	41
4.3.3	Chemical composition	n			•			42
4.3.4	Crystal structure				•			42
4.3.5	Discussion .		•		•	•		44
"Fluor	schorl".	•				•		45
4.4.1	Occurrence .		•					45
4.4.2	Physical and optical	propertie	es					45
4.4.3	Chemical composition	n	•			•		45
4.4.4	Crystal structure	•	•					46
4.4.5	Discussion .				•			48
"Hydr	oxyuvite".			•				48
4.5.1	Occurrence .							48
4.5.2	Physical and optical	propertie	es	•				49
4.5.3	Chemical composition	n						49
4.5.4	Crystal structure		•	•			•	50
4.5.5	Discussion .			-	•	•		52
"Cralp	oite".					•		52
4.6.1	Occurrence .			•				52
4.6.2	Physical and optical	properti	es	•		•		53
4.6.3	Chemical composition	on				•		53
4.6.4	Crystal structure			•		•		54
4.6.5	Discussion .			•		•		55
Discu	ssion		•	•				56
PTER 5	CRYSTAL CHEMIS	STRY O	F CHRO	OMIAN	TOUR	MALIN	IE MIN	IERALS
Introd	uction .	•				•	•	58
5.1.1	Previous work.				•		•	58
5.1.2	Petrogenetic enviror	ments of	f Cr-tou	rmaline	•		•	59
Chron	nian tourmaline samp	e suite					•	60
5.2.1	General information	•	•		•	•		60
5.2.2	Chemical analysis		•		•	•	•	61
5.2.3	Formula normalizati	on						65
Crysta	al chemistry .	•		•			•	67
5.3.1	Introduction .		•				•	67
5.3.2	Sample CT34.	•		•				68
5.3.3	Sample CT40.			•				69
	TER 4: Criteria "Fluor 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 "Fluor 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 "Fluor 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 "Hydr 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 "Cralp 4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 Discus PTER 5: Introd 5.1.1 5.2.2 5.2.3 Crysta 5.3.1 5.3.2 5.3.3	TER 4: POTENTIAL NEW SCriteria for new mineral spec"Fluordravite".4.2.1Occurrence4.2.2Physical and optical4.2.3Chemical compositio4.2.4Crystal structure4.2.5Discussion"Fluorelbaite"4.3.1Occurrence4.3.2Physical and optical4.3.3Chemical compositio4.3.4Crystal structure4.3.5Discussion"Fluorschorl".4.4.1Occurrence4.4.2Physical and optical4.4.3Chemical compositio4.4.4Crystal structure4.4.5Discussion"Hydroxyuvite".4.5.1Occurrence4.5.2Physical and optical4.5.3Chemical compositio4.5.4Crystal structure4.5.5Discussion"Cralpoite".4.6.1Occurrence4.6.2Physical and optical4.6.3Chemical compositio4.6.4Crystal structure4.6.5Discussion"Cralpoite".4.6.1Occurrence4.6.2Physical and optical4.6.3Chemical compositio4.6.4Crystal structure4.6.5DiscussionDiscussion1.1Previous work5.1.2Petrogenetic environChromian tourmaline sampl5.2.3Formula normalizatiCrystal chemistry.5.3.1Int	TER 4: POTENTIAL NEW SPECIESCriteria for new mineral species"Fluordravite".4.2.1Occurrence4.2.2Physical and optical propertied4.2.3Chemical composition4.2.4Crystal structure4.2.5Discussion"Fluorelbaite".4.3.1Occurrence4.3.2Physical and optical propertied4.3.3Chemical composition4.3.4Crystal structure4.3.5Discussion"Fluorschorl".4.4.1Occurrence4.4.2Physical and optical propertied4.4.3Chemical composition4.4.4Crystal structure4.4.5Discussion"Hydroxyuvite"4.5.1Occurrence4.5.2Physical and optical propertied4.5.3Chemical composition4.5.4Crystal structure4.5.5Discussion"Cralpoite"4.6.1Occurrence4.6.2Physical and optical propertied4.6.3Chemical composition4.6.4Crystal structure4.6.5DiscussionSituationCralpoite5.1.1Previous work5.1.2Petrogenetic environments ofChromian tourmaline sample suite5.2.3Formula normalizationCrystal chemistry <td>TER 4: POTENTIAL NEW SPECIES OF TO Criteria for new mineral species"Fluordravite".4.2.1Occurrence4.2.2Physical and optical properties4.2.3Chemical composition4.2.4Crystal structure4.2.5Discussion"Fluorelbaite".4.3.1Occurrence4.3.2Physical and optical properties4.3.3Chemical composition4.3.4Crystal structure4.3.5Discussion"Fluorschorl"4.4.1Occurrence4.4.2Physical and optical properties4.4.3Chemical composition4.4.4Crystal structure4.5Discussion"Hydroxyuvite"4.5.1Occurrence4.5.2Physical and optical properties4.5.3Chemical composition4.5.4Crystal structure4.5.5Discussion"Cralpoite"4.6.1Occurrence4.6.2Physical and optical properties4.6.3Chemical composition4.6.4Crystal structure4.6.5DiscussionSinussion"Cralpoite"4.6.4Crystal structure4.6.5Discussion5.1.1Previous work5.1.2Petrogenetic environments of Cr-toutChromian tourmaline samp</td> <td>TER 4: POTENTIAL NEW SPECIES OF TOURMA Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion "Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion 4.3.6 Fluorschorl" 4.4.7 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.3 Chemical composition 4.5.4 Crystal structure 4.5.5 Discussion</td> <td>TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion "Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.5 Discussion "Fluorschorl" 4.3.5 Discussion "Fluorschorl" 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.4 Crystal structure <td< td=""><td>TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species **Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl" 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.4.5 Discussion ************************************</td><td>TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Chysical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl". 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.5 Discussion **Hydroxyuvite" 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.4 Cristal structure <t< td=""></t<></td></td<></td>	TER 4: POTENTIAL NEW SPECIES OF TO Criteria for new mineral species"Fluordravite".4.2.1Occurrence4.2.2Physical and optical properties4.2.3Chemical composition4.2.4Crystal structure4.2.5Discussion"Fluorelbaite".4.3.1Occurrence4.3.2Physical and optical properties4.3.3Chemical composition4.3.4Crystal structure4.3.5Discussion"Fluorschorl"4.4.1Occurrence4.4.2Physical and optical properties4.4.3Chemical composition4.4.4Crystal structure4.5Discussion"Hydroxyuvite"4.5.1Occurrence4.5.2Physical and optical properties4.5.3Chemical composition4.5.4Crystal structure4.5.5Discussion"Cralpoite"4.6.1Occurrence4.6.2Physical and optical properties4.6.3Chemical composition4.6.4Crystal structure4.6.5DiscussionSinussion"Cralpoite"4.6.4Crystal structure4.6.5Discussion5.1.1Previous work5.1.2Petrogenetic environments of Cr-toutChromian tourmaline samp	TER 4: POTENTIAL NEW SPECIES OF TOURMA Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion "Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion 4.3.6 Fluorschorl" 4.4.7 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.3 Chemical composition 4.5.4 Crystal structure 4.5.5 Discussion	TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion "Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.5 Discussion "Fluorschorl" 4.3.5 Discussion "Fluorschorl" 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.4 Crystal structure <td< td=""><td>TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species **Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl" 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.4.5 Discussion ************************************</td><td>TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Chysical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl". 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.5 Discussion **Hydroxyuvite" 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.4 Cristal structure <t< td=""></t<></td></td<>	TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species **Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Physical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl" 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.4.5 Discussion ************************************	TER 4: POTENTIAL NEW SPECIES OF TOURMALINE Criteria for new mineral species "Fluordravite". 4.2.1 Occurrence 4.2.2 Physical and optical properties 4.2.3 Chemical composition 4.2.4 Crystal structure 4.2.5 Discussion **Fluorelbaite". 4.3.1 Occurrence 4.3.2 Chysical and optical properties 4.3.3 Chemical composition 4.3.4 Crystal structure 4.3.5 Discussion **Fluorschorl". 4.4.1 Occurrence 4.4.2 Physical and optical properties 4.4.3 Chemical composition 4.4.4 Crystal structure 4.5.5 Discussion **Hydroxyuvite" 4.5.1 Occurrence 4.5.2 Physical and optical properties 4.5.4 Cristal structure <t< td=""></t<>

mot ID1 (

vi

	5.3.4	Samples CT 9)-95: "(Cralpoite	?"				•	69
	5.3.5	Samples CT 9	5-98: C	hromdra	vite	•	•	•	•	70
5.4	Discus	sion .	•		•	•		•	•	71
CHAP	TER 6:	CRYSTAL CH	IEMIS	ГRY OF	POVO	NDRA	TE			
6.1	Genera	al information	•		•					73
0.1	6.1.1	Introduction								73
	61.2	Occurrence								74
62	Chemi	cal Compositio	n							74
0.2	621	General inform	nation					•		74
	622	X-site occupar	CV							78
	623	Substitution m	echanis	sms						80
63	Crysta	1 structure		51110	•					82
6.A	Discus	sion	•	•	•	·				82
0.4	Discus		·	•	•	•	•	•	•	02
CHAE	TER 7:	STEREOCHE	MISTR	Y OF ^[3]	B-SITE	5				
71	Introd	uction .					•			86
7.2	Descri	ption of proble	n							87
73	Bond-	valence theory			•					89
7.5	Statist	ical methods	•	•	•	•				90
7.4	Discus	reion	•	•	•	•	•	•		91
1.5	Discus		•	•	•	•	•	•	•	~ -
CHAI	PTER 8:	DISCUSSION	AND	SUMMA	ARY					
8.1	Struct	ural-formula ca	lculatio	n						93
8.2	Potent	ial new species	of tour	maline						94
83	Crysta	l chemistry of o	hromia	n tourm	aline m	inerals				95
8.4	Crysta	l chemistry of t	ovondi	raite						95
85	Stereo	chemistry of th	$e^{[3]}B-si$	ite			_			96
8.5	Linres	olved issues			•	•	•			96
8.0	Omes	01700 135005	•	•	•	•	•	•		
DEEE	PENCI	25								98
NEPE		. 0.	•	•	•	•	•	•		
ΔΡΡΕ		A · TOURMALI	NE SA	MPLES		_				104
ALL		1. 1001001111			•	•	•			
A DDE		B. SREE MISC	FLLAN	JEOUS I	INFOR	MATIC	N			108
		J. JIL I IIIIIIIIIIIII								
ΔΡΡΕ	NDIX (RAM	ETERS			_			119
C_1	Atom	ic narameters fo	x the X	Y Z R	T and	$\dot{O}(1) -$	O(8) sit	tes		120
C_{2}	Δtom	ic narameters fo	r H3	, . , . , . , , , , , , , , , , , , , , ,	1, 4114	- (-)	- (-)			140
C.2	Atom ²	ic parameters fo	r H1	•	•	•				142
0.5	Atom	te parameters te		•	•	•	•	•	•	- · -
Δ DDL		D. SITE-SCAT	TERIN	G (enfu)	DATA	FROM	SREF			143
	/1 Y / / / / / / / / /			$\sim (-p_j n_j)$						

APPEN	NDIX E: CHEMISTRY (<i>epfu</i>) DATA .			•		146
E.1	Standard normalization and site-assignment	scheme		•	•	147
E.2	Normalization on 6 <i>apfu</i> Si			•	•	149
E.3	EMPA data (epfu) for CT96 and CT99	•	•		•	150
APPE	NDIX F: SELECTED INTERATOMIC DIST	ANCES	S AND	ANGL	ES	151
APPEI	NDIX G: CHEMICAL ANALYSES .					167
G.1	Standard normalization and site-assignment	scheme	•	•	•	168
G.2	Normalization on 6 <i>apfu</i> Si .		•	•	•	179
G.3	EMPA data for CT96 and CT99 .	•	•		•	183

1

.

LIST OF FIGURES

CHAPTER 1: INTRODUCTION		
1.1: Ternary plot of tourmaline principal classes .	•	4
1.2: Ternary plot of tourmaline subdivisions based on W-site occu	pancy	5
1.3: Tourmaline structure projected onto (0001)		7
CHAPTER 4: POTENTIAL NEW SPECIES OF TOURMALINE		
4.1: Nomenclature for a ternary solid-solution		36
4.2: Na vs. F plots for tourmaline from the Tanco pegmatite .		56
CHAPTER 6: CRYSTAL CHEMISTRY OF POVONDRAITE		
6.1: Reflected light image and schematic drawing of a povondraite-containing crystal	•	75
6.2: Ternary plot of $(Y + Z)$ cations		77
6.3: Chemical zoning of Fe^{3+} and Al in povondraite		80
6.4: Chemical variation of Mg in povondraite	•	81
CHAPTER 7: STEREOCHEMISTRY OF ^[3] B-SITE		
7.1: Fragment of the tourmaline structure, showing the local envir around the BO ₃ triangle	onment	86
7.2. Observed $B = O2$ vs. $B = O8$ distances in tourmaline		88
7.3: Geometry of the (BO_3) triangle	•	90
7.4: Calculated B-O2/B-O8 vs_observed B-O2/B-O8		91
7.5: Observed B-O2 vs. B-O8 distances, with approximate chemic groupings shown	cal .	92

LIST OF TABLES

CHAPTER 1: INTRODUCTION		
1.1. Current tourmaline end-member species		3
1.2: Important site-substitutions and corresponding exchange vectors		6
1.2. Important site substitutions and corresponding enclange		-
CHAPTER 2: EXPERIMENTAL METHODS		
2 1: Toobniquos in this study		14
2.1. Techniques in this study	•	14
2.2: Standard <i>nki</i> for tourmaine centering	•	10
2.3: Tourmaline analysis by electron microprobe	•	18
CHAPTER 3: STRUCTURAL-FORMULA CALCULATION		25
3.1: Theoretical tourmaline compositions normalized to 31 anions	•	25
3.2: Normalized to 31 anions, B calculated stoichiometrically .	•	26
3.3: Normalized to 31 anions, B and H calculated stoichiometrically	•	27
3.4: Normalized to 24.5 anions		28
3.5: Normalized to 31 anions, B and H calculated stoichiometrically,		29
Liunknown		
3.6. Normalized to 31 anions B and H calculated stoichiometrically.		30
V = 15 anfu	•	2.0
2.7. Normalized to 21 anions P and H colculated staichiometrically		31
3.7. Normalized to 51 allons, b and fit calculated storemomentum,	•	51
Li and Fe not measured		22
3.8: Normalized to 6 $apfu$ Si ⁻¹	•	33
CHAPTER 4: POTENTIAL NEW SPECIES OF TOURMALINE		2.0
4.2.1: Chemical data for "fluordravite"	•	38
4.2.2: Indexed powder-diffraction pattern for "fluordravite" .	•	39
4.2.3: SREF unit-cell dimensions and data of "fluordravite" .	•	40
4.3.1: Chemical data for "fluorelbaite"	•	42
4.3.2: Indexed powder-diffraction pattern for "fluorelbaite"		43
4.3.3: SREF unit-cell dimensions and data of "fluorelbaite"		44
4.4.1. Chemical data for "fluorschorl"		46
A A 2: Indexed powder-diffraction pattern for "fluorschorl"		47
4.4.2. SPEE unit cell dimensions and data of "fluorschorl"	•	47
4.4.5. SKEP unit-ten dimensions and data or indoisenon .	·	50
4.5.1: Chemical data for hydroxyuvite .	•	51
4.5.2: Indexed powder-diffraction pattern for "hydroxyuvite".	•	51
4.5.3: SREF unit-cell dimensions and data of "hydroxyuvite".	•	51
4.6.1: Chemical data for "cralpoite"	•	53
4.6.2: Indexed powder-diffraction pattern for "cralpoite" .	•	54
4.6.3: SREF unit-cell dimensions and data of "cralpoite" .	•	55
CHAPTER 5: CRYSTAL CHEMISTRY OF CHROMIAN TOURMALI	NE M	INERALS
5.1: Nomenclature of chromian tourmaline minerals .	•	58
5.2: Published chromian tourmaline data .		59
5.3: Sample list of chromian tourmaline samples.	•	60
5.4. Chemical analyses of chromian tourmaline samples.		62
5. i. Chomical analyses of emominant communic samples.	-	

5.5: EMPA results for CT98 .	•	•			64
5.6: Various normalization results for CT98		•	•		66
5.7: Site-scattering values (<i>epfu</i>) for CT34					68
5.8: Site-scattering values (epfu) for CT40					69
5.9: Site-scattering values (<i>epfu</i>) for CT90-95			•		69
5.10: Site-scattering values $(epfu)$ for CT96-98	•	•	•	•	70
CHAPTER 6: CRYSTAL CHEMISTRY OF POVO	DNDR	AITE			
6.1:Chemical data for povondraite .				•	76
6.2: Unit-cell parameters and SREF collection d	lata for	CT99			82
6.3: Site-scattering data (<i>epfu</i>) for CT99.	•		•	•	82
CHAPTER 7: STEREOCHEMISTRY OF ^[3] B-SIT	E				
7.1: Average B–O bond lengths for tourmaline	•				87

CHAPTER 1

Introduction

1.1 General information

The most common borosilicate mineral and the largest sink for B in rocks is tourmaline. Tourmaline occurs in igneous, metamorphic and sedimentary rocks (London *et al.* 1996). It is a sensitive petrologic indicator and has long been valued as a gemstone. Tourmaline is also a polar mineral, exhibiting both morphological and chemical asymmetry. This polarity leads to a number of industrial uses for the mineral (Henry and Dutrow 1996).

Although tourmaline is an important accessory mineral, it is not yet well understood. This has been commented on recently by a number of authors (*e.g.* Henry and Guidotti 1985, Hawthorne *et al.* 1993, Hawthorne 1996). There are several reasons for this lack of understanding. For a long time, tourmaline was thought to occur predominantly in rare-element pegmatites, and therefore not to be a common mineral. Also, tourmaline is difficult to dissolve for wet-chemical analysis. Additionally, it is commonly strongly zoned. Finally, a number of key components and features (*i.e.* H, Li, B, Fe³⁺/Fe²⁺, Mg/Al site-ordering) cannot be studied with the electron microprobe. The advent of new techniques of analysis coupled with better instrumentation are now allowing some of these issues to be addressed.

1.2 Tourmaline chemistry and nomenclature

1.2.1 General formula

Tourmaline has the general formula:

 $X Y_3 Z_6 T_6 O_{18} (BO_3)_3 V_3 W$

where

$$X = Na, Ca, \Box, K$$

 $Y = Mg, Al, Fe^{2+}, Fe^{3+}, Li, Cr^{3+}, Mn^{2+}, Ti^{4+}$
 $Z = Al, Mg, Cr^{3+}, Fe^{3+}, V^{3+}, Fe^{2+}$
 $T = Si, Al, (B)$
 $V = O, (OH)$
 $W = (OH), O, F$

Silicon is by far the dominant cation at the *T*-site, with minor substitution of Al ($\leq 1 \ apfu$; atoms per formula unit). There have been proposals for substitution of B at this site (*e.g.* Barton 1969, Serdyuchenko 1982, Dyar *et al.* 1994), but until recently, there has been no direct evidence of tetrahedrally-coordinated B reported from either spectroscopic or crystal-structure refinement. Hughes *et al.* (2000) have recently reported a wellcharacterized tourmaline with strong evidence for ^[4]B, however, this is most likely a rarity. Povondra (1981) and Grice and Ercit (1993) have suggested that Ti⁴⁺ substitutes at the *T*-site, but this is not supported by optical spectra (Rossman and Mattson 1986). The *Y*-site is occupied by a large variety of cations, including Li, Mg, Fe²⁺, Mn²⁺, Al, Fe³⁺, Cr³⁺, V³⁺ and Ti⁴⁺. The *Z*-site is dominantly occupied by the trivalent cations Al, Fe³⁺, Cr³⁺ and V³⁺, but can contain significant quantities (up to ~1 *apfu*) of the divalent cations Mg and Fe²⁺. The X-site is occupied by Na, Ca, and \Box (vacancy), and can also contain minor K (*e.g.* Grice *et al.* 1993).

There are eight crystallographically distinct anion sites in the tourmaline structure; these are labeled O1 through O8. The O2 and O4 to O8 sites are fully occupied by O. The O1 can contain either OH or O; the O3 site can contain OH, F and/or O.

1.2.2 Tourmaline nomenclature

The tourmaline structure can accommodate a wide variety of different elements. This is reflected in the increasing number of naturally-occurring and synthetic tourmaline species currently recognized (Table 1.1). It was only recently, however, that a systematic approach to the classification of tourmaline species was proposed (Hawthorne and Henry 1999). The classification scheme has been submitted to the Commission on New

Species	X	<i>Y</i> ₃	Z_6	$T_6 O_{18}$	$(BO_{3})_{3}$	V_3	W		
Alkali Tourmalines									
Elbaite	Na	Li1.5Al1.5	Al ₆	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	(OH)		
Dravite	Na	Mg ₃	Al ₆	Si ₆ O ₁₈	$(BO_{3})_{3}$	(OH) ₃	(OH)		
Schorl	Na	Fe ²⁺ ₃	Al_6	Si ₆ O ₁₈	$(BO_3)_3$	(OH) ₃	(OH)		
Chromdravite	Na	Mg ₃	Cr ₆	Si ₆ O ₁₈	$(BO_3)_3$	(OH) ₃	(OH)		
Olenite	Na	Al ₃	Al ₆	Si ₆ O ₁₈	(BO ₃) ₃	O_3	(OH)		
Povondraite	Na	Fe ³⁺ 3	Fe ³⁺ 4Mg2	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	0		
Buergerite	Na	Fe^{3+}_{3}	Al ₆	Si ₆ O ₁₈	(BO ₃) ₃	O3	F		
-			Calcic Tourmal	lines					
Uvite	Ca	Mg ₃	Al ₅ Mg	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	F		
Liddicoatite	Ca	Li ₂ Al	Al_6	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	F		
Hydroxyferuvite	Ca	Mg_3	Al ₅ Mg	Si ₆ O ₁₈	$(BO_{3})_{3}$	(OH) ₃	(OH)		
X site-vacant tourmalines									
Foitite		Mg ₃	Al ₆	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	(OH)		
Rossmanite		LiAl ₂	Al_6	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	(OH)		
Magnesiofoitite		Mg ₃	Al_6	Si ₆ O ₁₈	(BO ₃) ₃	(OH) ₃	(OH)		
(after Hawthorne a	nd Hen	ry 1999)							

TABLE 1.1: Current tourmaline end-member species

Minerals and New Mineral Names of the International Mineralogical Association (IMA); the results of this submission are pending.

Hawthorne and Henry's (1999) proposal draws strongly on the 50% rule as argued by Nickel (1992). In addition, they set forth strict guidelines as to the definition of an end-member composition, which was only briefly touched on in Nickel (1992). The two main defining points of an end-member are (1) an end-member composition must be fixed, and (2) an end-member may have more than one species at one site. Strict adherence to these two points requires some modification in original species formulae, as described by Hawthorne and Henry (1999).

Tourmaline species may be divided into three principal classes on the basis of their *X*-site occupancy (Figure 1.1). Tourmalines dominated by Na and K (*i.e.*, > 0.5 *apfu* Na + K) are referred to as *alkali* tourmalines. Likewise, Ca-dominant tourmalines fall into the *calcic* tourmaline group, and vacancy-dominant tourmalines may be referred to as X-*site-vacant* tourmalines. This follows the classification scheme of other complex mineral groups such as the amphiboles and pyroxenes (Hawthorne and Henry 1999).

Figure1.1: Ternary plot of tourmaline principal classes

A key issue to come out of Hawthorne and Henry's (1999) classification is the differentiation of tourmaline species based on variations in occupancy of the *W*-site (Figure 1.2). Traditionally, the anion sites have been ignored in regards to tourmaline. However, an accurate and petrologically useful nomenclature should reflect the chemical composition at this site. Thus, the subdivisions within each of the three principal classes are defined on the occupancy of the *W*-site (Hawthorne and Henry 1999).

Figure1.2: Ternary plot of tourmaline subdivisions based on *W*-site occupancy

1.2.3 Tourmaline solid-solutions

Two continuous solid-solution series, schorl-dravite and schorl-elbaite, have traditionally been defined (*e.g.* Epprecht 1953) for tourmaline. These series are related by the substitution of Mg for Fe²⁺ and Li + Al for 2 Fe²⁺, respectively (Table 1.2). Partial to complete solid-solution series have also been described for elbaite-liddicoatite, draviteuvite, dravite-povondraite, feruvite-schorl, feruvite-uvite, and chromdravite-dravite (Dunn *et al.* 1977, Walenta and Dunn 1989, Dietrich 1985). Until recently, there was no evidence for solid solution between Li-rich tourmalines and Mg-rich tourmalines. A

Site substitution	Exchange vector
$^{\gamma}Mg = ^{\gamma}Fe^{2+}$	FeMg ₋₁
$^{\gamma}Mn = {}^{\gamma}Fe^{2+}$	FeMn.1
$^{Z}Al = ^{Z}Fe^{3+}$	FeAl ₋₁
$^{Z}Al = ^{Z}Cr^{3+}$	CrAl.
$^{()I}OH = ^{()I}F$	F(OH).1
$^{\gamma}Mg + ^{Z}Al = ^{\gamma}Al + ^{Z}Mg$	AlMgMg.1Al.1
$2^{\gamma} Fe^{2+} = {}^{\gamma} Li + {}^{\gamma} Al$	LiAlFe.2
X Na + Y Mg = X \Box + Y Al	$\Box AINa_{1}Mg_{1}$
$^{X}Na + 2^{Y}Mg + ^{()}OH = ^{X}D + 2^{Y}Al + ^{()}O^{2}$	□AlONa_1Mg_2(OH)_1
$^{Y}Mg + {}^{()3}OH = {}^{Y}Al + {}^{()3}O^{2}$	Alomg.1(OH)-1
${}^{\gamma}\text{Fe}^{2+} + {}^{\prime)3}\text{OH} = {}^{\gamma}\text{Fe}^{3+} + {}^{\prime)3}\text{O}^{2-}$	$Fe^{3+}OFe^{2+}.(OH).$
$^{\gamma}Mg + ^{T}Si = ^{\gamma}Al + ^{T}Al$	Al ₂ Mg ₋₁ Si ₋₁
$2^{\gamma}AI = {^{\gamma}Mg} + {^{\gamma}Ti}$	TiMgAl.2
$x_{Na} + {}^{\gamma}Al = {}^{x}Ca + {}^{\gamma}Mg$	CaMgNa ₁ Al ₁
${}^{X}_{\Box} + {}^{Y}Al + {}^{OI}OH = {}^{X}Ca + {}^{Y}Mg + {}^{OI}O^{2}$	CaMgO _{D-1} Al ₋₁ (OH)-1
$2^{\gamma}Mg + {}^{Z}Al + {}^{OI}OH = 2^{\gamma}Al + {}^{Z}Mg + {}^{OI}O^{2}$	Al ₂ MgOMg. ₂ Al. ₁ (OH). ₁
(after Henry and Dutrow 1996)	

TABLE 1.2: Important site-substitutions and corresponding exchange vectors

number of hypotheses for this apparent miscibility gap have been suggested. However, recent work on tourmalines from Bližná, Czech Republic, indicates solid solution between elbaite and dravite (Novák *et al.* 1999). The apparent miscibility gap is most likely due to the environments of formation of the Li-rich *vs.* Mg-rich tourmalines. Other significant substitutions can occur in the tourmaline group (Table 1.2) (Henry and Dutrow 1996).

1.2.4 Minor-element chemistry

A wide variety of minor and trace elements occur in tourmaline. The greatest diversity seems to occur in elbaite, due to its occurrence in complex, highly fractionated pegmatites in which minor- and trace-elements are concentrated (*e.g.* Dietrich 1985). Minor- and trace-element contents have been used for petrogenetic studies and as geochemical indicators of source rock (*e.g.* Conklin and Slack 1983, King *et al.* 1988).

1.3 The crystal structure of tourmaline

The tourmaline structure (Figure 1.3) consists of six-membered rings of tetrahedra (*T*-site), the apical oxygens of which are directed toward the -c pole of the crystal (Barton 1969). Parallel to the ring of tetrahedra are triangular (BO₃) groups that lie above the basal oxygens of the tetrahedra. Although B deficiency has been proposed (*e.g.* Dyar *et al.* 1994), crystal-structure refinement and spectroscopic data do not support this hypothesis (*e.g.* Tsang and Ghose 1973, Grice and Ercit 1993, Burns *et al.* 1994, Hawthorne 1996).

Figure 1.3: Portion of the tourmaline structure projected onto (0001), looking up the *c* axis (after Joliff *et al.* 1986).

The *Y*- and *Z*-sites are both octahedrally coordinated. Structure refinements indicate that there is no vacancy at either site. Substitution of a divalent cation at the *Z*-site usually can stabilize the structure when there is significant trivalent-cation occupancy of the *Y*-site and O^{2-} replacing OH at the *W*-site (Taylor *et al.* 1995, Hawthorne 1996). Each *Y* octahedron shares an edge with two adjacent *Y* octahedra, making a group of three octahedra with a common apical oxygen. Each *Y* octahedron also shares an edge with two *Z* octahedra. These *Z* octahedra link various structural fragments along the three-fold screw axis. The *X*-site is a [9]-coordinated trigonal antiprism sandwiched between the tetrahedral layer and the (BO)₃ groups along the three-fold axis.

There are eight distinct anion sites in the tourmaline structure; these are labeled O1 through O8. The O1 and O3 sites, which can have variable anion content, are referred to as follows: O1 = W, O3 = V (Hawthorne 1996, Hawthorne and Henry 1999). The O1 site is located on the three-fold axis and bonds to three *Y*-site cations. When OH occupies the O1 site, the H atom points toward the *X*-site; there is almost no hydrogenbonding with the surrounding O atoms (Robert *et al.* 1993). Experimental and \therefore crystallographic studies show that F occurs in significant quantities solely at the O1 site; this assignment accounts for the apparent maximum of ~1.0 F *apfu* in extensive analytical data for tourmaline (*e.g.* Grew and Sandiford 1984, Grice and Ercit 1993, Robert *et al.* 1993, Dyar *et al.* 1994). Hawthorne (1996) proposed a substitution mechanism that links incorporation of O at the O1 site with disordering of A1 and Mg at the *Y*- and *Z*-sites: ${}^{Y}Mg_2 + {}^{Z}A1 + {}^{O1}OH = {}^{Y}Al_2 + {}^{Z}Mg + {}^{O1}O$. The O3 anion bonds to two *Z*-site cations and one *Y*-site cation. When OH occupies the O3 site, significant hydrogen bonding occurs with the adjacent O atoms (Robert *et al.* 1993).

1.4 Tourmaline properties

1.4.1 Physical properties

Tourmaline is a non-centrosymmetric rhombohedral borosilicate (space group R3m, Z = 3). It commonly forms vertically striated, prismatic crystals with a prominent trigonal prism and a subordinate hexagonal prism. The prism faces often round, forming a rounded triangular cross-section. Due to its polar character, crystals that are doubly-terminated usually exhibit different forms on opposite ends. Tourmaline may occur as single crystals or radiating to parallel columnar crystals. It may also be massive or compact (Klein and Hurlburt 1993).

Tourmaline occurs in a full rainbow of colors, as well as colorless and black varieties. Chemical composition does correlate with the color, but often quite dramatic color changes can be the result of slight variations in minor-element chemistry. Tourmaline has a vitreous to resinous luster, a hardness of 7-7.5, and conchoidal fracture (Klein and Hurlburt 1993).

1.4.2 Optical properties

Tourmaline is uniaxial-negative, with $\omega = 1.635 \cdot 1.675$, $\varepsilon = 1.610 \cdot 1.650$. Crystals can be weakly to strongly pleochroic, O > E (Klein and Hurlburt 1993).

1.4.3 Polar properties

Due to the non-centrosymmetric nature of tourmaline, it exhibits distinctive polar characteristics. Barton (1969) defined the absolute orientation of tourmaline with respect to the different poles, specifying the analogous pole as the -c pole of the crystal. In most

tourmalines, this polar character results in pyroelectric and piezoelectric responses to changes in temperature or pressure (Henry and Dutrow 1996). Tourmaline can exhibit compositional polarity where different compositions of tourmaline develop simultaneously at each pole (Sperlich 1990, Henry and Dutrow 1992, Dutrow and Henry 1994).

1.5 Tourmaline occurrences

The most common B mineral by far is tourmaline (Anovitz and Grew 1996). Boron is required for tourmaline formation; as B is a trace element in the upper crust, it must be concentrated for the mineral to form. As B is mobile in most aqueous solutions,⁻ it is easy to concentrate or disperse in most geological processes. During formation, tourmaline is very reactive with its environment, including other minerals, fluids, H₂O activity, dissolved species, pressure and temperature. This often results in chemical zoning in the crystal, enhanced by the large number of elements that can be taken up into the tourmaline structure. However, once it forms, it does not easily change its composition; it remains unaltered in many geological environments. This early variability combined with post-formation stability makes tourmaline useful as a record of chemical history of formation (Henry and Dutrow 1996).

1.5.1 Igneous occurrences

Boron is a trace element in most magmas. When B is concentrated, it can play a major role in a melt by reducing the solidus and liquidus temperatures and decreasing the melt's viscosity. High levels of B generally occur in fractionated peraluminous magmas.

Tourmaline occurs in granites and granitic pegmatites, where it can occur in all zones, as well as in miarolitic cavities, veins, breccias and as disseminated grains. Each of these settings has different species most likely to be associated with it (though not necessarily restricted to it), depending on the other elements in the melt. Thus, schorl and dravite are common in border zones where Mg and Fe can be incorporated from the host rock. Elbaite and liddicoatite are more likely to be found in miarolitic cavities in a pegmatite, where the residual melt is enriched in Li (London *et al.* 1996).

1.5.2 Sedimentary occurrences

Tourmaline is one of the minerals most resistant to weathering; only nonmetamict zircon seems to be more stable (Thiel 1941). Henry and Dutrow (1996) note that tourmaline is used as a maturation-index mineral in clastic environments and is also useful as a provenance indicator. Additionally, tourmaline can form authigenically in sediments, precipitating during diagenesis and burial metamorphism (*e.g.* Awasthi 1961, Ricketts 1978). Extreme enrichment in B in pelitic and metavolcanic sequences can lead to the formation of tourmalinite (London *et al.* 1996).

1.5.3 Metamorphic occurrences

Tourmaline is the most likely borosilicate mineral to form under almost any metamorphic conditions (Grew 1996). It is stable in most bulk compositions and under most pressure-temperature regimes normally encountered in metamorphic terranes. In fact, other metamorphic borosilicates tend to be restricted to extreme environments, i.e. high values of B, pressure, temperature and a_{H_2O} (Grew 1996). Moreover, once formed,

tourmaline does not readily alter. London *et al.* (1996) note that tourmaline seems to be stable up to at least upper-amphibolite facies in regard to temperature, into eclogite facies with regard to pressure, and in strongly-to-weakly acidic conditions with regards to fluid composition.

1.5.4 Hydrothermal occurrences

Boron-bearing hydrothermal fluids can form tourmalines with a wide range of composition affected by the compositions of the host rock and the invading fluid (*e.g.* Caverretta and Puxeddu 1990). Boron metasomatism is commonly associated with precious-metal deposits, including Au, Ag, Zn, U and Mo (*e.g.* Fuchs and Maury 1995). The resultant tourmaline compositions may be dominated by the nature of the host rock, may be of mixed character, or dominated by the chemical composition of the fluid (Henry and Dutrow 1996).

1.6 Objectives

There are a number of crystal-chemical problems that are still not well understood with respect to tourmaline. This is in large part due to the complexity of the mineral and the chemical heterogeneity both within a sample and between crystals. I decided to examine a larger number of tourmalines from many localities with the following objectives in mind:

• Investigate various normalization schemes and assumptions in common use for tourmaline to determine the strengths and/or weaknesses of each and to clarify what assumptions about chemical content are valid and which are suspect.

- Investigate a broad suite of tourmalines using several analytical techniques to acquire precise and accurate chemical and crystallographic data over the range of compositions known to date. New species identified during this process will be fully characterized in preparation for submission to the Commission on New Minerals and Mineral Names.
- Develop a broad understanding of the nature of Cr in tourmaline including the range of site-occupancy and chemical variations.
- Develop a broad understanding of povondraite including site-occupancies and disorder between the sites and the range of chemical substitutions.
- Investigate the nature of the ^[3]B-site in tourmaline, specifically how stereochemical variations at *B* are related to chemical variations at the cation sites.

CHAPTER 2

Experimental Methods

2.1 Analytical techniques

2.1.1 General Information

The analytical techniques used for this study, including specific information

obtained from each technique, are listed below in Table 2.1.

TABLE 2.1: Techniques in this study

Technique	Location	Analyst(s)	Information
1. Electron-	University of	Clark McCracken,	Relative weight fractions of major
microprobe	Manitoba; Louisiana	C.M.; Chapman, R.;	and minor elements $(Z > 8)$
analysis (EMPA)	State University,	Henry, D.	
	Baton Rouge, LA		
2. Single-crystal	University of	Clark McCracken,	Electron totals at crystallographic
structure	Manitoba	C.M.	sites. Interatomic distances and
refinement			angles
Gandolfi powder	University of	Clark McCracken,	X-ray powder pattern, limited
diffraction	Manitoba	C.M.; Ball, N.A.	sample
4. X-ray powder	University of	Ball, N.A.;	X-ray powder pattern, bulk sample
diffraction	Manitoba	Dzikowski, T.J.	
5. H-extraction line	Queens University,	Kyser, K.	Weight fraction of the element H
	Kingston, ON		
6. Secondary-ion	CNR-CSCC, Pavia,	Ottolini, L.;	Weight fraction of light elements
mass spectrometry	Italy	Bottazzi, P.	(H, Li, B)
(SIMS)	-		

2.1.2 Sample preparation

Crystals for study were selected under a binocular microscope; preference was given to equidimensional crystal fragments that were typically 0.2-0.3 mm in size, free of cracks and inclusions, and with uniform color and high optical clarity. In some species choice was limited due to paucity of material, so smaller and/or less pristine crystals may have been chosen. Crystals for single-crystal structure refinement were prepared in two different ways, depending on the size of the crystal. For robust samples (>150 microns

approximate diameter), the crystals were ground to spheroids in order to minimize X-ray absorption anisotropy. For small samples, the crystals were mounted "as is". Each crystal was glued to the tip of a glass fiber fitted within a split brass pin. This pin assembly was then mounted onto a goniometer head that was subsequently mounted on a four-circle X-ray diffractometer. After diffraction-intensity data were collected, each crystal was removed from its glass fiber. The crystals were then set in a thermal-setting epoxy (PETROPOXY[™]) on one-inch plastic disks. The surface was polished and carbon-coated in preparation for EMPA. After EMPA analysis, these disks were then set to Pavia, Italy, for SIMS analysis. In Italy, the carbon-coating was removed and replaced by a gold-coating approximately 50 nm in thickness.

Additional material was selected using a similar screening process from each sample if a powder-diffraction pattern or H-line extraction data were to be collected. For powder diffraction, a few crystals were isolated; for H-line extraction, approximately 30 mg of pure material were collected. In either case, the grain separates were ground using a clean mortar and pestle. Powder-diffraction granules were then mounted in epoxy on the tip of a glass fiber for data collection. H-extraction-line powder was sent to Queens University (Kingston, Ontario) for analysis.

2.2 Single-crystal structure refinement (SREF)

Intensity data were collected on a Siemens P3 single-crystal diffractometer using graphite-monochromated MoK α X-radiation. The crystals were optically aligned within the X-ray beam. In ideal situations, crystals were centered on 13 reflections, either randomly collected or from a rotation photo. Once the crystal was centered, it was re-

centered on 13 standard *hkl*'s (Table 2.2). When crystals were exceptionally small, less than 13 reflections may have been used for centering. The cell parameters and orientation matrix were derived by least-squares refinement of the setting angles of the centered reflections. Crystal quality was assessed using the profiles of Bragg diffraction peaks and cell-parameter standard deviations; unsuitable candidates were rejected at this point. A single asymmetric unit of intensity data was collected ($4 \rightarrow 60^{\circ} 2\theta$; $\theta - 2\theta$ scan mode, *hkl* from 0 0 -11 to 23 23 11). A standard reflection was collected every 50 measurements to monitor instrument stability. After the intensity data were collected, a second data-set was collected in order to acquire information for application of an empirical absorption correction. This second data-set consisted of between 8 and 15 strong reflections uniformly distributed with regard to 20 and measured over 10° intervals of ψ (the azimuthal angle corresponding to rotation of the crystal about its diffraction vector) from $0 \rightarrow 360^{\circ} \psi$.

for tourmaline centering							
Number	h	k	l				
1	5	0	-1				
2	0	5	1				
3	0	0	3				
4	0	0	-3				
5	0	1	2				
6	0	5	-5				
7	1	5	2				
8	2	7	1				
9	4	3	-2				
10	5	1	-2				
11	6	0	-3				
12	7	2	-1				
13	10	0	1				

Table 2.2: Standard hkl	
for tourmaline centering	

The Siemens SHELXTL (PC Version) system of programs was used throughout this study. Data reduction included scaling on the standard reflections and applying standard drift, Lorentz, polarization and background corrections. These data were then corrected for absorption using the ψ -scan data with the crystal modeled as an ellipsoid. The resulting data were reduced to structure factors and used for full-matrix least-squares structure refinement. The structure was refined on |F| using neutral scattering factors and anomalous dispersion corrections from the *International Tables for Crystallography* (1992) for all cations.

The structures were refined in the space group R3m using the positional coordinates of a dravite sample. The final cycles of refinement involved variable positional parameters, anisotropic-displacement parameters and site-scattering parameters for the *X*-, *Y*- and *Z*-sites. The residual Fourier peaks were scanned for H-atoms, particularly that bonded to O(3). When found, this site was constrained to be approximately 0.98 Å from the O(3) site. The final *R* indices generally fell between 1.3 and 3.0 %. Miscellaneous refinement information are provided in Appendix B, final atomic parameters are given in Appendix C, refined site-scattering values are provided in Appendix D and selected interatomic distances and angles are given in Appendix F.

2.3 Electron-microprobe analysis

Electron-microprobe analysis was done on a CAMECA SX-50 in wavelengthdispersive mode. The beam voltage for all elements was 15 kV and the spot diameter was 1 µm. Count times for peak and background determinations for all elements were 20 and 10 s, respectively. Data were collected with a beam current of 20 nA for Na, Fe, Ca, Al, Si, and Mg and 30 nA for F, Cr, V, Mn, Zn, K, Ti, and P. The standards and detection limits for wt% oxides are listed in Table 2.3.

The analytical data were reduced using the $\phi(\rho z)$ method of Pouchou and Pichoir

(1984, 1985). Diopside, kyanite, fayalite, albite (jadeite), olivine, chromite and

Standard	Element, line, crystal	Oxide	Beam current	Detection limit (wt%)	
			(<i>nA</i>)		
VP_2O_7	Ρ, <i>K</i> _α , ΡΕΤ	P_2O_5	30	0.07	
Diopside	Si, K_{α} , PET	SiO ₂	20	0.09	
Titanite	Ti, K_{α} , PET	TiO ₂	20	0.05	
Kyanite	Al, K_{α} , TAP	Al_2O_3	20	0.04	
VP ₂ O ₇	V, K_{α} , LiF	V_2O_3	30	0.05	
Chromite	Cr, K_{α} , LiF, PET*	Cr_2O_3	30	0.04	
Olivine	Mg, K_{α} , TAP	MgO	20	0.01	
Diopside	Ca, K_{α} , PET	CaO	20	0.04	
Spessartine	Mn, K_{α} , LiF	MnO	20	0.08	
Fayalite	Fe, K_{α} , LiF	FeO	20	0.10	
Gahnite	Zn, K_{α} , LiF	ZnO	30	0.15	
Albite	Na, K_{α} , TAP	Na ₂ O	20	0.04	
Jadeite	Na, K_{α} , TAP	Na ₂ O	20	0.02	
Orthoclase	K, <i>K</i> _α , PET	K ₂ O	30	0.03	
Fluor-riebeckite	F, K_{α} , TAP	F	30	0.14	
Detection limits are calculated using L.D. = $[3(wt\% \text{ oxide})(R_b/t_b)^{1/2}] / (R_p-R_b)$ where $R_b =$					
background count rate (counts/s), t_b = background count time (s), R_p = peak count rate (counts/s)					

Table 2.3: Tourmaline anal	vsis by electron microprobe
----------------------------	-----------------------------

* Samples with >15 wt% Cr₂O₃ were recollected using the PET crystal.

spessartine standards were each analyzed twice at the beginning of a run, followed by analysis of approximately 40 unknowns and two determinations of each standard. This sequence was repeated and the run ended with analysis of the standards. The K-values (intensity of unknown/intensity of standard) for the specific element for each of the standards (e.g. the K-values of Si in diopside) were averaged over the entire run. If the average K-value for each element was <0.99 or >1.01 (ideal K-value is 1.0), the data for the entire run were recalculated using the K-value ratio obtained for the standard.

2.4 Powder diffraction

Powder-diffraction data were collected for all new minerals. When sufficient material was available, the powder-diffraction data were collected on a Philips PW 1710 diffractometer with graphite-monochromated $CuK\alpha$ radiation.

When new-mineral samples were limited in quantity, the powder-diffraction data were collected using a Gandolfi camera instead of a powder diffractometer. The sample was mounted in the Gandolfi camera, then exposed to graphite-monochromated Cu $K\alpha$ X-radiation. Run times were approximately 4 - 6 h, depending on the amount of sample. After the run, the film was developed and the position and intensity of the diffraction lines were measured. No correction was made for shrinkage and no internal standards were used.

Cell dimensions for both collection techniques were refined from the corrected *d*-values using the program CELREF (Appleman and Evans 1973).

2.5 Analysis of light elements

2.5.1 H-extraction line

Select tourmaline samples were analyzed at Queens University, Kingston, Ontario. Fragments and crystals of tourmaline were hand-selected to ensure that the material lacked visible zonation and inclusions, and ground to a powder. Samples were wrapped in molybdenum foil, placed in a platinum crucible, and suspended inside a quartz extraction vessel. The vessel and its contents were outgassed for 12 h in a vacuum at 150° C to remove surface-adsorbed water. The sample was then inductively heated at 1400° C for 20 minutes and the gases were collected in a trap that was held at -196° C.

The majority of the hydrogen released was in the form of water, though minor quantities of hydrocarbons or molecular hydrogen released or produced during this treatment were also collected in the trap. The accumulated water (representing the total amount of hydrogen in the samples) was separated from the other gases by differential-freezing techniques. This water was reacted with uranium at 750° C to produce H₂ which was collected on charcoal at -196° C. The volume of H₂ was measured manometrically. This method has a reproducibility of +/- 0.02 weight percent (Kyser and O'Neil 1984).

2.5.2 Secondary-ion mass spectrometry (SIMS)

ŝ

Secondary-ion mass spectrometry (SIMS) analysis was attempted on a number of samples. Tourmaline samples were analyzed on a CAMECA IMS-4F ion-microprobe at CNR-CSCC, Pavia, Italy, for B, Li, and H. The ¹⁶O⁻ primary beam was focused to a diameter of <10 μ m on the sample surface at an accelerating voltage of 12.5 kV and a primary-current intensity of ~ 5 nA. Positive secondary ions were accelerated through 4.5 kV, and secondary ion at masses 1, 7, 11, 27, and 30 were collected under a 25 μ m ion-image field. The selected-contrast diaphragm and field aperture were 400 and 1800 μ m, respectively. Medium- to high-energy ions were used to reduce the influence of matrix composition; these were selected by offsetting the sample-accelerating voltage to -100 V. This was done while keeping the setting of the electrostatic-analyzer voltages constant and the width and the position of the energy slit to +/- 25 eV. Secondary ions were counted by an electron multiplier in the pulse-counting mode; Al⁺ ions were counted in a Faraday cup. No corrections were made for dead time. Count times of 40 s for H and Li, 30 s for B and Si, and 20 s for Al over 10 cycles were used for a single

measurement. All measurements were done under steady-state sputtering conditions, which were achieved after approximately 9 minutes of bombardment (Ottolini *et al.* 1995; Ottolini and Hawthorne 1999).

CHAPTER 3

Structural-formula Calculation

3.1 Introduction

Mineral formulae are calculated by normalization of the [analyzed] chemical composition to a structurally defined number of anions or cations. The key issue is that the normalization scheme has to be correct. In an optimal situation, the complete quantitative chemical analysis of the elements in a mineral would be available, and the formula would be calculated by normalizing the cations to the total number of anions in the structure, as required by the electroneutrality principle. Normalization on anions is generally a more accurate method then normalization on a specific number of cations, as vacancies at anion sites are rare, whereas vacancies at cation sites are common, and additional complications are raised by the occurrence of specific cations at more than one site. However, mineral analyses are rarely complete, as light elements (H, Li, Be, B) and valence states of transition metals are frequently not analyzed. The goal in these situations is to develop a normalization scheme that is not affected by the information gaps.

Tourmaline formulae are calculated in a variety of ways. The difficulties in tourmaline formula calculation, and the reason why there are so many methods, lie in the number of undetermined species that commonly occur in chemical analyses of tourmalines. H, Li and B are all common components of tourmaline, but none of these components are easily measured. This is due to limitations in current methods of chemical analysis, where measurement of light elements usually relies on bulk sample.

Due to the prevalence of compositional variations in tourmaline, commonly seen in the frequency of zoned samples, bulk homogeneous material is uncommon. This leads to assumptions in normalization schemes (*e.g.* OH + F = 4 apfu) that may not be sound.

In addition to elements that are difficult to analyze, tourmalines also contain transition metals with variable valence states. Most notable of these is Fe, which can be either 2+ (ferrous) or 3+ (ferric). Additionally, Mn, Cr, V and Ti could potentially all have mixed valence states, though it is commonly assumed they do not in tourmaline.

3.2 Methods of structural-formula calculation

To get around the problems created by unknowns in our chemical compositions, various schemes have been developed and used (*e.g.* Grice and Ercit 1993, Hawthorne 1996, Taylor *et al.* 1995, King and Kerrich 1989, Michailidis *et al.* 1995, Dutrow and Henry 2000). If we had a complete composition, a simple normalization on 31 anions would give an accurate formula. In the absence of some of the data, the question becomes what are the possible normalization schemes? Methods in use include normalization on 31 anions (assuming OH + F = 4 *apfu*), on 27 anions (omitting O1 and O3), and on 24.5 anions (omitting O1, O3, and B₂O₃). Schemes that are normalized on cations include 19 total cations (*X*, *Y*, *Z*, *T* and *B*), 18 total cations (*Y*, *Z*, and *T*) and 9 total cations (*Y* and *Z*). When variables such as Li and Fe³⁺ / Fe²⁺ ratios are brought into bear, accurate normalizations can be exceedingly difficult.

In the absence of some of the chemical-compositional data for tourmaline, some assumptions are necessary in the normalization scheme. The method chosen should be based on what information is known about the material; not all schemes work equally
well and some are better for some compositions than others. For example, normalizing on total cations (19 cations) is generally not appropriate, as there is commonly a minor to significant vacancy at the X-site. Normalizing on 15 cations at Y, Z and T is not appropriate if Li is not determined or $\operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}$ is unknown. One method that can work well is normalizing on 6 *apfu* of Si at T; however, this is only true if T is fully occupied by Si. Although there are a variety of methods for formula calculation, there has not been a thorough review of the strengths and weaknesses of each method.

3.3 Structural-formula calculations

In order to evaluate the various formula-calculation schemes, I generated a suite of tourmaline formulae; six "ideal" end-members and six with small amounts of chemical variability (non-ideal). The weight % oxides were calculated from the theoretical atomic contents. Subsequently, I ran this suite through Ercit's "Formula" (1993) software several times, each time varying the number of unknowns, and therefore, the assumptions made in the calculation of the formulae. Table 3.1 lists the chemical compositions of the suite used. Formulae in Table 3.1 reflect an optimal situation; all chemical components are known and a straightforward normalization on 31 anions gives the true formulae. All subsequent calculated formulae should be compared back to Table 3.1 to see the extent of deviations from the correct formulae.

Table	Table 3.1: Theoretical tourmaline compositions normalized to 31 anions											
	ISch	IElb	IDrv	IBur	IUv	Iros	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	0.00	0.00	1.62	0.00	1.86	0.00	0.00	0.15	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B_2O_3	9.91	11.15	10.89	9.92	10.71	11.30	10.24	10.86	10.70	9.91	10.69	11.09
H ₂ O	3.42	3.85	3.76	0.00	2.77	3.90	3.36	3.37	3.69	0.09	2.58	3.63
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	100.01	99.99	100.00	100.00	100.00	100.00	100.01	99.99	99.99	99.99	100.00
Si ⁴⁺	6.00	6.00	6.00	6.00	6.00	6.00	6.00	5.90	6.00	6.00	5.80	6.00
Al ³⁺	6.00	7.50	6.00	6.00	5.00	8.00	6.20	7.30	6.20	6.00	6.00	7.60
Fe ³⁺	0.00	0.00	0.00	3.00	0.00	0.00	0.20	0.00	0.00	2.80	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.60	0.70	0.20	0.20	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.80	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.20	0.10	0.20	0.70	0.10
Li ⁺	0.00	1.50	0.00	0.00	0.00	1.00	0.00	1.20	0.00	0.00	0.10	1.10
Na^+	1.00	1.00	1.00	1.00	0.00	0.00	0.60	0.70	0.60	0.70	0.20	0.30
B ³⁺	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
H^+	4.00	4.00	4.00	0.00	3.00	4.00	3.80	3.60	4.00	0.11	2.80	3.80
F	0.00	0.00	0.00	1.00	1.00	0.00	0.20	0.40	0.00	1.00	1.00	0.20
O ²⁻	31.00	31.00	31.00	30.00	30.00	31.00	30.80	30.60	31.00	30.00	30.00	30.80
$\operatorname{Cat}\Sigma$	19.00	19.00	19.00	19.00	19.00	18.00	18.60	18.90	18.70	18.90	18.90	18.41
An Σ	31	31	31	31	31	31	31	31	31	31	31	31
"Ideal" tourmalines: ISch: schorl, IElb: elbaite, IDrv: dravite, IBur: buergerite, IUv: uvite, IRos: rossmanite;												
"Non-	"Non-ideal" tourmalines: Sch: schorl, Elb: elbaite, Drv: dravite, Bur: buergerite, Uv: uvite, Ros: rossmanite											

The second run assumed all chemical components except for B_2O_3 were known. As the vast majority of tournalines to date have shown B fully occupying the *B*-site with no tetrahedral B (Hawthorne 1996, Burns *et al.* 1994, Hughes *et al.* 2000), when the amount of B_2O_3 is unknown, it is straightforward to assume a stoichiometric amount such that $B = 3 \ apfu$. Table 3.2 shows the chemical composition and formulae for a suite with unknown B_2O_3 . B was calculated using stoichiometric arguments on the basis of 31 anions. As expected, the lack of quantitative B analysis does not affect the calculated formulae. Since the theoretical tournalines were developed with 3 *apfu* of B,

Table	Table 3.2 : Formulae normalized to 31 anions with B calculated stoichiometrically											
	ISch	IElb	IDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	0.00	0.00	1.62	0.00	1.86	0.00	0.00	0.15	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B_2O_3	9.91	11.15	10.89	9.92	10.71	11.31	10.24	10.86	10.70	9.91	10.69	11.09
H ₂ O	3.42	3.85	3.76	0.00	2.77	3.90	3.36	3.37	3.69	0.09	2.58	3.63
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	100.01	99.99	100.00	100.00	100.01	100.00	100.00	99.99	99.99	99.99	100.00
Si ⁴⁺	6.00	6.00	6.00	6.00	6.00	6.00	6.00	5.90	6.00	6.00	5.80	6.00
$ A ^{3+}$	6.00	7.50	6.00	6.00	5.00	8.00	6.20	7.30	6.20	6.00	6.00	7.60
Fe ³⁺	0.00	0.00	0.00	3.00	0.00	0.00	0.20	0.00	0.00	2.80	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.60	0.70	0.20	0.20	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.80	0.00
Ca^{2+}	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.20	0.10	0.20	0.70	0.10
Li ⁺	0.00	1.50	0.00	0.00	0.00	1.00	0.00	1.20	0.00	0.00	0.10	1.10
Na⁺	1.00	1.00	1.00	1.00	0.00	0.00	0.60	0.70	0.60	0.70	0.20	0.30
B^{3+}	3	3	3	3	3	3	3	3	3	3	3	3
H^+	4.00	4.00	4.00	0.00	3.00	4.00	3.80	3.60	4.00	0.11	2.80	3.80
F	0.00	0.00	0.00	1.00	1.00	0.00	0.20	0.40	0.00	1.00	1.00	0.20
O ²⁻	31.00	31.00	31.00	30.00	30.00	31.00	30.80	30.60	31.00	30.00	30.00	30.80
Cat Σ	19.00	19.00	19.00	19.00	19.00	18.00	18.60	18.90	18.70	18.90	18.90	18.41
An Σ	31	31	31	31	31	31	31	31	31	31	31	31

this is not surprising. Assuming stoichiometric amounts of B in tourmaline is a relatively benign assumption, only causing problems in the exceedingly rare cases where $B \neq 3$ apfu.

Slightly more complicated, but very common, is a situation in which neither B_2O_3 or H_2O are measured. This is usually handled by assuming that OH + F = 4 apfu. Examination of Table 3.3 shows that this assumption generates formulae which are accurate except in those cases where O^{2-} is present at the O1 and/or O3 sites; this is the case for both end-member and non-ideal buergerite as well as uvite, which had O^{2-} assigned initially to O1 (see Table 3.1). Another way of dealing with unknown values of .

Table	Cable 3.3 : Formulae normalized to 31 anions with B and H calculated stoichiometrically											
	ISch	IElb	IDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	0.00	0.00	1.62	0.00	1.86	0.00	0.00	0.15	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
$B_2 \tilde{O}_3^*$	9.91	11.15	10.89	10.53	10.71	11.31	10.24	10.86	10.70	10.50	10.73	11.09
H_2O^*	3.42	3.85	3.76	2.78	2.77	3.90	3.36	3.37	3.69	2.77	2.78	3.64
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	100.01	99.99	103.38	100.00	100.01	100.00	100.01	99.99	103.26	100.23	100.01
Si ⁴⁺	6.00	6.00	6.00	5.65	6.00	6.00	6.00	5.90	6.00	5.67	5.78	6.00
Al ³⁺	6.00	7.50	6.00	5.65	5.00	8.00	6.20	7.30	6.20	5.66	5.98	7.60
Fe ³⁺	0.00	0.00	0.00	2.83	0.00	0.00	0.20	0.00	0.00	2.64	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.60	0.70	0.19	0.20	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.79	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.20	0.10	0.19	0.70	0.10
Li⁺	0.00	1.50	0.00	0.00	0.00	1.00	0.00	1.20	0.00	0.00	0.10	1.10
Na ⁺	1.00	1.00	1.00	0.94	0.00	0.00	0.60	0.70	0.60	0.66	0.20	0.30
B^{3+}	3	3	3	3	3	3	3	3	3	3	3	3
H^+	4.00	4.00	4.00	3.06	3.00	4.00	3.80	3.60	4.00	3.06	3.01	3.80
F ⁻	0.00	0.00	0.00	0.95	1.00	0.00	0.20	0.40	0.00	0.94	0.99	0.20
O ²⁻	31.00	31.00	31.00	30.06	30.00	31.00	30.80	30.60	31.00	30.06	30.01	30.80
Cat Σ	19.00	19.00	19.00	18.08	19.00	18.00	18.60	18.90	18.70	18.01	18.83	18.40
An Σ	31	31	31	31	31	31	31	31	31	31	31	31

 B_2O_3 and H_2O is to solve the formulae on 24.5 anions, leaving both H and B out of the calculations (Table 3.4). This method, however, has a few problems. First, the fact that B_2O_3 and H_2O are left out of the wt% totals means that any systematic error will not be readily recognizable, as the sums are far off 100%. Additionally, the formulae generated in this manner are farther from the actual values than when B_2O_3 and H_2O are assumed by stoichiometric arguments (Table 3.3). For instance, buergerite, which has O^{2-} dominant at O3 and F at O1, will obviously have problems in a scheme where OH + F = 4 *apfu*. However, since it has F at O1, additional errors in the formula calculation are generated as normalizing on 24.5 anions leaves out the O1 site, essentially forcing the

Table	3.4: For	rmulae	normal	ized to	24.5 ai	nions						
	ISch	IElb	ĪDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al_2O_3	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	0.00	0.00	1.62	0.00	1.86	0.00	0.00	0.15	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B ₂ O ₃												
H_2O												
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	86.66	85.01	85.34	90.08	86.52	84.80	86.40	85.78	85.60	89.99	86.72	85.28
Si ⁴⁺	6.00	6.00	6.00	5.55	5.88	6.00	5.98	5.85	6.00	5.56	5.66	5.98
Al ³⁺	6.00	7.50	6.00	5.55	4.90	8.00	6.17	7.24	6.20	5.56	5.86	7.57
Fe ³⁺	0.00	0.00	0.00	2.77	0.00	0.00	0.20	0.00	0.00	2.59	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	1.99	0.60	0.70	0.18	0.20	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	3.92	0.00	0.60	0.00	2.10	0.00	2.73	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	0.98	0.00	0.00	0.20	0.10	0.18	0.68	0.10
Li ⁺	0.00	1.50	0.00	0.00	0.00	1.00	0.00	1.19	0.00	0.00	0.10	1.10
Na^+	1.00	1.00	1.00	0.92	0.00	0.00	0.60	0.70	0.60	0.65	0.19	0.30
B ³⁺												
H^{*}												
F	0.00	0.00	0.00	0.93	0.98	0.00	0.20	0.40	0.00	0.92	0.97	0.20
O ²⁻	24.50	24.50	24.50	23.57	23.52	24.50	24.30	24.10	24.50	23.58	23.53	24.30
Cat Σ	16.00	16.00	16.00	14.79	15.68	15.00	15.54	15.77	15.70	14.73	15.52	15.34
An Σ	24.50	24.50	24.50	24.50	24.50	24.50	24.50	24.50	24.50	24.50	24.50	24.50

normalization to accommodate the reported F in some other manner. This is also seen in the other theoretical tourmaline species with F, notably end-member uvite, as well as the non-ideal schorl, elbaite, uvite and rossmanite. Alternatively, F may be left out of the calculation, but this leads to inaccurate mineral nomenclature. Therefore, the use of a 24.5 anion normalization scheme is prone to errors and should not be used. Estimations assuming OH + F = 4 *apfu* and normalizing on 31 anions gives better results, as it accommodates F.

The next step was to make B_2O_3 , H_2O and Li_2O all undetermined. In this situation, there are two ways of dealing with Li; either leave it out of the formula calculation or try to iterate for Li. Table 3.5 lists the resultant formulae when B and H

Table	Fable 3.5 : Formulae normalized to 31 anions with B and H calculated stoichiometrically											
and Li	unknov	vn										
	ISch	IElb	IDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O												
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B ₂ O ₃	9.91	10.81	10.89	10.53	10.71	11.07	10.24	10.59	10.70	10.50	10.71	10.84
H ₂ O	3.42	3.73	3.76	2.78	2.77	3.82	3.36	3.28	3.69	2.77	2.77	3.55
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	97.16	99.99	103.38	100.00	98.08	100.00	97.79	99.99	103.26	100.06	97.92
												6.1.1
Si ⁴⁺	6.00	6.19	6.00	5.65	6.00	6.13	6.00	6.05	6.00	5.67	5.79	6.14
Al ³⁺	6.00	7.74	6.00	5.65	5.00	8.17	6.20	7.48	6.20	5.66	5.99	7.77
Fe ³⁺	0.00	0.00	0.00	2.83	0.00	0.00	0.20	0.00	0.00	2.64	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.62	0.70	0.19	0.20	0.31
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.80	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.21	0.10	0.19	0.70	0.10
Li												
Na⁺	1.00	1.03	1.00	0.94	0.00	0.00	0.60	0.72	0.60	0.66	0.20	0.31
B ³⁺	3	3	3	3	3	3	3	3	3	3	3	3
H^+	4.00	4.00	4.00	3.06	3.00	4.00	3.80	3.59	4.00	3.06	3.00	3.80
F	0.00	0.00	0.00	0.95	1.00	0.00	0.20	0.41	0.00	0.94	1.00	0.20
O^{2-}	31.00	31.00	31.00	30.06	30.00	31.00	30.80	30.59	31.00	30.06	30.00	30.80
Cat	19.00	17.96	19.00	18.08	19.00	17.29	18.60	18.07	18.70	18.01	18.77	17.63
An 🗀	31	31	31	31	31	31	31	31	31	31	31	31

are calculated stoichiometrically, but Li is left out. In minerals which should have Li included, the totals tend to run low and the cation *apfu* individually run high; this is most noticeable for Si. This trend may be hidden if the assumption OH + F = 4 *apfu* is not true and the amount of Li is not large. In the non-ideal uvite composition, for example, trace Li was included. The sum is close to the ideal 100 wt%, even though the 0.15 wt% Li₂O is not included. This is because the anion assumption to calculate H values is not correct for this sample.

Li can be calculated by iterating the formula calculations to achieve a set cation value. Table 3.6 contains the formulae as they would be if Li was iterated for by

Table	Table 3.6 : Formulae normalized to 31 anions, B and H determined by stoichiometry, Li											
by $Y +$	Z + T	= 15 ap	ofu									
	ISch	IElb	IDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	1.88	0.00	1.62	0.00	1.87	0.00	1.81	0.29	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B ₂ O ₃	9.91	11.15	10.89	10.80	10.71	11.31	10.24	10.86	10.70	10.76	10.75	11.09
H ₂ O	3.42	3.85	3.76	2.87	2.77	3.90	3.36	3.37	3.69	2.86	2.79	3.64
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	100.01	99.99	105.62	100.00	100.01	100.00	100.02	99.99	105.42	100.40	100.01
Si ⁴⁺	6.00	6.00	6.00	5.51	6.00	6.00	6.00	5.90	6.00	5.53	5.77	6.00
Al^{3+}	6.00	7.50	6.00	5.51	5.00	8.00	6.20	7.30	6.20	5.53	5.96	7.60
Fe ³⁺	0.00	0.00	0.00	2.76	0.00	0.00	0.20	0.00	0.00	2.58	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.60	0.70	0.18	0.20	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.78	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.20	0.10	0.18	0.70	0.10
Li ⁺	0.00	1.50	0.00	1.22	0.00	1.00	0.00	1.20	0.00	1.18	0.19	1.10
Na⁺	1.00	1.00	1.00	0.92	0.00	0.00	0.60	0.70	0.60	0.65	0.20	0.30
B ³⁺	3	3	3	3	3	3	3	3	3	3	3	3
H^+	4.00	4.00	4.00	3.08	3.00	4.00	3.80	3.60	4.00	3.08	3.01	3.80
F ⁻	0.00	0.00	0.00	0.92	1.00	0.00	0.20	0.40	0.00	0.92	0.99	0.20
O^{2-}	31.00	31.00	31.00	30.08	30.00	31.00	30.80	30.60	31.00	30.08	30.01	30.80
Cat Σ	19.00	19.00	19.00	18.92	19.00	18.00	18.60	18.90	18.70	18.83	18.90	18.40
AnΣ	31	31	31	31	31	31	31	31	31	31	31	31

assuming $Y + Z + T = 15 \ apfu$. This argument allows cation ordering at the sites to be unknown, including Al at *T*. Using this method and not checking the weight % sums can produce some odd results. Buergerite, since its cation apfu is low when OH + F = 4, could mistakenly be thought to contain Li. However, when Li is calculated such that $Y + Z + T = 15 \ apfu$, the weight % sum is much higher than it should be. Hence, care should be taken when iterating for Li, that the final results are reasonable in terms of weight % oxides as well as formula apfu.

Table 3.7 shows the results of formula calculation when B_2O_3 , H_2O , Li_2O and Fe^{3+}/Fe^{2+} are all unknown. Unfortunately, this is the probably the most common

	Line Den Den Hander Den Hander H											
Table	Table 3.7 : Formulae normalized to 31 anions, B and Fi calculated stolemonie meanly, Br											
and Fe	' not n	neasure	d						D	0	TI	Dee
	ISch	IElb	IDrv	IBur	IUv	IRos	Sch	Elb	Drv	Bur	<u>Uv</u>	KOS 28.28
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	51.50	41.14
Fe ₂ O ₃										20 16	2 2 1	2 20
FeO	20.46	0.00	0.00	20.49	0.00	0.00	15.50	4.48	5.15	20.40	2.21	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	4.02	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.00	4.02	0.00
Li ₂ O								2.26	1.00	2.06	0.63	0 00
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.20	1.90	2.00	10.69	10.99
B ₂ O ₃	9.91	10.81	10.89	9.92	10.71	11.07	10.20	10.59	10.70	9.93	10.09	3 55
H ₂ O	3.42	3.73	3.76	2.57	2.77	3.82	3.34	3.28	3.09	2.57	1.04	0.40
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.00	_0.82	-0.17
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.70	-0.82	07.02
Total	99.99	97.16	99.99	100.30	100.00	98.08	99.78	97.79	99.99	100.38	77.73	51.92
			<i>.</i>	< 0 0	(00	(12	6.02	6.05	6.00	5 00	5.80	614
Si ⁴⁺	6.00	6.19	6.00	6.00	6.00	0.13	0.03	0.03	6 20	5.99	6.00	777
AI^{3+}	6.00	7.74	6.00	6.00	5.00	8.17	6.23	/.48	0.20	5.79	0.00	
Fe ³⁺								0.62	0.70	2 00	0.30	0.31
$ \mathrm{Fe}^{2^+} $	3.00	0.00	0.00	3.00	0.00	0.00	2.21	0.02	0.70	2.99 0.00	2 80	0.01
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	0.70	0.00
Ca^{2+}	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.21	0.10	0.20	0.70	
Li ⁺						0.00	0.60	0.72	0.60	0.70	0.20	0.31
Na ⁺	1.00	1.03	1.00	1.00	0.00	0.00	0.00	0.72	0.00 2	3	0.20	3
B ³⁺	3	3	3	3	3 00	ز ۵۵۸	2 00	2 50	1 00	3 00	3 00	3 80
H⁺	4.00	4.00	4.00	3.00	3.00	4.00	3.80	0.41	4.00	1.00	1.00	0.20
F	0.00	0.00	0.00	1.00	1.00	0.00	20.20	20.50	31.00	30.00	30.00	30.80
02-	31.00	31.00	31.00	30.00	30.00	31.00	30.80	30.39	10 70	10 07	18.80	17.63
Cat Σ	19.00	17.96	19.00	19.00	19.00	17.29	18.66	18.07	18.70	10.07	10.00	17.05
An Σ	31	31	31	31	31	31	31	31	31	51	اد	21

case of tourmaline analysis and formula calculations. Here, B and H are again calculated from stoichiometry and Li and Fe³⁺ are left out of the normalization. An interesting, but frightening result is that, with the assumption that all iron is 2+ and OH + F = 4 *apfu*, buergerite formulae end up appearing to be schorl. This leads to the speculation that buergerite as a species might not be as rare as assumed, as it could be mistaken for schorl with only EMPA data available. As Fe²⁺ and Fe³⁺ have different ionic radii, it may be possible to differentiate the two tourmalines using SREF data, though this is often complicated by the large number of chemical species that may populate the octahedral sites, and the details of the site-occupancies are not easy to clarify. Site-ordering curves developed to date may contain data from buergerites that have been misidentified as schorls, potentially causing problems. Further work needs to be done on developing relations between bond-lengths and constituent-cation radii for tourmaline with known Fe^{3+}/Fe^{2+} ratios and H values. These types of relations are very useful for the pyroxenes and amphiboles (*e.g.* Cameron and Papike 1980, Hawthorne 1983), whose stereochemistry is better understood. Accurate classification of a tourmaline species directly affects our understanding of the geochemical environment in which the mineral formed, particularly the oxygen fugacity of the system.

Normalization schemes on cations are generally not appropriate, as the amounts of Li and Fe³⁺ are commonly not known. However, if the *T*-site is fully occupied by Si, normalization on 6 *apfu* of Si can give good results (Table 3.8), though problems can develop if Al is also present at the *T*-site (as is often the case). The formulae for the non-ideal elbaite and uvite do have some tetrahedral Al. The resultant cation sum for these two are greater than the possible 19 *apfu*, which should be sufficient indication that something is suspect with these normalizations. However, this might not be so readily apparent for elbaite if the Li₂O is not analytically determined. Normalization on 6 *apfu* of Si for those tourmaline sample suite, I ran normalizations on 6 *apfu* of Si for those tourmalines with unreasonably high Si *apfu* from a 31-anion formula calculation method (Appendix G.2). As Si > 6 *apfu* from the anion normalization, ^[4]Al was assumed not to occur in these samples and the cation normalization was deemed reasonable.

Table	3.8: Fo	rmulae	norma	lized to	6 apfu	Si ⁴⁺						
	ISch	IElb	IDrv	<i>IBur</i>	IUv	IRos	Sch	Elb	Drv	Bur	Uv	Ros
SiO ₂	34.22	38.49	37.60	34.26	36.97	39.03	35.35	36.86	36.93	34.22	35.66	38.28
Al ₂ O ₃	29.04	40.82	31.90	29.07	26.14	44.15	30.99	38.69	32.38	29.03	31.30	41.14
Fe ₂ O ₃	0.00	0.00	0.00	22.76	0.00	0.00	1.57	0.00	0.00	21.22	0.82	0.00
FeO	20.46	0.00	0.00	0.00	0.00	0.00	14.09	4.48	5.15	1.36	1.47	2.29
MgO	0.00	0.00	12.61	0.00	16.53	0.00	2.37	0.00	8.67	0.00	11.55	0.00
CaO	0.00	0.00	0.00	0.00	5.75	0.00	0.00	1.17	0.57	1.06	4.02	0.60
Li ₂ O	0.00	2.39	0.00	0.00	0.00	1.62	0.00	1.86	0.00	0.00	0.15	1.75
Na ₂ O	2.94	3.31	3.23	2.94	0.00	0.00	1.82	2.26	1.90	2.06	0.63	0.99
B ₂ O ₃	9.91	11.15	10.89	9.92	10.71	11.30	10.24	10.86	10.70	9.91	10.69	11.09
H ₂ O	3.42	3.85	3.76	0.00	2.77	3.90	3.36	3.37	3.69	0.09	2.58	3.63
F	0.00	0.00	0.00	1.81	1.95	0.00	0.37	0.79	0.00	1.80	1.94	0.40
O=F	0.00	0.00	0.00	-0.76	-0.82	0.00	-0.16	-0.33	0.00	-0.76	-0.82	-0.17
Total	99.99	100.01	99.99	100.00	100.00	100.00	100.00	100.01	99.99	99.99	99.99	100.00
Si ⁴⁺	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Al ³⁺	6.00	7.50	6.00	6.00	5.00	8.00	6.20	7.42	6.20	6.00	6.21	7.60
Fe ³⁺	0.00	0.00	0.00	3.00	0.00	0.00	0.20	0.00	0.00	2.80	0.10	0.00
Fe ²⁺	3.00	0.00	0.00	0.00	0.00	0.00	2.00	0.61	0.70	0.20	0.21	0.30
Mg ²⁺	0.00	0.00	3.00	0.00	4.00	0.00	0.60	0.00	2.10	0.00	2.90	0.00
Ca ²⁺	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.20	0.10	0.20	0.73	0.10
Li ⁺	0.00	1.50	0.00	0.00	0.00	1.00	0.00	1.22	0.00	0.00	0.10	1.10
Na^+	1.00	1.00	1.00	1.00	0.00	0.00	0.60	0.71	0.60	0.70	0.21	0.30
B ³⁺	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.05	3.00	3.00	3.11	3.00
H^+	4.00	4.00	4.00	0.00	3.00	4.00	3.80	3.66	4.00	0.11	2.90	3.80
F-	0.00	0.00	0.00	1.00	1.00	0.00	0.20	0.41	0.00	1.00	1.03	0.20
O ²⁻	31.00	31.00	31.00	30.00	30.00	31.00	30.80	31.12	31.00	30.00	31.04	·30.80
Cat Σ	19.00	19.00	19.00	19.00	19.00	18.00	18.60	19.22	18.70	18.90	19.55	18.41
An Σ	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.52	31.00	31.00	32.07	31.00

3.4 Conclusions

Problems are routinely encountered when trying to calculate tourmaline formulae as the analysis data are commonly missing some information. The most logical approach to deriving an accurate formula is to start with as much accurate data as possible. When all constituents have been measured, a simple normalization on 31 anions produces an accurate formula. When there are unknowns, however, assumptions must be made, and the variations in available normalization schemes begin to show different results. Schemes which normalize on 27 or 24.5 anions, leaving out the O1 and O3 anions, also leave out the site which contains F, making the formula for any F-bearing tourmaline incorrect. If F is simply omitted from the normalization, an accurate mineral name (including anion components) may be difficult to assign. As F is common as a trace to dominant constituent of the *W*-site (O1), these schemes are inappropriate in most instances. In almost all situations, the results are better if OH + F is assumed to equal 4 *apfu*. Adjusting this sum to lower values lowers the overall weight % sum and increases the total cation *apfu*.

Li may be iterated for by adding Li_2O to the calculation scheme until Y + Z + T =15 *apfu*. This gives a reasonable first approximation of Li content. Accurate Li values may be measured using SIMS, though the technique is still being improved.

Iron ratios can be quite difficult to determine in tourmaline, yet every effort should be made to attain these values. There is a significant difference in ionic radii for Fe^{2+} and Fe^{3+} , but the large number of constituents at the octahedral sites can make it difficult to get a good Fe^{3+}/Fe^{2+} ratio solely using structure data. As $Fe^{3+} + O^{2-}$ substitute for $Fe^{2+} + (OH)^{-}$, without an accurate measure of Fe^{3+}/Fe^{2+} or H, inaccurate categorization of tourmalines may be made, especially if there is no accompanying crystal-structure data.

Cation normalization schemes are less useful than anion-based approaches, as unknown amounts of vacancies may occur at cation sites. However, normalization on 6 *apfu* of Si at the *T*-site can be useful, especially if initial anion normalization led to >6 *apfu* Si. As Si has not been shown to occur at any site other than *T*, it cannot exceed 6 *apfu* in tourmaline. Therefore cation normalization on Si⁴⁺ can provide a more useful

formula in instances where normalization on 31 anions reports an unreasonably high Si *apfu*.

If information is known about certain samples prior to formula calculation, this information should be brought into the normalization scheme if appropriate. Examples include the likelihood of Li or Fe^{3+} in an environment, or restrictions based on crystal-structure data. Ultimately, the more data analytically determined, the more accurate the resultant formula.

35

ŝ

CHAPTER 4

Potential New Species of Tourmaline

4.1 Criteria for new mineral species

The International Mineralogical Association's Commission on New Minerals and Mineral Names (CNMMN) is the body established for regulating mineral nomenclature. Nickel and Mandarino (1987), representing the CNMMN, defined two guidelines for defining a new mineral species. A mineral is a new species if, compositionally, at least one major structural site is occupied by a different chemical component than which occurs in the equivalent site in a recognized mineral. Crystallographically, a mineral is a new species if the structure of the mineral is topologically different from a recognized one. Nickel (1992), again representing the CNMMN, later clarified mineral nomenclature in cases of solid-solution. According to Nickel, a complete solid-solution series without structural order of the ions defining the end-members is arbitrarily divided at 50 mole %. In ternary systems, the 50% rule is applied between end-members, resulting in three bisectors of the ternary triangle, meeting at the center. Each endmember is named, and this name applies to the compositional range from the corner to the bisectors (Figure 4.1). Hawthorne and Henry (1999) proposed that tourmaline-group minerals should be differentiated on the basis of their anion component, as well as their cation components. Further discussion of this is given in Chapter 1.2.2.

Figure 4.1: Nomenclature for a ternary solid-solution. A, B, and C represent three compositional fields which each deserve a mineral name (after Nickel, 1992).

Much of the work on potential new species of tourmaline is preliminary and further analyses need to be done on most samples, including analysis of light elements and measurement of the optical properties. For some samples, this will be done pending acceptance of the proposed tourmaline nomenclature scheme by the CNMMN. For the chrome tourmaline in particular, light-element analysis has been delayed until appropriate standards for SIMS analyses are developed.

4.2 "Fluordravite"

4.2.1 Occurrence

"Fluordravite" was discovered in material from the Crabtree Emerald Mine, North Carolina, USA. The Crabtree Pegmatite belongs to the Spruce Pine District pegmatites, which intrude mica schists and gneisses of Late Proterozoic age in the eastern Blue Ridge province. Unlike the mineralogically simple pegmatites that make up the majority of the Spruce Pine suite, the Crabtree pegmatite has a complex mineralogy, characterized by abundant tourmaline and emerald with plagioclase, K-feldspar, quartz. Accessory

minerals include muscovite, garnet, biotite and fluorite. This complex chemistry is a result of interactions between the pegmatitic fluids and the host, a highly altered plagioclase-chlorite-quartz-calcite metaconglomerate. The sample was obtained from the Smithsonian Institution where it is catalogued as sample 121341.

4.2.2 Physical and optical properties

"Fluordravite" is black and has a vitreous luster; it has a pale-brown streak and shows no fluorescence under long-wave or short-wave ultraviolet light. It occurs as striated prisms. "Fluordravite" has a Mohs hardness of ~7, no cleavage, and is brittle. The calculated density is 3.13 g/cm³. Optical data has not been collected yet for this sample.

4.2.3 Chemical composition

"Fluordravite" was analyzed by electron microprobe by the method described in Chapter 2. The average composition is given in Table 4.2.1. The unit formula was **TABLE 4.2.1**: Chemical composition (wt%) and formula unit (*apfu*) for "fluordravite"

SiO ₂	36.02	Na	0.89	Si	5.92
TiO ₂	0.25	Ca	0.04	Al	0.08
Al_2O_3	31.69	ΣX	0.93	ΣT	6.00
MgO	7.71				
FeO	6.41	Mg	1.89	Al	6.00
MnO	0.67	Fe ²⁺	0.88	Mg	0.00
CaO	0.25	Mn	0.09	ΣZ	6.00
Na ₂ O	2.80	Al	0.06		
F	1.45	Li	0.04	OH	3.25
Li_2O^*	0.05	Ti	0.03	F	0.75
$B_2O_3^*$	10.57	ΣY	2.99	$\Sigma V + W$	4.00
H_2O^*	2.96				
$O \equiv F$	-0.61				
Total	100.22				

* Calculated assuming 31 anions *pfu*; Li₂O, B₂O₃ and H₂O calculated from stoichiometry Cr, V, Zn, K not detected

calculated on the basis of 31 anions assuming B = 3 apfu (atoms per formula unit), OH + F = 4 apfu and Li₂O calculated to ensure full occupancy at the *Y*, *Z* and *T*-sites. Further analysis will be done to collect quantitative B_2O_3 , Li₂O and H_2O data.

4.2.4 Crystal structure

The powder-diffraction pattern was recorded on a Philips PW 1710 diffractometer as described in Chapter 2.4. Cell dimensions were refined using the program JADE 6.1. The systematic absences are compatible with the space group R3m that is observed for all other tourmaline species (Table 4.2.2).

TABLE 4.2.2: Indexed	powder-diffraction pattern for "fluordravite"	

		*	1				
I _{obs}	$d_{\rm obs}(\rm \AA)$	$d_{\rm calc}({ m \AA})$	h,k,l	$I_{\rm obs}$	$d_{\rm obs}({\rm \AA})$	d_{calc} (Å)	h, k, l
19.4	6.375	6.368	0,1,1	27.3	1.920	1.921	4,3,2
11.7	4.985	4.979	2,0,1	2.3	1.906	1.906	3,5,1
6.3	4.620	4.612	3,0,0	6.1	1.874	1.874	1,4,3
22.2	3.998	3.994	2,2,0	3.0	1.853	1.854	6,2,1
100.0	3.475	3.471	1,0,2	6.1	1.779	1.779	3,3,3
7.7	3.386	3.384	1,3,1	3.5	1.735	1.736	0,2,4
4.4	3.023	3.020	1,4,0	14.3	1.660	1.660	0,6,3
59.9	2.961	2.958	2,1,2	5.1	1.646	1.645	7,2,1
4.4	2.904	2.903	3,2,1	6.3	1.598	1.598	5,5,0
3.7	2.621	2.620	3,1,2	3.9	1.592	1.592	0,4,4
66.6	2.583	2.582	0,5,1	2.1	1.561	1.561	3,2,4
2.5	2.491	2.490	4,0,2	2.0	1.538	1.538	9,0,0
14.2	2.392	2.391	0,0,3	3.1	1.529	1.529	2,7,2
9.9	2.378	2.377	3,2,2	11.8	1.505	1.505	5,0,4
8.4	2.350	2.348	5,1,1	3.0	1.427	1.427	1,0,5
6.5	2.191	2.191	5,0,2	3.4	1.422	1.422	5,6,1
6.9	2.169	2.168	3,4,1	6.8	1.358	1.359	0,10,1
14.2	2.123	2.123	3,0,3	5.2	1.328	1.328	3,5,4
5.7	2.114	2.113	2,4,2	2.3	1.325	1.325	5,7,0
12.5	2.051	2.051	2,2,3	4.4	1.314	1.313	10,1,0
19.1	2.043	2.043	5,1,2	2.4	1.308	1.308	3,8,2
6.9	2.025	2.024	6,1,1	4.5	1.274	1.274	5,0,5

CuK α (Ni-filtered) $\lambda = 1.5406$ Å; data for intensities > 2%; outlier rejected data (2 σ) not listed; calculated powder pattern from single-crystal structure refinement used to aid indexing; no internal standard a = 15.978(1), c = 7.172(1) Å, V = 1585.6 Å³

A fragment of "fluordravite" was ground to an ellipsoid and mounted on a Nicolet R3m four-circle diffractometer. Cell dimensions and intensity data were collected

according to the experimental procedure described in Chapter 2. Refined unit-cell dimensions and selected data pertaining to crystal-structure refinement are given in Table 4.2.3.

r	ennement of inuordravite	(Sample CT50)	
<i>a</i> (Å)	15.955 (3)	radiation	ΜοΚα
С	7.153 (2)	scan mode	θ-2θ
$V(\text{\AA})^3$	1576.9	θ range (°)	4-60
Space group	R3m	R(az) (%)	$1.4 \rightarrow 1.0$
R (obs) (%)	1.61	Total F]	1139
wR (%)	2.21	$ F_{obs} $	1137
GOF	2.69		

TABLE 4.2.3: Unit-cell dimensions and data pertaining to crystal-structure refinement of "fluordravite" (Sample CT50)

Structure refinement was initiated with the atom coordinates of foitite (MacDonald *et al.* 1993) using the SHELTXL PC Plus system of programs. The final refinement for an anisotropic-displacement model converged to an *R* index of 1.61% for 1137 observed (5σ) reflections. Final atom parameters, refined site-scattering values, and selected interatomic distances and angles are given in Appendices C, D and F, respectively, as Sample CT50. Observed and calculated structure-factors will be deposited with the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada. The crystal used in the collection of the X-ray intensity data was subsequently analyzed using an electron microprobe.

4.2.5 Discussion

The composition of "fluordravite" (Table 4.2.1) may be generalized to the endmember composition Na Mg₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F. An alkali tourmaline, it is distinct from dravite due to the presence of F, as opposed to (OH), at the O1 (= W)

crystallographic site. As Hawthorne and Henry (1999) discussed, this distinction between dominant anions in a crystallographic site is required in an end-member composition. This proposed new tourmaline species will be submitted to the CNMMN.

4.3 "Fluorelbaite"

4.3.1 Occurrence

"Fluorelbaite" was discovered in material from the Black Mountain granitic pegmatite, Rumford, in western Maine, USA. This pegmatite lies within the northern portion of the Oxford pegmatite field, which is near the Mooselookmeguntic, Rumford and Whitecap Mountain granitic plutons. The Black Mountain pegmatite intrudes sulfide-bearing mica schist, mica schist and impure quartzite. The pegmatite is strongly zoned and contains a wide array of rare-element minerals, including beryl, spodumene, cassiterite, columbite, amblygonite-montebrasite and lepidolite (Brown and Wise 2001). The sample was obtained from the Royal Ontario Museum where it is catalogued as sample M30977.

4.3.2 Physical and optical properties

"Fluorelbaite" is pale green and has a vitreous luster; it has a white streak and shows no fluorescence under long-wave or short-wave ultraviolet light. "Fluorelbaite" has a Mohs hardness of \sim 7, no cleavage, and is brittle. The calculated density is 3.02 g/cm³. Optical data has not been collected yet for this sample.

4.3.3 Chemical composition

"Fluorelbaite" was analyzed by electron microprobe by the method described in Chapter 2. The average composition is given in Table 4.2.1. The initial unit formula was calculated on the basis of 6 apfu of Si assuming B = 3 apfu (atoms per formula unit), OH + F = 4 apfu and Li₂O calculated to ensure full occupancy at the Y, Z and T-sites. Further analyses will be done to collect quantitative B₂O₃, Li₂O and H₂O data.

TABLE 4.	3.1: Chemical con	iposition (w	t%) and formu	la unit (<i>apfu</i>) for	"fluorelbaite	e"

SiO ₂	38.58	Na	0.61	Si	6.00	
Al_2O_3	40.19	Ca	0.04	Al	0.00	
MgO	0.04	ΣX	0.65	ΣT	6.00	
FeO	1.65					
MnO	0.15	Al	1.37	Al	6.00	
ZnO	0.13	Li	1.37	Mg	0.00	
CaO	0.25	Fe ²⁺	0.22	ΣZ	6.00	
Na₂O	2.01	Mn	0.02			
F	1.14	Zn	0.02	OH	3.44	
Li ₂ O [*]	2.19	Mg	0.01	F	0.56	
$B_2O_3^*$	11.18	ΣY	3.01	$\Sigma V + W$	4.00	
H₂O⁺	3.32					
$O \equiv F$	-0.45					
Total	100.34					
* Calculated a	assuming Si = 6 apfu	; Li_2O , B_2O_3 ar	nd H ₂ O calculated	from stoichiometry		

4.3.4 Crystal structure

Cr, V, Ti, K not detected

The powder-diffraction pattern was recorded on a Philips PW 1710 diffractometer as described in Chapter 2.4. Cell dimensions were refined using the program JADE 6.1. The systematic absences are compatible with the space group R3m that is observed for all other tourmaline species (Table 4.3.2).

	11012.1	laenea periaer	annaonon p		114010104	100	
I _{obs}	$d_{\rm obs}({\rm \AA})$	$d_{\text{calc}}(\text{\AA})$	h, k, l	I _{obs}	$d_{\rm obs}(\rm \AA)$	d_{calc} (Å)	h,k,l
3.4	7.937	7.930	1,1,0	12.3	1.586	1.586	5,5,0
13.7	6.312	6.313	0,1,1	10.6	1.578	1.578	0,4,4
22.1	4.941	4.939	2,0,1	2.7	1.568	1.568	8,1,1
6.6	4.582	4.578	3,0,0	3.7	1.539	1.538	6,4,1
37.5	4.196	1.412	1,2,1	3.7	1.527	1.526	9,0,0
46.4	3.966	3.965	2,2,0	4.0	1.517	1.517	2,7,2
17.9	3.361	3.358	1,3,1	2.0	1.510	1.510	7,3,1
5.6	3.093	3.092	0,4,1	3.5	1.498	1.499	8,2,0
12.7	2.998	2.997	4,1,0	19.6	1.492	1.492	0,5,4
4.2	2.883	2.881	3,2,1	6.4	1.466	1.466	2,4,4
8.2	2.600	2.599	3,1,2	22.7	1.442	1.442	5,1,4
92.3	2.563	2.562	5,0,1	2.7	1.424	1.424	4,7,0
18.5	2.370	2.370	0,0,3	6.1	1.414	1.414	0,1,5
27.1	2.358	2.358	3,2,2	26.1	1.397	1.398	3,6,3
39.9	2.330	2.331	5,1,1	4.4	1.349	1.349	10,0,1
8.0	2.173	2.174	5,0,2	3.0	1.334	1.335	6,5,2
14.6	2.152	2.152	4,3,1	2.6	1.322	1.322	6,6,0
18.4	2.105	2.105	0,3,3	6.2	1.318	1.318	5,5,3
12.8 ·	2.096	2.096	2,4,2	6.0	1.314	1.314	0,4,5
20.8	2.034	2.034	2,2,3	7.8	1.304	1.304	1,10,0
35.4	2.027	2.027	1,5,2	2.4	1.296	1.296	2,3,5
4.3	2.009	2.009	1,6,1	2.5	1.270	1.270	3,9,0
2.4	1.934	1.983	4,4,0	2.1	1.267	1.267	8,2,3
31.0	1.907	1.906	4,3,2	15.6	1.263	1.263	5,0,5
3.3	1.891	1.891	5,3,1	4.7	1.250	1.250	4,5,4
6.5	1.859	1.859	4,1,3	3.5	1.230	1.230	0,11,1
7.0	1.840	1.840	6,2,1	2.4	1.203	1.203	3,4,5
14.2	1.763	1.764	3,3,3	4.7	1.147	1.147	3,0,6
3.3	1.720	1.721	2,0,4	3.0	1.142	1.142	10,1,3
22.0	1.647	1.646	0,6,3	3.3	1.119	1.119	9,3,3
12.7	1.633	1.633	2,7,1				

TARLE 4.3.7 Indexed nowder-diffraction nattern to	r "thuc	vrelhaite''
--	---------	-------------

CuK α (Ni-filtered) $\lambda = 1.5406$ Å; data for intensities > 2%;outlier rejected data (2 σ) not listed calculated powder pattern from single-crystal structure refinement used to aid indexing; no internal standard a = 15.860(1), c = 7.109(1) Å, V = 1548.5 Å³

A fragment of "fluorelbaite" was ground to an ellipsoid and mounted on a Nicolet *R3m* four-circle diffractometer. Cell dimensions and intensity data were collected according to the experimental procedure described in Chapter 2. Refined unit-cell dimensions and selected data pertaining to crystal-structure refinement are given in Table 4.3.3.

formoment of	nuoronounce (Dumpre	0127)		
<i>a</i> (Å)	15.851 (2)	radiation	ΜοΚα	
С	7.103 (3)	scan mode	θ-2θ	
$V(\text{\AA})^3$	1545.5	θ range (°)	4-60	
Space group	R3m			
R (obs) (%)	1.96	Total $ F $	1109	
wR (%)	2.28	$ F_{obs} $	1083	
GOF	1.98			

TABLE 4.3.3: Unit-cell dimensions and data pertaining to crystal-structure refinement of "fluorelbaite" (Sample CT27)

The structure refinement was initiated with the atom coordinates of foitite (MacDonald *et al.* 1993) using the SHELTXL PC Plus system of programs. The final refinement for an anisotropic-displacement model converged to an *R* index of 1.96% for 1083 observed (5σ) reflections. Final atom parameters, refined site-scattering values, and the selected interatomic distances and angles are given in Appendices C, D and F, respectively, as Sample CT31. Observed and calculated structure-factors will be deposited with the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada. The crystal used in the collection of the X-ray intensity data was subsequently analyzed using an electron microprobe.

4.3.5 Discussion

The composition of "fluorelbaite" (Table 4.3.1) may be generalized to the endmember composition Na (Li_{1.5}Al_{1.5}) Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F. An alkali tourmaline, it is distinct from elbaite due to the presence of F, as opposed to (OH), at the O1 (= W) crystallographic site. This proposed new tourmaline species will be submitted to the CNMMN.

4.4 "Fluorschorl"

4.4.1 Occurrence

"Fluorschorl" was discovered in material from San Diego County, California, USA. The sample was obtained from a gem dealer, but the locality indicates that it is of pegmatite origin.

4.4.2 Physical and optical properties

"Fluorschorl" is black and has a vitreous luster; it has a pale-brown streak and shows no fluorescence under long-wave or short-wave ultraviolet light. It occurs as striated prisms. "Fluorschorl" has a Mohs hardness of \sim 7, no cleavage, and is brittle. The calculated density is 3.13 g/cm³. Optical data has not been collected yet for this sample.

4.4.3 Chemical composition

"Fluorschorl" was analyzed by electron microprobe by the method described in Chapter 2. The average composition is given in Table 4.4.1. The unit formula was calculated on the basis of 31 anions assuming $B = 3 \ apfu$ (atoms per formula unit), OH + $F = 4 \ apfu$ and Li₂O calculated to ensure full occupancy at the *Y*, *Z* and *T*-sites. Further analysis will be done to collect quantitative B₂O₃, Li₂O and H₂O data.

~~~~~	while endimediated in the		(/ v) and 10111	ana anne (apja) 101	muorsenori
SiO ₂	35.89	Na	0.69	Si	5.86
TiO ₂	0.77	Ca	0.17	Al	0.14
$Al_2O_3$	35.80	$\Sigma X$	0.86	$\Sigma T$	6.00
MgO	0.63				
FeO	7.71	Fe ²⁺	1.05	Al	6.00
MnO	0.65	Li	0.84	Mg	0.00
CaO	0.96	AI	0.76	$\Sigma Z$	6.00
Na ₂ O	2.17	Mg	0.15		
F	1.08	Ti	0.10	OH	3.44
Li ₂ O [*]	1.28	Mn	0.09	F	0.56
$B_2O_3^*$	10.64	$\Sigma Y$	2.99	$\Sigma V + W$	4.00
$H_2O^*$	3.16				
O≡F	-0.45				
Total	100.27				

	<b>ΓABLE 4.4.1</b> :	Chemical	composition	(wt%)	) and formula	unit	(apfu)	) for	"fluorschorl
--	----------------------	----------	-------------	-------	---------------	------	--------	-------	--------------

* Calculated assuming 31 anions pfu; Li₂O, B₂O₃ and H₂O calculated from stoichiometry Cr, V, Zn, K not detected

# 4.4.4 Crystal structure

The powder-diffraction pattern was recorded on a Philips PW 1710 diffractometer as described in Chapter 2.4. Cell dimensions were refined using the program JADE 6.1. The systematic absences are compatible with the space group R3m that is observed for all other tourmaline species (Table 4.4.2).

A fragment of "fluorschorl" was ground to an ellipsoid and mounted on a Nicolet *R3m* four-circle diffractometer. Cell dimensions and intensity data were collected according to the experimental procedure described in Chapter 2. Refined unit-cell dimensions and selected data pertaining to crystal-structure refinement are given in Table 4.4.3.

IADDI	2 <b>4.4</b> . <i>m</i> . mo	eneu pomaer v	annaetton p		1140100110		
I _{obs}	$d_{\rm obs}(\rm \AA)$	$d_{\rm calc}({ m \AA})$	h, k, l	I _{obs}	$d_{\rm obs}(\rm \AA)$	$d_{\text{calc}}(\text{\AA})$	h, k, l
35.0	6.350	6.336	1,0,1	2.5	1.687	1.687	1,2,4
25.1	4.978	4.960	0,2,1	21.9	1.654	1.653	6,0,3
13.9	4.614	4.604	3,0,0	10.5	1.641	1.642	4,3,3
61.0	4.219	4.212	2,1,1	9.6	1.594	1.595	5,5,0
58.2	3.990	3.987	2,2,0	5.3	1.584	1.584	6,4,0
100.0	3.458	3.453	4,0,0	2.0	1.555	1.556	5,5,1
10.1	3.378	3.374	1,3,1	2.3	1.546	1.547	6,4,1
2.9	3.108	3.108	4,0,1	3.4	1.525	1.525	2,7,2
8.7	3.014	3.014	4,1,0	17.2	1.499	1.500	0,9,1
92.9	2.947	2.944	2,1,2	3.9	1.472	1.472	1,8,2
8.6	2.897	2.895	2,3,1	20.0	1.448	1.448	5,6,0
6.3	2.611	2.610	2,4,0	2.3	1.431	1.432	7,4,0
92.5	2.576	2.576	5,0,1	7.1	1.420	1.419	5,6,1
2.9	2.483	2.480	5,1,0	12.6	1.403	1.404	1,1,5
24.1	2.380	2.377	0,0,3	2.2	1.375	1.376	2,1,5
15.1	2.342	2.342	1,0,3	6.1	1.355	1.356	10,0,1
2.2	2.301	2.302	1,4,2	3.0	1.341	1.341	5,6,2
2.5	2.281	2.278	1,1,3	4.9	1.324	1.324	5,5,3
17.6	2.183	2.183	0,5,2	5.5	1.319	1.318	6,4,3
10.9	2.163	2.163	1,2,3	5.8	1.310	1.311	1,10,0
18.1	2.115	2.112	2,5,1	3.4	1.306	1.306	6,6,1
46.9	2.037	2.036	5,1,2	3.1	1.301	1.301	7,5,1
6.6	2.018	2.020	3,1,3	3.0	1.273	1.273	8,2,3
36.3	1.915	1.915	3,4,2	10.3	1.268	1.267	0,5,5
3.1	1.901	1.901	3,2,3	2.2	1.256	1.256	11,0,0
7.4	1.868	1.866	4,1,3	2.3	1.236	1.236	1,5,5
5.9	1.849	1.850	6,2,1	2.5	1.152	1.151	12,0,0
9.1	1.770	1.768	5,4,0	3.0	1.147	1.148	10,1,3
3.5	1.728	1.726	8,0,0	2.0	1.124	1.124	0,4,6

TΔ	RI	F 4 4 7	<ul> <li>Indexed</li> </ul>	nowder-d	liffraction	nattern	for "	fluorse	:horl"
----	----	---------	-----------------------------	----------	-------------	---------	-------	---------	--------

CuK $\alpha$  (Ni-filtered)  $\lambda = 1.5406$  Å; data for intensities > 2%;outlier rejected data (2 $\sigma$ ) not listed calculated powder pattern from single-crystal structure refinement used to aid indexing; no internal standard a = 15.947(2), c = 7.130(1) Å, V = 1570.3 Å³

**TABLE 4.4.3**: Unit-cell dimensions and data pertaining to crystal-structure refinement of "fluorschorl" (Sample CT63)

refinement of	nuoisenon (sample	01057		
a (Å)	15.932 (1)	radiation	ΜοΚα	
с	7.134(1)	scan mode	θ-2θ	
$V(\text{\AA})^3$	1568.1	θ range (°)	4-60	
Space group	R3m	R(az) (%)	$1.4 \rightarrow 0.8$	
R (obs) (%)	2.08	Total $ F $	1129	
wR (%)	2.20	$ F_{obs} $	1091	
GOF	1.73			

The structure refinement was initiated with the atom coordinates of foitite

(MacDonald et al. 1993) using the SHELTXL PC Plus system of programs. The final

refinement for an anisotropic-displacement model converged to an *R* index of 2.08% for 1091 observed ( $5\sigma$ ) reflections. Final atom parameters, refined site-scattering values, and the selected interatomic distances and angles are given in Appendices C, D and F, respectively, as Sample CT63. Observed and calculated structure-factors will be deposited with the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada. The crystal used in the collection of the X-ray intensity data was subsequently analyzed using an electron microprobe.

#### 4.4.5 Discussion

The composition of "fluorschorl" (Table 4.5.1) may be generalized to the endmember composition Na Fe₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F. An alkali tourmaline, it is distinct from schorl due to the presence of F, as opposed to (OH), at the O1 (= W) crystallographic site. This proposed new tourmaline species will be submitted to the CNMMN.

## 4.5 "Hydroxyuvite"

#### 4.5.1 Occurrence

"Hydroxyuvite" was discovered in material from the Brumado mine in Bahia, Brazil. Brumado is the largest town in southern Bahia and lies to the west-southwest of Salvador. The area consists primarily of Precambrian gneisses and schists with granitic intrusions and amphibolite [*sic*] dikes. These basement materials are overlain by a metamorphosed sequence of quartzite and dolomite which has been correlated with the Minas series in southern Minas Gerias. Four distinct stages of mineralization have been described in the area, associated with periods of fracturing. Stages 1,2 and 4 were characterized by deposition of magnesite and/or alteration of pre-existing minerals to Mg-rich varieties, with stage 4 also having deposition of opal and calcite. Silica and aluminosilicates, as well as hematite, tourmaline and beryl, characterize the third stage of mineralization (Cassedanne and Cassedanne 1978). "Hydroxyuvite" occurs as euhedral orange crystals, both as single crystals and as aggregates. The sample was obtained from a mineral dealer.

## 4.5.2 Physical and optical properties

"Hydroxyuvite" is orange and has a vitreous luster; it has a pale-orange streak and shows no fluorescence under long-wave or short-wave ultraviolet light. It occurs as aggregates and singles of terminated crystals up to 1cm in size, and shortened on the *c*-axis. "Hydroxyuvite" has a Mohs hardness of ~7, no cleavage, and is brittle. The density, measured by flotation, is 3.10(4) g/cm³, close to the calculated density of 3.07 g/cm³.

In transmitted light, "hydroxyuvite" is dichroic, O = orange, E = pale yellow. It is uniaxial negative with indices of refraction  $\omega = 1.646(2)$ ,  $\varepsilon = 1.624(2)$ , measured with gel-filtered Na light ( $\lambda = 589.9$  nm).

#### 4.5.3 Chemical composition

"Hydroxyuvite" was analyzed by electron microprobe by the method described in Chapter 2. The H₂O content was analyzed by hydrogen-line extraction as described in Chapter 2.5.2. The average composition is given in Table 4.5.1. The unit formula was calculated on the basis of 31 anions assuming B = 3 apfu (atoms per formula unit).

		<u>`</u> ```````````````````````````````````		( 10 /	
SiO ₂	35.77	Ca	0.58	Si	5.90
TiO ₂	0.40	Na	0.36	Al	0.10
$Al_2O_3$	28.55	$\Sigma X$	0.94	$\Sigma T$	6.00
MgO	11.52				
FeO	3.67	Mg	2.27	Al	5.44
CaO	3.30	Fe ²⁺	0.51	Mg	0.56
Na ₂ O	1.12	Ti	0.05	$\Sigma Z$	6.00
H ₂ O	3.77	$\Sigma Y$	2.83		
F	0.43			OH	4.14
$B_2O_3^*$	10.47			F	0.22
$O \equiv F$	-0.18			$\Sigma V + W$	4.36
Total	100.27				
				•	

TABLE 4.5.1: Chemical composition (wt%) and formula unit (apfu) for "hydroxyuvite"

* Calculated assuming 31 anions pfu; B₂O₃ calculated from stoichiometry Cr, V, Mn, Zn, Li, K not detected

#### 4.5.4 Crystal structure

The powder-diffraction pattern was recorded on a Gandolfi camera with  $CuK\alpha$  X-radiation. Cell dimensions were refined using the program CELREF (Appleman and Evans 1973). The systematic absences are compatible with the space group R3m that is observed for all other tournaline species (Table 4.5.2). There was no correction for shrinkage and no internal standards were used.

A fragment of "hydroxyuvite" was ground to an ellipsoid and mounted on a Nicolet *R*3*m* four-circle diffractometer. Cell dimensions and intensity data were collected according to the experimental procedure described in Chapter 2. Refined unit-cell dimensions and selected data pertaining to crystal-structure refinement are given in Table 4.5.3.

I _{obs}	$d_{\rm obs}({\rm \AA})$	$d_{ m calc}({ m \AA})$	h,k,l	I _{obs}	$d_{\rm obs}(\rm \AA)$	d _{calc} (Å)	h,k,l
50	6.385	6.402	-1,1,1	5	1.882	1.882	-1,5,3
50	4.981	4.996	0,2,1	5	1.857	1.855	-6,8,1
50	4.596	4.613	0,3,0	5	1.786	1.786	-3,6,3
90	4.234	4.236	-2,3,1	5	1.695	1.695	-2,8,2
100	3.978	3.995	-2,4,0	20	1.665	1.665	-6,6,3
70	3.491	3.494	0,1,2	20	1.665	1.665	0,6,3
15	3.394	3.389	-1,4,1	20	1.647	1.646	-2,9,1
5	3.021	3.020	-1,5,0	30	1.598	1.598	-5,10,0
80	2.969	2.972	-1,3,2	5	1.549	1.551	-4,10,1
5	2.913	2.907	-3,5,1	5	1.533	1.531	-7,9,2
5	2.624	2.630	-3,4,2	20	1.512	1.513	0,5,4
90	2.582	2.585	0,5,1	5	1.485	1.486	-2,6,4
10	2.408	2.407	0,0,3	30	1.460	1.461	-5,6,4
10	2.384	2.384	-2,5,2	10	1.437	1.437	0,1,5
15	2.353	2.350	-5,6,1	15	1.414	1.434	-4,7,4
5	2.303	2.307	0,6,0	5	1.359	1.359	-10,10,1
5	2.197	2.197	-5,5,2	5	1.346	1.346	-5,11,2
10	2.169	2.170	-4,7,1	15	1.333	1.333	-3,8,4
10	2.137	2.134	0,3,3	15	1.333	1.333	0,4,5
10	2.137	2.134	-3,3,3	15	1.333	1.332	-6,12,0
40	2.048	2.048	-1,6,2	15	1.333	1.331	-5,10,3
5	2.027	2.026	-1,7,1	15	1.314	1.314	-1,11,0
5	1.998	1.998	-4,8,0	15	1.281	1.280	-5,5,5
30	1.925	1.925	-3,7,2				

<b>TABLE 4.5.2</b> : Indexed powder-diffraction pattern
---------------------------------------------------------

114.6 Debye-Scherrer camera with Gandolfi attachment; CuK $\alpha$  (Ni-filtered)  $\lambda = 1.5418$  Å; observed intensities visually estimated; calculated powder pattern from single-crystal structure refinement used to aid indexing; no correction for shrinkage; no internal standard;  $\alpha = 15.981(3)$ , c = 7.222(2) Å, K = 1507.3(5) Å³

 $a = 15.981(3), c = 7.222(2) \text{ Å}, V = 1597.3(5) \text{ Å}^3$ 

**TABLE 4.5.3**: Unit-cell dimensions and data pertaining to crystal-structure refinement of "hydroxyuvite" (Sample CT79)

remember of	injuionjuvito (buing			
<i>a</i> (Å)	15.954 (1)	radiation	ΜοΚα	
С	7.214 (1)	scan mode	θ - 2θ	
$V(\text{\AA})^3$	1590.0	θ range (°)	4 - 60	
Space group	R3m	<i>R</i> (az) (%)	$1.0 \rightarrow 0.8$	
R (obs) (%)	1.77	Total $ F $	1147	
wR (%)	2.13	$ F_{obs} $	1127	
GOF	1.97			

The structure refinement was initiated with the atom coordinates of foitite (MacDonald *et al.* 1993) using the SHELTXL PC Plus system of programs. The final refinement for an anisotropic-displacement model converged to an R index of 1.8% for

1127 observed (5σ) reflections. Final atom parameters, refined site-scattering values, and the selected interatomic distances and angles are given in Appendices C, D and F, respectively, as Sample CT79. Observed and calculated structure-factors will be deposited with the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada. The crystal used in the collection of the X-ray intensity data was subsequently analyzed using an electron microprobe.

### 4.5.5 Discussion

The composition of "hydroxyuvite" (Table 4.5.1) may be generalized to the endmember composition Ca Mg₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ (OH). A calcic tournaline, it is distinct from uvite due to the presence of (OH), as opposed F, at the O1 (= W) crystallographic site. This proposed new tournaline species has been submitted to the CNMMN.

## 4.6 "Cralpoite"

#### 4.6.1 Occurrence

"Cralpoite" was discovered in material from the chromite deposits of Nausahi, Keonjhar District, India. It occurs as thin anastomosing veins replacing chromite along fractures and as encrustations on the surface of chromite. Larger crystals occur in vugs within the host (Mukherjee 1966). The sample was obtained from the Smithsonian Institution where it is catalogued as sample 120534.

# 4.6.2 Physical and optical properties

"Cralpoite" is dark green and has a vitreous luster; it has a pale-green streak and shows no fluorescence under long-wave or short-wave ultraviolet light. It occurs as acicular striated single crystals up to 0.4 cm in the *c*-axis direction and granular masses of crystals. "Cralpoite" has a Mohs hardness of ~7, no cleavage, and is brittle. The calculated density is  $3.14 \text{ g/cm}^3$ .

In transmitted light, "cralpoite" is dichroic, O = dark emerald green with a distinct blue tint, E = medium intensity yellow-green. It is uniaxial negative with indices of refraction  $\omega = 1.746(2)$ ,  $\varepsilon = 1.702(2)$ , measured with gel-filtered Na light ( $\lambda = 590.0$  nm).

## 4.6.3 Chemical composition

"Cralpoite" was analyzed by electron microprobe by the method described in Chapter 2. The average composition is given in Table 4.6.1. The unit formula was

	<b>4.6.1</b> : Chemical con	nposition (w	vt%) and for	mula unit ( <i>apfu</i> ) for	r "cralpoite"
SiO2	33.25	Na	0.92	Si	5.89
TiO ₂	0.15	Ca	0.04	Al	0.11
$Al_2O_3$	11.72	K	0.01	$\Sigma T$	6.00
$Cr_2O_3$	29.68	$\Sigma X$	0.97		
MgO	7.57			Al	2.34
FeO	0.07	Cr	2.50	Mg	2.00
CaO	0.23	Li	0.46	Cr	1.66
Na ₂ O	2.67	Ti	0.02	$\Sigma Z$	6.00
K ₂ O	0.05	Fe ²⁺	0.01		
F	0.69	$\Sigma Y$	2.99	OH	3.61
Li ₂ O [*]	0.64			F	0.39
$B_2O_3^*$	9.81			$\Sigma V + W$	4.00
H ₂ O [*]	3.06				
$O \equiv F$	-0.29				
Total	100.34				

**TABLE 4.6.1**: Chemical composition (wt%) and formula unit (*apfu*) for "cralpoite"

* Calculated assuming 31 anions pfu; Li₂O, B₂O₃ and H₂O calculated from stoichiometry V, Zn, Mn not detected

calculated on the basis of 31 anions assuming B = 3 apfu (atoms per formula unit), OH + F = 4 apfu and Li₂O calculated to ensure full occupancy at the *Y*, *Z* and *T*-sites. Further analysis will be done to collect quantitative  $B_2O_3$ , Li₂O and  $H_2O$  data.

#### 4.6.4 Crystal structure

The powder-diffraction pattern was recorded on a Gandolfi camera with  $CuK\alpha$  X-radiation. Cell dimensions were refined using the program CELREF (Appleman and Evans 1973). The systematic absences are compatible with the space group R3m that is observed for all other tourmaline species (Table 4.6.2). There was no correction for shrinkage and no internal standards were used.

	$d_{\rm obs}(\rm \AA)$	$d_{\rm calc}$ (Å)	h, k, l	Iobs	$d_{obs}(Å)$	$d_{\rm calc}$ (Å)	h.k.l		
60	6.487	6.489	1,0,1	5	2.214	2.212	5.0.2		
20	5.033	5.039	0,2,1	5	2.166	2.163	3,0,3		
20	4.642	4.618	3,0,0	20	2.059	2.060	1,5,2		
30	4.262	4.264	2,1,1	10	1.938	1.936	3,4,2		
50	4.010	3.999	2,2,0	5	1.679	1.680	6,0,3		
30	3.545	3.550	0,1,2	5	1.599	1.600	5,5,0		
35	3.013	3.023	4,1,0	5	1.540	1.539	9,0,0		
35	3.013	3.007	1,2,2	5	1.529	1.531	0.5.4		
100	2.598	2.592	0,5,1	5	1.478	1.477	5.1.4		
5	2.392	2.403	2,3,2	5	1.432	1.435	3,7.2		
5	2.354	2.357	5,1,1	5	1.432	1.430	4,3,4		
114.6 Dobyo Scherrer compare with Condolfi attachment: (WK) (Ali filtered) 1 - 15419 & cherry d									

**TABLE 4.6.2**: Indexed powder-diffraction pattern for "cralpoite"

114.6 Debye-Scherrer camera with Gandolfi attachment; CuK $\alpha$  (Ni-filtered)  $\lambda = 1.5418$  Å; observed intensities visually estimated; calculated powder pattern from single-crystal structure refinement used to aid indexing; no correction for shrinkage; no internal standard; a = 15.997(9), c = 7.345(6) Å, V = 1627.8(17) Å³

A fragment of "cralpoite" was ground to an ellipsoid and mounted on a Nicolet *R3m* four-circle diffractometer. Cell dimensions and intensity data were collected according to the experimental procedure described in Chapter 2. Refined unit-cell dimensions and selected data pertaining to crystal-structure refinement are given in Table

4.6.3.

Terme	ement of charpone	(Sample C192)	
a (Å)	16.035 (1)	radiation	ΜοΚα
с	7.313(1)	scan mode	θ-2θ
$V(\text{\AA})^3$	1628.4	θ range (°)	4-60
Space group	R3m	R(az) (%)	$1.4 \rightarrow 0.9$
R (obs) (%)	3.27	Total $ F $	1177
wR (%)	2.22	$ F_{obs} $	851
GOF	1.03		

**TABLE 4.6.3:** Unit-cell dimensions and data pertaining to crystal-structure refinement of "cralpoite" (Sample CT92)

The structure refinement was initiated with the atom coordinates of foitite (MacDonald *et al.* 1993) using the SHELTXL PC Plus system of programs. The final refinement for an anisotropic-displacement model converged to an *R* index of 3.3% for 851 observed ( $5\sigma$ ) reflections. Final atom parameters, refined site-scattering values, and the selected interatomic distances and angles are given in Appendices C, D and F, respectively, as Sample CT92. Observed and calculated structure-factors will be deposited with the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada. The crystal used in the collection of the X-ray intensity data was subsequently analyzed using an electron microprobe.

# 4.6.5 Discussion

The composition of "cralpoite" (Table 4.6.1) may be generalized to the endmember composition Na  $Cr^{3+}_{3}$  (Al₄Mg₂) (Si₆O₁₈) (BO₃)₃ (OH)₃ O, essentially the  $Cr^{3+}/Al$ analogue of povondraite. An alkali tourmaline, it is distinct from chromdravite by virtue of the presence of  $Cr^{3+}$  at the *Y*-site and Al (+ Mg) at the *Z*-site. This proposed new tourmaline species will be submitted to the CNMMN pending collection of hydrogen data.

### 4.7 Discussion

Correct mineral nomenclature is an invaluable tool to mineralogists, petrologists and geologists in general. An accurate mineral name should be precise enough to succinctly convey important information regarding chemical make-up and crystal structure. A verification of the importance anion content has to an accurate interpretation of petrologic environment can be seen in Selway's (1999) work on tourmalines from pegmatites (Figure 4.2). It is apparent from these graphs that the relation of Na to F



**Figure 4.2**: Na *vs.* F plots for tourmaline from the Tanco pegmatite, Manitoba. Graph a) is for tourmalines from the border zone; graph b) is for tourmalines from the intermediate zones (from Selway 1999).

is different for different zones in the pegmatite. It is key to a complete understanding of the petrologic environment of formation that anion content of tourmaline (and all minerals) is completely analyzed for and variations in content be reported in mineral names. Differences in F, (OH) and  $O^{2-}$  content, in addition to cation variations, must be considered if we are to understand the behavior of tourmaline in geologic environments.

Additional new species of tourmaline are likely to be discovered and described, based on variations in both the cation and anion content. As instrumentation becomes

more advanced and more available, tourmaline species will be better analyzed. The result will be not only new species of tourmaline, but also a better understanding of the petrologic environments these minerals formed in.

#### CHAPTER 5

## **Crystal Chemistry of Chromian Tourmaline Minerals**

## **5.1 Introduction**

Chromium in tourmaline can occur in amounts ranging from 0 - >35 wt% Cr₂O₃, though in the majority of tourmaline minerals, it contributes less than 1 wt%. Chromium can occur at the *Y*- and *Z*-sites, apparently dependent both on the amount of Cr³⁺ as well as the amounts of other cations (*e.g.* Al, Mg, Fe) present. As Cr levels can vary quite significantly, in this thesis the terms "Cr-bearing tourmaline", "Cr-rich tourmaline", "Crtourmaline" and "chromian tourmaline" are used to signify tourmalines with varying amounts of Cr. This nomenclature is explained in Table 5.1, based on the nomenclature of Selway and Novák (1997) and, although somewhat arbitrary, is based on relative proportion of Cr to other components. "Chromian tourmaline" will be used to

	Lower limit	Upper limit					
Cr-bearing tourmaline	0.2 <i>apfu</i> (or ~7 % of Y-site)	0.6 apfu					
Cr-rich tourmaline	0.6 <i>apfu</i>	1.0 <i>apfu</i>					
Cr-tourmaline	1.0 <i>apfu</i>						
Chromian tourmaline	0.2 <i>apfu</i>						

**Table 5.1**: Nomenclature of chromian tourmaline minerals

refer to any tourmaline with a Cr-content greater than 0.2 apfu; "Cr-tourmaline" will be used to designate any tourmaline with significant Cr content (> 1 apfu or roughly 5 – 6 wt%).

### 5.1.1 Previous work

Elevated levels of Cr (>1.00 wt%  $Cr_2O_3$ ) in tourmaline have been reported from only a few localities. Most chromian tourmaline minerals are dravites. The only

approved species of tourmaline with Cr as a dominant component is chromdravite, ideally Na Mg₃  $Cr^{3+}_{6}$  Si₆O₁₈ (BO₃)₃ (OH)₃ (OH), found associated with chromian phengite in metasomatized sediments in central Karelia (Rumyantseva 1983). Table 5.2 lists the published information on chromian tourmaline minerals.

Table 5.2. Comphation of published enrolliant tourname data							
Location	Cr ₂ O ₃ wt%	Site Occupancy	References				
Timmins-Porcupine, ON	0.42 - 1.52	Y	King and Kerrich, 1989				
Krivoi Rog, Russia	1.60	Y	Shenderova, 1955				
Zimbabwe	2.26 - 4.93	Y	Schreyer et al., 1981				
Line Pit, PA-MD	2.60 - 5.40	Y + Z	Foord <i>et al.</i> , 1981				
Vavdos, Greece	3.81 - 13.90	Y + Z	Michailidis et al., 1995				
Etchison, MD	4.32	Y	Gill, 1889				
Swat, Pakistan	8.50	Y + Z	Jan <i>et al.</i> , 1972				
Kaavi, Finland	8.87	Y + Z	Peltola et al., 1968				
Outokumpu, Finland	9.60	Y + Z	Peltola et al., 1968				
Urals, Russia	10.86 (5.96)	Y	Cossa and Arzruni, 1883; Dunn, 1977				
Orissa, India	17.84 - 22.85	Y + Z	Mukherjee, 1968				
Karelia, Russia	31.6	Y + Z	Rumyantseva, 1983				

	-	-		-	~	~	1 1		* *		1	
1	۱ŀ	Ie.	5	7.	Computatu	on of :	nuhl	ished.	chromian	tourmali	ne d	ata
	41.		~	۔ سکرہ	Compilair		DUUI	10110Ct	VIII OIIIIIIIII	to uninum	no u	ucu

### 5.1.2 Petrogenetic environments of chromian tourmaline

Chromian tourmalines incorporate an element usually associated with ultramafic environments (Cr) with elements generally concentrated by fractionation of granitic rocks (B, Li, Na). Tourmalines with significant Cr must form in some sort of contact zone between ultramafic and peraluminous rocks, melts or fluids.

The Cr-tourmalines from Orissa, India, occur in chromite deposits associated with layered ultramafic rocks which intruded the host meta-sedimentary sequence. These rocks were later intruded by a granite with a number of associated pegmatites in the area (Mukherjee 1966, Pattnaik *et al.* 1984). As the tourmaline post-dates the chromite, in this locality the B-bearing fluids from the pegmatitic bodies likely invaded the ultramafic suite, and the Cr-tourmalines formed as an alteration of primary chromite.
Rumyantseva (1983) reports metasomatic chromdravite occurring with Cr-micas in faults within a sequence of carbonates and clays. Although the origin of the Cr is not clear in this instance, it can be assumed that it was brought into the environment by metasomatic fluids which mobilized B from the pelitic sequence to form chromdravite.

# 5.2 Chromian tourmaline sample suite

# 5.2.1 General information

There are fifteen tourmalines in my sample suite with  $Cr_2O_3$  content larger than 1.00 wt%. It is this subset to which I will be referring throughout the rest of this chapter. Table 5.3 is an excerpt from Appendix A, listing the sample information for this subset.

Tuble 5.5. Bample list of enformati tourname samples							
Sample	Species	Locale					
CT34	"Cralpoite"	Kokka, Finland					
CT40	Dravite	Kaavi, Finland					
CT41	Dravite	Etchison, Maryland					
CT42	Dravite	Etchison, Maryland					
CT43	Dravite	Etchison, Maryland					
CT80	"Hydroxyuvite"	unknown					
CT90	"Cralpoite"	Nausahi, Keonjhar District, India					
CT91	"Cralpoite"	Nausahi, Keonjhar District, India					
CT92	"Cralpoite"	Nausahi, Keonjhar District, India					
CT93	"Cralpoite"	Nausahi, Keonjhar District, India					
CT94	"Cralpoite"	Nausahi, Keonjhar District, India					
CT95	"Cralpoite"	Nausahi, Keonjhar District, India					
CT96	Chromdravite	Urals, Russia					
CT97	Chromdravite	Urals, Russia					
CT98	Chromdravite	Urals, Russia					

 Table 5.3: Sample list of chromian tourmaline samples

As with the rest of my larger sample suite, these tourmalines were analyzed by SREF and

### EMPA.

### 5.2.2 Chemical analysis

Chemical data were collected by EMPA using the method described in Chapter 2. Preliminary formulae calculations were done according to the methods described in Chapters 2 and 3 (Table 5.4). According to this method, the *Z*-site was filled first with Al, followed by Mg. Cr was only assigned to *Z* if Al + Mg < 6 *apfu*. All Fe was initially assumed to be divalent, and OH + F = 4 *apfu* was assumed.

In several samples the total wt% sums differ significantly from 100 %. Sums that vary by  $\pm 1.00$  % are not generally commented on as these discrepancies can usually be explained by random error. However, samples CT80, CT96, CT97 and CT98 are +2.46, -3.16, -2.43, and -4.20 wt% from 100 %, respectively. A discrepancy of  $\pm 2$  wt% can be potentially explained by error in the assumed amount of OH in the sample, but discrepancies of > 3 wt% must be significant. These samples were re-collected a number of times (e.g. sample CT98 in Table 5.5), initially by the same method, but additional runs were done using a different Cr-standard as well as at a different facility to rule out local lab error. The only significant variation between the results collected at the U of M and those from the outside facility (Louisiana State University) is in the amount of F. This is due to the researcher at LSU reporting the wavelength of the F peak occurring on the flanks of another peak, which he assumed was probably a high-order Cr peak. Thus he narrowed the wavelength range for F significantly and reported a much lower F value (D. Henry, *personal comm.*). Though the potential overlap bears further investigation, it does not resolve the greater issue of low totals.

	CT34	CT40	CT41	CT42	CT43	CT80	СТ90	CT91	СТ92	CT93
SiO2	34.86	35.98	36.32	36.41	37.2	35.54	35.20	35.5	33.25	36.05
TiO2	0.01	0.07	0.11	0.02	0.0	0.68	0.08	0.1	0.15	0.12
Al2O3	27.04	29.49	31.27	32.68	32.9	29.08	20.21	21.9	11.72	21.68
V2O3	0.00	0.29	0.13	0.06	0.0	5.25	0.04	0.0	0.04	0.07
Cr2O3	10.80	8.21	5.35	4.74	4.0	1.80	15.80	13.3	29.68	13.27
MgO	8.41	9.41	9.22	8.78	9.6	9.88	10.13	10.2	7.57	10.37
CaO	0.98	1.18	0.71	0.31	0.1	2.60	0.21	0.2	0.23	0.19
MnO	0.01	0.01	0.00	0.00	0.0	0.03	0.05	0.0	0.01	0.01
FeO	0.05	0.06	0.65	0.42	0.4	1.25	0.18	0.1	0.07	0.26
ZnO	0.00	0.02	0.00	0.00	0.0	0.02	0.04	0.0	0.03	0.03
CuO	0.00									
Na2O	2.05	2.08	2.33	2.45	2.1	1.20	2.67	2.6	2.67	2.73
K2O	0.08	0.07	0.02	0.02	0.0	0.09	0.02	0.0	0.05	0.03
F	0.33	0.28	0.09	0.18	0.0	0.59	0.39	0.2	0.69	0.25
Li2O*	0.55	0.46	0.40	0.42	0.2	0.42	0.27	0.2	0.64	0.42
B2O3*	10.45	·10.83	10.83	10.88	11.0	10.83	10.20	10.2	9.81	10.35
H2O*	3.45	3.60	3.70	3.67	3.7	3.46	3.33	3.4	3.06	3.45
O=F	-0.14	-0.12	-0.04	-0.08	-0.0	-0.25	-0.16	-0.1	-0.29	-0.11
Total	99.06	101.92	101.09	100.96	101.7	102.46	98.65	98.5	99.37	99.17
Na	0.661	0.647	0.725	0.759	0.652	0.373	0.882	0.879	0.918	0.889
K	0.017	0.014	0.004	0.004	0.00	0.018	0.004	0.00	0.011	0.006
Ca	0.175	0.203	0.122	0.053	0.03	0.447	0.038	0.03	0.044	0.034
Vacancy	0.147	0.136	0.149	0.184	0.31	0.162	0.076	0.07	0.027	0.071
X Total	1.000	1.000	1.000	1.000	1.00	1.000	1.000	1.00	1.000	1.000
Li	0 372	0.296	0.259	0.270	0.14	0.269	0.184	0.20	0.457	0.283
Mø	1.182	1.606	1.945	2.065	2.26	1.571	0.634	0.96	0.000	0.889
Ti4+	0.018	0.008	0.013	0.002	0.00	0.082	0.010	0.01	0.020	0.015
V3+	0.000	0.037	0.017	0.008	0.01	0.676	0.005	0.00	0.006	0.009
Cr3+	1.420	1.042	0.679	0.599	0.50	0.228	2.129	1.77	2.501	1.762
Mn2+	0.001	0.001	0.000	0.000	0.00	0.004	0.007	0.00	0.002	0.001
Fe2+	0.007	0.008	0.087	0.056	0.05	0.168	0.026	0.02	0.010	0.037
Cu	0.000									
Zn	0.000	0.002	0.000	0.000	0.00	0.002	0.005	0.00	0.004	0.004
Al	0.000	0.000	0.000	0.000	0.01	0.000	0.000	0.00	0.000	0.000
Y Total	3.000	3.000	3.000	3.000	3.00	3.000	3.000	3.00	3.000	3.000
~				0.000	0.00	0.000	0.000	0.00	1 (59	0.000
Cr	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.00	1.658	0.000
Mg	0.903	0.646	0.260	0.027	0.00	0.793	1.940	1.61	2.000	1.708
Al	5.097	5.354	5.740	5.973	6.00	5.207	4.060	4.38	2.342	4.292
Z Total	6.000	6.000	6.000	6.000	6.00	6.000	6.000	6.00	6.000	6.000
Al	0.203	0.225	0.173	0.182	0.11	0.295	0.000	0.00	0.106	0.000
Si	5.797	5.775	5.827	5.818	5.88	5.705	6.000	6.01	5.894	6.056
T Total	6.000	6.000	6.000	6.000	6.00	6.000	6.000	6.01	6.000	6.056
				_						
OH	3.826	3.858	3.954	3.909	3.97	3.700	3.790	3.84	3.613	3.867
F	0.174	0.142	0.046	0.091	0.025	0.300	0.210	0.155	0.387	0.133

 Table 5.4:
 Chemical analyses of chromian tourmaline samples

Table 5.4 (continued)								
	CT94	CT95	СТ96	CT97	CT98			
SiO2	33.68	33.01	31.10	32.40	32.2			
TiO2	0.19	0.11	0.09	0.08	0.0			
AI2O3	12.25	11.00	1.25	0.65	2.3			
V2O3	0.06	0.05	0.02	0.02	0.0			
Cr2O3	27.25	30.36	33.54	34.77	29.2			
MgO	8.64	7.19	9.98	9.89	9.4			
CaO	0.38	0.21	0.00	0.01	0.0			
MnO	0.03	0.03	0.51	0.45	0.3			
FeO	0.17	0.05	5.09	3.84	6.8			
ZnO	0.01	0.02	0.07	0.05	0.0			
CuO								
Na2O	2.56	2.60	2.72	2.56	2.6			
K2O	0.05	0.06	0.30	0.34	0.2			
F	0.52	0.59	0.71	0.86	0.6			
Li2O*	0.50	0.69	0.00	0.14	0.1			
B2O3*	9.84	9.70	9.00	9.13	8.9			
H2O*	3.15	3.07	2.77	2.74	2.7			
O=F	-0.22	-0.25	-0.30	-0.36	-0.2			
Total	99.06	98.48	96.84	97.57	95.8			
	0.077	0.004	1 0 1 0	0.045	0.08			
Na	0.8//	0.904	1.019	0.943	0.96			
K	0.011	0.014	0.074	0.003	0.00			
Ca	0.072	0.040	0.000	0.002	0.00			
Vacancy	0.040	1.000	1.002	1.020	1.05			
X Total	1.000	1.000	1.095	1.050	1.05			
Li	0.354	0.497	0.000	0.108	0.07			
Mg	0.000	0.000	0.000	0.000	0.00			
Ti4+	0.025	0.015	0.013	0.011	0.01			
V3+	0.008	0.007	0.003	0.003	0.00			
Cr3+	2.583	2.466	2.284	2.187	1.74			
Mn2+	0.004	0.005	0.083	0.073	0.05			
Fe2+	0.025	0.007	0.823	0.611	1.11			
Cu								
Zn	0.001	0.003	0.010	0.007	0.00			
Al	0.000	0.000	0.000	0.000	0.00			
Y Total	3.000	3.000	3.216	3.000	3.00			
Cr	1 223	1 837	2 840	3.047	2.73			
Μø	2 276	1.921	2.875	2.807	2.73			
A1	2 501	2.242	0.285	0.146	0.53			
7 Total	6 000	6.000	6.000	6.000	6.00			
2 1000	0.000	2.000	2.000					
Al	0.050	0.082	0.000	0.000	0.00			
Si	5.950	5.918	6.009	6.168	6.24			
T Total	6.000	6.000	6.009	6.168	6.24			
ОН	3 709	3.665	3.566	3.482	3.60			
F	0.291	0.335	0.434	0.518	0.39			

5
.94
.11
.80
.01
.31
.62
.01
.06
.32
.07
.63
.34
.04
.26
.18
.02
.68

 TABLE 5.5: EMPA results for CT98

Runs 1, 2, 5 collected with chromite standard, runs 3, 4 collected with Cr metal standard, runs 1-4 collected at UM, run 5 collected by D. Henry at LSU.

There are several possibilities as to why these sums are low. As runs were collected using different standards and at a different facility, the basic data-collection scheme does not appear faulty. A physical problem that may contribute to the low sum is the small size of the grains. These grains, which are significantly harder than the epoxy in which they were mounted, were often rounded during the polishing process. If a grain's edges are rounded, any data collected from a rounded area is suspect, as the angle of the ejected electrons is not optimal. Other reasons for the low sums are based on problems with normalization assumptions, which will be discussed further in section 5.2.3.

Light-element analysis was not done on the Cr-tourmalines. These tourmalines occur as very small crystals (150  $\mu$ m *c*-axis) and are compositionally heterogeneous between individual crystals, making analysis by a bulk technique (such as H-extraction-

line) fruitless. For this same reason,  $Fe^{3+}/Fe^{2+}$  ratios were not collected. Though samples were sent for SIMS analysis, data were not collected as the large amount of transition metals are likely to cause matrix effects which cannot be adjusted for at this time.

### 5.2.3 Formula normalization

The unit formulae for these tournalines were calculated initially assuming 31 anions pfu, OH + F = 4 apfu and all  $Fe^{2+}$ . For several samples, these initial assumptions are questionable; most obviously seen in Si > 6 apfu (samples CT91, CT93, CT96, CT97 and CT98). These tournalines were recalculated to bring Si = 6 apfu. Table 5.6 lists several normalization results for Sample CT98. Although the simplest way to do this is to renormalize on 6 apfu of Si, this method requires a significant amount of (assumed) Li to be introduced in order to bring the Y + Z + T cation sum to 15 apfu. It is unclear as to whether Li in large quantities is a reasonable assumption for Cr tournalines, and attempts to collect Li values by SIMS analysis have so far been unsuccessful.

Another method to improve the normalization results is to change the valence state of one or more of the transition metals, which tends to raise overall weight percent sums and lower cation *apfu*. As these ratios were not determined due to difficulties in analysis and size of samples, the relative proportions of ions like  $Fe^{3+}/Fe^{2+}$  is unknown.

Table 5.6 is a summary of the results of several normalization schemes for sample CT98. Formulae were calculated on the basis of 31 anions, on 6 *apfu* Si, with and without Li assumed, and with different valence states of the transition metals Fe, Mn, and Cr.  $Fe^{3+}$  and  $Mn^{3+}$ , though not commonly initially assumed in tourmaline, have been reported in previous studies.  $Cr^{6+}$  has not been reported in any silicate mineral to date.

Table 5.0	6: Various n	ormalization	results for C	CT98		
	31 anions, Fe ²⁺ , Mn ²⁺ , Li	Si = 6 apfu, $Fe^{2+}, Mn^{2+},$ Li	31 anions, Fe ³⁺ , Mn ²⁺	31 anions, Fe ³⁺ , Mn ³⁺	31 anions, Fe ³⁺ , Mn ³⁺ , some Cr ⁶⁺	31 anions, Fe ³⁺ , Mn ²⁺ , from D.H.
CrO ₂					1.32	
SiO ₂	32.28	32.28	32.28	32.28	32.28	31.94
TiO ₂	0.08	0.08	0.08	0.08	0.08	0.11
Al ₂ O ₃	2.33	2.33	2.33	2.33	2.33	2.80
$Cr_2O_3$	29.24	29.24	29.24	29.24	28.24	27.31
Fe ₂ O ₃			7.64	7.64	7.64	9.25
Mn ₂ O ₃				0.36	0.36	
MgO	9.49	9.49	9.49	9.49	9.49	10.62
MnO	0.32	0.32	0.32			0.06
FeO	6.88	6.88				
Na ₂ O	2.62	2.62	2.62	2.62	2.62	2.63
K ₂ O	0.28	0.28	0.28	0.28	0.28	0.34
F	0.65	0.65	0.65	0.65	0.65	0.04
Li ₂ O*	0.10	0.57				
B ₂ O ₃ *	8.98	9.35	9.17	9.18	9.26	9.26
$H_2O^*$	2.79	2.92	2.86	2.86	2.89	3.18
O=F	-0.27	-0.27	-0.27	-0.27	-0.27	-0.02
Total	95.80	96.76	96.71	96.76	97.20	97.63
Na	0.983	0.944	0.963	0.962	0.953	0.957
К	0.069	0.066	0.068	0.068	0.067	0.081
Vacancy						
ΣΧ	1.052	1.010	1.031	1.030	1.020	1.040
Cr ⁶⁺					0.149	
Si	6.247	6.000	6.118	6.112	6.056	5.993
Ti ⁴⁺	0.012	0.011	0.011	0.011	0.011	0.016
Al	0.531	0.510	0.520	0.520	0.515	0.619
Cr ³⁺	4.474	4.297	4.382	4.377	4.189	4.052
Fe ³⁺			1.090	1.089	1.079	1.306
Mn ³⁺				0.052	0.051	
Mg	2.738	2.630	2.682	2.679	2.654	2.971
Fe ²⁺	1.114	1.069				
Mn ²⁺	0.052	0.050	0.051			0.010
Li	0.075	0.429				
$\overline{\Sigma Y + Z + T}$	15.247	14.996	14.858	14.844	14.704	14.979
ОЧ	3 602	3 618	3 610	3.611	3.614	3.976
UN E	0.302	0.383	0 3 9 0	0 389	0.386	0.024
* All norm	l 0.578	e with the assu	$\frac{0.570}{\text{mption OH} + F}$	F = 4 apfu as lo	wering this sur	n serves to

1.5

bring down wt% and bring up cation apfu, opposite of the results needed.

The difficulty with  $Cr^{6+}$  lies in the fact that it would be very difficult to determine its presence.  $Cr^{6+}$  would occur in tetrahedral coordination in tourmaline, and one might hope to be able to look at bond-lengths or site-scattering intensities to support this theory. However, as all other cation sites in tourmaline have variable content, one cation site must have a fixed scattering intensity to serve as the standard for all of the other sites. Although the B-site is the most likely site to be stable in content, the intensity from the site is too low to serve as a suitable standard for the other sites. The *T*-site, therefore, must have its scattering fixed, and Cr cannot be found from scattering intensities. Bondlengths cannot be used, as  $Cr^{6+}$  in tetrahedral coordination has an ionic radius of 0.26 Å (Shannon 1976), the same radius of Si in tetrahedral coordination; therefore,  $Cr^{6+}$  at the *T*-site would not alter the *<T*-O> length. Table 5.6 shows that no method tried so far has resulted in a satisfactory formula.

# 5.3 Crystal Chemistry

#### 5.3.1 Introduction

 $Cr^{3+}$  has an ionic radius of 0.615 Å in octahedral coordination (Shannon 1976) and therefore substitutes readily at both the *Y*- and *Z*-sites in tourmaline. Table 5.2 includes a column that lists the site to which the researchers assigned Cr. When structure data are lacking, there has been some confusion as to which site Cr is located. Cr has been assigned based on assumed substitution for either Mg (*e.g.* King and Kerrich 1989) or Al (*e.g.* Rumyantseva 1983), usually based on circumstantial evidence; Rumyantseva (1983) assigned Cr to *Z* based on the size of the unit cell.

Crystal-structure refinement can give a clear indication of the location of Cr, using both the bond-lengths and the X-ray scattering intensity at a site. Using SREF data, the chromian tourmalines of my sample suite have Cr occurring at both Y and Z. I will now discuss the site-assignments of the Cr-tourmalines in detail.

### 5.3.2 Sample CT34:

Sample CT34 is from Kokka, Finland, and has 10.80 wt%  $Cr_2O_3$ . Table 5.7 is a comparison of site-scattering information. The *epfu* reported from EMPA is slightly low

	SREF	EMPA
Х	11.5(1)	11.1
Y	52.1(2)	50.0
Ζ	79.1(2)	77.1
Т	84	83.80

 Table 5.7: Site-scattering values (*epfu*) for CT34

for all of the sites, but there seems to be no major discrepancy in the manner of site assignment. This suggests that, for CT34, Cr is preferentially located at *Y*, substituting in for Mg. The average bond-length for *Y* is 1.993 Å, shorter than the average for dravite (2.011 Å, Appendix F). The <*Z*-O> is 1.935 Å, equal to the <*Z*-O> for dravite (1.931 Å). This supports the argument that  $Cr^{3+}$  (0.615 Å) is substituting for Mg (0.72 Å) at *Y*, resulting in a shorter <*Y*-O>. The resulting formula for CT34 is ^[X](Na_{0.66} Ca_{0.17}  $\Box_{0.15}$ K_{0.02}) ^[Y](Cr_{1.42} Mg_{1.18} Li_{0.37} Ti_{0.02} Fe²⁺_{0.01}) ^[Z](Al_{5.10} Mg_{0.90}) ^[T](Si_{5.80} Al_{0.20}) O₁₈ (BO₃)₃ ^[v](OH)₃ ^[w]((OH)_{0.83} F_{0.17}). This formula does not belong to a currently approved tournaline species but has been grouped with dravite in my suite. However, if the species "cralpoite" is accepted by the IMA, it will be classified as such (see Chapter 4.6).

#### 5.3.3 Sample CT40

Sample CT40 is from Kaavi, Finland, and has 8.21 wt%  $Cr_2O_3$ . Table 5.8 is a comparison of site-scattering information. Examination of the bond-lengths at the *Y*-

Table 5.8: Site-scattering values (epfu) for CT40					
	SREF	EMPA			
Х	11.0(1)	11.4			
Ŷ	46.1(2)	46.5			
Z	78	77.4			
Т	84	83.8			

(2.002 Å) and Z- (1.936 Å) sites shows that  $\langle Y-O \rangle$  is shorter than the average for dravite and  $\langle Z-O \rangle$  is statistically equal. The bond-lengths information combined with the *epfu* data suggest that Cr is primarily located at the Y-site in CT40. The resulting formula for CT40 is ^[X](Na_{0.65} Ca_{0.20}  $\Box_{0.15}$ ) ^[Y](Mg_{1.61} Cr_{1.04} Li_{0.30} V_{0.04} Fe²⁺_{0.01}) ^[Z](Al_{5.35} Mg_{0.65}) ^[T](Si_{5.78} Al_{0.22}) O₁₈ (BO₃)₃ ^[V](OH)₃ ^[W]((OH)_{0.86} F_{0.14}). As Mg is still the dominant cation at Y, this mineral can be termed "chromian dravite".

# 5.3.4. Samples CT90-95: "Cralpoite"

Samples CT90-95 are from Orissa, India, and have been fully described in

Chapter 4.6. Table 5.9 is a comparison of the site-scattering information. The epfu

Table 5.9. Site Beattering (and (F)) =									
)									
ś									
3									
)									
EMP = EMPA; EMPA epfu for CT91 and CT93 calculated from Si = 6 apfu normalization									
) 5 3 2 -									

Table 5.9: Site-scattering values (epfu) for CT90-95

reported from EMPA was calculated by filling T in the order Si then Al; Z in the order

Al, Mg, Cr; and Y was filled with the remaining cations. Li was added to bring the Y + Z

+ *T* sum to 15 *apfu*. Examination of the *epfu* data shows that the majority of the samples have too many electrons assigned by EMPA to *Y* and not enough assigned to *Z*. This suggests that there is significant Cr at both the *Y*- and *Z*-sites in these samples.  $\langle Y-O \rangle$ bond-lengths for these samples are shorter and  $\langle Z-O \rangle$  are longer than for dravite. This is due to the overall low amount of Al occurring in these samples, resulting in significant Mg and Cr at *Z*. Based on SREF scattering information, these tourmalines are best represented by the ideal formula ^[X]Na ^[Y]Cr₃ ^[Z](Mg₂Al₄) ^[T]Si₆ O₁₈ (BO₃)₃ ^[V](OH)₃ ^[W](O), making it a Cr-Al analogue of povondraite.

### 5.3.5. Sample CT96-98: Chromdravite

Samples CT96-98 are from Karelia, Russia, from the type locality of chromdravite. Table 5.10 is a comparison of site-scattering information. The *epfu* 

	CT	96	CT	97	CT:	CT98	
	SREF	EMPA	SREF	EMPA	SREF	EMPA	
X	11.1(2)	12.4	11.9(3)	11.7	11.3(3)	11.6	
Y	65.2(6)	73.7	61.0(8)	65.9	64.2(11)	65.2	
z	114.3(7)	107.8	112.2(10)	109.7	115.0(14)	106.8	
r	84	83.9	84	84	84	84	

 Table 5.10: Site-scattering values (epfu) for CT96-98

reported from EMPA was calculated by filling *T* in the order Si then Al; *Z* in the order Al, Mg, Cr; *Y* was filled with the remaining cations. Li was added to bring the Y + Z + Tsum to 15 *apfu*. The formula normalization for CT96 required some Fe to be trivalent in order to bring Y + Z + T = 15 *apfu* and Si  $\leq 6$  *apfu*. Examination of the *epfu* data shows that all three samples have too many electrons assigned to *Y* and not enough electrons assigned to *Z* by EMPA. Examination of average bond-lengths for *Y* and *Z* shows <Y- O> for the three samples to be 2.018 Å, slightly longer than the average for dravite (2.011 Å). The <*Z*-O> length for these samples is 2.006 Å, significantly longer than the <*Z*-O> for dravite (1.931 Å). The *epfu* results and the average bond-lengths suggest that the above scheme for the assignment of cations between the *Y*- and *Z*-sites is incorrect; more Cr should be assigned to *Z* with disorder of Mg between the *Y*- and *Z*-sites. This would result in an ideal formula for chromdravite of  $^{[X]}Na \,^{[Y]}(Cr_2 \, Mg_1) \,^{[Z]}(Cr_4 Mg_2) \,^{[T]}Si_6 \, O_{18}$  (BO₃)₃  $^{[V]}(OH)_3 \,^{[W]}(OH)$ . This formula, with Cr dominant at both *Y* and *Z* and Cr and Mg disordered over the two sites is different than the IMA-approved formula for chromdravite, which has Mg solely at *Y* and Cr solely at *Z*. As there have been difficulties with the collection of data for these high Cr tourmalines, this conclusion is still preliminary.

# **5.4 Discussion**

Though Cr generally does not occur in large amounts in tourmaline, it can be a major constituent. Cr in tourmaline can substitute at the *Y*-site, the *Z*-site, or both sites. The proposed new tourmaline species, "cralpoite", has Cr dominant at *Y*, which has not been shown for any Cr-tourmaline before. Chromdravite, whose approved formula specifies Mg dominant at *Y* and Cr dominant at *Z*, may need to be revised to show Cr dominant at both sites.

Cr-tourmalines tend to present a number of difficulties in analysis. Samples with high  $Cr_2O_3$  wt% tend to be small crystals that are chemically heterogeneous from crystal to crystal. Zoning within the crystals also occurs. This makes analysis of light elements or ion ratios difficult by any bulk technique. SIMS, the microbeam technique most

suitable to measurement of light elements, does not yet have standards for tourmalines with high transition metal content.

Additional problems with Cr-tourmaline data include low wt% totals, which have not yet been fully explained. These totals are low regardless of standards or correction procedures used, and were low when collected at another facility. This is still being investigated to determine the cause. Ultimately, better chemical analyses must be done to determine the correct anion content so that the rest of the formula may be determined by stoichiometric arguments. This includes the presence or absence of Li,  $Fe^{3+}$ ,  $Mn^{3+}$  and  ${}^{[4]}Cr^{6+}$ .

#### CHAPTER 6

## **Crystal Chemistry of Povondraite**

## **6.1 General Information**

### 6.1.1 Introduction

Walenta and Dunn (1979) described a new species of tourmaline of ideal composition Na Mg₃ Fe³⁺₆ Si₆ O₁₈ B₃ (O, OH)₃₀ (OH,F) that they named "ferridravite", as they assigned all Mg to the Y-group and all  $Fe^{3+}$  to the Z-group. However, Grice *et al.* (1993) refined the crystal structure of this mineral, and showed that the site assignment suggested by Walenta and Dunn (1979) is incorrect. Their refinement shows that both the Y and the Z sites are occupied predominantly by  $Fe^{3+}$ , giving the ideal formula Na  $Fe^{3+}_{3}Fe^{3+}_{6}(BO_{3})$  (Si₆ O₁₈) (O, OH)₄. As this formula is not "the ferric analog of dravite" (Walenta and Dunn 1979), they recommended renaming the mineral povondraite, after the Czech researcher who has done extensive work on tourmaline-group minerals (Grice et al., 1993). However, as noted by Hawthorne and Henry (1999), the "ideal endmember" formula given by Grice et al. (1993) is not of fixed composition, and hence cannot be an end-member. In fact, the above formula requires a V + W anion composition of O₃ (OH) apfu (atoms per formula unit) for the formula to be electroneutral. However, Walenta and Dunn (1979) report an H₂O content (loss on ignition) of 3.5 wt%, corresponding to approximately 3.5 (OH) pfu; this value is nothing like that assigned to the end-member formula. If the formula of the povondraite crystal refined by Grice *et al.* (1993) is written with  $Fe^{3+} = Fe^{3+} + Al$  and Mg = Mg + Al(Hawthorne and Henry 1999), we obtain the following:

Na 
$$(Fe^{3+}_{2.28} Mg_{0.80}) (Fe^{3+}_{4.61} Mg_{1.36}) (Si_6 O_{18}) (BO_3) (OH)_{3.12} O_{0.88}$$

As indicated by Hawthorne and Henry (1999), the ideal end-member corresponding to this composition is as follows:

Na 
$$Fe^{3+}_{3}$$
 ( $Fe^{3+}_{4}$  Mg₂) (Si₆ O₁₈) (BO₃) (OH)₃ O

In addition to Walenta and Dunn (1979) and Grice *et al.* (1993), a team of Czech researchers characterized a suite of tourmalines corresponding to povondraite – "oxydravite" – dravite solid-solution from the type locality of povondraite (Žáček *et al.* 2000). They looked extensively at the exchange vectors that describe the substitutions in this series. The present work is intended to investigate Fe³⁺/Fe²⁺ ratios in order to develop a good chemical formula based on a combination of SREF and EMPA data.

### 6.1.2 Occurrence

Povondraite occurs as the rim of black euhedral crystals coating the country rock at the San Francisco mine, Alto Chapare, Cochamba Department, Bolivia. The host schist is composed of quartz, potassium feldspar, alkali amphibole and muscovite, with accessory schorl. This schist is a component of a sequence of metasedimentary rocks, probably of Cambrian age (Walenta and Dunn 1979, Grice *et al.* 1993).

## **6.2 Chemical Composition**

# 6.2.1 General information

Several crystals identified as povondraite were chemically analyzed by EMPA, using the procedure described in Chapter 2.3. The majority of samples discussed in this chapter are not included in my larger data-set because of a lack of SREF data. Sample CT99 is a povondraite from my general set and is included in the povondraite subset discussed here. Sample points were chosen from four distinct regions of the crystals: the core, central, edge and rim zones (Figure 6.1).

Representative chemical compositions are summarized in Table 6.1. Structural formulae were calculated on the basis of 31 anions, assuming stoichiometric amounts of  $H_2O$  (as (OH)⁻, *i.e.* OH + F = 4 *apfu*) and  $B_2O_3$  (B = 3 *apfu*). In the initial calculation, Fe was assumed to be trivalent, as previous authors had reported all ferric iron. However, this assumption should be investigated for validity.





**Figure 6.1**: Reflected light image and schematic drawing of a povondraitecontaining crystal with representative regions labeled as follows: (1) core, (2) central, (3) edge and (4) rim. Long axis of crystal ~500  $\mu$ m.

Zone	Core	Core	Central	Central	Central	Rim	Rim	Rim	Edge
Point	20-21	20-23	20-26	20-29	20-34	19a16	20-5	20-15	CT99
SiO	34.88	34.74	35.41	33.87	32.65	33.20	31.38	33.94	32.04
TiO ₂	0.29	0.09	0.59	0.90	1.77	1.68	2.43	1.32	2.49
Al ₂ O ₃	27.39	26.46	24.55	20.37	15.30	13.62	13.11	10.69	6.36
V ₂ O ₃	0.26	0.26	0.25	0.29	0.25	0.00	0.06	0.07	0.09
Fe ₂ O ₃	12.15	14.48	15.85	22.81	28.21	29.53	30.10	33.45	36.81
MgO	8.92	8.02	8.25	7.32	6.64	6.72	7.80	6.72	7.21
Na ₂ O	3.09	3.04	3.03	2.70	2.40	2.47	2.46	2.05	1.96
K ₂ O	0.11	0.15	0.19	0.40	0.79	0.75	0.96	1.09	1.39
B ₂ O ₃ *	10.36	10.29	10.33	10.08	9.72	9.68	9.61	9.68	9.53
H ₂ O **	2.68	2.66	2.67	2.61	2.52	2.50	2.49	2.51	3.28
TOTAL	100.13	100.2	101.13	101.35	100.25	100.15	100.4	101.52	101.23
Na	1.005	0.995	0.988	0.903	0.832	0.860	0.862	0.713	0.708
К	0.024	0.032	0.041	0.088	0.180	0.172	0.221	0.250	0.330
ΣΧ	1.029	1.027	1.029	0.991	1.012	1.032	1.083	0.963	1.038
Mσ	2 2 3 1	2.019	2.068	1.882	1.769	1.799	2.103	1.798	2.001
Fe ³⁺	0.802	0.972	0.827	0.940	0.852	0.833	0.563	0.778	0.520
Ti	0.037	0.011	0.075	0.117	0.238	0.227	0.330	0.178	0.349
V ³⁺	0.035	0.035	0.034	0.040	0.036	0.000	0.009	0.010	0.013
$\Sigma Y$	3.105	3.037	3.004	2.979	2.895	2.859	3.005	2.764	2.883
۵1	5 268	5 132	4 821	3,980	3.058	2.843	2.468	2.261	1.362
Fe ³⁺	0.732	0.868	1.179	2.020	2.942	3.157	3.532	3.739	4.638
Σ.7	6 000	6 000	6,000	6.000	6.000	6.000	6.000	6.000	6.000
	0.000	0.000	0.000						
Si	5.852	5,866	5.955	5.840	5.835	5.961	5.674	6.091	5.966
Al	0.148	0.134	0.045	0.160	0.165	0.039	0.326	0.000	0.034
$\Sigma T$	6.000	6 000	6.000	6.000	6.000	6.000	6.000	6.091	6.000
~ 1	0.000	0.000	0.000						
B	3	3	3	3	3	3	3	3	3
н	2	3	3	3	3	3	3	3	3
Number o	f cations b	ased on 31	anions: * F	$_{2}O_{2}$ from E	3 = 3 apfu; *	* H ₂ O base	d on OH =	= 3 apfu; Mi	ı, Cr, Zn,
P. Ca. F n	ot detected				1.5 /	-			,

Table 6.1: Chemical compositions (wt%) and unit formulae (*apfu*) of povondraite

Examination of the data in Table 6.1 shows that a number of points analyzed are not actually povondraite in composition. Figure 6.2 is a ternary plot of the data that shows there is a trend in composition, from dravite at the core of the tourmaline crystals to povondraite at the edge.



**Figure 6.2**: Ternary plot of (Y + Z) cations, normalized for 100% Fe³⁺, Mg and Al. Inner triangle represents actual tournaline species compositions, with the apices labeled according to appropriate species. All Fe was assumed to be 3+, although in dravitic compositions, there is likely to be a strong ferrous component in the overall iron.

Although analytical data for  $H_2O$  would be extremely useful for determination of relative percentages of  $Fe^{3+}/Fe^{2+}$  and the correct occupancies at the *V*- and *W*-sites, I was not able to make such measurements for povondraite. Several attempts were made to collect such data, but the lack of bulk homogeneous povondraite made H-extraction-line analysis impossible. Moreover, H could not be analyzed by SIMS, as povondraite has far more transition metals than most other tourmalines, and there are currently no appropriate standards for SIMS analysis.

### 6.2.2 X-site occupancy

Povondraite has the highest reported values of K for any tourmaline (*e.g.* Table 6.1, Žáček *et al.* 2000, Grice *et al.* 1993), with several researchers reporting analyses in which K > Na, representing a new tourmaline species with the ideal formula: K Fe³⁺₃ (Mg₂Fe³⁺₄) (Si₆O₁₈) (BO₃)₃ (OH)₃ O. Unfortunately, full characterization of this new mineral species is difficult due to the nature of the material; Žáček *et al.* (2000) reported parts of povondraite crystals that were K-dominant being no larger than several tens of microns in size. Likewise, Grice *et al.* report their K-dominant povondraite as a thin (10 µm) outer rim.

The X-site in povondraite is unlike many other tourmalines in that there seems to be very little vacancy. A scan through Appendix G shows that most tourmalines in my suite have some vacancy at X, with uvite having the least vacancy in (or the most fully occupied) X of the tourmaline species. However, both my sample of povondraite as well as some of Žáček's *et al.* (2000) reported samples have X-site sums greater than 1 *apfu*. Structurally, this is impossible. When the data was normalized so that Na + K = 1 *apfu*, the resultant Y + Z + T sum was significantly less than the optimal 15 *apfu*. Altering the normalization by varying the amount of OH or Fe³⁺ / Fe²⁺ does not ameliorate the situation, as any change which decreases the X-site sum also serves to decrease the Y + Z+ T sum, which is already low. Interestingly, the wt% total for my sample (Žáček *et al.* (2000) did not include B₂O₃ or H₂O in their sums) is well-behaved. This indicates if any element was missed in the analysis, there cannot be a large quantity of it.

The most obvious explanation is that there is an analysis error. As both Žáček *et* al. (2000) and my analysis show this result, the error would most likely be due to some

unforeseen difficulty in this particular material, potentially because of overlap of peaks during EMPA, the high Fe content causing some sort of interference, or because some rare element is in the tournaline but was not analyzed for. A likely suspect is Zr, which commonly substitutes for Ti in minerals. As these tournalines have higher than average Ti content, the presence of Zr is conceivable. As the calculated *epfu* from EMPA is lower than the *epfu* calculated from SREF, adding a heavier element does increase the total *epfu* from EMPA, bringing it closer to the value from SREF. Other possible explanations include some interstitial K, though interstitial cations are generally not reported for tournaline and there is no void space which could easily accommodate this large cation. Another possibility is that the alkali values are incorrect due to mobilization by the microbeam. A third possibility is a substitution of Na into an octahedral site. This would serve to lower the X-site sum and raise the Y + Z + T sum, however this hypothesis is not supported by the bond-lengths of either the Y- or Z-site.

Several samples of povondraite were re-analyzed by EMPA to try to solve this problem. Initially, the Na and K values were re-collected to verify their agreement with original values. The beam was allowed to collect on the sample for several minutes, with data collected at five-second intervals in order to test the theory of alkali mobilization. The values remained consistent throughout the entire 130-second run. Secondly, the K peak was closely examined to determine if there was any distortion of the peak due to possible overlaps with higher order peaks from other components; the peak was found undistorted. Finally, additional elements were tested for by checking for anomalous peaks as well as analyzing for specific elements (As, Cu, Zr, Sr, Co, Sn, Y, Sc, Nb, Ba,

Pb and S). Neither method revealed any unknown constituent of significant quantity; the largest reported wt% from this study was 0.10 wt% CuO.

The impossibly high values of alkalis reported by Žáček *et al.* (2000) as well as myself cannot be easily explained by errors in chemical analysis or missed constituents. The structural data does not support interstitial K or Na substituting at an octahedral site. Further work needs to be done explain why the Na + K > 1 *apfu* for these samples.

# 6.2.3 Substitution mechanisms

Substitution of  $Fe^{3+}$  into the tourmaline structure seems to be at the expense of Al (Figure 6.3). Additionally, there is a positive correlation between  $Fe^{3+}$  and K in several of these tourmalines, though Žáček's *et al.* (2000) "B" group, which they report is the



**Figure 6.3**: Chemical zoning of  $\text{Fe}^{3+}$  and Al in povondraite in relation to location in the crystal and increasing K content. Data from Žáček *et al.* (2000) and Grice *et al.* (1993) are included for comparison.

closest to ideal povondraite, and two of the three compositions Grice *et al.* (1993) do not follow this trend. As there seems to be no crystal-chemical reason why K has not substituted into these tournalines to a greater degree, the lower K values must be geochemically controlled.

Grice *et al.* (1993) and Žáček *et al.* (2000) report various trends for Ti, V and Mg as a function of the K/(K+Na) ratio. Data from these two researchers were combined with my data. As Grice *et al.* (1993) calculated  $Fe^{3+}/Fe^{2+}$  ratios from stoichiometry based on H₂O values from bond-valence arguments, their data was renormalized with all  $Fe^{3+}$  so it could be directly compared to the other data sets. Žáček *et al.* (2000) do not report V. Figure 6.4 shows Mg as a function of K/(K + Na) where a weak negative correlation can be seen. Plots of Ti and V *vs.* K/(K + Na) show no conclusive trend.



**Figure 6.4**: Chemical variation of Mg in povondraite with increasing K content. Data from Žáček *et al.* (2000) and Grice *et al.* (1993) are included for comparison

## 6.3 Crystal structure

A single crystal of povondraite was obtained for structure refinement by grinding away material until only the outer, iron-rich rim remained. This wafer of material was analyzed by SREF using the method described in Chapter 2.2, then subsequently chemically analyzed by electron-microprobe (sample CT99). Table 6.2 lists the refinement data for this sample, which was refined to an *R*-value of 2.09%. The size of the unit cell of povondraite is significantly larger than those of other tourmaline, in agreement with the observations of Grice *et al.* (1993). Table 6.3 presents the sitescattering (SREF and EMPA) data.

 Table 6.2: Unit-cell parameters and SREF collection

 data for CT99

a (Å)	16.243(2)	N	6349
c(Å)	7.493(1)	$\#I  F_0  > 5\sigma\Phi$	1208
		R (%)	2.09
V (Å ³ )	1712.1	wR(%)	2.39
		GOF	1.415

# Table 6.3: Site-scattering data (epfu) for CT99

		0 (1) /					
	SREF data	**Probe data, Fe ²⁺	*Probe data, Fe ³⁺	**Probe data, Fe ³⁺			
X	14.16	15.40	14.06	14.06			
Ŷ	70.97	95.88	45.52	73.52			
7	128.06	105.63	138.29	110.28			
$\frac{L}{T}$	84 00	84 [§]	83.97	83.97			
Fo ²⁺	$\frac{1}{100}$ $\frac{1}$						
гe	Tormula calculated w	Illi Oli 4 upju, i o ioli.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

* Z filled with Al + Fe³⁺; ** Z filled with Al + Mg + Fe. [§] Si *apfu* calculated with all Fe²⁺ greatly exceeds the possible 6 *apfu*, thus the calculated *epfu* is above the allowable 84 *epfu* by 7.22 *epfu*.

### 6.4 Discussion

Site-scattering data from SREF should be relatively consistent no matter what element is assigned at a site (within reason) and provides a good check on methods for site assignment from chemical data. Sample CT99 was refined with the scattering species Na + K at *X*, Fe + Al at *Y*, and Fe + Mg at *Z*. This assignment for the *Y*- and *Z*sites, though not standard, was done based on the ideal end-member having considerable Mg at *Z*. As Mg and Al have very similar scattering powers, there should be no significant difference in the refinement if there is disorder between Mg and Al.

Comparing the site-scattering data from SREF with that assigned from the unit formula, it is apparent that one assignment has a better fit to the SREF data than the other assignments. Column 2 is the chemical data with all iron assumed to be ferrous. There are a number of problems here, but the most obvious is that the calculated *epfu* at the *T*site exceeds the crystallographically possible 84 *epfu* for sites fully occupied by Si, indicative of an impossible Si > 6 *apfu*. This result supports the premise that the majority of the iron is trivalent.

Column 3 shows the site-scattering when all iron is assumed to be ferric. Site populations were assigned by first assigning Al to the *T*-site such that  $\text{Si} + {}^{[4]}\text{Al} = 6 apfu$ . Remaining Al was assigned to the *Z*-site, followed by Fe³⁺. The *Y*-site was filled with the remaining Fe³⁺, and by Mg, V and Ti. Total *apfu* for the *Y*-site is less than 3. Comparing the site-scattering values from this method of site-assignment to the SREF data, there is reasonable agreement for the *X*- and *T*-sites. However, there is a significant difference in the data for the *Y*- and *Z*-sites, most apparent for the *Y*-site. Because the *epfu* assigned to this site from the unit formula is significantly less than the *epfu* calculated from the SREF data, this suggests that a larger amount of "heavy" elements need to be assigned to this site. Likewise, the *Z*-site apparently has too much heavy element assigned here. This In column 4, the method of assigning elements to sites was altered. Here, the *T*-site was filled the same way as in column 3, but now the *Z*-site was filled in the order Al, Mg, and  $Fe^{3+}$ . This method leaves only  $Fe^{3+}$ , V, and Ti to be assigned to *Y*. Although there still is some discrepancy between the site-scattering calculated from this method and that from the SREF data, the agreement is much closer than from the other two methods.

Based on these observations, the best method for distributing species between the *Y*- and *Z*-sites in povondraite involves filling the *Z*-site in the order Al, Mg,  $Fe^{3+}$ . The discrepancies between this method and the *epfu* calculated from the refinement data are most likely due to the presence of some  $Fe^{2+}$  and minor disorder of Mg and Al over the *Y*- and *Z*-sites.

In addition to site-scattering data, bond-lengths may also be used to determine chemical constituents at a site. Bond-lengths are most useful when the number of potential components is small, as minor elements can shift overall bond-lengths and it is easier to determine what is controlling an average length if the number of contributors is small. The  $\langle Z$ -O> length for sample CT99 is 2.018 Å. We can calculate the ideal average bond-length from the proposed methods of assigning components by using the ideal ionic radii of Shannon (1976). The three sets of probe data shown in Table 6.3 were used to calculate what the  $\langle Z$ -O> bond-lengths would be for the three site-assignment and Fe²⁺ vs. Fe³⁺ combinations listed; with all Fe²⁺ and  $Z = AI + Mg + Fe^{2+}$ ,  $\langle Z$ -O> = 2.056 Å, with all Fe³⁺ and  $Z = AI + Fe^{3+}$ ,  $\langle Z$ -O> = 1.984 Å, and with all Fe³⁺ and Z = AI+ Mg + Fe³⁺,  $\langle Z$ -O> = 2.007 Å. As the calculated bond-length which most closely resemble the observed length is 2.007 Å, this argument supports the premise that the Z-

site is filled with Al + Mg + Fe³⁺. As the calculated value is slightly shorter than the observed, and this cannot be increased by adding more Mg (all Mg is already assigned to Z), there is further evidence that a small percentage of Fe may be 2+ (Fe²⁺ ionic radius = 0.78 Å) (Shannon 1976).

Povondraite has the most K reported for any tourmaline, with some individual analytical points reporting as K dominant at the X-site (Grice *et al.* 1993, Žáček *et al.* 2000). An idea is that this is due to the large amount of Fe in the structure. Fe³⁺, with an ionic radius significantly larger than Al, could effectively expand the structure, allowing K to substitute for the smaller Na in greater quantity than is normally the case in the tourmaline structure. This feature is well-characterized in the amphiboles (*e.g.* K + Cl  $\rightarrow$ Na + (OH) in calcic amphiboles (Oberti *et al.* 1993)). More work needs to be done on povondraite (as well as other tourmalines with enlarged cells) in order to determine whether this is a crystallographically-controlled phenomenon.

The alkali contents of both CT99 and samples from Žáček *et al.* (2000) exceed the structurally allowed 1 *apfu*. This may be due to an element missed in data collection, errors in data collection due to peak interference or mobilization of the alkalis, or mis-assignment in the structure. Further work needs to be done characterizing the exact nature of this problem and testing the various hypotheses.

### CHAPTER 7

# Stereochemistry of the $^{[3]}B$ -site

# 7.1 Introduction

Boron is an essential component of all tourmalines, and SREF and bond-valence calculations indicate that  $B = 3 \ apfu$  in all tourmalines structurally analyzed to date, indicating the *B*-site is fully occupied by B. In almost all tourmalines analyzed to date, boron occurs only in triangular coordination (Hawthorne 1996). The only exception to this is the Austrian olenite of Hughes *et al.* (2000) which shows direct evidence of  $B > 3 \ apfu$ .

There is one triangularly coordinated site (the *B*-site) in tourmaline (Figure 7.1). The central cation is bonded to one O2 and two O8 anions. The *B*-site is thought



**Figure 7.1**: A fragment of the tourmaline structure looking down the *c*-axis, showing the local environment around the  $BO_3$  triangle.

to be relatively rigid in the tourmaline structure.

## 7.2 Description of problem

While investigating the tourmalines in my sample suite, some systematics in the stereochemistry about the *B*-site became apparent. Table 7.1 lists the average  $\langle B-O \rangle$  distances for my sample suite. Due to SREF *R*-values >3.0%, I excluded eight tourmaline samples from this particular study (samples CT41, CT58, CT73, CT90, CT92, CT96, CT97, and CT98). The  $\langle B-O \rangle$  bond length is 1.374, with  $\langle B-O2 \rangle = 1.360$  and  $\langle B-O8 \rangle = 1.381$  Å. These distances are in agreement with values reported for a variety

H - · · ·		0		
Species	#	<b-o2> Å</b-o2>	<b-08> Å</b-08>	<b-o> A</b-o>
Elbaite	14	1.358	1.381	1.373
Oxy-elbaite	1	1.356	1.382	1.373
Fluorelbaite	17	1.354	1.384	1.374
Dravite	11	1.368	1.376	1.373
Fluordravite	7	1.356	1.386	1.376
Schorl	6	1.354	1.384	1.374
Fluorschorl	5	1.354	1.384	1.374
Livite	9	1.369	1.379	1.376
Hydroxyuvite	7	1.370	1.377	1.374
Liddicoatite	4	1.355	1.384	1.374
Egitite	3	1 345	1.385	1.372
Ovu foitite	1	1 346	1.385	1.372
Dxy-fonde Duorgorite	1	1 380	1.374	1.376
Crolnoito	1	1.378	1.368	1.371
Craipolle	4	1 388	1 367	1.374
Povondraite		1.360	1.307	1 374
TOTAL	91	1.360	1.301	1.574

 TABLE 7.1: Average B–O bond lengths for tourmaline

of tourmaline species in the literature (*e.g.* Burns *et al.* 1994, Grice and Ercit 1993, Selway *et al.* 1998, MacDonald and Hawthorne 1995). In all of the tourmaline species investigated, the  $\langle$ B-O $\rangle$  bond length is fairly constant. However, there is significant variation in the B-O2 and B-O8 lengths for different tourmaline species. For example, in elbaite, B-O2  $\langle$  B-O8, in hydroxyuvite B-O2  $\approx$  B-O8, and in povondraite B-O2  $\rangle$  B-O8, but the  $\langle$ B-O $\rangle$  distances for these tourmalines are about the same. Figure 7.2 shows the variation in  $\langle B-O2 \rangle$  as a function of  $\langle B-O8 \rangle$ ; for brevity, tourmaline minerals with variations only at *W* have been grouped together under one species name. There is a relatively well-developed inverse correlation. The dotted line is a regression line, and most points fall within 2 standard deviations of this line. Points on this graph are not randomly distributed, but occur in chemical groupings. This suggests that the dominant cations at the *X*-, *Y*-, and *Z*-sites control this behavior.



Figure 7.2: Observed B - O2 vs. B - O8 distances in tourmaline

Re-examination of Figure 7.1 shows why the B-O2 and B-O8 distances vary between different chemical groups of tourmaline. With different *X*- and *Y*-site populations, the strength of the interactions between *X*, *Y* and O2 vary, and the B-O2 distance varies as a result. Similarly, variations in the *Z*-site population cause a variation in the strength of the *Z*-O8 interaction, and the B-O8 distance varies as a result. In addition, B-O2 and B-O8 distances must vary inversely in order for the bond-valence requirements of the central B cation to be satisfied. In order to put this argument onto a more quantitative basis, I will examine this situation using bond-valence theory.

#### 7.3 Bond-valence theory

Bond-valence theory is essentially a development of Pauling's second rule, which relates the strength of a bond to the coordination of the central cation (or anion) Pauling's second rule also went on to say that the sum of bond strengths incident at an atom are approximately equal to the formal valence of that atom (Pauling 1929). With bond-valence theory, the strength of a bond is related to its length as well as the types of cations involved (Brown 1981). There are several different formulae for calculating bond-valences (*e.g.* Donnay and Allmann 1970, Brown 1981, Brown and Altermatt 1985, Brese and O'Keeffe 1990), each with different pros and cons. A major advantage to the universal curves of Brown (1981) is that it has one set of constants for Na, Mg, Al and Si. This is beneficial for tourmaline as details of site-ordering between Mg and Al are not required. Therefore, bond-valences were calculated using Brown (1981):

# $s = \exp[(R_0 - R) / B]$

where R is the bond length, and  $R_0$  and B are fitted constants. The advantage to using bond-valence curves is that they combine chemical and crystallographic data, taking into account variations both in site populations and bond lengths. Figure 7.3 shows the bondvalence interactions that can affect the geometry of the (BO₃) triangle. Multiple regression was used determine which interactions are more significant.



**Figure 7.3**: Geometry of the (BO₃) triangle, showing the bonds that can affect the stereochemistry of the site.

# 7.4 Statistical methods

The variation in stereochemistry of the (BO₃) triangle is constrained by the fact that the mean  $\langle$ B-O> distance is constant. Therefore, I used the ratio of the B-O2 and B-O8 bond-valences as dependent variable. Possible independent variables which may effect this ratio are *X*-O2, 2 * (*Y*-O2), *Z*-O8, and *Z*'-O8. Forward stepwise linear regression gave the formula:

$$B-O2/B-O8 = -0.58(10) + 0.10(3) * [2 * (Y-O2)] + 3.02(18) * Z'-O8$$

with an  $R^2$  value of 0.772. This equation shows that the principal independent variable controlling the shape of the (BO₃) triangle is the Z'-O8 bond-valence, with minor contributions from the *Y*-site cations.

The primary control on the geometry of the (BO₃) triangle is the Z'-O8 bond. Figure 7.4 is a plot of calculated *vs*. observed B-O2/B-O8 ratios and Figure 7.5 shows the original data.



**Figure 7.4**: Calculated B-O2/B-O8 *vs.* observed B-O2/B-O8. Calculated values from the formula given in the text.

An examination of this plot, along with Figure 7.5, shows that the chemical groupings originally observed are actually groupings based on variations in the *Z*-site population. In Figure 7.5, boundaries have been drawn around species with similar *Z*-site chemistry. Elbaite, schorl, liddicoatite, and foitite all have six Al assigned to *Z*, and they all plot together. Likewise, uvite and dravite both have significant Mg at *Z* and are similarly grouped. The tourmaline samples that plot on the far right of the graph all have significant variation in their *Z*-site chemistry, with considerable-to-dominant amounts of

Cr or  $Fe^{3+}$ . It seems that the mean ionic radius of the Z cations increases toward the lower right of Figure 7.5.



**Figure 7.5**: Observed B-O2 *vs.* B-O8 distances, with approximate chemical groupings shown. Some points of a given composition may not fall in the same field as others; this is assumed to be due to variation in chemistry away from end-member compositions.

In conclusion, the *B*-site in tourmaline is a relatively rigid structural element. However, inversely coupled variation does occur between the B-O2 and B-O8 bonds. As the *Z*-site increases in size, B-O8 decreases and B-O2 increases. Regardless of the individual bond-lengths, the <B-O> distance remains relatively constant in all tourmaline minerals.

#### **CHAPTER 8**

#### **Discussion and Summary**

#### 8.1 Structural-formula calculation

Chemical analyses of tourmaline are usually incomplete due to difficulties in the analysis of light elements, valence states of transition metals, and problems with the heterogeneity of crystals. When there are undetermined components, assumptions must be made in order to develop a structural formula. Normalization on 31 anions with assumed OH + F = 4 *apfu* usually provides the most accurate formula, though care should be taken to ensure total wt% sums are near 100 % and cation *apfu* are reasonable (*e.g.* Si  $\leq 6 apfu$ ).

Li, if not measured, may be iterated for by adding Li₂O to the calculation scheme until Y + Z + T = 15 apfu.

Fe is often assumed to be 2+ in tourmaline, unless there is strong evidence that ferric iron may occur. This assumption may have lead to the misidentification of some buergerite, as the calculated formula of buergerite, when  $Fe^{2+}$  and OH + F = 4 *apfu* are assumed, is equivalent to the formula for schorl. Every effort must be made in tourmaline chemical analysis to determine the correct valence state of Fe. As most methods for valence determinations currently available require bulk sample, direct measurement of the  $Fe^{3+}/Fe^{2+}$  ratio might not be possible. However, this can be accurately determined if it is the only undetermined value in a chemical data set. If the valence state cannot be measured, stoichiometric arguments can be accurately used, provided all other constituents have been measured.

Normalization on 6 *apfu* of Si at T can be useful if the initial anion normalization led to >6 *apfu* Si.

Whenever possible, additional information should be incorporated when calculating structural formula. This includes data from structure analysis or the petrologic environment. Accurate normalization schemes are imperative in order to accurately classify the tourmaline by species and to use the chemical information that the mineral provides.

### 8.2 Potential new species of tourmaline

Pending approval of Hawthorne and Henry's (1999) proposed nomenclature scheme for tourmaline, there are several potential new species of tourmaline based on variation of anions at the *W*-site included in my suite. In addition, there is one new Crtourmaline that will be submitted after further chemical analysis is made.

"Fluordravite" is the F-dominant analogue of dravite, with an ideal end-member formula: Na Mg₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F.

"Fluorelbaite" is the F-dominant analogue of elbaite, with an ideal end-member formula: Na (Li_{1.5}Al_{1.5}) Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F.

"Fluorschorl" is the F-dominant analogue of schorl, with an ideal end-member formula: Na Fe²⁺₃ Al₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ F.

"Hydroxyuvite" is the OH-dominant analogue of uvite, with an ideal end-member formula: Ca Mg₃ (Al₅Mg) (Si₆O₁₈) (BO₃)₃ (OH)₃ (OH).

"Cralpoite" is the Cr-Al analogue of povondraite, with an ideal end-member formula: Na  $Cr^{3+}_3$  (Al₄Mg₂) (Si₆O₁₈) (BO₃)₃ (OH)₃ O. It is distinct from chromdravite by virtue of the presence of  $Cr^{3+}$  at the *Y*-site and Al (+ Mg) at the *Z*-site.

# 8.3 Crystal chemistry of chromian tourmaline minerals

Tourmaline with significant amounts of Cr (> 1 wt% Cr₂O₃), though rare, do occur at a few localities. Cr can occur at the *Y*-site, the *Z*-site, or both. "Cralpoite" is a proposed new species of tourmaline with the ideal formula: Na Cr³⁺₃ (Al₄Mg₂) (Si₆O₁₈) (BO₃)₃ (OH)₃ O; as such, it is the first tourmaline to have Cr dominant at *Y*. Chromdravite, currently Na Mg₃ Cr³⁺₆ (Si₆O₁₈) (BO₃)₃ (OH)₃ (OH), may need to be revised to show Cr dominant at both the *Y*- and *Z*-sites.

There are a number of problems with the analysis of Cr tournaline. The tournalines tend to occur as small, internally zoned crystals that are chemically heterogeneous from crystal to crystal; therefore bulk analytical techniques are not appropriate for light-element analysis. SIMS standards have not yet been developed for tournaline with high transition-metal content.

In addition to difficulties in collecting data due to crystal size and character, EMPA data that have been collected report low wt% sums. This has not been fully explained and is still being investigated.

### 8.4 Crystal chemistry of povondraite

Povondraite, a ferric tourmaline, has the most K reported for any species of tourmaline. This may be due to the large amount of Fe³⁺ present, which could effectively
expand the structure, allowing K to substitute for Na in greater quantity than is usually found.

The best method for distribution of species at the Y- and Z-sites for povondraite involves filling the Z-site in the order Al, Mg,  $Fe^{3+}$ . This argument is based on examination of bond-lengths and comparison of *epfu* calculated from SREF and EMPA, for each site.

The reported alkali contents for some povondraite samples exceed the structurally allowed 1 *apfu*. It is still unclear as to what is causing this anomaly.

# 8.5 Stereochemistry of the ^[3]B-site

The (BO₃) triangle in tourmaline, though relatively rigid, shows inversely coupled variations between B-O2 and B-O8. Regression analysis shows that the primary control on this relation is the Z'-O8 bond. As the constituent Z cation increases in size, B-O8 decreases and B-O2 increases. Regardless of individual variations, the  $\langle$ B-O> distance remains relatively constant in all tourmaline.

# 8.6 Unresolved issues

A number of unanswered questions regarding tourmaline would be significantly aided by accurate analysis of light-element contents (Li₂O, B₂O₃ and H₂O). Due to the ubiquitous zoning in tourmaline and chemical inhomogeneity between crystals, accurate analysis by bulk techniques is usually impossible. Analysis by SIMS is possible provided appropriate standards are available. Currently, this is not the case for tourmaline with high transition-metal content (Cr tourmaline and povondraite). However, I am currently

investigating the development of an appropriate synthetic tourmaline for use as a standard. Accurate analysis of H₂O, B₂O₃ and H₂O would allow complete characterization of the proposed new species "fluordravite", "fluorschorl", "fluorelbaite" and "cralpoite", as well as potentially recognizing oxy-tourmaline species. In addition to characterization of new species, these data would allow stoichiometric arguments to be used in unresolved issues concerning low weight-percent totals in Cr tourmaline and excess alkalis in povondraite. Ultimately, with standardization of SIMS techniques for light-element analysis, all tourmaline investigations will improve, as normalization schemes will no longer need to be based on assumed OH content.

Another area where there is room for considerable work is the development of site-ordering curves based on a combination of SREF, EMPA and SIMS data. This would allow a better understanding of the substitution mechanisms in tourmaline and the petrologic environment of formation, increasing the usefulness of tourmaline to petrologists.

### REFERENCES

- Anovitz, L.M. and Grew, E.S. (1996): Mineralogy, petrology and geochemistry of boron: an introduction, *in* Grew, E.S. and Anovitz, L.M., eds. Boron: mineralogy, petrology and geochemistry. *Mineral. Soc. of Amer. Reviews in Mineralogy*, 33, 1-30.
- Appleman, D.E. and Evans, H.T., Jr. (1973): Job 9214: Indexing and least-squares refinement of powder diffraction data. U.S. National Technical Information Service, Document PB 216 188.
- Awasthi, N. (1961): Authigenic tourmaline and zircon in the Vindhyan formations of Sone valley, Mirzapur District, Uttar Pradesh, India. J. of Sed. Petrol., **31**, 482-483.
- Barton, R., Jr. (1969): Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines. *Acta Crystallogr.*, **B25**, 1524-1533.
- Brese, N.E. and O'Keeffe, M. (1991). Bond-valence parameters for solids. *Acta Crystallogr.*, **B47**, 192-197.
- Brown, C.D. and Wise, M.A. (2001): Internal zonation and chemical evolution of the Black Mountain granitic pegmatite, Maine. *Can. Mineral.*, **39**, 45-55.
- Brown, I.D. (1981): The bond-valence method: an empirical approach to chemical bonding and structure. *In* Structure and Bonding in Crystals II (M. O'Keeffe and A. Navrotsky, eds.). Academic Press, New York, 1-30.
- Brown, I.D. and Altermatt, D. (1985): Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Crysallogr.*, B24, 244-247.
- Burns, P.C., MacDonald, D.J., Hawthorne, F.C. (1994): The crystal chemistry of manganese-bearing elbaite. *Can. Mineral.*, **32**, 31-41.
- Cameron, M. and Papike, J.J. (1980): Crystal chemistry of silicate pyroxenes. In Pyroxenes (C.T. Prewitt, ed.). Mineral. Soc. of Amer. Reviews in Mineralogy, 7, 5-87.

- Caverretta, G. and Puxedda, M. (1990): Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field, Italy. *Econ. Geol.*, **85**, 1236-1251.
- Cassedanne, J.P. and Cassedanne, J.O. (1978): Famous mineral localities: The Brumado district, Bahia, Brazil. *Mineral. Record*, 9, 196-205.
- Conklin, N.M. and Slack, J.F. (1983): Trace-element analyses of tourmaline from Appalachian-Caledonian massive sulfide deposits. U.S. Geol. Surv. Open-File Report 83-890, 5 p.

Dietrich, R.V. (1985): The tourmaline group. Van Nostrand, New York, 300 p.

Donnay, G. and Allmann, R. (1970): How to recognize O²⁻, OH⁻ and H₂O in crystal structures determined by X-rays. *Amer. Mineral.*, **55**, 1003-1015.

Dunn, P.J., Appleman, D.E., Nelen, J.A., Norberg, J. (1977b): Uvite, a new (old) common member of the tournaline group and its implications for collectors. *Mineral. Record*, 8, 100-108.

- Dutrow, B.L. and Henry, D.J. (1994): Crystal chemistry of tourmaline: A guide to metamorphic evolution of metapelites. *International Mineral. Assoc. 16th General Meeting*, 108 (abstr.)
- Dyar, M.D., Francis, C.A., Wise, M.A., Guidotti, C.V., McGuire, A.V., Robertson, J.D. (1994): Complete chemical characterization of tournaline. *Trans. Amer. Geophys. Union*, 75, 187 (abstr.)
- Epprecht, W. (1953): Die Gitterkonstanten der Turmalin. Schweiz Mineral. Petrogr. Mitt., 33, 481-505.
- Fuchs, Y. and Maury, R. (1995): Borosilicate alteration associated with U-Mo-Zn and Ag-Au-Zn deposits in volcanic rocks. *Mineral. Dep.*, **30**, 449-459.
- Grew, E.S. (1996): Borosilicates (exclusive of tournaline) and boron in rock-forming minerals in metamorphic environments. *In* Boron: Mineralogy, Petrology and Geochemistry (E.S. Grew and L.M. Anovitz, eds.) *Mineral. Soc. of Amer. Reviews in Mineralogy*, **33**, 387-502.
- Grew, E.S. and Sandiford, M. (1984): A staurolite-talc assemblage in tourmalinephlogopite-chlorite schist from northern Victoria Land, Antarctica, and its petrologic significance. *Contrib. Mineral. Petrol.*, **87**, 337-350.

- Grice, J.D. and Ercit, T.S. (1993): Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. *Neues Jahrb. Mineral. Abh.*, **165**, 245-266.
- Grice, J.D., Ercit, T.S., Hawthorne, F.C. (1993): Povondraite, a redefinition of the tourmaline ferridravite. *Amer. Mineral.*, **78**, 433-436.
- Hawthorne, F.C. (1983): The crystal chemistry of the amphiboles. *Can. Mineral.*, **21**(2), 173-480.
- Hawthorne, F.C. (1996): Structural mechanisms for light-element variations in tourmaline. *Can. Mineral.*, **34**, 123-132.
- Hawthorne, F.C. and Henry, D.J. (1999): Classification of the minerals of the tourmaline group. *Eur. J. Mineral.*, **11**, 201-215.
- Hawthorne, F.C., MacDonald, D.J., Burns, P.C. (1993): Reassignment of cation site occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. *Amer. Mineral.*, **78**, 265-270.
- Henry, D.J. and Dutrow, B.L. (1992): Tourmaline in low grade clastic metasedimentary rocks: an example of the petrogenetic potential of tourmaline. *Contrib. Mineral. Petrol.*, **112**, 203-218.
- Henry, D.J. and Dutrow, B. (1996): Metamorphic tournaline and its petrologic applications. *In* Boron: Mineralogy, Petrology and Geochemistry (E.S. Grew & L.M. Anovitz, eds.), *Mineral. Soc. of Amer. Reviews in Mineralogy*, 33, 503-557.
- Henry, D.J. and Guidotti, V. Ch. (1985): Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. *Amer. Mineral.*, **70**, 1-15.
- Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G., Guidotti, C.V. (2000): Tetrahedrally coordinated boron in a tourmaline: Boron-rich olenite from Stoffhütte, Koralpe, Austria. *Can. Mineral.*, 38, 861-868.
- International Tables for Crystallography (1992). Vol. C, Dordrecht: Kluwer Academic Publishers.

- King, R.W., Kerrich, R.W., and Daddar, R. (1988): REE distributions in tourmaline: an INAA technique involving pretreatment by B volatilization. *Amer. Mineral.*, 73, 424-431.
- Klein, C. and Hurlburt, C.S., Jr. (1993): *Manual of Mineralogy* (after James D. Dana), 21st Ed. John Wiley & Sons, Inc., New York. p. 473.
- Kyser, T.K. and O'Neil, J.R. (1984): Hydrogen isotope systematics of submarine basalts. *Geochemica et Cosmochemica Acta*, 48, 2123-33.
- London, D., Morgan, G.B. VI, Wolf, M.B. (1996): Boron in granitic rocks and their contact aureoles, *in* Grew, E.S. and Anovitz, L.M., eds. Boron: mineralogy, petrology and geochemistry. *Mineral. Soc. of Amer. Reviews in Mineralogy*, 33, 299 – 325.
- MacDonald, D.J. and Hawthorne, F.C. (1995): The crystal chemistry of Si Al substitution in tourmaline. *Can. Mineral.*, **33**, 849-858.
- MacDonald, D.J. Hawthorne, F.C., Grice, J.D. (1993): Foitite,  $\Box$  [Fe²⁺₂(Al,Fe³⁺)] Al₆Si₆O₁₈(BO₃)₃(OH)₄, a new alkali-deficient tourmaline: description and crystal structure. *Amer. Mineral.*, **78**, 1299-1303.
- Nickel, E.H. (1992): Solid solutions in mineral nomenclature. *Can. Mineral.*, **30**, 231-234.
- Nickel, E.H. and Mandarino, J.A. (1987): Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. *Can. Mineral.*, **25**, 353-377.
- Novák, M., Selway, J.B., Černý, P., Hawthorne, F.C., and Ottolini, L. (1999). Tourmaline of the elbaite-dravite series from an elbaite sub-type pegmatite at Bližná, southern Bohemia, Czech Republic. *Europ. J. of Mineral.*, **11**, 557-568.
- Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. (1993): The incorporation of Cl into the amphibole structure. *Geol. Assoc. Canada / Mineral. Assoc. Canada / Can. Geophys. Union Prog. with Abstr.*, **18**, 78.
- Ottolini, L. and Hawthorne, F.C. (1999): An investigation of SIMS matrix effects on H, Li and B ionization in tourmaline. *Eur. J. Mineral.*, **11**, 679-690.

- Ottolini, L., Bottazzi, P., Zanetti, A., Vannucci, R. (1995): Determination of hydrogen in silicates by Secondary Ion Mass Spectrometry. *The Analyst*, **120**, 1309-1313.
- Pauling, L. (1929): The principles determining the structure of complex ionic crystals. J. Amer. Chem. Soc., **51**, 1010-1026.
- Pouchou, J.L. and Pichoir, F. (1984): A new model for quantitative analysis: Part I. Application to the analysis of homogenous samples. *La Recherche Aerosp.*, **3**, 13-38.
- Pouchou, J.L. and Pichoir, F. (1985): 'PAP'  $\Phi(\rho Z)$  procedure for improved quantitative microanalysis. *Microbeam Analysis*, **1985**, 104-106.
- Povondra, P. (1981): The crystal chemistry of tourmalines of the schorl-dravite series. *Acta Univers. Carol. Geol.*, **3**, 223-264.
- Ricketts, B.D. (1978): Authigenic tourmaline from the Middle Precambrian Belcheger group, Northwest Territories, Canada. *Bull. of Canadian Petroleum Geol.*, **26**, 543-550.
- Robert, J-L., Linnen, R., Rouer, O. (1993): The OH-F substitution in natural and synthetic tourmalines. *Terra Abstr.*, **5**, 498.
- Rossman, G.R. and Mattson, S.M. (1986): Yellow, Mn-rich elbaite with Mn-Ti intervalence charge transfer. *Amer. Mineral.*, 71, 599-602.
- Selway, J.B. (1999): Compositional evolution of tourmaline in granitic pegmatites. *PhD. Thesis. University of Manitoba, Winnipeg, Manitoba, Canada.*
- Selway, J.B. and Novák, M. (1997): Experimental conditions, normalization procedures and used nomenclature for tourmaline, *in* Novak, M. and Selway, J.B., eds. *Tourmaline 1997: International Symposium on Tourmaline field trip guidebook*, 19-21.
- Selway, J.B., Hawthorne, F.C., Černý, P., Ottolini, L., Novák, M., Kyser, T.K. (1998): Rossmanite, □[LiAl₂]Al₆Si₆O₁₈ (BO₃)₃(OH)₄, a new alkali-deficient tournaline: Description and crystal structure. *Amer. Mineral.*, **83**, 896-900.

- Serdyuchenko, D.P. (1982): Different positions of boron in tourmaline lattices. *Geochem. Int. Rev.*, 14, 177-179.
- Shannon, R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta. Crystallogr.*, A32, 751-767.
- Sperlich, R. (1990): Zoning and crystal chemistry of tournalines in prograde metamorphic sequences of the Central Alps. *PhD Thesis, University of Basel, Basel, Switzerland.*
- Tappan, C.M. and Smith, M.S. (1997): Emerald and tourmaline mineralogy of the Crabtree Pegmatite, Spruce Pine District, North Carolina. Geol. Soc. of Amer. Abstr. with Prog., 29 (6), 390. (abstr.)
- Taylor, M.C., Cooper, M.A., Hawthorne, F.C. (1995): Local charge-compensation in hydroxyl-deficient uvite. *Can. Mineral.*, **33**, 1215-1221.
- Thiel, G.A. (1941): The relative resistance to abrasion of mineral grains of sand size. J. Sed. Petrol., 10, 103-124.
- Tsang, T. and Ghose, S. (1973): Nuclear magnetic resonance of ¹H, ⁷Li, ¹¹B, ²³Na, and ²⁷Al in tournaline (elbaite). *Amer. Mineral.*, **58**, 224-229.
- Walenta, K. and Dunn, P.J. (1979): Ferridravite, a new mineral of the tourmaline group from Bolivia. *Amer. Mineral.*, **64**, 945-948.
- Žáček, V., Frýda, J., Petrov, A., Hyršl, J. (2000): Tourmalines of the povondraite (oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. J. Czech Geol. Soc., 45, 3-12.

# APPENDIX A

#### **Tourmaline Samples**

Abbreviations used in Appendix A:

Museum or collection of:

a: California Institute of Technology; b: National Museum of Natural Sciences; c: Dalhousie University; d: Royal Ontario Museum; e: University of Manitoba; f: American Museum of Natural History; g: University of Maine; h: Smithsonian Institute; i: Nova Scotia Department of Mines and Energy; j: purchased from dealer; k: Moravian Museum, Brno;

Provided by:

I: Frank C. Hawthorne; m: Mark A. Cooper; n: Dan J. MacDonald; o: Bradley S. Wilson; p: Christine M. Clark McCracken; q: dealer

Analyses run on each sample:

S: single-crystal structure refinement; P: electron-microprobe analyses; X: X-ray powder diffraction; H: H-extraction line

* denotes holotype of potential new tourmaline species

Sample	Species	Locale	Other Number	Source	Data
CTI	Elbaite	Sverdlouskoblast, Ural Mts,	T-15, 43216	b	S,P
		Russia			
CT2	Elbaite	Brazil	T-31	e	S,P
CT3	Elbaite	Lilly Pads, ON	T-33	e,m	<u>S,P</u>
CT4	Elbaite	Tanco Mine, Bernic Lake, MB	T-34	e,n	S,P
CT5	Elbaite	Baja, CA	T-37	e	S,P
CT6	Elbaite	Northern Africa	T-39		S,P
CT7	Elbaite	Minas Gerais, Brazil	T-45, M20916	d	S,P
CT8	Elbaite	Elba, Italy	T-47, E1454	d	S,P
CT9	Elbaite	Pesrig, Saxony, Germany	T-48, M6101	d	S,P
CT10	Elbaite	Minas Gerais, Brazil	T-50, M31184	d	S,P
CTH	Elbaite	Paraiba, Brazil	T-54	b	S,P
CT12	Elbaite	Paraiba, Brazil	T-55	b	S,P
CT13	Elbaite	Brazil	T-82	1	S,P
CT14	Elbaite		MT10A		S,P
CT15	Elbaite	Tanco Mine, Bernic Lake, MB	TCR-1	e,p	S,P
CT16	"Fluorelbaite"	Santa Rosa, Minas Gerais,	T-12, 43276	b	S,P
		Brazil			
CT17	"Fluorelbaite"	South Africa	T-13, 43215	b	S,P
CT18	"Fluorelbaite"	San Diego Co., CA	T-16	с	S,P
CT19	"Fluorelbaite"	San Diego Co., CA	T-18	с	S,P
CT20	"Fluorelbaite"	San Diego Co., CA	T-19	с	S,P
CT21	"Fluorelbaite"	San Diego Co., CA	T-25	с	S,P
CT22	"Fluorelbaite"	San Diego Co., CA	T-26	с	S,P
CT23	"Fluorelbaite"	San Diego Co., CA	T-29	с	S,P
CT24	"Fluorelbaite"	San Diego Co., CA	T-30	с	S,P
CT25	"Fluorelbaite"	Baja, CA	T-36	e	S,P
CT26	"Fluorelbaite"	Minas Gerais, Brazil	T-49, M41979	d	S,P
CT27*	"Fluorelbaite"	Black Mt., Rumford, ME	T-51, M30977	d	S,P,X
CT28	"Fluorelbaite"	Havey Mine, Poland, ME	T-52, M19027	d	S,P
CT29	"Fluorelbaite"	Brazil	T-83	1	S,P
CT30	"Fluorelbaite"	Tanco Mine, Bernic Lake, MB	TCGT-1	e,p	S,P
CT31	"Fluorelbaite"	Brazil	T-96m	e,l	S,P
CT32	"Fluorelbaite"	Lastovicky	MT13A, LA3-2	k	S,P
CT33	Dravite	Osarara, Kenya	T-9, TDRV	a	S,P
CT34	"Cralpoite"	Kokka, Finland	T-38, MOC3532	b	S,P
CT35	Dravite	Modoc, ON	T-41, M31665	d	S,P
CT36	Dravite	Karsten, Germany	T-42, M19631	d	S,P
CT37	Dravite	Monmouth Twp., ON	T-56, M42863	d	S,P
CT38	Dravite	Minas Gerais, Brazil	T-64, M39701	d	S,P
CT39	Dravite	Tanzania	T-85, 143901	h	S,P
CT40	Dravite	Kaavi, Finland	119820X	h	S,P
CT41	Dravite	Etchison, Maryland	CrE-1, 78452	h	S,P
CT42	Dravite	Etchison, Maryland	CrE-2, 78452	h	S,P
CT43	Dravite	Etchison, Maryland	CrE-4, 78452	h	S,P
CT44	Dravite	unknown	T-92m, M1141	е	S,P
CT45	"Fluordravite"	Pierrepont, NY	T-66, E2666	d	S,P
CT46	"Fluordravite"	Langanbach quarry, Binntal	T-67	,	S,P
		Wallis, Switzerland			
CT47	"Fluordravite"	Burma	133839C		S,P
CT48	"Fluordravite"	Burma	133839M		S,P

Sample	Species	Locale	Other Number	Source	Data
CT49	"Fluordravite"	Crabtree Emerald Mine, NC	123688A		S,P
CT50*	"Fluordravite"	Crabtree Emerald Mine, NC	MT14A, 121341	h	S,P,X
CT51	"Fluordravite"	Nedevice	TNE5B	k	S,P
CT52	Schorl	Villeneuve Mine, Papineau Co, PQ	T-10, 43261	b	S,P
CT53	Schorl	Lydoch Tp, ON	T-11, 43251	b	S.P
CT54	Schorl	Buckingham, Papineau Co, PQ	T-14, 43262	b	S,P
CT55	Schorl	San Diego Co., CA	T-20b	с	S.P
CT56	Schorl	Hatchet Lake, South Mt. Batholith, NS	T-87, D12-0033- 3	i	S,P
CT57	Schorl	Nephton (Blue Mtn.), Methuer Twp, ON	108747	e,q	S,P
CT58	Schorl	Bayer's Lake blast pit, NS	T-99m	e,n	S,P
CT59	"Fluorschorl"	San Diego Co., CA	T-20a	С	S,P
CT60	"Fluorschorl"	San Diego Co., CA	T-21	с	S,P
CT61	"Fluorschorl"	Geco Mine	T-53, M25206	d	S,P
CT62	"Fluorschorl"	San Diego Co., CA	T-90m	с	S,P
CT63*	"Fluorschorl"	San Diego Co., CA	T-94m	c	S,P,X
CT64	Uvite	Laxton Twp., ON	T-23, M20414	d	S,P
CT65	Uvite	Sri Lanka	T-44, M34554	d	S.P
CT66	Uvite	Brazil	T-57, CB20	е	<u>S.P</u>
CT67	Uvite	Franklin, NJ	T-59m, C80699	f	S.P
CT68	Uvite	Hamburg, NJ	T-62m, 39870	f	S P
CT69	Uvite	Galway Twp., ON	T-63. M18478	d	<u>SP</u>
CT70	Uvite	Richville, NY	T-70, M31658		<u>S P</u>
CT71	Uvite		MT12		SP
CT72	Uvite	Mt. Isa. Oueensland, Australia	T95m, M1179	<u>е</u>	S P
CT73	Uvite	Burma	133839E	-	<u>SP</u>
CT74	Uvite	Hamburg, NJ	T-65m, 607	d	<u>S.P</u>
CT75	"Hydroxyuvite"	Bahia, Brazil	T-46, M44381		<u>S P</u>
CT76	"Hydroxyuvite"	Pierrepont, NY	T-58, 41080	 b	<u>SP</u>
CT77	"Hydroxyuvite"	unknown	T-61m	e	<u>SP</u>
CT78	"Hydroxyuvite"	Umba, Tansania	CrU-1	 h	S P
CT79*	"Hydroxyuvite"	Brumado, Bahia, Brazil	MT6A	1	<u> </u>
CT80	"Hydroxyuvite"		V012998	h	S P
CT81	Liddicoatite	Franklin, NJ	T-40, M37600	d	S.P
CT82	Liddicoatite	Antsirabe, Malagasy Rep.	T-43, M34669	d	S.P
CT83	Liddicoatite	Madagascar	T-81	1	S.P
CT84	Liddicoatite	Madagascar	T-98m, 165836	h	<u>S.P</u>
CT85	Foitite	San Diego Co., CA	T-27	с	<u> </u>
CT86	Foitite	San Diego Co., CA	T-28m		<u></u> S.P
CT87	Foitite	San Diego Co., CA	T-28mb	<u>с</u>	<u>-,-</u> S P
CT88	Foitite	Erongo, Namibia	MT15A C35B		SP
CT89	Buergerite	Mexquito, San Luis, Potosi, Mexico	MT5A	•	S,P
CT90	"Cralpoite"	Nausahi, Keonjhar District, India	MT1A, 120534	h	S,P
CT91	"Cralpoite"	Nausahi, Keonjhar District, India	MT1B_2, 120534	h	S,P
CT92*	"Cralpoite"	Nausahi, Keonjhar District, India	MT1D, 120534	h	S,P,X

.

Sample	Species	Locale	Other Number	Source	Data
CT93	"Cralpoite"	Nausahi, Keonjhar District,	MT1E, 120534	h	S,P
0.70	· 1	India			
СТ94	"Cralpoite"	Nausahi, Keonjhar District,	MT1F, 120534	h	S,P
	•	India		·····	
CT95	"Cralpoite"	Nausahi, Keonjhar District,	MT1G, 120534	h	S,P
		India			
СТ96	Chromdravite		MT4A, 123711	h	S,P
CT97	Chromdravite		MT4C, 123711	h	S,P
<u>CT08</u>	Chromdravite		MT4D, 123711	h	S,P
0198	Daviandraita		MT3B. Ktour		S,P
C199	Povondraite				· · · · · · · · · · · · · · · · · · ·

월 왕]

2

.

# APPENDIX B

#### **SREF Miscellaneous Information**

This appendix lists miscellaneous data concerning each sample including cell dimensions (Å), SREF crystal size ( $\mu$ m), color, and statistical parameters regarding crystal structure refinements. An explanation of terms and abbreviations used in this appendix are as follows:

N = number of total observed reflections

 $\#I |F_0| > 5\sigma = subset of reflections of total observed reflections with absolute values of structure factors > 5 standard errors$ 

R(%) = R index, not weighted

wR (%) = R index, weighted

GOF = goodness of fit parameter

		CT1	CT2	CT3	CT4	CT5
Cell	<i>a</i> (Å)	15.838(3)	15.841(2)	15.822(3)	15.823(3)	15.811(3)
Parameters	С	7.095(1)	7.100(1)	7.095(2)	7.091(1)	7.094(2)
	$V(Å^3)$	1541.3	1542.9	1538.1	1537.4	1535.7
Crystal	'Χ'(μ)	280	450	260	320	350
Dimensions	'Y'	350	430	280	340	350
	'Z'	310	430	300	360	350
Color		pink	light green	pink	pink	pink
Ν		1109	1106	1108	1108	1103
#I  F ₀   > 5σ		1101	1106	1098	1104	1100
R(%)		1.80	1.67	1.95	1.82	1.70
wR (%)		2.32	2.40	2.53	2.60	2.45
GOF		2.718	3.861	3.080	3.503	4.144

÷,

		CT6	CT7	CT8	СТ9	CT10
Cell	a (Å)	15.830(2)	15.828(4)	15.792(3)	15.800(4)	15.828(2)
Parameters	С	7.086(1)	7.092(3)	7.091(3)	7.093(2)	7.097(1)
	V (Å ³ )	1537.8	1538.8	1531.5	1533.4	1539.8
Crystal	'Χ'(μ)	380	330	370	400	200
Dimensions	'Y'	390	320	360	420	220
	'Z'	400	320	380	440	240
Color		light blue	pink	colorless	pink	light green
Ν		1106	1107	1101	1102	1107
$\#I F_0  > 5\sigma$		1103	1100	1096	1098	1100
R (%)		1.68	1.73	1.62	1.80	2.03
wR (%)		2.24	2.38	2.24	2.77	2.60
GOF		3.338	3.192	3.329	4.406	3.479

		CT11	CT12	CT13	CT14	CT15
Cell	<i>a</i> (Å)	15.818(2)	15.805(2)	15.851(2)	15.824(2)	15.811(1)
Parameters	С	7.088(1)	7.084(1)	7.104(1)	7.089(1)	7.093(1)
	$V(Å^3)$	1535.8	1532.6	1545.7	1537.3	1535.6
Crystal	'X'(μ)	480	440	480	200	200
Dimensions	'Y'	440	450	520	200	200
	'Z'	420	440	500	200	200
Color		blue	light blue	green	colorless	dark pink
N		1098	1086	1107	1109	1109
$  \mathbf{F}_0  > 5\sigma$		1095	1085	1107	1105	1102
R(%)		1.99	1.85	2.12	2.46	1.68
wR (%)		2.74	2.56	2.88	3.00	2.25
GOF		4.424	4.283	5.177	3.599	2.467

	<u> </u>	CT16	CT17	CT18	CT19	CT20
Cell	<i>a</i> (Å)	15.908(2)	15.909(3)	15.906(3)	15.883(2)	15.887(2)
Parameters	С	7.135(2)	7.128(2)	7.127(1)	7.113(1)	7.116(1)
	V (Å ³ )	1563.6	1562.2	1561.5	1554.1	1555.4
Crystal	'Χ'(μ)	330	310	400	400	420
Dimensions	'Y'	330	350	350	400	400
	'Z'	360	370	350	370	380
Color		green	light blue	green	light green	light blue
N		1127	1121	1121	1115	1116
$\#I F_0  > 5\sigma$		1122	1112	1117	1111	1114
R(%)		2.03	1.89	1.95	2.41	2.06
wR (%)		2.52	2.44	2.41	2.92	2.91
GOF		3.184	3.202	3.127	4.434	4.812

		CT21	CT22	CT23	CT24	CT25
Cell	<i>a</i> (Å)	15.880(2)	15.907(2)	15.909(2)	15.874(2)	15.852(2)
Parameters	С	7.113(3)	7.120(1)	7.118(2)	7.111(1)	7.106(1)
	V (Å ³ )	1553.4	1560.2	1560.0	1551.9	1546.4
Crystal	'X'(11)	440	400	280	600	400
Dimensions	·Υ'	460	390	300	540	380
	'Z'	500	400	320	420	380
Color		aqua-blue	blue-grey	light blue	sky blue	green
Ν		1110	1120	1121	1108	1109
$\#I  F_0  > 5\sigma$		1109	1116	1118	1107	1104
R (%)		2.08	2.26	2.26	1.93	1.76
wR (%)		2.82	3.24	2.95	2.63	2.49
GOF		4.687	5.181	4.298	4.329	3.923

		CT26	CT27	CT28	CT29	СТ30
Cell	<i>a</i> (Å)	15.842(3)	15.851(2)	15.808(3)	15.842(2)	15.889(1)
Parameters	С	7.096(3)	7.103(3)	7.096(3)	7.100(2)	7.117(1)
	$V(Å^3)$	1542.3	1545.5	1535.6	1543.0	1556.2
Crystal	'Χ'(μ)	400	200	380	340	200
Dimensions	'Y'	420	200	400	360	200
	'Z'	380	120	300	350	200
Color		green	light green	light green	pink	green
N		1099	1109	1106	1107	1118
$\#I  F_0  > 5\sigma$		1096	1083	1103	1103	1110
R (%)		1.83	1.96	2.20	2.28	1.88
wR (%)		2.51	2.28	2.82	2.88	2.40
GOF		4.062	1.976	4.020	4.158	2.812

		CT31	CT32	CT33	CT34	CT35
Cell	<i>a</i> (Å)	15.843(1)	15.915(1)	15.947(2)	15.920(3)	15.921(4)
Parameters	С	7.104(1)	7.128(1)	7.214(1)	7.204(2)	7.219(2)
	$V(Å^3)$	1544.1	1563.6	1588.9	1581.3	1584.5
Crystal	'Χ'(μ)	130	230	380	480	400
Dimensions	·Υ'	130	230	380	500	<del>7</del> 00
Dimensions	·7;	120	230	380	500	380
	L	150	230	380	500	400
Color		pink	pink	brown	green	golden brown
Ν		1111	1121	1136	1119	1139
$  \mathbf{F}_0  > 5\sigma$		1079	1117	1134	1118	1132
R (%)		2.04	2.08	1.66	1.60	2.00
wR (%)		2.30	2.71	2.45	2.14	2.63
GOF		1.772	3.389	4.129	3.807	3.847

		CT36	CT37	CT38	СТ39	CT40
Cell	a (Å)	15.914(3)	15.945(2)	15.896(2)	15.906(3)	15.936(1)
Parameters	С	7.185(3)	7.203(1)	7.168(2)	7.182(2)	7.207(1)
	V (Å ³ )	1575.7	1585.9	1568.4	1573.7	1585.1
Crystal	'Χ'(μ)	320	380		400	130
Dimensions	'Y'	300	360		380	130
	'Z'	280	360		400	130
Color		golden brown	brown	golden brown	green	green
Ν		1135	1143	1129	1134	1141
$\#I  F_0  > 5\sigma$		1128	1133	1125	1134	1118
R (%)		1.70	1.70	1.93	2.03	1.74
wR (%)		2.41	2.37	2.68	2.84	1.98
GOF		3.087	3.076	3.478	6.263	1.873

		CT41	CT42	CT43	<b>CT44</b>	CT45
Cell	a (Å)	15.934(3)	15.916(3)	15.914(1)	15.966(1)	15.939(1)
Parameters	С	7.203(2)	7.204(2)	7.193(1)	7.199(1)	7.185(1)
	V (Å ³ )	1583.9	1580.3	1577.6	1589.1	1580.7
Crystal	'X'(μ)	240	260	180	200	450
Dimensions	'Y'	240	260	200	200	460
	'Z'	280	260	220	230	480
Color		green	green	green	brown	golden brown
N		1171	1141	1137	1145	1131
$   H   F_0  > 5\sigma$		1120	1127	1133	1136	1129
R(%)		3.47	2.31	1.59	1.52	1.91
wR (%)		4.18	2.70	1.97	. 1.97	2.63
GOF		3.555	2.344	2.119	2.404	4.314

		CT46	CT47	CT48	CT49	CT50
Cell	<i>a</i> (Å)	15.922	15.949(1)	15.961(1)	15.978(2)	15.955(3)
Parameters	С	7.165	7.158(1)	7.162(1)	7.166(1)	7.153(2)
	V (Å ³ )	1573.0	1576.8	1580.1	1584.4	1576.9
Crystal	'Χ'(μ)	360	200	200	200	230
Dimensions	'Y'	380	200	200	200	230
	ʻZ'	390	200	200	200	230
Color		colorless	green	green		brown
N		1132	1139	1141	1141	1139
$   H    F_0  > 5\sigma$		1124	1132	1129	1136	1137
R (%)		2.17	1.74	2.37	1.52	1.61
wR (%)		2.66	2.22	2.83	1.91	2.21
GOF		3.595	2.538	3.104	2.142	2.694

		CT51	CT52	CT53	CT54	CT55
Cell	a (Å)	15.972(2)	15.998(3)	16.002(3)	16.015(2)	15.916(2)
Parameters	С	7.164(1)	7.173(3)	7.184(2)	7.180(1)	7.127(2)
	V (Å ³ )	1582.7	1589.8	1593.1	1594.8	1563.6
Crystal	'Χ'(μ)	180	160	370	240	400
Dimensions	'Y'	180	140	340	330	370
	'Z'	200	140	320	270	350
Color		black	brown	brown	blue	dark brown
N		1141	1143	1143	1148	1121
$  \mathbf{F}_0  > 5\sigma$		1127	1130	1139	1141	1119
R(%)		1.65	1.70	1.66	2.20	1.85
wR (%)		1.98	1.98	2.05	2.92	2.34
GOF		1.915	2.021	2.692	3.611	3.172

		CT56	CT57	CT58	CT59	CT60
Cell	<i>a</i> (Å)	15.972(1)	15.979(4)	15.982(1)	15.907(3)	15.907(3)
Parameters	с	7.156(1)	7.160(2)	7.147(1)	7.133(1)	7.119(2)
	V (Å ³ )	1580.9	1583.2	1580.8	1563.1	1559.9
						100
Crystal	'Χ'(μ)	350	200	180	360	400
Dimensions	'Y'	340	200	180	280	440
	'Z'	300	200	200	310	460
Color		black		black	dark green	blue- green
N		1137	1139	1139	1125	1120
$\#I F_0  > 5\sigma$		1135	1135	1129	1119	1118
R(%)		2.03	1.56	3.60	2.17	2.00
$w\hat{R}(\%)$		2.54	2.04	4.44	2.65	2.60
GOF		3.546	2.343	4.428	3.430	4.187

	-	CT61	CT62	CT63	CT64	CT65
Cell	<i>a</i> (Å)	15.901(1)	15.932(2)	15.932(1)	15.941(3)	15.959(3)
Parameters	С	7.118(2)	7.132(1)	7.134(1)	7.189(3)	7.198(3)
	$V(Å^3)$	1558.6	1567.9	1568.1	1582.1	1587.6
Crystal	'Χ'(μ)	400	240	130	355	320
Dimensions	'Y'	380	160	130	370	320
	'Z'	380	100	130	380	290
Color		blue-	black	black	bronze	brown-
		purple				bronze
N		1121	1129	1129	1139	1147
$  \mathbf{F}_{0}  > 5\sigma$		1119	1116	1091	1130	1134
R (%)		1.89	2.00	2.08	1.77	1.59
wR (%)		2.46	2.44	2.20	2.28	2.05
GOF		3.716	2.355	1.736	3.323	2.650

		CT66	CT67	CT68	CT69	CT70
Cell	a (Å)	15.927(4)	15.960(1)	15.960(1)	15.939(2)	15.946(1)
Parameters	С	7.202(1)	7.205(1)	7.201(1)	7.196(2)	7.197(1)
	$V(Å^3)$	1582.3	1589.4	1588.5	1583.0	1584.8
Crystal	'Χ'(μ)	360	100	180	360	320
Dimensions	'Y'	380	100	200	350	320
	'Z'	380	220	200	370	340
Color		dark	green	orange	brown	pale
		brown				brown
N		1140	1147	1147	1136	1139
$   #I    F_0  > 5\sigma$		1130	1121	1131	1124	1126
R(%)		1.83	1.60	1.55	1.93	1.83
wR (%)		2.46	1.89	1.94	2.55	2.40
GOF		3.568	1.765	2.084	3.694	3.156

		CT71	CT72	CT73	CT74	CT75
Cell	<i>a</i> (Å)	15.940(1)	15.943(1)	15.980(2)	15.958(2)	15.943(3)
Parameters	С	7.197(1)	7.192(1)	7.177(1)	7.200(1)	7.195(2)
	V (Å ³ )	1583.6	1583.0	1587.2	1587.9	1583.8
Crystal	'Χ'(μ)	180	180	200	120	340
Dimensions	'Y'	180	180	200	120	320
	'Z'	180	180	200	120	300
Color		green	dark brown	green	colorless	green
N		1141	1141	1141	1147	1139
$  #I  F_0  > 5\sigma$		1120	1131	1118	1086	1126
R (%)		1.70	1.60	3.29	2.00	1.69
wR (%)		2.05	1.99	4.11	2.26	2.20
GOF		1.849	1.997	4.231	1.764	2.929

		CT76	CT77	CT78	CT79	СТ80
Cell	a (Å)	15.958(1)	15.985(1)	15.937(1)	15.954(1)	15.969(2)
Parameters	С	7.210(1)	7.223(1)	7.208(1)	7.214(1)	7.205(1)
	V (Å ³ )	1590.0	1598.4	1585.6	1590.0	1591.18
Crystal	'Χ'(μ)	360	180	320	100	200
Dimensions	'Y'	360	180	320	200	200
	'Z'	370	200	340	200	200
Color		black- green	dark brown	green	orange	
Ν		1146	1151	1141	1147	1579
#I  F ₀   > 5σ		1139	1140	1136	1127	1127
R (%)		1.77	1.80	1.70	1.77	1.92
wR (%)		2.29	2.50	2.35	2.13	2.01
GOF		3.341	2.481	2.649	1.969	2.406

		CT81	CT82	CT83	CT84	CT85
Cell	a (Å)	15.841(3)	15.821(4)	15.854(2)	15.835(1)	15.967(2)
Parameters	С	7.091(3)	7.105(2)	7.109(1)	7.106(1)	7.126(2)
	V (Å ³ )	1541.1	1540.2	1547.5	1543.1	1573.4
Crystal	'Χ'(μ)	320	320	360	130	400
Dimensions	·Υ'	320	300	370	120	280
	·7	320	280	220	130	380
	L	550	280	380	130	380
Color		olive	green-	light pink	colorless	purple-
		green	bronze			pink
Ν		1109	1112	1109	1111	1128
$\#I  F_0  > 5\sigma$		1102	1102	1105	1072	1124
R (%)		1.78	1.94	1.94	2.29	1.75
wR (%)		2.26	2.40	2.40	2.50	2.36
GOF		3.057	3.155	3.155	1.918	3.489

		CT86	CT87	CT88	СТ89	СТ90
Cell	a (Å)	15.965(3)	15.967(4)	15.882(2)	15.862(1)	16.033(1)
Parameters	С	7.128(2)	7.133(2)	7.114(1)	7.188(1)	7.312(1)
	$V(Å^3)$	1573.4	1574.9	1554.1	1566.3	1627.8
~ -						
Crystal	'Χ'(μ)	160	210	60	200	40
Dimensions	'Y'	190	210	80	200	40
	'Z'	210	210	180	200	100
Color		blue-	hlue-	blue	blook	donte
		black	black	black	UTACK	dark
		Oldek	UIdek	UIACK		green
Ν		1133	1135	1117	1131	1177
$\#I  F_0  > 5\sigma$		1121	1124	1088	1122	978
R (%)		2.66	2.81	2.00	1.77	3.31
wR (%)		3.23	3.56	2.25	2.19	2.28
GOF		3.224	3.565	1.857	2.250	1.456

		CT91	CT92	CT93	СТ94	CT95
Cell	<i>a</i> (Å)	15.973(1)	16.035(1)	15.991(1)	16.036(1)	16.040(2)
Parameters	С	7.267(1)	7.313(1)	7.276(1)	7.319(1)	7.316(1)
	$V(Å^3)$	1605.7	1628.4	1611.3	1630.0	1630.09
Crystal	'Χ'(μ)	80	25	50	70	60
Dimensions	'Y'	80	35	60	70	65
	'Z'	180	70	150	80	110
Color		dark	dark	dark	dark	dark
		green	green	green	green	green
N		1159	1177	1158	1177	5115
$\#11F_1 > 5\sigma$		1125	851	1097	1101	1091
$  \#1   \Gamma_0   > 50$		2.24	3 27	2 35	2 3 1	1 97
$ \begin{array}{c} \mathbf{A} \left( \begin{array}{c} 7 0 \right) \\ \mathbf{m} \mathbf{D} \left( \begin{array}{c} 9 \right) \end{array} \end{array} $		2.24	2.27	2.55	1 72	1.77
		1.680	1.030	1 429	1.72	1 552

		СТ96	СТ97	CT98	СТ99
Cell	<i>a</i> (Å)	16.129(2)	16.151(4)	16.149(1)	16.243(2)
Parameters	С	7.411(3)	7.413(2)	7.420(1)	7.493(1)
	V (Å ³ )	1669.64	1674.5	1675.8	1712.1
Crystal	'X'(u)	60	70	60	
Dimensions	·Υ'	70	70	60	
Dimensions	'Ζ'	120	75	120	
Color		dark	dark	dark	black
		green	green	green	
N		1201	1202	1203	6349
$  \mathbf{F}_0  > 5\sigma$		1096	1101	1140	1208
R(%)		3.18	4.18	5.06	2.09
wR (%)		2.35	3.45	4.26	2.39
GOF		1.539	2.718	2.859	1.415

# APPENDIX C

#### **Atomic Parameters**

This appendix lists the refined positional and equivalent displacement factors (Ueq) for each sample. Standard deviations are also listed. Note that the symmetry operators defined at the beginning of Appendix E apply here.

The first part of this appendix (Section C.1) lists the atomic parameters for the *X*, *Y*, *Z*, *B*, *T*, and O(1) - O(8) sites. The second section of this appendix (Section C.2) lists the atomic parameters for those samples where H was located in coordination with O(3) and assigned. Section C.3 lists the atomic parameters for the on sample where the H coordinating O(1) was located and assigned.

H positions were refined isotropically with a fixed distance from their coordinating O. Generally, the Ueq value was allowed to refine for H, though for some samples this value was fixed.

Sec	ction (	C.1									
		CT1		CT2	~	CT3		CT4		CT5	
X	Х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0196	(10)	0.0225	(8)	0.0224	(13)	0.0175	(10)	0.0224	(9)
Y	х	0.06106	(4)	0.06161	(4)	0.06119	(5)	0.06149	(5)	0.06159	(5)
	У	0.93894	(4)	0.93839	(4)	0.93881	(5)	0.93851	(5)	0.93841	(5)
	Z	0.43684	(50)	0.44380	(42)	0.43916	(63)	0.43920	(54)	0.44185	(48)
	Ueq	0.0072	(4)	0.0085	(3)	0.0075	(4)	0.0067	(4)	0.0071	(4)
Z	х	0.25984	(4)	0.26032	(4)	0.25995	(5)	0.26000	(4)	0.25991	(4)
	У	0.29653	(4)	0.29708	(4)	0.29667	(4)	0.29667	(4)	0.29668	(4)
	Z	0.46462	(46)	0.46498	(39)	0.46425	(59)	0.46484	(49)	0.46685	(42)
	Ueq	0.0064	(2)	0.0065	(2)	0.0066	(2)	0.0063	(2)	0.0062	(2)
1	х	0.18970	(4)	0.18990	(3)	0.18978	(4)	0.18983	(4)	0.18987	(3)
	У	0.19171	(3)	0.19192	(3)	0.19183	(4)	0.19191	(4)	0.19190	(3)
	Z	0.07283	(46)	0.07523	(39)	0.07318	(60)	0.07400	(49)	0.07657	(42)
	Ueq	0.0057	(2)	0.0055	(2)	0.0056	(2)	0.0054	(2)	0.0053	(2)
В	x	0.89095	(11)	0.89071	(11)	0.89090	(12)	0.89104	(12)	0.89098	(11)
	У	0.10905	(11)	0.10929	(11)	0.10910	(12)	0.10896	(12)	0.10902	(11)
	Llag	0.01998	(39)	0.02094	(33)	0.01989	(73)	0.62057	(64)	0.62237	(58)
01	Veq	0.0003	(8)	0.0067	(8)	0.0074	(9)	0.0069	(9)	0.0070	(8)
01	X				(0)			0		0	
	y Z	0.20600	(64)	0.20402	(0)	0.20558	(77)	0.20511	(71)	0 20528	100
	Llea	0.29009	(04)	0.29402	(04)	0.29558	(11)	0.29311	(71)	0.29528	(00)
02	<u></u>	0.0205	$\frac{(12)}{(7)}$	0.0410	(7)	0.03050	$\frac{(14)}{(8)}$	0.03071	$\frac{(14)}{(8)}$	0.0380	(14)
	v	0.06033	(7)	0.06069	(7)	0.06050	(8)	0.06029	(8)	0.95979	(7)
	z	0.58368	(55)	0.58851	(48)	0 58474	(69)	0.58580	(60)	0.58845	(7)
	Ueq	0.0133	(7)	0.0161	(8)	0.0148	(8)	0.0150	(8)	0.0149	(72)
03	x	0.13142	(9)	0.13323	(8)	0.13181	(9)	0.13218	(9)	0.13271	(73)
	У	0.86858	(9)	0.86677	(8)	0.86819	(9)	0.86782	(9)	0.86729	(9)
	Z	0.56541	(52)	0.56694	(47)	0.56619	(65)	0.56751	(56)	0.56849	(49)
	Ueq	0.0127	(6)	0.0118	(6)	0.0130	(7)	0.0126	(6)	0.0123	(6)
04	х	0.90595	(8)	0.90656	(7)	0.90610	(8)	0.90631	(8)	0.90638	(7)
	У	0.09405	(8)	0.09344	(7)	0.09390	(8)	0.09369	(8)	0.09362	(7)
	Z	-0.00055	(52)	0.00324	(45)	-0.00006	(65)	0.00112	(55)	0.00349	(47)
	Ueq	0.0095	(6)	0.0094	(6)	0.0091	(6)	0.0096	(6)	0.0091	(6)
05	х	0.09362	(8)	0.09353	(7)	0.09378	(8)	0.09360	(8)	0.09358	(8)
	У	0.90638	(8)	0.90647	(7)	0.90622	(8)	0.90640	(8)	0.90642	(8)
	Z	-0.02268	(530	-0.01985	(46)	-0.02201	(66)	-0.02143	(56)	-0.01879	(50)
~ ~ ~	Ueq	0.0101	(6)	0.0092	(5)	0.0097	(6)	0.0097	(6)	0.0092	(6)
06	х	0.18411	(9)	0.18567	(9)	0.18468	(10)	0.18455	(10)	0.18492	(9)
	У	0.19458	(9)	0.19604	(9)	0.19517	(10)	0.19512	(10)	0.19528	(9)
	Z	0.29924	(49)	0.30057	(44)	0.29926	(63)	0.30014	(54)	0.30212	(48)
07	Jeq	0.00/9	$\frac{(3)}{(8)}$	0.0081	(3)	0.0080	$\frac{(3)}{(0)}$	0.0078	(2)	0.0082	()
07		0.20000	(0) (0)	0.28000	(9)	0.28623	(9)	0.28624	(9)	0.28608	(9)
	y 7	0.20000	(2) (40)	0.28010	(2) (42)	0.20030	(10)	0.28038	(10)	0.28625	(9)
	Llea	0.00309	(47)	0.00338	(42)	-0.00431	(02)	-0.00373	(32)	-0.00198	(45)
08	v	0.0070	$\frac{(3)}{(10)}$	0.0073	(3)	0.00708	(J)	0.0072	(3)	0.0008	(3)
00		0.27011	(10)	0.27038	(10)	0.2/029	(11)	0.27003	(11)	0.27005	(10)
	у 7	0.20900	(10)	0.20904	(10)	0.20900	(11) (62)	0.20934	(11)	0.20938	(10)
	2 Llea	0.05528	( <del>1</del> 2) (5)	0.03370	(+3)	0.00497 0.0099	(03)	0.0000	(3)	0.03/18	(40)
	July	0.0077	(9)	0.0005	(7)	0.0002	(J)	0.0080	(3)	0.0082	$(\mathcal{O})$

		CT6		CT7		CT8		СТ9		CT10	
X	Х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0203	(8)	0.0178	(10)	0.0228	(11)	0.0241	(15)	0.0197	(11)
Y	х	0.06150	(4)	0.06148	(5)	0.06069	(4)	0.06090	(5)	0.06174	(5)
	У	0.93850	(4)	0.93852	(5)	0.93931	(4)	0.93910	(5)	0.93826	(5)
	Z	0.44135	(43)	0.43925	(50)	0.43511	(55)	0.43731	(70)	0.44133	(55)
	Ueq	0.0076	(3)	0.0070	(4)	0.0077	(3)	0.0085	(4)	0.0064	(5)
Z	х	0.26016	(4)	0.25992	(4)	0.25968	(4)	0.25974	(5)	0.25989	(5)
	у	0.29681	(4)	0.29671	(4)	0.29652	(4)	0.29648	(4)	0.29677	(4)
	Z	0.46498	(39)	0.46384	(45)	0.46300	(51)	0.46444	(65)	0.46422	(49)
	Ueq	0.0064	(2)	0.0062	(2)	0.0066	(2)	0.0064	(2)	0.0058	(2)
Т	х	0.18983	(3)	0.18989	(4)	0.18969	(3)	0.18974	(4)	0.18991	(4)
	у	0.19191	(3)	0.19191	(3)	0.19165	(3)	0.19176	(4)	0.19196	(4)
	Z	0.07432	(39)	0.07368	(45)	0.07103	(52)	0.07296	(66)	0.07462	(49)
	Ueq	0.0055	(2)	0.0051	(2)	0.0056	(2)	0.0055	(2)	0.0047	(2)
В	х	0.89089	(10)	0.89102	(11)	0.89090	(10)	0.89094	(12)	0.89098	(12)
	у	0.10911	(10)	0.10898	(11)	0.10910	(10)	0.10906	(12)	0.10902	(12)
	Z	0.62092	(53)	0.61981	(59)	0.61775	(62)	0.61890	(77)	0.61998	(7)
	Ueq	0.0069	(8)	0.0068	(8)	0.0068	(8)	0.0066	(9)	0.0063	(9)
01	х	0		0		0		0		0	
	у	0		0		0		0		0	
	z	0.29574	(61)	0.29156	(66)	0.29531	(68)	0.29574	(84)	0.29118	(75)
	Ueq	0.0369	(13)	0.0388	(14)	0.0272	(11)	0.0278	(14)	0.0399	(17)
02	х	0.93962	(7)	0.93971	(7)	0.93958	(7)	0.93968	(8)	0.93967	(8)
	У	0.06038	(7)	0.06029	(7)	0.06042	(7)	0.06032	(8)	0.06033	(8)
	Z	0.58695	(48)	0.58652	(55)	0.58114	(58)	0.58185	(73)	0.58695	(60)
	Ueq	0.0156	(7)	0.0156	(7)	0.0134	(6)	0.0138	(8)	0.0153	(8)
03	x	0.13246	(8)	0.13286	(9)	0.13126	(8)	0.13161	(10)	0.13312	(9)
	У	0.86754	(8)	0.86714	(9)	0.86874	(8)	0.86839	(10)	0.86688	(9)
	Z	0.56735	(46)	0.56624	(51)	0.56335	(57)	0.56539	(71)	0.56640	(56)
	Ueq	0.0129	(5)	0.0126	(6)	0.0125	(6)	0.0126	(7)	0.0117	(7)
04	х	0.90631	(7)	0.90647	(7)	0.90577	(7)	0.90585	(8)	0.90665	(8)
	У	0.09369	(7)	0.09353	(7)	0.09423	(7)	0.09415	(8)	0.09335	(8)
	Z	0.00203	(44)	0.00139	(50)	-0.00214	(56)	-0.00002	(70)	0.00218	(55)
	Ueq	0.0094	(5)	0.0088	(6)	0.0093	(5)	0.0091	(6)	0.0085	(6)
05	х	0.09367	(7)	0.09359	(7)	0.09369	(7)	0.09382	(8)	0.09366	(8)
	У	0.90633	(7)	0.90641	(7)	0.90631	(7)	0.90618	(8)	0.90634	(8)
	Z	-0.02098	(47)	-0.02106	(52)	-0.02381	(57)	-0.02240	(71)	-0.02022	(57)
	Ueq	0.0102	(5)	0.0090	(6)	0.0097	(5)	0.0094	(6)	0.0085	(6)
06	х	0.18490	(9)	0.18519	(9)	0.18417	(9)	0.18424	(11)	0.18539	(10)
	У	0.19549	(9)	0.19553	(9)	0.19447	(9)	0.19497	(11)	0.19564	(10)
	Z	0.30044	(44)	0.29929	(50)	0.29700	(55)	0.29870	(70)	0.29983	(54)
	Ueq	0.0082	(4)	0.0082	(5)	0.0081	(4)	0.0084	(5)	0.0075	(5)
07	Х	0.28631	(8)	0.28598	(9)	0.28607	(8)	0.28625	(10)	0.28611	(9)
	У	0.28649	(9)	0.28625	(9)	0.28649	(9)	0.28644	(10)	0.28622	(10)
	Z	-0.00346	(42)	-0.00468	(48)	-0.00554	(54)	-0.00416	(68)	-0.00424	(52)
	Ueq	0.0073	(4)	0.0070	(5)	0.0071	(4)	0.0072	(5)	0.0063	(5)
08	Х	0.27014	(9)	0.27003	(10)	0.27026	(9)	0.27014	(11)	0.27001	(11)
	У	0.20946	(9)	0.20952	(10)	0.20962	(9)	0.20948	(11)	0.20951	(11)
	Z	0.63576	(43)	0.63482	(49)	0.63345	(54)	0.63468	(69)	0.63505	(53)
	Ueq	0.0082	(4)	0.0081	(5)	0.0081	(4)	0.0080	(5)	0.0077	(5)

		CT11		CT12		CT13		CT14		CT15	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0255	(11)	0.0256	(12)	0.0196	(8)	0.0239	(14)	0.0248	(13)
Y	х	0.06154	(4)	0.06101	(4)	0.06177	(5)	0.06155	(5)	0.06075	(4)
	У	0.93846	(4)	0.93899	(4)	0.93823	(5)	0.93845	(5)	0.93925	(4)
	Z	0.43952	(54)	0.43867	(55)	0.44520	(45)	0.44103	(68)	0.43621	(60)
	Ueq	0.0093	(4)	0.0084	(3)	0.0085	(4)	0.0083	(5)	0.0089	(3)
Z	х	0.26005	(5)	0.25995	(4)	0.26022	(5)	0.26003	(5)	0.25960	(4)
	У	0.29683	(4)	0.29669	(4)	0.29710	(5)	0.29670	(5)	0.29644	(4)
	Z	0.46437	(50)	0.46462	(52)	0.46491	(40)	0.46499	(62)	0.46433	(57)
	Ueq	0.0077	(2)	0.0068	(2)	0.0061	(2)	0.0074	(2)	0.0074	(2)
T	х	0.18983	(4)	0.18973	(3)	0.18995	(4)	0.18981	(4)	0.18973	(3)
	У	0.19191	(4)	0.19176	(3)	0.19193	(4)	0.19190	(4)	0.19173	(3)
	Z	0.07355	(50)	0.07320	(52)	0.07579	(39)	0.07455	(63)	0.07181	(58)
	Ueq	0.0069	(2)	0.0057	(2)	0.0050	(2)	0.0065	(2)	0.0063	(2)
B	х	0.89072	(12)	0.89071	(11)	0.89061	(13)	0.89096	(13)	0.89098	(10)
	У	0.10928	(12)	0.10929	(11)	0.10939	(13)	0.10904	(13)	0.10902	(10)
	Z	0.61915	(65)	0.61969	(63)	0.62141	(60)	0.62066	(78)	0.61903	(67)
	Ueq	0.0087	(9)	0.0075	(8)	0.0074	(9)	0.0083	(10)	0.0074	(7)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.29445	(75)	0.29661	(710	0.29300	(75)	0.29486	(83)	0.29847	(69)
	Ueq	0.0378	(16)	0.0308	(13)	0.0455	(19)	0.0359	(16)	0.0206	(9)
02	х	0.93961	(8)	0.93944	(7)	0.93949	(9)	0.93962	(9)	0.93949	(7)
	У	0.06039	(8)	0.06056	(7)	0.06051	(9)	0.06038	(9)	0.06051	(7)
	Z	0.58391	(60)	0.58260	(59)	0.59083	(54)	0.58589	(74)	0.58090	(64)
	Ueq	0.0159	(8)	0.0138	(7)	0.0170	(9)	0.0162	(9)	0.0136	(6)
03	х	0.13228	(10)	0.13175	(9)	0.13356	(10)	0.13246	(10)	0.13055	(8)
	У	0.86772	(10)	0.86825	(9)	0.86644	(10)	0.86754	(10)	0.86945	(8)
	Z	0.56640	(57)	0.56605	(58)	0.56715	(50)	0.56755	(69)	0.56476	(62)
	Ueq	0.0140	(7)	0.0125	(6)	0.0113	(7)	0.0137	(7)	0.0133	(5)
04	х	0.90616	(8)	0.90587	(7)	0.90665	(9)	0.90627	(9)	0.90555	(7)
	У	0.09384	(8)	0.09413	(7)	0.09335	(9)	0.09373	(9)	0.09445	(7)
	Z	0.00082	(56)	0.00068	(56)	0.00355	(47)	0.00175	(68)	-0.00195	(62)
	Ueq	0.0110	(6)	0.0093	(6)	0.0090	(6)	0.0099	((7)	0.0101	(5)
05	х	0.09365	(8)	0.09377	(7)	0.09328	(9)	0.09384	(9)	0.09387	(7)
	У	0.90635	(8)	0.90623	(7)	0.90672	(9)	0.90616	(9)	0.90613	(7)
	Z	-0.02239	(58)	-0.02285	(58)	-0.01904	(50)	-0.02069	(69)	-0.02367	(61)
	Ueq	0.0115	(6)	0.0099	(6)	0.0087	(6)	0.0106	(7)	0.0106	(5)
06	x	0.18460	(10)	0.18444	(9)	0.18607	(11)	0.18485	(11)	0.18372	(8)
	У	0.19546	(10)	0.19517	(9)	0.19621	(11)	0.19537	(11)	0.19430	(8)
	Z	0.29937	(55)	0.29943	(56)	0.30064	(46)	0.30036	(67)	0.29856	(60)
	Ueq	0.0097	(5)	0.0085	(5)	0.0082	(6)	0.0092	(5)	0.0088	(4)
07	x	0.28625	(10)	0.28644	(9)	0.28576	(10)	0.28619	(10)	0.28637	(8)
	У	0.28641	(10)	0.28650	(9)	0.28583	(11)	0.28641	(11)	0.28692	(8)
	Z	-0.00412	(53) (5)	-0.00381	(33)	-0.00391	(44)	-0.00371	(66)	-0.00439	(60)
	Ueq	0.0085	(3)	0.0079	()	0.0068	(5)	0.0081	<u>()</u>	0.0081	(4)
08	x	0.20995	$(\Pi)$	0.27028	(10)	0.27039	(12)	0.26998	(12)	0.27029	(9)
	У	0.20945	(11)	0.20944	(10)	0.20972	(12)	0.20954	(12)	0.20957	(9)
	Z	0.03492	(54)	0.03518	(33)	0.03532	(45)	0.03581	(66)	0.63500	(60)
	Ueq	0.0095	()	0.0082	()	0.0082	(6)	0.0094	(6)	0.0089	(4)

.

		CT16		CT17		CT18		CT19		CT20	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0227	(8)	0.0239	(8)	0.0219	(8)	0.0241	(9)	0.0233	(10)
Y	x	0.06193	(3)	0.06185	(3)	0.06191	(3)	0.06195	(4)	0.06206	(3)
	У	0.93807	(3)	0.93815	(3)	0.93809	(3)	0.93805	(4)	0.93794	(3)
	z	0.44891	(39)	0.44690	(41)	0.44870	(38)	0.44885	(44)	0.44975	(48)
	Ueq	0.0086	(3)	0.0087	(3)	0.0084	(3)	0.0092	(3)	0.0090	(3)
Z	x	0.26071	(5)	0.26070	(4)	0.26066	(4)	0.26069	(5)	0.26079	(5)
	У	0.29756	(4)	0.29742	(4)	0.29747	(4)	0.29753	(5)	0.29767	(5)
	z	0.46563	(37)	0.46508	(38)	0.46592	(35)	0.46561	(42)	0.46617	(46)
	Ueq	0.0068	(2)	0.0072	(2)	0.0066	(2)	0.0080	$(2)^{'}$	0.0069	$(2)^{(2)}$
T		0.19000	(4)	0.18995	(4)	0.18998	(4)	0.19000	(4)	0.18997	(4)
	v	0.19198	(4)	0.19194	(3)	0.19193	(3)	0.19196	(4)	0.19194	(4)
	7.	0.07743	(36)	0.07606	(38)	0.07728	(35)	0.07730	(41)	0.07775	(45)
	Uea	0.0055	(2)	0.0060	(2)	0.0052	(2)	0.0067	(2)	0.0056	(2)
B	X	0.89048	$\frac{(12)}{(12)}$	0.89064	(1)	0.89055	$\frac{1}{1}$	0.89051	(14)	0.89053	(14)
~	v	0.10952	(12)	0.10936	(11)	0.10945	(11)	0.10949	(14)	0.10947	(14)
	7	0.62243	(54)	0.62201	(54)	0.62265	(52)	0.62239	(64)	0.62258	(66)
	Uea	0.0069	(9)	0.0077	(8)	0.0068	(8)	0.0094	(10)	0.0077	(10)
01	X	0	(-)	0		0		0		0	
	v	0		0		0		0		0	
	z	0.29271	(7)	0.29367	(64)	0.29321	(65)	0.29271	(79)	0.29411	(82)
	Uea	0.0599	(22)	0.0512	(18)	0.0543	(20)	0.0582	(25)	0.0634	(26)
02	x	0.93900	(8)	0.93913	(8)	0.93915	(8)	0.93907	(10)	0.93904	(10)
	v	0.06100	(8)	0.06087	(8)	0.06085	(8)	0.06093	(10)	0.06096	(10)
	z	0.59338	(48)	0.56135	(48)	0.59332	(46)	0.59356	(55)	0.59291	(58)
	Ueq	0.0175	(9)	0.0177	(8)	0.0178	(8)	0.0193	(10)	0.0180	(10)
03	x	0.13460	(8)	0.13388	(8)	0.13422	(8)	0.13444	(10)	0.13435	(10)
	У	0.86540	(8)	0.86612	(8)	0.86578	(8)	0.86556	(10)	0.86565	(10)
	z	0.56786	(45)	0.56747	(46)	0.56799	(44)	0.56764	(52)	0.56781	(56)
	Ueq	0.0106	(6)	0.0119	(6)	0.0109	(6)	0.0111	(7)	0.0100	(7)
04	x	0.90696	(8)	0.90668	(8)	0.90693	(7)	0.90688	(9)	0.90681	(9)
	у	0.09304	(8)	0.09332	(8)	0.09307	(7)	0.09312	(9)	0.09319	(9)
	z	0.00663	(45)	0.00462	(46)	0.00607	(43)	0.00598	(51)	0.00662	(54)
	Ueq	0.0087	(6)	0.0099	(6)	0.0086	(6)	0.0101	(7)	0.0091	(7)
05	x	0.09327	(8)	0.09338	(8)	0.09327	(8)	0.09321	(9)	0.09343	(9)
	У	0.90673	(8)	0.90662	(8)	0.90673	(8)	0.90679	(9)	0.90657	(9)
	z	-0.01576	(45)	-0.01791	(46)	-0.01632	(43)	-0.01649	(52)	-0.01515	(54)
	Ueq	0.0091	(6)	0.0100	(6)	0.0090	(6)	0.0104	(7)	0.0094	(7)
06	x	0.18713	(10)	0.18652	(10)	0.18683	(10)	0.18707	(12)	0.18699	(12)
	у	0.19719	(10)	0.19683	(10)	0.19699	(10)	0.19722	(12)	0.19719	(12)
	Z	0.30230	(42)	0.30120	(43)	0.30194	(40)	0.30155	(48)	0.30245	(52)
	Ueq	0.0087	(5)	0.0091	(5)	0.0085	(5)	0.0093	(6)	0.0088	(6)
07	<u>х</u>	0.28572	(9)	0.28600	(9)	0.28583	(9)	0.28585	(11)	0.28584	(11)
	У	0.28552	(10)	0.28594	(9)	0.28574	(9)	0.28565	(12)	0.28552	(12)
	Z	-0.00274	(41)	-0.00337	(42)	-0.00267	(39)	-0.00324	(46)	-0.00253	(50)
	Ueq	0.0076	(5)	0.0078	(5)	0.0072	(5)	0.0085	(6)	0.0073	(6)
08	X	0.27057	(11)	0.27037	(10)	0.27048	(10)	0.27059	(13)	0.27068	(13)
	у	0.20988	(11)	0.20980	(10)	0.20987	(10)	0.20993	(12)	0.21000	(12)
	z	0.63620	(41)	0.63578	(43)	0.63642	(40)	0.63575	(47)	0.63642	(50)
						1		1			

. ...

		CT21		CT22		CT23		CT24		CT25	
X	Х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0241	(9)	0.0261	(12)	0.0232	(9)	0.0227	(9)	0.0259	(10)
Y	х	0.06203	(4)	0.06222	(4)	0.06220	(3)	0.06181	(3)	0.06166	(4)
	У	0.93797	(4)	0.93778	(4)	0.93780	(3)	0.93819	(3)	0.93834	(4)
	Z	0.44980	(42)	0.44915	(55)	0.44928	(40)	0.44634	(45)	0.44494	(49)
	Ueq	0.0085	(3)	0.0085	(3)	0.0074	(3)	0.0085	(31)	0.0087	(4)
Z	х	0.26067	(5)	0.26092	(6)	0.26096	(5)	0.26062	(5)	0.26029	(4)
	У	0.29758	(5)	0.29784	(6)	0.29771	(5)	0.29745	(5)	0.29704	(4)
	Z	0.46607	(40)	0.46516	(53)	0.46539	(38)	0.46471	(42)	0.46495	(45)
	Ueq	0.0072	(2)	0.0070	(3)	0.0064	(2)	0.0067	(2)	0.0065	(2)
T	х	0.19001	(4)	0.19002	(5)	0.18997	(4)	0.19004	(4)	0.18991	(4)
	У	0.19195	(4)	0.19199	(5)	0.19195	(4)	0.19198	(4)	0.19194	(4)
	Z	0.07783	(39)	0.07665	(53)	0.07691	(37)	0.07586	(42)	0.07541	(45)
	Ueq	0.0059	2)	0.0058	(2)	0.0051	(2)	0.0055	(2)	0.0054	(2)
B	х	0.89033	(13)	0.89024	(16)	0.89053	(14)	0.89049	(12)	0.89084	(12)
	У	0.10967	(13)	0.10976	(16)	0.10947	(14)	0.10951	(12)	0.10916	(12)
	Z	0.62247	(60)	0.62100	(77)	0.62235	(56)	0.62136	(59)	0.62149	(59)
	Ueq·	0.0075	(10)	0.0078	(12)	0.0070	(10)	0.0072	(9)	0.0070	(8)
OI	х			0		0		0		0	
	У	0	(70)		(0.0)	0		0	(==>)	0	(= 0)
	Z	0.29287	(78)	0.29243	(98)	0.29250	(66)	0.29187	(72)	0.29400	(70)
01	Ueq	0.0001	(25)	0.0395	(29)	0.0566	(24)	0.0514	(21)	0.0460	(17)
02	X	0.93903	(9)	0.93868	(10)	0.93883	(9)	0.93910	(8)	0.93947	(8)
	У	0.00097	(9)	0.00132	(10)	0.00117	(9)	0.06090	(8)	0.06053	(8)
	Z	0.39372	(33)	0.39179	(07)	0.59224	(31)	0.59097	(53)	0.58958	(56)
03	Veq	0.0192	$\frac{(10)}{(0)}$	0.0171	(11)	0.0100	$\frac{(10)}{(0)}$	0.0173	(9)	0.0172	(8)
05	X	0.13441	(9)	0.13442	(11)	0.15459	(9)	0.13393	(9)	0.15557	(9)
	y Z	0.80559	(5)	0.80558	(64)	0.80301	(3)	0.80007	(9)	0.80003	(9)
	Llea	0.00020	(30)	0.0000	(04)	0.00101	(7)	0.00710	(51)	0.00722	(33)
04	<u>v v v v v v v v v v v v v v v v v v v </u>	0.0100	$\frac{(7)}{(9)}$	0.0100	$\frac{(0)}{(10)}$	0.0004	$\frac{(7)}{(9)}$	0.0111	$\frac{(0)}{(8)}$	0.0120	(0)
04	v	0.00311	(2)	0.00313	(10)	0.90090	(9)	0.00333	(8)	0.90032	(8)
	7	0.00662	(48)	0.00579	(63)	0.00563	(46)	0.00431	(0)	0.00375	(5)
	Uea	0.0091	(7)	0.0093	(8)	0.0083	(7)	0.0094	(6)	0.0088	(30)
05	x	0.09327	(9)	0.09340	(10)	0.09329	$\frac{(r)}{(9)}$	0.09331	(8)	0.09365	(8)
	v	0.90673	(9)	0.90660	(10)	0.90671	(9)	0.90669	(8)	0.00000	(8)
	z	-0.01571	(49)	-0.01705	(63)	-0.01714	(45)	-0.01802	(50)	-0.01900	(53)
	Ueq	0.0095	(6)	0.0094	(8)	0.0087	(7)	0.0093	(6)	0.0096	(6)
06	<u>х</u>	0.18715	(11)	0.18732	(13)	0.18730	(11)	0.18663	(10)	0.18588	(10)
ŀ	у	0.19726	(11)	0.19756	(13)	0.19745	(11)	0.19687	(10)	0.19620	(10)
	Z	0.30234	(46)	0.30114	(60)	0.30152	(43)	0.30073	(47)	0.30098	(5)
	Ueq	0.0089	(6)	0.0089	(7)	0.0072	(5)	0.0083	(5)	0.0087	(5)
07	x	0.28576	(10)	0.28588	(12)	0.28589	(11)	0.28589	(10)	0.28595	(9)
	у	0.28544	(11)	0.28554	(13)	0.28551	(12)	0.28576	(10)	0.28593	(10)
	Z	-0.00260	(44)	-0.00373	(59)	-0.00367	(42)	-0.00422	(46)	-0.00343	(48)
	Ueq	0.0076	(5)	0.0076	(6)	0.0068	(5)	0.0073	(5)	0.0071	(5)
08	х	0.27062	(12)	0.27076	(14)	0.27064	(12)	0.27062	(11)	0.27035	(11)
	у	0.21000	(12)	0.21007	(14)	0.20998	(11)	0.20990	(11)	0.20966	(10)
	Z	0.63637	(44)	0.63550	(59)	0.63574	(43)	0.63512	(46)	0.63560	(49)
	Ueq	0.0090	(6)	0.0089	(7)	0.0082	(6)	0.0087	(5)	0.085	(5)

		CT26		CT27		CT28		CT29		CT30	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0216	(8)	0.0211	(10)	0.0225	(11)	0.0221	(10)	0.0255	(9)
Y	x	0.06188	(4)	0.06167	(4)	0.06158	(5)	0.06165	(5)	0.06184	(3)
	у	0.93812	(4)	0.93833	(4)	0.93842	(5)	0.93835	(5)	0.93816	(3)
	Z	0.44683	(40)	0.44284	(51)	0.44410	(55)	0.44159	(55)	0.44732	(41)
	Ueq	0.0082	(3)	0.0079	(4)	0.0086	(4)	0.0073	(5)	0.0093	(3)
Z	х	0.26035	(4)	0.26018	(4)	0.26015	(5)	0.26013	(5)	0.26068	(4)
	У	0.29719	(4)	0.29693	(4)	0.29691	(5)	0.29688	(5)	0.29746	(4)
	Z	0.46597	(36)	0.46476	(47)	0.46596	(50)	0.46400	(49)	0.46453	(39)
	Ueq	0.0068	(2)	0.0066	(2)	0.0068	(2)	0.0058	$(2)^{(2)}$	0.0074	(2)
T	X	0.18996	(4)	0.18986	(4)	0.18985	(4)	0.18991	(4)	0.18993	(3)
	У	0.19196	(3)	0.19191	(4)	0.19187	(4)	0.19193	(4)	0.19191	(3)
	z	0.07690	(36)	0.07482	(47)	0.07609	(50)	0.07408	(49)	0.07553	(39)
	Ueq	0.0057	(2)	0.0056	(2)	0.0058	(2)	0.0048	(2)	0.0062	(2)
B	X	0.89068	(11)	0.89074	(12)	0.89092	(13)	0.89096	(13)	0.89049	(10)
	У	0.10932	(11)	0.10926	(12)	0.10908	(13)	0.10904	(13)	0.10951	(10)
	z	0.62188	(54)	0.62111	(63)	0.62169	(66)	0.62020	(66)	0.62120	(53)
	Ueq	0.0074	(8)	0.0078	(9)	0.0075	(9)	0.0068	(9)	0.0073	(8)
01		0		0		0		0	(-)	0	(0)
	У	0		0		0		0		0	
	z	0.29345	(67)	0.29381	(68)	0.29490	(75)	0.29174	(77)	0.29265	(62)
	Ueq	0.0488	(18)	0.0384	(16)	0.0408	(17)	0.0413	(18)	0.0522	(18)
02	х	0.93936	(8)	0.93953	(8)	0.93957	(9)	0.93961	(9)	0.93910	$(7)^{-}$
	у	0.06064	(8)	0.06047	(8)	0.06043	(9)	0.06039	(9)	0.06090	(7)
	Z	0.59116	(48)	0.58769	(58)	0.58928	(61)	0.58748	(62)	0.59092	(49)
	Ueq	0.0168	(8)	0.0159	(8)	0.0163	(9)	0.0159	(9)	0.0181	(8)
03	х	0.13369	(9)	0.13290	(9)	0.13309	(10)	0.13305	(10)	0.13387	(8)
	у	0.86631	(9)	0.86710	(9)	0.86691	(10)	0.86695	(10)	0.86613	(8)
	z	0.56785	(45)	0.56714	(54)	0.56844	(58)	0.56647	(57)	0.56673	(46)
	Ueq	0.0117	(6)	0.0123	(7)	0.0128	(7)	0.0121	(7)	0.0118	(6)
04	х	0.90671	(8)	0.90651	(8)	0.90656	(9)	0.90650	(9)	0.90665	(7)
	у	0.09329	(8)	0.09349	(8)	0.09344	(9)	0.09350	(9)	0.09335	(7)
	z	0.00458	(43)	0.00248	(54)	0.00423	(56)	0.00240	(56)	0.00423	(45)
	Ueq	0.0094	(6)	0.0093	(6)	0.0093	(6)	0.0089	(6)	0.0097	(52)
05	х	0.09347	(8)	0.09364	(8)	0.09362	(9)	0.09362	(9)	0.09348	(7)
	у	0.90563	(8)	0.90636	(8)	0.90638	(9)	0.90638	(9)	0.90652	(7)
	z	-0.01777	(45)	-0.02028	(54)	-0.01849	(59)	-0.02065	(58)	-0.01820	(45)
	Ueq	0.0093	(6)	0.0091	(6)	0.0096	(6)	0.0093	(6)	0.0100	(5)
<b>O</b> 6	х	0.18618	(10)	0.18544	(10)	0.18546	(11)	0.18547	(11)	0.18670	(9)
	У	0.19632	(10)	0.19587	(10)	0.19581	(11)	0.19572	(11)	0.19696	(9)
	z	0.30168	(42)	0.30034	(51)	0.30171	(55)	0.29960	(55)	0.30057	(43)
	Ueq	0.0083	(5)	0.0083	(5)	0.0085	(5)	0.0077	(5)	0.0092	(5)
07	x	0.28592	(9)	0.28598	(9)	0.28596	(10)	0.28607	(10)	0.28603	(8)
	У	0.28583	(9)	0.28628	(10)	0.28594	(11)	0.28623	(11)	0.28593	(9)
	z	-0.00279	(40)	-0.00383	(51)	-0.00248	(54)	-0.00459	(53)	-0.00410	(42)
	Ueq	0.0073	(5)	0.0073	(5)	0.0074	(5)	0.0054	(5)	0.0083	(4)
08	x	0.27038	(10)	0.27014	(11)	0.27028	(12)	0.27016	(12)	0.27042	(10)
	у	0.20972	(10)	0.20957	(10)	0.20962	(12)	0.20970	(12)	0.20976	(10)
	z	0.63620	(41)	0.63546	(51)	0.63671	(54)	0.63439	(54)	0.63514	(43)
L	Ueq	0.0085	(5)	0.0084	(5)	0.0088	(6)	0.0080	(5)	0.0092	(5)

		CT31		CT32	· · · · · · · · · · · · · · · · · · ·	CT33		CT34		CT35	
X	х	0		0		0		0	- <u></u>	0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0183	(9)	0.0267	(8)	0.0243	(8)	0.0172	(5)	0.0216	(7)
Y	х	0.06190	(5)	0.06223	(3)	0.06131	(2)	0.06166	(2)	0.06278	(4)
	У	0.93810	(5)	0.93777	(3)	0.93869	(2)	0.93834	(2)	0.93722	(4)
	Z	0.44266	(47)	0.44999	(38)	0.43582	(34)	0.42884	(27)	0.44720	(37)
	Ueq	0.0088	(5)	0.0107	(3)	0.0070	(2)	0.0055	(2)	0.0093	(3)
Z	х	0.25986	(4)	0.26108	(4)	0.26149	(4)	0.26176	(4)	0.26185	(5)
	У	0.29686	(4)	0.29788	(4)	0.29776	(4)	0.29775	(4)	0.29828	(5)
	Z	0.46458	(41)	0.46293	(36)	0.46170	(33)	0.45521	(27)	0.46660	(34)
	Ueq	0.0071	(2)	0.0081	(2)	0.0070	(2)	0.0060	(2)	0.0071	(2)
Т	х	0.19004	(4)	0.19004	(4)	0.18973	(3)	0.18934	(3)	0.19010	(4)
	У	0.19210	(4)	0.19197	(3)	0.19157	(3)	0.19118	(3)	0.19194	(4)
	Z	0.07546	(41)	0.07540	(36)	0.07214	(33)	0.06469	(26)	0.07966	(33)
	Ueq	0.0059	(2)	0.0068	(2)	0.0063	(2)	0.0061	(2)	0.0060	(2)
B	х	0.89080	(12)	0.89015	(11)	0.89004	(11)	0.89010	(10)	0.89008	(13)
	у	0.10920	(12)	0.10985	(11)	0.10996	(11)	0.10990	(10)	0.10992	(13)
	Z	0.62120	(59)	0.62065	(53)	0.61771	(48)	0.61233	(44)	0.62398	(54)
	Ueq	0.0073	(9)	0.0083	(8)	0.0090	(8)	0.0087	(8)	0.0080	(9)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	z	0.29129	(66)	0.29096	(67)	0.30217	(48)	0.29844	(46)	0.30692	(59)
	Ueq	0.0428	(17)	0.0715	(25)	0.0119	(7)	0.0151	(8)	0.0128	(9)
02	х	0.93953	(8)	0.93885	(8)	0.93904	(7)	0.93934	(6)	0.93884	(8)
	У	0.06047	(8)	0.06115	(8)	0.06096	(7)	0.06066	(6)	0.06116	(8)
	Z	0.58903	(54)	0.59378	(48)	0.58430	(39)	0.57767	(35)	0.59537	(44)
	Ueq	0.0167	(8)	0.0218	(9)	0.0116	(6)	0.0097	(5)	0.0115	(7)
03	х	0.13348	(9)	0.13476	(8)	0.13051	(8)	0.12947	(7)	0.13273	(9)
	У	0.86652	(9)	0.86524	(8)	0.86949	(8)	0.87053	(7)	0.86727	(9)
	Z	0.56694	(49)	0.56534	(44)	0.56185	(40)	0.55454	(34)	0.56764	(44)
	Ueq	0.0123	(7)	0.0116	(6)	0.0139	(6)	0.0121	(5)	0.0119	(7)
04	х	0.90690	(8)	0.90686	(8)	0.90618	(7)	0.90699	(7)	0.90717	(9)
	У	0.09310	(8)	0.09314	(8)	0.09382	(7)	0.09301	(7)	0.09283	(9)
	Z	0.00290	(48)	0.00435	(44)	0.00120	(41)	-0.00772	(36)	0.01001	(44)
	Ueq	0.0098	(6)	0.0103	(6)	0.0119	(5)	0.0124	(5)	0.0108	(7)
05	x	0.09349	(8)	0.09315	(8)	0.09242	(7)	0.09196	(7)	0.09168	(9)
	У	0.90651	(8)	0.90685	(8)	0.90758	(7)	0.90804	(7)	0.90832	(9)
	Z	-0.01952	(50)	-0.01740	(44)	-0.02030	(39)	-0.02854	(34)	-0.01063	(44)
	Ueq	0.0094	(6)	0.0102	(6)	0.0112	(5)	0.0117	(5)	0.0104	(6)
06	х	0.18591	(10)	0.18765	(10)	0.18437	(10)	0.18351	(9)	0.18630	(11)
	У	0.19600	(10)	0.19740	(10)	0.19448	(9)	0.19338	(9)	0.19622	(11)
	Z	0.30034	(45)	0.29933	(41)	0.29498	(37)	0.28752	(32)	0.30194	(39)
L	Ueq	0.0088	(5)	0.0099	(5)	0.0101	(5)	0.0094	(4)	0.0094	(6)
07	х	0.28584	(9)	0.28560	(9)	0.28483	(8)	0.28466	(8)	0.28473	(10)
	У	0.28605	(10)	0.28535	(10)	0.28497	(9)	0.28490	(9)	0.28465	(11)
}	Z	-0.00371	(45)	-0.00560	(40)	-0.00543	(36)	-0.01099	(30)	-0.00003	(38)
	Ueq	0.0075	(5)	0.0087	(5)	0.0099	(4)	0.0107	(4)	0.0094	(6)
08	х	0.26994	(11)	0.27083	(11)	0.27008	(9)	0.26953	(9)	0.27017	(12)
	У	0.20936	(11)	0.21012	(10)	0.20926	(9)	0.20871	(9)	0.20954	(11)
}	Z	0.63513	(45)	0.63332	(41)	0.63283	(37)	0.62646	(31)	0.63775	(39)
[	Ueq	0.0087	(5)	0.0102	(5)	0.0107	(4)	0.0115	(5)	0.0103	(6)

		CT36		CT37		CT38		CT39		CT40	
X	х	0		0		0		0		0	
1	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0222	(7)	0.0163	(4)	0.0198	(8)	0.0185	(10)	0.0154	(6)
Y	x	0.06249	(3)	0.06266	(3)	0.06190	(4)	0.06182	(5)	0.06175	(2)
	У	0.93751	(3)	0.93734	(3)	0.93810	(4)	0.93818	(5)	0.93825	(2)
	z	0.44530	(37)	0.43742	(24)	0.43647	(43)	0.43458	(55)	0.43097	(29)
	Ueq	0.0073	(3)	0.0091	(3)	0.0072	(3)	0.0068	(5)	0.0053	(2)
Z	x	0.26152	(4)	0.26178	(4)	0.26139	(5)	0.26135	(7)	0.26164	(4)
	y	0.29789	(4)	0.29815	(4)	0.29762	(5)	0.29759	(6)	0.29768	(4)
	z	0.46612	(35)	0.45608	(22)	0.45938	(40)	0.45807	(51)	0.45619	(29)
	Ueq	0.0067	(2)	0.0059	$(2)^{(2)}$	0.0065	(2)	0.0061	(3)	0.0062	(2)
Т	x	0.18989	(4)	0.19006	(4)	0.18982	(4)	0.18986	(5)	0.18955	(3)
	y	0.19182	(3)	0.19184	(3)	0.19175	(4)	0.19173	(5)	0.19142	(3)
	z	0.07798	(34)	0.06902	(21)	0.07004	(40)	0.06904	(50)	0.06630	(29)
	Ueq	0.0055	(2)	0.0053	(2)	0.0054	(2)	0.0051	(3)	0.0063	(2)
B	<u>i</u>	0.89036	(11)	0.89025	(12)	0.89037	(12)	0.89035	(17)	0.89036	(-)
	v	0.10964	àń	0.10975	(12)	0.10963	(12)	0 10965	(17)	0.10964	(11)
	z	0.62286	(51)	0.61572	(45)	0.61630	(58)	0.61572	(77)	0.61337	(47)
	Ueq	0.0071	(8)	0.0075	(8)	0.0075	(9)	0.0066	(12)	0.0080	(8)
01	x 1	0		0		0	(-)	0	()	0.0000	
	У	0		0		0		0		Ő	
	z	0.30668	(54)	0.29365	(48)	0.29906	(60)	0.29880	(8)	0.29827	(49)
	Ueq	0.0107	(8)	0.0152	(9)	0.0143	(11)	0.0105	(12)	0.0096	(8)
02	 x	0.93906	(7)	0.93913	(7)	0.93908	(8).	0.93923	$\frac{1}{11}$	0.93933	(7)
	У	0.06094	(7)	0.06087	(7)	0.06092	(8)	0.06077	àń	0.06067	(7)
	z	0.59141	(44)	0.59129	(33)	0.58288	(5)	0.58311	(66)	0.58015	(38)
	Ueq	0.0115	(6)	0.0100	(6)	0.0118	(7)	0.0118	(10)	0.0112	(6)
03	x	0.13160	(8)	0.13359	(8)	0.13096	(9)	0.13102	(13)	0.13015	(8)
	у	0.86840	(8)	0.86641	(8)	0.86904	(9)	0.86898	(13)	0.86985	(8)
	z	0.56666	(43)	0.55703	(33)	0.56013	(49)	0.55934	(65)	0.55614	(37)
	Ueq	0.0131	(6)	0.0114	(6)	0.0137	(7)	0.0138	(10)	0.0135	(6)
04	X	0.90678	(8)	0.90769	(8)	0.90639	(8)	0.90649	(12)	0.90678	(7)
	у	0.09322	(8)	0.09231	(8)	0.09361	(8)	0.09351	(12)	0.09322	(7)
	z	0.00750	(43)	-0.00232	(34)	-0.00132	(49)	-0.00228	(64)	-0.00533	(38)
	Ueq	0.0106	(6)	0.0102	(6)	0.0106	(6)	0.0107	(9)	0.0121	(6)
05	х	0.09215	(8)	0.09108	(8)	0.09232	(8)	0.09203	(12)	0.09199	(7)
	У	0.90785	(8)	0.90892	(8)	0.90768	(8)	0.90797	(12)	0.90801	(7)
	Z	-0.01427	(43)	-0.02199	(34)	-0.02302	(49)	-0.02348	(64)	-0.02672	(37)
	Ueq	0.0105	(6)	0.0097	(6)	0.0106	(6)	0.0100	(9)	0.0115	(6)
06	х	0.18521	(10)	0.18672	(10)	0.18455	(11)	0.18455	(15)	0.18415	(9)
	у	0.19553	(10)	0.19585	(10)	0.19499	(10)	0.19482	(15)	0.19413	(9)
	z	0.30060	(39)	0.29054	(29)	0.29352	(45)	0.29265	(59)	0.28946	(34)
	Ueq	0.0093	(5)	0.0088	(5)	0.0090	(5)	0.0090	(8)	0.0095	(5)
07	x	0.28487	(9)	0.28433	(9)	0.28517	(10)	0.28498	(14)	0.28474	(8)
	у	0.28508	(9)	0.28474	(10)	0.28540	(11)	0.28520	(15)	0.28505	(9)
	z	-0.00099	(39)	-0.01141	(27)	-0.00805	(44)	-0.00889	(57)	-0.01044	(33)
	Ueq	0.0087	(5)	0.0092	(5)	0.0086	(5)	0.0086	(7)	0.0104	(5)
08	x	0.26995	(10)	0.27022	(11)	0.27003	(11)	0.27007	(16)	0.26946	(10)
	у	0.20933	(10)	0.20964	(10)	0.20934	(11)	0.20931	(15)	0.20888	(9)
	z	0.63732	(39)	0.62679	(29)	0.63048	(46)	0.62962	(59)	0.62728	(34)
	Ueq	0.0099	(5)	0.0099	(5)	0.0098	(5)	0.0097	(8)	0.0112	(5)

		CT41		CT42		CT43		CT44		CT45	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0206	(15)	0.0207	(10)	0.0246	(8)	0.0155	(3)	0.0144	(5)
Y	х	0.06173	(6)	0.06158	(3)	0.06195	(2)	0.06298	(2)	0.06291	(3)
	У	0.93827	(6)	0.93842	(3)	0.93805	(2)	0.93702	(2)	0.93709	(3)
	Z	0.43532	(71)	0.43388	(49)	0.43911	(37)	0.43628	(16)	0.43972	(27)
	Ueq	0.0074	(5)	0.0053	(3)	0.0072	(2)	0.0092	(2)	0.0076	(3)
Z	х	0.26138	(9)	0.26142	(5)	0.26142	(3)	0.26180	(3)	0.26159	(5)
	У	0.29768	(9)	0.29756	(5)	0.29766	(3)	0.29821	(3)	0.29796	(40
	Z	0.46024	(68)	0.45990	(48)	0.46274	(36)	0.45349	(14)	0.45641	(23)
	Ueq	0.0081	(4)	0.0070	(2)	0.0071	(2)	0.0071	(2)	0.0063	(2)
T	х	0.18972	(8)	0.18955	(4)	0.18964	(3)	0.19020	(3)	0.19014	(4)
1	У	0.19160	(7)	0.19136	(4)	0.19156	(3)	0.19191	(3)	0.19185	(4)
	Z	0.07057	(68)	0.06961	(48)	0.07295	(36)	0.06674	(14)	0.06957	(22)
	Ueq	0.0073	(4)	0.0072	(2)	0.0072	(1)	0.0066	(1)	0.0052	(2)
В	х	0.89029	(24)	0.89032	(15)	0.89044	(9)	0.89012	(9)	0.89012	(12)
	У	0.10971	(24)	0.10968	(15)	0.10956	(9)	0.10988	(9)	0.10988	(12)
	Z	0.61750	(103)	0.61648	(68)	0.61911	(48)	0.61452	(34)	0.61596	(47)
	Ueq	0.0093	(18)	0.0092	(11)	0.0094	(7)	0.0088	(6)	0.0064	(9)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.30185	(108)	0.30185	(72)	0.30313	(49)	0.28834	(36)	0.29537	(47)
	Ueq	0.0132	(18)	0.0128	(11)	0.0143	(7)	0.0162	(7)	0.0104	(9)
02	х	0.93896	(14)	0.93920	99)	0.93896	(6)	0.93940	(6)	0.93911	(7)
	У	0.06104	(14)	0.06080	(9)	0.06104	(6)	0.06060	(6)	0.06089	(7)
	Z	0.48318	(86)	0.58004	(58)	0.58365	(42)	0.59207	(24)	0.59189	(35)
	Ueq	0.0120	(13)	0.0120	(8)	0.0131	(5)	0.0109	(5)	0.0095	(7)
03	х	0.13007	(18)	0.12948	(10)	0.13023	(7)	0.13420	(6)	0.13369	(8)
	У	0.86993	(18)	0.87052	(10)	0.86977	(7)	0.86580	(6)	0.86631	(8)
	Z	0.56015	(85)	0.56001	(57)	0.56300	(42)	0.55504	(24)	0.55822	(34)
	Ueq	0.0154	(14)	0.0143	(8)	0.0150	(5)	0.0118	(5)	0.0100	(6)
04	х	0.90662	(16)	0.90651	(10)	0.90643	(6)	0.90803	(6)	0.90740	(8)
	У	0.09338	(16)	0.09349	(10)	0.09357	(6)	0.09197	(6)	0.09260	(8)
	Z	0.00064	(86)	-0.00228	(58)	0.00249	(43)	-0.00495	(24)	-0.00185	(35)
	Ueq	0.0134	(13)	0.0131	(8)	0.0130	(5)	0.0113	(5)	0.0102	(6)
05	х	0.09222	(15)	0.09233	(9)	0.09259	(6)	0.09092	(6)	0.09141	(8)
	У	0.90778	(15)	0.90767	(9)	0.90741	(6)	0.90908	(6)	0.90859	(8)
	Z	-0.02128	(85)	-0.02297	(56)	-0.01938	(41)	-0.02473	(25)	-0.02177	(35)
	Ueq	0.0119	(12)	0.0120	(7)	0.0126	(5)	0.0110	(4)	0.0095	(6)
06	х	0.18422	(19)	0.18379	(12)	0.18433	(8)	0.18720	(8)	0.18685	(10)
	У	0.19447	(20)	0.19379	(12)	0.19472	(8)	0.19618	(8)	0.19602	(10)
	Z	0.29386	(78)	0.29273	(53)	0.29627	(39)	0.28866	(20)	0.29174	(30)
	Ueq	0.0112	(11)	0.0102	(6)	0.0109	(4)	0.0099	(4)	0.0083	(5)
07	х	0.28463	(18)	0.28497	(11)	0.28514	(7)	0.28430	(7)	0.28438	(10)
	У	0.28523	(19)	0.28527	(12)	0.28517	(8)	0.28483	(8)	0.28465	(10
	Z	-0.00570	(77)	-0.00640	(53)	-0.00398	(39)	-0.01445	(19)	-0.01127	(28)
	Ueq	0.0109	(11)	0.0110	(6)	0.0110	(4)	0.0103	(4)	0.0083	(5)
08	х	0.26950	(21)	0.26982	(13)	0.26964	(8)	0.27014	(8)	0.27061	(11)
	У	0.20889	(20)	0.20894	(12)	0.20901	(8)	0.20959	(8)	0.20971	(10)
	Z	0.63114	(77)	0.63135	(53)	0.63379	(40)	0.62436	(20)	0.62731	(29)
	Ueq	0.0113	(11)	0.0127	(6)	0.0125	(4)	0.0112	(4)	0.0090	(5)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CT46		CT47		CT48		CT49		CT50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X	Х	0		0		0		0		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0		0		0		0		0	
		Z	0.84080		0.84080		0.84080		0.84080		0.84080	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ueq	0.0190	(7)	0.0176	(5)	0.0181	(6)	0.0209	(6)	0.0209	(6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Y	х	0.06293	(4)	0.06291	(3)	0.06298	(4)	0.06316	(2)	0.06312	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0.93707	(4)	0.93709	(3)	0.93702	(4)	0.93684	(2)	0.93688	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.44321	(36)	0.43677	(25)	0.43768	(32)	0.44589	(28)	0.44473	(31)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0074	(3)	0.0080	(3)	0.0083	(4)	0.0074	(2)	0.0088	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z	x	0.26150	(5)	0.26149	(3)	0.26148	(5)	0.26182	(3)	0.26174	(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0.29784	(5)	0.29779	(3)	0.29778	(5)	0.29836	(3)	0.29827	(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.45854	(33)	0.46335	(22)	0.45357	(28)	0.45845	(28)	0.45757	(30)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0064	(2)	0.0066	(2)	0.0068	(2)	0.0057	(2)	0.0071	(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	x .	0.19009	(4)	0.19024	(3)	0.19027	(4)	0.19005	(3)	0.19009	(3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0.19191	(4)	0.19215	(3)	0.19211	(4)	0.19189	(3)	0.19191	(3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł.	Z	0.07128	(33)	0.06526	(21)	0.06576	(28)	0.07137	(28)	0.07041	(30)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0055	(2)	0.0062	(2)	0.0064	(2)	0.0053	(1)	0.0067	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	В	x .	0.89036	(13)	0.89039	(10)	0.89035	(13)	0.88985	(9)	0.88998	(10)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0.10964	(13)	0.10961	(10)	0.10965	(13)	0.11015	(9)	0.11002	(10)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	0.61746	(54)	0.61300	(40)	0.61350	(52)	0.61683	(43)	0.61615	(46)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0074	(9)	0.0074	(7)	0.0079	(9)	0.0075	(7)	0.0082	(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	01	x .	0		0		0		0		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0		0		0		0		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	0.29791	(53)	0.29229	(39)	0.29225	(51)	0.19158	(44)	0.29119	(48)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0113	(9)	0.0131	(8)	0.0126	(10)	0.0181	(8)	0.0197	(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02	x	0.93884	(8)	0.93912	(6)	0.93910	(8)	0.93829	(6)	0.93841	(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		У	0.06116	(8)	0.06088	(6)	0.06090	(8)	0.06171	<u>(6)</u>	0.06159	(6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	0.59077	(43)	0.58653	(32)	0.58784	(41)	0.59107	(35)	0.59029	(38)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0104	(7)	0.0114	(6)	0.0112	(7)	0.0103	(5)	0.0122	(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	x	0.13354	(9)	0.13367	(7)	0.13378	(9)	0.13498	(6)	0.13491	(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0.86646	(9)	0.86633	(7)	0.86622	(9)	0.86502	(6)	0.86509	(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.56074	(42)	0.55580	(30)	0.55587	(39)	0.56000	(35)	0.55913	(38)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ueq	0.0107	(7)	0.0106	(5)	0.0106	(7)	0.0101	(5)	0.0114	(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04	x	0.90698	(9)	0.90712	(7)	0.90714	(9)	0.90705	(6)	0.90702	(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		у	0.09302	(9)	0.09288	(7)	0.09286	(9)	0.09295	(6)	0.09298	(7)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.00093	(43)	-0.00613	(31)	-0.00532	(40)	0.00171	(34)	0.00075	(37)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0101	(6)	0.0115	(5)	0.0114	(7)	0.0092	(5)	0.0109	(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	05	x	0.09233	(9)	0.09202	(7)	0.09207	(9)	0.09281	(6)	0.09271	$\overrightarrow{(7)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	у	0.90767	(9)	0.90798	(7)	0.90793	(9)	0.90719	(6)	0.90729	(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	-0.02006	(44)	-0.02851	(32)	-0.02686	(41)	-0.01904	(34)	-0.02049	(37)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0100	(6)	0.0119	(5)	0.0117	(7)	0.0091	(4)	0.0108	(5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06	x	0.18675	(11)	0.18657	(8)	0.18667	(11)	0.18833	(8)	0.18803	(9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		у	0.19629	(11)	0.19647	(8)	0.19637	ÌΠ)	0.19772	(8)	0.19746	(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.29482	(39)	0.28978	(27)	0.29037	(34)	0.29461	(32)	0.29369	(35)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ueq	0.0085	(5)	0.0088	(4)	0.0091	(6)	0.0083	(4)	0.0094	(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07	x	0.28500	(10)	0.28560	(8)	0.28546	(10)	0.28532	(7)	0.28527	(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		у	0.28500	(11)	0.28590	(9)	0.28584	(11)	0.28495	(8)	0.28493	(9)
Ueq $0.0079$ $(5)$ $0.0086$ $(4)$ $0.0088$ $(5)$ $0.0079$ $(4)$ $0.0092$ $(4)$		Z	-0.00904	(38)	-0.01491	(26)	-0.01471	(33)	-0.00990	(31)	-0.01074	(33)
00		Ueq	0.0079	(5)	0.0086	(4)	0.0088	(5)	0.0079	(4)	0.0092	(4)
$[08 \times [0.27075 (11)] = 0.28035 (9) = 0.27049 (11) = 0.27108 (8) = 0.27133 (9)$	08	Х	0.27075	(11)	0.28035	(9)	0.27049	(11)	0.27108	(8)	0.27133	(9)
y 0.20991 (11) 0.20968 (9) 0.20975 (11) 0.21027 (8) 0.21031 (9)		у	0.20991	(11)	0.20968	(9)	0.20975	(11)	0.21027	(8)	0.21031	(9)
z 0.62958 (39) 0.62457 (27) 0.62478 (34) 0.62854 (32) 0.62784 (34)		z	0.62958	(39)	0.62457	(27)	0.62478	(34)	0.62854	(32)	0.62784	(34)
Ueq 0.0088 (5) 0.0091 (4) 0.0093 (6) 0.0085 (4) 0.0100 (4)		Ueq	0.0088	(5)	0.0091	(4)	0.0093	(6)	0.0085	(4)	0.0100	(4)

		CT51		CT52		CT53		CT54		CT55	
X	Х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0220	(7)	0.0243	(9)	0.0221	(8)	0.0238	(12)	0.0174	(6)
Y	х	0.06322	(2)	0.06142	(2)	0.06237	(2)	0.06241	(3)	0.06179	(3)
	У	0.93678	(2)	0.93858	(2)	0.93763	(2)	0.93759	(3)	0.93821	(3)
	Z	0.44393	(31)	0.43325	(41)	0.43840	(38)	0.44080	(56)	0.44290	(31)
	Ueq	0.0081	(2)	0.0087	(2)	0.0089	(2)	0.0109	(2)	0.0085	(2)
Z	х	0.26180	(4)	0.26150	(4)	0.26181	(4)	0.26187	(5)	0.26093	(4)
	У	0.29845	(4)	0.29817	(4)	0.29855	(4)	0.29860	(5)	0.29780	(4)
	Z	0.45697	(31)	0.45320	(41)	0.45461	(38)	0.45821	(56)	0.46062	(30)
	Ueq	0.0066	(2)	0.0051	(2)	0.0046	(2)	0.0062	(3)	0.0064	(2)
T	х	0.19001	(3)	0.18997	(4)	0.18998	(4)	0.18998	(5)	0.19015	(4)
	У	0.19189	(3)	0.19187	(3)	0.19184	(3)	0.19186	(5)	0.19201	(3)
	Z	0.06968	(31)	0.06368	(41)	0.06632	(38)	0.07015	(57)	0.07226	(29)
	Ueq	0.0062	(2)	0.0057	(2)	0.0058	(2)	0.0086	(2)	0.0055	(2)
B	х	0.88984	(11)	0.88992	(12)	0.88969	(11)	0.88979	(16)	0.89027	(11)
	У	0.11016	(11)	0.11008	(12)	0.11031	(11)	0.11021	(16)	0.10973	(11)
	Z	0.61486	(48)	0.61036	(57)	0.61195	(54)	0.61480	(79)	0.61810	(5)
	Ueq	0.0085	(8)	0.0085	(9)	0.0082	(8)	0.0108	(12)	0.0072	(8)
01	х	0		0		0		0		0	
	У	0	(50)	0	((0))	0		0		0	
	Z	0.28905	(50)	0.28193	(69)	0.28138	(64)	0.28830	(91)	0.28517	(66)
	Ueq	0.0210	(10)	0.0374	(14)	0.0352	(12)	0.0334	(17)	0.0529	(19)
02	х	0.93823	(6)	0.93833	(7)	0.93814	(7)	0.93818	(10)	0.93852	(8)
	У	0.00177	(0)	0.0010/	(/)	0.06180	(/)	0.06182	(10)	0.06148	(8)
	Z	0.38793	(40)	0.38144	(30)	0.58460	(47)	0.58609	(70)	0.59097	(41)
	Ueq	0.0122	$\frac{(0)}{(7)}$	0.0138	(/)	0.0138	(/)	0.0139	(10)	0.0109	(8)
05	X	0.13492	(7)	0.13421	(0)	0.13490	(8)	0.15451	(11)	0.13474	(8)
	у	0.55827	(7)	0.60379	(0)	0.80304	(0)	0.80349	(11)	0.80520	$(\delta)$
	Llea	0.00112	(50)	0.55582	(40)	0.00122	(43)	0.33809	(00)	0.30231	(39)
04	v v	0.0112	(3) (7)	0.0121	$\frac{(0)}{(7)}$	0.0122	$\frac{(0)}{(7)}$	0.0143	$\frac{(0)}{(10)}$	0.0102	(0)
	v	0.00700	(7)	0.00316	(7)	0.90710	(7)	0.90722	(10)	0.90710	(7)
	у 7	0.00234	(7)	-0.00546	(7)	-0.00284	(7)	0.09278	(10)	0.09290	(7)
	Uea	0.0102	(50)	0.0103	(-0)	0.0104	(+3+) (6)	0.00170	(05)	0.00103	(50)
05	x	0.09289	$\frac{(3)}{(7)}$	0.09330	(8)	0.09315	(0) (7)	0.0124	$\frac{(0)}{(11)}$	0.0009	(0) (8)
	v	0.90711	(7)	0.90670	(8)	0.90685	(7)	0.092701	(11)	0.90691	$\binom{(0)}{(8)}$
	z	-0.02087	(38)	-0.02736	(3)	-0.02440	(45)	-0.02008	(65)	-0.02090	(38)
	Ueq	0.0102	(5)	0.0103	(6)	0.0101	(5)	0.0120	(8)	0.0095	(6)
06	X	0.18826	(9)	0.18753	(10)	0.18805	(10)	0.18790	(14)	0 18774	$\frac{(0)}{(10)}$
	y	0.19772	(9)	0.19741	(10)	0.19783	(9)	0.19769	(14)	0.09746	(9)
	z	0.29290	(36)	0.28810	(46)	0.28988	(44)	0.29355	(64)	0.29661	(36)
	Ueq	0.0095	(5)	0.0088	(5)	0.0095	(5)	0.0114	$(7)^{\prime}$	0.0085	(5)
07	X	0.28514	(8)	0.28567	(9)	0.28538	(10)	0.28532	(13)	0.28575	(9)
}	у	0.28470	(9)	0.28531	(10)	0.28490	(9)	0.28492	(13)	0.28561	(10)
	Z	-0.01131	(34)	-0.01541	(45)	-0.01378	(42)	-0.01000	(62)	-0.00846	(34)
	Ueq	0.0090	(4)	0.0085	(5)	0.0090	(5)	0.0108	(7)	0.0075	(5)
08	х	0.27094	(9)	0.27065	(10)	0.27083	(10)	0.27044	(14)	0.27065	(10)
	у	0.21023	(9)	0.20989	(10)	0.21003	99)	0.20980	(14)	0.20996	(10)
	Z	0.62692	(35)	0.62315	(45)	0.62440	(42)	0.62797	(61)	0.63080	(35)
	Ueq	0.0096	(5)	0.0098	(5)	0.0105	(5)	0.0124	(7)	0.0087	(5)

		CT56		CT57		CT58		CT59		CT60	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	1
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0244	(15)	0.0276	(7)	0.0284	(27)	0.0212	(9)	0.0257	(8)
Y	x	0.06228	(2)	0.06130	(2)	0.06274	(4)	0.06203	(3)	0.06228	(3)
	У	0.93771	(2)	0.93870	(2)	0.93726	(4)	0.93797	(3)	0.93772	(3)
	z	0.43920	(67)	0.43138	(32)	0.43937	(11)	0.44812	(45)	0.44961	(41)
	Ueq	0.0089	$(2)^{'}$	0.0094	(1)	0.0083	(4)	0.0082	(3)	0.0092	(3)
Z	x	0.26153	(5)	0.26163	(4)	0.26168	(8)	0.26093	(5)	0.26096	(5)
	У	0.29839	(5)	0.29831	(4)	0.29868	(8)	0.29774	(5)	0.29782	(5)
	z	0.45630	(68)	0.45386	(32)	0.45454	(11)	0.46412	(44)	0.46485	(40)
	Ueq	0.0043	(2)	0.0056	(2)	0.0062	(4)	0.0059	(2)	0.0081	(2)
T	 X	0.18986	(4)	0.19023	(3)	0.18994	(8)	0.19003	(4)	0.18997	(4)
	y	0.19186	(4)	0.19216	(3)	0.19198	(7)	0.19198	(4)	0.19196	(4)
	z	0.06688	(68)	0.06389	(33)	0.06520	(11)	0.07581	(43)	0.07656	(39)
	Ueq	0.0059	(2)	0.0059	(2)	0.0069	(4)	0.0049	(2)	0.0068	(2)
В	x	0.89000	(14)	0.89009	(10)	0.88994	(24)	0.89021	(13)	0.89035	(12)
	у	0.11000	(14)	0.10991	(10)	0.11006	(24)	0.10979	(13)	0.10965	(12)
	z	0.61190	(82)	0.61178	(48)	0.60963	(14)	0.62095	(62)	0.62104	(58)
	Ueq	0.0090	(10)	0.0080	(8)	0.0097	(18)	· 0.0064	(10)	0.0090	(9)
01	X	0		0		0	. ,	0		0	
	у	0		0		0		0		0	
	Z	0.28821	(93)	0.28226	(62)	0.28430	(16)	0.29104	(78)	0.29210	(74)
	Ueq	0.0461	(18)	0.0279	(11)	0.0494	(36)	0.0559	(23)	0.0612	(23)
02	х	0.93812	(9)	0.93862	(7)	0.93818	(15)	0.93877	(9)	0.93881	(8)
	У	0.06188	(9)	0.06138	(7)	0.06182	(15)	0.06123	(9)	0.06119	(8)
	Z	0.57949	(76)	0.58337	(42)	0.57813	(132)	0.59240	(55)	0.59209	(51)
	Ueq	0.0163	(9)	0.0136	(63)	0.0172	(16)	0.0169	(10)	0.0191	(9)
03	х	0.13385	(10)	0.13417	(7)	0.13440	(17)	0.13474	(9)	0.13456	(9)
	У	0.86615	(10)	0.86583	(7)	0.86560	(17)	0.86526	(9)	0.86544	(9)
	z	0.55754	(73)	0.55475	(40)	0.55616	(124)	0.56622	(52)	0.56703	(48)
	Ueq	0.0137	(7)	0.0109	(5)	0.0137	(13)	0.0097	(7)	0.0109	(6)
04	х	0.90686	(9)	0.90693	(7)	0.90686	(15)	0.90694	(9)	0.90695	(8)
	У	0.09314	(9)	0.09307	(7)	0.09314	(15)	0.09306	(9)	0.09305	(8)
	Z	-0.00173	(73)	-0.00585	(40)	-0.00287	(122)	0.00589	(52)	0.00610	(47)
	Ueq	0.0114	(7)	0.0113	(5)	0.0115	(12)	0.0085	(7)	0.0102	(6)
05	x	0.09371	(9)	0.09329	(7)	0.09378	(16)	0.09323	(9)	0.09328	(8)
	У	0.90629	(9)	0.90671	(7)	0.90622	(16)	0.90677	(9)	0.90672	(8)
	Z	-0.02452	(73)	-0.02782	(39)	-0.02633	(122)	-0.01668	(52)	-0.01635	(47)
	Ueq	0.0105	(7)	0.0108	(5)	0.0121	(12)	0.0089	(7)	0.0105	(6)
06	x	0.18717	(12)	0.18758	(9)	0.18766	(20)	0.18749	(11)	0.18727	(10)
	У	0.19767	(12)	0.19782	(9)	0.19813	(20)	0.19757	(11)	0.19765	(10)
	Z	0.29146	(73)	0.28982	(37)	0.29009	(122)	0.30049	(49)	0.30125	(45)
	Ueq	0.0098	(6)	0.0088	(4)	0.0097	(10)	0.0079	(6)	0.0095	(5)
07	x	0.28591	(11)	0.28633	(8)	0.28581	(19)	0.28571	(10)	0.28584	(10)
	У	0.28523	(11)	0.28582	(8)	0.28509	(20)	0.28543	(11)	0.28555	(10)
	Z	-0.01195	(71)	-0.01497	(36)	-0.01422	(118)	-0.00450	(48)	-0.00363	(44)
	Ueq	0.0093	(6)	0.0080	(4)	0.0094	(10)	0.0068	(5)	0.0087	(5)
08	x	0.27048	(12)	0.27027	(9)	0.27048	(21)	0.27071	(12)	0.27069	(11)
	у	0.20974	(12)	0.20963	(9)	0.20979	(20)	0.20991	(12)	0.21001	(11)
	Z	0.62605	(71)	0.62403	(36)	0.62431	(118)	0.63454	(48)	0.63525	(44)
	Ueq	0.0107	(6)	0.0095	(5)	0.0110	(11)	0.0081	(6)	0.0102	(5)

•

.

.....
		CT61		CT62		CT63		CT64		CT65	
X	х	0		0		0		0		0	
	у	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0238	(8)	0.0170	(7)	0.0188	(8)	0.0142	(4)	0.0108	(2)
Y	х	0.06206	(3)	0.06196	(3)	0.06188	(3)	0.06274	(3)	0.06336	(3)
	У	0.93794	(3)	0.93804	(3)	0.93812	(3)	0.93726	(3)	0.93664	(3)
	Z	0.44920	(39)	0.44448	(34)	0.44489	(37)	0.43732	(22)	0.43878	(17)
	Ueq	0.0077	(2)	0.0074	(3)	0.0079	(3)	0.0082	(3)	0.0070	(3)
Z	х	0.26094	(4)	0.26092	(4)	0.26082	(5)	0.26169	(94)	0.26176	(4)
	У	0.29781	(4)	0.29785	(4)	0.29779	(5)	0.29799	(4)	0.29807	(4)
	Z	0.46522	(38)	0.46151	932)	0.46194	(35)	0.45584	(19)	0.45553	(14)
	Ueq	0.0064	(2)	0.0070	(2)	0.0065	(2)	0.0072	(2)	0.0059	(2)
Т	х	0.19001	(4)	0.19014	(4)	0.19017	(4)	0.19014	(3)	0.19021	(3)
	У	0.19194	(3)	0.19205	(4)	0.19204	(4)	0.19189	(3)	0.19189	(3)
	Z	0.07692	(38)	0.07331	(32)	0.07352	(35)	0.06886	(18)	0.06919	(13)
	Ueq	0.0053	(2)	0.0061	(2)	0.0057	(2)	0.0061	(2)	0.0048	(2)
B	x	0.89016	(12)	0.89011	(12)	0.89034	(13)	0.89009	(10)	0.89025	(10)
	У	0.10984	(12)	0.10989	(12)	0.10966	(13)	0.10991	(10)	0.10975	(10)
	Z	0.62161	(55)	0.61841	(53)	0.61959	(58)	0.61598	(41)	0.61757	(36)
	Ueq	0.0072	(8)	0.0080	(9)	0.0084	(10)	0.0079	(8)	0.0064	(7)
01	Х	0		0		0		0		0	
	У	0	(= 0)	0	(= 0)	0		0	( 1 0 )	0	
	Z	0.29224	(70)	0.28627	(70)	0.28837	(8)	0.29488	(43)	0.29425	(37)
	Ueq	0.0560	(22)	0.0501	(20)	0.0523	(20)	0.0122	(8)	0.0112	(7)
02	х	0.93874	(8)	0.93885	(8)	0.93883	(8)	0.93935	(7)	0.93980	(6)
	У	0.06126	(8)	0.06115	(8)	0.06117	(8)	0.06065	(7)	0.06020	(6)
	Z	0.59224	(49)	0.59135	(40)	0.59158	(48)	0.591/4	(31)	0.59697	(25)
02	Ueq	0.0170	$\frac{(8)}{(8)}$	0.0172	$\frac{(8)}{(8)}$	0.0137	(9)	0.0110	$\frac{(0)}{(7)}$	0.0076	(5)
05	х 	0.15452	$(\delta)$	0.13473	(8)	0.13477	(9)	0.13339	(7)	0.13393	(7)
	у 7	0.80348	(0)	0.80327	(0) (42)	0.80323	(9)	0.80001	(7)	0.80003	(1)
	Llea	0.00700	(43)	0.00020	(42)	0.30330	(7)	0.55757	(50)	0.33740	(20)
04	v	0.0094	$\frac{(0)}{(8)}$	0.010	$\frac{(0)}{(8)}$	0.0100	$\frac{(7)}{(8)}$	0.00117	$\frac{(0)}{(7)}$	0.0100	(3)
	v	0.00314	(8)	0.09290	(8)	0.09279	(8)	0.09236	(7)	0.00155	(7)
	ן 7	0.00578	(45)	0.00247	(42)	0.00292	(44)	-0.00296	(30)	-0.00342	(26)
	Uea	0.0084	(6)	0.0099	(6)	0.0096	(7)	0.0114	(5)	0.0099	(5)
05	x	0.09325	(8)	0.09303	(8)	0.09314	(8)	0.09106	(7)	0.08998	(7)
	v	0.90678	(8)	0.90697	(8)	0.90686	(8)	0.90894	(7)	0.91002	(7)
	z	-0.01594	(45)	-0.01978	(42)	-0.01888	(45)	-0.02278	(31)	-0.02269	(27)
	Ueq	0.0088	(6)	0.0097	(6)	0.0089	(6)	0.0109	(5)	0.0092	(5)
06	х .	0.18728	(10)	0.18767	(10)	0.18765	(10)	0.18649	(9)	0.18664	(8)
	у	0.19740	(10)	0.19748	(10)	0.19757	(11)	0.19567	(9)	0.19552	(9)
	z	0.30168	(43)	0.29776	(38)	0.29799	(41)	0.29100	(26)	0.29063	(21)
	Ueq	0.0081	(5)	0.0089	(5)	0.0083	(5)	0.0096	(5)	0.0083	(4)
07	X	0.28594	(9)	0.28574	(9)	0.28569	(10)	0.28445	(9)	0.28380	(8)
	у	0.28569	(10)	0.28563	(10)	0.28541	(11)	0.28499	(9)	0.28473	(9)
	Z	-0.00348	(42)	-0.00764	(37)	-0.00670	(40)	-0.01193	(24)	-0.01228	(20)
L	Ueq	0.0071	(5)	0.0081	(5)	0.0080	(5)	0.0098	(5)	0.0088	(4)
08	х	0.27065	(11)	0.27049	(11)	0.27035	(11)	0.27008	(10)	0.26983	(9)
	у	0.21010	(10)	0.20992	(10)	0.20965	(11)	0.20945	(9)	0.20927	(9)
ł	Z	0.63551	(42)	0.63188	(37)	0.63201	(40)	0.62704	(25)	0.62692	(21)
	Ueq	0.0085	(5)	0.0093	(5)	0.0086	(6)	0.0103	(5)	0.0095	(4)

•

		CT66		CT67		CT68		СТ69		CT70	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0104	(4)	0.0130	(3)	0.0137	(2)	0.0127	(3)	0.0128	(4)
Y	x	0.06296	(4)	0.06312	(3)	0.06352	(3)	0.06319	(4)	0.06299	(3)
	У	0.93704	(4)	0.93688	(3)	0.93648	(3)	0.93681	(4)	0.93701	(3)
	Z	0.43834	(23)	0.43701	(18)	0.43981	(16)	0.43858	(22)	0.43898	(24)
	Ueq	0.0074	(3)	0.0075	(3)	0.0086	(2)	0.0086	(3)	0.0072	(3)
Z	х	0.26175	(4)	0.26162	(3)	0.26174	(3)	0.26162	(5)	0.26162	(4)
	У	0.29803	(4)	0.29796	(3)	0.29811	(3)	0.29796	(4)	0.29800	(4)
	Z	0.45676	(19)	0.45379	(15)	0.45468	(13)	0.45531	(18)	0.45596	(20)
	Ueq	0.0066	(2)	0.0069	(2)	0.0072	(2)	0.0065	(2)	0.0064	(2)
Т	х	0.19020	(4)	0.19016	(3)	0.19024	(3)	0.19013	(4)	0.19018	(4)
	У	0.19188	(4)	0.19190	(3)	0.19192	(3)	0.19182	(4)	0.19188	(3)
	Z	0.06991	(18)	0.06722	(14)	0.06854	(13)	0.06889	(17)	0.06922	(19)
	Ueq	0.0054	(2)	0.0060	(2)	0.0062	(1)	0.0053	(2)	00053	(2)
В	x	0.89025	(12)	0.89029	(10)	0.89034	(9)	0.89030	(12)	0.89012	(11)
	У	0.10975	(12)	0.10971	(10)	0.10966	(9)	0.10970	(12)	0.10988	(11)
	z	0.61759	(44)	0.61477	(35)	0.61656	(33)	0.61680	(45)	0.61622	(44)
	Ueq	0:0072	(9)	0.0075	(7)	0.0078	(7)	0.0072	(9)	0.0068	(8)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.29516	(45)	0.29328	(35)	0.29253	(33)	0.29422	(46)	0.29537	(45)
	Ueq	0.0105	(9)	0.0110	(7)	0.0133	(7)	0.0151	(9)	0.0113	(9)
02	х	0.93941	(7)	0.93947	(6)	0.93962	(6)	0.93963	(8)	0.93931	(7)
	У	0.06059	(7)	0.06053	(6)	0.06038	(6)	0.06037	(8)	0.06069	(7)
	Z	0.59475	(32)	0.59183	(26)	0.59526	(24)	0.59516	(32)	0.59317	(32)
	Ueq	0.0101	(6)	0.0101	(5)	0.0095	(5)	0.0097	(7)	0.0101	(6)
03	х	0.13332	(8)	0.13344	(7)	0.13425	(6)	0.13386	(8)	0.13364	(8)
	У	0.86668	(8)	0.86656	(7)	0.86575	(6)	0.86614	(8)	0.86636	(8)
	Z	0.55838	(32)	0.55569	(25)	0.55641	(24)	0.55663	(32)	0.55757	(31)
	Ueq	0.0114	(6)	0.0114	(5)	0.0109	(5)	0.0109	(7)	0.0104	(6)
04	х	0.90785	(8)	0.90784	(6)	0.90817	(6)	0.90809	(8)	0.90766	(8)
	У	0.09215	(8)	0.09216	(6)	0.09183	(6)	0.09191	(8)	0.09234	(8)
	Z	-0.00189	(32)	-0.00495	(26)	-0.00377	(24)	-0.00374	(32)	-0.00234	(32)
	Ueq	0.0106	(6)	0.0110	(5)	0.0111	(5)	0.0106	(6)	0.0102	(6)
05	х	0.09066	(8)	0.09086	(7)	0.09042	(6)	0.09032	(8)	0.09107	(8)
	У	0.90934	(8)	0.90914	(7)	0.90958	(6)	0.90968	(8)	0.90893	(8)
	Z	-0.02143	(33)	-0.02460	(26)	-0.02321	(25)	-0.02272	(33)	-0.02210	(33)
	Ueq	0.0101	(6)	0.0112	(5)	0.0106	(5)	0.0099	(6)	0.0101	(6)
06	х	0.18654	(10)	0.18651	(8)	0.18701	(8)	0.18649	(10)	0.18668	(10)
	У	0.19566	(10)	0.19554	(8)	0.19579	(8)	0.19540	(11)	0.19577	(10)
	Z	0.29161	(27)	0.28927	(21)	0.29010	(19)	0.29051	(26)	0.29123	(27)
07	Ueq	0.0090	$(\mathbf{c})$	0.0092	(4)	0.0093	$\frac{(4)}{(7)}$	0.0091	$\frac{(3)}{(10)}$	0.0088	
07	X	0.28412	(10)	0.28438	(ð)	0.2840/	(/)	0.28388	(10)	0.20407	(9)
-	У	0.28468	(10)	0.28501	(8)	0.01222	(ð) (18)	0.284/3	(11)	0.2848/	(10)
	Z	-0.01091	(23)	-0.01383	(20)	-0.01323	(18)	-0.01235	(24)	-0.011/4	(25)
	Ueq	0.0090	(3)	0.0097	(4)	0.0099	(4)	0.0093	$\frac{(3)}{(11)}$	0.008/	(3)
08	х	0.26991	(11)	0.26992	(9)	0.26997	(8)	0.27002	(11)	0.27031	(10)
	У	0.20938	(10)	0.20942	(8)	0.20951	(8)	0.20945	(10)	0.209/1	(10)
	Z	0.62821	(26)	0.62486	(21)	0.62584	(19)	0.62671	(26)	0.62707	(27)
	Ueq	0.0100	(5)	0.0108	(4)	0.0108	(4)	0.0100	(5)	0.0094	()

		CT71		CT72		CT73		CT74		CT75	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0132	(3)	0.0187	(6)	0.0135	(6)	0.0109	(4)	0.0101	(4)
Y	х	0.06298	(3)	0.06187	(2)	0.06345	(6)	0.06350	(4)	0.06296	(3)
	У	0.93702	(3)	0.93813	(2)	0.93655	(6)	0.93650	(4)	0.93704	(3)
	Z	0.43730	(20)	0.43621	(26)	0.43727	(38)	0.43878	(23)	0.43790	(21)
	Ueq	0.0085	(3)	0.0089	(2)	0.0093	(6)	0.0080	(4)	0.0070	(3)
Z	х	0.26156	(4)	0.26161	(3)	0.26158	(7)	0.26175	(5)	0.26166	(4)
	У	0.29795	(4)	0.29801	(3)	0.29793	(7)	0.29799	(5)	0.29800	(4)
	Z	0.45453	(16)	0.45870	(25)	0.45321	(31)	0.45420	(18)	0.45624	(18)
	Ueq	0.0071	(2)	0.0071	(2)	0.0074	(4)	0.0066	(2)	0.0063	(2)
T	х	0.19014	(3)	0.19000	(3)	0.19046	(6)	0.19032	(4)	0.19019	(3)
	У	0.19187	(3)	0.19181	(3)	0.19219	(6)	0.19206	(4)	0.19191	(3)
	Z	0.06783	(16)	0.07026	(25)	0.06554	(30)	0.06803	(18)	0.06930	(17)
	Ueq	0.0062	(2)	0.0066	(2)	0.0072	(3)	0.0057	(2)	0.0050	(2)
B	х	0.89035	(10)	0.89016	(10)	0.89023	(20)	0.89049	(14)	0.89026	(10)
	У	0.10965	(10)	0.10984	(10)	0.10977	(20)	0.10951	(14)	0.10974	(10)
	Z	0.61515	(38)	0.61668	(41)	0.61558	(74)	0.61655	(48)	0.61714	(40)
	Ueq	0.0076	(7)	0.0084	(7)	0.0083	(15)	0.0069	(10)	0.0067	(8)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.29463	(38)	0.29590	(46)	0.29195	(73)	0.29310	(48)	0.29485	(41)
	Ueq	0.0111	(7)	0.0173	(9)	0.0128	(15)	0.0013	(8)	0.0107	(8)
02	х	0.93944	(6)	0.93892	(6)	0.93957	(12)	0.93970	(8)	0.93942	(7)
	У	0.06056	(6)	0.06108	(6)	0.06043	(12)	0.06030	(8)	0.06058	(7)
	Z	0.59163	(28)	0.58735	(34)	0.59225	(53)	0.59522	(34)	0.59334	(29)
	Ueq	0.0106	(6)	0.0129	(6)	0.0096	(11)	0.0083	(7)	0.0101	(6)
03	х	0.13342	(7)	0.13235	(7)	0.13425	(14)	0.13416	(9)	0.13331	(7)
	У	0.86658	(7)	0.86765	(7)	0.86575	(14)	0.86584	(9)	0.86669	(7)
	z	0.55571	(27)	0.55889	(33)	0.55555	(52)	0.55624	(32)	0.55794	(29)
	Ueq	0.0122	(6)	0.0142	(5)	0.0109	(11)	0.0093	(7)	0.0111	(6)
04	х	0.90782	(7)	0.90712	(6)	0.90787	(14)	0.90817	(9)	0.90777	(7)
ļ	У	0.09218	(7)	0.09288	(6)	0.09213	(14)	0.09183	(9)	0.09223	(7)
	Z	-0.00440	(27)	-0.00040	(34)	-0.00622	(54)	-0.00444	(33)	-0.00237	(29)
	Ueq	0.0107	(5)	0.0120	(5)	0.0132	(11)	0.0109	(7)	0.0101	(5)
05	х	0.09080	(7)	0.09189	(7)	0.09088	(14)	0.09040	(9)	0.09080	(7)
	У	0.90920	(7)	0.90811	(7)	0.90912	(14)	0.90960	(9)	0.90920	(7)
	Z	-0.02406	(28)	-0.02123	(33)	-0.02714	(56)	-0.02379	(35)	-0.02210	(30)
	Ueq	0.0109	(5)	0.0120	(5)	0.0124	(10)	0.0106	(7)	0.0102	(5)
06	х	0.18639	(8)	0.18597	(8)	0.18687	(16)	0.18726	(11)	0.18633	(9)
Ì	У	0.19558	(9)	0.19586	(8)	0.19629	(17)	0.19617	(11)	0.19557	(9)
	Z	0.28952	(22)	0.29326	(30)	0.28955	(44)	0.29018	(26)	0.29152	(24)
	Ueq	0.0095	(5)	0.0099	(4)	0.0099	(9)	0.0086	(6)	0.0085	(5)
07	х	0.28424	(8)	0.28490	(7)	0.28489	(16)	0.28436	(10)	0.28423	(9)
	У	0.28497	(9)	0.28512	(8)	0.28582	(17)	0.28509	(11)	0.28493	(9)
	Z	-0.01315	(22)	-0.00882	(29)	-0.01506	(42)	-0.01390	(26)	-0.01130	(23)
	Ueq	0.0096	(4)	0.0101	(4)	0.0101	(9)	0.0090	(6)	0.0086	(5)
08	х	0.26999	(9)	0.27003	(9)	0.26994	(18)	0.26971	(11)	0.27003	(10)
	у	0.20944	(9)	0.20942	(8)	0.20939	(17)	0.20919	(11)	0.20932	(9)
	Z	0.62544	(22)	0.62970	(29)	0.62466	(43)	0.62527	(27)	0.62758	(24)
L	Ueq	0.0104	(5)	0.0111	(4)	0.0101	(9)	0.0100	(6)	0.0094	(5)

		CT76		CT77		CT78		CT79		CT80	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0148	(4)	0.0151	(5)	0.0141	(4)	0.0156	(4)	0.0155	(6)
Y	х	0.06189	(3)	0.06224	(3)	0.06175	(3)	0.06193	(3)	0.06192	(30
	У	0.93811	(3)	0.93776	(3)	0.93825	(3)	0.93807	(3)	0.93808	(3)
	Z	0.43206	(23)	0.43444	(23)	0.42738	(22)	0.43149	(22)	0.42883	(26)
	Ueq	0.0087	(2)	0.0090	(3)	0.0079	(3)	0.0090	(3)	0.0073	(3)
Z	х	0.26178	(40	0.26180	(4)	0.26138	(4)	0.26159	(4)	0.26146	(4)
	У	0.29806	(4)	0.29824	(4)	0.29768	(4)	0.29797	(4)	0.29773	(4)
	Z	0.45425	(22)	0.45498	(22)	0.45301	(19)	0.45531	(20)	0.45143	(25)
	Ueq	0.0056	(2)	0.0061	(2)	0.0061	(2)	0.0071	(2)	0.0059	(2)
T	х	0.18999	(4)	0.18997	(4)	0.18992	(3)	0.19007	(3)	0.18990	(4)
	У	0.19171	(3)	0.19168	(4)	0.19172	(3)	0.19181	(3)	0.19167	(4)
	Z	0.06668	(21)	0.06785	(22)	0.06439	(19)	0.06744	(20)	0.06250	(25)
	Ueq	0.0056	(2)	0.0072	(2)	0.0051	(2)	0.0069	(2)	0.0067	(2)
B	х	0.89013	(12)	0.89007	(12)	0.89044	(11)	0.89023	(11)	0.89020	(13)
	У	0.10987	(12)	0.10993	(12)	0.10956	(11)	0.10977	(11)	0.10980	(13)
	Z	0.61454	(45)	0.61513	(48)	0.61179	(40)	0.61483	(41)	0.61069	(50)
	Ueq	0.0077	(9)	0.0092	(9)	0.0068	(8)	0.0083	(8)	0.0093	(10)
01	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.29075	(49)	0.29076	(52)	0.29291	(45)	0.29467	(44)	0.29145	(52)
	Ueq	0.0155	(10)	0.0167	(10)	0.0165	(9)	0.0093	(7)	0.0106	(9)
02	х	0.93917	(7)	0.93916	(8)	0.93979	(7)	0.93942	(7)	0.93913	(8)
	У	0.06083	(7)	0.06084	(8)	0.06021	(7)	0.06058	(7)	0.06087	(8)
	Z	0.59001	(33)	0.59152	(4)	0.58326	(32)	0.58839	(32)	0.58285	(37)
	Ueq	0.0109	(7)	0.0117	(7)	0.0113	(6)	0.0124	(6)	0.0126	(7)
03	х	0.13326	(8)	0.13342	(9)	0.13125	(8)	0.13218	(8)	0.13191	(9)
	У	0.86674	(8)	0.86658	(9)	0.86875	(8)	0.86782	(8)	0.86809	(9)
	Z	0.55478	(34)	0.55544	(35)	0.55280	(31)	0.55597	(31)	0.55215	(37)
	Ueq	0.0120	(6)	0.0129	(7)	0.0143	(6)	0.0141	(6)	0.0132	(7)
04	х	0.90775	(8)	0.90785	(8)	0.90749	(8)	0.90758	(7)	0.90730	(9)
	У	0.09225	(8)	0.09215	(8)	0.09251	(8)	0.09242	(7)	0.09270	(9)
	Z	-0.00453	(34)	-0.00349	(35)	-0.00843	(31)	-0.00406	(31)	-0.00899	(37)
	Ueq	0.0109	(6)	0.0121	(6)	0.0109	(6)	0.0118	(6)	0.0122	(7)
05	х	0.09110	(8)	0.09100	(8)	0.09076	(8)	0.09102	(7)	0.09174	(9)
	У	0.90890	(8)	0.90900	(8)	0.90924	(8)	0.90898	(/)	0.90826	(9)
	Z	-0.02426	(34)	-0.02283	(33)	-0.02875	(32)	-0.02465	(31)	-0.02949	(37)
0(	Ueq	0.0103	$\frac{(0)}{(10)}$	0.0118	(0)	0.0103	(0)	0.0117	(5)	0.0118	(/)
00	x	0.18656	(10)	0.18083	(10)	0.18451	(9)	0.18582	(9)	0.18560	(11)
	У	0.19373	(10)	0.19378	(10)	0.19432	(9)	0.19338	(9)	0.19524	(11)
	Z	0.20031	(29)	0.26929	(50)	0.28080	(20)	0.28934	(20)	0.28338	(30)
07	Veq	0.0092	$\frac{(3)}{(10)}$	0.0107	$\frac{(3)}{(10)}$	0.0090	$\frac{(3)}{(0)}$	0.0101	$\frac{(3)}{(9)}$	0.0104	(0)
0/	X	0.20403	(10)	0.20410	(10)	0.20439	$(\mathcal{I})$	0.28443	(0) (0)	0.28400	(10)
	у 7	0.20432	(10)	0.20404	(10)	0.20014	(10)	0.2000	$(\mathcal{I})$	0.28309	(11)
	Z Llac	0.0000	(21)	0.01232	(20)	0.01402	(24)	0.01223	(23)	-0.01044	(31)
08	v	0.0098	$\frac{(3)}{(11)}$	0.0111	$\frac{(3)}{(11)}$	0.0093	$\frac{(3)}{(10)}$	0.0107	$\frac{(3)}{(10)}$	0.0102	(0)
00	A V	0.27015	(11)	0.27011	(11)	0.20955	(10)	0.20908	(10)	0.20903	(11)
	у 7	0.20940	(10)	0.20939	(30)	0.20091	(10)	0.20901	(2)	0.20911	(11)
	Z Llea	0.02525	(27)	0.02509	(50)	0.02430	(20)	0.02040	(20)	0.02222	(32)
L	Ueq	0.0107	()	0.0128	(0)	0.0100	()	0.0110	()	0.0109	(0)

		CT81		CT82		CT83		CT84		CT85	
X	х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0130	(3)	0.0128	(4)	0.0140	(4)	0.0136	(5)	0.0338	(32)
Y	х	0.06185	(5)	0.06193	(6)	0.06209	(5)	0.06211	(7)	0.06219	(2)
	У	0.93815	(5)	0.93807	(6)	0.93791	(5)	0.93789	(7)	0.93781	(2)
	Z	0.44486	(27)	0.44424	(28)	0.45101	(29)	0.44476	(35)	0.45023	(142)
	Ueq	0.0078	(5)	0.0077	(5)	0.0083	(5)	0.0084	(7)	0.0086	(18)
Z	х	0.25972	(4)	0.25965	(4)	0.26020	(5)	0.25953	(5)	0.26152	(4)
	У	0.29682	(4)	0.29681	(4)	0.29725	(5)	0.29671	(5)	0.29824	(4)
	Z	0.46762	(18)	0.46720	(18)	0.46864	(22)	0.46787	(22)	0.46390	(142)
	Ueq	0.0063	(2)	0.0068	(2)	0.0065	(2)	0.0070	(3)	0.0058	(2)
T	х	0.19012	(3)	0.19018	(4)	0.19017	(4)	0.19015	(4)	0.18994	(4)
	У	0.19203	(3)	0.19207	(4)	0.19209	(4)	0.19212	(4)	0.19196	(4)
	Z	0.07944	(18)	0.07919	(17)	0.08100	(21)	0.07985	(22)	0.07461	(142)
	Ueq	0.0051	(2)	0.0056	(2)	0.0051	(2)	0.0059	(2)	0.0054	(2)
B	х	0.89113	(10)	0.89106	(11)	0.89076	(13)	0.89105	(14)	0.88975	(12)
	У	0.10887	(10)	0.10894	(11)	0.10924	(13)	0.10895	(14)	0.11025	(12)
	Z	0.62527	(40)	0.62502	(43)	0.62650	(51)	0.62569	(51)	0.61901	(148)
	Ueq	0.0069	(8)	0.0075	(9)	0.0070	(10)	0.0077	(11)	0.0087	(9)
01	х	0		0		0		0		0	
	У	0		0	(=0)	0	(	0		0	
	Z	0.29146	(57)	0.29051	(59)	0.29252	(73)	0.29147	(66)	0.29434	(149)
	Ueq	0.0478	(16)	0.0463	(17)	0.0578	(24)	0.0475	(20)	0.0331	(14)
02	х	0.94006	(7)	0.94008	(8)	0.93956	(9)	0.94008	(9)	0.93765	(8)
	У	0.05994	(/)	0.05992	(8)	0.06044	(9)	0.05992	(9)	0.06235	(8)
	Z	0.59944	(33)	0.60049	(34)	0.60215	(41)	0.60034	(43)	0.58598	(147)
02	Ueq	0.0170	$\frac{(8)}{(8)}$	0.0173	(8)	0.0189	$\frac{(10)}{(0)}$	0.0177	(10)	0.0191	(9)
05	x	0.15405	$(\delta)$	0.13483	(ð) (Ø)	0.13492	(9)	0.13482	(10)	0.13418	(9)
	y 7	0.80333	(0)	0.80317	(0)	0.80308	(9)	0.80318	(10)	0.60382	(9)
	z Llea	0.00975	(29)	0.30900	(50)	0.37101	(30)	0.00995	(30)	0.0000	(144)
04	v	0.0100	(7)	0.0100	(0)	0.0100	$\frac{(7)}{(9)}$	0.0110	$\frac{(0)}{(0)}$	0.00113	(0)
04	^ V	0.00772	(7)	0.90790	(8)	0.90737	(9)	0.90798	(9)	0.90039	(0)
	y 7	0.00548	(7) (29)	0.00204	(30)	0.07245	(2)	0.00202	(36)	0.09301	(0) (1/2)
	Uea	0.0087	(5)	0.00181	(50)	0.0083	(33)	0.00000	(30)	0.00791	(1+2) (6)
05	x	0.09211	$\frac{(3)}{(7)}$	0.09194	(8)	0.09234	$\frac{(7)}{(9)}$	0.09211	$\frac{(7)}{(9)}$	0.09445	$\frac{(0)}{(8)}$
	v	0.90789	(7)	0.90806	(8)	0.90766	(9)	0.90789	(9)	0.90555	(8)
	z	-0.01615	(30)	-0.01681	(32)	-0.01327	(38)	-0.01644	(37)	-0.01592	(142)
	Ueq	0.0089	(5)	0.0093	(6)	0.0088	(6)	0.0093	(7)	0.0094	(6)
06	x	0.18621	(9)	0.18625	(10)	0.18696	(1)	0.18629	(11)	0.18778	(10)
	v	0.19595	(9)	0.19598	(10)	0.19650	(11)	0.19598	(11)	0.19834	(10)
	z	0.30369	(25)	0.30365	(25)	0.30515	(30)	0.30403	(30)	0.29988	(144)
	Ueq	0.0079	(5)	0.0080	(5)	0.0079	(6)	0.0083	(6)	0.0083	(5)
07	x .	0.28539	(8)	0.28531	(9)	0.28542	(11)	0.28523	(10)	0.28602	(10)
	у	0.28587	(9)	0.28589	(10)	0.28561	(11)	0.28608	(11)	0.28499	(10)
	Z	-0.00169	(23)	-0.00248	(24)	-0.00040	(28)	-0.00138	(29)	-0.00455	(144)
	Ueq	0.0069	(4)	0.0072	(5)	0.0070	(5)	0.0074	(6)	0.0076	(5)
08	х	0.27016	(9)	0.27023	(10)	0.27050	(12)	0.27005	(12)	0.27124	(11)
	у	0.20956	(9)	0.20973	(10)	0.20993	(12)	0.20946	(12)	0.21023	(11)
	Z	0.63808	(24)	0.63772	(24)	0.63899	(29)	0.63808	(29)	0.63384	(142)
	Ueq	0.0080	(5)	0.0084	(5)	0.0082	(6)	0.0084	(6)	0.0093	(5)

. . . .

		CT86		CT87		CT88		СТ89		СТ90	
X	Х	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0346	(43)	0.0313	(41)	0.0342	(44)	0.0255	(8)	0.0210	(17)
Y	х	0.06221	(3)	0.06218	(3)	0.06152	(3)	0.06644	(2)	0.06227	(5)
	у	0.93779	(3)	0.93782	(3)	0.93848	(3)	0.93356	(2)	0.93773	(5)
	Z	0.44819	(198)	0.44672	(185)	0.43598	(183)	0.43435	(35)	0.43597	(68)
	Ueq	0.0095	(3)	0.0096	(3)	0.0073	(3)	0.0128	(2)	0.0067	(5)
Z	Х	0.26145	(6)	0.26147	(7)	0.26047	(5)	0.25905	(4)	0.26193	(9)
	у	0.29822	(6)	0.29823	(7)	0.29711	(5)	0.29889	(4)	0.29788	(8)
	Z	0.46247	(197)	0.46126	(185)	0.45664	(183)	0.45101	(36)	0.46266	(67)
	Ueq	0.0067	(3)	0.0068	(3)	0.0068	(3)	0.0080	(2)	0.0072	(5)
T	x	0.18996	(6)	0.18999	(6)	0.18964	(4)	0.19052	(4)	0.18900	(10)
	у	0.19196	(5)	0.19195	(5)	0.19161	(4)	0.19162	(3)	0.19073	(9)
	z	0.07301	(197)	0.07196	(185)	0.06394	(183)	0.05588	(35)	0.07308	(67)
	Ueq	0.0060	(3)	0.0065	(3)	0.0058	(2)	0.0070	(2)	0.0079	(5)
B	<u>.</u> х	0.88971	(17)	0.88958	(18)	0.89044	(13)	0.89025	(12)	0.89059	(32)
	у	0.11029	(17)	0.11042	(18)	0.10956	(13)	0.10975	(12)	0.10941	(32)
	Z	0.61793	(207)	0.61667	(197)	0.61160	(187)	0.60308	(55)	0.61894	(112)
	Ueq	0.0087	(13)	0.0095	(14)	0.0082	(10)	0.0090	(8)	0.0104	(25)
01	x	0		0		0		0		0	
	У	0		0		0		0		0	
	Z	0.29294	(208)	0.29233	(201)	0.29583	(185)	0.28573	(56)	0.30540	(119)
	Ueq	0.0361	(21)	0.0411	(26)	0.0201	(11)	0.0120	(8)	0.0098	(23)
02	x	0.93763	(11)	0.93746	(12)	0.93830	(8)	0.93971	(7)	0.93937	(16)
	у	0.06237	(11)	0.06254	(12)	0.06170	(8)	0.06029	(7)	0.06063	(16)
	z	0.58468	(206)	0.58326	(195)	0.57271	(187)	0.56952	(46)	0.58500	(85)
	Ueq	0.0184	(12)	0.0185	(13)	0.0123	(8)	0.0113	(6)	0.0110	(16)
03	x	0.13396	(12)	0.13386	(13)	0.13055	(9)	0.13215	(8)	0.12917	(20)
	у	0.86604	(12)	0.86614	(13)	0.86945	(9)	0.86785	(8)	0.87083	(20)
	Z	0.56386	(202)	0.56258	(190)	0.55578	(184)	0.53551	(43)	0.56196	(86)
}	Ueq	0.0124	(9)	0.0133	(10)	0.0141	(7)	0.0103	(6)	0.0138	(17)
04	X	0.90629	(11)	0.90627	(11)	0.90532	(8)	0.90561	(7)	0.90822	(18)
	у	0.09371	(11)	0.09373	(11)	0.09468	(8)	0.09439	(7)	0.09178	(18)
	Z	0.00599	(200)	0.00493	(188)	-0.00658	(185)	-0.02027	(43)	0.00397	(83)
	Ueq	0.0103	(9)	0.0107	(10)	0.0099	(7)	0.0107	(6)	0.0126	(16)
05	x	0.09422	(11)	0.09423	(12)	0.09440	(8)	0.09097	(8)	0.09159	(18)
	у	0.90578	(11)	0.90577	(12)	0.90560	(8)	0.90903	(8)	0.90841	(18)
	Z	-0.01719	(198)	-0.01862	(187)	-0.02880	(184)	-0.02908	(44)	-0.01709	(85)
	Ueq	0.0095	(8)	0.0104	(9)	0.0100	(7)	0.0119	(6)	0.0117	(15)
06	X	0.18792	(15)	0.18792	(16)	0.18500	(10)	0.18657	(10)	0.18345	(24)
	У	0.19824	(15)	0.19814	(16)	0.19554	(11)	0.19306	(9)	0.19286	(26)
	z	0.29792	(202)	0.29679	(190)	0.29047	(185)	0.28106	(40)	0.29435	(77)
	Ueq	0.0091	(7)	0.0099	(8)	0.0088	(6)	0.0099	(5)	0.0103	(14)
07	<u>х</u>	0.28592	(13)	0.28590	(15)	0.28631	(9)	0.28621	(9)	0.28284	(21)
	у	0.28503	(14)	0.28498	(16)	0.28597	(10)	0.28682	(10)	0.28268	(22)
	Z	-0.00649	(199)	-0.00722	(187)	-0.01178	(184)	-0.01972	(39)	-0.00160	(76)
	Ueq	0.0083	(7)	0.0091	(8)	0.0080	(5)	0.0090	(5)	0.0105	(13)
08	x	0.27103	(15)	0.27100	(16)	0.27075	(11)	0.26983	(10)	0.26864	(23)
	у	0.21022	(15)	0.21011	(16)	0.20991	(11)	0.20951	(10)	0.20764	(22)
	- Z	0.63221	(199)	0.63110	(187)	0.62657	(184)	0.61675	(40)	0.63279	(76)
	Ueq	0.0096	(7)	0.0104	(8)	0.0088	(6)	0.0092	(5)	0.0128	(14)

X         x         00         0         0         0         0         0           y         0         0         0         0         0         0         0           z         0.84080         0.84080         0.84080         0.84080         0.84080         0.84080           Ueq         0.05249         0.0155         (18)         0.0229         (10)         0.06179         (9)         0.0225         (8)           y         0.95751         (3)         0.93822         (6)         0.93786         (3)         0.93785         (3)         0.93832         (2)           ueq         0.0555         (3)         0.0050         (5)         0.00577         (3)         0.0059         (3)         0.0060         (2)           y         0.26194         (5)         0.27156         (10)         0.26193         (3)         0.29715         (4)           y         0.21818         (5)         0.22781         (5)         0.2885         (6)         0.0064         (2)         0.0155         (4)           y         0.19130         (4)         0.18835         (11)         0.18918         (5)         0.18885         (6)         0.10054     <			CT91		CT92		CT93		СТ94		СТ95	
	X	х	0		0		0		0		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		У	0		0		0		0		0	
		Z	0.84080		0.84080		0.84080		0.84080		0.84080	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ueq	0.0237	(9)	0.0155	(18)	0.0229	(10)	0.0197	(9)	0.0225	(8)
y         0.93751         (3)         0.93822         (6)         0.93786         (3)         0.93822         (2)           z         0.44069         (40)         0.43027         (76)         0.43584         (42)         0.43447         (41)         0.93822         (2)           Z         x         0.26194         (5)         0.267187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.227187         (5)         0.29725         (5)         0.29735         (5)         0.29735         (5)         0.29735         (5)         0.29735         (6)         0.0668         (2)         0.0058         (1)         0.18918         (5)         0.18835         (6)         0.18845         (4)         0.05625         (4)         0.06623         (3)         0.0066         (3)         0.0066         (3)         0.0066         (3)         0.0066         (3)         0.0066         (3)         0.0066         (3)         0.0066         (3)         0.0066         (4)         0.0060         (0)         0.0071	Y	X	0.06249	(3)	0.06178	(6)	0.06214	(3)	0.06215	(3)	0.06168	(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		У	0.93751	(3)	0.93822	(6)	0.93786	(3)	0.93785	(3)	0.93832	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.44069	(40)	0.43027	(76)	0.43584	(42)	0.43447	(41)	0.42756	(32)
		Ueq	0.0055	(3)	0.0050	(5)	0.0057	(3)	0.0059	(3)	0.0060	(2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Z	x	0.26194	(5)	0.26169	(10)	0.26193	(5)	0.26190	(5)	0.26186	(4)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		У	0.29818	(5)	0.29756	(10)	0.29795	(5)	0.29781	(5)	0.29775	(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	0.46513	(39)	0.45889	(76)	0.46180	(42)	0.46144	(40)	0.45633	(32)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ueq	0.0068	(2)	0.0058	(6)	0.0064	(3)	0.0068	(3)	0.0069	(2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T	x	0.18947	(4)	0.18853	(1)	0.18918	(5)	0.18885	(6)	0.18845	(4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		v	0.19130	(4)	0.19020	(11)	0.19099	(5)	0.19063	(5)	0.19025	(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		z	0.07657	(39)	0.06759	(76)	0.07253	(42)	0.07158	(41)	0.06523	(32)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Uea	0.0065	(2)	0.0077	(7)	0.0066	(3)	0.0070	(3)	0.0080	(3)
y         0.10966         (14)         0.10974         (39)         0.10987         (17)         0.10935         (19)         0.10934         (15)           z         0.62236         (60)         0.61404         (133)         0.61765         (67)         0.61676         (71)         0.61141         (59)           Ueq         0.0077         (10)         0.0084         (26)         0.0081         (13)         0.0091         (14)         0.0104         (12)           O1         x         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	B	, 	0.89034	(14)	0.89026	(39)	0.89013	(17)	0.89065	(19)	0.89066	(15)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		v	0.10966	(14)	0.10974	(39)	0.10987	(17)	0.10935	(19)	0.10934	(15)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z	0.62236	(60)	0.61404	(133)	0.61765	(67)	0.61676	(71)	0.61141	(59)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Uea	0.0077	(10)	0.0084	(26)	0.0081	(13)	0.0091	(14)	0.0104	(12)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	x	0	<u> </u>	0		0	()	0		0	
z         0.30842         (62)         0.30385         (145)         0.30543         (68)         0.30429         (71)         0.30130         (58)           Ucq         0.0100         (10)         0.0094         (29)         0.0093         (12)         0.0091         (14)         0.0096         (10)           O2         x         0.93911         (8)         0.93986         (20)         0.939230         (9)         0.93925         (10)         0.93925         (8)           y         0.06089         (8)         0.06014         (20)         0.06070         (9)         0.06075         (10)         0.06035         (8)           ucq         0.0103         (7)         0.0080         (19)         0.0897         (9)         0.0091         (10)         0.0095         (8)           Ucq         0.0103         (7)         0.0080         (22)         0.12985         (11)         0.12932         (12)         0.12932         (12)         0.12932         (12)         0.12932         (12)         0.12932         (12)         0.12932         (12)         0.12832         (9)         0.5554         (43)           Ucq         0.0125         (8)         0.0127         (2)		v	0		0		0		0		0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		z	0.30842	(62)	0.30385	(145)	0.30543	(68)	0.30429	(71)	0.30130	(58)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Uea	0.0100	(10)	0.0094	(29)	0.0093	(12)	0.0091	(14)	0.0096	(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	x	0.93911	(8)	0.93986	(20)	0.93930	(9)	0.93925	(10)	0.93965	(8)
z $0.58876$ $(50)$ $0.57856$ $(94)$ $0.58377$ $(54)$ $0.58342$ $(52)$ $0.57557$ $(43)$ Ueq $0.0103$ $(7)$ $0.0080$ $(19)$ $0.0097$ $(9)$ $0.0091$ $(10)$ $0.0095$ $(8)$ O3x $0.13018$ $(9)$ $0.12906$ $(22)$ $0.12985$ $(11)$ $0.12932$ $(12)$ $0.12828$ $(9)$ y $0.86982$ $(9)$ $0.87094$ $(22)$ $0.87015$ $(11)$ $0.87068$ $(12)$ $0.87172$ $(9)$ z $0.56518$ $(48)$ $0.55692$ $(92)$ $0.56093$ $(52)$ $0.5014$ $(51)$ $0.55554$ $(43)$ Ueq $0.0125$ $(8)$ $0.0087$ $(20)$ $0.0125$ $(9)$ $0.0114$ $(10)$ $0.0128$ $(8)$ y $0.09264$ $(9)$ $0.90763$ $(21)$ $0.09267$ $(10)$ $0.09781$ $(11)$ $0.09733$ $(43)$ Ueq $0.0120$ $(7)$ $0.0115$ $(18)$ $0.0123$ $(8)$ $0.0113$ $(33)$ $-0.0633$ $(43)$ Ueq $0.0120$ $(7)$ $0.0115$ $(18)$ $0.0123$ $(8)$ $0.0113$ $(10)$ $0.09373$ $(10)$ $0.09131$ $(11)$ $0.09243$ $(8)$ y $0.090810$ $(9)$ $0.09137$ $(20)$ $0.09188$ $(10)$ $0.09131$ $(11)$ $0.09137$ $(8)$ O5x $0.09190$ $(9)$ $0.90837$ $(20)$ $0.90816$ $(10)$ $0.90852$ $(8$		Y	0.06089	(8)	0.06014	(20)	0.06070	(9)	0.06075	(10)	0.06035	(8)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		z	0.58876	(50)	0.57856	(94)	0.58377	(54)	0.58342	(52)	0.57557	(43)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Uea	0.0103	(7)	0.0080	(19)	0.0097	(9)	0.0091	(10)	0.0095	(8)
y         0.86982         (9)         0.87094         (22)         0.87015         (11)         0.87068         (12)         0.87172         (9)           z         0.56518         (48)         0.55692         (92)         0.56093         (52)         0.56014         (51)         0.55554         (43)           Ueq         0.0125         (8)         0.0087         (20)         0.0125         (9)         0.0114         (10)         0.0128         (8)           y         0.09264         (9)         0.09237         (21)         0.09267         (10)         0.09219         (11)         0.09243         (8)           z         0.00636         (50)         -0.00483         (95)         0.00187         (52)         0.00143         (53)         -0.0633         (43)           Ueq         0.0120         (7)         0.0115         (18)         0.0123         (8)         0.0119         (10)         0.0137         (8)           0.4         0.0120         (7)         0.0115         (18)         0.0123         (8)         0.0114         (10)         0.0137         (8)           0.5         x         0.09100         (9)         0.09163         (20)	03	x	0.13018	(9)	0.12906	(22)	0.12985	(11)	0.12932	(12)	0.12828	(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		v	0.86982	(9)	0.87094	(22)	0.87015	àń	0.87068	(12)	0.87172	(9)
Ueq         0.0125         (8)         0.0087         (20)         0.0125         (9)         0.0114         (10)         0.0128         (8)           O4         x         0.90736         (9)         0.90763         (21)         0.90733         (10)         0.90781         (11)         0.90757         (8)           y         0.09264         (9)         0.09237         (21)         0.09267         (10)         0.09219         (11)         0.09243         (8)           z         0.00636         (50)         -0.00483         (95)         0.00187         (52)         0.00143         (53)         -0.00633         (43)           Ueq         0.0120         (7)         0.0115         (18)         0.0123         (8)         0.0119         (10)         0.0137         (8)           O5         x         0.09190         (9)         0.09163         (20)         0.09168         (10)         0.09131         (11)         0.09182         (8)           y         0.90810         (9)         0.90837         (20)         0.90832         (10)         0.90852         (8)           z         0.01149         (47)         -0.02447         (970         -0.0188 <t< th=""><th></th><th>z</th><th>0.56518</th><th>(48)</th><th>0.55692</th><th>(92)</th><th>0.56093</th><th>(52)</th><th>0.56014</th><th>(51)</th><th>0.55554</th><th>(43)</th></t<>		z	0.56518	(48)	0.55692	(92)	0.56093	(52)	0.56014	(51)	0.55554	(43)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ueq	0.0125	(8)	0.0087	(20)	0.0125	(9)	0.0114	(10)	0.0128	(8)
y         0.09264         (9)         0.09237         (21)         0.09267         (10)         0.09219         (11)         0.09243         (8)           z         0.00636         (50)         -0.00483         (95)         0.00187         (52)         0.00143         (53)         -0.00633         (43)           Ueq         0.0120         (7)         0.0115         (18)         0.0123         (8)         0.0119         (10)         0.0137         (8)           05         x         0.09190         (9)         0.09163         (20)         0.09168         (10)         0.09131         (11)         0.09148         (8)           y         0.90810         (9)         0.90837         (20)         0.90832         (10)         0.09169         (11)         0.90852         (8)           z         -0.01419         (47)         -0.02447         (970         -0.01908         (51)         -0.01888         (52)         -0.02548         (41)           Ueq         0.0109         (7)         0.0092         (18)         0.1106         (8)         0.0118         (8)           y         0.19439         (12)         0.18207         (28)         0.18315         (14)	04	x .	0.90736	(9)	0.90763	(21)	0.90733	(10)	0.90781	(11)	0.90757	(8)
z       0.00636       (50)       -0.00483       (95)       0.00187       (52)       0.00143       (53)       -0.00633       (43)         Ueq       0.0120       (7)       0.0115       (18)       0.0123       (8)       0.0119       (10)       0.0137       (8)         O5       x       0.09190       (9)       0.09163       (20)       0.09168       (10)       0.09131       (11)       0.09148       (8)         y       0.90810       (9)       0.90837       (20)       0.90832       (10)       0.90869       (11)       0.90852       (8)         z       -0.01419       (47)       -0.02447       (970)       -0.01908       (51)       -0.01888       (52)       -0.02548       (41)         Ueq       0.0109       (7)       0.0092       (18)       0.0106       (8)       0.0110       (9)       0.0118       (8)         y       0.19439       (12)       0.19154       (31)       0.19375       (13)       0.18313       (14)       0.18226       (11)         y       0.19439       (12)       0.28760       (86)       0.29316       (49)       0.29134       (47)       0.28202       (39) <t< th=""><th></th><th>Y</th><th>0.09264</th><th>(9)</th><th>0.09237</th><th>(21)</th><th>0.09267</th><th>(10)</th><th>0.09219</th><th>(11)</th><th>0.09243</th><th>(8)</th></t<>		Y	0.09264	(9)	0.09237	(21)	0.09267	(10)	0.09219	(11)	0.09243	(8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Z	0.00636	(50)	-0.00483	(95)	0.00187	(52)	0.00143	(53)	-0.00633	(43)
O5x $0.09190$ (9) $0.09163$ (20) $0.09168$ (10) $0.09131$ (11) $0.09148$ (8)y $0.90810$ (9) $0.90837$ (20) $0.90832$ (10) $0.90869$ (11) $0.90852$ (8)z $-0.01419$ (47) $-0.02447$ (970) $-0.01908$ (51) $-0.01888$ (52) $-0.02548$ (41)Ueq $0.0109$ (7) $0.0092$ (18) $0.0106$ (8) $0.0110$ (9) $0.0118$ (8)O6x $0.18460$ (11) $0.18207$ (28) $0.18395$ (13) $0.18313$ (14) $0.18226$ (11)y $0.19439$ (12) $0.19154$ (31) $0.19375$ (13) $0.19290$ (16) $0.19184$ (12)z $0.29748$ (45) $0.28760$ (86) $0.29316$ (49) $0.29134$ (47) $0.28502$ (39)Ueq $0.0095$ (6) $0.0092$ (16) $0.0089$ (7) $0.0088$ (8) $0.0098$ (7)O7x $0.28411$ (10) $0.28283$ (25) $0.28382$ (12) $0.28314$ (13) $0.28296$ (10)y $0.28429$ (11) $0.28299$ (26) $0.28388$ (13) $0.28326$ (14) $0.28308$ (11)z $-0.00037$ (44) $-0.0569$ (86) $-0.00351$ (47) $-0.00320$ (46) $-0.00819$ (38)Ueq $0.0106$ (6) $0.0110$ (16) $0.0105$ (7		Ueq	0.0120	(7)	0.0115	(18)	0.0123	(8)	0.0119	(10)	0.0137	(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05	x	0.09190	(9)	0.09163	(20)	0.09168	(10)	0.09131	(11)	0.09148	(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		v	0.90810	(9)	0.90837	(20)	0.90832	(10)	0.90869	àń	0.90852	(8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		z	-0.01419	(47)	-0.02447	(970	-0.01908	(51)	-0.01888	(52)	-0.02548	(41)
O6x0.18460(11)0.18207(28)0.18395(13)0.18313(14)0.18226(11)y0.19439(12)0.19154(31)0.19375(13)0.19290(16)0.19184(12)z0.29748(45)0.28760(86)0.29316(49)0.29134(47)0.28502(39)Ueq0.0095(6)0.0092(16)0.0089(7)0.0088(8)0.0098(7)O7x0.28411(10)0.28283(25)0.28382(12)0.28314(13)0.28296(10)y0.28429(11)0.28299(26)0.28388(13)0.28326(14)0.28308(11)z-0.0037(44)-0.00569(86)-0.00351(47)-0.00320(46)-0.00819(38)Ueq0.0106(6)0.0110(16)0.0105(7)0.0107(8)0.0124(7)O8x0.26873(12)0.26853(27)0.26888(13)0.26842(14)0.26799(12)y0.20818(12)0.20774(25)0.20811(13)0.20771(14)0.20749(11)z0.63609(45)0.62964(88)0.63241(48)0.63186(47)0.62694(40)Ueq0.0129(6)0.0116(16)0.0124(8)0.0120(8)0.0136(7)		Ueq	0.0109	(7)	0.0092	(18)	0.0106	(8)	0.0110	(9)	0.0118	(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06	X	0.18460	(11)	0.18207	(28)	0.18395	(13)	0.18313	(14)	0.18226	(11)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		У	0.19439	(12)	0.19154	(31)	0.19375	(13)	0.19290	(16)	0.19184	(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		z	0.29748	(45)	0.28760	(86)	0.29316	(49)	0.29134	(47)	0.28502	(39)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ueq	0.0095	(6)	0.0092	(16)	0.0089	$(7)^{-}$	0.0088	(8)	0.0098	(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	x	0.28411	(10)	0.28283	(25)	0.28382	(12)	0.28314	(13)	0.28296	(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		y	0.28429	ίń	0.28299	(26)	0.28388	(13)	0.28326	(14)	0.28308	àń
Ueq $0.0106$ $(6)$ $0.0110$ $(16)$ $0.0105$ $(7)$ $0.0107$ $(8)$ $0.0124$ $(7)$ O8x $0.26873$ $(12)$ $0.26853$ $(27)$ $0.26888$ $(13)$ $0.26842$ $(14)$ $0.26799$ $(12)$ y $0.20818$ $(12)$ $0.20774$ $(25)$ $0.20811$ $(13)$ $0.20771$ $(14)$ $0.20749$ $(11)$ z $0.63609$ $(45)$ $0.62964$ $(88)$ $0.63241$ $(48)$ $0.63186$ $(47)$ $0.62694$ $(40)$ Ueq $0.0129$ $(6)$ $0.0116$ $(16)$ $0.0124$ $(8)$ $0.0120$ $(8)$ $0.0136$ $(7)$		z	-0.00037	(44)	-0.00569	(86)	-0.00351	(47)	-0.00320	(46)	-0.00819	(38)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Uea	0.0106	(6)	0.0110	(16)	0.0105	(7)	0.0107	(8)	0.0124	(7)
y $0.20818$ $(12)$ $0.20774$ $(25)$ $0.20811$ $(13)$ $0.20771$ $(14)$ $0.20749$ $(11)$ z $0.63609$ $(45)$ $0.62964$ $(88)$ $0.63241$ $(48)$ $0.63186$ $(47)$ $0.62694$ $(40)$ Ueg $0.0129$ $(6)$ $0.0116$ $(16)$ $0.0124$ $(8)$ $0.0120$ $(8)$ $0.0136$ $(7)$	08	X	0.26873	(12)	0.26853	(27)	0.26888	(13)	0.26842	(14)	0.26799	(12)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		v	0.20818	(12)	0.20774	(25)	0.20811	(13)	0.20771	(14)	0.20749	(1)
Ueg $0.0129$ (6) $0.0116$ (16) $0.0124$ (8) $0.0120$ (8) $0.0136$ (7)		z	0.63609	(45)	0.62964	(88)	0.63241	(48)	0.63186	(47)	0.62694	(40)
		Ueq	0.0129	(6)	0.0116	(16)	0.0124	(8)	0.0120	(8)	0.0136	(7)

[		CT96		CT97		CT98		CT99	
X	х	0		0		0		0	
	У	0		0		0		0	
	Z	0.84080		0.84080		0.84080		0.84080	
	Ueq	0.0262	(18)	0.0312	(27)	0.0262	(35)	0.0223	(7)
Y	x	0.06205	(4)	0.06202	(6)	0.06190	(8)	0.06126	(2)
	У	0.93795	(4)	0.93798	(6)	0.93810	(8)	0.93874	(2)
	Z	0.42870	(74)	0.42670	(110)	0.42917	(137)	0.42042	(26)
	Ueq	0.0066	(4)	0.0051	(6)	0.0065	(8)	0.0107	(2)
Z	х	0.26203	(6)	0.26198	(9)	0.26184	(11)	0.26282	(3)
	У	0.29805	(6)	0.29796	(9)	0.29788	(12)	0.29896	(3)
	Z	0.45944	(74)	0.45805	(109)	0.46055	(136)	0.45174	(25)
	Ueq	0.0054	(33)	0.0067	(5)	0.0065	(7)	0.0094	(2)
T	X	0.18778	(8)	0.18758	(12)	0.18805	(16)	0.18763	(4)
	У	0.18964	(8)	0.18935	(12)	0.18961	(16)	0.18915	(4)
	z	0.06985	(74)	0.06812	(110)	0.07073	(137)	0.06466	(26)
	Ueq	0.0063	(4)	0.0086	(7)	0.0084	(9)	0.0094	(2)
B	x	0.89182	(28)	0.89303	(42)	0.89147	(55)	0.89029	(12)
	У	0.10818	(28)	0.10697	(42)	0.10853	(55)	0.10971	(12)
	z	0.61435	(111)	0.61308	(181)	0.61541	(217)	0.60698	(51)
	Ueq	0.0086	(21)	0.0138	(34)	0.0090	(39)	0.0107	(10)
01	x	0		0		0		0	
	У	0		0		0		0	
	Z	0.30343	(120)	0.29866	(176)	0.30306	(226)	0.29339	(56)
	Ueq	0.0093	(20)	0.0153	(35)	0.0094	(40)	0.0143	(9)
02	x	0.93912	(15)	0.93861	(23)	0.93940	(29)	0.93867	(8)
	У	0.06088	(15)	0.06139	(23)	0.06060	(29)	0.06133	(8)
	Z	0.57721	(88)	0.57573	(129)	0.57807	(166)	0.57063	(41)
	Ueq	0.0081	(13)	0.0101	(21)	0.0098	(28)	0.0124	(7)
03	х	0.12776	(17)	0.12696	(24)	0.12768	(32)	0.12856	(9)
	У	0.87224	(17)	0.87304	(24)	0.87232	(32)	0.87144	(9)
	Z	0.55858	(87)	0.55702	(130)	0.56202	(158)	0.55169	(38)
	Ueq	0.0120	(15)	0.0120	(22)	0.0088	(28)	0.0134	(7)
04	х	0.90845	(16)	0.90872	(24)	0.90815	(32)	0.90796	(9)
	у	0.09155	(16)	0.09128	(24)	0.09185	(32)	0.09204	(9)
l	Z	0.00083	(89)	-0.00515	(138)	-0.00196	(172)	-0.00413	(40)
	Ueq	0.0120	(14)	0.0174	(23)	0.0147	(28)	0.0142	(7)
05	х	0.09162	(15)	0.09143	(24)	0.09155	(31)	0.09138	(9)
	У	0.90838	(15)	0.90857	(24)	0.90845	(31)	0.90862	(9)
	Z	-0.01883	(87)	-0.02196	(131)	-0.01929	(164)	-0.02209	(37)
	Ueq	0.0103	(14)	0.0137	(22)	0.0112	(27)	0.0134	(6)
06	х	0.18204	(21)	0.18196	(32)	0.18190	(40)	0.18319	(12)
	У	0.19132	(23)	0.19104	(34)	0.19113	(44)	0.19207	(12)
	Z	0.28656	(82)	0.28160	(124)	0.28557	(153)	0.28004	(35)
	Ueq	0.0087	(12)	0.0115	(18)	0.0088	(23)	0.0124	(6)
07	х	0.28229	(19)	0.28306	(30)	0.28241	(38)	0.28127	(11)
	у	0.28146	(20)	0.28233	(29)	0.28215	(40)	0.28047	(11)
	Z	-0.00373	(79)	-0.00596	(117)	-0.00334	(148)	-0.01138	(31)
	Ueq	0.0096	(11)	0.0123	(18)	0.0113	(24)	0.0129	(6)
08	X	0.26459	(21)	0.26571	(31)	0.26621	(40)	0.26736	(12)
	У	0.20497	(19)	0.20593	(30)	0.20576	(38)	0.20654	(12)
	Z	0.63128	(82)	0.63067	(125)	0.63243	(155)	0.62243	(33)
	Ueq	0.0108	(12)	0.0156	(19)	0.0144	(24)	0.0141	(6)

# Section C.2

		CT1	CT2	CT3	CT4	CT5
H3	x	0.1264 (15)	0.1308 (15)	0.1257 (14)	0.1267 (18)	0.1327 (19)
	v	0.8736 (15)	0.8692 (15)	0.8743 (14)	0.8734 (18)	0.8673 (19)
	7	0.7021 (10)	0.7047 (6)	0.7022 (12)	0.7040 (12)	0.7066 (5)
	Ũea	0.0263 (108)	0.0308 (114)	0.0145 (99)	0.0385 (140)	0.0542 (156)
				· · · · · · · · · · · · · · · · · · ·	`	<u>`</u>
		CT6	CT7	CT8	СТ9	CT10
НЗ	x	0.1309 (14)	0.1286 (15)	0.1305 (16)	0.1308 (23)	0.1316 (18)
	v	0.8691 (14)	0.8714 (15)	0.8696 (16)	0.8692 (23)	0.8684 (18)
	J Z	0.7055 (5)	0.7034 (9)	0.7015 (6)	0.7035 (8)	0.7043 (7)
	Ueq	0.0284 (103)	0.0285 (114)	0.0432 (125)	0.0633 (190)	0.0380 (144)
		<u>`````````````````````````````````````</u>	ļ`			
		CT11	CT12	CT13	CT14	CT15
H3	х	0.1383 (18)	0.1369 (17)	0.1426 (19)	0.1268 (19)	0.1272 (15)
	у	0.8617 (18)	0.8632 (17)	0.8575 (19)	0.8732 (19)	0.8728 (15)
	Z	0.7027 (13)	0.7030 (11)	0.7007 (20)	0.7040 (14)	0.7023 (8)
	Ueq	0.0379 (131)	0.0460 (131)	0.0370 (144)	0.0391 (152)	0.0380 (113)
		, , , , , , , , , , , , , , , , , , ,				
		CT16	CT17	CT18	CT19	CT20
H3	х	0.1320 (14)	0.1311 (13)	0.1335 (15)	0.1348 (18)	0.1281 (23)
	У	0.8680 (14)	0.8689 (13)	0.8665 (15)	0.8652 (18)	0.8719 (23)
	Z	0.7048 (6)	0.7045 (6)	0.7055 (5)	0.7054 (5)	0.7034 (17)
	Ueq	0.0173 (102)	0.0166 (94)	0.0252 (109)	0.0240 (128)	0.5327 (359)
				~~~~	6m2 (	
		CT21	CT22	CT23	CT24	CT25
Н3	x	CT21 0.1373 (20)	CT22 0.1343 (20)	CT23 0.1298 (16)	CT24 0.1329 (16)	CT25 0.1365 (16)
H3	x y	CT21 0.1373 (20) 0.8627 (20)	CT22 0.1343 (20) 0.8657 (20)	CT23 0.1298 (16) 0.8702 (16)	CT24 0.1329 (16) 0.8671 (16)	CT25 0.1365 (16) 0.8636 (16)
H3	x y z	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.7056 (8)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.2027 (14)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0124 (10)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (11)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116)
H3	x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116)
H3	x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116)
H3	x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1022 (17)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1208 (16)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1217 (16)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1202 (12)
H3	x y z Ueq x	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.2662 (17)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 (16) 0.8722 (16)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8602 (16)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 (16) 0.9682 (16)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8607 (12)
H3	x y z Ueq x y	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7050 (5)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 (16) 0.8732 (16) 0.7023 (12)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 (16) 0.8683 (16) 0.7044 (6)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8697 (13) 0.7027 (7)
H3	x y z Ueq x y z	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.402 (122)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.8732 (16) 0.7032 (12) 0.0302 (120)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98)
H3	x y z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.8732 (16) 0.7032 (12) 0.0392 (129)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98)
H3	x y Z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) (129)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35
H3	x y z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 (151) 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) 0.1356 (14)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) 0.1362 (19)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.8683 (16) 0.7044 (6) 0.0133 (106)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 0.1346 (17)
H3 H3 H3	x y z Ueq x y z Ueq x	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 0.1281 (18)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) 0.1356 (14) 0.8644 (14) 0.8644 (14)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 (16) 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 (1362 0.1362 (19) 0.8638 (19)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 0.8823 (17)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 0.1346 (17) 0.8654 (17)
H3 H3 H3	x y z Ueq x y z Ueq x y z	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 0.1281 (18) 0.8719 (18)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 (16) 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 0.1362 (19) 0.8638 (19) 0.6959	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 (16) 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 (17) 0.8823 (17) 0.6829 (24)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 0.1346 (17) 0.8654 (17) 0.8654 (17)
H3 H3 H3	x y Z Ueq x y Z Ueq x y z Lleq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 0.1281 (18) 0.8719 (18) 0.7033 (11) 0.0518 (147)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 0.1362 (19) 0.8638 (19) 0.6959 (13) 0.0614 (153)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 (16) 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 (1346 0.1346 (17) 0.7032 (6) 0.0350 (134)
H3 H3 H3	x y Z Ueq x y Z Ueq x y Z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 0.1281 (18) 0.8719 (18) 0.7033 (11) 0.0518 (147)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 (16) 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 (1362 0.1362 (19) 0.8638 (19) 0.6959 (13) 0.0614 (153)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 (16) 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 (1346 0.1346 (17) 0.7032 (6) 0.0350 (134)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 (18) 0.7033 (11) 0.0518 (147)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 0.1362 (19) 0.8638 (19) 0.6959 (13) 0.0614 (153) 0.0614 (153)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 (1346 0.1346 (17) 0.8654 (17) 0.7032 (6) 0.0350 (134)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 (151) 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 (18) 0.7033 (11) 0.0518 (147)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.7032 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 0.1362 (19) 0.8638 (19) 0.6959 0.0614 (153) CT38 0.1257 (17)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 0.1303 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 0.1346 (17) 0.8654 (17) 0.7032 (6) 0.0350 (134)
H3 H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 (151) 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 (18) 0.8719 (18) 0.7033 (11) 0.0518 (147) CT36 (0.1328 0.1328 (15) 0.8672 (15)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100) CT37 0.1232 (18) 0.8769 (18)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 0.1308 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 0.1362 0.1362 (19) 0.8638 (19) 0.6959 (13) 0.0614 (153) CT38 0.1257 0.1257 (17) 0.8743 (17)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183) CT39 0.1281 (25) 0.8720 (25)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.1303 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 (17) 0.8654 (17) 0.7032 (6) 0.0350 (134)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq x y z y z	CT21 0.1373 (20) 0.8627 (20) 0.7056 (8) 0.0390 (151) CT26 0.1338 (17) 0.8662 (17) 0.7059 (5) 0.0402 (133) CT31 0.1281 (18) 0.7033 (11) 0.0518 (147) CT36 0.1328 (15) 0.8672 (15) 0.7030 (5)	CT22 0.1343 (20) 0.8657 (20) 0.7041 (7) 0.0227 (146) CT27 0.1268 0.1268 (16) 0.8732 (16) 0.7032 (12) 0.0392 (129) CT32 0.1356 0.1356 (14) 0.8644 (14) 0.7028 (5) 0.0186 (100) CT37 0.1232 (18) 0.8769 (18) 0.6871 (21)	CT23 0.1298 (16) 0.8702 (16) 0.7041 (10) 0.0134 (106) CT28 (16) 0.1308 (16) 0.8692 (16) 0.7062 (7) 0.0222 (117) CT33 (19) 0.6959 (13) 0.6959 (13) 0.0614 (153)	CT24 0.1329 (16) 0.8671 (16) 0.7049 (6) 0.0240 (116) CT29 0.1317 0.1317 (16) 0.8683 (16) 0.7044 (6) 0.0133 (106) CT34 0.1177 (17) 0.8823 (17) 0.6829 (24) 0.0778 (183) CT39 0.1281 (25) 0.8720 (25) 0.6953 (10)	CT25 0.1365 (16) 0.8636 (16) 0.7045 (8) 0.0280 (116) CT30 (13) 0.8697 (13) 0.7037 (7) 0.0229 (98) CT35 (1346 0.1346 (17) 0.8654 (17) 0.7032 (6) 0.0350 (134) CT40 (14) 0.8760 (14) 0.6900 (10)

. . .

11.15

		CT41		CT42	17	CT43		CT44		CT45	
H3	х	0.1289	(33)	0.1300	(16)	0.1249	(13)	0.1295	(14)	0.1344	(18)
	у	0.8711	(33)	0.8700	(16)	0.8751	(13)	0.8705	(14)	0.8656	(18)
	Z	0.6961	(9)	0.6960	(6)	0.6977	(9)	0.6900	(8)	0.6946	(4)
	Ueq	0.0688	(314)	0.0269	(125)	0.0527	(117)	0.0508	(121)	0.0398	(144)
		CT46		CT47		CT48		CT49		CT50	
H3	х	0.1330	(18)	0.1311	(14)	0.1296	(19)	0.1310	(14)	0.1295	(15)
	у	0.8670	(18)	0.8689	(14)	0.8704	(19)	0.8690	(14)	0.8705	(15)
	Z	0.6975	(5)	0.6923	(5)	0.6917	(9)	0.6959	(7)	0.6945	(10)
	Ueq	0.0372	(144)	0.0362	(109)	0.0433	(154)	0.05		0.0483	(130)
L			1					· · · · · · · · · · · · · · · · · · ·		,	
		CT51		CT52		CT53		CT54		CT55	
H3	х	0.1300	(14)	0.1281	(15)	0.1312	(17)	0.1342	(29)	0.1281	(13)
	у	0.8700	(14)	0.8719	(15)	0.8689	(17)	0.8658	(29)	0.8719	(13)
	z	0.6937	(9)	0.6884	(11)	0.6911	(8)	0.6952	(7)	0.6974	(11)
	Ueq	0.0412	(116)	0.0328	(117)	0.0444	(134)	0.0681	(253)	0.0159	(94)
		CT56		CT57		CT58		CT59		CT60	
H3	х	0.1257	(22)	0.1326	(16)	0.1318	(33)	0.1307	(18)	0.1326	(16)
	У	0.8743	(22)	0.8674	(16)	0.8682	(33)	0.8693	(18)	0.8674	(16)
	Z	0.6908	(22)	0.6915	(5)	0.6929	(16)	0.7027	(10)	0.7045	(6)
	Ueq	0.0590	(194)	0.05		0.0397	(267)	0.0317	(140)	0.0236	(115)
		000 44		000 (6		077 (2		CT (1		(2000 / #	
		CT61		CT62		CT63		CT64	(1.0)	CT65	
Н3	x	CT61 0.1303	(14)	CT62 0.1311	(14)	CT63 0.1282	(14)	CT64 0.1328	(16)	CT65 0.1228	(19)
Н3	x y	CT61 0.1303 0.8698	(14)	CT62 0.1311 0.8689	(14) (14) (7)	CT63 0.1282 0.8718	(14) (14)	CT64 0.1328 0.8672	(16) (16)	CT65 0.1228 0.8772	(19) (19)
Н3	x y z	CT61 0.1303 0.8698 0.7040	(14) (14) (8) (102)	CT62 0.1311 0.8689 0.6999	(14) (14) (7)	CT63 0.1282 0.8718 0.6985	(14) (14) (11) (112)	CT64 0.1328 0.8672 0.6937	(16) (16) (3)	CT65 0.1228 0.8772 0.6867	(19) (19) (24) (1(7)
Н3	x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181	(14) (14) (8) (103)	CT62 0.1311 0.8689 0.6999 0.0236	(14) (14) (7) (108)	CT63 0.1282 0.8718 0.6985 0.0260	(14) (14) (11) (113)	CT64 0.1328 0.8672 0.6937 0.0441	(16) (16) (3) (134)	CT65 0.1228 0.8772 0.6867 0.0660	(19) (19) (24) (167)
Н3	x y z Ueq	CT61 0.1303 (0.8698 (0.7040 (0.0181 ((14) (14) (8) (103)	CT62 0.1311 0.8689 0.6999 0.0236	(14) (14) (7) (108)	CT63 0.1282 0.8718 0.6985 0.0260	(14) (14) (11) (113)	CT64 0.1328 0.8672 0.6937 0.0441	(16) (16) (3) (134)	CT65 0.1228 0.8772 0.6867 0.0660	(19) (19) (24) (167)
H3	x y z Ueq	CT61 0.1303 (0.8698 (0.7040 (0.0181 (CT66 (0.1221 ((14) (14) (8) (103)	CT62 0.1311 0.8689 0.6999 0.0236 CT67	(14) (14) (7) (108)	CT63 0.1282 0.8718 0.6985 0.0260 CT68	(14) (14) (11) (113)	CT64 0.1328 0.8672 0.6937 0.0441 CT69	(16) (16) (3) (134)	CT65 0.1228 0.8772 0.6867 0.0660 CT70	(19) (19) (24) (167)
H3 H3	x y z Ueq x	CT61 0.1303 (0.8698 (0.7040 (0.0181 (CT66 (0.1331 (0.8670 ((14) (14) (8) (103) (16) (16)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8604	(14) (14) (7) (108) (14)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720	(14) (14) (11) (113) (15) (15)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820	(16) (16) (3) (134) (21)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616	(19) (19) (24) (167) (15) (15)
H3	x y Z Ueq x y	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944	(14) (14) (8) (103) (16) (16) (16)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6013	(14) (14) (7) (108) (14) (14) (5)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6004	(14) (14) (11) (113) (15) (15) (11)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785	(16) (16) (3) (134) (21) (21) (21) (40)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925	(19) (19) (24) (167) (15) (15) (0)
H3	x y Z Ueq x y z	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269	(14) (14) (8) (103) (16) (16) (4) (116)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451	(14) (14) (7) (108) (14) (14) (5) (114)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.6904	(14) (14) (11) (113) (15) (15) (11) (133)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658	(16) (16) (3) (134) (21) (21) (40) (205)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242	(19) (19) (24) (167) (15) (15) (9) (110)
H3 H3	x y Z Ueq x y z Ueq	CT61 0.1303 (0.8698 (0.7040 (0.0181 (CT66 (0.1331 (0.8670 (0.6944 (0.0269 ((14) (14) (8) (103) (16) (16) (4) (116)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451	(14) (14) (7) (108) (14) (14) (14) (5) (114)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606	(14) (14) (11) (113) (15) (15) (15) (11) (133)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658	(16) (16) (3) (134) (21) (21) (21) (40) (205)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242	(19) (19) (24) (167) (15) (15) (9) (110)
H3 H3	x y z Ueq x y z Ueq	CT61 0.1303 (0.8698 (0.7040 (0.0181 (CT66 0.1331 (0.8670 (0.6944 (0.0269 (CT71	(14) (14) (8) (103) (16) (16) (4) (116)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72	(14) (14) (7) (108) (14) (14) (5) (114)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73	(14) (14) (11) (113) (15) (15) (15) (11) (133)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74	(16) (16) (3) (134) (21) (21) (40) (205)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75	(19) (19) (24) (167) (15) (15) (9) (110)
H3 H3	x y z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283	$(14) \\ (14) \\ (8) \\ (103) $ $(16) \\ (16) \\ (4) \\ (116) $ $(16) \\ (16) $	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271	(14) (14) (7) (108) (14) (14) (5) (114) (15)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346	(14) (14) (11) (113) (15) (15) (11) (133)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369	(16) (16) (3) (134) (21) (21) (20) (205)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346	(19) (19) (24) (167) (15) (15) (9) (110)
H3 H3 H3	x y Z Ueq x y z Ueq x y	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717	$(14) \\ (14) \\ (8) \\ (103) \\ (16) \\ $	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730	(14) (14) (7) (108) (14) (14) (5) (114) (15) (15)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654	(14) (14) (11) (113) (15) (15) (11) (133) (33) (33)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631	(16) (16) (3) (134) (21) (21) (20) (40) (205) (16) (16)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654	(19) (19) (24) (167) (15) (15) (15) (9) (110) (16) (16)
H3 H3 H3	x y z Ueq x y z Ueq x y z	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904	(14) (14) (8) (103) (16) (16) (16) (16) (16) (16) (16) (9)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936	(14) (14) (7) (108) (14) (14) (5) (114) (15) (15) (9)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921	(14) (14) (11) (113) (15) (15) (11) (133) (33) (33) (33) (6)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919	(16) (16) (3) (134) (21) (21) (21) (40) (205) (16) (16) (16) (6)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940	(19) (19) (24) (167) (15) (15) (15) (9) (110) (16) (16) (4)
H3 H3 H3	x y Z Ueq x y Z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595	(14) (14) (8) (103) (16) (16) (16) (16) (16) (16) (16) (16	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645	(14) (14) (7) (108) (14) (14) (5) (114) (15) (15) (9) (137)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714	(14) (14) (11) (113) (15) (15) (11) (133) (33) (33) (6) (318)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384	(16) (16) (3) (134) (21) (21) (40) (205) (16) (16) (16) (6) (140)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595	(14) (14) (8) (103) (16) (16) (16) (16) (16) (16) (9) (140)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645	(14) (14) (7) (108) (14) (14) (5) (114) (15) (15) (15) (9) (137)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714	(14) (14) (11) (113) (15) (15) (15) (11) (133) (33) (33) (6) (318)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384	(16) (3) (134) (21) (21) (40) (205) (16) (16) (16) (6) (140)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595 CT76	(14) (14) (8) (103) (16) (16) (16) (16) (16) (16) (140)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645 CT77	(14) (14) (7) (108) (14) (14) (5) (114) (15) (15) (9) (137)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714 CT78	(14) (14) (11) (113) (15) (15) (11) (133) (33) (33) (6) (318)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384 CT79	(16) (16) (3) (134) (21) (21) (40) (205) (16) (16) (16) (16) (140)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456 CT80	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136)
H3 H3 H3	x y Z Ueq x y Z Ueq X y Z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595 CT76 0.1269	$(14) \\ (14) \\ (8) \\ (103) $ $(16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (140) $ (16)	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645 CT77 0.1288	(14) (14) (7) (108) (14) (14) (14) (5) (114) (15) (15) (9) (137) (20)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714 CT78 0.1163	(14) (14) (11) (113) (113) (15) (15) (15) (11) (133) (33) (6) (318) (318) (19) (19) (19) (19) (19) (19) (19) (19	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384 CT79 0.1284	(16) (16) (3) (134) (21) (21) (20) (205) (16) (16) (16) (16) (16) (140)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456 CT80 0.1307	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595 CT76 0.1269 0.8731	$(14) \\ (14) \\ (8) \\ (103) $ $(16) \\ (16) \\ (16) \\ (16) \\ (140) $ $(16) \\ (16)$	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645 CT77 0.1288 0.8712	(14) (14) (7) (108) (14) (14) (14) (5) (114) (15) (15) (9) (137) (20) (20) (20)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714 CT78 0.1163 0.8838	(14) (14) (11) (113) (15) (15) (11) (133) (33) (33) (6) (318) (19) (19)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384 CT79 0.1284 0.8716	(16) (16) (3) (134) (21) (21) (40) (205) (16) (16) (16) (16) (16) (16) (15) (15)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456 CT80 0.1307 0.8693	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136) (136)
H3 H3 H3	x y z Ueq x y z Ueq x y z Ueq	CT61 0.1303 0.8698 0.7040 0.0181 CT66 0.1331 0.8670 0.6944 0.0269 CT71 0.1283 0.8717 0.6904 0.0595 CT76 0.1269 0.8731 0.6885	(14) (14) (8) (103) (16) (16) (16) (16) (16) (16) (140) (16) (16) (16) (16) (16) (12) (12) (16) (16) (12) (16) (12) (16) (12) (16) (12) (16) (12) (16) (12) (16) (12) (16) (12) (16) (12) (16) (16) (12) (16) (16) (12) (16) (16) (12) (16) (12) (16) (16) (12) (16) (16) (12) (16) (16) (12) (16) (16) (16) (12) (16) (16) (16) (12) (16) (16) (16) (12) (16) (16) (16) (16) (16) (16) (12) (16) (16) (16) (16) (16) (16) (16) (16	CT62 0.1311 0.8689 0.6999 0.0236 CT67 0.1306 0.8694 0.6913 0.0451 CT72 0.1271 0.8730 0.6936 0.0645 CT77 0.1288 0.8712 0.6899	(14) (14) (7) (108) (14) (14) (14) (5) (114) (15) (15) (9) (137) (20) (20) (20) (11)	CT63 0.1282 0.8718 0.6985 0.0260 CT68 0.1280 0.8720 0.6904 0.0606 CT73 0.1346 0.8654 0.6921 0.0714 CT78 0.1163 0.8838 0.6760	(14) (14) (11) (113) (15) (15) (11) (133) (33) (6) (318) (19) (19) (19) (34)	CT64 0.1328 0.8672 0.6937 0.0441 CT69 0.1180 0.8820 0.6785 0.0658 CT74 0.1369 0.8631 0.6919 0.0384 CT79 0.1284 0.8716 0.6911	(16) (16) (3) (134) (21) (21) (40) (205) (16) (16) (16) (16) (16) (16) (15) (15) (7)	CT65 0.1228 0.8772 0.6867 0.0660 CT70 0.1384 0.8616 0.6925 0.0242 CT75 0.1346 0.8654 0.6940 0.0456 CT80 0.1307 0.8693 0.6881	(19) (19) (24) (167) (15) (15) (9) (110) (16) (16) (4) (136) (17) (17) (17) (5)

		CT81	CT82	СТ83	CT84	CT85
H3	x	0.1329 (19)	0.1307 (19)	0.1359 (19)	0.1286 (19)	0.1341 (17)
	v	0.8671 (19)	0.8693 (19)	0.8641 (19)	0.8714 (19)	0.8659 (17)
	z	0.7078 (5)	0.7066 (9)	0.7088 (4)	0.7057 (13)	0.7034 (14)
	Ueq	0.0582 (157)	0.0501 (153)	0.0341 (144)	0.0440 (154)	0.0585 (206)
L			L <u></u>			
[CT86	CT87	CT88	СТ89	СТ90
H3	х	0.1346 (25)	0.1319 (27)	0.1245 (17)		0.1556 (38)
	y	0.8654 (25)	0.8681 (27)	0.8756 (17)		0.8444 (38)
	z	0.7013 (20)	0.6998 (20)	0.6915 (21)		0.6507 (162)
	Ueq	0.0395 (191)	0.0464 (221)	0.0482 (142)		0.2922 (1094)
L			<u></u>			
		CT91	СТ92	СТ93	СТ94	СТ95
H3	x	0.1268 (14)	0.1201 (28)	0.1227 (18)	0.1185 (20)	0.1213 (12)
	у	0.8732 (14)	0.8800 (28)	0.8773 (18)	0.8815 (20)	0.8788 (12)
	Z	0.6994 (7)	0.6865 (30)	0.6928 (15)	0.6875 (25)	0.6868 (10)
	Ueq	0.0208 (109)	0.0169 (239)	0.0451 (164)	0.0590 (204)	0.01
L						_
		СТ96	СТ97	CT98	СТ99	
				0 1212 (12)	0.1127 (24)	1

	CT96	CT97	CT98	C199
H3 x			0.1212 (42)	0.1127 (24)
v			0.8788 (42)	0.8873 (24)
z			0.6920 (33)	0.6681 (26)
Ue	p		0.01	0.0643 (230)

Section C.3

		CT79	
H1	х	0	
	у	0	
	Z	0.1588	(5)
	Ueq	0.05	

APPENDIX D

Site-scattering (epfu) Data

This appendix lists the refined site-scattering at the X-, Y-, Z- and W-sites in equivalent electrons per formula unit. Typical standard deviations are between 0.1 - 0.5 epfu at each site. The T-site was not refined for any sample.

	CT1	CT2	CT3	CT4	CT5	CT6	CT7	CT8
\overline{X}	7.45	8.92	6.64	7.24	8.40	8.21	7.38	6.62
Y	27.89	32.64	28.54	26.12	24.98	29.37	24.99	29.43
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W	8.97	9.30	8.90	9.19	9.42	9.23	9.30	8.83
	•							
	СТ9	CT10	CT11	CT12	CT13	CT14	CT15	CT16
X	6.09	7.81	8.00	7.03	9.99	6.89	5.81	10.29
Y	28.30	24.95	26.13	30.36	30.25	26.71	30.49	38.96
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W	8.64	9.30	9.07	8.78	9.48	9.10	8.00	9.49
	•							
	CT17	CT18	CT19	CT20	CT21	CT22	CT23	CT24
X	9.63	10.26	10.86	10.14	11.03	10.12	9.97	9.34
Y	38.52	37.36	39.36	41.95	38.44	44.13	42.26	37.66
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W	9.36	9.42	9.66	10.38	9.59	9.48	9.45	9.33
	•							
	CT25	CT26	CT27	<u>CT28</u>	CT29	CT30	CT31	CT32
X	8.75	9.99	8.03	8.22	8.38	9.30	8.64	10.76
Y	31.00	32.43	30.08	29.87	27.83	39.87	25.57	39.51
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W	9.43	9.47	9.10	9.32	9.53	9.34	9.30	9.84
1		CTD2 4	000	CTT 2 (CT 25	CITA	CTT 20	CTT 40
	C133	<u>C134</u>	<u>C135</u>	<u>C136</u>	<u>C137</u>	<u>C138</u>	<u>CT39</u>	<u>CT40</u>
X	9.71	11.50	12.32	10.76	15.74	9.91	10.84	11.04
Y	42.84	52.06	39.49	37.35	43.68	37.85	37.56	46.09
Z	78.00	79.14	78.00	78.00	78.00	78.00	78.00	78.00
W	8.00	8.90	8.00	8.00	9.26	8.51	8.00	8.00
1	CT41	СТ42	CT43	CT44	СТ45	СТ46	CT47	CT48
X	10.42	0.16	8 37	9.60	14.76	11.83	13.36	13.63
Y	42 62	43 19	41 44	45.05	37.46	36.20	36 37	36.22
7	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W L	8.00	8.00	8.00	933	9 11	917	9.42	937
<i>''</i>	0.00	0.00	0.00	1.55	2.11	2.17	7.72	2.57
	CT49	CT50	CT51	CT52	CT53	CT54	CT55	CT56
X	10.72	10.72	10.73	9.45	9.51	9.36	11.51	6.69
Y	51.37	49.34	53.48	61.19	62.82	63.60	44.59	61.99
7	70.00	70.00	70.00	70.00	70.00	70.00	70.00	70.00
	/8.00	78.00	/8.00	/8.00	78.00	/8.00	78.00	/8.00

,

1	CT57	CT58	CT59	CT60	CT61	CT62	CT63	CT64
\overline{X}	11.51	7.26	9.95	10.54	10.38	11.34	11.10	15.87
Y	66.40	62.09	45.25	44.37	44.63	44.42	45.36	37.34
Z	79.98	78.63	78.00	78.00	78.00	78.00	78.00	78.00
W	8.00	9.54	9.64	9.44	9.17	8.85	9.47	8.96
	CT65	CT66	CT67	CT68	СТ69	CT70	CT71	CT72
\overline{X}	19.69	16.20	17.56	18.85	18.72	15.92	17.04	11.83
Y	37.79	36.87	36.73	38.49	37.86	36.57	36.64	46.04
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
W	9.46	8.89	9.40	9.80	9.99	9.22	9.31	8.42
·	•							
	CT73	CT74	CT75	CT76	CT77	CT78	CT79	CT80
X	17.48	19.23	16.04	15.66	15.55	16.67	15.10	14.00
Y	36.78	36.77	36.64	49.12	47.73	39.15	41.57	45.19
Z	78.00	78.00	78.00	79.16	78.00	78.00	78.00	78.00
W	9.68	8.00	8.96	9.09	9.03	9.19	8.00	8.00
		CT C	GTERA	C7700 (~~~~~	CTEO (CTOT	CTOO
<u></u>	CT81	CT82	CT83	CT84	CT85	CT86	CT87	CT88
- <u>-</u> X	CT81 16.03	CT82 17.40	CT83 17.53	CT84 17.00	CT85	CT86	CT87 3.82	CT88
$\frac{X}{Y}$	CT81 16.03 23.21	CT82 17.40 22.28	CT83 17.53 28.71	CT84 17.00 20.83	CT85 3.31 59.77	CT86 3.55 59.76	CT87 3.82 58.05	CT88 2.63 46.37
$\frac{X}{Y}$	CT81 16.03 23.21 78.00	CT82 17.40 22.28 78.00	CT83 17.53 28.71 78.00	CT84 17.00 20.83 78.00	CT85 3.31 59.77 78.00	CT86 3.55 59.76 78.00	CT87 3.82 58.05 78.00	CT88 2.63 46.37 78.00
X Y Z W	CT81 16.03 23.21 78.00 9.56	CT82 17.40 22.28 78.00 9.35	CT83 17.53 28.71 78.00 9.65	CT84 17.00 20.83 78.00 9.29	CT85 3.31 59.77 78.00 8.00	CT86 3.55 59.76 78.00 8.00	CT87 3.82 58.05 78.00 8.47	CT88 2.63 46.37 78.00 8.00
X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89	CT82 17.40 22.28 78.00 9.35 CT90	CT83 17.53 28.71 78.00 9.65 CT91	CT84 17.00 20.83 78.00 9.29 CT92	CT85 3.31 59.77 78.00 8.00 CT93	CT86 3.55 59.76 78.00 8.00 CT94	CT87 3.82 58.05 78.00 8.47 CT95	CT88 2.63 46.37 78.00 8.00 CT96
$\begin{array}{c} X \\ Y \\ Z \\ W \end{array}$	CT81 16.03 23.21 78.00 9.56 CT89 11.09	CT82 17.40 22.28 78.00 9.35 CT90	CT83 17.53 28.71 78.00 9.65 CT91 11.45	CT84 17.00 20.83 78.00 9.29 CT92 11.83	CT85 3.31 59.77 78.00 8.00 CT93 12.13	CT86 3.55 59.76 78.00 8.00 CT94 12.69	CT87 3.82 58.05 78.00 8.47 CT95 12.47	CT88 2.63 46.37 78.00 8.00 CT96 11.07
$\begin{array}{c} X \\ Y \\ Z \\ W \\ \hline \\ X \\ Y \end{array}$	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15
X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28
X Y Z W X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00
X Y Z W X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00
X Y Z W X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00 CT97	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00 CT98	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00 CT99	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00
X Y Z W X Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00 CT97 11.86	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00 CT98 11.25	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00 CT99 14.16	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00
X Y Z W X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00 CT97 11.86 61.02	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00 CT98 11.25 64.20	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00 CT99 14.16 70.97	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00
X Y Z W X Y Z W	CT81 16.03 23.21 78.00 9.56 CT89 11.09 66.00 82.87 8.00 CT97 11.86 61.02 112.23	CT82 17.40 22.28 78.00 9.35 CT90 11.91 56.60 92.19 8.00 CT98 11.25 64.20 115.03	CT83 17.53 28.71 78.00 9.65 CT91 11.45 49.57 83.55 8.00 CT99 14.16 70.97 128.06	CT84 17.00 20.83 78.00 9.29 CT92 11.83 64.40 94.69 8.00	CT85 3.31 59.77 78.00 8.00 CT93 12.13 53.48 85.36 8.00	CT86 3.55 59.76 78.00 8.00 CT94 12.69 58.19 95.62 8.00	CT87 3.82 58.05 78.00 8.47 CT95 12.47 64.37 95.37 8.00	CT88 2.63 46.37 78.00 8.00 CT96 11.07 65.15 114.28 8.00

APPENDIX E

Chemistry (epfu) Data

This appendix lists the assigned chemistry from electron-microprobe analysis at the *X*-, *Y*-, *Z*-, *T*- and *W*-sites in equivalent electrons per formula unit (*epfu*).

Section E.1 lists the epfu from the standard normalization and site-assignment scheme discussed in Chapter 3.

Section E.2 lists the *epfu* for those samples (marked with * in Section E.1) that were renormalized on 6 Si *apfu* as initial Si *apfu* values exceeded 6 *apfu* (initial *epfu* > 84).

Section E.3 lists the *epfu* for CT96, calculated as described in Chapter 5, and CT99, calculated as described in Chapter 6.

Sect	ion E.1:							
<u></u>	CT1	CT2	CT3	CT4	CT5*	CT6	CT7 *	CT8
X	6.38	8.58	5.91	7.07	7.49	7.58	7.35	5.81
Y	26.56	32.94	28.07	26.23	24.79	29.31	24.69	27.64
Ζ	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
Τ	83.92	83.99	83.99	83.96	84.64	83.90	85.09	83.96
W	8.22	8.43	8.32	8.44	8.47	8.47	8.46	8.17
	CT9*	CT10*	CT11	CT12	CT13*	CT14	CT15	CT16*
X	5.63	7.12	6.91	6.29	7.88	6.83	6.49	9.75
Y	26.36	24.53	28.87	29.08	28.41	27.63	27.27	38.53
Ζ	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
Τ	84.14	85.76	83.92	83.88	84.11	83.91	83.84	84.83
W	8.21	8.48	8.44	8.30	8.46	8.45	8.28	8.68
	CT17*	CT18*	CT19*	CT20*	CT21*	CT22	CT23*	CT24*
X	9.00	9.33	9.59	9.19	9.95	9.09	9.41	8.82
Y	37.89	36.76	38.89	39.26	38.16	44.64	42.39	37.74
Ζ	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
T	84.38	84.92	85.16	85.23	85.09	83.98	84.20	84.06
W	8.58	8.66	8.58	8.65	8.76	8.56	8.68	8.52
		· · ·						
	CT25*	СТ26*	CT27*	CT28*	CT29*	CT30	CT31*	CT32
X	7.71	8.45	15.12	7.74	9.32	9.15	8.71	10.58
Y	30.91	31.42	29.19	29.12	29.86	40.97	26.57	40.30
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
T	84.50	84.69	84.66	84.98	84.53	83.92	84.50	83.95
W	8.50	8.61	8.57	8.51	8.59	8.56	8.56	8.79
1	-							
	1 CT22*	CT24	CT25*	CT2(*	CT27*	CT20	CT 20	CTT 40
¥Z.	CT33*	CT34	CT35*	CT36*	CT37*	CT38	CT39	CT40
\overline{X}	CT33 *	CT34 11.09	CT35*	CT36 *	CT37*	CT38 9.44	CT39	CT40
$\begin{array}{c} X \\ Y \\ \end{array}$	CT33* 9.32 46.18 78.00	CT34 11.09 49.98	CT35* 18.68 36.59	CT36* 9.83 36.00	CT37* 15.97 34.89	CT38 9.44 35.34	CT39 10.39 35.16	CT40 11.44 46.49
X Y Z T	CT33* 9.32 46.18 78.00	CT34 11.09 49.98 77.10	CT35* 18.68 36.59 77.80	CT36* 9.83 36.00 78.00	CT37* 15.97 34.89 77.39	CT38 9.44 35.34 78.00	CT39 10.39 35.16 78.00	CT40 11.44 46.49 77.35
X Y Z T	CT33* 9.32 46.18 78.00 84.36	CT34 11.09 49.98 77.10 83.80 8.17	CT35* 18.68 36.59 77.80 84.41	CT36* 9.83 36.00 78.00 84.07 8.12	CT37* 15.97 34.89 77.39 84.80	CT38 9.44 35.34 78.00 83.94	CT39 10.39 35.16 78.00 83.92	CT40 11.44 46.49 77.35 83.78
X Y Z T W	CT33* 9.32 46.18 78.00 84.36 8.01	CT34 11.09 49.98 77.10 83.80 8.17	CT35* 18.68 36.59 77.80 84.41 8.00	CT36* 9.83 36.00 78.00 84.07 8.13	CT37* 15.97 34.89 77.39 84.80 8.50	CT38 9.44 35.34 78.00 83.94 8.10	CT39 10.39 35.16 78.00 83.92 8.14	CT40 11.44 46.49 77.35 83.78 8.14
X Y Z T W	CT33* 9.32 46.18 78.00 84.36 8.01	CT34 11.09 49.98 77.10 83.80 8.17 CT42	CT35* 18.68 36.59 77.80 84.41 8.00 CT43	CT36* 9.83 36.00 78.00 84.07 8.13	CT37* 15.97 34.89 77.39 84.80 8.50 CT45	CT38 9.44 35.34 78.00 83.94 8.10 CT46*	CT39 10.39 35.16 78.00 83.92 8.14	CT40 11.44 46.49 77.35 83.78 8.14 CT48
X Y Z T W	CT33* 9.32 46.18 78.00 84.36 8.01 CT41	CT34 11.09 49.98 77.10 83.80 8.17 CT42	CT35* 18.68 36.59 77.80 84.41 8.00 CT43 7.81	CT36* 9.83 36.00 78.00 84.07 8.13 CT44	CT37* 15.97 34.89 77.39 84.80 8.50 CT45 14.60	CT38 9.44 35.34 78.00 83.94 8.10 CT46*	CT39 10.39 35.16 78.00 83.92 8.14 CT47	CT40 11.44 46.49 77.35 83.78 8.14 CT48 14.08
X Y Z T W	CT33* 9.32 46.18 78.00 84.36 8.01 CT41 10.49 43.25	CT34 11.09 49.98 77.10 83.80 8.17 CT42 9.49 41.65	CT35* 18.68 36.59 77.80 84.41 8.00 CT43 7.81 41.75	CT36* 9.83 36.00 78.00 84.07 8.13 CT44 12.09 46.28	CT37* 15.97 34.89 77.39 84.80 8.50 CT45 14.60 36.76	CT38 9.44 35.34 78.00 83.94 8.10 CT46* 11.12 25.41	CT39 10.39 35.16 78.00 83.92 8.14 CT47 13.21 26.14	CT40 11.44 46.49 77.35 83.78 8.14 CT48 14.08 25.01
X Y Z T W X Y Z	CT33* 9.32 46.18 78.00 84.36 8.01 CT41 10.49 43.35 77.74	CT34 11.09 49.98 77.10 83.80 8.17 CT42 9.49 41.65 77.07	CT35* 18.68 36.59 77.80 84.41 8.00 CT43 7.81 41.75 78.00	CT36* 9.83 36.00 78.00 84.07 8.13 CT44 12.09 46.28 77.80	CT37* 15.97 34.89 77.39 84.80 8.50 CT45 14.60 36.76 77.46	CT38 9.44 35.34 78.00 83.94 8.10 CT46* 11.12 35.41 77.06	CT39 10.39 35.16 78.00 83.92 8.14 CT47 13.21 36.14 78.00	CT40 11.44 46.49 77.35 83.78 8.14 CT48 14.08 35.91 78.00
X Y Z T W X Y Z T	CT33* 9.32 46.18 78.00 84.36 8.01 CT41 10.49 43.35 77.74 82.82	CT34 11.09 49.98 77.10 83.80 8.17 CT42 9.49 41.65 77.97 82.82	CT35* 18.68 36.59 77.80 84.41 8.00 CT43 7.81 41.75 78.00 82.80	CT36* 9.83 36.00 78.00 84.07 8.13 CT44 12.09 46.28 77.89 82.80	CT37* 15.97 34.89 77.39 84.80 8.50 CT45 14.60 36.76 77.46 84.00	CT38 9.44 35.34 78.00 83.94 8.10 CT46* 11.12 35.41 77.96 84.20	CT39 10.39 35.16 78.00 83.92 8.14 CT47 13.21 36.14 78.00 82.64	CT40 11.44 46.49 77.35 83.78 8.14 CT48 14.08 35.91 78.00 82.67
X Y Z T W X Y Z T	CT33* 9.32 46.18 78.00 84.36 8.01 CT41 10.49 43.35 77.74 83.83 8.05	CT34 11.09 49.98 77.10 83.80 8.17 CT42 9.49 41.65 77.97 83.82 8.00	CT35* 18.68 36.59 77.80 84.41 8.00 CT43 7.81 41.75 78.00 83.89 8.02	CT36* 9.83 36.00 78.00 84.07 8.13 CT44 12.09 46.28 77.89 83.89 8.10	CT37* 15.97 34.89 77.39 84.80 8.50 CT45 14.60 36.76 77.46 84.00 8.60	CT38 9.44 35.34 78.00 83.94 8.10 CT46* 11.12 35.41 77.96 84.28 8.70	CT39 10.39 35.16 78.00 83.92 8.14 CT47 13.21 36.14 78.00 83.64	CT40 11.44 46.49 77.35 83.78 8.14 CT48 14.08 35.91 78.00 83.67 8.70

	CT49	CT50	CT51	CT52	CT53*	CT54*	CT55	CT56
X	10.73	10.81	10.87	8.95	9.33	6.79	10.99	6.46
Y	51.51	49.75	54.88	63.14	66.12	66.85	45.86	65.34
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
Т	84.00	83.92	83.94	83.95	84.13	84.34	83.96	83.85
W	8.75	8.75	8.77	8.24	8.47	8.10	8.48	8.23
		CTT 70	CTT TO 4	CTP (0.4			CTT ()	
	0157	<u>C158</u>	<u>C159*</u>	<u>CT60*</u>	<u>C161*</u>	CT62	<u>CT63</u>	<u>CT64</u>
X	11.12	6.90	9.65	9.89	9.77	11.42	10.99	15.57
Y 	68.33	66.40	45.14	43.42	45.63	46.09	46.17	36.13
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	77.48
T	83.54	83.71	86.10	84.45	84.39	83.87	83.86	83.97
W	8.14	8.41	8.53	8.73	8.70	8.60	8.56	8.50
	CT65	СТ66	CT67	CT68	СТ69	CT70	CT71	CT72
\overline{X}	19.50	16.57	15.78	17.90	18.00	15.84	16.26	16.72
Y	37.09	37.33	38.45	38.78	36.74	36.26	36.46	45.59
Ζ	77.07	77.27	77.36	77.29	77.28	77.38	77.41	77.31
Т	83.93	83.95	83.87	83.88	83.96	84.00	83.93	83.91
W	8.76	8.54	8.71	8.83	8.77	8.73	8.64	8.66
		~~~						
	CT73	<b>CT74</b>	CT75*	CT76*	<b>CT77</b>	<b>CT78</b>	СТ79	СТ80
X	CT73 17.76	CT74 18.80	<b>CT75</b> * 13.77	CT76* 15.17	CT77 15.64	<b>CT78</b> 15.69	<b>CT79</b> 15.72	<b>CT80</b> 13.39
X Y	CT73 17.76 36.92	CT74 18.80 37.11	<b>CT75</b> * 13.77 36.14	<b>CT76*</b> 15.17 53.59	CT77 15.64 54.51	CT78 15.69 36.17	CT79 15.72 43.06	CT80 13.39 47.01
X Y Z	CT73 17.76 36.92 77.63	CT74 18.80 37.11 77.28	CT75* 13.77 36.14 77.56	CT76* 15.17 53.59 77.11	CT77 15.64 54.51 77.12	CT78 15.69 36.17 77.66	CT79 15.72 43.06 77.51	CT80 13.39 47.01 77.21
X Y Z T	CT73 17.76 36.92 77.63 83.52	CT74 18.80 37.11 77.28 83.74	CT75* 13.77 36.14 77.56 84.11	CT76* 15.17 53.59 77.11 85.02	CT77 15.64 54.51 77.12 83.98	CT78 15.69 36.17 77.66 83.75	CT79 15.72 43.06 77.51 83.93	CT80 13.39 47.01 77.21 83.71
X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83	CT74 18.80 37.11 77.28 83.74 8.99	CT75* 13.77 36.14 77.56 84.11 8.43	CT76* 15.17 53.59 77.11 85.02 8.38	CT77 15.64 54.51 77.12 83.98 8.38	CT78 15.69 36.17 77.66 83.75 8.20	CT79 15.72 43.06 77.51 83.93 8.23	CT80 13.39 47.01 77.21 83.71 8.30
X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81*	CT74 18.80 37.11 77.28 83.74 8.99 CT82*	CT75* 13.77 36.14 77.56 84.11 8.43 CT83*	CT76* 15.17 53.59 77.11 85.02 8.38 CT84	CT77 15.64 54.51 77.12 83.98 8.38 CT85*	CT78 15.69 36.17 77.66 83.75 8.20 CT86	CT79 15.72 43.06 77.51 83.93 8.23 CT87	CT80 13.39 47.01 77.21 83.71 8.30 CT88
X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81
X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59	CT79 15.72 43.06 77.51 83.93 8.23 8.23 CT87 3.63 59.34	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60
X Y Z T W X Y Z	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00
X Y Z T W X Y Z T	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83
X Y Z T W X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03
X Y Z T W X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT222	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT22	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03
X Y Z T W X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78 CT89	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT90	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76 CT91*	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT92	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02 CT93*	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02 CT94	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02 CT95	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03 CT96*
X Y Z T W X Y Z T W	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78 CT89 10.72 10.72	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT90 10.54	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76 CT91* 10.50	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT92 11.19	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02 CT93* 10.57 10.57	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02 CT94 11.30 67	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02 CT95 11.01	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03 CT96* 12.62
X Y Z T W X Y Z T W X Y Z	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78 CT89 10.72 72.24 76.00 72.24 76.00 72.24 76.00 72.24 76.00 72.24 76.00 72.24 76.00 72.24 76.00 72.24 76.00 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 83.52 8.83 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 77.63 78.00 78.00 78.78 78.00 78.78 78.00 78.78 78.00 78.78 78.00 78.78 78.78 78.78 78.00 78.78 78.78 78.78 78.78 78.78 70.72 72.24	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT90 10.54 60.59 76.06	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76 CT91* 10.50 56.13 56.13	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT92 11.19 62.40 21.61	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02 CT93* 10.57 55.45 56.65	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02 CT94 11.30 64.57 06.10	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02 CT95 11.01 61.56 61.56	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03 CT96* 12.62 78.94 10.62
X Y Z T W X Y Z T W X Z Z	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78 CT89 10.72 72.24 78.00	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT90 10.54 60.59 76.06	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76 CT91* 10.50 56.13 76.38 76.38	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT92 11.19 62.40 94.24 25.40	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02 CT93* 10.57 55.45 76.29 2.52	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02 CT94 11.30 64.57 89.18	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02 CT95 11.01 61.56 96.29	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03 CT96* 12.62 78.94 106.37
X Y Z T W X Y Z T W X Y Z T	CT73 17.76 36.92 77.63 83.52 8.83 CT81* 14.84 23.28 78.00 85.01 8.78 CT89 10.72 72.24 78.00 83.75	CT74 18.80 37.11 77.28 83.74 8.99 CT82* 16.54 22.55 78.00 84.21 8.85 CT90 10.54 60.59 76.06 84.00	CT75* 13.77 36.14 77.56 84.11 8.43 CT83* 14.10 29.00 78.00 84.62 8.76 CT91* 10.50 56.13 76.38 84.18	CT76* 15.17 53.59 77.11 85.02 8.38 CT84 16.72 21.69 78.00 83.97 8.82 CT92 11.19 62.40 94.24 83.89	CT77 15.64 54.51 77.12 83.98 8.38 CT85* 2.82 60.63 78.00 84.21 8.02 CT93* 10.57 55.45 76.29 84.78	CT78 15.69 36.17 77.66 83.75 8.20 CT86 3.13 60.59 78.00 83.92 8.02 CT94 11.30 64.57 89.18 83.95	CT79 15.72 43.06 77.51 83.93 8.23 CT87 3.63 59.34 78.00 83.95 8.02 CT95 11.01 61.56 96.29 83.92	CT80 13.39 47.01 77.21 83.71 8.30 CT88 1.81 44.60 78.00 83.83 8.03 CT96* 12.62 78.94 106.37 84.13

	CT97*	CT98*	CT99*
X	12.01	12.12	15.40
Y	71.04	72.71	95.88
Z	108.71	105.30	105.63
T	86.35	87.46	91.22
W	8.52	8.40	8.01

# Section E.2:

	CT5	CT7	CT9	CT10	CT13	CT16	CT17	CT18
$\overline{X}$	7.45	7.73	5.62	6.98	8.08	9.64	8.96	9.38
Y	24.21	31.78	26.23	22.98	30.39	37.64	37.50	35.82
Z	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
Т	84.00	84.00	84.00	84.00	84.00	84.00	84.00	84.00
W	8.47	8.48	8.21	8.47	8.47	8.68	8.58	8.66
	CT19	CT20	CT21	CT23	CT24	CT25	CT26	CT27
X	9.46	9.05	9.83	9.38	8.80	7.67	8.39	7.51
Y	37.68	37.96	37.03	42.17	37.67	30.43	30.73	28.58
Ζ	78.00	78.00	78.00	78.00	78.00	78.00	78.00	78.00
Τ	84.00	84.00	84.00	84.00	84.00	84.00	84.00	84.00
W	8.58	8.64	8.75	8.68	8.52	8.50	8.60	8.56
	CT28	CT29	CT31	CT33	CT35	CT36	CT37	CT46
X	7.65	9.25	8.68	9.29	10.52	9.83	14.27	11.10
Y	28.17	29.35	26.10	45.77	36.22	35.92	42.99	35.15
Z	78.00	78.00	78.00	78.00	77.77	78.00	77.34	77.94
T	84.00	84.00	84.00	84.00	84.00	84.00	84.00	84.00
W	8.50	8.59	8.56	8.01	8.00	8.13	8.49	8.70
	CT53	CT54	<u>CT59</u>	CT60	CT61	CT75	CT76	CT81
X	9.32	6.77	9.63	9.83	9.73	13.77	14.99	14.66
Y	65.91	66.37	44.92	40.97	45.16	36.03	51.41	22.38
Z	78.00	78.00	78.00	78.00	78.00	77.55	77.05	78.00
T	84.00	84.00	84.00	84.00	84.00	84.00	84.00	84.00
W	8.46	8.10	8.52	8.72	8.70	8.43	8.38	8.77
1	CTTO	CTD0 a	C175.0 #	CTRA	CIRCO		GTAA	
	CT82	<u>C183</u>	<u>C185</u>	<u>CT91</u>	<u>CT93</u>	<u>C197</u>	<u>C198</u>	
X	16.50	14.01	2.81	10.48	10.49	11.67	11.64	
$\begin{array}{c} Y \\ \pi \end{array}$	22.36	28.43	60.33	55.93	54.52	65.93	65.18	
	78.00	78.00	78.00	76.37	76.25	109.68	106.83	
	84.00	84.00	84.00	84.00	84.00	84.00	84.00	
W	8.85	8.76	8.02	8.16	8.13	8.50	8.38	

Secti	Section E.3:									
	CT96	СТ99								
X	12.43	14.06								
Y	73.71	73.52								
Z	107.82	110.28								
T	83.92	83.97								

### **APPENDIX F**

#### Selected Interatomic Distances and Angles

This appendix lists the values of selected interatomic distances (Å) and angles (°) within the tourmaline structure for each sample. Mean bond-length is indicated by the symbol  $\langle R-O \rangle$ , where *R* is a given cation or site and O is oxygen. Symmetry operators for equivalent positions are as follows:

a: 1-x+y, y, zb: *x*, 1+*x*-*y*, *z* c: 1-*y*, *x*-*y*, *z* d: 2/3-*y*, 1/3+*x*-*y*, 1/3+*z* e: 1/3+y-x, 2/3-x, 2/3+zf: 1/3+*y*-*x*, 2/3-*x*, *z*-1/3 g: *x*, 1+*y*, *z* h: *x*-1, *x*-*y*, *z* i: 1-x+y, 1+y, zj: -x+y, 1-x, zk: *x*-1, *y*, *z* 1: *x*-1, *x*-*y*-1, *z* m: x-1, y, 1+zn: *x*-1, *x*-*y*-1, 1+*z* 0:1-x+y, y, 1+zp: *x*, *y*-1, 1+*z* q: x, 1+x-y, 1+zr: *x*-*y*-1, -*x*, 1+*z* 

	CT1	CT2	CT3	CT4	CT5	СТб	CT7
<i>X</i> -O(2) k,l,a	2.463 (3)	2.446 (3)	2.460 (4)	2.449 (3)	2.434 (3)	2.445 (3)	2.446 (3)
X-O(4) m,n,o	2.815 (2)	2.811 (2)	2.810 (2)	2.808 (2)	2.812 (2)	2.811 (2)	2.806 (2)
X-O(5) p,q,r	2.745 (2)	2.750 (2)	2.748 (2)	2.745 (2)	2.749 (2)	2.749 (2)	2.746 (2)
<x-o></x-o>	2.674	2.669	2.673	2.667	2.665	2.668	2.666
<i>Y</i> -O(1) g	1.950 (2)	1.997 (3)	1.962 (4)	1.971 (3)	1.981 (3)	1.977 (3)	1.984 (3)
<i>Y</i> -O(2) h,l	1.964 (3)	1.968 (3)	1.962 (4)	1.966 (3)	1.966 (3)	1.964 (3)	1.969 (3)
Y-O(3)	2.135 (2)	2.151 (2)	2.135 (3)	2.140 (2)	2.145 (2)	2.141 (2)	2.154 (2)
<i>Y</i> -O(6) j,b	1.958 (3)	1.990 (2)	1.969 (3)	1.961 (3)	1.965 (3)	1.972 (2)	1.972 (3)
< <i>Y</i> -O>	1.988	2.011	1.993	1.994	1.998	1.998	2.003
Z-O(3) b	1.962 (2)	1.959 (2)	1.961 (3)	1.962 (3)	1.953 (3)	1.961 (2)	1.956 (3)
Z-O(6)	1.867 (3)	1.852 (3)	1.859 (4)	1.858 (3)	1.855 (3)	1.855 (3)	1.852 (3)
Z-O(7) d	1.945 (3)	1.946 (2)	1.943 (3)	1.941 (3)	1.946 (3)	1.740 (2)	1.947 (3)
<i>Z</i> -O(7) e	1.888 (4)	1.881 (3)	1.882 (5)	1.882 (4)	1.881 (3)	1.880 (3)	1.885 (4)
Z-O(8)	1.901 (3)	1.906 (3)	1.901 (4)	1.900 (4)	1.898 (3)	1.903 (3)	1.903 (3)
Z-O(8) f	1.887 (3)	1.880 (3)	1.882 (4)	1.884 (3)	1.885 (3)	1.883 (3)	1.883 (3)
<z-o></z-o>	1.908	1.904	1.905	1.905	1.903	1.904	1.904
<i>T</i> -O(4) a	1.620 (2)	1.619 (2)	1.620 (2)	1.620 (2)	1.619 (2)	1.619 (2)	1.619 (2)
<i>T</i> -O(5) b	1.635 (3)	1.636 (2)	1.632 (2)	1.633 (3)	1.633 (3)	1.633 (3)	1.633 (3)
<i>T</i> -O(6)	1.611 (5)	1.604 (4)	1.608 (6)	1.608 (5)	1.604 (5)	1.607 (2)	1.604 (5)
<i>T</i> -O(7)	1.609 (2)	1.608 (2)	1.610 (2)	1.609 (2)	1.606 (2)	1.610 (2)	1.606 (2)
<7-0>	1.619	1.617	1.618	1.618	1.616	1.617	1.616
O(4)a- <i>T</i> -O(5)b	104.8 (2)	104.3 (1)	104.8 (2)	104.4 (2)	104.3 (1)	104.6 (1)	104.4 (1)
O(4)a- <i>T</i> -O(6)	111.9 (2)	111.9 (2)	112.0 (2)	111.8 (2)	111.9 (2)	111.8 (2)	111.8 (2)
O(4)a- <i>T</i> -O(7)	109.7 (2)	110.0 (1)	109.7 (2)	109.9 (2)	109.8 (1)	109.9 (1)	110.0 (2)
O(5)b-T-O(6)	110.6 (2)	110.9 (2)	110.7 (2)	110.7 (2)	110.8 (2)	110.7 (1)	110.7 (2)
O(5)b-T-O(7)	109.1 (2)	109.2 (1)	109.0 (2)	109.2 (2)	109.1 (2)	109.2 (1)	109.2 (2)
O(6)- <i>T</i> -O(7)	110.5 (2)	110.4 (1)	110.5 (2)	110.6 (2)	110.8 (2)	110.4 (1)	110.6 (2)
<o-<i>T-O&gt;</o-<i>	109.4	109.5	109.5	109.4	109.5	109.4	109.5
<i>B</i> -O(2)	1.361 (1)	1.353 (1)	1.355 (1)	1.356 (1)	1.358 (1)	1.357 (1)	1.355 (1)
<i>B</i> -O(8) c,a	1.383 (2)	1.381 (2)	1.383 (2)	1.383 (2)	1.381 (2)	1.380 (2)	1.383 (2)
<i><b< i="">-O&gt;</b<></i>	1.376	1.372	1.374	1.374	1.373	1.372	1.374
O(2)-B-O(8)c x2	121.4 (1)	121.3 (1)	121.5 (2)	121.5 (2)	121.4 (1)	121.4 (1)	121.5 (1)
O(8)c-B-O(8)a	117.1 (2)	117.3 (2)	117.1 (2)	117.0 (2)	117.2 (2)	117.1 (1)	117.1 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT8	СТ9	CT10	CT11	CT12	CT13	CT14
X-O(2) k,l,a	2.474 (3)	2.469 (4)	2.446 (3)	2.460 (3)	2.469 (3)	2.432 (3)	2.450 (4)
X-O(4) m,n,o	2.808 (2)	2.813 (2)	2.804 (2)	2.810 (2)	2.815 (2)	2.812 (2)	2.811 (2)
<i>X</i> -O(5) p,q,r	2.737 (2)	2.745 (2)	2.751 (2)	2.743 (2)	2.743 (2)	2.748 (2)	2.753 (2)
<x-o></x-o>	2.673	2.676	2.667	2.671	2.676	2.664	2.671
<i>Y</i> -O(1) g	1.934 (3)	1.946 (4)	2.000 (4)	1.975 (3)	1.950 (3)	2.011 (3)	1.980 (4)
<i>Y</i> -O(2) h,l	1.953 (3)	1.950 (4)	1.967 (3)	1.959 (3)	1.952 (3)	1.972 (3)	1.962 (3)
<i>Y</i> -O(3)	2.134 (2)	2.138 (3)	2.149 (2)	2.137 (2)	2.136 (2)	2.153 (2)	2.140 (4)
<i>Y</i> -O(6) j,b	1.960 (3)	1.962 (4)	1.977 (3)	1.964 (3)	1.965 (3)	1.998 (3)	1.969 (4)
< <i>Y</i> -O>	1.982	1.985	2.006	1.993	1.987	2.017	1.997
Z-O(3) b	1.954 (3)	1.955 (3)	1.953 (3)	1.959 (3)	1.958 (3)	1.957 (3)	1.960 (3)
Z-O(6)	1.866 (4)	1.861 (4)	1.851 (3)	1.857 (3)	1.858 (4)	1.850 (3)	1.855 (4)
Z-O(7) d	1.943 (3)	1.944 (4)	1.948 (3)	1.942 (3)	1.940 (3)	1.953 (3)	1.943 (4)
Z-O(7) e	1.885 (4)	1.883 (5)	1.884 (4)	1.880 (4)	1.879 (4)	1.883 (3)	1.881 (5)
Z-O(8)	1.898 (4)	1.897 (5)	1.904 (4)	1.901 (4)	1.901 (4)	1.906 (3)	1.900 (4)
Z-O(8) f	1.882 (3)	1.886 (4)	1.884 (3)	1.884 (3)	1.881 (3)	1.882 (3)	1.884 (4)
<z-o></z-o>	1.905	1.904	1.904	1.904	1.903	1.905	1.904
<i>T</i> -O(4) a	1.614 (2)	1.616 (2)	1.620 (2)	1.619 (2)	1.615 (2)	1.621 (2)	1.620 (2)
<i>T</i> -O(5) b	1.629 (3)	1.631 (3)	1.633 (3)	1.634 (3)	1.633 (3)	1.637 (3)	1.633 (3)
<i>T</i> -O(6)	1.607 (5)	1.606 (7)	1.602 (5)	1.605 (5)	1.607 (5)	1.601 (4)	1.605 (6)
<i>T</i> -O(7)	1.605 (2)	1.607 (3)	1.608 (2)	1.608 (2)	1.609 (2)	1.607 (2)	1.609 (3)
< <i>T</i> -O>	1.614	1.615	1.616	1.617	1.616	1.617	1.617
O(4)a-7-O(5)b	105.1(2)	105.1(2)	104.3(2)	104.6 (2)	105.0 (2)	104.0 (1)	104.7 (2)
O(4)a-1-O(6)	111.8(2)	112.0(2)	111.8(2)	112.0(2)	111.9 (2)	111.9 (2)	111.9 (2)
O(4)a-1-O(7)	109.5(2)	109.5 (2)	110.0(2)	109.7 (2)	109.5 (2)	109.9 (1)	109.8 (2)
O(5)b-1-O(6)	110.5 (2)	110.5 (2)	110.8 (2)	110.7(2)	110.7 (2)	111.0(2)	110.7 (2)
O(5)b-1-O(7)	109.1(2)	109.0(2)	109.1(2)	109.2 (2)	109.1(2)	109.3(2)	109.0 (2)
0(6)-1-0(7)	110.5 (2)	110.6 (2)	110.6 (2)	110.5 (2)	110.4 (2)	110.5 (2)	110.6 (2)
<0-1-0>	109.4	109.5	109.4	109.5	109.4	109.4	109.5
$B_{0}(2)$	1 3 5 7 (1)	1 3 50 (2)	1.255 (1)	1 363 (1)	1.360 (1)	1 260 (1)	1 256 (1)
B = O(2) B = O(8) c a	1.337(1) 1.380(2)	1.379(2)	1.333(1) 1.382(2)	1.303(1)	1.300(1) 1.375(2)	1.300(1) 1.381(2)	1.330(1)
$\langle B_{-} O \rangle$	1.300(2)	$\frac{1.379}{1.372}$	1.302(2)	$\frac{1.377}{1.372}$	1.375(2)	1.381(2)	$\frac{1.382}{1.372}$
~U U~	1.374	1.372	1.1.1	1.372	1.570	1.374	1.575
O(2)-B-O(8)c x2	121.5 (1)	121.5 (2)	121.4 (2)	121.2 (2)	121.3 (1)	121.2 (2)	121.4 (2)
O(8)c-B-O(8)a	117.0 (1)	117.0 (2)	117.2 (2)	117.6 (2)	117.3 (2)	117.6 (2)	117.3 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT15	CT16	CT17	CT18	CT19	CT20	CT21
X-O(2) k,l,a	2.479 (3)	2.437 (3)	2.444 (3)	2.433 (3)	2.430 (3)	2.434 (3)	2.429 (3)
X-O(4) m,n,o	2.817 (2)	2.824 (2)	2.824 (2)	2.822 (2)	2.818 (2)	2.823 (2)	2.820 (2)
<i>X</i> -O(5) p,q,r	2.745 (2)	2.766 (2)	2.763 (2)	2.764 (2)	2.758 (2)	2.768 (2)	2.761 (2)
<x-o></x-o>	2.680	2.682	2.677	2.673	2.669	2.675	2.670
Y-O(1) g	1.929 (3)	2.038 (3)	2.024 (3)	2.034 (3)	2.034 (4)	2.035 (4)	2.039 (4)
<i>Y</i> -O(2) h,l	1.952 (3)	1.983 (3)	1.980 (3)	1.981 (2)	1.979 (3)	1.976 (3)	1.977 (3)
<i>Y</i> -O(3)	2.118 (3)	2.175 (2)	2.613 (2)	2.166 (2)	2.166 (2)	2.159 (2)	2.162 (2)
<i>Y</i> -O(6) j,b	1.955 (3)	2.024 (2)	2.015 (3)	2.021 (2)	2.022 (3)	2.020 (3)	2.022 (3)
<y-o></y-o>	1.977	2.038	2.030	2.034	2.034	2.031	2.033
Z-O(3) b	1.960 (3)	1.963 (2)	1.968 (2)	1.964 (2)	1.960 (3)	1.961 (3)	1.960 (3)
Z-O(6)	1.869 (4)	1.846 (3)	1.852 (3)	1.850 (3)	1.845 (3)	1.846 (3)	1.843 (3)
Z-O(7) d	1.941 (3)	1.957 (3)	1.952 (3)	1.955 (2)	1.953 (3)	1.954 (3)	1.955 (3)
Z-O(7) e	1.884 (4)	1.887 (3)	1.885 (3)	1.885 (3)	1.879 (4)	1.879 (4)	1.880 (3)
Z-O(8)	1.901 (4)	1.916 (3)	1.914 (3)	1.913 (3)	1.909 (3)	1.911 (4)	1.910 (3)
Z-O(8) f	1.883 (4)	1.883 (3)	1.885 (3)	1.884 (3)	1.880 (3)	1.878 (3)	1.878 (3)
<z-0></z-0>	1.906	1.909	1.909	1.909	1.918	1.905	1.904
<i>T</i> -O(4) a	1.618 (2)	1.624 (2)	1.625 (2)	1.624 (2)	1.622 (2)	1.622 (2)	1.621 (2)
<i>T</i> -O(5) b	1.632 (3)	1.638 (2)	1.640 (2)	1.639 (2)	1.637 (3)	1.635 (3)	1.637 (3)
<i>T</i> -O(6)	1.613 (6)	1.608 (4)	1.609 (4)	1.605 (4)	1.599 (4)	1.603 (5)	1.601 (4)
<i>T</i> -O(7)	1.610 (2)	1.611 (2)	1.615 (2)	1.613 (2)	1.611 (2)	1.610 (2)	1.608 (2)
<7-0>	1.618	1.620	1.622	1.620	1.617	1.618	1.617
O(4)a-T-O(5)b	105.2 (2)	104.0 (1)	104.3 (1)	104.0 (1)	104.0 (1)	104.3 (2)	104.0 (1)
O(4)a-T-O(6)	111.9 (2)	111.8 (2)	111.9 (2)	111.9 (2)	112.0 (2)	112.0 (2)	112.0 (2)
O(4)a-T-O(7)	109.4 (2)	110.2 (1)	110.1 (1)	110.2 (1)	110.1 (2)	110.0 (2)	110.1 (2)
O(5)b-T-O(6)	110.5 (2)	110.9 (2)	110.9 (2)	110.9 (1)	111.0 (2)	110.8 (2)	111.0 (2)
O(5)b-T-O(7)	109.0 (2)	109.5 (1)	109.4 (1)	109.5 (1)	109.5 (2)	109.5 (2)	109.5 (2)
O(6)-T-O(7)	110.6 (2)	110.2 (1)	110.1 (1)	110.2 (1)	110.2 (2)	110.2 (2)	110.2 (2)
<o-<i>T-O&gt;</o-<i>	109.4	109.4	109.5	109.5	109.5	109.5	109.4
<i>B</i> -O(2)	1.356 (1)	1.353 (1)	1.354 (1)	1.355 (1)	1.351 (1)	1.351 (1)	1.355 (1)
<i>B</i> -O(8) c,a	1.382 (2)	1.386 (2)	1.387 (2)	1.387 (2)	1.385 (3)	1.387 (3)	1.383 (2)
< <i>B</i> -O>	1.373	1.375	1.376	1.376	1.374	1.375	1.374
O(2) = O(2) = -2	121 ( (1)	1211(2)	121.2 (1)	101.1 (1)	121.1 (2)	101.0 (0)	101.0 (0)
$O(2)$ -B- $O(\delta)$ C X2	121.0(1)	121.1(2)	121.2(1)	121.1(1)	121.1(2)	121.2(2)	121.0(2)
$O(\delta)C-B-O(\delta)a$	110.8 (1)	117.7 (2)	117.0 (2)	117.7 (2)	117.7 (2)	117.0 (2)	118.0 (2)
<0- <i>B-</i> 0>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT22	CT23	CT24	CT25	CT26	CT27	CT28
<i>X</i> -O(2) k,l,a	2.449 (4)	2.444 (3)	2.441 (3)	2.439 (3)	2.430 (3)	2.447 (3)	2.434 (3)
X-O(4) m,n,o	2.822 (2)	2.821 (2)	2.817 (2)	2.816 (2)	2.811 (2)	2.812 (2)	2.809 (2)
<i>X</i> -O(5) p,q,r	2.765 (2)	2.762 (2)	2.755 (2)	2.757 (2)	2.754 (2)	2.754 (2)	2.751 (2)
< <i>X</i> -O>	2.679	2.676	2.671	2.671	2.665	2.671	2.665
<i>Y</i> -O(1) g	2.045 (4)	2.045 (3)	2.024 (3)	2.004 (3)	2.017 (3)	1.997 (3)	1.991 (4)
<i>Y</i> -O(2) h,l	1.982 (3)	1.981 (3)	1.976 (3)	1.967 (3)	1.969 (3)	1.967 (3)	1.963 (3)
Y-O(3)	2.158 (2)	2.160 (2)	2.161 (2)	2.152 (2)	2.149 (2)	2.146 (2)	2.148 (2)
<i>Y</i> -O(6) j,b	2.027 (3)	2.026 (3)	2.012 (3)	1.996 (3)	1.999 (3)	1.985 (3)	1.981 (3)
< <i>Y</i> -O>	2.037	2.037	2.027	2.014	2.017	2.008	2.005
Z-O(3) b	1.963 (3)	1.967 (3)	1.962 (3)	1.960 (3)	1.956 (2)	1.961 (3)	1.955 (3)
Z-O(6)	1.847 (4)	1.846 (3)	1.847 (3)	1.849 (3)	1.848 (3)	1.854 (3)	1.849 (4)
<i>Z</i> -O(7) d	1.955 (3)	1.955 (3)	1.952 (3)	1.949 (3)	1.950 (2)	1.947 (3)	1.946 (3)
<i>Z</i> -O(7) e	1.878 (4)	1.877 (3)	1.879 (4)	1.884 (4)	1.879 (3)	1.885 (4)	1.881 (4)
Z-O(8)	1.914 (4)	1.912 (3)	1.909 (3)	1.907 (3)	1.904 (3)	1.906 (4)	1.902 (4)
Z-O(8) f	1.877 (4)	1.880 (3)	1.879 (3)	1.882 (3)	1.880 (3)	1.885 (3)	1.879 (3)
<z-o></z-o>	1.906	1.906	1.905	1.905	1.903	1.906	1.902
<i>T</i> -O(4) a	1.624 (2)	1.625 (2)	1.622 (2)	1.620 (2)	1.620 (2)	1.621 (2)	·1.616 (2)
<i>T</i> -O(5) b	1.639 (3)	1.640 (3)	1.637 (3)	1.635 (3)	1.635 (2)	1.636 (3)	1.631 (3)
<i>T</i> -O(6)	1.603 (6)	1.603 (4)	1.603 (5)	1.607 (5)	1.599 (4)	1.606 (5)	1.605 (5)
<i>T</i> -O(7)	1.612 (2)	1.613 (2)	1.609 (2)	1.607 (2)	1.607 (2)	1.610 (2)	1.603 (2)
< <i>T</i> -O>	1.620	1.620	1.618	1.617	1.615	1.618	1.614
O(4)a-T-O(5)b	1042(2)	104.0 (1)	1042(1)	104 5 (1)	104 1 (1)	104.4(2)	104 5 (2)
O(4)a-T-O(6)	112.0(2)	112.0(2)	112.0(2)	101.9(1)	101.1(1) 1119(2)	1119(2)	104.5(2)
O(4)a-T-O(7)	110.1(2)	110.0(1)	110.0(2)	110.0(2)	109.9(1)	110.0(2)	111.0(2)
O(5)b-T-O(6)	111.0 (2)	111.1(2)	110.8(2)	110.8(2)	1110(1)	110.8(2)	110.8(2)
O(5)b-T-O(7)	109.4 (2)	109.4 (2)	109.4 (2)	109.2 (2)	109.2(1)	109.0(2)	109.2(2)
O(6)-T-O(7)	110.0 (2)	110.1 (1)	110.3 (2)	110.4 (2)	110.5(1)	110.4(2)	110.5 (2)
< <u>O-</u> <i>T</i> -O>	109.5	109.4	109.5	109.5	109.4	109.4	109.5
<i>B</i> -O(2)	1.351 (1)	1.348 (1)	1.354 (1)	1.354 (1)	1.353 (1)	1.360 (1)	1.352 (1)
<i>B</i> -O(8) c,a	1.386 (3)	1.388 (2)	1.384 (2)	1.384 (2)	1.381 (2)	1.381 (2)	1.381 (2)
< <i>B</i> -O>	1.374	1.375	1.374	1.374	1.372	1.374	1.371
O(2)-B-O(8)c x2	121.0 (2)	121.2 (2)	121.2 (2)	121.4 (2)	121.3 (2)	121.2 (2)	121.5 (2)
O(8)c-B-O(8)a	118.0 (2)	117.7 (2)	117.7 (2)	117.2 (2)	117.5 (2)	117.5 (2)	117.0 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT29	CT30	CT31	CT32	СТ33	CT34	CT35
<i>X</i> -O(2) k,l,a	2.445 (3)	2.444 (3)	2.440 (3)	2.438 (3)	2.502 (2)	2.528 (2)	2.446 (2)
X-O(4) m,n,o	2.810 (2)	2.820 (2)	2.802 (2)	2.820 (2)	2.838 (2)	2.787 (2)	2.836 (2)
<i>X</i> -O(5) p,q,r	2.751 (2)	2.761 (2)	2.751 (2)	2.759 (2)	2.743 (1)	2.705 (1)	2.746 (2)
<x-o></x-o>	2.655	2.675	2.664	2.672	2.694	2.673	2.676
<i>Y</i> -O(1) g	1.998 (4)	2.027 (3)	2.010 (3)	2.056 (3)	1.949 (2)	1.942 (2)	2.005 (3)
<i>Y</i> -O(2) h,l	1.969 (3)	1.974 (3)	1.975 (3)	1.986 (2)	2.000 (2)	2.078 (2)	2.016 (2)
Y-O(3)	2.150 (2)	2.157 (2)	2.153 (2)	2.162 (2)	2.117 (2)	1.999 (1)	2.116 (2)
Y-O(6) j,b	1.982 (3)	2.018 (2)	1.986 (3)	2.042 (2)	1.987 (2)	1.970 (2)	2.005 (2)
< <i>Y</i> -O>	2.008	2.028	2.014	2.046	2.007	1.993	2.027
70(2) h	1.050 (2)	1.065 (2)	1.052 (2)	1.067 (2)	2 001 (2)	2 007 (2)	1 080 (2)
Z = O(3) U	1.939(3)	1.905(2)	1.935(2)	1.907(2) 1.848(3)	1000(2)	1.924(2)	1.989(2) 1.883(3)
Z = O(0)	1.855(5) 1.047(3)	1.040(3)	1.040(3)	1.046(3)	1.960(2)	1.924(2)	1.005(3) 1.957(2)
Z - O(7) e	1.947(3) 1.883(4)	1.930(2) 1.881(3)	1.932(3)	1.990(2) 1.882(3)	1.900(2)	1.951(2) 1.913(2)	1.907(2)
Z = O(7) C	1.003(4)	1.801(3) 1.812(3)	1.000(3)	1.002(3)	1.910(3)	1.919(2) 1.929(2)	1.931(3)
Z = O(8) f	1.901(4) 1.885(3)	1.812(3)	1.907(3)	1.973(3)	1.991(3) 1.899(2)	1.929(2) 1.904(2)	1.991(3)
<7-0>	1.905	1.906	1.906	1.908	1.935	1.938	1.926
2.0							
T-O(4) a	1.619 (2)	1.622 (2)	1.623 (2)	1.625 (2)	·1.625 (1)	1.623 (1)	1.623 (2)
<i>T</i> -O(5) b	1.634 (3)	1.637 (2)	1.636 (3)	1.638 (2)	1.642 (2)	1.640 (2)	1.638 (3)
T-O(6)	1.605 (5)	1.606 (4)	1.601 (4)	1.600 (4)	1.612 (4)	1.609 (3)	1.608 (4)
<i>T</i> -O(7)	1.609 (2)	1.614 (2)	1.605 (2)	1.611 (2)	1.604 (2)	1.601 (2)	1.599 (2)
<7-O>	1.617	1.620	1.616	1.619	1.621	1.618	1.617
O(4)a-T-O(5)b	104.5 (2)	104.4 (1)	103.8 (1)	104.0 (1)	104.1 (1)	103.1 (1)	102.8 (1)
O(4)a-T-O(6)	111.6 (2)	111.9 (2)	111.8 (2)	111.9 (2)	111.5 (1)	111.5 (1)	111.5 (2)
O(4)a-T-O(7)	110.1 (2)	110.0 (1)	110.3 (1)	110.0 (1)	109.7 (1)	110.3 (1)	110.4 (1)
O(5)b-T-O(6)	110.8 (2)	110.9 (1)	111.0 (2)	111.0 (1)	110.2 (1)	110.3 (1)	110.2 (1)
O(5)b-T-O(7)	109.2 (2)	109.3 (1)	109.2 (2)	109.5 (1)	110.0 (1)	110.4 (1)	110.7 (1)
O(6)- <i>T</i> -O(7)	110.5 (2)	110.1 (1)	110.6 (2)	110.2 (1)	109.7 (1)	111.0 (1)	111.0 (1)
<o-<i>T-O&gt;</o-<i>	109.5	109.4	109.5	109.4	109.4	109.4	109.4
$B_{-}O(2)$	1 355 (1)	1 355 (1)	1 356 (1)	1 356 (1)	1 375 (1)	1 381 (1)	1 360 (1)
B = O(2) B = O(8) c a	1.335(1) 1.385(2)	1.333(1)	1.378(2)	1.385(2)	1.376 (2)	1.366 (2)	1.377(2)
$ S \cup (0) \cup, u $ $ \langle B - \Omega \rangle$	1.375	1.374	1.371	1.375	1.376	1.371	1.371
	1.5,5						. –
O(2)-B-O(8)c x2	121.4 (2)	121.1 (1)	121.2 (2)	120.9 (1)	120.6 (1)	120.5 (1)	120.6 (2)
O(8)c-B-O(8)a	117.2 (2)	117.8 (1)	117.6 (2)	118.3 (2)	118.7 (1)	119.0 (1)	118.8 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CT36	CT37	CT38	CT39	CT40	CT41	CT42
$ \begin{array}{c} \chi \cdot 0(4) \mbox{ m, n}, 0 \\ \chi \cdot 0(5) \mbox{ p, q, r} \\ \chi \cdot 0(5) \mbox{ p, q, r} \\ \chi \cdot 0(5) \mbox{ p, q, r} \\ \chi \cdot 0(5) \mbox{ m, q} \\ \chi \cdot 0(5) \$	X-O(2) k,l,a	2.456 (3)	2.461 (2)	2.496 (3)	2.496 (4)	2.517 (2)	2.506 (5)	2.517 (3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	X-O(4) m,n,o	2.835 (2)	2.789 (1)	2.815 (2)	2.812 (3)	2.802 (1)	2.823 (3)	2.814 (2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>X</i> -O(5) p,q,r	2.745 (2)	2.703 (1)	2.723 (2)	2.716 (2)	2.713 (1)	2.732 (3)	2.728 (2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	< <i>X</i> -O>	2.679	2.651	2.678	2.675	2.677	2.687	2.686
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>Y</i> -O(1) g	1.990 (2)	2.017 (2)	1.968 (3)	1.963 (4)	1.954 (2)	1.956 (5)	1.946 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>Y</i> -O(2) h,l	1.999 (2)	2.035 (2)	1.990 (3)	1.998 (4)	2.003 (2)	2.001 (5)	1.989 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y-O(3)	2.095 (2)	2.140 (1)	2.098 (2)	2.107 (3)	2.092 (1)	2.090 (3)	2.081 (2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>Y</i> -O(6) j,b	1.991 (2)	2.018 (2)	1.981 (3)	1.980 (4)	1.979 (2)	1.980 (5)	1.973 (3)
Z-O(3) b1.990 (2)1.985 (2)1.991 (3)1.993 (3)2.004 (2)2.000 (4)2.004 (3)Z-O(6)1.888 (3)1.887 (2)1.890 (3)1.892 (4)1.912 (2)1.905 (5)1.914 (3)Z-O(7) d1.954 (2)1.962 (2)1.949 (3)1.952 (4)1.954 (2)1.953 (5)1.951 (3)Z-O(7) e1.903 (3)1.907 (2)1.898 (3)1.905 (4)1.912 (3)1.918 (6)1.913 (4)Z-O(8)1.925 (3)1.927 (2)1.919 (3)1.925 (4)1.927 (3)1.928 (6)1.929 (4)Z-O(8) f1.893 (3)1.893 (2)1.892 (3)1.892 (4)1.906 (2)1.905 (5)1.900 (3) <z-o>1.9321.9271.9231.9271.9361.9351.9357-O(4) a1.623 (2)1.629 (1)$\cdot 1.622 (2)$1.625 (1)1.622 (3)1.622 (2)7-O(5) b1.639 (2)1.643 (2)1.638 (3)1.640 (4)1.642 (2)1.639 (5)1.639 (3)7-O(6)1.604 (4)1.599 (3)1.606 (4)1.610 (3)1.613 (7)1.611 (5)7-O(7)1.602 (2)1.601 (1)1.603 (2)1.613 (7)1.613 (7)1.613 (2)0(4)a-T-O(5) b103.4 (1)101.6 (1)103.7 (1)103.4 (2)103.2 (1)103.8 (2)O(4)a-T-O(6)111.5 (2)111.5 (1)111.6 (2)111.6 (2)111.5 (1)111.5 (2)O(4)a-T-O(6)111.5 (2)111.5 (1)111.6 (2)110.4 (2)110.3 (1)110.1 (2)<td< td=""><td>&lt;<i>Y-</i>O&gt;</td><td>2.011</td><td>2.044</td><td>2.001</td><td>2.004</td><td>2.002</td><td>2.001</td><td>1.992</td></td<></z-o>	< <i>Y-</i> O>	2.011	2.044	2.001	2.004	2.002	2.001	1.992
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20(2)	1,000 (2)	1.095 (2)	1.001.(2)	1 002 (2)	2.004 (2)	2 000 (4)	2.004 (2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z - O(3) D	1.990(2)	1.985(2)	1.991(3)	1.993(3)	2.004(2)	2.000(4)	2.004(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Z-U(0)]	1.888(3)	1.887(2)	1.890(3)	1.892(4)	1.912(2)	1.905(5)	1.914(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ Z-O(7) ^{\alpha}$	1.954(2)	1.962(2)	1.949(3)	1.952(4)	1.934(2)	1.953(5)	1.951(3)
$2-0(8)$ $1.925$ (s) $1.927$ (2) $1.919$ (s) $1.925$ (4) $1.927$ (s) $1.927$ (s) $1.928$ (6) $1.929$ (4) $Z-O(8)$ $1.893$ (3) $1.893$ (2) $1.892$ (3) $1.892$ (4) $1.906$ (2) $1.905$ (5) $1.900$ (3) $$ $1.932$ $1.927$ $1.923$ $1.927$ $1.936$ $1.935$ $1.935$ $T-O(4)$ a $1.623$ (2) $1.629$ (1) $\cdot 1.622$ (2) $1.623$ (2) $1.625$ (1) $1.622$ (3) $1.622$ (2) $T-O(5)$ b $1.639$ (2) $1.643$ (2) $1.638$ (3) $1.640$ (4) $1.642$ (2) $1.639$ (5) $1.639$ (3) $T-O(6)$ $1.604$ (4) $1.599$ (3) $1.606$ (4) $1.610$ (6) $1.612$ (3) $1.613$ (7) $1.611$ (5) $T-O(7)$ $1.602$ (2) $1.601$ (1) $1.603$ (2) $1.601$ (3) $1.603$ (1) $1.599$ (3) $1.603$ (2) $$ $1.617$ $1.618$ $1.617$ $1.619$ $1.621$ $1.618$ $1.619$ $O(4)a-T-O(5)$ b $103.4$ (1) $101.6$ (1) $103.7$ (1) $103.4$ (2) $103.8$ (2) $103.8$ (2) $O(4)a-T-O(6)$ $111.5$ (2) $111.5$ (1) $111.6$ (2) $111.5$ (1) $111.2$ (3) $111.5$ (2) $O(4)a-T-O(6)$ $110.3$ (1) $100.6$ (1) $100.99$ (1) $110.0$ (2) $110.6$ (3) $110.1$ (2) $O(4)a-T-O(7)$ $110.2$ (1) $110.8$ (1) $109.9$ (1) $110.0$ (2) $110.4$ (1) $110.0$ (3) $110.1$ (2) $O(4)a-T-O(7)$ $110.2$ (1) $110.8$ (1) $109.9$ (1) $110.0$ (2) <td< td=""><td> Z-O(7) e</td><td>1.903(3)</td><td>1.907(2)</td><td>1.898(3)</td><td>1.905(4)</td><td>1.912(3)</td><td>1.918 (6)</td><td>1.913(4)</td></td<>	Z-O(7) e	1.903(3)	1.907(2)	1.898(3)	1.905(4)	1.912(3)	1.918 (6)	1.913(4)
$Z-0(8)1$ $1.895$ (3) $1.895$ (2) $1.892$ (3) $1.892$ (4) $1.906$ (2) $1.905$ (3) $1.900$ (3) $$ $1.932$ $1.927$ $1.923$ $1.927$ $1.936$ $1.935$ $1.935$ $T-0(4)$ a $1.623$ (2) $1.629$ (1) $\cdot 1.622$ (2) $1.623$ (2) $1.625$ (1) $1.622$ (3) $1.622$ (2) $T-0(5)$ b $1.639$ (2) $1.643$ (2) $1.638$ (3) $1.640$ (4) $1.642$ (2) $1.639$ (5) $1.639$ (3) $T-0(6)$ $1.604$ (4) $1.599$ (3) $1.606$ (4) $1.610$ (6) $1.612$ (3) $1.613$ (7) $1.611$ (5) $T-0(7)$ $1.602$ (2) $1.601$ (1) $1.603$ (2) $1.601$ (3) $1.603$ (1) $1.599$ (3) $1.603$ (2) $$ $1.617$ $1.618$ $1.617$ $1.619$ $1.621$ $1.618$ $1.619$ $O(4)a-T-O(5)b$ $103.4$ (1) $101.6$ (1) $103.7$ (1) $103.4$ (2) $103.8$ (2) $103.8$ (2) $O(4)a-T-O(6)$ $111.5$ (2) $111.5$ (1) $111.6$ (2) $111.5$ (1) $111.2$ (3) $111.5$ (2) $O(4)a-T-O(6)$ $110.3$ (1) $100.6$ (1) $100.9$ (1) $110.0$ (2) $110.2$ (1) $110.6$ (3) $110.1$ (2) $O(4)a-T-O(6)$ $110.3$ (1) $110.6$ (1) $110.2$ (2) $110.4$ (1) $110.6$ (3) $110.1$ (2) $O(4)a-T-O(7)$ $110.2$ (1) $110.8$ (1) $109.9$ (1) $110.0$ (2) $110.2$ (1) $110.6$ (3) $110.1$ (2) $O(5)b-T-O(6)$ $110.3$ (1) $110.6$ (1) $110.2$ (2) $110.4$ (2) $110.4$ (1) <td> Z-O(8) </td> <td>1.925(3)</td> <td>1.927(2)</td> <td>1.919(3)</td> <td>1.925(4)</td> <td>1.927(3)</td> <td>1.928 (6)</td> <td>1.929(4)</td>	Z-O(8)	1.925(3)	1.927(2)	1.919(3)	1.925(4)	1.927(3)	1.928 (6)	1.929(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z-U(8) I	1.893 (3)	1.893 (2)	1.892 (3)	1.892 (4)	1.906 (2)	1.905 (5)	1.900 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<2-0>	1.932	1.927	1.923	1.927	1.936	1.935	1.935
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>T</i> -O(4) a	1.623 (2)	1.629 (1)	· 1.622 (2)	1.623 (2)	1.625 (1)	1.622 (3)	1.622 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T-O(5) b	1.639 (2)	1.643 (2)	1.638 (3)	1.640 (4)	1.642 (2)	1.639 (5)	1.639 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T-O(6)	1.604 (4)	1.599 (3)	1.606 (4)	1.610 (6)	1.612 (3)	1.613 (7)	1.611 (5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T-O(7)	1.602 (2)	1.601 (1)	1.603 (2)	1.601 (3)	1.603 (1)	1.599 (3)	1.603 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< <i>T</i> -O>	1.617	1.618	1.617	1.619	1.621	1.618	1.619
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		102 4 (1)	101 ( (1)	102 7 (1)	102 4 (2)	102.2 (1)	102.0 (2)	102.9 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(4)a-T-O(5)b	103.4(1)	101.0(1)	103.7(1)	103.4(2)	103.2(1)	103.8(2)	103.0(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(4)a-T-O(0)	111.3(2)	111.3(1)	111.0(2)	111.0(2)	111.3(1)	111.2(3)	111.3(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(4)a-1-O(7)	110.2(1)	110.6(1)	109.9(1)	110.0(2)	110.2(1)	110.0(3)	110.1(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(5)b = T - O(0)	110.3(1)	110.0(1)	110.2(2)	110.1(2)	110.4(1)	110.0(3)	110.1(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(5)0-1-O(7)	110.2(1)	110.0(1)	110.1(2)	110.4(2)	110.3(1)	110.3(3)	110.2(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.7 - 0.7 - 0.7	109.4	109.4	109.4	109.4	109.4	109.5	109.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		102.1	109.1	10,11	10,11	105.1	107.5	107.1
B-O(8) c,a $1.378$ (2) $1.382$ (2) $1.376$ (2) $1.376$ (3) $1.373$ (2) $1.372$ (4) $1.373$ (3) <b-o> $1.372$ $1.375$ $1.371$ $1.373$ $1.373$ $1.372$ (4)       $1.373$ (3)         <b-o> $1.372$ $1.375$ $1.371$ $1.373$ $1.373$ $1.370$ $1.373$         O(2)-B-O(8)c x2       $120.8$ (1)       $120.7$ (2)       $120.8$ (2)       $120.9$ (2)       $120.6$ (1)       $120.5$ (3)       $120.8$ (2)         O(8)c-B-O(8)a       $118.4$ (2)       $118.7$ (2)       $118.3$ (2)       $118.7$ (1)       $118.8$ (3)       $118.3$ (2)</b-o></b-o>	B-O(2)	1.361 (1)	1.361 (1)	1.362 (1)	1.367 (1)	1.373 (1)	1.366 (2)	1.373 (1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B-O(8) c,a	1.378 (2)	1.382 (2)	1.376 (2)	1.376 (3)	1.373 (2)	1.372 (4)	1.373 (3)
O(2)-B-O(8)c x2       120.8 (1)       120.7 (2)       120.8 (2)       120.9 (2)       120.6 (1)       120.5 (3)       120.8 (2)         O(8)c-B-O(8)a       118.4 (2)       118.7 (2)       118.3 (2)       118.2 (2)       118.7 (1)       118.8 (3)       118.3 (2)	<i><b-< i="">O&gt;</b-<></i>	1.372	1.375	1.371	1.373	1.373	1.370	1.373
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left  O(2) - B - O(8) - \sqrt{2} \right $	120.8 (1)	120 7 (2)	120 8 (2)	120 0 (2)	120.6 (1)	120 5 (3)	120.8 (2)
$\frac{10.7}{20} \frac{10.7}{20} \frac{110.7}{20} 110$	$O(8)c_{-}R_{-}O(8)a$	1184(2)	120.7(2)	120.0(2)	1182(2)	1187 (1)	120.5(3)	118 3 (2)
	< 0.8 - 0.0 >	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT43	CT44	CT45	CT46	CT47	CT48	СТ49
<i>X</i> -O(2) k,l,a	2.500 (2)	2.452 (1)	2.454 (2)	2.460 (2)	2.478 (2)	2.473 (2)	2.474 (2)
<i>X</i> -O(4) m,n,o	2.829 (2)	2.775 (1)	2.795 (1)	2.810 (2)	2.790 (1)	2.794 (2)	1.719 (1)
<i>X</i> -O(5) p,q,r	2.743 (1)	2.694 (1)	2.710 (1)	2.734 (2)	2.711 (1)	2.716 (2)	2.758 (1)
<x-o></x-o>	2.691	2.640	2.653	2.668	2.660	2.661	2.684
		0.041.41	2 002 (2)	0.004 (0)	2 022 (2)	2 0 2 0 (2)	2.0(2,(2))
Y-O(1) g	1.968 (2)	2.041(1)	2.023(2)	2.024(2)	2.022(2)	2.029(2)	2.008(2)
Y-O(2) h,l	1.989 (2)	2.045 (1)	2.029(2)	2.012(2)	2.019(2)	2.023(2)	2.017(2)
<i>Y</i> -O(3)	2.082 (2)	2.147(1)	2.131(1)	2.121(2)	2.132(1)	2.132(1)	2.149(1)
<i>Y</i> -O(6) j,b	1.981 (2)	2.024 (1)	2.019 (2)	2.016 (2)	2.011 (2)	2.014 (2)	2.048 (2)
< <i>Y-</i> O>	1.998	2.054	2.042	2.034	2.036	2.039	2.058
Z-O(3) b	1.998 (2)	1.985 (1)	1.984 (2)	1.982 (2)	1.985 (2)	1.985 (2)	1.981 (2)
Z-O(6)	1.901 (3)	1.882 (1)	1.877 (2)	1.866 (3)	1.865 (2)	1.865 (2)	1.859 (2)
Z-O(7) d	1.952 (2)	1.964 (1)	1.963 (2)	1.956 (2)	1.949 (2)	1.952 (2)	1.961 (2)
Z-O(7) e	1.906 (3)	1.905 (2)	1.904 (2)	1.897 (3)	1.891 (2)	1.894 (3)	1.888 (2)
Z-O(8)	1.925 (3)	1.929 (2)	1.926 (2)	1.821 (3)	1.922 (2)	1.924 (3)	1.923 (2)
Z-O(8) f	1.901 (2)	1.894 (1)	1.889 (2)	1.884 (3)	1.889 (2)	1.889 (2)	1.883 (2)
<z-o></z-o>	1.931	1.926	1.924	1.918	1.917	1.918	1.916
TO(4)	1.621 (1)	1.632 (1)	1 627 (1)	1 623	1.631 (1)	1 631 (1)	1 627 (1)
T - O(4) a = 0	1.021(1) 1.637(2)	1.032(1)	1.627(1)	1.638	1.631(1)	1.637(1)	1.627 (1) 1.640 (2)
T = O(5) U	1.037(2)	1.040(2)	1.644(2) 1.600(3)	1.605	1.610(2)	1.617(2)	1.603(3)
T - O(0)	1.011(4) 1.603(2)	1.001(2)	1.600(3)	1.604	1 614 (1)	1.612(0)	1.614(1)
<7-0>	1.618	1.621	1.618	1.618	1.626	1.626	1.621
							2 2 2
O(4)a-T-O(5)b	104.2 (1)	101.1 (1)	102.1 (1)	103.4 (1)	102.7 (1)	102.8 (1)	104.0 (1)
O(4)a-T-O(6)	111.4 (1)	111.6 (1)	111.6 (1)	111.5 (2)	111.7 (1)	111.5 (1)	111.7 (1)
O(4)a-T-O(7)	110.0 (1)	111.1 (1)	110.6 (1)	110.3 (1)	110.6 (1)	110.7 (1)	110.2 (1)
O(5)b-T-O(6)	110.1 (1)	110.8 (1)	110.6 (1)	110.5 (1)	110.6 (1)	110.6 (1)	110.8 (1)
O(5)b-T-O(7)	110.1 (1)	110.8 (1)	110.6 (1)	110.2 (1)	110.4 (1)	110.3 (1)	110.0 (1)
O(6)-T-O(7)	110.8 (1)	111.0 (1)	111.0 (1)	110.7 (1)	110.7 (1)	110.7 (1)	110.0 (1)
< <u>0-7-</u> 0>	109.4	109.4	109.4	109.4	109.5	109.4	109.5
$B_{-}O(2)$	1 361 (1)	1.372 (1)	1.363 (1)	1.351 (1)	1.359 (1)	1.360 (1)	1.353 (1)
$B = O(8) \subset a$	1.375(2)	1.381 (2)	1.380 (2)	1.385 (2)	1.385 (2)	1.386 (2)	1.388 (2)
< <u>B-O&gt;</u>	1.370	1.378	1.374	1.374	1.376	1.377	1.376
O(2)-B-O(8)c x2	120.8 (1)	120.5 (1)	120.8 (2)	121.1 (2)	120.9 (1)	120.9 (2)	120.7 (1)
O(8)c-B-O(8)a	118.4 (1)	119.0 (1)	118.4 (2)	117.9 (2)	118.2 (1)	118.2 (2)	118.7 (1)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT50	CT51	CT52	CT53	CT54	CT55	CT56
<i>X</i> -O(2) k,l,a	2.471 (2)	2.490 (2)	2.526 (3)	2.515 (3)	2.507 (4)	2.458 (2)	2.535 (4)
X-O(4) m,n,o	2.813 (1)	2.814 (1)	2.807 (2)	2.809 (2)	2.821 (2)	2.804 (2)	2.812 (2)
<i>X</i> -O(5) p,q,r	2.747 (1)	2.754 (1)	2.753 (2)	2.758 (2)	2.766 (2)	2.749 (2)	2.766 (2)
< <i>X</i> -O>	2.677	2.686	2.695	2.694	2.698	2.670	2.704
<i>Y</i> -O(1) g	2.061 (2)	2.071 (2)	2.019 (3)	2.064 (3)	2.048 (4)	2.041 (3)	2.034 (4)
<i>Y</i> -O(2) h,l	2.014 (2)	2.014 (2)	2.010 (3)	2.017 (3)	2.014 (4)	2.000 (2)	1.989 (4)
<i>Y</i> -O(3)	2.146 (1)	2.146 (1)	2.194 (2)	2.180 (2)	2.172 (2)	2.184 (2)	2.153 (3)
<i>Y</i> -O(6) j,b	2.041 (2)	2.045 (2)	2.042 (3)	2.049 (3)	2.043 (4)	2.033 (2)	2.032 (4)
< <i>Y</i> -O>	2.053	2.056	2.053	2.063	2.056	2.158	2.038
Z-O(3) b	1.977 (2)	1.979 (2)	1.981 (2)	1.981 (2)	1.985 (3)	1.964 (2)	1.981 (3)
Z-0(6)	1.858 (2)	1.860 (2)	1.869 (3)	1.868 (3)	1.870 (4)	1.848 (2)	1.865 (5)
Z-O(7) d	1.958 (2)	1.963 (2)	1.963 (3)	1.965 (3)	1.965 (4)	1.957 (2)	1.958 (4)
Z-O(7) e	1.886 (3)	1.888 (3)	1.888 (3)	1.889 (3)	1.890 (5)	1.880 (3)	1.882 (5)
Z-O(8)	1.921 (3)	1.922 (3)	1.926 (3)	1.929 (3)	1.929 (4)	1.915 (3)	1.924 (5)
Z-O(8) f	1.878 (2)	1.883 (2)	1.892 (3)	1.888 (3)	1.893 (4)	1.881 (2)	1.888 (4)
<z-o></z-o>	1.913	1.916	1.920	1.920	1.922	1.908	1.916
<b>T O</b> (1)			1 (22 (2))				
7 - O(4) a	1.625 (1)	1.626 (1)	1.628 (2)	1.628 (2)	1.629 (2)	1.625 (1)	1.625 (2)
7-0(5) b	1.639 (2)	1.639 (2)	1.642(3)	1.642 (2)	1.642 (3)	1.641 (2)	1.638 (4)
7-0(6)	1.601 (3)	1.603 (3)	1.614(4)	1.610 (4)	1.608 (6)	1.603 (3)	1.612 (7)
7-0(7)	1.610 (2)	1.609 (2)	1.616 (2)	1.614 (2)	1.615 (3)	1.612 (1)	1.615 (3)
<7-0>	1.619	1.619	1.625	1.624	1.624	1.621	1.623
O(4)a-T-O(5)b	103.9 (1)	104.1 (1)	104.7 (1)	104.3 (1)	104.2 (2)	103.7 (1)	105.1 (2)
O(4)a-T-O(6)	111.6 (1)	111.6 (1)	111.5 (2)	111.7 (2)	111.4 (2)	111.9 (1)	111.6 (3)
O(4)a-T-O(7)	110.3 (1)	110.2 (1)	110.4 (1)	110.4 (1)	110.6 (2)	110.4 (1)	110.3 (2)
O(5)b-T-O(6)	110.7 (1)	110.8 (1)	110.6 (2)	110.7 (2)	110.5 (2)	111.1 (1)	110.4 (2)
O(5)b-T-O(7)	110.0 (1)	110.0 (1)	109.9 (2)	109.9 (1)	110.1 (2)	109.6 (1)	109.7 (2)
O(6)- <i>T</i> -O(7)	110.2 (1)	110.0 (1)	109.7 (2)	109.8 (1)	109.8 (2)	110.1 (1)	109.6 (2)
<o-<i>T-O&gt;</o-<i>	109.5	109.5	109.5	109.5	109.4	109.5	109.5
$B_{-}(2)$	1351(1)	1 353 (1)	1 357 (1)	1 357 (1)	1 358 (1)	1 344 (1)	1 351 (1)
B = O(8) c a	1.391(1) 1.388(2)	1.335(1) 1.387(2)	1.386(2)	1.385(2)	1.330(1) 1.384(3)	1.344(1) 1.385(2)	1.331(1) 1.383(3)
$\langle B-O \rangle$	1.376	1.307 (2)	1.306 (2)	1.305 (2)	1 375	1.303 (2)	1.303 (5)
2.5	1.070	1.070			1.575		1.572
O(2)-B-O(8)c x2	120.9 (1)	120.6 (1)	120.6 (2)	120.4 (1)	120.4 (2)	120.9 (1)	120.6 (2)
O(8)c-B-O(8)a	118.2 (1)	118.9 (1)	118.8 (2)	119.1 (2)	119.3 (2)	118.2 (2)	118.7 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT57	CT58	CT59	CT60	CT61	CT62	CT63
<i>X</i> -O(2) k,l,a	2.507 (2)	2.540 (7)	2.447 (3)	2.445 (3)	2.445 (3)	2.452 (3)	2.452 (3)
X-O(4) m,n,o	2.800 (2)	2.810 (4)	2.821 (2)	2.821 (2)	2.821 (2)	2.811 (2)	2.809 (2)
X-O(5) p,q,r	2.748 (2)	2.764 (4)	2.763 (2)	2.764 (2)	2.763 (2)	2.753 (2)	2.758 (2)
<x-o></x-o>	2.685	2.705	2.677	2.677	2.676	2.672	2.673
Y-O(1) g	2.005 (3)	2.060 (8)	2.044 (4)	2.050 (3)	2.042 (3)	2.049 (3)	2.040 (3)
Y-O(2) h,l	2.017 (2)	1.989 (6)	1.986 (3)	1.981 (3)	1.980 (3)	1.996 (2)	1.994 (2)
Y-O(3)	2.202 (2)	2.152 (5)	2.173 (2)	2.160 (2)	2.166 (2)	2.179 (2)	2.182 (2)
<i>Y</i> -O(6) j,b	2.029 (2)	2.038 (7)	2.031 (3)	2.027 (3)	2.026 (3)	2.033 (2)	2.035 (2)
<y-o></y-o>	2.050	2.044	2.042	2.038	2.037	2.048	2.047
7-0(3) h	1 981 (2)	1 981 (6)	1 965 (3)	1 965 (2)	1 964 (3)	1966 (2)	1964 (2)
7-0(6)	1.860(2)	1 860 (8)	1 845 (3)	1 844 (3)	1 846 (3)	1.848 (2)	1.848 (3)
Z = O(7) d	1.952 (2)	1.961 (6)	1.956 (3)	1.953 (3)	1.952 (3)	1.959 (2)	1.961 (2)
Z - O(7) e	1.878 (3)	1.877 (9)	1.883 (4)	1.880 (3)	1.878 (3)	1.881 (3)	1.884 (3)
Z-O(8)	1.925 (3)	1.925 (8)	1.916 (3)	1.914 (3)	1.911 (3)	1.917 (3)	1.918 (3)
Z-O(8) f	1.891 (2)	1.886 (7)	1.881 (3)	1.878 (3)	1.878 (3)	1.883 (2)	1.887 (3)
<z-o></z-o>	1.915	1.915	1.908	1.906	1.905	1.909	1.910
<b></b>	1 (20 (1)	1 (0( (4)	1 (00 (0)	1 (02 (0)	1 (02 (0)	1 (27 (1)	1 (2( (2)
7-O(4) a	1.630 (1)	1.626 (4)	1.622 (2)	1.623(2)	1.623(2)	1.627(1)	1.626 (2)
7-O(5) b	1.643 (2)	1.639 (6)	1.637(3)	1.637(3)	1.637(2)	1.642 (2)	1.640 (2)
T-O(6)	1.622 (4)	1.612 (12)	1.607 (5)	1.604 (4)	1.604 (4)	1.605 (4)	1.605 (4)
7-0(7)	1.618 (2)	1.614 (5)	1.610 (2)	1.612 (2)	1.613 (2)	1.614 (2)	1.610 (2)
<7-0>	1.628	1.623	1.619	1.618	1.619	1.622	1.620
O(4)a- <i>T</i> -O(5)b	104.2 (1)	105.1 (3)	104.2 (1)	104.2 (1)	104.1 (1)	103.7 (1)	103.8 (1)
O(4)a-T-O(6)	111.7 (1)	111.5 (4)	111.8 (2)	112.0 (2)	112.0 (2)	111.8 (1)	111.9 (2)
O(4)a-T-O(7)	110.5 (1)	110.3 (4)	110.3 (2)	110.2 (1)	110.1 (1)	110.4 (1)	110.5 (1)
O(5)b- <i>T</i> -O(6)	110.6 (1)	110.6 (4)	110.9 (2)	110.8 (2)	110.8 (2)	111.0 (1)	110.8 (1)
O(5)b-T-O(7)	110.1 (1)	109.7 (4)	109.6 (2)	109.6 (2)	109.6 (1)	109.6 (1)	109.7 (1)
O(6)- <i>T</i> -O(7)	109.6 (1)	109.5 (4)	110.0 (2)	109.9 (1)	110.0 (1)	110.1 (1)	110.0 (1)
< <u>O-</u> <i>T</i> - <u>O</u> >	109.5	109.5	109.5	109.5	109.4	109.4	109.5
$B_{-}O(2)$	1 358 (1)	1 354 (2)	1 353 (1)	1 351 (1)	1354 (1)	1 359 (1)	1 353 (1)
$B = O(8) \subset a$	1.333(2)	1.331(2)	1.383(2)	1.386(2)	1.391(1) 1 384 (2)	1.384(2)	1.383(2)
B - O  =  B - O	1.375	1.374	1.373	1.374	1.374	1.376	1.373
O(2)-B-O(8)c x2	120.6 (1)	120.6 (3)	120.9 (2)	121.0 (2)	120.8 (2)	120.7 (2)	120.9 (2)
O(8)c-B-O(8)a	118.8 (1)	118.8 (3)	118.1 (2)	117.9 (2)	118.4 (2)	118.6 (2)	118.2 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	СТ64	CT65	CT66	CT67	CT68	СТ69	CT70
<i>X</i> -O(2) k,l,a	2.452 (2)	2.419 (2)	2.436 (2)	2.453 (1)	2.432 (1)	2.429 (2)	2.447 (2)
<i>X</i> -O(4) m,n,o	2.787 (2)	2.768 (2)	2.783 (2)	2.780 (1)	2.774 (1)	2.773 (2)	2.789 (1)
<i>X</i> -O(5) p,q,r	2.699 (2)	2.674 (2)	2.691 (2)	2.692 (1)	2.684 (1)	2.680 (1)	2.702 (1)
<x-o></x-o>	2.646	2.620	2.637	2.642	2.630	2.627	2.654
<i>Y</i> -O(1) g	2.012 (2)	2.037 (2)	2.020 (2)	2.029 (1)	2.051 (1)	2.030 (2)	2.024 (2)
Y-O(2) h,l	2.034 (2)	2.054 (2)	2.044 (2)	2.042 (1)	2.047 (1)	2.045 (2)	2.038 (2)
Y-O(3)	2.133 (1)	2.130 (1)	2.125 (1)	2.124 (1)	2.128 (1)	2.128 (1)	2.130 (1)
<i>Y</i> -O(6) j,b	2.011 (2)	2.013 (2)	2.010 (2)	2.014 (1)	2.022 (1)	2.011 (2)	2.016 (2)
< <i>Y</i> -O>	2.039	2.050	2.042	2.044	2.053	2.045	2.044
Z-O(3) b	1.986 (2)	1.987 (2)	1.987 (2)	1.989 (2)	1.984 (1)	1.982 (2)	1.985 (2)
Z-O(6)	1.883 (2)	1.887 (2)	1.885 (2)	1.885 (1)	1.883 (1)	1.885 (2)	1.882 (2)
Z-O(7) d	1.959 (2)	1.966 (2)	1.962 (2)	1.963 (2)	1.865 (1)	1.964 (2)	1.963 (2)
Z-O(7) e	1.904 (2)	1.911 (2)	1.908 (2)	1.910 (2)	1.909 (1)	1.911 (2)	1.907 (2)
Z-O(8)	1.927 (2)	1.931 (2)	1.928 (2)	1.929 (2)	1.929 (2)	1.928 (2)	1.927 (2)
Z-O(8) f	1.893 (2)	1.897 (2)	1.894 (2)	1.898 (1)	1.895 (1)	1.893 (2)	1.891 (2)
<z-o></z-o>	1.925	1.930	1.927	1.929	1.928	1.927	1.926
$T_{-}O(4)$ a	1.629 (1)	1 633 (1)	1 628 (1)	1 632 (1)	1 633 (1)	1 631 (1)	1 629 (1)
T-O(5) b	1.645 (2)	1.652 (2)	1.646 (2)	1.649 (2)	1.650 (2)	1.647 (2)	1.646 (2)
T-O(6)	1.600 (2)	1.597 (2)	1.600 (2)	1.603 (2)	1.599 (2)	1.598 (2)	1.601 (2)
T-O(7)	1.603 (1)	1.599 (1)	1.597 (1)	1.605 (1)	1.602 (1)	1.599 (1)	1.602 (1)
< <u>7-O&gt;</u>	1.619	1.620	1.618	1.622	1.621	1.619	1.620
$O(4)a_{*}T - O(5)b$	101.5 (1)	998(1)	101.0 (1)	1011(1)	100.4(1)	100 5 (1)	101.6 (1)
O(4)a - T - O(6)	101.5(1)	1116(1)	1116(1)	101.1(1)	1116(1)	100.5(1)	1116(1)
O(4)a - T - O(7)	110.8(1)	111.5 (1)	1110(1)	110.9(1)	111.2(1)	111.1(1)	110.9(1)
O(5)b-T-O(6)	110.6 (1)	110.7 (1)	110.6 (1)	110.7(1)	110.8 (1)	110.7 (1)	110.6 (1)
O(5)b-T-O(7)	110.7 (1)	111.2 (1)	111.0 (1)	110.8 (1)	110.9 (1)	111.0 (1)	110.7 (1)
O(6)-T-O(7)	111.2 (1)	111.5 (1)	111.3 (1)	111.3 (1)	111.4 (1)	111.5 (1)	111.2 (1)
< <u>O-T-O&gt;</u>	109.4	109.4	109.4	109.4	109.4	109.4	109.4
<i>B</i> -O(2)	1.371 (1)	1.378 (1)	1.366 (1)	1.370 (1)	1.371 (1)	1.371 (1)	1.369 (1)
<i>B</i> -O(8) c,a	1.377 (2)	1.377 (2)	1.376 (2)	1.380 (2)	1.382 (2)	1.379 (2)	1.381 (2)
<i><b-< i="">O&gt;</b-<></i>	1.375	1.377	1.373	1.377	1.378	1.376	1.377
O(2)-B-O(8)c x2	120.5 (1)	120.5 (1)	120.5 (2)	120.6 (1)	120.6 (1)	120.6 (2)	120.6 (1)
O(8)c-B-O(8)a	119.0 (1)	119.0 (1)	118.9 (2)	118.9 (1)	118.8 (1)	118.7 (2)	118.8 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT71	CT72	CT73	CT74	CT75	CT76	CT77
X-O(2) k,l,a	2.452 (2)	2.483 (2)	2.445 (3)	2.430 (2)	2.443 (2)	2.469 (2)	2.466 (2)
X-O(4) m,n,o	2.778 (1)	2.807 (1)	2.776 (2)	2.772 (2)	2.786 (2)	2.783 (1)	2.788 (1)
<i>X</i> -O(5) p,q,r	2.689 (1)	2.724 (1)	2.688 (2)	2.682 (2)	2.694 (2)	2.699 (1)	2.705 (1)
<x-o></x-o>	2.640	2.671	2.636	2.628	2.641	2.650	2.653
<i>Y</i> -O(1) g	2.019 (2)	1.984 (2)	2.042 (3)	2.045 (2)	2.020 (2)	1.991 (2)	2.012 (2)
<i>Y</i> -O(2) h,l	2.036 (2)	2.016 (2)	2.045 (3)	2.050 (2)	2.040 (2)	2.043 (2)	2.047 (2)
Y-O(3)	2.123 (1)	2.137 (1)	2.136 (2)	2.128 (1)	2.126 (1)	2.162 (1)	2.156 (1)
<i>Y</i> -O(6) j,b	2.012 (2)	2.005 (2)	2.014 (3)	2.021 (2)	2.007 (2)	2.016 (2)	2.023 (2)
<y-o></y-o>	2.040	2.027	2.049	2.053	2.040	2.045	2.051
Z-O(3) b	1.984 (2)	1.988 (2)	1.986 (3)	1.986 (2)	1.987 (2)	1.988 (2)	1.990 (2)
Z-O(6)	1.885 (2)	1.886 (2)	1.872 (3)	1.875 (2)	1.885 (2)	1.892 (2)	1.894 (2)
Z-O(7) d	1.962 (2)	1.957 (2)	1.956 (3)	1.961 (2)	1.961 (2)	1.966 (2)	1.969 (2)
Z-O(7) e	1.909 (2)	1.902 (2)	1.902 (3)	1.906 (2)	1.909 (2)	1.912 (2)	1.913 (2)
Z-O(8)	1.926 (2)	1.927 (2)	1.930 (4)	1.929 (2)	1.930 (2)	1.930 (2)	1.935 (2)
Z-O(8) f	1.896 (1)	1.894 (2)	1.895 (3)	1.900 (2)	1.894 (2)	1.897 (2)	1.900 (2)
<z-0></z-0>	1.927	1.926	1.924	1.926	1.928	1.931	1.935
				-			
<i>T</i> -O(4) a	1.630 (1)	1.626 (1)	1.635 (2)	1.635 (1)	1.629 (1)	1.628 (1)	1.631 (1)
<i>T</i> -O(5) b	1.647 (2)	1.642 (2)	1.654 (4)	1.651 (2)	1.646 (2)	1.644 (2)	1.647 (2)
<i>T</i> -O(6)	1.599 (2)	1.608 (3)	1.611 (4)	1.603 (2)	1.602 (2)	1.601 (3)	1.603 (3)
<i>T</i> -O(7)	1.602 (1)	1.605 (1)	1.610 (2)	1.605 (1)	1.600 (1)	1.598 (1)	1.604 (1)
<7-O>	1.620	1.620	1.628	1.624	1.619	1.618	1.621
O(4)a- <i>T</i> -O(5)b	101.1 (1)	102.9 (1)	101.0 (2)	100.3 (1)	101.2 (1)	101.7 (1)	101.6 (1)
O(4)a- <i>T</i> -O(6)	111.7 (1)	111.6 (1)	111.6 (2)	111.7 (1)	111.5 (1)	111.6 (1)	111.6 (1)
O(4)a-T-O(7)	110.9 (1)	110.6 (1)	111.5 (2)	111.2 (1)	111.0 (1)	111.0 (1)	111.0 (1)
O(5)b- <i>T</i> -O(6)	110.6 (1)	110.3 (1)	110.7 (2)	110.9 (1)	110.5 (1)	110.6 (1)	110.6 (1)
O(5)b-T-O(7)	110.8 (1)	110.5 (1)	110.9 (2)	111.0 (1)	110.9 (1)	110.8 (1)	110.8 (1)
O(6)- <i>T</i> -O(7)	111.3 (1)	110.8 (1)	110.9 (1)	111.3 (1)	111.3 (1)	110.9 (1)	110.9 (1)
<o-<i>T-O&gt;</o-<i>	109.4	109.5	109.4	109.4	109.4	109.4	109.4
<i>B</i> -O(2)	1.366 (1)	1.363 (1)	1.376 (1)	1.369 (1)	1.368 (1)	1.367 (1)	1.370 (1)
<i>B</i> -O(8) c,a	1.380 (2)	1.378 (2)	1.380 (4)	1.379 (2)	1.377 (2)	1.379 (2)	1.379 (2)
< <i>B</i> -O>	1.375	1.373	1.379	1.375	1.374	1.375	1.376
$O(2)-B-O(8)c \times 2$	120.7 (1)	120.6 (1)	120.5 (3)	120.7 (2)	120.6 (1)	120.6 (2)	120.5 (2)
O(8)c-B-O(8)a	118.7 (1)	118.8 (1)	119.0 (3)	118.7 (2)	118.7 (1)	118.9 (2)	119.0 (2)
< <u>0-</u> <i>B</i> - <u>0</u> >	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT78	CT79	CT80	CT81	CT82	CT83	CT84
X-O(2) k,l,a	2.492 (2)	2.473 (2)	2.508 (2)	2.374 (2)	2.369 (2)	2.373 (2)	2.371 (2)
X-O(4) m,n,o	2.775 (1)	2.788 (1)	2.783 (2)	2.788 (2)	2.778 (1)	2.802 (2)	2.782 (2)
X-O(5) p,q,r	2.676 (1)	2.696 (1)	2.704 (1)	2.723 (2)	2.715 (1)	2.740 (2)	2.722 (2)
<x-o></x-o>	2.648	2.652	2.665	2.628	2.621	2.638	2.625
Y-O(1) g	1.961 (2)	1.976 (2)	1.978 (2)	2.016 (3)	2.018 (3)	2.044 (3)	2.022 (3)
Y-O(2) h,l	2.024 (2)	2.036 (2)	2.029 (2)	1.999 (2)	2.006 (2)	1.997 (2)	2.006 (3)
Y-O(3)	2.121 (1)	2.139 (1)	2.130 (1)	2.185 (1)	2.187 (1)	2.174 (1)	2.184 (1)
<i>Y</i> -O(6) j,b	1.980 (2)	2.001 (2)	2.004 (2)	1.984 (2)	1.981 (2)	2.010 (2)	1.981 (2)
< <i>Y</i> -O>	2.015	2.032	2.029	2.028	2.030	2.039	2.030
Z-O(3) b	1.993 (2)	1.992 (2)	1.995 (2)	1.943 (2)	1.941 (2)	1.950 (2)	1.940 (2)
Z-O(6)	1.906 (2)	1.896 (2)	1.896 (2)	1.844 (2)	1.842 (2)	1.843 (2)	1.843 (2)
Z-O(7) d	1.959 (2)	1.963 (2)	1.964 (2)	1.960 (2)	1.961 (2)	1.958 (2)	1.960 (2)
Z-O(7) e	1.915 (2)	1.911 (2)	1.908 (2)	1.886 (2)	1.886 (2)	1.884 (2)	1.892 (2)
Z-O(8)	1.931 (2)	1.933 (2)	1.928 (3)	1.905 (2)	1.904 (2)	1.907 (2)	1.905 (2)
Z-O(8) f	1.903 (2)	1.902 (2)	1.906 (2)	1.883 (2)	1.881 (2)	1.879 (2)	1.887 (2)
<z-o></z-o>	1.935	1.933	1.933	1.904	1.903	1.904	1.905
<i>T</i> -O(4) a	1.630 (1)	1.629 (1)	1.629 (1)	1.625 (1)	1.625 (1)	1.625 (1) .	1.627 (1)
<i>T</i> -O(5) b	1.649 (2)	1.648 (2)	1.646 (2)	1.641 (2)	1.642 (2)	1.639 (2)	1.643 (2)
<i>T</i> -O(6)	1.607 (2)	1.604 (2)	1.610 (3)	1.594 (2)	1.598 (2)	1.597 (3)	1.597 (3)
<i>T</i> -O(7)	1.600 (1)	1.603 (1)	1.607 (1)	1.605 (1)	1.604 (1)	1.605 (1)	1.604 (2)
< <i>T</i> -O>	1.622	1.621	1.623	1.616	1.617	1.617	1.618
O(4)a- <i>T</i> -O(5)b	101.2 (1)	101.6 (1)	102.5 (1)	101.8 (1)	101.3 (1)	102.3 (1)	101.4 (1)
O(4)a- <i>T</i> -O(6)	111.7 (1)	111.6 (1)	111.6 (1)	112.1 (1)	112.2 (1)	112.0 (1)	112.1 (1)
O(4)a-T-O(7)	110.8 (1)	110.9 (1)	110.7 (1)	110.7 (1)	110.8 (1)	110.5 (1)	111.0 (1)
O(5)b-T-O(6)	110.3 (1)	110.5 (1)	110.4 (1)	111.2 (1)	111.3 (1)	111.2 (1)	111.4 (1)
O(5)b-T-O(7)	110.9 (1)	110.8 (1)	110.4 (1)	109.7 (1)	109.6 (1)	109.8 (1)	109.5 (1)
O(6)- <i>T</i> -O(7)	111.5 (1)	111.2 (1)	110.9 (1)	111.0 (1)	111.2 (1)	110.8 (1)	111.1 (1)
<0- <i>T</i> -O>	109.4	109.4	109.4	109.4	109.4	109.4	109.4
<i>B</i> -O(2)	1.378 (1)	1.372 (1)	1.368 (1)	1.355 (1)	1.355 (1)	1.351 (1)	1.357 (1)
<i>B</i> -O(8) c,a	1.374 (2)	1.374 (2)	1.376 (2)	1.385 (2)	1.384 (2)	1.386 (2)	1.382 (2)
<i><b-< i="">O&gt;</b-<></i>	1.375	1.373	1.373	1.375	1.374	1.374	1.374
O(2)-B-O(8)c x2	120.7 (1)	120.5 (1)	120.4 (2)	121.6 (1)	121.5 (1)	121.3 (2)	121.4 (2)
O(8)c-B-O(8)a	118.6 (2)	118.9 (1)	119.1 (2)	116.9 (1)	117.0 (2)	117.4 (2)	117.1 (2)
< <u>O-B-O&gt;</u>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	CT85	CT86	CT87	CT88	CT89	СТ90	CT91
X-O(2) k,l,a	2.504 (8)	2.512 (11)	2.523 (10)	2.553 (10)	2.558 (3)	2.517 (5)	2.488 (3)
X-O(4) m,n,o	2.850 (4)	2.846 (6)	2.844 (6)	2.822 (5)	2.779 (1)	2.814 (3)	2.831 (2)
<i>X</i> -O(5) p,q,r	2.804 (4)	2.795 (5)	2.792 (5)	2.758 (5)	2.669 (2)	2.748 (3)	2.752 (2)
<x-o></x-o>	2.719	2.718	2.720	2.711	2.669	2.693	2.690
<i>Y</i> -O(1) g	2.047 (8)	2.045 (11)	2.042 (11)	1.964 (9)	2.115 (2)	1.975 (5)	1.978 (3)
<i>Y</i> -O(2) h,l	1.975 (7)	1.978 (10)	1.981 (10)	1.954 (9)	1.999 (2)	2.025 (5)	2.018 (3)
Y-O(3)	2.155 (6)	2.149 (8)	2.148 (7)	2.082 (8)	1.946 (1)	2.074 (4)	2.080 (2)
<i>Y</i> -O(6) j,b	2.048 (8)	2.049 (11)	2.049 (10)	1.996 (10)	1.984 (2)	1.980 (5)	1.989 (3)
< <i>Y</i> -O>	2.041	2.041	2.042	1.991	2.005	2.010	2.012
Z-O(3) b	1.980 (6)	1.978 (8)	1.979 (7)	1.975 (7)	1.902 (2)	2.027 (5)	2.013 (2)
Z-O(6)	1.849 (9)	1.852 (13)	1.853 (12)	1.872 (12)	1.924 (3)	1.953 (5)	1.926 (3)
Z-O(7) d	1.958 (7)	1.961 (10)	1.960 (10)	1.949 (9)	1.977 (2)	1.989 (5)	1.965 (3)
Z-O(7) e	1.875 (11)	1.874 (15)	1.878 (14)	1.882 (14)	1.879 (3)	1.954 (6)	1.929 (3)
Z-O(8)	1.919 (9)	1.917 (13)	1.920 (12)	1.906 (12)	1.924 (3)	1.951 (6)	1.944 (3)
Z-O(8) f	1.878 (9)	1.880 (12)	1.881 (12)	1.884 (11)	1.889 (3)	1.940 (5)	1.920 (3)
<z-o></z-o>	1.910	1.910	1.912	1.911	1.916	1.969	1.950
	1 (00 (4)	1 (01 (0)		1 (17 (0)	1 (24 (2)	1 (25 (2))	1 (2( (2)
7-O(4) a	1.620 (4)	1.621 (6)	1.621 (6)	1.617 (6)	1.624 (2)	1.625(3)	1.626(2)
7-0(5) b	1.634(6)	1.633 (8)	1.635 (8)	1.630(8)	1.627(2)	1.643(5)	1.641(3)
7-0(6)	1.610(14)	1.608 (20)	1.608 (19)	1.616 (18)	1.620 (4)	1.022(7)	1.609 (4)
1-0(7)	1.612 (5)	1.612(7)	1.011(7)	1.610 (6)	1.609 (2)	1.587 (4)	1.000(2)
<7-0>	1.619	1.619	1.619	1.618	1.620	1.019	1.019
$O(4)a_{-}T_{-}O(5)b$	106 4 (4)	106 3 (6)	106 3 (5)	106 7 (5)	103 2 (1)	102 6 (2)	103.1 (1)
O(4)a - T - O(6)	1113(5)	1113(7)	1112(7)	111.6 (6)	111.6(1)	110.7(3)	111.3(2)
O(4)a-T-O(7)	110.0(4)	109.9 (6)	109.9 (5)	109.3 (5)	109.7 (1)	111.3 (3)	110.6 (2)
O(5)b-T-O(6)	110.3 (5)	110.3 (6)	110.4 (6)	110.2 (6)	109.5 (1)	110.0 (3)	110.2 (2)
O(5)b-T-O(7)	109.5 (5)	109.6 (6)	109.5 (6)	109.3 (6)	112.2 (1)	110.8 (3)	110.5 (2)
O(6)-T-O(7)	109.3 (5)	109.4 (7)	109.4 (6)	109.8 (6)	110.4 (1)	111.1 (3)	111.0 (2)
<0-7-0>	109.5	109.5	109.5	109.5	109.4	109.4	109.5
B-O(2)	1.345 (3)	1.346 (4)	1.345 (4)	1.346 (4)	1.380 (1)	1.377 (2)	1.371 (1)
B-O(8) c,a	1.387 (3)	1.385 (3)	1.382 (4)	1.385 (3)	1.374 (2)	1.368 (5)	1.366 (3)
<i><b-< i="">O&gt;</b-<></i>	1.373	1.372	1.370	1.372	1.376	1.371	1.368
	100.0 (0)		100 5 (0)	101.0 (0)	100 5 (1)	100 5 (1)	100.0 (0)
O(2)-B-O(8)c x2	120.8 (2)	120.6 (3)	120.5 (3)	121.2 (2)	120.5 (1)	120.7(4)	120.3(2)
O(8)c-B-O(8)a	118.4 (2)	118.8 (3)	119.0 (3)	117.5 (3)	118.9 (1)	118.5 (4)	119.3 (2)
<o-<i>B-O&gt;</o-<i>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	СТ92	CT93	СТ94	СТ95	СТ96	CT97	СТ98
<i>X</i> -O(2) k,l,a	2.543 (6)	2.515 (3)	2.529 (3)	2.565 (2)	2.590 (5)	2.610 (8)	2.582 (10)
X-O(4) m,n,o	2.803 (4)	2.822 (2)	2.817 (2)	2.801 (2)	2.819 (4)	2.797 (5)	2.821 (7)
<i>X</i> -O(5) p,q,r	2.729 (4)	2.736 (2)	2.736 (2)	2.723 (2)	2.763 (3)	2.753 (5)	2.763 (6)
< <i>X</i> -O>	2.692	2.691	2.694	2.696	2.724	2.720	2.722
Y-O(1) g	1.949 (6)	1.965 (3)	1.972 (3)	1.947 (2)	1.966 (5)	1.978 (7)	1.967 (9)
Y-O(2) h l	2.011 (5)	2.013 (3)	2.025 (3)	2.012 (2)	2.040 (5)	2.049 (7)	2.038 (9)
Y-O(3)	2.086(4)	2.084(2)	2.080 (2)	2.074 (2)	2.073 (4)	2.058 (6)	2.087 (7)
Y-O(6) j.b	1.973 (5)	1.985 (3)	1.984 (3)	1.977 (2)	1.983 (5)	1.996 (8)	1.991 (9)
<y-o></y-o>	2.001	2.008	2.012	2.000	2.014	2.021	2.019
7-0(3) b	2 023 (5)	2 016 (3)	2 025 (3)	2.034 (2)	2.053 (4)	2.061 (6)	2.060 (8)
7-0(6)	1.980(6)	1939(3)	1.962 (3)	1.979 (3)	2.012 (6)	2.033 (9)	2.024 (11)
7-0(7) d	1.989 (6)	1.971 (3)	1.984 (3)	1.987 (2)	2.014 (5)	2.008 (7)	2.013 (9)
Z = O(7) e	1.957 (7)	1.935 (4)	1.953 (4)	1.955 (3)	1.981 (6)	1.973 (10)	1.981 (12)
Z-O(8)	1.950 (7)	1.943 (4)	1.951 (4)	1.951 (3)	1.991 (6)	1.985 (9)	1.986 (11)
Z-O(8) f	1.940 (6)	1.926 (3)	1.941 (3)	1.945 (3)	1.985 (5)	1.978 (8)	1.978 (10)
<z-0></z-0>	1.973	1.955	1.969	1.975	2.006	2.006	2.007
$T_{-}O(4)$ a	1 628 (4)	1 626 (2)	. 1.627 (2)	1.628 (2)	1.628 (3)	1.638 (5)	1.636 (7)
T = O(5) h	1.645 (6)	1.643 (3)	1.643 (3)	1.641 (2)	1.639 (5)	1.645 (7)	1.650 (10)
T - O(6)	1.613 (8)	1.609 (5)	1.612 (5)	1.612 (4)	1.610 (8)	1.586 (12)	1.596 (15)
T-O(7)	1.593 (4)	1.598 (2)	1.596 (2)	1.596 (2)	1.599 (4)	1.618 (5)	1.606 (7)
<t-o></t-o>	1.620	1.619	1.620	1.619	1.619	1.622	1.622
$O(4)a_{7}-O(5)b$	102 9 (3)	103.0 (2)	102.6 (2)	103.1 (1)	103.3 (3)	102.4 (4)	102.8 (5)
O(4)a - T - O(6)	1115(4)	111.4(2)	111.2 (2)	111.3 (2)	110.8 (3)	111.8 (5)	111.7 (6)
O(4)a - T - O(7)	110.6 (3)	110.5 (2)	110.9 (2)	110.5 (1)	110.6 (3)	110.4 (4)	110.4 (5)
O(5)b-T-O(6)	110.1 (4)	110.3 (2)	109.9 (2)	109.9 (1)	109.9 (3)	110.2 (5)	109.9 (6)
O(5)b-T-O(7)	110.4 (3)	110.5 (2)	110.9 (2)	110.8 (1)	110.8 (3)	110.6 (4)	110.4 (5)
O(6)-T-O(7)	111.1 (3)	111.0 (2)	111.1 (2)	111.0 (1)	111.2 (3)	111.0 (4)	111.3 (5)
< <u>O-</u> <i>T</i> -O>	109.4	109.5	109.4	109.4	109.4	109.4	109.4
B-O(2)	1.402 (2)	1.384 (1)	1.372 (1)	1.386 (1)	1.350 (2)	1.305 (3)	1.369 (4)
B-O(8) c.a	1.366 (6)	1.365 (3)	1.371 (3)	1.368 (3)	1.358 (5)	1.391 (7)	1.366 (10)
< <u>B-O&gt;</u>	1.378	1.371	1.371	1.374	1.355	1.362	1.367
$O(2)_{-B}O(8) \leq \sqrt{2}$	120 4 (5)	120 3 (2)	1207 (2)	120.5 (2)	120.9 (3)	121.9 (5)	120.8 (7)
$O(8)_{c-}R_{-}O(8)_{2}$	1192(4)	1194 (2)	1186 (2)	119.0 (2)	118.2 (3)	116.1 (5)	118.4 (7)
< <u>O-B-O&gt;</u>	120.0	120.0	120.0	120.0	120.0	120.0	120.0

	СТ99
<i>X</i> -O(2) k,l,a	2.660 (2)
X-O(4) m,n,o	2.838 (2)
X - O(5) p, q, r	2.768 (2)
< <u>X-O&gt;</u>	2.755
<i>Y</i> -O(1) g	1.969 (2)
Y-O(2) h.l	2.059 (2)
Y-O(3)	2.134 (2)
Y-O(6) i.b	2.017 (2)
$\langle Y - O \rangle$	2.043
1.0	
7-0(3) b	2.073 (2)
7-0(6)	2.024 (2)
Z-0(7) d	2.036 (2)
Z-O(7) e	1,998 (3)
Z = O(8)	2.001 (3)
7-0(8) f	1.977(2)
$\langle 7_{-} 0 \rangle$	2.018
~2-0>	2.010
$T_{-}O(A)$ a	1 633 (2)
$T_{-O}(5)$ h	1.633(2) 1.648(2)
T O(5) U	1.647(2)
$T_{-}O(7)$	1.607(2)
T = O(T)	1.626
~1-0>	1.020
O(4)a-T-O(5)b	103.9 (1)
O(4)a-T-O(6)	111.3 (1)
O(4)a-T-O(7)	109.9 (1)
O(5)b-T-O(6)	109.9 (1)
O(5)b-T-O(7)	110.4 (1)
O(6)-T-O(7)	111.2 (1)
<0-7-0>	109.4
B-O(2)	1.388 (1)
B-O(8) c,a	1.367 (2)
< <u>B-O&gt;</u>	1.374
O(2)-B-O(8)c x2	120.0 (2)
O(8)c-B-O(8)a	119.9 (2)
< <u>0-</u> <i>B</i> -0>	120.0
	1

### APPENDIX G

### **Chemical Analyses**

This appendix lists chemical analyses in terms of weight percent oxide. Chemical analyses were done on a CAMECA SX-50 microprobe. Asterisks indicate that the chemical component was determined by stoichiometry (Li₂O, B₂O₃, and H₂O).

Section G.1 includes the recalculated formulae, determined as discussed in the text under Experimental Methods. The term 'vacancy' stands for the amount of vacancy present at the *X*-site.

Section G.2 includes recalculated formulae, normalized on Si = 6 apfu. The only samples in this section are those that had Si > 6 apfu in section G.1.

Section G.3 includes recalculated formulae for CT96 (as discussed in Chapter 5) and CT99 (as discussed in Chapter 6).
Section	G.I		0000	0771	0775	CTT(	CT7	CTQ	СТО
	СТ1	<u>C12</u>	<u>C13</u>	<u>C14</u>	<u> </u>		20.57	20.20	29.45
SiO2	38.26	37.19	37.91	37.97	38.42	37.16	38.57	38.38	38.43
TiO2	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.01
A12O3	42.92	39.17	41.38	41.78	40.72	41.23	40.29	42.48	41.91
V2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CaO	0.23	0.29	0.04	0.50	0.44	0.46	0.46	0.04	0.00
MnO	0.03	0.55	0.74	0.13	0.09	0.53	0.29	0.12	0.05
FeO	0.00	2.51	0.01	0.01	0.00	0.88	0.00	0.33	0.00
ZnO	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na2O	1.69	2.01	1.71	1.61	1.78	1.77	1.72	1.71	1.69
K2O	0.01	0.02	0.02	0.00	0.01	0.01	0.00	0.00	0.00
F	0.44	0.85	0.63	0.88	0.95	0.94	0.93	0.34	0.42
Li2O*	2.01	1.76	1.91	2.06	2.28	1.90	2.34	1.94	2.02
B2O3*	11.23	10.79	11.01	11.08	11.04	10.95	11.03	11.20	11.12
H2O*	3.67	3.32	3.50	3.40	3.36	3.33	3.36	3.70	3.64
O=F	-0.19	-0.36	-0.27	-0.37	-0.40	-0.40	-0.39	-0.14	-0.18
Total	100.31	98.20	98.59	99.05	98.69	98.77	98.60	100.09	99.12
				0.400	0 5 4 0	0.544	0.526	0 5 1 5	0.512
Na	0.507	0.682	0.523	0.490	0.543	0.544	0.520	0.515	0.512
K	0.002	0.004	0.001	0.000	0.002	0.002	0.000	0.000	0.000
Ca	0.038	0.050	0.007	0.084	0.074	0.078	0.078	0.007	0.000
Vacancy	0.453	0.264	0.469	0.426	0.381	0.376	0.396	0.478	1.000
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.250	1.143	1.213	1.299	1.435	1.206	1.478	1.211	1.272
Mg	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti4+	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn2+	0.004	0.075	0.099	0.017	0.012	0.071	0.039	0.016	0.007
Fe2+	0.000	0.338	0.001	0.001	0.000	0.117	0.000	0.043	0.000
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	1.745	1.425	1.687	1.683	1.553	1.606	1.483	1.730	1.721
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mo	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	6 000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Al	0.081	0.010	0.014	0.043	0.000	0.104	0.000	0.042	0.000
Si	5.919	5.990	5.986	5.957	6.046	5.896	6.078	5.958	6.010
T Total	6.000	6.000	6.000	6.000	6.046	6.000	6.078	6.000	6.010
ОН	3,785	3.567	3.685	3.563	3.527	3.528	3.537	3.833	3.792
F	0.215	0.433	0.315	0.437	0.473	0.472	0.463	0.167	0.208

i	CT10	CT11	CT12	CT13	CT14	CT15	CT16	CT17	CT18
SiO2	38.95	37.15	37.20	37.43	38.42	38.20	37.57	37.48	37.69
TiO2	0.00	0.00	0.00	0.00	0.01	0.00	0.30	0.00	0.03
Al2O3	39.82	41.20	41.97	40.86	42.94	43.98	36.52	37.72	37.11
V2O3	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.08	0.11
CaO	0.29	0.28	0.08	0.49	0.07	0.24	0.20	0.25	0.29
MnO	0.48	0.27	0.62	1.22	0.36	0.18	0.89	0.53	1.39
FeO	0.10	0.00	0.00	0.18	0.18	0.01	5.27	5.06	4.17
ZnO	0.00	0.00	0.00	0.00	0.03	0.02	0.00	0.00	0.00
CuO	0.00	0.81	0.38	0.00			0.00	0.00	0.00
Na2O	1.83	1.75	1.78	1.86	2.00	1.74	2.61	2.35	2.44
K2O	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.03
F	0.96	0.88	0.60	0.93	0.93	0.58	1.34	1.14	1.30
Li2O*	2.43	1.88	1.83	2.03	1.99	1.96	1.77	1.67	1.83
B2O3*	11.05	10.91	10.99	11.12	11.30	11.37	10.78	10.81	10.80
H2O*	3.36	3.35	3.51	3.39	3.46	3.65	3.08	3.19	3.11
O=F	-0.40	-0.37	-0.25	-0.39	-0.39	-0.24	-0.56	-0.48	-0.55
Total	98.87	98.11	98.70	100.13	101.33	101.70	99.97	99.82	99.75
Na	0.558	0.541	0.546	0.564	0.596	0.516	0.816	0.733	0.761
K	0.000	0.000	0.000	0.002	0.002	0.002	0.004	0.004	0.006
Са	0.049	0.048	0.014	0.082	0.012	0.039	0.035	0.043	0.042
Vacancy	0.393	0.411	0.440	0.352	0.390	0.443	0.145	0.220	0.158
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.541	1.211	1.164	1.285	1.231	1.206	1.146	1.080	1.181
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.043	0.019	0.026
Ti4+	0.000	0.000	0.000	0.000	0.001	0.000	0.036	0.000	0.004
V3+	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000
Cr3+	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Mn2+	0.064	0.036	0.083	0.162	0.047	0.023	0.122	0.072	0.189
Fe2+	0.013	0.000	0.000	0.024	0.023	0.001	0.711	0.680	0.561
Cu	0.000	0.097	0.045	0.000			0.000	0.000	0.000
Zn	0.000	0.000	0.000	0.000	0.003	0.002	0.000	0.000	0.000
Al	1.382	1.656	1.708	1.529	1.693	1.767	0.942	1.149	1.039
Y Total	3.000	3.000	3.000	3.000	3.000	2.999	3.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
7 Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z IOlai	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.081	0.116	0.000	0.091	0.159	0.000	0.000	0.000
Si	6.126	5.919	5.884	6.008	5.909	5.841	6.059	6.027	6.066
T Total	6.126	6.000	6.000	6.008	6.000	6.000	6.059	6.027	6.066
011	0.000	0.555	2 500	2 6 4 6		0.500	2.214	a (a)	0.000
OH	3.522	3.557	3.700	3.540	3.548	3.720	3.316	3.420	3.338
r	0.478	0.443	0.300	0.460	0.452	0.280	0.684	0.580	0.662

-

	CT19	CT20	CT21	CT22	CT23	CT24	CT25	CT26	CT27
SiO2	37.65	37.37	37.54	36.11	36.72	36.78	37.56	37.72	38.58
TiO2	0.06	0.02	0.01	0.01	0.02	0.01	0.00	0.00	0.00
AI2O3	36.38	36.14	36.51	36.18	36.44	37.54	39.07	38.69	40.19
V2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
MgO	0.12	0.12	0.00	0.11	0.06	0.03	0.00	0.00	0.04
CaO	0.30	0.13	0.19	0.09	0.12	0.16	0.09	0.32	0.25
MnO	1.26	0.60	1.44	0.60	0.55	1.08	1.69	0.72	0.15
FeO	5.29	5.98	4.86	7.19	6.64	4.15	0.87	2.31	1.65
ZnO	0.00	0.00	0.00	0.07	0.09	0.03	0.05	0.00	0.13
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na2O	2.45	2.48	2.67	2.46	2.55	2.36	2.14	2.15	2.01
K2O	0.03	0.03	0.02	0.02	0.02	0.01	0.02	0.00	0.00
F	1.14	1.26	1.49	1.06	1.31	1.00	0.99	1.20	1.14
Li2O*	1.77	1.73	1.79	1.27	1.45	1.60	1.93	1.97	2.08
B2O3*	10.76	10.67	10.74	10.50	10.61	10.65	10.82	10.84	11.09
H2O*	3.17	3.08	3.00	3.12	3.04	3.20	3.26	3.17	3.29
O=F	-0.48	-0.53	-0.63	-0.45	-0.55	-0.42	-0.42	-0.51	-0.48
Total	99.90	99.08	99.63	98.34	99.07	98.18	98.07	98.59	100.14
Na	0.767	0.783	0.838	0.790	0.810	0.747	0.667	0.668	0.611
K	0.006	0.006	0.004	0.004	0.004	0.002	0.004	0.000	0.000
Са	0.052	0.023	0.033	0.016	0.021	0.028	0.015	0.055	0.420
Vacancy	0.175	0.188	0.125	0.190	0.165	0.223	0.314	0.277	0.347
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.1.50	1 120	1 1 6 6	0.045	0.072	1 0 10	1047	1.070	1 2 1 2
	1.150	1.132	1.1//	0.845	0.953	1.049	1.247	1.279	1.313
Mg	0.029	0.029	0.000	0.027	0.015	0.007	0.000	0.000	0.009
114+	0.007	0.002	0.001	0.001	0.002	0.001	0.000	0.000	0.000
V 5+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ur3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
	0.172	0.085	0.197	0.084	0.076	0.149	0.230	0.098	0.020
rez+	0.715	0.000	0.000	0.990	0.909	0.307	0.117	0.310	0.210
Cu 7n	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	1.029	1.024	1 222	1.400	0.000	0.015
AI V Total	2.000	2 000	2 000	2.000	2 000	2 000	2.000	2.000	2 000
i iotai	3.000	5.000	5.000	3.000	5.000	5.000	5.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Μσ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	6 000	6 000	6.000	6 000	6 000	6,000	6.000	6 000	6 000
7 Total	6 000	6 000	6.000	6 000	6.000	6.000	6.000	6 000	6 000
2 Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000
Si	6.083	6.088	6.078	5.978	6.014	6.004	6.036	6.049	6.047
T Total	6.083	6.088	6.078	6.000	6.014	6.004	6.036	6.049	6.047
OH	3.418	3.351	3.237	3.445	3.321	3.484	3.497	3.391	3.435
F	0.582	0.649	0.763	0.555	0.679	0.516	0.503	0.609	0.565

	CT28	CT29	CT30	CT31	CT32	CT33	CT34	CT35	CT36
SiO2	38.18	38.38	37.27	38.44	36.74	37.19	34.86	37.59	37.57
TiO2	0.00	0.00	0.04	0.01	0.02	0.25	0.01	1.03	0.23
A12O3	39.31	39.48	38.83	40.26	37.35	31.53	27.04	30.66	32.57
V2O3	0.00	0.00	0.01	0.02	0.01	0.00	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.01	0.05	10.80	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	9.07	8.41	12.21	11.25
CaO	0.21	0.77	0.19	0.71	0.13	0.05	0.98	0.26	0.42
MnO	0.16	2.06	1.27	0.97	6.38	0.02	0.01	0.00	0.00
FeO	1.82	0.49	4.10	0.04	0.36	5.29	0.05	0.26	0.32
ZnO	0.13	0.04	1.16	0.01	0.03	0.00	0.00	0.00	0.00
CuO	0.00	0.00				0.00	0.00	0.00	0.00
Na2O	2.06	1.99	2.50	1.88	2.91	2.57	2.05	2.83	2.44
K20	0.01	0.01	0.01	0.01	0.02	0.07	0.08	0.00	0.02
F	1.01	1.19	1.11	1.13	1.54	0.01	0.33	0.00	0.25
Li2O*	2.12	2.10	1.49	2.23	1.53	0.05	0.55	0.19	0.18
B2O3*	10.93	11.05	10.94	11.07	10.74	10.78	10.45	10.84	10.87
H2O*	3.29	3.25	3.25	3.28	2.97	3.72	3.45	3.74	3.63
O=F	-0.43	-0.50	-0.47	-0.48	-0.65	-0.01	-0.14	0.00	-0.11
Total	98.81	100.31	101.70	99.59	100.09	100.58	99.06	99.61	99.65
							11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Na	0.635	0.607	0.770	0.572	0.913	0.807	0.661	0.880	0.756
K	0.002	0.002	0.002	0.002	0.004	0.014	0.017	0.000	0.004
Ca	0.036	0.130	0.032	0.119	0.023	0.009	0.175	0.045	0.072
Vacancy	0.327	0.261	0.196	0.307	0.060	0.170	0.147	0.075	0.168
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.355	1.336	0.953	1.410	0.994	0.032	0.372	0.127	0.113
Mg	0.000	0.000	0.000	0.000	0.000	2.191	1.182	2.714	2.681
Ti4+	0.000	0.000	0.005	0.001	0.002	0.030	0.018	0.124	0.028
V3+	0.000	0.000	0.001	0.003	0.001	0.000	0.000	0.000	0.000
Cr3+	0.000	0.000	0.000	0.000	0.001	0.006	1.420	0.000	0.000
Mn2+	0.022	0.275	0.171	0.129	0.875	0.003	0.001	0.000	0.000
Fe2+	0.242	0.064	0.545	0.005	0.049	0.717	0.007	0.035	0.043
Cu	0.000	0.000				0.000	0.000	0.000	0.000
Zn	0.015	0.005	0.136	0.001	0.004	0.000	0.000	0.000	0.000
Al	1.366	1.320	1.189	1.451	1.074	0.021	0.000	0.000	0.135
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.903	0.205	0.000
Al	6.000	6.000	6.000	6.000	6.000	6.000	5.097	5.795	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Al	0.000	0.000	0.080	0.000	0.052	0.000	0.203	0.000	0.000
Si	6.070	6.038	5.920	6.036	5.948	6.026	5.797	6.029	6.005
T Total	6.070	6.038	6.000	6.036	6.000	6.026	6.000	6.029	6.005
ОН	3.492	3.408	3.442	3.439	3.212	3.995	3.826	4.000	3.874
F	0.508	0.592	0.558	0.561	0.788	0.005	0.174	0.000	0.126

	CT37	CT38	CT39	CT40	CT41	CT42	CT43	CT44	CT45
SiO2	36.26	37.18	37.66	35.98	36.32	36.41	37.28	36.46	37.01
TiO2	1.38	0.48	0.04	0.07	0.11	0.02	0.02	0.56	2.05
Al2O3	27.38	33.89	34.03	29.49	31.27	32.68	32.95	31.50	28.59
V2O3	0.08	0.00	0.25	0.29	0.13	0.06	0.08	0.12	0.00
Cr2O3	0.25	0.00	0.06	8.21	5.35	4.74	4.03	0.02	0.00
MgO	12.01	9.85	10.44	9.41	9.22	8.78	9.63	9.18	13.39
CaO	2.43	0.67	1.05	1.18	0.71	0.31	0.18	1.45	2.55
MnO	0.02	0.03	0.02	0.01	0.00	0.00	0.02	0.00	0.00
FeO	2.83	0.30	0.05	0.06	0.65	0.42	0.42	5.34	0.34
ZnO	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.02	0.00
CuO	0.00	0.00	0.00						0.00
Na2O	1.56	2.05	2.00	2.08	2.33	2.45	2.13	2.04	1.66
K2O	0.04	0.04	0.04	0.07	0.02	0.02	0.01	0.01	0.00
F	0.94	0.20	0.28	0.28	0.09	0.18	0.05	0.19	1.35
Li20*	0.57	0.38	0.36	0.46	0.40	0.42	0.22	0.13	0.20
B2O3*	10.40	10.89	11.06	10.83	10.83	10.88	11.01	10.75	10.72
H2O*	3.14	3.66	3.68	3.60	3.70	3.67	3.77	3.62	3.06
O=F	-0.40	-0.08	-0.12	-0.12	-0.04	-0.08	-0.02	-0.08	-0.57
Total	96.13	99.53	101.29	101.92	101.09	100.96	101.79	101.31	99.36
			0.000	0.615	0.005	0 7 60	0.650	0.620	0.600
Na	0.505	0.635	0.609	0.647	0.725	0.759	0.652	0.639	0.522
K	0.090	0.008	0.008	0.014	0.004	0.004	0.002	0.002	0.000
Са	0.435	0.115	0.177	0.203	0.122	0.053	0.030	0.251	0.443
Vacancy	0.051	0.242	0.206	0.136	0.149	0.184	0.310	0.108	1.000
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	0.390	0.241	0.236	0.296	0.259	0.270	0.140	0.084	0.129
Mg	2.382	2.344	2.446	1.606	1.945	2.065	2.267	2.105	2.697
Ti4+	0.173	0.058	0.050	0.008	0.013	0.002	0.002	0.068	0.128
V3+	0.011	0.000	0.031	0.037	0.017	0.008	0.010	0.016	0.000
Cr3+	0.033	0.000	0.007	1.042	0.679	0.599	0.503	0.003	0.000
Mn2+	0.003	0.004	0.003	0.001	0.000	0.000	0.003	0.000	0.000
Fe2+	0.008	0.040	0.007	0.008	0.087	0.056	0.055	0.722	0.046
Cu	0.000	0.000	0.000						0.000
Zn	0.000	0.000	0.000	0.002	0.000	0.000	0.001	0.002	0.000
Al	0.000	0.313	0.220	0.000	0.000	0.000	0.019	0.000	0.000
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
0.45	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JVIg	5 201	0.000	0.000	5 254	5 740	5.073	6.000	5 803	5 461
$\frac{AI}{7.7}$	5.391	6.000	6.000	6 000	<u> </u>	6.000	6.000	6 000	6.000
ZIOTAI	6.000	6.000	6.000	6.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.064	0.082	0.225	0.173	0.182	0.113	0.107	0.001
Si	6.057	5.936	5.918	5.775	5.827	5.818	5.887	5.893	5.999
T Total	6.057	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
						• • • • •	0.075	2 0 0 2	2 200
OH	3.503	3.899	3.861	3.858	3.954	3.909	3.975	3.903	3.308
F	0.497	0.101	0.139	0.142	0.046	0.091	0.025	0.097	0.692

	CT46	CT47	CT48	CT49	CT50	CT51	CT52	CT53	CT54
SiO2	37.38	35.79	36.07	36.67	36.02	35.83	34.58	34.74	35.05
TiO2	0.15	0.10	0.06	0.25	0.25	0.08	0.21	0.35	0.08
A12O3	31.38	34.83	34.24	31.32	31.69	31.57	31.77	30.39	31.44
V2O3	0.00	0.38	0.49	0.03	0.02	0.01	0.00	0.00	0.00
Cr2O3	0.03	0.14	0.10	0.04	0.01	0.02	0.00	0.00	0.01
MgO	12.08	11.50	11.90	7.14	7.71	6.14	1.31	1.47	1.07
CaO	0.87	2.05	2.43	0.18	0.25	0.09	0.27	0.10	0.14
MnO	0.00	0.01	0.02	0.45	0.67	0.03	0.70	1.22	0.14
FeO	0.09	0.03	0.02	7.73	6.41	9.69	13.43	14.11	15.33
ZnO	0.00	0.02	0.00	0.03	0.05	0.01	0.00	0.00	0.10
CuO	0.00						0.00	0.00	0.00
Na2O	2.31	1.85	1.75	2.87	2.80	2.77	2.11	2.36	1.69
K2O	0.05	0.02	0.01	0.02	0.03	0.19	0.05	0.06	0.02
F	1.38	1.29	1.41	1.44	1.45	1.47	0.44	0.85	0.18
Li2O*	0.17	0.16	0.19	0.10	0.05	0.04	0.30	0.23	0.16
B2O3*	10.79	11.03	11.06	10.63	10.57	10.49	10.10	10.05	10.11
H2O*	3.07	3.19	3.15	2.99	2.96	2.92	3.28	3.06	3.40
O=F	-0.58	-0.54	-0.59	-0.61	-0.61	-0.62	-0.19	-0.36	-0.08
Total	99.17	101.85	102.31	101.28	100.33	100.74	98.37	98.63	98.85
Na	0.721	0.565	0.533	0.910	0.892	0.890	0.704	0.791	0.563
K	0.010	0.004	0.002	0.004	0.006	0.040	0.011	0.013	0.004
Ca	0.150	0.346	0.409	0.032	0.044	0.016	0.050	0.019	0.026
Vacancy	0.119	0.085	0.056	0.054	0.058	0.054	0.235	0.177	0.407
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
								0.1.60	0.100
Li	0.110	0.103	0.119	0.068	0.035	0.025	0.211	0.160	0.109
Mg	2.856	2.702	2.787	1.740	1.889	1.516	0.336	0.379	0.274
Ti4+	0.018	0.012	0.007	0.031	0.031	0.010	0.027	0.046	0.010
V3+	0.000	0.048	0.062	0.004	0.003	0.001	0.000	0.000	0.000
Cr3+	0.004	0.017	0.012	0.005	0.001	0.003	0.000	0.000	0.001
Mn2+	0.000	0.001	0.003	0.062	0.093	0.004	0.102	0.179	0.020
Fe2+	0.012	0.004	0.003	1.057	0.881	1.342	1.932	2.041	2.204
Cu	0.000						0.000	0.000	0.000
Zn	0.000	0.002	0.000	0.004	0.006	0.001	0.000	0.000	0.013
Al	0.000	0.111	0.007	0.029	0.061	0.098	0.392	0.195	0.309
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
G (17)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr/re	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.044	0.000	0.000	0.000	0.000	6.000	6.000	6.000	6.000
	5.956	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	0.000	0.000	0.000
A 1	0.000	0 3 5 9	0 333	0.005	0.079	0.065	0.050	0.000	0.000
Si	6 020	5 641	5.667	5.995	5.921	5.935	5,950	6.009	6.024
T Total	6.020	6.000	6.000	6.000	6,000	6,000	6.000	6.009	6.024
1 10141	0.020	0.000	0.000	2.000	2.000	2.000			
OH	3.297	3.357	3.299	3.255	3.246	3.230	3.761	3.535	3.902
F	0.703	0.643	0.701	0.745	0.754	0.770	0.239	0.465	0.098

	CT55	CT56	CT57	CT58	CT59	СТ60	CT61	CT62	CT63
SiO2	36.04	34.61	32.60	33.72	36.56	36.95	36.21	35.80	35.89
TiO2	1.12	0.09	0.07	0.41	0.24	0.03	0.06	0.60	0.77
Al2O3	34.51	34.27	34.87	34.75	35.50	35.02	35.05	35.78	35.80
V2O3	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.02	0.02
Cr2O3	0.00	0.01	0.01	0.02	0.00	0.00	0.02	0.00	0.01
MgO	0.35	0.13	0.17	0.25	0.20	0.07	0.14	0.43	0.63
CaO	1.06	0.10	0.09	0.07	0.25	0.03	0.00	1.14	0.96
MnO	0.91	0.36	0.13	0.32	1.10	0.67	0.58	1.13	0.65
FeO	7.52	14.55	16.14	14.70	7.25	7.27	7.83	7.43	7.71
ZnO	0.00	0.16	0.08	0.11	0.00	0.00	0.14	0.01	0.03
CuO	0.00	0.00			0.00	0.00	0.00		
Na2O	2.03	1.66	2.90	1.79	2.49	2.79	2.72	2.09	2.17
K2O	0.02	0.03	0.07	0.04	0.01	0.02	0.03	0.03	0.02
F	0.91	0.42	0.26	0.77	1.01	1.41	1.33	1.16	1.08
Li20*	1.40	0.21	0.14	0.13	1.34	1.47	1.33	1.31	1.28
B2O3*	10.52	10.28	10.22	10.26	10.56	10.65	10.44	10.61	10.64
H2O*	3.20	3.35	3.40	3.18	3.17	3.00	2.97	3.11	3.16
O=F	-0.38	-0.18	-0.11	-0.32	-0.43	-0.59	-0.56	-0.49	-0.45
Total	99.20	100.06	101.06	100.20	99.26	99.78	98.29	100.16	100.36
Na	0.650	0.544	0.956	0.588	0.794	0.883	0.878	0.664	0.687
К	0.004	0.006	0.015	0.009	0.002	0.004	0.006	0.006	0.004
Ca	0.188	0.018	0.016	0.013	0.044	0.005	0.000	0.200	0.168
Vacancy	0.158	0.432	0.013	0.390	0.160	0.108	0.116	0.130	0.141
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1;	0.034	0.145	0.005	0.000	0 000	0.062	0 000	0.964	0.942
Ma	0.934	0.145	0.095	0.090	0.000	0.902	0.000	0.804	0.642
Ti4+	0.080	0.035	0.045	0.005	0.049	0.017	0.033	0.105	0.155
$V_{3+}$	0.155	0.011	0.007	0.002	0.000	0.004	0.008	0.074	0.095
Cr3+	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.003	0.003
Mn2+	0.000	0.001	0.001	0.005	0.000	0.000	0.003	0.000	0.001
Fe2+	1.039	2 057	2 294	2 082	0.155	0.075	1.000	1.019	1.054
Cu	0.000	0.000	2.274	2.002	0.000	0.995	0.000	1.018	1.054
Zu Zn	0.000	0.000	0.010	0.014	0.000	0.000	0.000	0.001	0.004
Al	0.675	0.620	0.528	0.649	0.883	0.000	0.877	0.001	0.004
Y Total	3 000	3,000	3 000	3.000	3.000	3,000	3.000	3.000	3,000
1 10(41	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Al	0.045	0.149	0.458	0.288	0.000	0.000	0.000	0.133	0.136
Si	5.955	5.851	5.542	5.712	6.150	6.032	6.028	5.867	5.864
T Total	6.000	6.000	6.000	6.000	6.150	6.032	6.028	6.000	6.000
	2.50.5		0.070	0.500	0.454				
OH	3.524	3.775	3.860	3.588	3.474	3.272	3.300	3.399	3.442
F	0.476	0.225	0.140	0.412	0.526	0.728	0.700	0.601	0.558

	CT64	CT65	CT66	CT67	CT68	CT69	CT70	CT71	CT72
SiO2	36.80	36.33	36.28	36.57	36.46	36.27	37.21	37.44	36.41
TiO2	0.93	0.06	0.75	0.09	0.29	0.31	0.87	0.47	0.89
Al2O3	28.80	26.72	27.54	29.06	28.43	27.44	28.31	29.37	28.27
V2O3	0.00	0.00	0.16	1.35	0.03	0.00	0.00	0.36	0.06
Cr2O3	0.00	0.02	0.09	0.23	0.04	0.00	0.00	0.08	0.03
MgO	13.04	15.17	14.25	14.32	14.42	14.33	14.00	14.29	11.71
CaO	3.15	5.44	3.94	3.71	4.60	4.56	3.26	3.62	3.79
MnO	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.02
FeO	0.39	0.58	0.36	0.01	1.29	0.61	0.19	0.01	4.76
ZnO	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.04	0.02
CuO	0.00	0.00	0.00			0.00	0.00		
Na2O	1.30	0.14	0.78	0.87	0.57	0.50	1.30	1.11	1.00
K2O	0.03	0.00	0.00	0.01	0.01	0.05	0.03	0.06	0.02
F	0.98	1.48	1.04	1.40	1.63	1.49	1.44	1.27	1.29
Li2O*	0.30	0.14	0.11	0.00	0.03	0.14	0.20	0.15	0.13
B2O3*	10.71	10.65	10.60	10.84	10.77	10.57	10.78	10.97	10.71
H2O*	3.23	2.97	3.16	3.07	2.94	2.94	3.04	3.18	3.08
O=F	-0.41	-0.62	-0.44	-0.59	-0.69	-0.63	-0.61	-0.53	-0.54
Total	99.24	99.63	98.62	100.97	100.87	98.59	100.02	101.90	101.65
Na	0.409	0.044	0.248	0.271	0.178	0.159	0.406	0.341	0.315
Κ	0.006	0.000	0.000	0.002	0.002	0.010	0.006	0.012	0.004
Ca	0.548	0.951	0.692	0.638	0.795	0.803	0.563	0.614	0.659
Vacancy	0.037	0.005	0.060	0.089	0.025	0.028	0.025	0.033	0.022
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	0.195	0.089	0.072	0.000	0.021	0.091	0.128	0.094	0.084
Mg	2.638	2.754	2.754	2.783	2.756	2.787	2.741	2.787	2.144
Ti4+	0.114	0.075	0.092	0.011	0.035	0.038	0.105	0.056	0.109
V3+	0.000	0.000	0.021	0.174	0.004	0.000	0.000	0.046	0.008
Cr3+	0.000	0.003	0.012	0.029	0.005	0.000	0.000	0.010	0.004
Mn2+	0.000	0.000	0.000	0.001	0.003	0.000	0.000	0.001	0.003
Fe2+	0.053	0.079	0.049	0.001	0.174	0.084	0.026	0.001	0.646
Cu	0.000	0.000	0.000			0.000	0.000		
Zn	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.005	0.002
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Y Total	3.000	3.000	3.000	3.001	3.000	3.000	3.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.517	0.935	0.729	0.641	0.712	0.724	0.623	0.587	0.688
Al	5.483	5.065	5.271	5.359	5.288	5.276	5.377	5.413	5.312
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	:								
Al	0.027	0.073	0.051	0.134	0.118	0.039	0.002	0.070	0.093
Si	5.973	5.927	5.949	5.866	5.882	5.961	5.998	5.930	5.907
T Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
OH	3.497	3.236	3.461	3.290	3.168	3.226	3.266	3.364	3.338
F	0.503	0.764	0.539	0.710	0.832	0.774	0.734	0.636	0.662

	CT73	CT74	CT75	CT76	CT77	CT78	CT79	CT80	CT81
SiO2	34.69	35.79	37.24	35.53	35.74	36.34	35.77	35.54	38.28
TiO2	0.19	0.35	0.57	0.05	0.73	0.85	0.40	0.68	0.08
AI2O3	32.55	29.31	29.25	25.35	26.06	31.66	28.55	29.08	37.48
V2O3	0.56	0.07	0.22	0.00	0.04	0.09	0.01	5.25	0.00
Cr2O3	0.20	0.03	0.09	0.00	0.00	0.66	0.03	1.80	0.00
MgO	13.47	15.22	13.30	10.37	10.89	12.36	11.52	9.88	0.34
CaO	4.57	5.22	2.97	2.69	2.90	3.44	3.30	2.60	3.30
MnO	0.01	0.02	0.00	0.02	0.01	0.00	0.02	0.03	0.21
FeO	0.03	0.22	0.06	8.41	8.32	0.03	3.67	1.25	0.88
ZnO	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.02	0.00
CuO			0.00	0.00					0.00
Na2O	0.64	0.25	1.02	1.40	1.40	1.07	1.12	1.20	1.07
K2O	0.00	0.00	0.00	0.05	0.06	0.11	0.01	0.09	0.00
F	1.64	1.95	0.85	0.71	0.72	0.39	0.43	0.59	1.56
Li20*	0.08	0.00	0.19	0.00	0.00	0.35	0.11	0.42	2.75
B2O3*	10.92	10.84	10.77	10.17	10.39	10.98	10.48	10.83	10.96
H2O*	2.99	2.81	3.31	3.17	3.24	3.60	3.41	3.46	3.04
O=F	-0.69	-0.82	-0.36	-0.30	-0.30	-0.16	-0.18	-0.25	-0.66
Total	101.85	101.26	99.49	98.02	100.20	101.77	98.67	102.46	99.29
						0.000	0.0(0)	0.070	0.000
Na	0.198	0.078	0.319	0.464	0.454	0.328	0.360	0.373	0.329
K	0.000	0.000	0.000	0.011	0.013	0.022	0.002	0.018	0.000
Ca	0.779	0.897	0.513	0.493	0.520	0.583	0.586	0.447	0.561
Vacancy	0.023	0.025	0.168	0.032	0.013	0.067	0.052	0.162	0.110
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
ı;	0.051	0.000	0.123	0.000	0.000	0 224	0 076	0.269	1.759
Mo	2 825	2 919	2.761	1.749	1.838	2.577	2.356	1.571	0.080
Ti4+	0.023	0.042	0.069	0.058	0.092	0.101	0.050	0.082	0.010
V3+	0.023	0.009	0.028	0.000	0.005	0.011	0.001	0.676	0.000
Cr3+	0.025	0.004	0.011	0.000	0.000	0.083	0.004	0.228	0.000
Mn2+	0.001	0.003	0.000	0.003	0.001	0.000	0.003	0.004	0.028
Fe2+	0.004	0.030	0.008	1.202	1.164	0.004	0.509	0.168	0.117
Cu			0.000	0.000					0.000
Zn	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.002	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.006
Y Total	3.000	3.007	3.000	3.012	3.101	3.000	3.000	3.000	3.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.371	0.720	0.438	0.893	0.879	0.340	0.491	0.793	0.000
Al	5.629	5.280	5.562	5.107	5.121	5.660	5.509	5.207	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
A 1	0 170	0.260	0.000	0.000	0 0 1 0	0 247	0.070	0 295	0.000
AI Ci	5 5 7 7	5 740	6.000	6.000	5 0 8 1	5 753	5 930	5 705	6.072
UI T Total	6.000	6 000	6 008	6.073	6.000	6 000	6 000	6 000	6 072
i iotai	0.000	0.000	0.000	0.075	0.000	0.000	0.000	0.000	0.072
011	1								
UH	3.174	3.011	3.566	3.616	3.619	3.805	3.775	3.700	3.217

SiO2   37.44   37.79   38.18   35.90   36.04   36.38   37.26   35.22   35.20     TiO2   0.21   0.00   0.04   0.00   0.04   0.07   35.98   41.07   32.21   20.21     V2O3   0.00   0.00   0.02   0.00   0.02   0.01   0.00   0.02   0.04     V2O3   0.00   0.00   0.02   0.00   0.01   0.00   0.02   0.01     Cr2O3   0.02   0.00   0.02   0.03   0.01   0.38   0.21     MaO   1.23   3.5   0.17   1.162   1.63   0.02   0.18   0.05     FeO   0.63   0.04   0.12   1.145   11.30   10.92   5.80   17.68   0.18     CuO   0.00   0.00   0.00   0.01   0.00   0.03   0.03   0.03   0.04   0.12   0.27     V2O   0.65   1.29   0.60   0.75   0.86	·····	CT82	CT83	CT84	CT85	CT86	CT87	CT88	СТ89	СТ90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO2	37.44	37.79	38.18	35.90	36.04	36.38	37.26	33.52	35.20
Al2O3   37.24   37.08   38.96   34.90   36.07   35.98   41.07   32.21   20.21     V2O3   0.00   0.00   0.02   0.00   0.02   0.01   0.00   0.02   0.01     CaO   0.02   0.00   0.02   0.01   0.00   0.02   0.01     CaO   4.16   2.82   4.30   0.03   0.02   0.03   0.01   0.38   0.21     MnO   0.12   3.35   0.17   1.71   1.62   1.63   0.02   0.18   0.05     FeO   0.63   0.04   0.12   1.145   11.30   10.92   5.80   17.68   0.18     QuO   0.00   0.00   0.01   0.01   0.00   0.07   0.02     V2O   0.00   0.01   0.00   0.03   0.03   0.06   1.14   0.02     V2O   0.00   0.01   0.00   0.01   0.00   0.02   0.20     V2O <t< td=""><td>TiO2</td><td>0.21</td><td>0.00</td><td>0.04</td><td>0.00</td><td>0.04</td><td>0.07</td><td>0.02</td><td>0.42</td><td>0.08</td></t<>	TiO2	0.21	0.00	0.04	0.00	0.04	0.07	0.02	0.42	0.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A12O3	37.24	37.08	38.96	34.90	36.07	35.98	41.07	32.21	20.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V2O3	0.00	0.00	0.02	0.00	0.02	0.01	0.00	0.02	0.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cr2O3	0.02	0.00	0.02	0.00	0.01	0.01	0.00	0.01	15.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	0.09	0.00	0.00	0.21	0.69	0.71	1.94	0.12	10.13
MnO   0.12   3.35   0.17   1.71   1.62   1.63   0.02   0.18   0.05     FeO   0.63   0.04   0.12   11.45   11.30   10.92   5.80   17.68   0.18     CnO   0.00   0.00   0.00   0.04   0.10   0.02   0.14   0.04     CuO   0.00   0.00   0.00   0.01   0.00   0.01   0.00   0.07   0.02   0.14   0.04     CuO   0.00   0.01   0.00   0.01   0.01   0.00   0.07   0.02     K2O   0.00   0.01   0.00   0.01   0.01   0.00   0.06   1.41   10.20     P2O3*   10.82   10.87   11.11   10.37   10.43   10225   0.12   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.21   0.22   0.27   0.31   0.161	CaO	4.16	2.82	4.30	0.03	0.02	0.03	0.01	0.38	0.21
FeO   0.63   0.04   0.12   11.45   11.30   10.92   5.80   17.68   0.18     ZnO   0.00   0.00   0.00   0.00   0.01   0.00   0.14   0.04     CuO   0.00   0.00    0.00         Ma2O   0.65   1.29   0.69   0.75   0.86   1.00   0.53   2.47   2.67     K2O   0.00   0.01   0.01   0.01   0.01   0.02   0.62   0.12   0.27     B2O3*   10.82   10.87   11.11   10.37   10.58   10.62   11.12   10.14   10.20     H2O*   2.94   3.03   3.05   3.63   3.65   3.81   2.81   3.33     O=F   -0.71   -0.64   -0.70   -0.01   -0.01   -0.01   8.05     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882<	MnO	0.12	3.35	0.17	1.71	1.62	1.63	0.02	0.18	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FeO	0.63	0.04	0.12	11.45	11.30	10.92	5.80	17.68	0.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZnO	0.00	0.00	0.02	0.00	0.04	0.10	0.02	0.14	0.04
Na2O   0.65   1.29   0.69   0.75   0.86   1.00   0.53   2.47   2.67     K2O   0.00   0.01   0.00   0.01   0.01   0.01   0.00   0.75   0.86   1.00   0.73   0.02   0.77   0.02     F   1.68   1.51   1.66   0.03   0.03   0.06   1.45   0.39     Li2O*   2.79   2.43   2.85   0.31   0.20   0.29   0.62   0.12   0.27     B2O3*   10.82   10.87   11.11   10.37   10.58   10.62   11.12   10.14   10.20     O=F   -7.71   -0.64   -70   -0.01   -0.01   -0.01   -0.01   0.02   0.000   0.025   10.13   98.65     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.002   0.002   0.002   0.070   0.33	CuO	0.00	0.00		0.00					
K2O   0.00   0.01   0.01   0.01   0.01   0.00   0.07   0.02     F   1.68   1.51   1.66   0.03   0.03   0.03   0.062   0.12   0.27     B2O3*   10.82   10.87   11.11   10.37   10.58   10.62   11.12   10.14   10.20     H2O*   2.94   3.03   3.05   3.56   3.63   3.65   3.81   2.81   3.33     O=F   -0.71   -0.64   -0.70   -0.01   -0.01   -0.03   -0.61   -0.16     Total   98.07   99.59   100.49   99.22   101.15   101.43   102.25   101.13   98.65     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.824     K   0.000   0.002   0.000   0.002   0.000   0.002   0.070   0.749   0.720   0.676   0.837   0.094   0.076   X Total   1.000	Na2O	0.65	1.29	0.69	0.75	0.86	1.00	0.53	2.47	2.67
F   1.68   1.51   1.66   0.03   0.03   0.03   0.06   1.45   0.39     Li2O*   2.79   2.43   2.85   0.31   0.20   0.29   0.62   0.12   0.27     B2O3*   10.82   10.87   11.11   10.37   10.58   10.62   11.12   10.14   10.20     H2O*   2.94   3.03   3.05   3.65   3.63   3.65   3.81   2.81   3.33     O=F   -0.71   -0.64   -0.70   -0.01   -0.01   -0.03   -0.61   -0.16     Total   98.07   99.59   100.49   99.22   101.15   101.43   102.23   101.13   98.65     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.002   0.002   0.000   0.001   0.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000	K2O	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.07	0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	1.68	1.51	1.66	0.03	0.03	0.03	0.06	1.45	0.39
B2O3*   10.82   10.87   11.11   10.37   10.58   10.62   11.12   10.14   10.20     H2O*   2.94   3.03   3.05   3.56   3.63   3.65   3.81   2.81   3.33     O=F   -0.71   -0.64   -0.70   -0.01   -0.01   -0.03   -0.61   -0.16     Total   98.07   99.59   100.49   99.22   101.15   101.43   102.25   101.13   98.65     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.000   0.002   0.000   0.002   0.000   0.015   0.004     Ca   7.71   0.055   0.004   0.005   0.002   0.070   0.38     Vacancy   0.82   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1	Li2O*	2.79	2.43	2.85	0.31	0.20	0.29	0.62	0.12	0.27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B2O3*	10.82	10.87	11.11	10.37	10.58	10.62	11.12	10.14	10.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H2O*	2.94	3.03	3.05	3.56	3.63	3.65	3.81	2.81	3.33
Total   98.07   99.59   100.49   99.22   101.15   101.43   102.25   101.13   98.65     Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.000   0.002   0.000   0.015   0.004     Ca   0.716   0.483   0.721   0.005   0.002   0.070   0.388     Vacancy   0.082   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   <	O=F	-0.71	-0.64	-0.70	-0.01	-0.01	-0.01	-0.03	-0.61	-0.16
Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.000   0.002   0.002   0.000   0.015   0.004     Ca   0.716   0.483   0.721   0.005   0.004   0.005   0.002   0.070   0.038     Vacancy   0.082   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X   Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.00	Total	98.07	99.59	100.49	99.22	101.15	101.43	102.25	101.13	98.65
Na   0.202   0.400   0.209   0.244   0.274   0.317   0.161   0.821   0.882     K   0.000   0.002   0.000   0.002   0.002   0.000   0.015   0.004     Ca   0.716   0.483   0.721   0.005   0.004   0.002   0.002   0.002   0.002   0.004   0.005     Vacancy   0.082   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000     Li   1.798   1.551   1.793   0.209   0.130   0.193   0.389   0.082   0.184     Mg   0.022   0.000   0.005   0.009   0.002   0.031   0.634   0.010     V3+   0.000   0.002   0.000   0.001   0.001   0.000   0.002   0.026   0.007   Fe2+   0.085   0.005   0.016										
K   0.000   0.002   0.000   0.002   0.002   0.002   0.000   0.015   0.004     Ca   0.716   0.483   0.721   0.005   0.004   0.005   0.002   0.070   0.338     Vacancy   0.082   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000     Li   1.798   1.551   1.793   0.209   0.130   0.193   0.389   0.082   0.184     Mg   0.022   0.000   0.005   0.000   0.005   0.009   0.002   0.054   0.010     V3+   0.000   0.000   0.003   0.000   0.003   0.001   0.000   0.003   0.002     Mn2+   0.016   0.454   0.023   0.243   0.225   0.266   0.007     Fe2+   0.030   0.000   0.002   0.000 <t< td=""><td>Na</td><td>0.202</td><td>0.400</td><td>0.209</td><td>0.244</td><td>0.274</td><td>0.317</td><td>0.161</td><td>0.821</td><td>0.882</td></t<>	Na	0.202	0.400	0.209	0.244	0.274	0.317	0.161	0.821	0.882
Ca   0.716   0.483   0.721   0.005   0.004   0.005   0.002   0.070   0.738     Vacancy   0.82   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.010   1.001   0.012   0.012   0.012   0.013   0.001 </td <td>K</td> <td>0.000</td> <td>0.002</td> <td>0.000</td> <td>0.002</td> <td>0.002</td> <td>0.002</td> <td>0.000</td> <td>0.015</td> <td>0.004</td>	K	0.000	0.002	0.000	0.002	0.002	0.002	0.000	0.015	0.004
Vacancy   0.082   0.115   0.070   0.749   0.720   0.676   0.837   0.094   0.076     X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.001   1.001   1.001   1.001   1.001   1.001   1.011 <td< td=""><td>Са</td><td>0.716</td><td>0.483</td><td>0.721</td><td>0.005</td><td>0.004</td><td>0.005</td><td>0.002</td><td>0.070</td><td>0.038</td></td<>	Са	0.716	0.483	0.721	0.005	0.004	0.005	0.002	0.070	0.038
X Total   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   <	Vacancy	0.082	0.115	0.070	0.749	0.720	0.676	0.837	0.094	0.076
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Li	1.798	1.551	1.793	0.209	0.130	0.193	0.389	0.082	0.184
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg	0.022	0.000	0.000	0.052	0.169	0.173	0.452	0.031	0.634
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti4+	0.025	0.000	0.005	0.000	0.005	0.009	0.002	0.054	0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V3+	0.000	0.000	0.003	0.000	0.003	0.001	0.000	0.003	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr3+	0.003	0.000	0.002	0.000	0.001	0.001	0.000	0.001	2.129
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn2+	0.016	0.454	0.023	0.243	0.225	0.226	0.003	0.026	0.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe2+	0.085	0.005	0.016	1.604	1.553	1.494	0.758	2.534	0.026
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	0.000	0.000		0.000					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	0.000	0.000	0.002	0.000	0.005	0.012	0.002	0.018	0.005
Y Total 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 <	Al	1.051	0.990	1.156	0.892	0.909	0.891	1.394	0.251	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cr/Fe   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000 <th< td=""><td>a (a</td><td></td><td></td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td></th<>	a (a			0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.940     A1   6.000   6.000   6.000   6.000   6.000   6.000   6.000   4.060     Z Total   6.000   6.000   6.000   6.000   6.000   6.000   6.000     A1   0.000   0.000   6.000   6.000   6.000   6.000   6.000   6.000     A1   0.000   0.000   0.027   0.000   0.077   0.047   0.174   0.255   0.000     Si   6.015   6.044   5.973   6.015   5.923   5.953   5.826   5.745   6.000     T Total   6.015   6.044   6.000   6.015   6.000   6.000   6.000   6.000   6.000     OH   3.146   3.236   3.179   3.984   3.984   3.970   3.214   3.790	Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 4.060   Z Total 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.	Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.940
Z Total 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 <	Al	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	4.060
A10.0000.0000.0270.0000.0770.0470.1740.2550.000Si6.0156.0445.9736.0155.9235.9535.8265.7456.000T Total6.0156.0446.0006.0156.0006.0006.0006.0006.000OH3.1463.2363.1793.9843.9843.9843.9843.9703.2143.790	Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si   6.015   6.044   5.973   6.015   5.923   5.953   5.826   5.745   6.000     T Total   6.015   6.044   6.000   6.015   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.00	A 1	0.000	0.000	0.027	0.000	0.077	0.047	0.174	0.255	0.000
SI   0.013   0.044   5.973   0.013   5.925   5.820   5.745   0.000     T Total   6.015   6.044   6.000   6.015   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.000   6.00	AI Si	6.015	6.044	5.073	6.015	5 073	5 053	5.826	5 745	6.000
OH   3.146   3.236   3.179   3.984   3.984   3.984   3.984   3.970   3.214   3.790	T Total	6.015	6.044	6 000	6.015	6 000	6 000	6 000	6 000	6 000
OH 3.146 3.236 3.179 3.984 3.984 3.984 3.984 3.970 3.214 3.790	1 10181	0.015	0.044	0.000	0.015	0.000	0.000	0.000	0.000	0.000
	ОН	3,146	3.236	3.179	3.984	3.984	3.984	3.970	3.214	3.790
F 0.854 0.764 0.821 0.016 0.016 0.016 0.030 0.786 0.210	F	0.854	0.764	0.821	0.016	0.016	0.016	0.030	0.786	0.210

······	CT91	CT92	CT93	CT94	CT95	СТ96	СТ97	СТ98	СТ99
SiO2	35.55	33.25	36.05	33.68	33.01	31.10	32.40	32.28	32.04
TiO2	0.10	0.15	0.12	0.19	0.11	0.09	0.08	0.08	2.49
Al2O3	21.98	11.72	21.68	12.25	11.00	1.25	0.65	2.33	6.36
V2O3	0.06	0.04	0.07	0.06	0.05	0.02	0.02	0.00	0.09
Cr2O3	13.30	29.68	13.27	27.25	30.36	33.54	34.77	29.24	0.01
MgO	10.26	7.57	10.37	8.64	7.19	9.98	9.89	9.49	7.20
CaO	0.20	0.23	0.19	0.38	0.21	0.00	0.01	0.00	0.01
MnO	0.02	0.01	0.01	0.03	0.03	0.51	0.45	0.32	0.03
FeO	0.18	0.07	0.26	0.17	0.05	5.09	3.84	6.88	33.13
ZnO	0.01	0.03	0.03	0.01	0.02	0.07	0.05	0.03	0.02
CuO					~				
Na2O	2.68	2.67	2.73	2.56	2.60	2.72	2.56	2.62	1.96
K20	0.03	0.05	0.03	0.05	0.06	0.30	0.34	0.28	1.39
F	0.29	0.69	0.25	0.52	0.59	0.71	0.86	0.65	0.01
- Li2O*	0.29	0.64	0.42	0.50	0.69	0.00	0.14	0.10	0.00
B2O3*	10.28	9.81	10.35	9.84	9.70	9.00	9.13	8.98	8.55
H2O*	3.41	3.06	3.45	3.15	3.07	2.77	2.74	2.79	2.94
O=F	-0.12	-0.29	-0.11	-0.22	-0.25	-0.30	-0.36	-0.27	0.00
Total	98.52	99.37	99.17	99.06	98.48	96.84	97.57	95.80	96.23
Na	0.879	0.918	0.889	0.877	0.904	1.019	0.945	0.983	0.773
K	0.006	0.011	0.006	0.011	0.014	0.074	0.083	0.069	0.361
Ca	0.036	0.044	0.034	0.072	0.040	0.000	0.002	0.000	0.002
Vacancy	0.079	0.027	0.071	0.040	0.042	0.000	0.000	0.000	0.000
X Total	1.000	1.000	1.000	1.000	1.000	1.093	1.030	1.052	1.136
Li	0.204	0.457	0.283	0.354	0.497	0.000	0.108	0.075	0.000
Mg	0.968	0.000	0.889	0.000	0.000	0.000	0.000	0.000	0.000
Ti4+	0.013	0.020	0.015	0.025	0.015	0.013	0.011	0.012	0.381
V3+	0.008	0.006	0.009	0.008	0.007	0.003	0.003	0.000	0.015
Cr3+	1.778	2.501	1.762	2.583	2.466	2.284	2.187	1.743	0.002
Mn2+	0.003	0.002	0.001	0.004	0.005	0.083	0.073	0.052	0.005
Fe2+	0.025	0.010	0.037	0.025	0.007	0.823	0.611	1.114	3.342
Cu									
Zn	0.001	0.004	0.004	0.001	0.003	0.010	0.007	0.004	0.003
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Y Total	3.000	3.000	3.000	3.000	3.000	3.216	3.000	3.000	3.748
Cr/Fe	0.000 Cr	1.658	0.000 Cr	1.223 Cr	1.837 Cr	2.840 Cr	3.047 Cr	2.731 Fe	2.293
Mg	1.619	2.000	1.708	2.276	1.921	2.875	2.807	2.738	2.183
Al	4.381	2.342	4.292	2.501	2.242	0.285	0.146	0.531	1.524
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
		0.105	0.000	0.050	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.106	0.000	0.050	0.082	0.000	0.000	0.000	0.000
Si	6.013	5.894	6.056	5.950	5.918	6.009	0.108	0.247	0.310
Total	6.013	6.000	6.056	6.000	6.000	6.009	6.168	6.247	6.516
011	2 015	2 612	2 067	2 700	2 665	2 566	2 182	3 603	2 004
оп Е	3.643	2.012	3.00/ 0.122	0.201	0.225	0.424	J.402 0 510	0.002 0.309	0.004
г	0.155	0.38/	0.155	0.291	0.333	0.434	0.518	0.370	0.000

.

Ĩ,

178

Section	G.2								
	CT5	CT7	CT9	CT10	CT13	CT16	CT17	CT18	CT19
SiO2	38.42	37.16	38.45	38.95	37.43	37.57	37.48	37.69	37.65
TiO2	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.03	0.06
A12O3	40.72	41.23	41.91	39.82	40.86	36.52	37.72	37.11	36.38
V2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	0.18	0.08	0.11	0.12
CaO	0.44	0.46	0.00	0.29	0.49	0.20	0.25	0.29	0.30
MnO	0.09	0.53	0.05	0.48	1.22	0.89	0.53	1.39	1.26
FeO	0.00	0.88	0.00	0.10	0.18	5.27	5.06	4.17	5.29
ZnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na2O	1.78	1.77	1.69	1.83	1.86	2.61	2.35	2.44	2.45
K2O	0.01	0.01	0.00	0.00	0.01	0.02	0.02	0.03	0.03
F	0.95	0.94	0.42	0.96	0.93	1.34	1.14	1.30	1.14
Li2O*	2.38	1.48	2.05	2.74	1.69	1.90	1.73	1.98	1.96
B2O3*	11.13	10.76	11.14	11.28	10.84	10.88	10.86	10.92	10.91
H2O*	3.39	3.27	3.64	3.44	3.30	3.12	3.21	3.15	3.22
O=F	-0.40	-0.40	-0.18	-0.40	-0.39	-0.56	-0.48	-0.55	-0.48
Total	98.91	98.10	99.17	99.49	98.42	100.24	99.94	100.06	100.29
			0 511	0.545				0.550	0.975
Na	0.539	0.554	0.511	0.547	0.578	0.808	0.729	0.753	0.757
K	0.002	0.002	0.000	0.000	0.002	0.004	0.004	0.006	0.006
Ca	0.074	0.080	0.000	0.048	0.084	0.034	0.043	0.049	0.051
Vacancy	0.385	0.364	0.489	0.405	0.336	0.154	0.224	0.192	0.186
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.493	0.963	1.285	1.695	1.091	1.223	1.115	1.265	1.256
Mg	0.000	0.000	0.000	0.000	0.000	0.043	0.019	0.026	0.029
Ti4+	0.000	0.000	0.000	0.000	0.000	0.036	0.000	0.004	0.007
V3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn2+	0.012	0.072	0.007	0.063	0.166	0.120	0.072	0.187	0.170
Fe2+	0.000	0.119	0.000	0.013	0.024	0.704	0.677	0.555	0.705
Zn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	1.495	1.846	1.708	1.229	1.719	0.874	1.117	0.963	0.833
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cr/Ea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CI/Fe Ma	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A I	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
7 Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z Totai	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Si	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
T Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
OU	2 521	2 520	2 702	2 522	2 520	2 2 2 2	2 172	2 2 4 5	3 175
UN T	0.460	5.520 0.490	0.707	0.168	J.JZ9 0 471	5.525 0.677	0.420 0.577	0.655	0.575
1 [°]	20 945	21 200	20.047	20 200	21 100	30.800	30.010	20 792	30.778
AIIIOIIS	130.043	51.290	30.907	30.309	51.100	50.000	30.710	201102	50.720

	CT20	CT21	CT23	CT24	CT25	CT26	CT27	CT28	CT29
SiO2	37.37	37.54	36.72	36.78	37.56	37.72	38.58	38.18	38.38
TiO2	0.02	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00
A12O3	36.14	36.51	36.44	37.54	39.07	38.69	40.19	39.31	39.48
V2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
MgO	0.12	0.00	0.06	0.03	0.00	0.00	0.04	0.00	0.00
CaO	0.13	0.19	0.12	0.16	0.09	0.32	0.25	0.21	0.77
MnO	0.60	1.44	0.55	1.08	1.69	0.72	0.15	0.16	2.06
FeO	5.98	4.86	6.64	4.15	0.87	2.31	1.65	1.82	0.49
ZnO	0.00	0.00	0.09	0.03	0.05	0.00	0.13	0.13	0.04
Na2O	2.48	2.67	2.55	2.36	2.14	2.15	2.01	2.06	1.99
K2O	0.03	0.02	0.02	0.01	0.02	0.00	0.00	0.01	0.01
F	1.26	1.49	1.31	1.00	0.99	1.20	1.14	1.01	1.19
Li2O*	1.93	1.99	1.48	1.61	2.01	2.10	2.19	2.28	2.20
B2O3*	10.82	10.87	10.64	10.65	10.88	10.93	11.18	11.06	11.12
H2O*	3.14	3.05	3.05	3.20	3.28	3.20	3.32	3.34	3.27
O=F	-0.53	-0.63	-0.55	-0.42	-0.42	-0.51	-0.48	-0.43	-0.50
Total	99.49	100.01	99.13	98.19	98.24	98.83	100.36	99.14	100.50
		٠							
Na	0.77	0.827	0.808	0.746	0.663	0.663	0.606	0.628	0.603
K	0.006	0.004	0.004	0.002	0.004	0.000	0.000	0.002	0.002
Ca	0.022	0.033	0.021	0.028	0.015	0.055	0.042	0.035	0.129
Vacancy	0.200	0.136	0.167	0.224	0.318	0.282	0.352	0.335	0.266
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1.045	1.000	0.070	1.055	1 202	1 2 4 2	1 272	1 4 4 4	1 204
LI	1.245	1.277	0.972	1.055	1.293	1.343	1.372	1.444	0.000
Mg	0.029	0.000	0.015	0.007	0.000	0.000	0.009	0.000	0.000
114+	0.002	0.001	0.002	0.001	0.000	0.000	0.000	0.000	0.000
V 3+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr3+	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000
1/1n2+	0.082	0.195	0.070	0.149	0.229	0.097	0.020	0.021	0.275
rez+	0.803	0.000	0.907	0.500	0.110	0.307	0.215	0.239	0.004
Zn	0.000	0.000	1.017	1.004	1.256	1.253	1367	1 281	1 274
AI V Totol	2 000	2.000	2.000	3.000	3.000	3.000	3.000	3.000	3 000
r Totai	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Si	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
T Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
011	2.200	2.047	2 2 2 2	2 404	2 500	2 206	2 420	2 100	3 412
OH E	3.360	5.247	3.323 0.677	2.484 0.516	3.300	5.590	J.437 0 561	5.470 0 507	0.588
<u>F</u>	0.640	0.753	0.677	0.010	20.070	20.004	20.042	20.767	20.976
Anions	30./11	30.751	30.933	30.985	30.879	30.842	30.842	50.707	30.070

180

. .

	CT31	CT33	CT35	CT36	CT37	CT46	CT53	CT54	CT59
SiO2	38.44	37.19	37.59	37.57	36.26	37.38	34.74	35.05	36.56
TiO2	0.01	0.25	1.03	0.23	1.38	0.15	0.35	0.08	0.24
Al2O3	40.26	31.53	30.66	32.57	27.38	31.38	30.39	31.44	35.50
V2O3	0.02	0.00	0.00	0.00	0.08	0	0.00	0.00	0.00
Cr2O3	0.00	0.05	0.00	0.00	0.25	0.03	0.00	0.01	0.00
MgO	0.00	9.07	12.21	11.25	12.01	12.08	1.47	1.07	0.20
CaO	0.71	0.05	0.26	0.42	2.43	0.87	0.10	0.14	0.25
MnO	0.97	0.02	0.00	0.00	0.02	0	1.22	0.14	1.10
FeO	0.04	5.29	0.26	0.32	2.83	0.09	14.11	15.33	7.25
ZnO	0.01	0.00	0.00	0.00	0.00	0	0.00	0.10	0.00
Na2O	1.88	2.57	2.83	2.44	1.56	2.31	2.36	1.69	2.49
K2O	0.01	0.07	0.00	0.02	0.04	0.05	0.06	0.02	0.01
F	1.13	0.01	0.00	0.25	0.94	1.38	0.85	0.18	1.01
Li2O*	2.32	0.11	0.26	0.19	0.13	0.22	0.25	0.21	1.37
B2O3*	11.13	10.77	10.89	10.88	10.50	10.83	10.06	10.15	10.59
H2O*	3.31	3.71	3.76	3.64	3.18	3.08	3.07	3.42	3.18
O=F	-0.48	0.00	0.00	-0.11	-0.40	-0.58	-0.36	-0.08	-0.43
Total	99.76	100.69	99.75	99.67	98.60	99.27	98.67	98.95	99.32
•									
Na	0.56	0.804	0.876	0.756	0.500	0.719	0.790	0.561	0.792
K	0.002	0.014	0.000	0.004	0.008	0.010	0.013	0.004	0.002
Ca	0.119	0.009	0.044	0.072	0.431	0.150	0.019	0.026	0.044
Vacancy	0.310	0.173	0.080	0.168	0.061	0.121	0.178	0.409	0.162
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.456	0.071	0.168	0.121	0.086	0.139	0.175	0.145	0.907
Mg	0.000	2.176	2.673	2.678	2.303	2.827	0.378	0.273	0.049
Ti4+	0.001	0.030	0.124	0.028	0.172	0.018	0.045	0.010	0.030
V3+	0.003	0.000	0.000	0.000	0.011	0.000	0.000	0.000	0.000
Cr3+	0.000	0.006	0.000	0.000	0.033	0.004	0.000	0.001	0.000
Mn2+	0.128	0.003	0.000	0.000	0.003	0.000	0.178	0.020	0.153
Fe2+	0.005	0.714	0.035	0.043	0.392	0.012	2.038	2.195	0.995
Zn	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000
Al	1.406	0.000	0.000	0.130	0.000	0.000	0.186	0.343	0.866
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
0.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.005	0.232	0.000	0.660	0.064	0.000	0.000	0.000
$\frac{AI}{ZT+I}$	6.000	5.995	5./68	6.000	5.340	5.936	6.000	6.000	6.000
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AI C:	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
l lotal	6.000	0.000	6.000	6.000	6.000	6.000	0.000	6.000	6.000
ОЦ	2 1 1 2	2 005	4 000	2071	2 500	2 200	2 526	2 002	2 176
UN F	0.550	5.775 0.005	4.000	0.126	0.402	3.299 0.701	0.220 0.464	0.903 0.007	5.470 0.571
r Aniona	20.000	20.014	20.005	20.005	21.002	20.024	20.072	20.010	20.040
Amons	50.882	30.914	30.903	30.983	51.005	30.934	30.972	30.919	30.949

	CT60	CT61	CT75	CT76	CT81	CT82	CT83	CT85	CT91
SiO2	36.95	36.21	37.24	35.53	38.28	37.44	37.79	35.90	35.55
TiO2	0.03	0.06	0.57	0.05	0.08	0.21	0.00	0.00	0.10
AI2O3	35.02	35.05	29.25	25.35	37.48	37.24	37.08	34.90	21.98
V2O3	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.06
Cr2O3	0.00	0.02	0.09	0.00	0.00	0.02	0.00	0.00	13.30
MgO	0.07	0.14	13.30	10.37	0.34	0.09	0.00	0.21	10.26
CaO	0.03	0.00	2.97	2.69	3.30	4.16	2.82	0.03	0.20
MnO	0.67	0.58	0.00	0.02	0.21	0.12	3.35	1.71	0.02
FeO	7.27	7.83	0.06	8.41	0.88	0.63	0.04	11.45	0.18
ZnO	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Na2O	2.79	2.72	1.02	1.40	1.07	0.65	1.29	0.75	2.68
K2O	0.02	0.03	0.00	0.05	0.00	0.00	0.01	0.01	0.03
F	1.41	1.33	0.85	0.71	1.56	1.68	1.51	0.03	0.29
Li2O*	1.83	1.39	0.21	0.22	2.93	2.82	2.51	0.34	0.33
B2O3*	10.70	10.49	10.79	10.29	11.09	10.85	10.95	10.40	10.30
H2O*	3.02	2.99	3.32	3.21	3.09	2.95	3.06	3.57	3.42
O=F	-0.59	-0.56	-0.36	-0.30	-0.66	-0.71	-0.64	-0.01	-0.12
Total	99.22	98.42	99.53	98.01	99.65	98.14	99.77	99.29	98.58
Na	0.878	0.874	0.319	0.458	0.325	0.202	0.397	0.243	0.877
К	0.004	0.006	0.000	0.011	0.000	0.000	0.002	0.002	0.006
Са	0.005	0.000	0.513	0.487	0.554	0.714	0.480	0.005	0.036
Vacancy	0.113	0.120	0.168	0.044	0.121	0.084	0.121	0.750	0.081
X Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Li	1.198	0.927	0.135	0.147	1.845	1.816	1.605	0.232	0.222
Mg	0.017	0.035	2.749	1.656	0.079	0.022	0.000	0.052	0.953
Ti4+	0.004	0.007	0.069	0.006	0.009	0.025	0.000	0.000	0.013
V3+	0.000	0.000	0.028	0.000	0.000	0.000	0.000	0.000	0.008
Cr3+	0.000	0.003	0.011	0.000	0.000	0.003	0.000	0.000	1.775
Mn2+	0.092	0.081	0.000	0.003	0.028	0.016	0.451	0.242	0.003
Fe2+	0.987	1.085	0.008	1.188	0.115	0.084	0.005	1.600	0.025
Zn	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Al	0.702	0.845	0.000	0.000	0.924	1.034	0.939	0.874	0.000
Y Total	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
<b>a ib</b>									
Cr/Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.446	0.955	0.000	0.000	0.000	0.000	1.628
Al	6.000	6.000	5.554	5.045	6.000	6.000	6.000	6.000	4.372
Z Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
4.1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\frac{SI}{mm+1}$	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
I Total	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
OU	2 276	2 202	2 5/7	2 (21	2 227	2 1 40	2 2 4 2	2 004	2.045
ОН Б	3.270	3.303	3.30/	3.021	5.221	3.149	J.242 م 750	5.984	5.845
<u>r</u>	0.724	0.697	0.433	0.379	0.773	10.851	0.758	0.010	0.155
Anions	101.00	30.908	30.972	30.678	30.767	30.951	30.844	30.949	30.959

<del></del>	CT93	CT97	СТ98
SiO2	36.05	32.40	32.28
TiO2	0.12	0.08	0.08
A12O3	21.68	0.65	2.33
V2O3	0.07	0.02	0.00
Cr2O3	13.27	34.77	29.24
MgO	10.37	9.89	9.49
CaO	0.19	0.01	0.00
MnO	0.01	0.45	0.32
FeO	0.26	3.84	6.88
ZnO	0.03	0.05	0.03
Na2O	2.73	2.56	2.62
K2O	0.03	0.34	0.28
F	0.25	0.86	0.65
Li2O*	0.54	0.47	0.57
B2O3*	10.44	9.39	9.35
H2O*	3.48	2.83	2.92
O=F	-0.11	-0.36	-0.27
Total	99.42	98.24	96.76
Na	0.881	0.919	0.944
Κ	0.006	0.080	0.066
Са	0.034	0.002	0.000
Vacancy	0.079	-0.001	-0.010
X Total	1.000	1.000	1.000
Li	0.363	0.350	0.429
Mg	0.826	0.000	0.000
Ti4+	0.015	0.011	0.011
V3+	0.009	0.003	0.000
Cr3+	1.746	1.963	1.437
Mn2+	0.001	0.071	0.050
Fe2+	0.036	0.595	1.069
Zn	0.004	0.007	0.004
Al	0.000	0.000	0.000
Y Total	3.000	3.000	3.000
Cr/Fa	0.000	2 100	2 040
CI/re Ma	1 747	2.120 2.720	2.000
IVI g	1.747	2.730	2.030
Al 7 Total	4.233	6.000	6.000
Z Totai	0.000	0.000	0.000
Al	0.000	0.000	0.000
Si	6.000	6.000	6.000
T Total	6.000	6.000	6.000
OH	3.868	3.496	3.618
F	0.132	0.504	0.382
Anions	30.815	30.455	30.206

Section G.3						
	CT96	СТ99				
SiO2	31.10	32.04				
TiO2	0.09	2.49				
Al2O3	1.25	6.36				
V2O3	0.02	0.09				
Cr2O3	33.54	0.00				
Fe2O3	5.06	36.81				
MgO	9.98	7.21				
CaO	0.00	0.00				
MnO	0.51	0.00				
FeO	0.54	0.00				
ZnO	0.07	0.00				
Na2O	2.72	1.96				
K2O	0.30	1.39				
F	0.71	0.00				
B2O3*	9.13	9.33				
H2O*	2.81	2.42				
O=F	-0.30					
Total	97.53	100.10				
Na	1.004	0.708				
К	0.073	0.330				
Ca	0.000	0.000				
Vacancy	-0.077	-0.038				
X Total	1.000	1.000				
	0.000	0.000				
Mg	0.000	0.000				
114+	0.015	0.349				
V 3++	0.003	0.013				
Cr3+	2.080	0.000				
Min2+	0.082	0.000				
Fe3+	0.725	1.795				
Fe2+	0.086	0.000				
Zn	0.010	0.000				
AI	0.000	0.000				
Y Iotal	3.000	2.157				
Cr/Fe Cr	2.968	Fe3+ 3.363				
Mg	2.832	2.001				
Al	0.200	1.362				
Z Total	6.000	6.000				
A 1	0.000	0.024				
Si Si	5 020	5 066				
JI T Total	5.920	5.900				
i iotal	0.000	0.000				
ОН	3.573	3.000				
F	0.427	0.000				
OH + F	4.000	3.000				