THE UNIVERSITY OF MANITOBA

STUDIES ON OVINE PLACENTAL LACTOGEN

by

JOHN S. D. CHAN

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSIOLOGY, FACULTY OF MEDICINE

WINNIPEG, MANITOBA

MAY,1979

STUDIES ON OVINE PLACENTAL LACTOGEN

ВΥ

JOHN S.D. CHAN

A dissertation submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY © 1979

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this dissertation, to the NATIONAL LIBRARY OF CANADA to microfilm this dissertation and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this dissertation.

The author reserves other publication rights, and neither the dissertation nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

To

My parents and wife:

Mr. & Mrs. Kai-On Chan

and

Mrs. Ting-Mei Chan

ACKNOWLEDGEMENTS

This investigation was carried out in the Protein and Polypeptide Hormone Laboratory, Dept. of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

First of all, the author wishes to express his deepest gratitude and most sincere appreciation to Dr. Henry G. Friesen for his guidance, encouragement and invaluable advice during the course of the investigation.

Secondly, the author wishes to express his most sincere respect and thanks to his wife, Ting-Mei Chan, for her support, understanding, patience, encouragement, and love during the investgation and the preparation of this thesis.

Thirdly, the author would like to express his thanks to Drs. H.A.Robertson, Dan Grinwich, R.P.C.Shiu, and K.W.Cheng for their most helpful discussion and advice.

The author gratefully acknowleges Drs. H.A. Robertson, and V. Chernick for providing sheep placentas and other sheep tissues, which were used in my studies of ovine placental lactogen.

Last, but not least, special acknowledgement and thanks are given to all the staff of the laboratory, particularly to Dr. Ian Worseley and Mrs. Helle Cosby, for their co-operation and technical assistance.

CONTENT S

I. REVIEW	N ON	PLACENTAL PROTEIN AND POLYPEPTIDE HORMONES	Page	1
	Α.	INTRODUCTION		1
	В.	BRIEF SUMMARY OF THE EARLY INVESTIGATIONS OF THE		
		ENDOCRINE PLACENTA		2
	С.	COMPARATIVE ASSESSMENT OF PLACENTAL PROTEIN		
		HORMONES PRODUCTION IN SEVERAL ORDERS OF MAMMALS.	•	3
		I-Primate and Sub-human Primate Placental Hormo	nes.	.3
		Human - Chorionic Gonadotropin	•	3
		Placental Lactogen		20
		Chorionic Thyrotropin		37
		Chorionic Follicle-Stimulating Hormone	g i	. 40
		Chorionic Corticotropin	••••	.40
		Other Secreted Placental Prote	ein	, 42
		Monkey - Chorionic Gonadotropin	•	.45
		- Placental Lactogen	• •	51
		II-Nonprimate Placental Protein Hormones	• .	54
		a-Non-primate placental gonadotropins		54
		Pregnant Mare Serum Gonadotro	pin.	54
		b-Non-primate placental lactogens	•	57
		Methods to detect non-primate		
		placental lactogen	•	57
		Order Lagomorpha	٠	61
		Order Rodentia	5	63
		Order Carnivora		6 6
		Order Perissodactyla	D	67
		Order Artiodactyla	•	67

II. OVINE REPRODUCTIVE PHYSIOLOGY DURING PREGNANCY	79
(i) Biology of Ovine Placenta	79
(ii) Hormonal Patterns in the Ewe during Pregnancy	.84
(iii) Possible Mechanisms of Maintenance of Corpus	
Luteum Function in Early Pregnancy	86
III. OBJECTIVES OF THE PRESENT INVESTIGATIONS	90
IV. METHODS AND MATERIALS	91
A. PURIFICATION AND CHARACTERIZATION OF OVINE PLACENTAL	
LACTOGEN	91
B. METHODS OF DETECTION AND CHARACTERIZATION OF THE	
RECEPTOR BINDING SITES FOR OVINE PLACENTAL LACTOGEN	
IN THE SHEEP	103
C. METHOD OF DEVELOPMENT OF A SPECIFIC AND SENSITIVE	
RADIOIMMUNOASSAY FOR OVINE PLACENTAL LACTOGEN	107
D. STUDIES ON THE SECRETION AND SOME PHYSIOLOGY OF OVINE	
PLACENTAL LACTOGEN DURING PREGNANCY	109
(1) Maternal and fetal concentration of ovine	
placental lactogen measured by RIA	109
(2) Ovine placental lactogen concentration in	
the maternal and fetal cotyledons at various	
days of gestation	110
(3) Determination of half-time disappearance rate	е
of oPL in the ewes	111
(4) Tissue distribution of radioactivity after	
intravenous administration of 125 I-oPL	113
(5) Studies on the relationships among ovine	
pituitary GH, PRL, oPL, and progesterone in t	the
ewe during pregnancy	772

774
118
118
119
125
148
163
165
165
173
177
177
181
188

7.18 MAY 5.1

	F.STUDIES ON THE BIOLOGICAL EFFECTS OF OPL 19)4
	(1) Growth promoting effect)4
	(2) Luteotropic effect)4
VI.	ISCUSSION	
	A. PURIFICATION AND CHARACTERIZATION OF oPL 20)]
	B. DETECTION AND CHARACTERIZATION OF RECEPTORS	
	FOR OVINE PLACENTAL LACTOGEN IN SHEEP 20)6
	C. RADIOIMMUNOASSAY FOR OVINE PLACENTAL LACTOGEN 21	3
	D. STUDIES ON THE SECRETION OF oPL 21	3
	E. BIOSYNTHESIS OF oPL BY CHORIONIC MEMBRANES	
	22	0:
	F. BIOLOGICAL EFFECTS OF oPL	
	G. COMPARATIVE DATA ON PLACENTAL LACTOGEN OF SEVERAL	
	SPECIES 22	4
	H. POSSIBLE ROLES OF oPL 23	1
	I. EXPERIMENTS DESIGNED TO DEMONSTRATE THE BIOLOGICAL	
• • • •. • •	EFFECTS OF OVINE PLACENTAL LACTOGEN IN SHEEP 23	6
IIV	<u>SUMMARY</u> 23	8
	SIGNIFICANCE OF PRESENT STUDIES	
IX	PUBLICATIONS24	1
χ	BIBLIOGRAPHY ···· 24	.3

LIST OF ABBREVIATION

Peptide Hormones:

ACTH Adrenocorticotropic hormone

CG Chorionic Gonadotropin

FSH Follicle Stimulating Hormone

GH Growth Hormone

LH Luteinizing Hormone

PRL Prolactin

PL Placental Lactogen

Prefix to hormones:

bovine

h human

ovine

r

C caprine

mou mouse

m monkey

gp guinea pig

ham and p
hamster and porcine

Others:

C Degree Centigrade

cpm Counts per minute

g Gram

mg Milligram

ug Microgram

M

Mm

ul

N

ng

1

g

IU

U

Molar

Millimolar

Microliter

Normal

Nanogram

Liter

Gravitational force

International unit

Unit

LIST OF FIGURES

FIGURE		PAGE
1	Linear sequence of aminocacids in the α -subunit of hCG	5
2	Amino acid sequence of the β chain of hCG	6
3	The amino acid sequence of . hPL	21
4	Radioreceptorassay for growth hormone or growth hormone-	
	like activity	
		. 126
5.	Diethylaminoethyl(DEAE)-cellulose chromatography of place	ntal
	extracts containing oPL	. 128
6.	Carboxylmethyl(CM)-cellulose chromatography of the oPL-ric	:h
	fractions from DE-cellulose column	.129
7	Carboxylmethyl-Sephadex C-50 chromatography of the oPL-ric	:h
	fractions(0.2M NaCl fractions) from the CM-cellulose column	ın.131
8	Sephadex G-100 gel filtration of the fractions containing	
	oPL from CM-Sephadex C-50 column(Fractions #450-750)	. 132
9	Diethylaminoethyl-Sephadex A-25 column chromatography of	
	the oPL-rich fractions from the Sephadex G-100 in Fig. 8	
	(fractions #42-48)	. 133
10	Gel filtration on Sephadex G-50 column of the fractions	
	containing oPL from DE-Sephadex A-25 column(fraction#20-30).134
11a	Polyacrylamide gel electrophoresis pattern of oPL at	•
	pH 4.3-4.5	. 137
116	Polyacrylamide gel electrophoresis pattern of oPL at	
	рН 9.3-9.5	. 138
12	Pattern of oPL activity eluted from polyacrylamide gel	
	isnelectric focusing	3.40

13	The electrophoretic mobility of oPL and protein markers
	upon sodium dodecyl sulfate (SDS) polyacrylamide gel
	electrophoresis
14.	The relative mobility of different proteins plotted
	against their molecular weight on SDS-polyacrylamide gel
	electrophoresis
15a.	Displacement curve for oPL,hGH,oPRL, hPL, and oGH in the
	radioreceptorassay for prolactin(RRA-PRL) using rabbit
	mammary gland
1 5b	Displacement curve for oPL, hGH, oPRL, hPL, and oGH in the
	radioreceptorassay for growth hormone(RRA-GH) using rabbit
	liver 145
16	Radioreceptorassay for ovine placental lactogen using
	human liver (100,000 x g) fractions)
17	Effect of protein concentration (100,000 \times g fraction)
	on the specific binding of ^{125}I -oPL to different tissues 150
18	Effect of incubation time and temperature on the binding
	of ^{125}I -oPL to 100,000 x g pellets of ovine tissues 151
19	Radioreceptor assay for oPL using 100,000 x g fractions
	from liver(A) and adipose tissue(B) of non-pregnant ewes 153
20	Radioreceptor assay for oPL using 100,000 x g fractions
	from corpora lutea (A) and ovary(B) of non-pregnant and
	pregnant ewes
21	Radioreceptor assay for oPL using pellets(100,000 x g
	fractions) from non-pregnant uterus(A) and fetal liver(B) 156

22	Radioreceptor assay for oPRL using pellets (100,000 x g
	fractions) obtained from the uterus of the pregnant ewes 157
23A	Estimation of placental lactogen-like activity in the
	placental extracts of various species using oPL and
	sheep liver (100,000 x g fractions) as hormone standard
	and receptors respectively
23B	Estimation of growth hormone-like activity in the placental
	extracts of various species using hGH and rabbit liver
	(100,000 x g fractions) as hormone standard and receptor
	respectively 160
23C	Estimation of prolactin-like activity in the placental
	extracts of various species using oPRL and rabbit mammary
	gland (100,000 x g fractions) as hormone standard and
	receptor respectively
24	Radioimmunoassay for oPL
25	Plasma oPL concentrations during pregnancy measured by RIA166
26	Plasma oPL concentrations measured by RIA during the last
	20-30 days of pregnancy and 1-5 days after parturition 167
27	Uterine and jugular vein serum oPL concentrations during
	pregnancy measured by RIA
28	Serum oPL concentrations in samples obtained from four
	ewes at 6-h intervals over a 4.5 days period from day 120-
	125 of gestation 170
29	oPL concentrations in allantoic and amniotic fluid
	throughout pregnancy
30	oPL concentrations in placentomes at various stages of
	pregnancy. 176

31	The disappearance of oPL following removal of the entire	
	uterus by caesarian section in 3 pregnant ewes at 90 days	
	of gestation	178
32	Semilogarithmic plot of radioactivity of the TCA-insoluble	
	material present in serum of pregnant ewes at various	
	intervals after administration of 125I-oPL	179
33	Radioimmunoassay for ovine growth hormone	182
34	Radioimmunoassay for ovine prolactin	183
35	A typical standard curve for progesterone in the competitive	re
	protein-binding assay using dog plasma	185
36A	oPRL and oGH concentrations at different periods of gestati	on
	in 11 pregnant ewes	186
36B	oPL and progesterone concentrations at different periods	
	of gestation in 11 pregnant ewes	187
37	Percentage of 125 I-oPL precipitated by anti-oPL in the	
	presence of increasing amounts of unlabeled oPL	189
38A	Distribution of protein and oPL after gel filtration of	
	incubation medium (24 h) on Sephadex G-100	192
38B	Distribution of radioactivity after gel filtration of	
	incubation medium(24 h) on Sephadex G-100	193
39	Typical standard curve of progesterone in the radioimmuno-	
	assay for progesterone	196
40	Radioreceptor assay for LH using 125I-hCG,hCG, and rat	
	corpora lutea	197

16 18 ME # 3 P

41	Effect of PGF _{2a} and lactogenic hormones on LH receptor	
	and serum progesterone	198
42	Effect of PGF _{2a} , ergocryptine, and lactogenic hormone	
	on LH receptor and serum progesterone	199
43	The secretory patterns of placental lactogen during	
	pregnancy of human, monkey, sheep, goat, rat, guinea pig,	
	hamster, and mouse	229

LIST OF TABLES

TABLE		PAGE
I	Table of purification of ovine placental lactogen	135
II	Percent specific binding of 125I-oPL in ovine tissues	149
III	Estimation of placental lactogen-like, growth hormone-like	e,
	and prolactin-like activities in the placental extract	
	of various species	162
IV	Comparison of maternal and fetal serum oPL concentration	. 171
V	oPL concentration in maternal uterine tissue extracts	. 174
VI	oPL concentration in fetal membrane extracts	. 175
VII	Distribution of radioactivity in the tissues of pregnant	
	ewes after iv administration of ¹²⁵ I-oPL at 4 hr	. 180
VIII	Biosynthesis of oPL by ovine chorionic membranes of early	
	pregnant ewes in vitro	.190
IX	Bioassay of growth promoting activity in hypophysectomized	Ì
	rats	

ABSTRACT

STUDIES ON OVINE PLACENTAL LACTOGEN (oPL). John S.D. Chan, Dept. of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

Using conventional protein purification procedures and radioreceptor assay for growth hormone (RRA-GH), oPL was purified to near homogeneity (greater than 2,000-fold) from ovine placental cotyledons. The molecular weight of oPL is approximately 21,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Specific binding sites for oPL have been found in ovine liver (maternal and fetal), adipose tissue, ovary, corpus luteum, and non-pregnant uterus. Specific studies showed that only growth hormone preparations could displace oPL binding to its receptors whereas other hormone preparations could not, indicating that oPL binds specifically to GH-receptor sites in ovine tissues. By employing the radioreceptor assay for placental lactogen (PL) using oPL and ovine liver as hormone standard and receptor respectively, detected in placental extracts of human, PL-like activity was monkey, goat, guinea pig, and mouse but not in cow, pig, horse, dog, rat, and rabbit. Homologous radioimmunoassay (RIA) for oPL has been developed in which ovine pituitary prolactin (oPRL) and growth hormone (oGH) as well as other pituitary and placental hormones from several species exhibit no cross-reaction. Using this RIA, oPL is detectable in the uterine vein blood samples as early as 26 days of gestation.

The secretory pattern of oPL in the maternal circulation is similar to that of human and monkey placental lactogen with the peak level in both circulation and placentomes after 80 days of gestation, oPL is found in the fetal circulation and allantoic fluids throughout pregnancy with high levels during early pregnancy. oPL is not detectable in amniotic fluid and maternal urine. oPL is dectable in extracts of chorionic membranes and maternal caruncles as early as 16 days of gestation with high concentration in fetal membranes. These studies indicate that oPL is secreted from fetal tissues. This is supported by the biosynthesis studies which showed that oPL is synthesized and secreted by chorio-allantoic membranes as early as 22 days of pregnancy. The half-time disappearance rate (t½) of oPL in sheep is approximately 60 min. When oPRL and oGH were measured by specific RIAs in maternal blood samples during pregnancy, the levels of oPRL are inversely related to those of oPL without any major variation in oGH levels. This finding suggests that oPL might be the hormone that suppresses oPRL secretion during pregnancy. In the bioassay using hypophysectomized rat tibial width increase as an index of somatogenic effects, oPL is 1.5 times more potent than a bovine GH (1.0 U/mg) standard. In pseudopregnant rats, administration of oPL into the animals can prevent the loss of LH-receptors in the corpora lutea and the fall of progesterone after ${\rm PGF}_{2a}$ $\,$ or bromoergocryptine (CB-154) injection. These studies suggest that during pregnancy oPL may act as a "growth hormone" of pregnancy and that it helps to maintain the integrity of LH-receptors in the corpora lutea. Finally,

receptor-binding studies show that only oPL and human growth hormone (hGH) bind to animal and <u>human</u> tissue receptors whereas other growth hormone preparations from other species do not. These studies suggest that the binding sites in oPL and hGH are very similar in conformation. Thus, further structural analysis on the active sites for binding and for growth promoting activity may have potential implication for future clinical use.

SECTION 1 REVIEW OF PLACENTAL PROTEIN AND POLYPEPTIDE HORMONE S

A. INTRODUCTION:

The importance of the placenta as an active participant in providing for an intrauterine milieu favorable for fetal survival has been surmised since antiquity. Modern investigative techniques have, however, removed this subject from the area of conjecture and provided understanding of the mechanisms by which placental tissue carries out some of its functions. One of the best known capabilities of this highly developed, though transitory, tissue is the maintenance of fetalmaternal gradients in terms of gases and metabolites which are favorable to the fetus. Less well understood, however, is the role played by the placenta as an endocrine organ. Study of the secretions of placental tissue has been hindered by several problems which were not encountered in the classical studies of the pituitary and its target organs. The method of total extirpation and replacement treatment, for example, is denied the investigator of placental endocrinology. Furthermore, as our knowledge of the endocrine functions of the placenta has grown it is becoming apparent that, unlike the secretions of the anterior pituitary, the secretions of the placenta vary widely from one species to another. Variation is also apparent within a given species at different stages of gestation. Such problems were not to become a prohibitive barrier to investigation, however, and recent