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ABSIR.A,Cl

Thls thesis ls concerned r¡l.th the synthesis of srultivarlable

network functíons

The realizatlons of multivarfable netr¡ork functions by sinple

decomposítion techniques are investigated. The condítions for

a multivariable ratLonal function to be realizable ín certain sirnple

structures wÍth consÈituent buil-ding blocks invoiving funclions of

reduced complexity are derived., Three different confígurations are

consldered:

(1) A sum connection of inmittances r¡hich are fr¡nctions of

mutually disjoint sets of variables

(2) A cascade connecÈion of single-variable passive lunped

net!¡orks, the cascaded subnetworks are also assumed loss-

less except the last termínaÈion.

(3) An extended Bott-Duffin type sÈructure.

Apart. from the general formulatÍons in terms of the mult,ivarÍable

posltive reallty conditlon, ruore direct and explicit alternative

approaches are also present,ed.

The synthesis of Índependent zeros of the even Part of a nultf.-

varlable positÍve real function is studied. In additlon to Èhe usual

cascade extraction by the basic sectfons, vÍ2., the RÍchardst,

Brunen type C, type E and type D sections, removal nethods l¡ithout

resortfng to gyrators and transfor¡rers are presented. The developments

of the laËter are prfnarlly based on MlyaÈats separation concePt of the

even part functÍon in single varfable synÈhesfs theory.
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The problem of synthesfzÍng a class of networks composed of

cascaded noncormensurate transmission llnes separated by passive lumped

lossless two-ports and terminated by a passÍve lumped netr,Tork ís

consl-dered" A new set of realizabí1ity conditions is presented. The

proposed set of conditions, which ís simple ín applicatíon, circumvents

the diffículty associated with the test of multivaríable posítíve

reallty. SeveraL interestíng specíal cases are also consídered and

the realizabíLLty conditíons are accordíngly rnodified to produce much

simpler synthesis procedures.
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CHAPTER I

INÏRODUCTION

The concept of rnuLtivariabl-e neÈworks was first íntroduced by

Ozaki- and Kasamí [15] arising from their work on variable-parameËer

networks. The theory has since been investigated extensively Ín Ëhe

sËudy of analysis and synthesis of many other cl-asses of neËworks

l2or27r33]r- in particular, t,he class of mixed Lr:mped-distribuÈed

networks.

One of the prominant features of a mul-tivariable formulation is

that the resulting network funcËíons are rational functions of a set

of complex variabl-es. Each of Ëhese varíables characterízes a specíal

Èype of component. For examplen consider a class of networks made up

of uríxêd lumped elements and noncommensurate transmissíon lines 125,27J.

The associated neÈr.¡ork funcËions are not rational in the cornplex

frequency variable p" However, such funcËÍons may be conveniently

expressed as ¡oul-LÍvariable ratÍonal funcÈions by characterizing the

lumped RLC elenents by Ëhe frequency variable p and the í-th type

transmission lines by its Richardst [25] variable Ui = tanhrrPr where

r. Ís the basic el-ectricaL J-ength of Èhe i-th type l1ne"
L

It should be noted Èhat the independent variables in a multi-

varÍable formulaÈ1on, in general, aTe noË necessarily physÍcally

independent. For instance, in the example gíven above, the Richardsf

varlables u.ts are in fact functions of the frequency varÍable p.'r-
l:-..-:!-i" ----



Furthermore, ít fs also not necessary to require that each variable

be a function of the frequency p; as in the case of variable-

parameter networks where some of the varíables could be funcËions of

some outside facÈors such as terperaÈure, a control setting, eËc..

Simíl-ar to single variable Ëheory, the concept of multivariable

posÍtÍve reality is of paranount importance in mulËivariable synthesis

theory. The followíng are the fundanental definitions:

A multivaríabl-e rational function Z(p-) of a set of ,complex

varíables p = (pt tp2t... rprr) is said to be a multivariable posiÈíve

(n.p.)'function Íf and only if (iff)

Re Z(p) > 0 for Re p. > 0, Í = l- ,2,...,rr,

where Re denotes t'The real part of"" An n.p. function Z(p_) is

saíd to be mul-tivaríabLe positive and real (n.p.r") Íff Z(Z) is real

when all the variables are real.

An m.p. function Z(g) is said to be multÍvariable para-odd iff

z(p)+zn(p)=0,

where zo(g) is the para-conjugate of z(p_) and is defined as

**
Zn(p) = Z (-g ), where the upper asÈerisk denotes Ëhe conjugaËe

operaÈion. For real rational- functions, one has Z*(p) = Z(-p), and

an m.p.r. function Z(p) is said to be a multÍvariable reactarice

function íff

z(P)+z(-P)=0.

A multlvariable rat,ional- function s(g) of a set of conplex

variabl-es p = (prrp2r...rpo) is said to be a multivarlable bounded

function iff

lr iiì.a::-..;t:¡ri
i . .- . -.::- : r

Js(p)l .1for Repr>0, !=L,2¡o".¡D.



A multivariabl-e bounded functfon s(p) is sal-d Èo be multlvarlable

bounded real iff s(p) Ls also real when all the varfables are real.

SÍnce iÈs introducÈion [15] ln 1960, a substantíal amor¡rt of work

on multivarlable synthesis has been reported in the literaÈure.

Detatled revier,rs of the early developments have been gíven by Scanlan

Í277 and Youla [33], and recently a cosprehensive bibliography has been

presented by Ramachandran and Rao t2O]. In spite of the extensive

deveJ.opments in the past, the mrrltivariable synthesls proved to be

unwleldy, and consequentl-y more straightforuard synthesis technfques

are expected to emerge. This study ls concerned with the development

of sirrple and straLghtfor:urard special synthesis methods. Furthermore,

it 1s noted that although the multivariable posltÍve realíÈy is a

compact gauge for the measurement of the realizability of a multi-

varfable functlon, the verifícation of such a property is dÍfficult and

LaborLous. In thLs study, a speclal emphasís fs also placed upon derÍving

possible alternatfve explicLt realizability conditions, which would

replace this prerequíslte condition by sorne simpler conditions.

In ChapÈer II, the reallzations of nultivariable rational func-

tions, in Èhe forms of certaín simple structures with componqnÈ

bullding blocks lnvolvlng functions of reduced complexity, are inves-

tfgated. Three different conflgurations are considered:

(1) A sum connectlon of imnittances whfch are funcËions of

mutually dlsJoínt sets of variabLes.

(2) e cascade of single-variable bl-ocks.

(3) A Bott-Duffin type structure.

The reallzabll-ity conditfons are f ormulated fn terms of the



decomposabiLÍty of the given function into certain special forms. In

addition Ëo the general formulaËions based on the nultivariable posi-

tive reality condition, more direct and explicít approaches are also

discussed.

chapter III is the study of the removal of independent zeros of

the even part of a mulËívariable posiËive reaL function" Apart from

the discussíon of the cascade extraction by the basic sections , viz.,

the Richardsr, Brune, type C, type E and type D sections, realization

methods without resort,ing to gyrators and transformers are also

presented

In Chapter IV, Èhe problem of synÈhesízing a class of neÈworks

comprising cascaded noncormensurate transmission l-ines separaÈed by

passlve 1-tunped lossless t\.to-ports and terminated by a passive h.rmped

network is consídered. A new seË of reaLízability conditions is

presented" The advantage of the proposed set of conditions is that it

replaces the nultivariable reality test and facilítates the synthesis

procedure in a straightforward manner. Several inËeresting special

cases are also considered and the reaLizabíLíty conditions are duly

rnodÍfied into much simpler forms.



CHAPTER II

SYNTHESIS OF MI.ILTIVARIABLE NETI^TORK FT]NCTIONS

BY SIMPLE DECOMPOSITION METHODS

The synthesis of general- m.p.r. functlons hras first proposed by 
;:,,,,:,,,,:,
,',' 

t ì t'.

Kogat13].Heprovedthatthemu1tivarÍab1epositiverea1-ityfsa

sufficfent condition for realizability. However, hfs approach, j'".":""

fnvolvíng certaln factorízaÈfon processes of multfvariabl-e matrices, '

1s known to be difficul-t and laborlous. Furthermore, the validity of 
I

his result has been questloned recently by Bose I37l ' who provides a 
f

counter example indícaÈÍng that his method does not al-ways work. To f

l

circumventtheinherentd1fflcu1tíesofthegenera1synthesisprob1em,
I

some workers 1,3r4r30] have recently developed specíal techniques for
i

certain classes of functlons. The essentíal idea of these developments

Ls to derive sirnple criteria for Èhe decomposition of a given m;p.r.
-, ,,, ,,, 

,.

function ínto a sum of single varÍable p.r. functíons so thaÈ Èhe 
;t,.,',t,..:..:. :.

sy4thesis may.be performed by the r¿ell-established síngle variable 1,,,,,.,,.,.,,

methods. In thf-s chapter, v¡e consider a more general asPect of synthe

sizing multívariable netr¡ork funcÈions in the forms of certaín símp1e

structures wf th constítuenÈ buildíng blocks involvíng funcÈions of i,::.:.::r:
i,,,,.,, _,.,, .

reduced complexity. Three dlfferent configurations are consídered:

(f) A sum connecÈion of imnittances being functions of mutually
'

disJoint sets of variables.

(2) A cascade connectl-on of single variable subneËworks, which 
.|,,: ..:
l'.:...'

are lossless except the last terminatlon.



(3) An exÈended BoÈt-Duffln tyPe structure.

The real-lzabíLity condítíons are formulated in terms of the decomposa-

bility of the gíven function lnto certain special- forms. Furthermore,

since the verification of the mulËiva:iable posítive realíty' in

general, ís rather unwieldy and intricate, r¿e shall, in Ëhe foll-owíng'

also develope possibl-e alternative expl-icÍt formulations which remove

this prerequisite condÍtíon ín favour of some one-variable type

conditlons.

2.L ST]M DECOMPOSITION

The concept of realízíng a class of roulÈivariable reactance

funcÈions in terms of single variable reacÈance functions Ín a surn form

was first advanced by SolÍrnan and. Bose I30]. Recently, Bose [3] extended

the nethod by presenting a revÍsed version for the previous result.

However, the above work maínly dealt wÍth the complete decomposability

of an m.p.r.function into a sum of single variable p.r. functions;

noreover, the decomposition al-gorithn for the case of reactance

functions involves laborious steps of extracting various constånÈs.

In thÍs section, we consider the more general problen of decomposing

a class of m.p.r. functÍons into a sum of such functions each havíng

a snaller number of vaiiabl-es than the original one. In parËicular,

the decomposition of the cLass of multivaríable reacËance functíons

fnto a surn of single variable reacËance funcËions is reinvestigated.

Results are presented in Section 2.L.I and il-l-ustrated by examples in

¡sed in Section 2.L.2.

i:.'.]ì
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z.L.L General MPR APProach

In the folJ-owing, we first establlsh a simple crlterion, stated

fn the forn of Theorem 2.L, for the decomposabÍlity of a given m.P.r.

funcËion into a sum of m.P.r. funct,fons with fer,rer varíabl-es.

Several lnterestlng consequences of the theorem are then discussed.

For the speclal class of mul-tivarlable reactance functions, an

extremel-y simple decomposition method is given in Theorem 2.21 t16l

which eliminaÈes Ëhe laborl-ous sËeps of consËant extractions as

required by the algorÍthm given 1n [3].

Theorem 2.1

Let Z(p) be a multivariable positlve real function of a set, of

complex varfabl-es p = (Pl ,P2t...,Prr). Then z(p-) can be decomposed

as

z(P) = r{ptrp2r...,P¿) * zz(Pr.*L,PL+2,.-.,Prr), [<û (2.1)
,LLI.TL

,Z(Po*t,PL+z,... rPrr) fs m.p.r. ln Pg+lrPg+2r... rPn, 1f and only if

z(g) - Z(pt,pZr...rp¿,lrl,...rl) Q.2)

fs not a functlon of PyP2r... rPg

Proof: The necessity 1s evident. We shall shor¿ the sufficÍency.

Since Z(p-) is m.p.r., Z(vyV2¡...¡PL,1,1r...,1) is also m.p.r.
LL

Let pl = jrlo, I = !r2r...rL, be the minimum poinÈ of Re Z(jtorri@Z,

...rjo^r1rlr...r1) with the minlmr:n value Kr where Re Z denotes

1 Independentl-y, a slmllar result was also reported recently tn [23].



the real part of Z. By repeated applications of the maximum modulus

theorem of a funcÈlon of a complex varíable, it can be shown that

Re Z(prtp2t...rpL,1r1r...rl) - K > 0

for Re p. > 0, i = 1rzr...rL.

Let Zt be defined as

ZL= z(PLtP2t"""PL'1,""1) - K '

(2.3)

(2.4)

then with (2.3), it follows ínunediately from the definition of an m.p.r. 
-,,:..

:::!':

function that Zt is n.p.r. in p1rp2r"..rpg.

Now, 1et ZZ be defined as

Zz = Z(p_) - zr(p1 rp2t.. .,pg) (2.s)

By hypothesis (2.2), it is apparenÈ that ZZ so defined is not a

funcËion of p¡tp2t... rpy. Hence, by selecting pÍ = jrior. í=1 ,2r...,L,

anC taking the real part of both sídes of (2.5) it Ís seen that

Re Z. = Re Z(jo16,jur2g,..",jo!,.,pg+1,...,prr) > 0 ,z

for Re p. > 0, i = .Q,*1 ,L+zr...,n. :

:.::::.::: -:::. 1

, ,.1,.:i:',.:i,i

Therefore , ZZ is also m.p.r. Í.n pp.+Lrpt+Zr...,pn. The sufficiency 
,r:,' ..t:t,. ':..

thus fo1lor¿s from (2.5) . 

o' ' þ t L r¡ 
:::1r':i:ì::ì:;:::i::l

Note that apart from an additive constant the component functíons

zt and zz are completely defined by (2.4) and (2"5). For 0 = 1, 
,,¡..',¡.;,;;;,.

Theorem 2.1 yields the following useful corollary which enabl-es us to ':."r 1. 
'':

detect the possibility of extracting a single variable p.r. function

from a given m.p.r. function while Leaving the remaining funetion stil1

m.p.r. and having one variable less.
i' r.::r :.:1..: : ;.:.,,
I i t-t,:_I._il
_.r:. ,:.,r:::rÌ,.



Corol-lary 2.L.L

A necessary and sufficient condltion for an m.p.r. function Z(p)

to be deconposed as

in pl and

that

,:.::i:.:.'..:

i;.:::,:

Z(p_) = zr(tr) + zr(p2rp3r.. ",prr) ,

where Zr(Vl is a single varíable p.r. funcÈíon

zzbz,p3,...lpr,) is m.p.r. ín p2;p3. .. " rpo¡ is
tti:ì.:._

Z(p_) - Z(pt, 1,1,. . .'1)

Ís not a function of pl. (The courponent function Zr(nr) may be

determined according to (2.4) as follows

zr(nr) - z(pt,1,1,...,1) - Min Re z(j0rr,1,1,...,1)) (2.6)
,1

By repeated applicatÍons of Corollary 2"1.1, we obtain the

fo1-lowing corollary, which corresponds to t,he speclal case considered

1n [3].

Corollary 2.L.2

A necessary and suffícient conditíon for an m.p.r; function Z(p)

to be decomposed as

n
z(p) = t 2.,(er) ,

i=l

røhere Zr(er) is a single variable p.r. funcËfon in Pi, is that

z(g) - z(L,...r1,pt,1,...,1)

1s not a function of pÍ, for Í = 1r2r.."rn-l.

As in (2.6), the sub-functions zr(li) may be derived from

(2.4) as follows

i.: :



--'-----i':!- :t::' i

z.(p=) = z(Lr"..rlrPirlr.."11) -Ki, i= 1r2r"'rn-l , (2'7)
l- -a

and
n-1

Zrr(nrr) = z(p-) - _.:, zr(v), (z'g)
I-I

:''t1 
':"

where

K, = Min Re Z (1r. . . rlriorrlr. . . 11) Q'9) ..ar
(¡) --i 

. ,,.,,.rrìot,,,,

NotethatCoro11ary2.1.2Ísessentia11yequiva1entËothemaintheo

given in [3]. Hor,rever, it may be noted thaÈ the condition that ' :: 
''

,ì,.,''1'.1,.

r(o-1) (po) in [3] (zrr(nrr) of (z.B) above) be p.r. is superf luous as

far as Èhe real-izabíILty is concerned. The facË is that Èhe p'r' naLure

of f(t-1) (prr) is auromatically satísfied from the hypothesis thet the

gÍven function is m.p.r.. As evident from Corol-lary 2.L.2 above, no

further p.r. test at any stage is necessary provided thaË the given

i

function is m.p.r.. r

Fron (2 .7), ít is observed that Èhe determinatíon of the sub-

functions Zr(nr)'s involves the extraction of a maximr:m possible

positive constanË from a p.r. function. For reactance functions 
,.,,,,,i

howeverr'such laboríous stePs may be avoided by ful1y exploiting the 
"

property of reactance functions. The inproved result is summarized in ':"': ':::::

the following theorem.

Theorem 2.2

A necessary and suffícient conditÍon for a multÍvariable reaeËance .r.,,:-,
l:jt;..:::.:

function

10

p (p)
z(p) = ¿

a(p)



. I ^.t 
¡_r1i:

to be decomposed as

n
Z(p)= Z Zr(Vr),

a=I

where Zr(nr) is a single variable reactance function in pi, for

i = 1r2r...rn, is that the denominator a(p) can be factored as

11

where Ar(nr) Ís a single variable polynonial ín pi, i =' 1r2,...,n.

Furthermore,

(í) If er(nr) d.oes not vanistr at the orígin, then

zr(nr) = z(0, ". " rorpÍr0,. ".,0). (2. I 1)

(ii) If Sr(nr) vanishes aË Ëhe orígin, definÍng a nerv function

n
Q(p) = II e,.(n.,) ,

l_=I

^nA.z(?)=z(y)- x *,
Í=1 Pi

where

" Af = Prz(g)'nr=o

Ls the resÍdue of z(p) at pi = 0, then

(2. 10)

(2.r2)

(2. r3)

Proof: The neeessity is evident. We shal1 prove the sufficiency.

It is observed that a multÍvarÍabl-e reactance functÍon Z(g) is

an m.p.r. function satisfying the fol-lowing additionaL conditíon

z(g)+z(-e)=0" (2.14)

I^Iith (2.14), it can be shor¿n that, a pole of a multivarlable reactance



L2

function in a p1-plane, independent of all other variables, lles on

the fnaglnary axis of the p1-plane.

Also, according to a result due to Ozaki and Kasami [15], the

resldue of an iuragLnary axis índependent pol-e lncludlng the origin and

l-nflnfty of a m.p.r. function is a posl-tlve constant, and the removal

of such a pole yields a remainl-ng functÍon whlch is al-so m.p.r..

By hypothesis, the denominator of Z(Ð can be factored ln the

forn of (2.10), therefore all the poJ-es of Z(Ð are Índependent pol-es.

Consequently, it follows from the above two results thaÊ Z(p_) can be

expressed in the fo:m

(2. 1s)

where A1-, AtO and Alot" are non-negative and zr(g) is m.p.r..

It is apparent fron (2.15) that the denominator of Zr(g) is free

of the variable pl. Therefore, it can be shown from the degree

property of m.p.r. functions that Zr(Q is no more a functíon of pl.

Applying the analogous procedure successívely, we can decornpose,

z(ù as

'n A. A.-p.
z(p)= (41-P1 +-1o*'\#)

1=I 'i s pi * ,Iu

= i z, (nr) , (2.16)
1=1 rt

where the Zr(nr)'s are obvÍously single variable reactance funct,ions.

Now, tf er(nr) does not vanish at Ëhe origin, then Alo = 0 for

every f. By setting pk = 0 for every k except k = l, ft follo!ús

fron (2.16) that

o¡g 
-,- " 

All,Pl
z(P) = Ar-Pl . o, * ,.ffi+ zr(n-) ,



' '':

13

Zr(v) = Z(O,...,O,Pi,0r...,0)

Moreover, if Cr(nr) has pt as a factor, úIe

A.
the terms :to ts by inspectíon in advance to yfel-d

D.-1-

whfch satÍsfies the same conditÍon, as the previous

¡.rrite (2.L3) as a consequence of (2.11-) and (2.12).

(i) Z(L,...,1,pÍ,1,...,1)

Pi, i = l- r2r,.. rn-l-
(ii) The function

nrl
Z =z(p)- , z.(p.)n -:' i"i-'

. , 
]-=I

is a singLe variable p.r. function in

zr(nr) = z(Lr...,1-,pi,1r... r1)

urith

Ís a single varíable p.r. function of

(2.L7)

can always remove

a nerù function

one. Hence, hre can

Q.E.D.

(2.18)

2.L.2 Explicit Approach

Due to the partícular naÊure of the problems considered in

Corollary 2.L.2 and Theoresr 2.2, tine requírement of the multívariable

posftlve realíty on the given function can therefore be relaxed by

refornul-ating the propositions into the foll-owing alternative forms.

Theorem 2.3

Let Z(p) be a muLÈivariable rational- functfon. The following

t¡¿o conditions

D . where

-K.1

Kt = min Re Z(1r...r1rjrDirlr...11)
o.

l-

are necessary and sufficient for Z(p) to be a member of a subclass of



m.p.r. functions, whlch can be decomposed as a sum of single varlable

p.r. functions.

Proof : The proof ís straightforç,rard.

Necessity: Since Z(?) is m.p.r., condition (í) is obviously

satísfÍed. Next, we shall show that Zo defined bV Q.L7) is a single

varlable p.r. functÍon of ' pn

Sínce Z(Lr... r1rpir1r... rl) fs p.r" fn Pi, the functíons

Zr(lr)ts defined by (2.18) are also p.r. and minimr:m, viz,.,

neZr(julro)=0, i=1r2r...rn-1 Q.20)

where o, ís the minimr:n poínt of. (2.19).
l-o

Sínce Z(g) is decomposable into a sr¡m of single variable p.r.

functions, it can be shown that Zo defíned by (2.L7) is solely a

function of pn" Consequently, by selecting PÍ = jtio for

i = 1,2?...,n-1 and taking Èhe real parts of both sides of (2,L7) Èhen

cornparÍng with (2 .2O) , we have

ne Zo(lrr) = Re Z(jto1g,jur2g,. "., jon-lg,Prr) (2.2L)

Since Z(p) ís m.p.r.,

Re z(jurr.,jtr2g,...,jon-lgrPo) > 0 for *" Pn > 0 . Q.22)

Therefore,

ReZ(p)>0 for Rep->0. Q.23)ll-'n -n- 

"tt""tI,tith (2"23), it is apparenÈ from the definition of p"r. funcÈ1on that

zo(eo) is p.r. ín pn.

SuffÍciency: As shovm above condition (í) coupled wÍth equaËion

(2.1-8) índÍcates that the Zr(pr) ts, i = 1,2,... rn-l, are al-so p.r.. 
i.;,,;,,i , .:..:

L4

1..:....-..

i\iåì -'
"iÈæ,.

''i:.
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The sufflcíency is. thus evídent fron (2.77). Q.E.D.

Sínce independent poles at the orígin of p --plane can easily be

removed by ÍnspecÈion in advance, ín t,he following theorem, we shall

assume without lack of generality that the given functÍon does not

possess poles aÈ the orígín.

Theorem 2.4

Let

z(?) = ffi
be an írreducibr" LrrrtraríabLe'rational funcËíon having no poles at

the orígín. The necessary and sufficient conditÍons for Z(2) Ëo be

decomposed into a sum of single varíab1e reacËance functions in Ëhe

forn of

n c,(p,)
z(P) =

í=1 ei (nr)

are

Ít) 
the denominator can be factored as

n
Q(p) = er(nr),

f_=I

where er(er) are even polynomials of pi.

(Íi) The numeraËor can be e:çressed as

n
P(p) = -x_ or(nr) 

^lJ. 
q¿(ns) ,

i=l )Lrt

P(0r... r0rpír0r.. . r0)ar(nr)=ff
9'+r þ

¡¡here



(fff) ar(nr)/er(nt) ls a reactance functlon of Pi'

Proof: It is noted that the fLrst two conditLons assure the

separablltty of the given funcËion 1nËo a sum form; l¡tríl-e the thírd

condftf.on atÈests to.the reactance nature of the component functions.

The proof is straightforward and thus onltted for brevity.

2.L.3 Examples

Example 2.L.L: Consider the fo1-lowing m.P.r. funcÈÍon Ín

P = (er,l2 ,P3 ,P4)

P1p2p3p4 + l1l3n4 + 3ptPZP3 + 2ptPz+ p¡P4 + zP.-+ 3pt+ 2

z\p) = ,tttt . t) ,ttr- *

(2.24)

It is requÍred to determine the decomposabillty of (2.24) into a sum of

m.p.r. functions having fer¡er variables

. It is observed that

3P3 P3P4 - 2
(g)-z(vt,v2,1,1)= 

--

zP4+ 2

fs not'a functlon of pl and PZ, therefore, it foll-ows from

Theorem 2.I- that Z(e) can be decomposed as

z(p.) = zr(vr,vr) + zz(p3,p 4)

Uslng (2.4) we obtain

(2.25)

Zr(vr,v2) - 2(Pt,P2rL,1) - min Re zQrt_,j12,1,1)

^L'^z

=lPl ,

PlPe + 1

L6
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