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ABSTRACT

This thesis is concerned with the synthesis of multivariable
network functions.

The realizations of multivariable network functions by simple
decomposition techniques are investigated. The conditions for
a multivariable rational function to be realizable in certain simple
structures with constituent building blocks invoiving functions of
reduced complexity are derived. Three different configurations are
considered:

(1) A sum connection of immittances which are functions of
mutually disjoint sets of variables.

(2) A cascade connection of single-variable passive lumped
networks, the cascaded subnetworks are also assumea loss-
less except the last termination.

(3) An extended Bott-Duffin type structure.

Apart . from the general formulations in terms of the mﬁltivariable
positive reality condition, more direct and explicit alternative
approaches are also presented.

The synthesis of independent zeros of the even part of a multi-
variable positive real function is studied. In addition to the usual
cascade extraction by the basic sections, viz., the Richards’',
Brune, type C, type E and type D sections, removal methods without
resorting to gyrators and transformers are presented. The developments
of the latter are primarily based on Miyata's separation concept of the

even part function in single variable synthesis theory.

1)




The problem of synthesizing a class of networks composed of -
cascaded noncommensurate transmission lines separated by passive lumped
lossless two-ports and terminated by a passive lumped network is
considered. A new set of realizability conditions is presented. The
proposed set of cdnditions, which is simple in application, circumvents
the difficulty associated with the test of multivariable positive
- reality. Several inﬁeresting special cases are also considered and
the realizability conditions are accordingly modified to produce much

simpler synthesis procedures.

(11)
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CHAPTER I
INTRODUCTION

The concept of multivariable networks was first introduced by
O0zaki and Kasami [15] arising from their work on variable-parameter
networks. The theory has since been investigated extensivgly in the
study of analysis and synthesis of many other classes of networks
[20,27,33], in particular, the class of mixed lumped—-distributed
networks.

One of the prominant features of a multivariable formulation is
that the resulting network functions are rational functions of a set
of complex variables. Each of these variables characterizes a special
type of component. For example, consider a class of networks made up
of mixed lumped elements and noncommensurate transmission lines [25,27].
The associated network functions are not rationmal in the complex
frequency variable p. However,_such functions may be conveniently
expressed as multivariable rational functiqns by characterizing the
lumped RLC elements by the frequency variable p and the i-th type
transmission lines by its Richards' [25] variable By = tanhrip, where
T is the basic electrical length of the i~th type line.

It should be noted that the independent variables in a multi-
variable formulation, in general, are not necessarily physically
independent. For instance, in the example given above, the Richards'

variables ui's are in fact functions of the frequency variable p.
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Furthermore, it is also not necessary to require that each vériable
be a function of the frequency p; as in the case of variable-
parameter networks where some of the variables could be functions of
some outside factors such as temperature, a control setting, etc..

Similar to single variable theory, the concept of multivariable
positive reality is of paramount importance in multivariable synthesis
theory. The following are the fundamental definitions:

A multivariable rational function Z(p) of a set of complex
variables p = (pl,pz,...,pn) is said to be a multivariable positive
(m.p.) function if and only if (iff)

Re Z(p) > 0 for Rep, >0, i-= 1;2,...,n,

i
where Re denotes "The real part of'. An m.p. function Z(p) is
said to be multivariable positive and real (m.p.r.) iff 2Z(p) 1is real
when all the variables are real. |
An m.p. function Z(E) is said to be multivariable para-odd iff
Z(p) +2,() =0,
where Z,(p) is the para-conjugate of Z(p) and is defined as
Z*(E) = Z*(—B*), where the upper asterisk denotes the conjugate
operation. For real rational functions, one has Z*(E) = Z(—E), and
an m.p.r. function Z(p) is said to be a multivariable reactance
function iff
Z(p) + Z(-p) = 0.
A multivariable rational function s(p) of a set of complex
variables p = (pl,pz,...,pn) is said to be a multivariable bounded

function iff

ls@| <1 for Rep, 20, 1=1,2,...,n,




A multivariable bounded function S(E) is said to be multivariable
bounded real iff s(p) 1is also real when all the variables are real.

Since its introduction [15] in 1960, a substantial amount of work

-on multivariable synthesis has been reported in the literature.
Detailed reviews of the early developments have been given by Scanlan

[27] and Youla [33], and recently a comprehensive bibliography has been

presented by Ramachandran and Rao [20]. In spite of the extensive

developments in the past, the multivariable synthesis proved to be

unwieldy, and consequently more straightforward synthesis techniquéé
are expected to emerge. This study is concerned with the development
of simple and straightforward special synthesis methods. Furthermore,
it is noted that although the multivariable positive reality is a
compact gauge for the measurement of the realizability of a multi-

variable function, the verification of such a property is difficult and

laborious. 1In this study; a special emphasis is also placed upon deriving
possible alternative explicit realizability-conditions, which would
replace this prerequisite condition by some simpler conditions.

In Chapter II, the realizations of multivariable rational func-

tions, ih the forms of certain simple étructures with component
building blocks involving functions of reduced complexity, are inves-

tigated. -Three different configurations are considered:

- (1) A sum connection of immittances which are functioﬁsbof’
mutually disjoint sets of variables. |
(2) A cascade of single-variable blocks.
(3) A Bott-Duffiﬁ type structure.

The realizability conditions are formulated in terms of the




‘decomposability of the given function into certain special forms. 1In
addition to the general formulations based on the multivariable posi-
tive reality condition, more direct and explicit approaches are also
discussed.

Chapter IiI is the study of the removal of independent zeros of
the even part of a multivariable positive real function. Apart from
the discussion of the cascade extraction by the basic sections, viz.,
the Richards', Brune, type C, type E and type D sections, realization
methods without resorting to gyrators and transformers are also
presented.

In Chapter IV, the problem of synthesizing a class of networks
comprising cascaded noncommensurate transmission lines separated by
passive lumped lossless two-ports and terminated by a passive lumped
network is considered. A new set of realizability conditions is
presented. The advantage of the proposed set of conditions is that it
replaces the multivariable reality test and facilitates the synthesis
procedure in a straightforward manner. Several interesting special
cases are also considered and the:realizability conditions are duly

modified into much simpler forms.




CHAPTER 1I

SYNTHESIS OF MULTIVARIABLE NETWORK FUNCTIONS

BY SIMPLE DECOMPOSITION METHODS

The synthesis of general m.p.r. functions was first proposed by
Koga [13]. He proved that the multivariable positive reality ié‘;
 sufficient condition for realizability. However, his approach,
involving certain factorization processes of multivariable matrices, -
is kndwn to be'aifficult and laborious. Furthermore, the validity of
his result has been qgestioned'recently by Bose [37], ﬁho provides a
counter example indicating that his method does not always work. To
circumvent the inherent difficulties of the general synthesis broblem,
some workers [3,4,30] have recently developed special techniques for
certain classes of functions. The essential idea of these developmeﬁts
is to derive simple criteria for the decompbsition of a given~m;p;r. |
function‘into‘a sum of éingle variabié p.r. functions sbAthat'ﬁﬁé
synthesis may .be performed by the well-established single variable'
methods. " In tﬁis chapter, we consider a more general aspect of synthe-
sizing multivariable network funCtions'in the forms of cerfaiﬁ simpie' 
structﬁres wi;h‘constituent building blocks involving functions of
reduced complexity. Three different configurations. are conéidered}

(lj A sum connection of.immittancés being functions of‘mﬁtually

disjoint sets éf va:iables.
(2) A cascade connection of single variable subnetworks,kwhich,

are lossless except the last termination.




(3) An extended Bott-Duffin type structure.
The realizability conditions are formulated in terms of the decomposa-

bility of the given function into certain special forms. Furthermore,

since the verification of the multivariable positive reality, in
general, is rather unwieldy and intricate, we shall, in the following,
also develope possible alternative explicit formulations which remove

this p:érequisite condition in favour of some one-variable type

conditions.

2.1 SUM DECOMPOSITION

| The concept éf realizing a élass of-multivariable reactance
functions in terms of single variable reactance functions in a sum form
was first advanced by Soliman and Bose [30]. Recently, Bose [3] extended
the method by presenting a revised version for the previous result.
However, the above work mainly dealt with the complete deéomposability

of an m.p.r. function into a sum of single variable p.r. functions;

moreover, the decomposition algorithm for the case of reactance

functions involves laborious steps of extracting various constants.

In this section, we consider the more general problem of decomposing

a class of m.p.r. functions into a sum of such functions each having
a smaller number of variables than the original one. In particular,

the decomposition of the class of multivariable reactance functions

into a sum of single variable reactance functions is reinvestigated.
Results are presented in Section 2.1.1 and illustrated by examples in-

Section 2.1.3. Explicit forﬁulations are discussed in Section 2.1.2.




2.1.1 General MPR Approach
In the following, we first establish a simple criterion, stated
in the form of Theorem 2.1, for the decomposability of a given m.p.r.
function into a sum of m.p.r. functions with fewer variables.
Several interésting consequences of the theorem are then discussed.
For the speciél class of multivariable reactance functions, an
extremely simple decomposition method is given in Thebrem‘2.21_[16]
which eliminates the laborious steps of constant extractions.as
required by the algorithm given in [3].
Theorem 2.1
Let Z(p) be a multivariable positive real function of a set of

complex variables p = (pl,pz,...,pn). Then Z(p) can be deCoﬁposed

- as

i(g) = Zl(pl,pz?...,pl)v+ Zz(p£+1,p2+2,...,pn) , f<n (2.1)
Where Zl(pl’pZ""’pl) is m.p.r. in. PysPys+= 5P and
Zz(p2+i,p2+2,...,ph) is m.p.r. in p2+1,p2+2,.f.,pn, 1f and only if

Z(p) —'Z(pl,pz,...,pz,l,l,.j.;1) ' : - (2.2)
is not a function of pl,pz,...,éz;

Proof: The necessity is evident. We shall show the sufficiency;
Since Z(p) is m.p.r., Z(pl,pz,...,pl,l,l,...,l)' is alSo’m.p.r;
Let p, = ju; , 1=1,2,...,¢, be the minimum point of Re Z(jwys3wys

°..,jmz,l,l,...,l) with the minimum'value» K;» where Re Z denotes

1  Independently, a similar result was also reported recently in [23].’




the real part of Z. By repeated applications of the maximum modulus

theorem of a function of a complex variable, it can be shown that
Re Z(pl,pz,,..,pz,l,l,...,l) -K>0 (2.3)
for Re P; >0, i=1,2,...,%.

Let Z1 be defined as

Zl = Z(p19p29°°'apz,19'°'31) - K H ' ’ (214)

then with (2.3), it follows immediately‘from the definition of an m.p.r.
function that Z1 is m.p.r. in pl’PZ""’P2°

Now, let Z2 be defined as

ZZ = Z(E) - Zl(PlsP29°-°sP2) ° (2.5)

By hypothesis (2.2), it is apparent that '22 so defined is not a
function of PysPysecesPye Hence, by selecting P, = jwio,.i=l,2,...,2,

and taking the real part of both sides of (2.5) it is seen that

Re Z2 = Re Z(leo’jwzo’°"’jsz’P2+1’°°"Pn) >0,
for Rep, >0, i= 2+1,9+2,...,n.

Therefore, Z2 is also m.p.r. in Po41°Pgap = 9Pye The sufficiency
thus follows from (2.5).
Note that apart from an additive constant the component functions

Z, and Z, are completely defined by (2.4) and (2.5). For & =1,

1 2
Theorem 2.1 yields the following useful corollary which enables us to
detect the possibility of extracting a single variable p.r. function

from a given m.p.r. function while leaving the remaining function still

m.p.r. and having one variable less.




Corollary 2.1.1
A necessary and sufficient condition for an m.p.r. function Z(p)

to be decomposed as
Z(E) = zl(Pl) + zz(Pz:p3s-°-’Pn) s

where Zl(pl) is a single variable p.r. function in Py and

ZZ(pZ’P3"'°?pn) is m.p.r. in PysPgseecsP s ;s that
Z(E) - Z(P191’1’°°'.31)

is not a function of P (The component function Zl(pl) may be
determined according to (2.4) as follows
Zl(pl) = Z(pl,l,l,...,l) -~ Min Re Z(jwl,l,l,...,l)) . (2.6)
“1
By répeated applications of Corollary 2.1.1, we obtain the
following corollary, which corresponds to the special case considered
in [3].
Corollary 2.1.2
A necessary and sufficient condition for am m.p.r. function-‘Z(E)-
to be decomposed as
| n
z(p) = iil z;,(py) >

where zi(Pi) is a single variable p.r. function in ;s is that
Z(p) - Z(l,...,l,pi,l,...,l)

is not a function of Pys for i=1,2,...,n-1,
As in (2.6), the sub~functions Zi(pi) may be derived from

(2.4) as follows




10

Zi(pi) = Z(l,...,l,pi,l,...,l) - Ki’ i=1,2,...,n-1, 2.7
and
n-1
z ()= z(p) - _E Z,(@;)s (2.8)
i=1
where
Ki = Min Re Z(l,...,l,jwi,l,...,l) . . (2.9
w.
i

Note that Corollary 2.1.2 is essentially équivalent to the main theorem e

given in [3]. However, it may be noted fhat the condition. that
F(n—l)(pn) in [3] (Zn(pn) of (2.8) above) be p.r. is superfluous as
far as the realizability is concerned. The fact is that the p.r. nature
of F(n—l)(pn) is automatically satisfied from the hypothesis that the
given function is m.p.r.. As evident from Corollary 2.1.2 above, no
further p.r. test at any stage is necessary provided that the given
‘function is m.p.r.. |

From (2.7), it is observed that the determination of the sub-
functions Zi(pi)'s involves the extraction of a maximum possible
. positive constant from a p.r. functionm. For reactance functions,
howe&er,‘such laborious stéps may be avoided by fully exploiting the
property of reactance functions. The improved result is summarized in
the following theorem.

Theorem 2.2

A necessary and sufficient condition for a multivariable reactance

function

P(p)
Q(p)
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t6 be decomposed as
n
z(p) = iil Zi(pi) s
where Zi(pi) is a single variable reactance function in P for
i=1,2,...,n, is that the denominator Q(p) can be factored as
n
Q(p) = izl q; (p;) » : (2.10)
where qi(pi) is a single variable polynomial in Py i=1,2,...,n.

Furthermore,

(i) 1If qi(pi) does not vanish at the origin, then
zi(Pi) = Z(O,...,O,pi,o,.,.,O). (2.11)

(ii) 1f qi(pi) vanishes at the origin, defining a new function

>

1 (2.12)

1 Pi

e

Z(p) = Z(p) -
i

where
& Ai = piZ(E) 'Pi=0

is the residue of Z(p) -at Py = 0, then
. A,

Zi(pi) = Z(O,...,pi,O,...,O) + 5;- . (2.13)

Proof: The necessity is evident. We shall prove the sufficiency.

It is observed that a multivariable reactance function Z(E) is

an m.p.r. function satisfying the following additional condition
z(p) + Z(-p) =2 0 . (2.14)

With (2.14), it can be shown that a pole of a multivariable reactance
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function in a pi—plane, independent of all other variables, lies on
the imaginary axis of the pi—plane.

Also, according to a result due to Ozaki and Kasami [15], the
residue of an imaginary axis independeﬁt pole including the origin and
infinity of a m.p.r. function is a positive constant, and the rémoval
of such a pgle yields a remaining function which is also m.p.r..

By hypothesis, the denominator of Z(p) can be factored in the
form of (2.10), therefore all the poles of Z(p) are independent poles.
Consequently, it follows from the above two results that Z(p) ‘can be

expressed in the form

A A, p ’ .
2(p) = A, p, + 24+ p 2L Ly, ' (2.15)
4 11 P 2 2 2°=
1 L pl + wll _

\
where Alm, A10 and All s

It is apparent from (2.15) that the denominator of ZZ(B) is free

are non-negative and ZZ(E) is m.p.r..

of the variable Py- Therefore, it can be shown from the degree
property of m.p.r. functions that ZZ(E) is no more a function of Py

Applying the analogous procedure successively, we can deéomposef

Z(p) as
“n - A, . A, Dp.
-z(E)= T (Aiwpi+__"!'9.+<z___2.i-u_2_)
i=1 P; L p, +tw
i ig
n o
T Z,(p,) ' . (2.16)
4=1 1177 : _ ‘

where the Zi(pi)'s are obviously.single variable reactance functions.

Now, if qi(pi).‘does not vanish at therrigin, then Aio = 0 -for

every 1. ‘By setting Py = 0 for every k except k = i, it follows

from (2.16) that

A




z,(p,) = 2(0,...,0,p;,0,...,0) .

Moreover, if qi(pi) has p;, as a factor, we can always remove
the terms —= 's by inspection in advance to yield a new function
i

which satisfies the same condition . as the previous one. Hence, we can

write (2.13) as a consequence of (2.11) and (2.12). Q.E.D.

2,1.2 'Explicit Approéch
Due to the particular nature of the problems cbnsidered in
Corollary 2.1.2 and Theorem 2.2, the requirement of the multivariable
positive reality on the given function can therefore be relaxed by
reformulating the propositions'into the folloWing alternative forms.
Theorem 2.3
Let Z(p) be a multivariable rational function. The following
two conditions
(i) Z(l,...,l,pi,l,...,l) is a single'variable p.r. function of
p., i=1,2,...,n-1.
(i1) The function
- n~=1 ,
z =2(p) _.izl z;(py) ' , (2.17)

is a single variable p.r. function in P> where

Zi(pi)'= Z(l,..f,l,pi,l,...,l) - Ki | (2.18)
with
Ki = min Re Z(l,...,l,jwi,l,...,l).
wy

are necessary and sufficient for Z(p) to be a member of a subclass of

13
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m.p.r. functions, which can be decomposed as a sum of single variable
p.r. functions.

Proof: The proof is straightforward.

Necessity: Since Z(p) is m.p.r., condition (i) is obviously
satisfied. Next, we shall show that Zn defined by (2.17) is a single
variable p.r. function of P

Since Z(l,...,l,pi,l,...,l) is p.r. in Py the functions

Zi(pi)'s defined by (2.18) are also p.r. and minimum, viz.,
Re Zi(jwio) =0, i=1,2,...,n~1 (2.20)

where jwio is the mimimum point of (2.19).

Since Z(E) is decomposable into a sum of single variable p.r.
functions, it can be shown that Zn defined by (2.17) is solely a
function of P - Consequently, by selecting p; = jwio fqr

i=1,2,...,n~1 and taking the real parts of both sides of (2.17) then

comparing with (2.20), we have
Re Zn(pn) = Re Z(jwlo’ijO""’jwn—lo’pn) . (2.21)

Since Z(p) is m.p.T.,

Re Z(jwlo,jwzo,...,jwn_lo,pn) >0 for Re P, >0. (2.22)
Therefore,
Re Zn(pn) >0 for Rep >0. (2.23)

With (2.23), it is apparent from the definition of p.r. function that
Zn(pn) is p.r. in P,
Sufficiency: As shown above condition (i) coupled with equation

(2.18) indicates that the Zi(pi)'s, i=1,2,...,0-1, are alsc p.r..
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The sufficiency is thus evident from (2.17). Q.E.D.

Since independent poles at the origin of pi—plane can easily be
removed by inspection in advance, in the following theorem, we shall
assume without lack of generality that the given function does not
possess poles at the origin.

Theorem 2.4

Let

be an irreducible multivariable rational function having no poles at
the origin. The necessary and sufficient conditions for Z(E) to be

decomposed into a sum of single variable reactance functions in the

form of
n  a.(p,)
Z(p) = I L L
are

(i) The denominator can be factored as

n

Q(E) = igl qi(pi)s

where qi(pi) are even polynomials of Py
(ii) The numerator can be expressed as
n .
P()= T oa,(p;) T q,(,) ,
=1 T gy MTH
where
P(0yeees0,p.30504.,0)
o, (p,) = =
i*i *

I q,(0)
i F




(i1ii) ai(pi)/qi(pi) is a reactance function of py-

Proof: It is noted that the first two conditions assure the
separability of the given function into a sum form; while the third
condition attests to the reactance nature of the component functions.

The proof is straightforwardband thus omitted for brevity.

2.1.3 Examples

Example 2.1.1: Consider the following m.p.r. function in

P = (Pl’p2 sP3 ,Pl’)

- P1P2p3p4 + Plp3p4 + 3plp2P3 + zplpz + p3p4 + 2P1 + 3P3 + 2

Z(p)

It is required to determine the decomposability of (2.24) into a sum of

(plp2 + 1) (p3p4 + 2)

m.p.r. functions having fewer wvariables.

- It is_observed that

3p4 = P3P, — 2

Z(B) - Z(Pl’szlsl) =

is notva function of Py and Py>

Theorem 2.1 that Z(p) can be decomposed as

3P4

therefore, it follows from

Z(E) = 'Z]-(Pl’Pz)v + ZZ(P3’P4) .

Using (2.4) we obtain

Zl(PI;PZ) = Z(pl’pzﬁlsl) -

_ P

plp2 + 1

min Re Z(jml,jwz,l,l)-

w199

+ 2




