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Chapten I

Int:roduction

7.1 GoaLs of the Thesis

The pnoblem of spline intenpolation a¡rd smoothing falls

quite natunally into five nain sections:

(a) the forrnation of the system of linean equations defining the

coefficients of the basis fr¡¡¡ctions used in the spline representation,

(b) the examínation of pnoperties of the coefficient matrix of this

linean system,

' (c) the solution of this linear system,

(d) the evaluation of the spline fon vanious vafues of the a:rgument,

(e) applicatíons that use a spline nepnesentation to advantage.

In this thesis, :results ane obtained pnima::ily in aneas (a),

(b), (c), and (e).

1.2 Íhe Nwner|eaL EuaLuatí.on of SpLínes

A lange nu¡nben of equivalent nathematical descriptions of the

pol5rnonial spline ane extant in the litenatune. Repnesentative of these

diffenent forms ane the wonks of Gnevil:Ie [1969]; Cox, [t9zt, 1972, 1973]

with the use of B-splines as basis fi.¡nctions fon spline intenpolation;

Ahlbeng, Nilson and lÍalsh t19671 and their use of both divided differences

ar¡d Hermite Intenpolation to denive so-cal-led consistency equations between

äenivatives; Fyfe t19711 wíth candinal spline fonms; Späth [1970] with

Lidstone polynomials; and Golomb t19681 employing Bernoulli polynornials.

Mathematically, all fonms give exactly the same spline; computationally
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l^jJ",: j.i..1.-,,;. li.ii

thene is a wide vaniation with nespect to the pnopenties possessed and

the condition numben of the nesulting set of simultaneous equations.

Numenically, it has always been distnessing that the fonlns with the fewest

numbe:r of panametens, e.g., the ::epnesentation used by Cur"tis and Powell

t19671, should always be the worst to use fnom the point of view of ror.¡nd-

ing ennons (c.f. Cox [1971] and Cox [1972] ) and that we1l^conditíoned

fonms shoul-d involve too many nedundant panametens and J-ange.equation

systems (Späth t19691 ).

ltre B-spline on basis sÞIine, has been pnoposed by a

numben of autho::s (Anselone and Lau::ent t19681; Cox t19711; Henniot and

Reinsch [1971]; Lafata and Rosen [1970]; and Sc]rumaken t19691) as a

convenient basis fon pnoblems of intenpolation and smoothing. In fo::ming

the linean algebraíc equations defining the multiplÍers of the basis

fr¡rctions and. in evaLuating the su.bsequent appnoximating splíne, it is

necessat?y to employ an algor"íthm fon evaluating the B-spline. Cox lL972f

and de Boon [1973] have obtained,independently, methods fon B-spline

evaluation that ane numenically stable and. economical.

7.3 OutLine of t\te Thesis

In Chapten 2, backgnor:nd nesults on the B-spline ane pnesented,

along with necent theonems which penmit in Chapten 3 the

fot'mulation of systems of linean equations for" both smoothing and inten-

polating splines. As well, an economical method fon the least squanes

evaluation of a multivar"iate spÌine Ì.s given. rn chapte:: 3, algo::ithms

fo:r smoothing and fon inter-poration a::e given. The fonmat used fo::

the p::esentation of algonithrns in this thesis closely appnoximates that
of llilkinson and Reinsch tl971l. ver:¡ bniefly, the fonmat forlowed is:
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(a) The eomputer programs that supplement the deriyed mathematÍcal- ,,'

algonithms are pnesented ,Ìn A1go1W (Hoane et aI [1966]).

(b) The theonetical development giving the mathenatical basis fon the

algonithm is given firnst. Tf a competitive pr:blished noutine

exists to solve ¡lart of the pnoblem, then it is used, and only the 
,,,,

nefenence is given :"

(c) The f,o::mal .pa::ameten list giving all- the input and output pa::ametens

fon the main pnocedu::es is given. 
:.

(d) O:rganizational and notational details ex¡rlaining-rrrusual featu:res of ;,,,,.,,
' the algonithm such as stonage techniques used on intenesting testing 

,,,1.,

pnocedu::es ar?e given whene necessaïTr

En::on analysis, in general , is not included sínce, fo:r the

methods of solution used, detailed ennon analyses alneady exist and the

solution methods can be pnoven stable. In the case of B-spline evalgation,

Cox [1972J pnesents a::igonous eruo]1 analysis; fon the solution of the

system of band equations, Ïlilkinson [1963, 1965] a¡rd Wilkinson and Reinsch

h9711 give a complete ernor: analysis. fn the testing of the smoothing

spline in Chapten 3, an intenesting fo:*ia:rd ennon analysis (Coay t19731)

is used, and is desc::ibed in detail

ïn Chapten 3, the solution of second-onde:: linean diffenential

equations using cubic splines is examined. fn Chapten 4, new decoupling

techniques fon the napid solution of systems of band equations nesulting

fnon spline representations are presented. The algonÍthms ane competi-

tive in a se::iaI computen system, but ane mone effective in a

pantículan panalleJ- pnocessing envinonment. Diffe::ent concepts nelating to

paral1e1 pnocessing have been investigated (ftynn [1966 , I972J). Pnevious



dinect methods fon the solution of tnidiagonal linean systems using

panal1e1 processing (stone [1973a], Kogge and Stone -|J-.9721) l're:re di:rected

to SIMD coÍÞuter systems (single-inst::uction-stream multiple-data-strearns)

T:rar:b f19731

The methods in chapten 4.adapt well to an MIMD on multiple-

instnuction-steam multiple-data-stneam paralIel p:roeessing system fon

which algonithms seem to be difficult to obtain (Stone [1973b])'

In o::de:: to determine the effectiveness of the decoupling

algonithns in a¡r MIMD environment, an MIMD speed-up coefficient c is

defined: let n be the total member: of a:rithmetic operations in the

algonithm and m the nr¡nben that can pnoceed in para11el' then

a = n/(n-m/2)

The speed-up facton is evaluated fon the variations in the

decoupling algoníthms fo:r the solution of tr"idiagonal systens in Chapten 4

and is for¡nd in most cases to be app::oxirnately 2 fon large n . The

genenal polydiagonal decoupling noutines employ an extension of the

technique used in the tnidiagonal case, and similan economies can be

expected.

In Chapten S, pnopenties of some classes of coefficient mat::ices

that arise in the solution of systems of equations dete::mining spline

parameters are investigated. The analysis used is then extended to obtain

pnopenties of related mat::ices.



Chapten 2

B-Spline Fr:nction

2.1 Intvodzction

The spline function is a piecewise polSmomial function that has

excellent appnoximating pnope::ties, tends to be smoothen and mone flexible to

use than a polynomial and usually pnovides betten appnoximating pnopenties

(Gnevill-e [1969], de Boon t19631). If the function being appnoximated is

smooth, then spline f¡:nctions ane likeIy to give betten estimates of the

low-onden denivatives thar¡ pol5mornials (Spath [1974]).

In this thesiso the detenmínation and the evaluation of polynomial

splines qf odd degnee 2r+L is examíned. A spline fi:nction of degnee 2r+I

defined on n given knots *I. ,2

such that S(x) e S (xr, x2, ..., xn) , 'the class ofpolynomials of degnee

at most 2r+I in each of the inte::vals in the set I = {(--, xr), (*1 , *Z).,

..., (xrr, -)Ì In the pnactical application of spline fi¡nctions, a finite

range a<xsb isalmostalwaysusedrandhence *Ita and *rr.b

In o:rden to detenmine S(x) , finst note that S(x) has n + 2n + 2

panametens. The n+I pol]momials defined on I contain. (2r+Z).(n+1)

r.¡ndete::nined constants; howeven, n(2::+1) of these constar¡ts a::e deten-
¿)ç

i.e. s(x) e C-' . The

vanious intenpolatory

In this chapten, we consider" the spline as a conventionaL inten-

polating function; spline intenpoÌation using additional infonmation, such

as values of the denivatives at the ends of the intenval of intenest, is

consider"ed in Chapten 3

mined. by the continuíty nequinements on S(x)

additional constants can be dete::míned eithe:r

neguinements or ín a least squares sense.

)

by



Thene are many ways (cf. Chapter" 1) fon nepnesenting a poly-

nomial splíne; howeven, if the spline is expnessed. as a linean conbination

of B-splines, then stable and efficient computational algonithrns can be

genenated (G::evi11e 119727, Cox ll972f, d.e Boon [1973]). The B-spline was

fi:rst intnoduced fo:: the uniforrn pantition by $choenberg 119461 and fon

the non-unifor.m pantition by Cu:rry and Schoenbeng [1966].

In Section 2.2, basic pnopenties of the B-spline ane given, '

along with nequinements fo:: the definition of the r:ndenlying knot set.

An efficient algo:rithn (cox 1L9727), fon B-spline evaluation is outlined

which is used in an LZ algonithm in Chapten 3.' An integnal- nesult fon

the pnoduct of B-splines on a r:niform mesh, useful fon smoothing peniodic

data sets, is obtained in Section 2.3. In Section 2.4, an economical

method fon detennining the coefficients of a multivaniate B-spline

nepnesentatíon fon interpolation on fon least squares curve fitting is

obtained.

2.2 Tlte Basis SpLine

Most for"mulatíons of spline pnoblems tend to give nise to i11-

conditioned systems of linean equations (Greville [r9Osl, Cox [1971]).

P:roblems in solving the system are aggravated when the degnee of thé

spline is incneased and when thene alle many knots in the pantition.

Fon example, it may be neadi.Iy demonstnated that S(x) is

r:niquely ::epnesented (Gneville [1968]) by the two sets of pananetens

P(x) = (xr, xr, ..., *rr) and C = (cr, c2, ..., cn+2r+2) whe:re



n
S(x) = I ".Il-=l-
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. .2n+I[x - x.).a+
2n+L

+I"x
.u _ n+l-+l-
l_= 0

and

when x>0

*+=

othenwise.

This ::epnesentation, although useful fon pr:rposes of mathematical analysis,

leads to an ill-conditioned system of equations fon the detenmÍnation of the

ci, and is unwieldy to evaluate.

A veny desinable repl?esentation fon the spline is one whose

suppo::t is finite and whose basis functions nequine a minimal nunben of

knots in thei:: definition.

The basis spline on B-spline of degnee 2r+I (orden 2r+2) ís

non-zero ovel? 2r+2 consecutive intenvals between knots (hence the nomen-

clatr:re, spJ-ine of minimum suppont); 2t+2 is the smallest numben of

intenvals oven which a spline of degree 2n+L can be nQn-zero. The B-spline

is loca1 in the sense that at any point only k B-sp1ines, whene k is

equal to the ondenrane non-ze?o. These pnoperties perrnit the nepnesentation

of a spline in terrns of B-splines in a stable numenically compact form

(cox [rgz2]). The fonwand B-spline (Schoenbeng []-9731) Mzo+zri (*, P(x))

is the spline of degnee 2r+I specífied by the knot set

P(x) = {*1, *2, ...., *r, }. The knot set is specified in the form P(x) to

emphasize that the knots are chosen within the nange of the given data by

the cur:ve fitter" using a genena.ì- knowledge of the shape of the underlying

curve as indicated by the data and by t::ial and e::ror. In genenal' more

knots are required in those regions whe::e the behaviou:: of the cunve is

changing rapidly and fewen knots whe:re it is changing slowly; however, the

[:
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exact positioning of the knots is often not cnitical (Cox and Hayes

[IgZ3]). VÍith a l-ittle expenience, satisfactony knot positions can be

fotnd aften one or two tr"íaIs.

The B-spline M2r+2,i (*' P(å)) may be fo::mal-ly defined as

follows (de Boor" [1973]). Let

*2r+1 x > o

2n+Ix=
+

x<0

and

M2n+2 (x;y) = 1u-*)lo*1

Then M2o+2ri (*, P(x)) is the divided diffenence of onder 2r+2 of

M2r+2 (x;y) with nespect to the vaniabl-e y based on the anguments

xi-(2r+2), xi-(2::+1)' "" xi ' The evaruation of M2r+2ri (*' P(x))

th:rough the use of divided d.iffe::ences leads to an unstable evaluation

procedure and another technique (de Boon []-9731, Cox ll972J) wil-I be used.

It is evident from the definitionrhowever' that M2n+2ri (*r_ P(x)) is

zeno even5rwhene except in the 2n+2 intenval-s in the range

R = {xr_,2r+2) < x < xr} and is r:niquely detenmined (cox ltglzl),using

the 2n+3 knots defining R , except fon a constant multiplien. The sign

of the constant multiplier may be chosen to make the B-spline

M2n+2ri (*, P(x)) positive on R M2n+2ri (x, P(x)) may be shown to

have a single maximum in R rand it and its denivatives up to the 2nfth

ane zero at the end points of R , i.e., at * = *i and * = *i-( 2r+2)

Since each B-spline spans 2r+2 adjacent inter:val-s (the order

of the B-spline), then the knot set P(x) determines n-(2n+2) diffenent
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B-splines provided that n > 2n+2 . The spline repnesentation defined 
,,.,

on the knot set P(x) involves n+2rt2 degrees of freedom and nequines

n+2r+2 independent B-splines. It is then necessany to add 2r+2 antificial-

Jcnots to augment the given knot set at on outside each end of the gíven

range of intenest [arb] giving a total of n+2r+2 knots. Fon computa-

tional convenience, it is possibfg (Cavasso and Lau:rent [1969]) to plac. 
,,,,,,,

these ext::a knots at the appnopniate end pointsr nâtneI],

x-2n+1 = x-2r+2 i "' = *o = "
. (2.2-1) 

,rt,.,

xn+l=xn+2= =xn+2n+2=b

- ,t.t.,..

giving knots of multiplicity 2n+2 at both a and b . The discontinuities

that this arlrangement int:roduces are at the end points of the nange of

intenest,andsoaneofnoconcenn.The.n+2r+2B.sp1inesanethennon-zero
:

onlyínthenange a<xcb
:

If the spline is to nepnesent a peniodic data set y = ¡Vrr) of

peniod. r1 whene 
i

(2.2-2) yr=yk if m=kmod(r),

then the knot set may be extended in an obvious manner using the spaeing

of the oniginal x. . This method for: extending the knot set is assr¡ned in

Chapten 3 in onde:r to obtain a per"iodíc L, B-spline fo:: srnoothing purposes.

If the spline s(x) of onden 2t+2 with the ,pnescnibed

knot set P(x) = {*l_, *2, ..., *rr} is to interpolate to the fr:nction f(x)

at x = trr trr ...r ap , then it is assumed that the elements of the

given set of nodes and the usen--defined knot set P(x) a::e strictly or:dened,

that is:
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tI't2
(2.2-3)

tl_ . *1 1x2 1 ... . *r, . tp

ft is usual to assume that . = tl and O = an

The n+2n+2 deg:rees of 
, 
fueedom nemaining in S(x) may be neduced

by applying-the intenpolation conditions

(2.2-4) S(tÍ) = f(tr); i = I, 2, ...r p

To ensr:re that S(x) be detenmined uniquely, we nequine that the ,, ,.
:.; ì:.

nunbe:: of given nodes, the nunben of selected knotsrand the orden of the : r:

i...,.
spline be nelated by ::.1:::

:'"'
(z.z-s) p=n*2r+2

.

If the numben of given nodes p is gneater than n+2?+2 , then 
I

i

the spline S(x) may be deterrnined using the method of least squares. 
i

Inondentoensu:rear:niqueS(x),thespecifiedknotsP(x)

must be chosen to satisfy the Schoenbeng-Whitney [1953] conditions :

tr-'*l-<tr+2,.+2

t2t*2tt2+2r+2
(2.2-6)

t <x <tnnp

which ensures that each B-spline in the nepresentation S(x) has one node

in its rlange of definition.
1.,.,.,.,.,

The evaluation of a B-splin" M2r+2ri (*, P(x)) may be effected i"''.'

using a stable uecurrence ::elation given in detail in Cox LL972f o:: de Boon

[1973]: namely
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(x, P(x)) + (x.-x).M"-1 _. (x, P(x))
I

M . (x. P(x)) =f:1

(2.2-7 )

commencing with

(x.-x. )' a r-1â'

M. , (xo P(x))
¿t¿

The expnession on the níght-

positive values which gives¡

evaluation.

=l'""t 
- *i-t)' xi-l I * '*i

\
I
\ o otherwise.

hand side of (2.2-7) is the convex

in the main, the stabilitY to the

sum of two

B-spline

The necr:rllence nelation Q.2-7 ) is valid fo:: coincident knots,

provided that the::e are no more than 2:r+1 coincidences (the degnee of the

spline) at any knot. This penmits the spline S(x) to have neduced

continuity at one or more points in the range of inte::est [arbJ ' This

forrn for the spline is calfed a deficient spline.

Fon improved numer:ical- stability in the B-spline evaluation, it

is pnefena¡te (Hayes [lgZ+b]) to use the normal-ized B-spline (de Boon [1972])

defined as

(2.2_g) N2n+2oi (*, p(x)) = (*i - *i_(2onz)) Mzr+z,i (*, p(x))

nelation

The norrnalized B-splíne may be computed fr-orn the given recurrence

for" the Mts by omitting the final division by *i - *i_(2r+2)

The spline s(x) on [arb] may then be expnessed uniquely

n+2r+2 nonmalized B-splines defined on the augmented knot setusing the

AS

r :.: ::.-



n+2?+2
(2.2-g) s(x) = ,1" "r.* 2n+2rí 

(x, P(x) ) ,

the .i being constant. In o::den to detenmine the e, r the interpolation

condition S(t, ) = f(t.: ), where j = 1, .. ., p r mâY be applied to give the
]J

linea:: system of equations

n+2n+2
(2.2-ro) I ci N2n+2,i (tj, P(å)) = f(tr) r

i=ILz

whene j = I,2, e ..e p

The.linear ind.ependence of the B-spline fi:nctions N2o+2oi (*, P(x)) and

the nestriction that the use?-specified knot set P(x) satisfy the

Schoenbe::g-Whitney [1953] conditions, ensu?es a r:nique solution to the

system of linea:: equations (z.z-t)) (cox [1974]).

If p > n+2r+2, then the coefficients c. in the system of equations

(Z.Z-|O) may be obtained in a least squares manner by way of the nonmal

equations. The system of equations to be solved may be rePresented as

(2.2-rÐ NNr'c = F

whene r = {f(tj)} , cT = {er, crr..., cn+2r+2} and the erements tij

of N ane given bY

(2.2-LÐ rij = N2o+2ri (.j, P(x)) .

The system of equations e.2-J-I) may then be solved by Gaussian elimination.

To ensure a unique solution to (2.2-11), at least one of the p given

knots must be in the range of definition of each of the N2::+2ri (*, P(x))

(Hayes and Halliday [1974]).

The least squalles solution to (2.2-10) may be obtained
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molle stably by the use of Householden neductions of the matnix NN?'r

(Bunsínger and Golub [1965]). This is at the cost of nea:rly doubling the

amount of computation.

If the lntenpolatory spline of degnee 2rt1 defined on the knot

set P(x) is given by some pol5momial of degnee r or less in each of

the intenvals (--, xa), (*rr, *-) and the knot set is taken as the given

nodeso then a natp:nal spline (Greville [1969]) is obtained. In this

eir"cunstance, the coefficient matnix of the linea:: systen to be solved is

of stnict band style with the non-zero elements appeaning on the diagonal

band of wid.th 2r+L . Algonithms fon the solution of such linean systems

a:re developed in Chapten 4 to obtain the parametens of this fnequently'

used spline repllesentation.

Finally, we mention Ma::sdeds identity (Marsden [1970]) which

pennits a polynomial of degnee n to be expnessed in tsrms of B-splines.

This identity is

(2.2-r3)

whene

(lr-")k-I = [ oi-n (u) . **,, (x, P(x))
i -t

k_1
0i.n (u) = II- (u-i-n)

, T1=J-

This nesult is ernployed in Chapten 3 to inexpensively genenate test data

to validate a given B-spline representationrsince a B-spline of degnee m

must exactly nepnesent pollmomials of d.egnees 0, Ir 2, ...¡ IIì

2.3 IntegnaL of the Product of Tuo B-SpLines on a unifortn Mesh

If the given knot set is assumed to be unifonm, then thene is

no loss in genenality in assuming that the B-spline is defined on the
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integenknots.Onefonmu1ationfonaB.sp1ineofdegneeNor:onden

N+I is in tenms of the backwand difference of a tnuncated Power function

(Schoenber:g and Cunny [1966]). This definition gives a forwand B-spline

(Schoenbeng [fgZe]) and,using the notation of Meek [1974]rmay be expnessed

AS

(2.3-1) Q**, (x) = fo vN*l *f

whene

and wher.e V is the usuaf backward diffenence openator defined as

vf -f -fx x x-n.

The value h is the intenval- of diffenencing andrin this case, is assumed

to be 1 . Many of the useful computational pnoperties of Q*n, (x) ar?e

summanized in Meek [fgZ+]. A fi:rthen nesult that enables an LZ computa-

tional technique to be expnessed in ter:ms of the genenal consistency

equations obtained by Fyfe [1971] concenns the integnal- of the pnoduct of

' two fonwand B-splines.

Theorem 2.3.1

v =1" 
fon x>0

-+ 
t, othenwise

(2.s-2) f 
- 

o*nr- (*-j) Qn (x-0) dx = Qr*unr (N+l-r.+j)
J-6

whene j and 0 ane both integers and N+l- > k
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Proof:

The left hand side of equatíon (2.3-2) may be wnitten as

r = l: Q¡¡nr(*) Qn (t-s) dt

with s = 0-j . On using the definition of Equation (2.3-1),

(2.3-3)

namely,

N rj+1r = .I l. Qr*r(t) Qk (t-s) ¿t
J=OJ7

Since Qr*f(a) is a polynomial of degnee N in [j ' 
j+1] )

Q**r(.)=fuV*nt.Ï

= fu -i^ 
(-r)P ,*it, (t-p)N ,

P=u

where t e [j, j+1]

it follows that the Nth derivative of Q,,i*r(a) is

(2.0-4) offl c.l = 
nio 

(-1)p ,*Jt, , t " ¡¡, j+r-J

Equation (2.3-3) can be integnated N+l times by parts to give

r. = (-1)N .i" l--rt,, of r.-",i.u o,[îì,., I :-:.tl=u L I t=l

where Va is the backward diffenence openaton acting on the vaniable t .

From Equation (2.3-1),it may be seen that OÍiì ,a) is a constant in the

inte::val tj, j+tl ; so it is convenient to denote it by Of|] C: )

whe::e O[]] f -f l is defined as zeno. Then the above ex¡r::ession nay be

new::itten in the fonm

l. .;:
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, = #,i. oÍîl,,, [,i tt-"rf+k] 
.=:-'

and nea::nanged as

,, = $,¡, lrlll tj-I) - rÍîì,,,] q,i-",î*n

Howevenn Equation (2.3-4) givesron substitution in the above expnession,

, _ (-r)N *{t' - (ffi)T ¡lo 
(-rrj*t ,tlt, ol (j-")l*u ,'..--i':. i..

1 _N+k+l , .N+k r

= 16 ut (t-s)n lt=N*l

Fnom the definition (2.3-1), it follows that

L = QN*kn' (n+t-s) Q.E. D.

2.4 A Method for )btaLnírq thrc CoeffíaLents of a MuLtitsartate SpLí,n

In thj-s section, a gene::al economical method fon solving the

system of equations defining a multiva::iate spline fo:: inter:polation o:r .:t:j:,;i',',':: .'.' '-

fon surface l?epresentation is pnesented. A summary of necent advances in ..,,.:r:,',r,,,1,,
:t::a::::::::1::::

su:rfaee repnesentation to which the method applies is given. The derived

solution technique possesses definíte computational savings over? pnevious

methods (Hayes and Hal-liday [rgz4], Hayes [197+a, 1974b], spättr [rgz4], 
,,¡.,,,,¡,,:,,.

Ahlbeng et al t19671) pnovided that the system of equations defining the 1:::':::i':

spline parametens is not ill--conditioned on the coefficient matnix

is not deficient
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We fir"st examine methods for obtaining a bivaniate spline

nepnesentation whene vanying assr.rnptíons are made concenning the defining

knot set. It is assumed that discnete data ane given, that they rnay on

may not contain nandom en?ol?s, and that these data ane to be smoothed or

fitted exactly. If the given datå do contain ernors, then these eruors

are assÌrmed to be contained in the dependent variable. The surface

nepnesentation methods considened hene do not deal with the veny diffe::ent

question of approximating mathematical- functions whene the value of the

function for any values of the argument can be made available to pny desined

accur?acy. Many publications dealing with cubic splines defined on two

vaniables have appeaned; howeve::, these paper?s have langely concentr:ated on

those intenpolation pnoblems in which the given data ane known at the nodes

of a nectangulan mesh. This case is considered initíaIly.

The bivaniate spline is d.efined. over a reetangula:r gnid R

specified by the pantitions P(l) - {*r, x2, ... r xrr} and

Q(y) = {yt, yZ' ..., Y*} . One of the nectangle= *ij in the gnid may be

defined as

x<

( 2.4-r ) R..rl
y<

It is usualtotneat a finite domainwhere a < x < b and c < y < d

To compute the coefficients of the bivariate spliner assume that

the follor,iíng d.ata points ane given,

"i*rl

,r*, f

(2.+-z) r(til e, )

where the t. ane defined
].

(i = 1, ...r Pi 1, ..., v)

in the x di::ection, the q. in the y dinection."7
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lfe nequine a method fon the computation of a

surface s(xry), defined on R, that eithen intenpolates the values

f(t* q, ) on repnesents these values in a least squa::es sense and is sueh
rJ

that s(xry) e C2r)2r . To represent the genenal bivariate spline, a set

of basis fi.¡¡rctions is nequined as, in the case when the B-splines ane .used to.

nep:resent the one-dimensional case. Such a set fon the bivaniate spline

may be constructed. mathematically from the tensor product of two sets of

independent B-splines (de Boor. [1962]), one in the x-direction, the othen

in the y-dinection. The set of all- cr?oss pnoducts f,orrned usir,rg functions fnom

each set pnovides the basis functions fon the bivariate spline. Thus it

is necessany to augment the pa:rtition in the y di:rection as was done in

the x direction (2.2-I). The augmented partition fon the y vaniate is

Y-2n+L= Y-2r+Z 3 "' = YO = "
(2.4-3)

Ym+l = Ym+2= "' 3 Ym+2n+2 = d '

The given nodes and the usen-defined knots must satisfy the

Schoenbeng-llhitney [1953] eonditions in both the x and y dinections;

that is, eaeh B-spline defined on eithen the x on the y variate must

have a node within its non-zero range of definition. The bivaniate spline

may then be defined uniquely on R (Hayes [1974b]) as

n+2r+2 m+2r+2
(2.4-4) s(x,y) = I I, "i¡ Nzo+2,1 (*,P(*)). Nzo+z,i (y,Q(y))

:-a l-' r-¿ J-

In the intenpolatory ease: p = n+2î+2 and v = mt2nf2 and the

coefficients â,, ane determined by the p.v equationsrl

(Z.t+-S) (t' 
t) = f(t., e¡) (i = 1, ..., p; j = 1, ..., v)


