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1.1

quite naturally into five main sections:

(a)
(b)
(c)

(a)
(e)

(b),

1.2

polynomial spline are extant in the literature. Representative of these

different forms are the works of Greville [1969]; Cox, [1971, 1972, 1973]

Chapter 1

Introduction

Goals of the Thesis

The problem of spline interpolation and.smoothing falls

the formation of the system of linear equations defining the
coefficients of the basis functions used in the spline representation,
the examination of properties of the coefficient matrix of this

linear system,

the solution of this linear system,
the evaluation of the spline for various values of the argument,

applications that use a spline representation to advantage.

In this thesis, results are obtained primarily in areas (a),

(c), and (e). ' - |

The Numerical Evaluation of Splines

A large number of equivalent mathematical descriptions of the

with the use of B-splines as basis functions for spline interpolation;

Ahlberg, Nilson and Walsh [1967] and their use of both divided differences

and Hermite Interpolation to derive so-called consistency equations between

derivatives; Fyfe [1971] with cardinal spline forms; Sp&dth [1970] with

Lidstone polynomials; and Golomb [1968] employing Bernoulli polynomials.

Mathematically, all forms give exactly the same spline; computationally
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there is a wide variation with respect to the properties possessed and
the condition number of the resulting set of simultaneous equations.
Numerically, it has always been distressing that the forms with the fewgst
number of parameters, e.g., the répresenfatioh used by Curtis and Powell
(19671, should always be the worst to use from the point of view of round-
ing errors (c.f. Cox [1971] and Cox [1972]1) and that well-conditioned
forms should iﬁvolve too many redundant parameters and large~equation
systems (Sp&ath [1969]1),

o The B-spline or.basis‘spline, has been proposed by a
number of authors (Anseloﬁe and Laurént [196éj; Cox [1971]; Herriot and
Reinsch [1971]1; Lafata and Rosen [1970]; and Schumaker [1969]) as a
convenient basis for problems of interpolation and smoothing. In forming
the linear algebraic equations defining the multipliers of the basis
functions and in evaluating the subsequent approximating sﬁline, it is
ﬁecessary to employ an algorithm for evaluating the B-spline. Cox [1972]
and dé Boor [1973] have obtained,independently, methods for B-splineA

evaluation that are numerically stable and economical.

1.3 Outline of the Thesis
In Chapter 2, . background results on the B-spline are presented
along with recent theorems which permit in Chapter 3 the

formulation of systems of linear equations for both smoothing and inter-

polating splines. As wéll; an .economical method for the least squares
evaluation of a multivariate spline is given. In Chapter 3, algorithms
for smoothing and for interpolation are _giveﬁ; The format used for
the presentation of algorithms in this thesis closely approximates that

of Wilkinson and Reinsch [1971]. Very briefly, the format followed is:




(a) The computer programs that supplement the derived mathematical
algorithms are presented invAlgolw'(Hoare et al [1966]).

(b) The theoretical development giving the mathematical basis for the
algorithm is given first. If a competitive published routine
exists to solve part of the problem, then it is used, and only the
reference is given.

(c) The formal parameter list giving all the input and output.parameters
for the main procedures is given.

(d) Organizational and notational details explaining unusual features of
the algorithm such aslstorage techniques used or interesting testing

procedures are given where necessary.

Error analysis, invgenerai, is not included since, for the
methods of solution used, detailed error énalyses already exist and the
solution methods can be proven stable. In the case of B-spline evaluation,
Cox [1972] presents a rigorous error analysis; for the solution of fhe
system of band equations, Wilkinson [1963, 1965] and Wilkinson and Reinsch
[lQ?l]»give a complete error analysis. In the testing of the smoothing
spline in Chapter 3, an interesting forward error analysis (Cody [1973])
is used,‘and is'described in detail.

In Chapter 3, the sélution of second-order linear differential
equations using cubic splines is examined. In Chapter 4, new decoupling
techniques for the rapid solution of systems of band equations resulting
from spline representations are presented. The algorithms are competi-
tive in a serial computer system, but are more effective in a
particular parallel processing environment. Different conéepts relating to

parallel processing have been investigated (Flynn [1966, 1972]). Previous




direct methods for the solutiqn of tridiagonal linear systems usiﬁg
parallél processing (Stone [1973al, quge and Stone [1972]) were directed
to SIMD computer systems (single-instruction-stream multiplefdatanstreams)
Traub [1973]. | |

The methods in Chapter U4 adapt weil to an MIMD or multiple-

instruction-steam multiple-data-stream parallel processing system for

which algorithms seem to be difficult to obtain (Stone [1973b1).
In order to determine the effectiveness of the decoupling

~algorithms in an MIMD environment, an MIMD speed-up coefficient a is

defined: let n be the total member of arithmetic operations in the

algorithm and m the number that can proceed in pérallel, then
o = n/(n-m/2)

The speed-up factor is evaluated for the variations in the
decoupling algorithms for the solution of tridiagonal systems in Chapter 4
and is found in most cases to be approximately 2 for large n . The
general polydiagonal decoupling routines employ an extension of the
technique used in the tridiagonal case, and similar economies can be

expected.

In Chapter 5, properties of some classes of coefficient matrices
that arise in the solution of systems of equations determining spline

parameters are investigated. The analysis used is then extended to obtain

properties of related matrices.
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Chapter 2

B-Spline Function

2.1 Inmtroduction

- The spline function is a piecewise polynomial function that has
excellent approximating propertiee, tends to be smoother and more flexible-te
use than a polynomial and usually provides better approximating properties
(Greville [1969], de Boor [1963]). If the function being approximated is
smooth, then spline functions are likely to give better esfimates of the
low-order derivatives than polynomials (Sp&th [1974]).

In this thesis, the»determination and the evaluation of polyhomial
splines of odd degree '2r+l is examined. A spline function of degree 2r+l
2r

defined on n given knots X <Ry <. <R is a function S(x) € C

such that S(x) € 8 (kl, Rns soes xn) , ‘the class of polynomials of degree

93
at most 2r+l in each of the intervals in the set I ='{(-w,_xl), (xl, x2),
cens (xn, )} . In the practical application of spline functions, a finite
range a £ x <b 1is almost always used,and hence X, > a and x < b .

In order to determine S(x) , first note that S(x) has n + 2r + 2
parameters. The n+l polynomials defined on I contain . (2r+2).(n+l1)
undetermined constants; however, n(2r+l) of these consfants are deter-~
mined by the continuity requirements on S(x) , i.e. S(x) € c?r . The
badditional conetants_can be determined either by various interpolatory
requirements or in a least squares sense.

In this chapter, we consider the spline as a conventional.inter—

pdlating function; spline interpolation using additional information, such

as values of the derivatives at the ends of the interval of interest, is

coneidered in Chapter 3.
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There are many ways . (cf. Chapter 1) for representing‘a poly~.
nomial spline; however, i1f the spline is expressed as a linear combination
of B-splines, then stable and efficienf computational algorithms can be
generated (Greville [1972], Cox [1972], de Boor [1973]). The B-spline was’
first intfoduced for the uniform partition by Schoenberg [1946] and for
the non-uniform partition by Curry and Schoenberg [1966].

In Section 2.2, Dbasic properties of the B-spline are given, °
along with requirements for the definition of the underlying knot set.

An efficient algorithm (Cox [1972]), for B-~spline evaluation is outlined
"which is used in an L2 algorithm in Chapter 3.- An integral result for
the product of B-splines on a uniform mesh, useful for smoothing periodic.
data sets, is obtained in Section 2.3. In Section 2.4, an economical
method for determining the coefficients of a multivariate B-spline

representation for interpolation or for least squares curve fitting is

obtained.

2.2 The Basis Spline

Mostjformulations of spline problems tend to give rise to ill-
- conditioned systems of linear equations (Greville [1969], Cox [1971]).
Problems in solving the system are aggravated when the degree of the
spline is increased and when there are many knots in the partition.

For example, it may be readily demonstrated that S(x) is
uniquely represented (Greville [1968]) by the two sets of paraméters

) where

P(x) = (x5 %55 «ees Xn.) and C = (1, ¢y wuvs Cipiin
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x-)2r'+l + i

S = . C_ .. p 4
(x) i i+ i= nti+l

nes1s
(@]
~
"
!

and

X when x > 0

0 otherwise.

This representation, although useful for purposes of mathematical analysis,
leads to an ill-conditioned system of equations for the determination of the
Cs 5 and is unwieldy to evaluate.

A very desirable representation for the spline is one whose
.suppoptvis finite and whose basis functions require a minimal number of
knots in their definition.

The basis spline or B—spliné of degree 2r+l (order 2rt+2) is
non-zero over 2r+2 consecutive intervals between knots (hénce the nomen-
clature, spline of minimum support); 2r+2 is' the smallest number of
intervals over which a spline of degree 2r+l can be non-zero. The B-spline
is local in the sense that at any point only k B-splines, where k is
equal to the order,are non-zero. These properties permit the representation
of a spline in terms of B-splines in a stable numericaliy compact form

(Cox [1972]1). The forward B-spline (Schoenberg [1973]) M 5 (x, P(x))

2r+2,
is the spline of degree 2r+l specified by the knot set

P(x) ='{xl, Xpys eees X }. The knot set is specified in the form P(x) to

23
emphasize that the knots are chosen within the range of the given data by
the curve fitter using a general knowledge of the shape of the underlying
curve as indicated by the data and by trial and error. In general, more

knots are required in those regions where the behaviour of the curve is

changing rapidly and fewer knots where it is changing slowly; however, the




exact positioning of the knots is often not critical (Cox and Hayes
[1973]). With a little experience, satisfactory knot positions can be

found after one or two trials.

The B-spline M2r+2,i (x, P(x)) may be formally defined as

follows (de Boor [1973]1). Let

x2r+l > 0
2r+l1 _
X =
+
0 x <0
and
_ 2r+l
Moppo (237D = (y-x)y .
Then M2r+2 N (x, P(x)) is the divided difference of order 2r+2 of
b}
M2r+2 (x3y) with respect to the variable y based on the arguments
X5 _(op+2)? Fi-(op+1)? *°°° Xs The evaluation of M2r+2,i (2, P(x))

through the use of divided differences leads to an unstable evaluation
procedure and another technique (de Boor [1973], Cox [1972]) will be used.

It is evident from the definition,however, that M (2, P(x)) is

2r+2,1

zero everywhere except in the 2r+2 intervals in the range

R = {Xi—(2r+2) <x < xi} and is uniquely determined (Cox [19721),using

the 2r+3 knots defining R ,except for a constant multiplier. The sign

of the constant multiplier may be chosen to make the B-spline

(x, P(x)) positive on R . 3 (x, P(x)) may be shown to

Morto,1 Mort2,

have a single maximum in R ,and it and its derivatives up to the 2r'th

are zero at the end points of R , i.e., at x'= Xy and x = X _(opt+2) °

Since each B-spline spans 2r+2 adjacent intervals (the order

of the B-spline), then the knot set P(x) determines n-(2r+2) different
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B-splines provided that n > 2r+2 . The spline representation defined

on the knot set P(x) involves n+2r+2 degrees of freedom and requires
n+2r+2 independent B-splines. It is then necessary to add 2r+2 artificial
knots to augment the given knot set at or outside each end of the given

range of interest- [a,b] giving a total of n+2r+2 knots. Fér computa-
tional convenience, it is possible (Cavasso and Laurent [1969]) to place

these extra knots at the appropriate end points, namely,

see = X = A

X op+l ~ Xoopt2 0

(2.2-1)

*neor+2

X X eee =
n+l n+2

giving knots of multiplicity 2r+2 at both a and b . The discontinuities
that this arrangement introduces are at the end points of the range of
interest,and so are of no concern. The n+2r+2 B-splines are then non-zero
only in the range a < X <b .

If the spline is to represent a periodic data set y = (yv) of

period r where

(2.2-2) Yy = Vi if m = k mod (r) ,

then the knot set.may be extended in an obvious manner using the spacing

of the original X . This method for extending the knot set is assumed in

Chapter 3 in order to obtain a periodic L2 B-gpline for smoothing purposes.
If the spline S(x) of order 2r+2 with the prescribed

knot set P(x) ='{xl, Kos ooy xn} is to interpolate to the function £(x)

25
at X = t,, t., «s.s t_ , then it is assumed that the elements of the

1 2 P
given set of nodes and the user-defined knot set P(x) are strictly ordered,

that is:




R A e e B B e s sy ben R T T

(2.2-3)

t, <X, <X, < ... < xn <t .

It is usual to assume that a = tl and b = tp .

The n+2r+2 degrees of freedom remaining in S(x) may be reduced

by applying the interpolation conditions

(2.2-4) S(ti) = f(ti); i =1, 2, eeas P

To ensure that S(x) be determined uniquely, we require that the

number of given nodes, the number of selected knots,and the order of the

spline be related by
(2.2-5) p=n+2r+2 .

If the number of given nodes p is greater than nt+2r+2 , then
the spline S(x) may be determined using the method of least squares.
In order to ensure a unique S(x) , the specified knots P(x)

must be chosen to satisfy the Schoenberg-Whitney [1953] conditions

< <
t xl

1 tl+2r+2

Ty <%y < thionto

(2.2-6)

t <x <t
n n.

which ensures that each B-spline in the representation S(x) has one node

in its range of definition.

The evaluation of a B-spline M (x, P(x)) may be effected

2r+2,1

using a stable recurrence relation given in detail in Cox [1972] or de Boor

[1973], namely
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(X-Xiér)‘Mrélgiél‘(x’ P(x)) + (xi_x)'Mr—l,i (%, P(x))

Mg (x, P(x)) =

(2.2-7)

commencing with

ML (x, P(R)) =

0 otherwise.

' The expression on the right-hand side of (2.2-7) is the convex sum of two
positive values which gives,in the main, the stability to the B-spline
evaluation. |

The vecurrence relation (2.2-7) is valid for coincident knots,
provided that there are no more than 2r+l coincidences (the degree of the
spline) at any knot. This permits the spline S(x) to have reduced
continuity at one or more points in the range of interest [a,b] . This
form for the spline is called a deficient spline.

For improved numerical stability in the B-spline evaluation, it
is preferable (Hayes [1974b]) to use the normalized B-spline (de Boor [1972])

defined as

Gy PG) = (x5 = B3 (5p40)) M

- ; (x5 P@R)) .

(2‘.2'_8) N2r‘»+2,i 2r+2,

The normalized B-spline may be computed from the given recurrence
. ' et . cos_s _
relation for the M's by omitting the final division by X; Xi—(2r+2) .
The spline S(x) on [a,b] may then be expressed uniquely
using the n+2r+2 normalized B-splines defined on the augmented knot set

as
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_ nt+2r+2
(2.2-9) s(x) = ) c..N
’ o R
i=1

ore2,i 2 TR

the c; being constant. In order to determine the ;s the interpolation
condition S(tj) = f(tj), where § =1, ..., p , may be applied to give the

linear system of equations

n+2r+2

(2.2-10) c; N (t;, PR)) = £(ty),

2r+2,1

i=1

Where j = l’ 2, ceeey P .

The‘linear independence of the B—épline functions N2r+2,i.(x’ P(x)) and
the restriction that the userw~specified knot set P(x) satisfy the
Schoenberg-Whitney [1953] conditions, ensures a unique solution to the
system of linear equations (2.2-10) (Cox [197u]).

If p > nt2r+2, then the coefficients Ci.in the system of equations
(2.2-10) may be obtained in a least squares manner by way of the normal

equations. The system of equations to be solved may be represented as

H

(2.2-11) : NN*C

F

where [ = {f(tj)} , C = {cl,-cz, oo Cn+2r+2}b and the elements nij

of N are given by

‘ (2.2-12) . n.

15 = Vopyp,1 (t5> PR

The system of equations (2.2-11) may then be solved by Gaussian elimination.
To ensure a unique solution to (2.2-11), at least one of the p given
knots must be in the range of definition of each of the N2r+2,i (%, P(g))
»(Hayes and Halliday [1974]).

The least squares solution to (2.2-10) may be obtained
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more stably by the use of Householder reductions of the matrix NN#®
(Bunsinger and Golub [1965]). This is at the cost of nearly doubling the
amount of cémputation.

If the interpolatory spline of degree 2r¥l defined on the knot
set P(x) 1is given by.some polynomial of degree r or less in each of
the intervals (-, Xl)’ (xn, +) and the knot set is taken as the given
nodes, then a natural spline (Greville [1969]) is obtained. In this
circumstance, the coefficient matrix of the linear system to be solved is
of strict band style with the non-zero elements appearing on the diagonal
band of width 2r+lv. Algorithms for the solution of such linear systems
are developed in Chapter 4 to obtain the parameters of this frequently’
used spline representation. |

Finally, we mention Marsden's identity (Marsden [1970]) which
permits a polynomial of degree n to be expressed in terms of B-splines.

This identity is

(2.2-13) (u-x)7t = e -
where
k-1
: x (w) = I (u-i-r) .
i r=1

This result is employed in Chapter 3 to inexpensively generate test data
to validate a given B-spline representation,since a B-spline of degree m

must exactly represent polynomials of degrees 0, 1, 2, ..oy, m .

2.3  Integral of the Product of Two B-Splines on a Uniform Mesh
If the given knot set is assumed to be uniform, then there Is

no loss in generality in assuming that the B-spline is defined on the




J

integer knots. One formulation for a B-spline of degree N or order
N+1 is in terms of the backward difference of a truncated power function
(Schoenberg and Curry [1966]). This definition gives a forward B-spline

(Schoenberg [1973]) and ,using the notation of Meek [1974],may be expressed

as
1 _N+1 N
(2.3-1) QN+l (x) = NT v X,
where
X for x =20
X, =
0 otherwise

and where V is the usual backward difference operator defined as

The value h is the interval of differencing and,in this case, is assumed
to be 1 . Many of the useful computaﬁional properties of QN+l (x) are
summarized in Meek [1974]. A further resulf:that enables an L2 computa;
tional technique to be expressed in terms of the general consistency
equations obtained by Fyfe [1971] concerns the integral of the product of

two forward B-splines.

Theorem 2;3.1

.(2.3-2) -Ilm QN+1 (z=-3) Qk (x-2) dx = Qk+N+l (N+1-2+3)

where j and 2 are both integers and N+l > k .




Prdof;

The left hand side of equation (2.3-2) may be written as

L = J: N+l(t) Q (t-s) 4t

with s = 2-j . On using the definition of Equation (2.3-1),

N J+1
(2.3-3) L = L .[. N+l(t) Q. (t-s) dt
=073
Since QN+1( t) 1is a polynomial of degree N in [j, j+11,
namely,
21 N+1 N
Q) =F7V s

] |
Z (-1)P (N;l) (e-p)V

zI

where t ¢ [j, j+11]

it follows that the Nth derivative of Q (t) is

N+1

(2.3-4) éfi (t) pgo (-1)P (N+l) s, telj, j+il

Equation (2.3-3) can be integrated N+1 times by parts to give

N t=5+1
_ N 1 k N+k (N)
L= ot ) [m?r Ve (60907 Qg <t>]t=j |

where V_t is the backward difference operator acting on the variable t .

(M) (t)

N+1 is a constant in the

From Equation (2.3-1),it may be seen that Q

interval [j, j+1] ; so it is convenient to denote it by Qéfi (5)
where éfi (-1) is defined as zero. Then the above expression may be

rewritten in the form
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JEIE £=5+1
_ (-1 (N) ,. Kk N4k
L = ot jzo Qpq (3D [Vt (t-;) ] .

and rearranged as

N N+l :
LD (M) s (N) o | ok px o \NHK
b= o jZ [QN+1 (3-1) - Quyg (J)] Ve (Gms) .

However, Equation (2.3-4) gives,on substitution in the above expression,

N N+l .
_ (-1) j+1 N+1, _k ,. N+k
L = & _Z DT O v Ges)y
]-—0 ..
1 N+k+1 N+k
T Ntk Vt (J_C_S)+ t=N+1

From the definition (2.3-1), it follows that

L = Q.N+k+l (N+1-s) . Q.E.D.

2.4 A Method for Obtaining the Coefficients of a Multivariate Spline

In this section, a general economical method for solving the
system of equations defining a multivariate spline for interpolation or

for surface representation is presented. A summary of recent advances in

surface representation to which the method applies is given. The derived
solution technique possesses definite computational savings over previous

methods (Hayes and Halliday [1974], Hayes [197ta, 1974b], Spath [1974],

Ahlberg et al [1967]1) provided that the system of equations defining the
spline parameters is not ill-conditioned or the coefficient matrix

"is not deficient.
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We first examine methods for obtaining a bivariate spline
representation where varying assumptions are made concerning the defining
knot set. It is assumed that discrete data are given, that they may or
may not contain random errors, and that these data are to be smoothed or

fitted exactly. If the given data do contain errors, then these errors

are assumed to be contained in the dependent variable. The surface
representation methods considered here do not deal with the very different

question of approximating mathematical functions where the value of the

function for any values of the argument can be made available to any desired

accuracy. Many publications dealing with cubic splines defined on twé

variables have appeared; howeVer, these papers have largely concentrated on
those interpolation problems in which the given data are known at the nodes
of a rectangular mesh. This case is considered initially.

The bivariate spline is defined over a rectangular grid R

-specified by the partitions P(x) ='{xl, Koy seoy xn} and

2’
Q(y) ='{yl, Yoo eees ym} . One of the rectangles Rij in the grid may be

defined as

IA
w
IA

i i+l
(2.4-1) R.. =

>
IA
<
I

j = Yi+1

It is usual to treat a finite domain where a <x <b and c<y<d .

To compute the coefficients of the bivariate spline, assume that

the following data points are given,

(2.4-2) £(t,, qj) (121, evees P 351y eees V)

where the ti are defined in the x direction, the qj in the y direction.
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We require a method for the computation of a

surface s(x,y), defined on R, that either interpolates the values

f(ti’ qj) or represents these values in a least squares sense and is such

that s(x,y) € C2r’2P . To represent the general bivariate spline, a set

of basis functions is required as in the case when the B~splines are used to

represent the one-dimensional case. Such a set for the bivariate spline

may be constructed mathematically from the tensor product of two sefé of

independent B-splines (de Boor [1962]), one in the =x-direction, the other

in the y-direction. The set of all cross products formed using functions from

each set provides the basis fundtions for the bivariate spline. Thus it

is necessary to augment the partition in the y direction as was done in

the x direction (2.2-1). The augmented partition for the y variate is

| Yoopsl = Yoopsp T vt T Vg T C
(2.4-3)
Y+l = Yme2 T eee T Yntort2 =4 .

The given nodes'and the user-defined knots must satisfy the
Schoenberg-Whitney [1953] conditions in both the x and y directions,
that is, each B-spline defined on either the x or the y variate must
have a node within its non-zero range of definitiom. The bivariate spline

may then be defined uniquely on R (Hayes [197u4b]) as

n+2r+2 m+2r+2

(2.4-4)  s(x,y) = 835 Noppg,g (0P Npp 5 500D
S R 2

m+2r+2 and the

In the interpolatory case, p = nt2r+2 and Vv

coefficients aij are determined by the p.v equations

(2.4-5) (ti, qj) = f(ti, qj) (1=1, eeespPs 3 =1, s v) .




