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PREFACE

The 55Mn nuclear magnetic resonance of the A-site ions in mangan-—
ese ferrites provides an opportunity to study many of the features char-
acteristic of magnetic materials. The strong signal and the cubic Syﬁr
metry of the A-sites make this a relatively easy system to study although
the presence of two strongly overlapping signal components and the fair-
ly complex structure of the spinel lattiqé result in some difficulty in
the interpretation'of the spectra.

Nuclear magnetic resonance in ordered magnétic materials has many
distinctive features and some special problems,.these are discussed in
Chapter I, as an introduction, with particular reference to the proper-
ties of manganese ferrites. “The strong magnetic hyperfine interaction,
the spin-wave interactions, and the existence of domain-walls lead fo
most of the interesting properties of this system, including the Suhl-
Nakamura or indirect nuclear spin-spin interaction, spin-wave relaxation
processes, and the contrast in the behaviour of the two components of the
signal (due to nuciei in domains and in domain walls).

Chapter II gives a detailed discussion of the Suhl-Ngkamura inter-
action with particular referenée to its role in'the formation of multi-
ple echoes following a two pulse rf excitation of the spin system.

Chapter III is a general discussion of relaxation proéesses in mag-
petic materials, including dipole-dipole and spin-wave relaxation as well
as the dominant Suhl-Nakamura relaxation. The frequency dependent relax-
ation due to the Suhl-Nakamura interaction is compared to the experimental
data for the first three echoes, followed by a discussion of the two—coﬁpon—

ent nature of the spectrum in low external fields.
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Chapter IV discusses and compares the temperature and field depend-
ences of the two components of the spectrum. The technique of fitting a
set of partially relaxed spectra to a fqnction (made up of two independ-
ently relaxing components) of two independent variables, frequency and rf
pulse separation, allows the effective separation of the spectrum into
its domain and domain-wall components.

Finally, Chapter V gives a brief discussion and conclusion, pointing
out some areas where the techniques used here may be usefully applied.

I would like to thank my supervisorlDr. C. W. Searle for his help and
encouragement during the course of'this work, and Dr. Akira Hirai of Kyoto
University, Kyoto, Japan, who assembled much of the equipment and pointed
out the existence of multiple echoes in manganese ferrite. The practical
advice and éssistance in many areas given by Dr. Iman Maartense has been

especially helpful. Finally, I would like to thank my wife for her patience

and for her help in drawing the figures.
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ABSTRACT

The A-site 55Mn nuclear magnetic resonance at low temperatures con-
sists of two overlapping signal components, one due to nuclei within the
domain walls, the other due to nuclei within the bulk domains. The reson—
~ ance is inhomogeneously broadened and characterized by strongly frequency
dependent relaxation. Two-pulse spin-echo measurements show that tﬁe Suhl-
Nakamura or indirect spin-spin interaction is responsible for most of thé
low temperature relaxation near resonance, and provides a mechanism for the
formation of multiple echoes. By studying a series of partially relaxed
spettra it is possible to separate the two'signal components leading to
the observation of the different temperaturé dependences of the frequency-
independent part of the relaxation of the two components. This difference
is felt to be dqe to the narrowing of the longitudinal dipole-dipole inter-
action's contribution to the homogeneous linewidth of the domain-wall com-
ponent but not of the domain component. Spin-wave scattering, in particu-
lar the dipolar-induced two-magnon process, provides the strongly tempera-

ture dependent contribution to.the total relaxation rate.



CHAPTER I

Introduction to NMR in Magnetic Materials

The features that distinguish the nuclear magnetic resonance in
magnetic materials from that in other solids are: i) the presence, in

S 106 Oe),

the ordered state, of strong magneﬁic hyperfine fields ( &10
ii) the distribution of these hyperfine fields and the subsequent sev-
ere Eroadening of thé resonance lines, iii) the existence of domain walls
in non-saturated samples and the complicated enhancement mechanisms as—
$ociated with these domain walls, iv) the possibility of the existence

of two signal components—-one from domain walls, the other from the bulk
domains--which strongly overlap each other, and v) the interaction of

the nuclear spins with unpaired electronic spins or, in the ordered
state, with spin waves. These strictly magnetic effects profbundly

alter the nature of the nuclear resonance and, therefore, must be éare-

fully considered and understood before any analysis of the spectra can

be attempted.
1. Manganese Ferrite

Manganese ferrite (MnFe204) is a magnetic insulator and has the
spinel (MgA1204) Structure.with the magnetic (Mn, Fe) ions located on
two crystallographically inequivalent sites, the tetrahedral A-sites
and the octahedral B-sites. The ionic distribution has been studied
in some de_taill'—4 and can be described by the formula unit Mn2+

| , 0.87%0.2
[Mn3+2Fel 8 04 , where the cations outside the brackets occupy the




tetrahedral sites and the cations inside the brackets occupy the octa-

hedral sites. The nuclear resonance of the 55Mn nuclei on the two dif-
ferent sites have been reported and identified4 as being from Mn2+ ions
on the A-sites and Mn3+ ions on the B-sites. The B-site resonance will
be quadrupolar split into 2I = 5 components due to the non—cﬁbic sym—

metry of the octahedral sites (the octahedral symmetry does not extend

beyond the 02_ ions forming the octahedron), while the A-site, due to

its tetrahedral symmetry, has a single resonance line. The work report-—

. . 5 . .
ed here is concerned only with the -SMn resonance from ions on the A-sites.:

The spinel A-site, illustrated
in Figure 1, is at the center of a
tetrahedron formed by four 02_ ions.
Each of the oxygen ions is conne;ted .
to three B-site cations (Mh3+, Fe3+)
in such a way as to preserve the tet-
rahedral symmetry of the A-site. Be- : ({3/8)0
cause of this symmetry, the dipolar

field at the A-site is expected to be

zero, as is the quadrupole splitting.

Some small contribution to the local
field may exist due to the presence

of different ions on.the B-sites,

...........

however, there is no indication of - Figure 1. The spinel A-site. Large -
circles are oxygen ions and the dark

this in the nuclear resonance data. circles are B-sites. a = 8.5 A.

2. The Magnetic Field at the Nucleus

The magnetic field at a nucleus in a magnetic material is the sum of



the externally applied field, the magnetic field due to the distribution
of the magnetic dipoles surrounding the ion containing the nucleus, and

the electronic hyperfine field.
2.1 The dipolar contributions--~the Lorentz and demagnetizing fields

The total dipolar contribution to the microscopic magnetic field

at nucleus i in a single domain sample is
> - l_ 5 2 - > >
hag = giy L4 (r.ij) (§jrij -3, BT ) (1)

where Zj is over all spins 33 located at position ?ij with respect to
spin i, g is the electronic spectroscopic splitting factor and Hp is the
Bohr magneton. (The field due to nuclear dipoles may be neglected.)
This sum may be evaluated by breaking it up into the sums over spins

in two regions separafed by a surface, called the Lorentz sphere, such
that the volume enclosed by the sphere is large by atomic dimensions but
small on a macroscopic scale. Then, the sum is evaluated explicitly for
spins inside the sphere and the contribution from spins outside the sphere
can be evaluated as an integral over the volume enclosed by the sample's

surface and the Lorentz sphere. If we define, after Keffer5

IJ IJ IJ _ IJ 2.13, -5
DV = DL + DV—L = z£(3r£r2 - rzﬁ )rl

. IJ . . .
for cartesian components I,J of oo where DL is the sum over the interior

of the Lorentz sphere, then,

ol 5 s [ aarhy (lieHaE = - o JatiedH1edd, - &)
V- 1 2
. V=L :
where 61J= 0 unless I = J, and S1 is the surface of the sample, and S2 is




the Lorentz sphere. Then, assuming an ellipsoidal sample,

¥ - 4n

I,.1J
v-r. = &3 ~ NS

The factor 47w/3 is due to the uncompensated poles at the surface of

. . .
the Lorentz sphere, while the factor N, called the demagnetizing fac-
tor, is due to uncompensated magnetic poles on the surface of the sam-

ple. For a spherical sample, NI = 4ﬂ/3vand-D$iL = 0.

The contribution to the field from spins inside the Lorentz sphere
is called the dipolar field and can be readily evaluated by direct sum-
mation over lattice sites. TFor sites (of the spin i) of cubic symmetry

the dipolar field wvanishes.
2.2 The electronic hyperfine field

By far the largest contribution to the magnetic field at the nucleus
is the field produced by it's ion's own electrons~~the electronic hyper-

. . . . . . . 6
fine field. The magnetic hyperfine interaction can be written as

@ -3)-T 3@.-F)AL)
— - .r .r 3
A - 8m 3 2 17 5% Si°Ty 1
hf geyighly Lyl 3 881+ 3 + I |- (2
i i

where By is the nuclear spectroscopic splitting factor, Lo is the nuclear
> > 2> . . .

magneton; L, S, I are the electronic orbital angular momentum, electronic
spin, and nuclear spin, respectively; r, is the distance of the ith elec-
tron from the nucleus, and the sum is over.all of the ion's electroms.

-> "

The term in Li will be neglected here since in many iron-group com—
pounds (as in this case) the orbital angular momentum is almost completely
: >

quenched by the crystal field6. The last two terms involving Si are the

dipole-dipole terms and will be non-zero only for unpaired electrons. The




first term, called the Fermi contact term, involves, through the delta
function, the density of electrons at the nucleus. This is non-zero
only for s-electrons and thus should vanish here since all s-electrons
are paired. However, the presence of unpaired d-electrons causes a
polarization6 of the s-electrons through the exchange interaction and
a substantial hyperfine field resulté. In fact, the largest contribu-
tion to the field at the nucleus is due to s~electron polarization.

The details of the polarization of the s-electrons are very com—
plicated and include contributions from the unpaired d-electrons of
neighboring ions thfough polarization by them oﬁ the oxygen anions which
in turn polarize the original cation's s-electrons (super-transferred
hyperfine interaction)7}

The dipolar part of Equation 2 éives rise to an anisotropic hyper—
fine field. For.ﬁn3+ ions on the B-sites considerable anisotropy is |
observed4 but for Mn2+ ions on the A~sites, since Mn2+ is an S-—state
ion (five 3-d electrons > half-filled sﬁell), the hyperfine field is
isotropic.

Writing the interaction in Equation 2 in terms of the effective

hyperfine field yieldé

ﬂ o > >
ne - " E¢ntHy T ALS

3

where, A

- g d 5/ (3-3)

2+, S = 5/2). For the iso-

and S is the total spin of the ion (for Mn
tropic case A is simply a comstant while in the anisotropic case A
would be a second rank tensor.

Finally, in manganese ferrite, as in many other magnetié materials,




the hyperfine field at an A- or B-site is anti-parallel to the sublat-
tice magnetization at that site. The A-site hyperfine field has been
found to be proportional to the sublattice magnetization at low temp—
eraturess, and at T = 4.2 °K has a magnitude of Hﬁf = 560 kOe, while

at the same temperature, the B-site hyperfine field is Hgf = 360 kOe.

3. Magnetic Ordering

Below a temperature T_, = 600 °k the unpaired spins of the magnetic

F
ions in manganese ferrite are spontaneously ordered in such a way that
all of the A-site moments are parallel to each other and anti-parallel
‘to the B-site moments. This type of order is called ferrimagnetic and
TF is the ferrimagnetic Neel point. The A and B sites can be considered
to form sublattices whose magnetizations are oppositely directed but

do not have the same magnitudeg. This results in a net moment of 4.6 My
per formula unit along the‘B-site magnetization, since there are twice
as many occupied B-sites as there are A-sites. Because of this net mom-

ent many of the properties of ferromagnets are present in ferrimagnets;

e.g., the existence of domains, magnetic hysteresis, etc.
3.1 The exchange interaction

The interaction responsible for the spontaneous ordering of the
- magnetic ions' spins is the exchange interaction, which can be described

in insulators by the Heisenberg exchange Hamiltonian
: . > >
# = -] 38,8 | (4)

->
where Si is the spin of the ith iomn, and Jij is the exchange constant

representing the strength of the interaction between ions i and j. Imn



these materials, as mentioned earlier in connection with the hyperfine

interaction, the orbital contribution to the magnetic moment is quenched
and therefore the contribution of the orbital angular momentum to the
exchange interaction will be neglected. The exchange interaction is very
short ranged and only very near neighbors in the sums over i and j in
Equation 4 need to be considered.

As shown in Figure 1 there is an oxygen anion between an A-site ion
and each of its nearest B-site neighbors{ The exchange interaction must
proceed via a polarization of the anion's electronic p-orbitalslo. Such
an interaction is called superexchange (analagous to the super-transferred
hyperfine fields mentibngd earlier) and is found to be very common in iron-
group saltsll.‘ Superexchange allows‘the exchange interaction to be ef-
fective over quite large distances when compared with direct exchangelo
which would require significant overlap of the magnetic ions' d-orbitals.
Even so, the strength of the superexchange is strongly dependent on dis-
tance between cations and on the angle formed by the cation-anion-cation
systemll. Table 1 gives a list of the possible exchange couplings bet-
ween cations in a spinel together with the distances and angles between

the cations.12

Table 1: Superexchange in Spinels

Interaction Angle Distance Sign
A-0-B 125° 9" Y11a/8 -
A-0-B 154° 34"  3/3a/8 -
A-O-A 79° 38'  V3a/4 +
B-0-B 90° V2a/4 +
B-0-B 125° 2° /6a/4 +




The minus sign corresponds to antiparallel or antiferromagnetic exchange
and the plus sign to parallel or ferromagﬁetic exchange.

The superexch;nge interaction is strongest for short distances and
for angles closest to 1800‘11, thus the A-B exchange (especially the first
type shown in Table 1) is the strongest in these materials12 and is re-
sponsible for the antiparallel alignment of the two sublattices. The

other contributions (of which the 125° B-B is the largest) can be safely

neglected12 in many instances.
3.2 Molecular field theory

As postulated by Wei5313 the exchange interaction in a ferromagnetic
material can be represented by an effective magnetic field Hexé AM,

where M is the sample magnetization and A is the molecular field comstant.

Extending this conéept to the ferrimagnetic case”’

one obtains an ex-
change field acting on A-site spins due to the B-sublattice magnetization
and a similar field on the B-site spins due to the A-~sublattice magnet-

ization (neglecting intrasublattice interactions).

- e B
Héx I AMB > Hex K AMA

where the molecular field constant A represents the same quantity in

both cases and is given by

A= 3kBTF/_Ng2u§(sA(sA + 1)8,(5, + 1))% (5)

where S, = 5/2 is the A-site spin (both Mm2+ and Fe3+ have spin 5/2)

A

and SB = 2.40 is the average B-site spin. N is the total number of

is the ferrimagnetic

magnetic ions, is the Boltzmann constant, and T
g F

ordering temperature.




. - _2 . .
Since Mj = NBguBSB an@ NB =3 N, the exchange field acting on the

A-site ions is

3Ty

: |
g (5, (5, +1) S, (S+1)) 2

- 2
Hex T3 SB

(6)

Then, for g = 2 and TF = 600 0K, the exchange field is

. 6
Hi‘x (228, /gu)d = 2.6 x 10° Ce

where z = 12 is the number of magnetic nearest neighbors of the A-site

ion and J is the A-B exchange constant as used in Equation 4.
4. Spin Waves

The Hamiltonian of a ferromagnet including only an isotropic ex-
change interaction and the electronic Zeeman intéraction with an exter-
nal field Ho is

H - (‘igj')"ijgi'gj " augHy Esi )
where Z(i,j) is the sum over all "distinct" pairs of spins. The ground
state of a ferromagnet, denoted by I+> , 1s the state with all spins

aligned parallel. Introducing the spin raising-and lowering operators

+
s- = 8% = iSy the Hamiltonian can be written as
H - - Y a,.8%%+ ysTsT+ 587sT) - gum Vs
: (i,9) ij i3 i] i j : Bo i ;

Then, the ground state energy is given by

H > = - N(gugh s + 15 52 ) Jij)|'+> . . . (#)
_ | '
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since S: 4> =8, SI|+> = 0. The factor of 1/2 preceding Zj is to in-
sure that the contribution from each pair of spins is counted only once.
Then, taking the commutator of j4 and the spin lowering operator

S; and applying it to l+> yields

[#. s;]i+

(enpH s, + § 3,5 (8:85- sisj))|+>

(9

(ngHos;'+ S gqij(s; - sg))|+>

This forms a new state which is a linear combination of states where a
. spin i has been flipped, (S;]+>), Then, replacing S; by its Fourier
forn I.e3 (ik-T.)s” '
transform iexp i ri i
> > -
Lj* . gexp(1k°ri)si] |+> A

(10)
= (gngH, +‘S§Jij(1 - exp(ii‘(;i - ?5)))}§exp(ii-¥i>s;|+>

it can be seen that the states

-

R -
. Zexp(1k°ri)Si|+> (11)

are the normalized eigenstates of the Hamiltonian:}‘ with eigenvalues -

given by

k

: D> -
E, =E_+gull +5 gJij{l - exp (ik- (r; rj))} _(12)
where E0 is the ground state energy. These new states |k> are called
. : 15,16 . . >
Bloch spin~-wave states and the excitations of wavevector k are cal-
led spin waves.
The minimum energy required to excite a spin wave (E - E0 =‘guBHo)

is much lower than that required to flip a single spin since, for a

spin-wave excitation, neighboring spins are still very nearly parallel
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~(on the average) and their exchange energy is only slightly increased.
The interactién of the 55Mh nuclear moments with these spin waves
via the hyperfine (AII§) interaction and the effective nuclear spin-spin
interaction--the Suhl-Nakamura interaction--which is a result of the
virtual excitation, by the hyperfine interaction, of electronic spin
waves as intermediate states, require a detailed understanding of these

excitations.
4.1 Holstein-Primakoff diagonalization

The eigenstates of the Hamiltonian are expanded in terms of the

eigenstates In£> of the spin-deviation operator n, defined by
n ln > = (8 - Sz)ln > =n In >
L8 v PR A A )

In this notation, the ferromagnetic ground state is l0> , the state of
zero spin deviation. Then the raising and lowering operators acting on

these states give17

Z
%

+ : oz L i
Sglng> = {(s - 5)(8 + 8, + DI* [n, - 1>

(13)

Z

1
ot 1)}? Inz + 1>

Splng> = {(s +8)(s - s

The spin-deviation operator n, is actually the boson occupation number

operator defined by

. A o B
n, .— a,a , with [az, am] = Gz’m , all others zero

+ . . 1. .
where the al-and a, are the spin-deviation creation and annihilation op-

erators. Then, since

+y L
o gglng> = (n£+1)2in2+.1>..
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and, . (14)

we may express the spin operators in the Hamiltonian in terms of these

operators as

+ _ L + Y
Sz = (25) (1 a£a2/23) a,

“ - (28)% (1 - ata /28)%

Sz (28) al,( - azaZ/ S) A (15)
z +
Sl = .S - aa,

Expanding these expressions for Sz , S; in powers of (1/S) yields
+

a+a a+a a,a

+ ook 22 HF P
s, = (29)% (1. - - - ) a
3 4S 3752 %

a,a a+a a,a
- L+ A A
S, = (28)% a, (1.- - -
L 2 48 3252

where for many applications only the terms linear in the spin-deviation

operators need to be retainedS’ls’19

. When spin wave scattering becomes
important, as in the derivation of spin-wave relaxation processes, higher
order terms may be mnecessary.

For a two sublattice system, with the B-sublattice aligned along

the positive z-axis (the direction of Ho), the spin operators are given

by20

+ _ % o+ %

SB.— (ZSB) Q1 » bjbj/ZSB) bj
J ,(plus complex conjugates)
+ L + + % -

SAi— (ZSA) ai_(1>— aiai/ZSA) (16)
z _ _ .t z _ _ +

SB = SB bjbj s SA. SA + a.;a,

i i
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: . +
where SA and SB are the A- and B-site spin and the operators a; b;
create a spin-deviation on their respective sublattices.
The next step in diagonalizing the Hamiltonian is to Fourier trans-

form the spin-deviation operators, which become

[\
I

o) s Eexp(ii'?i) a

o
|

(N ) Zexp(—lk-r )b

4.2 The diagonalized Hamiltonian

The Hamiltonian we wish to consider is

H =j—{z +j—{§ +j~lZ’_‘B + H4d

. 4 z 2 z 1 . 5
= reugh ESA.- ghgh 253. +t3 J.zgi.sj (17)
1 i 3 1,]
22
+—21— I —= B w233 -3&..3)&.-3))
Lo i7j
i3 Rij

This Hamiltonian consists of Zeeman, exchange, and dipole-dipole terms.
The sum Zi is over all spins on the A~sublattice, Z? is over all spins

on the B-sublattice, ;?? is over all pairs (i,j) of nearest neighbor
b

spins, and Zi jis over all spins (i # j). When the spin has a sub-
b

script it refers to a particular sublattice and when no subscript is

present, S can refer to either sublattice. Thus, for example,

B B A
3 %3 £ 7.7 % *]
i+ A; B +6 Bj Aj+5

H
O
=
e

-+
[ec]

e

where § is the vector joining nearest neighbors. Similarly, the dipole-
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dipole part of the Hamiltonian can be written as

The factor of‘%-pn bo;h sides bf these equations is to insure that
the interaction between any two spins is included only once.

Ey breaking up the Hamiltonian in this manner we can more easily
carry out the steps in diagonalization of the total Hamiltonian. The

. . ) . +
dipole~dipole Hamiltonian can be written in terms of spin operators S ,

S_, and S° as

:Hdd ) [Ai(zzz)sis? + A(+ )(s 5 + 535 )
ERCEO PR RERD! | -
< s%s+ 5.8%) - s%s +ss 18)
'1,3(313) ,J(J P (18)
_ ,J 5153 i,j "i7j
gzuz _
where, (Z z) . 2B (R%. - 3(R?.)2)
i,j R? ij ij
ij
22 .
W) o L BB 23 ok -
i,j 2 5 _(Rij 2 Rinij) (19)_
ij
2 2
(z ) _- §_<Eijj§, z %
1,3 2 .93 ij 13
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g2u2
+ + <
JASTRNI i Se S
i, 4 _5 ij
R..
1]

anh of the four parts (A-A, A-B, B-A, B-B) of the dipole-dipole Hamilt-
onian will be written in this fashion, where the sums involved will be
over a particular sublattice.

Applying the Holstein-Primakoff transformation to the Zeeman and

exchange terms leads, to second order in magnon operators, to

]
:}{(2) = 2 (UZA?:ak + uo a;b; + u;Aakbk + uo b+b ) + const.
k

AB BBk k
where,
o _ _ 5 L
Mep = gugH + ZIS (N./N,)
o _ 1 3 B B A
Mg T 3 T(5,Sp) 7 LZg (/N T+ 2, (N /N Y
. (21)
o _ 1 oo L B L A
Hoa = 5 J(8,80) .{ZB(NB/NA) Y tZ,(N,/N) yk}
o _ SEP 5
Mpp = gHH + _zJSA(NA/NB)
ith 2’——14{(N/N)1/Zz + M /N)E 7}
withs T2 YR 4 A'"B) ‘A
A,B
and YA’B = Z 1 i exp(iﬁ;g)
_ k A,B 5
where g'is the vector joining nearest neighbors and N,, N_, 'Z,, Z_  are the

A’ "B’ A’ "B

numbers of Ay B-site ions and the number of A-, B-site nearest neighbors.
The dipole-dipole Hamiltonian can be transformed in the same fashion

to obtain the total Hamiltonian to second-order in magnon operators

(2) _ + + + +
H ‘*12{ Gaa®eic ¥ Map®Pe T oMea®Pr T MEEPKPK (23)
. . + o+
In this equation we have neglected terms such as aa > akb-k R bkb—k’

(20)
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ottt amem
etc., which arise from terms in S S , S S and are expected to be small

compared to the remaining termss’zo. The coefficiénts in this Hamiltonian
are
_ .0 dd. _ .0 dd
Map = uAA + uAA R uAB = uAB + uAB , etc., and
dd ’ (+,_) _+ (+,_) > (Z’Z)
Haa §,0(Cyp” " (-k) + ¢, (k) Coy (0]

+ (5,8 )2(N /N)z{(N /1\1)2 (z z)(0)+(N /N) c(Z z)(0)}

dd _ 5 (+,-) % (+ =) >
W = (5,857 LN, /N) Cyn (k)+(N /mo*c (k)}

(24)
wdd o s s taymp® eI @+ a7
dd — E (+"") e (+,'—) 7 (Z Z)
Mpp = ‘SB{ (Cgg® "(k) + Cpp (-k)) - (0)}

+ (5,578, /) F L, /% {52 (0) + (/w6350 (0))

(u,v)

Here we have defined the expressions CXY by
(1,v) F o, >
carl@m. = ) A exp(ik‘g ) : (25)
XY . F .6X X :
X

Y
where the sum,ZG'is.over all vectors gX originating on a site on the X-
X

sublattice (X = A or B) and terminating on the Y-sublattice, and the

Aéu’v) are as defined in Equation 19 with 3 = R.. .

1]
The Hamiltonian in Equation 23 is still not diagonal since it con-

tains terms coupling the operators and b To bring the Hamiltonian
P a4 g

k. °-
into normal-mode form, the transformation to normal-mode operators ak R

Bk is made.
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(26)

I
1
<
Q
-+
oF
™w
o

e Kk

[uk, a—k*-_] = [Bk"B;] = 1, all others zero.

The transformation coefficients u ., Vv, are chosen to bring the Hamiltonian

into diagonal decoupled form. The Hamiltonian then takes the form

(2) _ + +
FH = 12( (i, opoy + Tw, BB, 27)
which is the desired result.

4.3 The ferrimagnon dispersion relation

The normal-mode energies in Equation 27 are given by

_ 2 2
fw, = Mgl (upp Uy v+ MV
hw, = U v2 - (U, + M, )V + 1 2 ' (28)
8 BB k AB + MBA/Vik AAYK
= ho, - (uBB -1 AA) ,

The transformation coefficients are determined from the equations of motion

of the magnon operators o Bk-, a s bk’ i.e.,

do '
.k _ =

fie T ["‘k’:Hk] = 0% (29).

. : . 2 2 . .

and since, from Equation 26, L 1, we obtain the equation
| ¥eB T © “¥eal |k |
: = 0 (30)

LN THaa 7@ Vi '
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and the coefficients may be defined by the relations

: 2,4 - 2.-%
w = {1 - (vk/uk) } > V. = (vk/uk){l - (vk/uk) }
To obtain the dispersion relation (Equation 29) in terms of re-
cognizable quantities we must substitute for the p's from Equations 21

and 24. First we consider the ratio of the transformation coefficients.

1 1

L - w 2(N,/N)* (S8,/8,)° L

v /o) = 53 S 1, — %-ABB ' LA, - N(5,/5)°
BA 7 g Mp/ND™ vy + 2, (N, /N2 v

This equation is used to define a parameter n which, since it depends on

NA s NB R ZA s ZB » describes the nonequivalence of the two sublattices.
1
For small k, n = (NA/NB)/2 . Then, we find that
S n(s.5.)2 n%s
2 _ B Ly = A’B vE e — A (31)
i T A T " s -1 koo 2
B~ M " B~ " °aA B~ " °a

To put the a~-mode dispersion relation in a more understandable form

we rewrite it as

2
By = ~Haa TGy, tugdu - (gt o v

Now, from Equations 21 and 24,

o o o o 2. o o
Boy = g G Fugpdy - G g ey
(32)
e 2
= 1 -
= gugh + Z'JS .. {n (NB/NA) 1}
' . N S,S
1 LI 32 3 = _é. _é._g___. .
with z' = (N/NpZ?z o, S.¢f NB[S - 25]
A~ ""B
For small k n2 = (N,/N.)(1 +v-}--a2 k2) for a cubic lattice, where a
> A"TB” 3 "mn ? ’ nn

is the nearest neighbor distance. In this approximation the dispersion

relation assumes the familiar ferromagnetic form given by




