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ABSTRACT

In this thesis, we consider the problem of obtaining approximate
solutions of the second order differential equatioh,

y' = f(x,y), a<x<b (1)
where f(x,y) is a continuous function of x and y and f(x,y) satisfies
Lipschitz condition with respect to y.

First, we consider the numerical solution of (1) subject to the
initial conditions

y@) =n, y'(a) = n; . (2)
by multi~step methods of the Rredictor—corrector type. For the predi-

ctor, we use an explicit finite difference formula of the type

k 9 k-1 %
?_ O Yo4g = h ?_ i fn+i (n=0,1,2,...) (3)
i=0 i=0

and as corrector, the implicit finite difference formula

k 9 k
? Oy Vo4g = h § Bi fn+i (n=0,1,2,...). (4)
i=0 i=0

Special cases of (3) and (4) for k=2,3 and 4 are considered.
For k=4, ao's, g's, B's and the truncation errors for 3 different famil-
ies of one parameter formulae are derived. Many numerical illustrations
are given. Experimental results show that one of the families, designated
as I-3 turns out to be the best (i.e., the resulting ]error[ is the least).
The fourth order Runge-Kutta method is discussed briefly and numerical
results based on this method are given for comparison. Graphs showing
log2 (1/2h) versus log10 Ierror| are shown for some of the problems.

Next, we consider the differential equation (1) subject to the
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boundary conditions

y(a) = A and y(b) = B (5)
or the more general boundary conditions

y'(a) - dy(a) = A and y'(b) + ey(b) =B . (6)

We consider boundary value problems where f(x,y) is continuous

and bounded and fy(x,y) 2 0. Both linear and non-linear cases are dis-
cussed. We solve them by using finite difference methods. Methods to set
up finite difference schemes with k=2 and k=4 are shown. Numerical
results based on the three families mentioned before and other formulae

are presented.









CHAPTER I
INTRODUCTION

1. General
The general solution of the nth order differential equation

(D.E.)

7 @ = Flx,ye).y' @,y @ 03
for a real function y(x) normally depends on n parameters. Here, y(m)(x)
denotes the value of the mth derivative of y(x) at the point x. The
parameters are determined in an initial value problem by prescribing
the values ‘

y@ () = A @=0,1,...,n-1)
at a fixed point x=a. If the conditions are specified at more than one
point, the problem is called a boundary value problem. The boundary
conditions usually have the form

o, [y(x), ' (),..., ™1 y3 = 0 =0,1,...,n-1)
at the boundary points x=a and x=b. The functions F and @i may be linear
or non-linear.

Many problems in science and engineering can be formulated as
one or more differential equations. In mechanical engineering or in
astronomy, for example, a large number of problems ére associated with
force and motion. When a scientist deals with these problems, he uses
a mixture of observed mathematical variables and one or more of hypo-
thesized variables to build a model. Often, these models are expressed
in terms of differential equations. But only a few, relatively

speaking, of these models are simple enough to be solved analytically.







Assuming that the transverse load is a constant p, the flexural

rigidity is a variable and that 2% is the length when bent

E{t) = By
t.2
1+(=
» (g)
If we take P = Eg and introduce the variables
A
x=tand y =M
Z X4 p- ’

the_D.Eu becomes
v+ (l+x2)y = -1
We take M=0 at each end, so that the boundary conditions are
y (1) = y(1)=0. This then becomes a linear boundary value problem of
second order.
There occur cases where f(x,y) in (1.2) is non-linear in y. In
such cases, we have a non-linear boundary value problem.

2. Initfal Value Problems

Consider the second order initial value problem

y' = £Goy), y@ =, 3@ = (1.3)
where f(x,y) is a continuous function of x and y and f(x,y) satisfies the
Lipschitz condition with respect to y. We seek a solution in the range
as< x< b, where a and b are real constants. We wish to integrgte (1.3)
using multi-step methods. Let{ xn} be a sequence of pointsdefined by
Xn = a+nh (n=0,1,2...) . The approximate solutions will be obtained not
on the continuous interval a < x < b, but at discrete points X > with

n = (b-a)/h, h being the step length. Let v, be an approximation to the

. . 3 =f .
theoretical solution at X 5 tees, to y(xn) and fn (xn,yn) A general
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linear multi-step formula may then be written as
k k
) 2 3
i

i=0 8i fn+i (1.4)

o
y = h
i=0 inti |

Given Yo (i=0,1,...,k-1), v 4k is to be estimated. If
Bk #0 in (1.4), we have an implicit formula. However, if Bk=0, we have

an explicit formula. For an explicit formula, equation (1.4) gives

s 1=0, 1,..., k-1 and a's and B's,

Vot 10 terms of In4i’ fn+i
If we normalise by putting dk;l and use the implicit formula,
we have
k-1 2 2 k-1
) = z B
Yok ¥ 1% Tarr TP A G Ypudth o 1 Tk
By using an iteraﬁive scheme, we have
k 1 k 1
(t+l) o - 12 (t) T B
Ttk 1_0 L Vo T B Ty fo 1 ot

(t = 0,1,2,...)
(0 )

where Vot is obtained by first using the explicit formula. The iteration

is continued until

(t+1) _ (t)
l yn+k n+k l <€

where € is a preassigned small +ve quantity.

The explicit formula is the predictor and the implicit formula
is the corrector. But for the predictor we need sfarting vales. These
may be obtained by using some other appropriate method, say the Runge~Kutta
method [16].

Since the corrector is used iteratively to obtain the solution, it
is primarily respomsible for the accuracy of the method. We shall discuss

in the next chapter three separate families of corrector formulae.




3. Boundary Value ProBlems

A boundary value problem is said to he of class M [4], if it is

of the form (1.2) with the boundary conditions
y(@) = A, y(b) = B 1.5)

where A, B are arbitrary comstants, a and b are arbitrary finite constants
and f(x,y) is a cﬁntinuous function of the variables with 39f (x,y) con-
tinuous, bounded and non—ﬁegative in this strip S defined by a i b 4 i b
and - ® <y <® ., A boundary value problem of class M has a unique solution
[4]. We shall discuss methods for obtaining approximate solutions of
boundary value problems of class M in this thesis.

We shall also treat the case.when (1.2) has the more general

boundary conditions

y'(a) ~ dy(a) = A, (1.6)

y'(b) + ey(b) B
withd > 0, e > 0 and d + e >0.

Thé boundary value problem (1.2) - (1.6) also has a unique solution
[4].

Among the methods available for the numerical solution of boundary
value problems, the ﬁwo prominent ﬁethods are the shooting method and the

finite difference method.

The Shooting Method

The name comes from the situation in the two-point boundary value
problem for a second order D.E. with the initial and final values of the
solution prescribed. Varying the initial slope gives rise to a set of
profiles which suggest the trajectory of a projectile. 'shot' from the

initial point. The initial slope is sought which
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results in the trajectory ‘hitting' the target, the final value.

Consider the boundary value problem (1.2) -~ (1.5) assumed to have
a unique solution. We make the fnitfal guess a, for the quantity y'(a) at the
initial point. The D.E. now becomes an inftial value proBlem and may be
solved easily. As a result we get a value Bl for the end point, which in
general will be different from B, the correct value. Repeating the pro-
cess with a new slope d

we get another value B, at the end point. From

23

these values at the end point, the correct initial slope is sought by

2

interpolation and the problem is solved as an initial value problem.

Finite Difference Method

In this method, the D.E. is replaced by an appropriate finite
difference equation. The solution of the problem is sought at discrete
values of the independent variable. The effect is to replace the original
problem by the problem of solving a finite number of algebraic equations.
If the original D.E. is linear, the finite difference equations will be

-linear. 1If, on the other hand, the original D.E. is non-linear, the re-
sulting finite difference equations will be non-linear.

A Finite Difference Scheme

In this scheme, we set up a finite number of grid points X5 Xy

eees Xyoug where

atn h, n=0Q, 1,..., N+1

w
Il

o
It

(b-a)/ (W+1)
and Xg= 8, Xgoq T b,
N is an appropriate positive integer.
If we denote the true solution of the boundary value problem at

% by vy (xn), a method is designed to obtain the numbers Y which approxi-
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mate closely the values of y an). A convenfent way to obtain such a

scheme is to have the values Y, satisfy a difference equation (V.E.) of

the form

k 9 k

= . n =O —
g ay Youg h % Bi yh+i’ n=0,1,2,..., N-k+1 1.7)
i=0 i=0

where y; = f (xi, yi)
% 0

LRI

Here, k is the order of the V.E. The equation may be nozmalised
by choosing ak=l. Equation (1.7) leads to N-k+2 equations involving
Y12 Ygoeees Yy in a linear or non-—linear»form,yO and Vg4 2re determined’
by the boundary conditions,

If we denote by*Tn+k, the truncation error, the true solution of

the boundary value problems will satisfy a V.E. of the form

k : 9 k
Z o,y & _)=h"% B _y
j=0 1 nt+i v (Xn+i-) + Tn+k (1.8)

i=0 i
Defining the discretisation errore. by
e =yGx) -y - (1.9)
we have from (1.8) and (1.9)

_ 2o "
. e = h" I Bi Iy (Xn+

k ' k
z .
i nfl 1=.0

I+ (1.10)

— 121
120 i) y n+i n+k

5 k

=h" L B8

; i ot i T T
i=0

n+i n+k

where Biq = %§~(Xn+i’§ )} & being an appropriate value between y(xn+i)

and e
yn+1

Assuming that y(x) has continuous derivatives of sufficiently high
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orders, we associate with (1.7) the operator

k
k " *
L [yG)shl = 1 o, yGetih) - b° =61 ¥ Getih) (.1
- i=0 EN 1=t

Expanding (1.11) using Taylor's Thegrem, we:ihave

L IyGsh]l =2 C_ nt ™) (1.12)
n=0
where
1 2
CO =-Zai, Cl = Zigi, C2 =5 i oy -% Bi (1.13)
1 . 1 .q-2
and Cq = a! Zlqai - ?3:53?'2lq Sis q=3,4.,,,

the summations being from ¢ to k.
Now we define the degree of the v.E. (1.7) as the unique integer

p such that

Gg = 0(a=0,1, 0y P45 C # 0
Then we have
LIy Bl = ¢, 0P 5 a0 4 0@ (1.14)

Therefore, the truncation error is given by

_ p+2 (p+2) p+3
T 4k Cp+2 h y | (xn) + 0(h™ ™) (1.15)

However, for a number of difference operators we can write

L IyGsnl = ¢ ,, w7y (1.16)

where § is a suitable number in the interval (x,x+kh). Henrici [4] refers
to (1.16) as the generalised mean value therom.

Let the polynomials [4] associated with the V.E. (1.7) be

a(x) = Loy X (1.17)

i
2By ?

B (x)

the summations again from 0 to k.
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If the V.E. has a positive degree p > 1, we have
07 C =C =0
In terms of a(x) and 8(x), we then have

a(l) =0 . (1.18)

C

a' () 0

bli

(1) = 28(1)
The first two conditions of (1.18) imply that x=1 is a root of
a(x)=0 of at least multiplicity 2. Hence we can write o (x) in the form
0 = G-1)2 v &) | (1.19)

where y(x) is a monic polynomial of degree k-2.



CHAPTER IT

DEVELOPMENT OF FAMILIES OF ONE PARAMETER FORMULAS

1. Hull and Newberry have discussed in a paper [6], the integration
procedures with respect to initial value problems of the first order.
They have derived three families of one parameter formulas. Here, we
shall consider integration procedures with.resﬁect to D.E.'s of the second
order,

2., Using Taylor's Theorem, (1.8) can be expanded as

i, 2
agy ooy [2 hy_n__] + oy
it !

(kh)

ol @)
IZ______yn ]

. (j)]

e + o, [Z

e 12
iy
! oy, i
=’ igyy + 8 I ?—;yn(ﬁ_z)] +8, I3 _C_Z_J_f.l)__'_yn(1+2>]
(T
(kh) v (J+2)]}

i "

A

+ oo o o + Bk Iz

All the summations are from O to ©. 2.1

Equating the coefficients of the powers of h?, h?,.., hk+2

we obtain

i..2
21 21 0L:L =1z 81

Loz iBai = 1 18, (2.2)
1 % .4 1 . .2

ny oy Tgp LBy

1 k2 1 . .k

T T TR

This system of k+l equations can he written in matrix form
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as follows:

- 9 ¢ 1 - . -
1 1 1 ...1 1| fg,| |1 % %
1.2 +
. ‘3'
0 1 2 ...@&D k||g 1 1 i,
253 1
2
o 1 2% ... @D?i® g 1 % i (2.3)
2 i
3.4
0o 1 25. .. @DFEE B, 1 n 152
] (D) (kt2) *
- o L L. )

£11 the summations are from i=0 to i=k.

If we denote the square matrix by M, the vector of B8's by B
and the vector on the fight hand side of (2.3) by A, we can write

MB = A |
{

The above matrix is a Vandermonde matrix and hence it is non-
singular and the coefficients B's are uniquely determined. The B's
can be obtained either by using the inverse of the matrix (Parker,

[9]1) or by using Gaussian elimination.

3. The Truncation Error

If we denote the truncation error by T » We get an expression

ntk
k+3
_Rh (k+3) kt&

Toik = QDT Y Op) H oG (2.4)

where R is given by the equation
k k
1 Z ik+3ai =z ik+18, + R (2.5)
(ctD) (+2)  1=0 i=0 *
. . . . - k+3 | .

which is obtained by equating the coefficients of h in the expansion

of @.1).

The last k equations of (2.2) and the equation (2.5) form a system




of k+l equations with,sl, g8
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2%

can be written in a matrix form

0

the summations again being from i=0 to i=k.

o

K k-1 . . .
K -2, . . 22
B o3, .. 23

- - -—
s & o

R DL P L
N I <

1

j

1
(k1 (kt+1)

1

k+2

I i

i
(r2) (+3)

o

k+3

- Sk’ R as the unknowns and these

i

o}

In solving these equations, it is convenient to introduce the

following polynomial in x:

D(x)

x  k (k-1)
¥ ¥ @12
I Y

°

. 1

i

(2.7)

Using Cramer's Rule an expression for R can be obtained which is

. the quotient of two determinants.

The denominator is

1

k+1

(A1)

d
dxk+1l D )

while the numerator is the polynomial D(x) with the power %' is replaced

by 1 b)
(G+D(3+2)

e o,
5

542

for j=1, 2,..., kt+l.

(2.6)
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After cancelling common factors: from the numeérator and deno-

ninator, we have

R = x(x-1) x-2). . c(x-k) = &)
= xk+l + bkxk + .. o F le, where the power xj
replaced By 1 r 132,
G+DG+2)
=1 21, + D z 2%+ .
(+2) (k+3) (et 1Xict2) *
bl T iva,
2.3 *
i t
=% o. g S T(x) dx dt
i )
i F :
= )
) (ai + %1 T ak) il 0 r(x) dx dt
k
= L =, L.
1=1 ai-1 i
i t .
where Li = 7 ;on(x) dx dt
i-1 0.
and __ k
o, = % 0, e
i=141 J

4, A Difference Scheme of Order k=4

is

©

(2.8)

If we consider a difference equation of order k=4, from (1.19)

we have
a(x) = &-1)7 y(x)

where y(x) is a monic polynomial of degree 2.

(2.9)

In order to study the behaviour of the propagated error, let us

consider the initial value problem

y"' = Ay, y(a) =M, y'@@) =n,

If we use a corrector formula of type (1.4), we get an error



- 14 -
equation

)
Lopepg "R AZg e ot T o

vhere ei is as given in (1.10).

. 2 _
i.e., Z(ai - h.kﬁi) en+i =T, (2.10)

k':'Ls a constant equal to T.

assuming T
» 2 n+

The general solution of (2.10) is given by the relation

n n n
+A,s, +As, + A,s
SR VN

D .~

n
®n = A5

where Si (i=1,2,3,4) are roots of the equation

2 i
- = 0.
b3 (ai h.ASi) s
Now s; = Lhﬂrhﬁ efr
. -/A h
and s, = lfvx_hz e A

The other roots Sy and s4 are extraneous and have been introduced be-
cause a second order D.E. is replaced by a fourth order V.E.

For stable methods, we need not know s, and s, SO long as they

3

have magnitudes less than unity.

. n )
Hence s, o for i=3,4.

n n
0 Alsl + A282 - T

1

Therefore, e

2
h.AZBi

(]
]

AL+ A ~-T

0 T

Pt h*a5g
i

= -7
and el Alsl + A232 _2
h.AZBi
If we put €g + I = EO



and el + 'I‘2 = El’
h AZBi
we have
Al + A2 = EO

Alsl + A252 = El

Solviﬁg for A, and A2, we have

1

Al'= El - E s2

0
81 ~ 8y

and A2 = Eosl-—E1
51 7 %2
_ _ n _ n
Hence e = (El EQSQ) s, + (EOSl El) s, T2
S1 7 %) S1 7 %, hazgs
Now ey = o , e, = 0
El—EOs2 T ;
s = Sy 2h AZBi
Eosl~El ~ T :
Sl 5, 2h AZSi
’ n n
Hence 0 en = T2 ( Sl + s, - 1)
h kZBi 2
T [ e%xtxn“xo) + e .A(xn~xo) _JJ
T2 2
h.AZBi
since sln S e/xhh‘= e%r an‘XO) and
Vszn . E/Khh‘= g/x.(xn*xo)
~ T { cosh (/x'(xnﬁxO)) -1 1
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« 2T PR exg)
E‘““” sinh ___ o
hAZE; 2

This expression suggests: that e, will be small if (a) T is small
() = Si is large. For T to be small, we need T=O(ﬁ?), p the maximum

possible. From (1.13) we have the expressions

% da, =0
i
and
z B: - 1z iZ o
i 2 N
If r3 and r, are the extraneous roots, we have
a(x) = o x:‘L = (x-l)2 (x-r,) (x-r,)
i 3 4
9 4
a"(1) =% i%a, = 2 7 . (Q-%))
i X i
. i=3
4
Hence, ZBi = m (l-ri)
i=3

(product of the distances of the extraneous roots

]

from unity)
To minimize the estimated error we want ZBi to be as large as
possible,. But for stability r's must be in or near the unit circle.
Analogous to the three families considered by Hull and Newberry
we shall also consider here three different one parameter family of
formulas.

=r, = - c. Equation

" For the first family, we will taker 3

2

(2.9) now becomes
a(x) = (x-1)2Gete) .11)

5. 'Westward' Family

The family of one parameter formulas we will derive based on

equation (2.11), will be called "Westward', analogous to the naming



- 17 -
convention used hy Hull and Newberryl6].
The o's are given by the vector (2.12)
o = (q), a5 62, d3, &4)

2

= (cz, 2¢-2c¢", c2—4c+l, 2¢~2, 1)

For k=4, using the inverse of the resulting Vandermonde matrix,

we have
1 ~-50/24 35/24 ~1Q/24 1/24} |1 Eiza- 8o
1.2
0 96/24 -104/24  36/24 -4/24| |1 zia | |8,
2.3
4L
0 -72/24 114724 -48/24 6/24) .01  Tia.| =8
3% ° * 2 (2.13)
0 32/24 -s6/26  28/26 -4/24) |1_ e | e,
, | 5.5 *
0 - 6/24 11/24 -~ 6/24 -1/24] |1 _Zi6a_ 84
i ] 5.6 1 L]
On solving, B's are given by the vector
B = (BO’ 513 829 639 84) (2-14)

It

[Q(19c%-2c-1), Q(204c+48c+4), Q(lhc2+388c+14),
Q(4c2+48c+204), Q(l9—2c-c2)]
where Q=1/240.

The expression for R is given by

R = o Lot
B0l {x(ee1) k-2) (1=3) (kb)) dx dt
0 i-1 0
l—-
= (=% 107 + (2-2¢) 149 + (2c-1) 149 + 1.107
84 8% 84 8%
= (e®-1) /2

Using (2.4), the truncation error now bhecomes
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.8, =[1 %13 8y, e (2.15)
254
=1 h? y(BE ’ c=-1
250 -
-2 hg yCB) ,» o=+l
945 ‘

The difference equation now is

2 2 2 ’ -
¢y, + (2¢c-2c )yn+1 + (c —4c+l)yn+2 + (2c~2)yh+3 + N

4 _
- 2 1 = 0 (2.16)
bz Si 7 nti

i=0
where ¢ is an arbitrary real constant and the‘B's_are given by (2.14).

6. ‘East-West' Family

In this family, we take the two extraneous roots at -c and +c
respectively, so that (2.9) now becomes
2
a (x) = (x-1)"(xtc) (x—c)
The a's are given by the vector
a = (ao, Otl, 0'.2, (139 a4)

(fdzs 2C29 1~C29 _2: l) (2‘17)

]

From the system of equations (2.13), 8's are obtained as

il

8 (SOS 519 52’ 533 64) (2018)

1t

[Q(-1 -19 ¢%), Q4- 204 c2), QU4 - 142,
Q204 - 4c%), Qe? + 19)]
where Q = 1/240.

The V.E., therefore, is

2 2 2
¢ Yn + 2 Tn41 +_(l—c ) a2 2Yh+3 + 44 (2.19)
& A
2 o .on =10
ho 2 61 yn+i

i=0
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where the B's are given by (2.18).

7.

The truncation error associated wth this V.E. fs

T.E. = -1 '@gﬂjh?ygz
' 240

'Radial' Family

If k is the order of the V.E; for this family, we have the relation

a (x) = (x~l)2 T Cx—c¢é(2ﬂi m)/ (k=1), n=1,2,...,k-2

For k=4, this then becomes

ox) = (X—lf(x2+cx+c2)

From this equation we have the a's given by

o = (ao, U5 Ons O, a4) (2.20)

(cz,c—Zcz, c2—2c+1, c-2, 1)

I

The B's are obtained as before, as
6 = (%9 513 823 8_3’ 8_4) (2-21)

[Q(l9c2—c—1), 4Q(51c2+6c+l), 2Q(7c2+97c+7),

4Q(c2+6c+51), Q(l9~c—c2)]

where Q = 1/240.

The ¥.E. then becomes

2 2 2 .
c-yn+(c—2c )yn+l + (c —-2c+l)yn+2 + (c—Z)yn+3 + yn+4 (2.22)

where B's are given by (2.21).

The truncation error associated with this V.E. is given by

L
220 (*-1) vy, o a1 |
T.B.= |-221 #nEy® o, o=l (2.23)
60480
- 158 h8 (8) , c= +1
60480
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8. Another Family

Another one parameter family of formulas of order k=4 developed
by Usmani [12], has a's and g's given by

o = (ao, als azg a3’ a4) (2«24)

]

1, e-2, 2-2¢c, c-2, 1)

and B

i

(803 Sl’ 823 533 64) (2°25)

n

[Q(18-c), 8Q(3c+26), 2Q(97c+14),8Q(3c+26), 0(18~c)]
where Q = 1/240.

Here, the V.E. is

yn+(c—2)yn+l + (2—2c)yn+2 + (c—Z)yh+3 + Yots - (2.26)
4
B ;Z-:L.—.o TR

where B's are given by (2.25) and has a truncation error

T,E. =|31c-190 h8y(8), c# 190 '
60,480 31 (2.27)

-79 th y(lo), c= 190
585,900 31

with 2 < ¢ < 14/3,



CHAPTER TIL

INITIAL VALUE PROBLEMS

1. In this chapter we shall consider the problem of obtaining
approximate solution of the initfal value problem (1.3). We use
mylti-step methods of the predictor-corrector type. For corrector, we
use the V.E. given by (1.4). When akfo and [a0[+|80=> o, the order of
k of the V.E. is uniquely determined. For predictor, we use (1.4) with
Bk = 0, |

2. Existence and Uniqueness of Solution

Let f(x,y) satisfy the conditions stated earlier. If the V.E.
(1.4) has a unique solution {yn} where (xne[a,b]) for arbitrarily chosen
initial values yo, Yio coe oV then we have to show that the relation
(1.4) considered as an equation for Yotk has a unique solution for
arbitrary values of v, yn+l, cer s Yot This is the case if ﬁka,

because the relation (1.4) represents yn+k>explicitly as a function of

Yoo Yoa1? o0 0 Vnak-1 Thus, in the case of the predictor, we have a
V.E. of this type. If, on the other hand Yok occurs las an argument
in fn+k = f(xn+k’ yn+k)] also on the right hand side, (1.4) represents an

equation for Yok which conceivably might have several solutions or
no solution at all. If a unique solution exists, we have to find it.

If we write (1.4) in the form

y = F(y) (3.1)
where Y = Yoo
_ .28 n o7
F(y) =h" ky (Xnﬁkf y)+C (3.2)

S
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- 1 2 " e "o . - = '
where c=1 ¢{ h'Iﬁkrly\n+krl & RGP +g)y‘nJ Op 1 bkl "t aOYh_}
Ok
An iterative procedure takes the form

y(\)'l‘l) = F (y(v))_, v =0 21,2, 0. (3.3)

where y(o) is a suitable first approximation. The following theorem
enables us to prove (for sufficiently small values of h) not only the
convergence of the sequence {ycv)} to a solution of (1.4), but also the
uniqueness of the solution.
Theorem 3.1

Let the function F(y) be defined for -—=<y<e and let there exist
a constant K such that 0 < K <1 and lFt?*) - F(y)l ﬁgKIy*Fyl (3.4)
for arbitrary vaiues of y* and y. Then the following statements hold:
(i) Equation (3.1)'has a unique solution y.

©)

(ii) For arbitrary y the sequence defined by (3.3) converges
to y.
(iii) For V = 1,2,... there hold the estimates

-y 1 < Sy PO o 3.5)

1-X
If F(y) is defined by (3.2) and if f£(x,y) satisfies a Lipschitz
condition with respect to y with Lipschitz constant L, then condition
(3.4) is satisfied with

hzgk L (3.6)

%k

and this is less than 1 for all sufficiently small values of h.

K =

Proof

If y and y* are two. solutions of (3.1), then

y = F(y), y* = F(y*)
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Subtracting the first relation from the second and using (3.4),
we have
[y*-y| = K|y#-y] :
which by virtue of |K| < 1 is impossible unless y*=y.
Thus, (3.1) can have at‘most one solution. In order to prove
the existence of a solution, subtract from (3.3) the relation y(v)
= F(y(v—l)). Then we have
ly(v+1) - Y(v)l = | F(y('\))') _ F(y(vvl)!

Using (3.4), there follows

IY(\)+1) _ Y(\))I iKly(\)) _ y(\)*l)l

Using this estimate repeatedly, there exist the relations

Iy(v'*'u) _ y(\)'f'p—l)l < Kuly(\)) _ Y(v—l)l |
and ly(v+l) _ y(v)] g_Kyly(l) - y(b)l’ Corn=1,2, 002
As a consequence, for any positive integer p
]y(v+u)_y(v)lﬁJy(v+u)_y(v+p—l)[+°°.+ly(v+l)_y(v)[ (3.7
i(K“+K”»"l+, « oK) [y(\’)—y("'l) l
[y
Given any e>0,there exists an integer Vo such that
7V !y(l)_y(0)| < e
-K
for 211 v>v.. The sequence {y(v)} is thus shown té satisfy the Cauchy

0

criterion for convergence and thus has a finite limit y. Tetting v
in (3.3) and using the fact that F(y) is continuous by virtue of its
satisfying a Lipschitz condition, we get
B PPN N O
= 1 =1imF = F(1 = F
y=liny mF(y ") (1imy =) ()

The limit y is thus recognised as being a solution, and in view
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of the uniqueness already established, the.only solution of 3.1). The
estimate (3.5) follows by 1étting ﬁ+@.in (3.7) while keeping y fixed.

3. Convergence of a y.E. of Order k

Although (1.4) represents an implicit equatfon for Voap OF Sk#o,
it follows by theorem 3.1 that if the function f(x,y) satisfies a Lips-
chitz condition with Lipschitz comstant L,(1.4) has a unique solution

K for all values of h satisfying

yn+
1/2
§v< o ./ (3.8)
BkL

For all values of h satisfying (3.8), the values ym(m=k,k+l,ea.)
may thus be regarded as uniquely determined functions of the starting

values Yor Fyseees Ypopo which in turn are functions of h:

Yy = nu(h), u o= O,l,.v..,k-—l.
We expect that the values Y, thus generated tend to the value of
the exact solution at the point x as h>0 provided that the starting

values are properly chosen.

Definition of Convergence

The linear multi~step defined by (1.4) is called convergent if
the following statement is true for all functions f(x,y)‘satisfying the
conditions given earlier and all constantsmn and ng:

If y(x) denote the solution of the initial &alue problem (1.3),
then

lim y = yv(x_ ) 3.9)

such that nh » (xn—a) and holds for all xn e [a,b] and for all sequences

{yn} defined by (1.4) with starting values yﬁ = n (h) satiéfying the two
: 1
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conditions
;g n#(h) = 7, P=0,1,000,k~1 3.10)
an-d %};gl rlu(h)“n()(h) = nl: p=l’2,\Qa,k"l B C3-ll)
p B

The sufficient, but not necessary condition, in order that (3.10)

and (3.11) are satisfied, is that the starting values are exact, i.e.,

Y;y 6+ }1)‘ .

Convergence: Condition of Stability

Let polynomials (1.17) are associated with the V.E, (1.4).
Theorem 3.2

A necessary condition for the convergence of the linear multi-
step.method defined by (l.4) is that the modulus of no root of the
polynomial o(x) exceed 1 and that the multiplicity of the roots of
modulus 1 be at most 2.

For a proof of the above theorem, see Henrici ([4], p. 301).

The condition thus imposed on the roots of o(x) is the condition
of stability and this condition guarantees that small initial disturbances
are not unduly amplified.

Convergence: Condition of Consistency

The condition of consistency ensures that the V.E. is locally
a good approximation to the D.E.
Theorem 3.3
The degree of a convergent linear multi-step method is at least 1.
For proof of this theorem, see Henrici ([4], p. 301-303).
Now we shall discuss some stable and consistent formulas (both

explicit and implicit) for k=2, 3 and 4. The explicit V.E. will be
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k k-1 a
L 0.Y ,. = X 8. Y” . (n=03152’!'!2
=g =+ nt+i i=0 1 ntn

4. V.E. of Order k=2

The explicit Y.E. of order k=2 is of the form

= F]_Z y_ll

- 2yn+l + Tnt2 ) n+l

Tn

This formula has a truncation error given by

T.8. = 1_ny®

P1F4
N

The implicit V.E. of order k=2 turns out to he

- - 2 " " 1"
yn zyn+l + yn+2 B %§~(y n + 10y n+1 ty n+2)

which has a truncation error

T.E. = ~ h6y(6)

L
240

Equation (3.13) can be used as a predictor and (3.14) as a

corrector.,

5. v.E. of Order k=3

When k=3, a one parameter family of V.E.'s can be obtained

involviﬁg a real arbitrary constant c.
Consider an equation of the form
0(x) = (x-1F Gt
The o's are then given by the vector

o = (ao, G415 Gos as)

(c, 1-2¢, c-2, 1)

(3.12)

(3.13)

(3.14)

Using a system of equations similar to (2.13) when k=3, the B's

are obtained as

B = (80: Bl: 82’ 83)
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= [e/12, (10 ct1)/12, (e+10)/12, 1/12]
The §'s are given By the vector

v
B= @y 8, £

It

[(et1)/12, (A0c-2)/12, (c+13)/12]

The explicit V.E. of order k=3 is then written as
¢yt A=20dy g + ()Y, + T

2 3] - 1" " 1 =
: %§~I (ct+l)y o T (@0c-2)y oy T (et1d)y m2 4 =0 (3.15)

The truncation error associated with this V.E. is

T.E, = l_~h5 ycS)
12

The implicit V.E. of order k=3 is given by

¢ yn + (l—2c)yn+l + (C—Z)yn+2 + yn+3

- 2 t " ] 1 —
h™ [ cy .t (10c+1)y oy T (ctl0)y w2 TV s 1 =0 (3.16)

12

which has a truncation error

T.E. =| -~ (ct+1) h§ y(6), c#F~1
240 '
-1 h7 y(7), c=-1
240

6. V.E.'s of order k=4

(i) First we shall consider the 'Westward' family. For the
explicit V.E., the a's are given by (2.12) and the E's are given by the

vector

v

"y Y N
= (BO, B> Bys B (3.17)

™

3)
[ Q(e®1), Q(10c%2c+4), Q(c2420e-5), 0(20-14) ]

]

where Q=1/12.

The V.E. for the predictor can then be written as
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2 2. 2 ;
cy, * (2c~2c 2yn+l + (e —4c+1)yh+2 + (2c—2)yh+3 t ¥ (3.18)
- 3
_ h2 T ré’ yu = 0
i.:o i n+i

Y C . . -
where B's are given by (3.17) and this equation has a truncation error
associated with it given by

2y _(®)

T.E. 80 (19-2c-c%)y

=1
240
The implicit V.E. for the corrector will be the equation (2.16).
(ii1) For the 'Fast-West' family, the a's are given by (2.17)
and the §'s are given by |
\ ny ]
8 = (B H Bl’ 'éz’ 'éB) (3-19)
2 2 2
I Q(."'l_c )’ Q(l"""loc )a Q(-‘S"C )s 14 Q ]

where Q@ = 1/12.

The explicit V.E. then becomes

2 2 2 .
¢ yn+2C Y+l + (e )yn+2~2yn+3 + Yntd (3.20)
3
2 Y 141 —
“hr By vy =0
i=0

Y
where B8's are given by (3.19) and the truncation error associated with
this equation is

T.E.

1 (c2+19) h6 y(6)

240
For the corrector, the V.E. will be (2.19).
(iii) For the third family, i.e., 'Radial', the a's are given by
(2.20) and the E vector is
v y
B. = (BO) ’éls ’éz! %3) (3\121)

[ Q(c?-1), Qocttets), 0(c®10e-5), Q(ctls) ]

1f

where Q=1/12.
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The V.E. for the predictor is

2 2 2 :
cy, t (e2eTy 4t T2ty o b (e-2)y oty L, (3.22)
3
2
-n oy =0
i=0

. n . . . .
with g8's given by (3.21) and this equation has a truncation error

T.E. =1 (19-cc2) &) (©)

240
The implicit V.E. is given by (2.22).

(iv) For the fourth family we outlined in chapter 2, the a's

are given by (2.24) and the E's by the vector

~ ny n ny n,
B = (50, Bys Byo 33) (3.23)
=] 0,1 (etld), 1 (10c-4), 1 (c+l4) ]
12 12 12

The explicit V.E. then is given by

Y, + (c+2)yn+l + (2~2c)yn+2 + (c—2)yn+3 + Vooth (3.24)
3 H
- 2 v " = O
oo By Yoy =0
i=0

" .
with B's given by (3.23). The truncation error associated with this

v.E, is

T.E. =1 (18-c) hKG) y(é)'

240
For the corrector we have the V.E. (2.26).

7. Error Bound for the 'Westward' family of Order k=4

The error equation associated with V.E. (2.16) is

4 5 4
Eoogeny -0 L By By e T Ty (3.25)
l=0 l=0

where gse; = £ <Xi’ Y(Xi) ) - £ (Xi’ Yi)
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so that g

g; 1s of evaluated at a point Between Cxi,nyi) ) and Cxi’yi)’

Yy
For the derivation of a bound on [enf we will need the following
lemmas:
Let d(;) and B(z) be the polynomials given by (1.17). Let

l,l,gl,gz be the roots of d(cla Then g;i| < 1 for i > 3. Also, g(1)

=6 () =0, o"(1) = 2 g(1).

Lemma 3.1

. 1 = gt yiL Fyr e (3.26)
N N 2+ 3+a 4 0 1 2 .
oy tagt toasg oo

then there exist two constanté I' and y (non-negative) such that
]Ygl <+ vy, 2= 0,1,2,... | (3.27)
" For a proof of this lemma, see Henrici [4, p. 312].
In the case of the 'Westward' family, (3.27) is true when
=1 and y=1 for c=1.

Lemma 3.2 (i)

If Y2(2=0’1’29---) are given by (3.27), then

ROADUEIFE M L S A AP R R A
3

Proof
The proof follows from the relation
1= (o,+ §+d §2+d c3+a 2;4)( +y oty g2+...).
4703575 TS T TR TV 45T
"We assume y£=0 for 2<0.

TLemma 3.2(ii)

1f A = Jog|+og oy [+]og|+|a, | with o =1, then yA>1.
Proof

From lemma (3.1), G Yq = 1 or Yo = 1 since a, = 1.
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Also A >1. Using relation (3.27) for 2=0, we have
Yo=li0'T+Y'
which implies that
v > 1. Therefore, A y > 1.
Lemma 3.3
Let'{xn} be a sequence of numbers (n = 0, 1,..., N) that

satisfy the following inequality

n—-—
| + .
ESEE A x| + s,
m=0 ‘
where Sl and S, are certain non-negative constants independent of n
and

|= | <5, (@=0,1,...,M), M<N

Then |x | <5, A+s)D?, (0=0,1,...,1)

. For a proof of this lemma, see Usmani [15].
Theorem 3.4

Let'{en} satisfy the error equation (3.25) and let

E=pEgn,0,3 (e

Then lenl ihK*'exp {n thx] . (3.28)
where
K = [4AEMT+)+ b2 M . (o2 T4my)]/ (1-h28, 1)
3 2
L = [BL(N+)]/(1-h"8,L)
b= Jag oy oy l+lagl+lay |, Bl8gl+le I+]e, 18,1+,
Mi = max ’diy ] for x ¢ [XO’an’ the range of integration
i1
dx:L
and C. are given by (1.13).
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Proof
If n is replaced By n-g-4 in the error equation (3.25), we have

OLO en—-,q,-l; + alen-zaB Feeat 0‘4e‘n~g,

L2 :
- b [Sogn—z—-4 g4 * 818043 en=2«3+‘“+ B48n—y en.—.g,+Tn-,Q, (3.30)

Multiply (3.30) by Yy (=0,1,...,n~4), On adding the terms on

the left hand side, we have

. 3
Sum on l.h.s. = Yo% n + 3% Vtet (3.31)
t=0 ,
where
i
Vo= 2 Y _s_s O (3.32)
i =0 n—-4-j “i-j
Other terms on the left hand side vanish in view of Lemma (2.2(3)).
9 9 n-1 n~4
Sum onr .h.s. = h YOBl;gn% + h tZ=0Atgt et +}5:L_—_ 4 YJZ,Tn—SL’ (3.33)
i .
= In
where A z Tn-tmg B (3.34)
j=0
From (3.31) and (3.33), we have
3 2 L n—4
e =- 3% v +h°g,g e +h°L . Age. + v, T _
h i tl 480 % bp ot E 8y o T
3 5 ) n-1 n-4
iced, e | =L v.,e| +h"g, L |e| +hLE ae |+ |y llfT I
> l nl t=0] t tl 4 i n! £=0 I “t tl OI 2 [ n-Q!

where L is the Lipschitz constant.
3 n—-1 n-4

2 2
(-n"g,L)| el< f:=o lve [+ hL%=O a2, +§=o [YZ[.[TH_Q! (3.35)

pt+2
Now, , ]Ti] < h Cp+2 Mp_’_2
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From (3.32), we have

IIVi I < A, max. of [Ygl used

< Al [Yn—4l
< A. [(n—-4)T +vy], using (3.27)

or | v. < A. (@U + vy)

A
Similarly,

| by | < B. (nr + v)
also,

n-4 9
T Yi<-n—-r+n'Y
i=0 2

From (3.33), it follows

a hz : ‘ 2 n~1
-h"g,1) |e | < 4AGMI)EHIB(r+y) I e

2=0 2!

4

pt2 n

+nP" % oM Ty,

: 2
p+2 p+22=O

n-1
< BBL@IH)T e, | +AAE (AT )+0
. =0

or n-1
‘ | * 2 £
le | £L h"” I e,| +K

Since
Ay > 1, by using lemma 3.2(ii) E < X

Using lemma (3.3), from equation (3.36) we have

| e | < (%P

%*  h2L"
e

K ( ’

)n, using the inequality 1+h L < e

in exp’{nh,zLK }

This completes the proof.

21"

(3.36)



















































































































































