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In this thesis, we consider the problem of obtaining

solutions of the second order differential equatÍon,

y"=f(xry),âlx<b

where f(x,y) is a continuous funcËion of x and y and f(x,y)

Lipschítz condiËj.on r^::ith respect to y.

First' I¡/e consÍder the numerical solution of (1) subject to the

íniËial conditÍons

ABSTRACT

by multí-step meËhods of the predíctor-correcËor type.

ctor, we use an explicít finite difference formula of

y(a) = t, yt (a) = rl

k
x a. vi 'rrl-ir-=u

and as corrector,

k
X a. yI ^ --i 'n*il-=u

^ k-l
=ht \ ^ 

är to, (n=0,1,2,...)
l_=u

approxima te

For k=4, cxts, Èt", ßts and the truncatÍon errors for 3 different fanil-

ies of one parameËer formulae are derived. Many m.merical i11usÈratíons

are given. Experímental resulËs shor^r that one of the fanilies, designated

as I-3 turns out to be the best (i"e., the resulËing lerrorl :-s the least)"

The fourËh order Runge-Kutta method ís díscussed bríefly and numerical

results based on this method are given for comparison. Graphs showing

Iog2 G/zh) versus 1og1' lerrorl are shor¿n for some of the problems.

Next, we consider the differentíal equation (1) subject to the

the implicÍË finiËe dífference formula

,k
= h- I ^ ßi fori (n=0, L,2, "..) "

l_=u

Special cases of (3) and (4) for k=2r3 and 4 are considered.

(1)

satisfíes

(2)

For the predi-

the type

(3)

(4)



boundary condiËÍons

or the more general boundary conditions

y(a)=AandY(b)=s

We consider boundary value problems where f(x,y) is continuous

and bounded and f__(xry) > 0" Both linear and non-linear cases are dis-
v

cussed. We solve Ëhem by using finite difference methods. Methods Lo seÊ

up finíte difference schemes with k=2 and k=4 are shown. Numerical

results based on Ehe three farnilies menËioned before and other formulae

are present.ed.

y'(a) - dy(a) = A and y'(b) + ey(b) = B .

-fÍ-

(s)

(6)







1. General

(D.E.)

The general solution of the nth order differential equatÍ-on

,(n) (x) = F[x,y(x),y'(x), . . . ,y(t-1) (*) ]

for a real funcËíon y(x) normally depends on n parameters" Here, y(*)(*)

denoËes the value of the rth d"rirrative of y(x) at the point x. The

parameters are deËermined in an initial value problen by prescribing

the values

y(t) (x) = A* (n=0,1r...,n-1)

at a fíxed poí.nt x=a. If Ëhe condj-tions are specified at more than one

poinL, the problem is called a boundary value problem. The boundary

CHAPTER I

INTRODUCTION

conditions usually have the foru

oi ty(x), y'(x),..., y(n-1)1*¡l

at the boundary points x=a and x=b. The

or non-linear"

Idany problems in scíence and engineering can be formulaËed as

one or more differential equations. In mechanícal engineering or Ín

astronomy, for example, a large number of problems are associaËed with

force and motion. When a scientist deals wíth these problems, he uses

a mixture of observed mathematical variables and one or more of hypo-

thesízed variables to build a model. Often, these models are expressed

in terms of differential equations. But only a few, relatively

speaking, of these models are simple enough to be solved analytically.

= 0 (í=0r 1r... rn-I)

functíons F and Õ. nay be linear
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,

dft +P. Mn-p(t)
ã¡z E6

Assuming th-at the transverse

rigidity is a variable and that 2f is

E(t) = E0

r2
1+l:) --a.'

If v¡e talce P = EO and introduce the variables

the D.E. becomes

y" + (1+x2¡y

lnle take l{=0 at

y (-1) = y(l-)=g. This

second order.

x=tand
7
I

load is a constant p, the f le:<ural

the length when bent

F
Y = M. ,

e.4p

There occur cases rvhere

such cases, rre have a non-linear

2. Initfal Value Problems

=-l

each ende so that the boundary condiÈions are

then becomes a linear boundary value problem of

Consider the second order initial value problem

y" = f(*,y), y(a) = r¡¡ y'(a) = \ (1"3)

where f(xry) is a continuous funcËion of x and y and f(xry) satisfies the

Lipschítz condition wíËh respect to y. I^le seek a solution in the range

a 1 x < b, where a and b are real constants. tr{e wish to inËegráte (1.3)

using mulËi-step methods. Let{ *rr} be a sequence of pointsdefined by

xr, = a*nh (n=0,1r2...) " The approximate solutions v-ill be obtained not

on the continuous interval r : x < b, but at discrete points xrr, rvÌth

n = (b-a) /h, tr- being the step length. Let y' be an approximation to the

theoretical solution at *.r, i.e", to y(xn) and fr, =f(xrrryrr). A general-

f (x,y) in C1.2) is non-linear ín y.

boundary value problem

In
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li-near mulËi-step formula may then be writ'ten as

k .k
I ^ 

oi- Yn+i = h" Ì=o ßi frr+i
l_=u

8k +0 in (1.4), we have an implicit formula. Hovrever, if 8k=0, vre have

an explicit formula. For an explicit formula, equation (1.4) gives

yn+L in terms of yrr+i, fn+i, i=0, 1r".., k-1 and crrs and ßrs.

rf we normalise by putting ao=l and use the implicit formulao

we have

Git"t yr.*i (i=0r1r... rk-1), yn+k is to be esËimated. If

k-1
yrr+t + i-^ oi Yrr+i = h2 ßkf (*.,*k,Yn*u)+r'2

l-=u

By using an iteraÉive scheme, we have

,jïl') . i: oi y,,+i = h2

vrhere rj9ì. t" obtained by
" n+k

is continued until

I 
' 

c;;tr - 'il¿ I

where e is a preassigned smal1 *ve quantity.

The explicit formula is the predictor and the implicit formula

is the corrector. But for the predictor we need starting vales. These

rnay be obtained by using some other appropriate method, say the Runge-KutËa

meÈTr-od t161.

Since the corrector is used iteratively to obtain the solution, it

Ís primaríly responsible for the accuracy of the method. \Ie shall discuss

in the next chapter three separate familíes of corrector formulae.

(1.4)

(t = 0, L12r. . ")

first using the expliciË formula.

ouk , (*"*o,r,fiìl*n2 I
i=0

k-1
x

i=0
ß.
].

<e

ÊI.
rr+a

ß.
l_

II.
rr+r-

The iËeration



3. Boundary Value ProÊlems

A boundary value problem is said to Ee of class M I4l, if it is

of the form (1.2) rvith the boundary conditions

l¡(a)=A,y(b)=B (1"5)

v¡here A, B are arbitrary constants, a and b are arbitrary finite constants

and f (xry) is a continuous function of Ëhe variables $l:lth Af Cxry) con-
ãt

tinuous, bounded and non-negative in this sËrip S defined ty " I " : b

and -- t y'-. Aboundaryvalueproblemof cl-asslf has aunîque sol-ution

14]. lle sha1l discuss methods for obËaÍning approximate so'lutions of

boundary value problerns of class M in this Ëhesis.

We shall also treat the case v¡hen (1.2) has the more general

-5-

boundary condiËions

y'(a) - dy(a) = 4,

y'(b) {- ey(b) = B

with d'l 0, " I 0 and d * e >0.

The boundary value problern

I4t .

Among the methods available for the numerical solution of boundary

value problems, the two prominenË methods are the shooting method and the

finite difference method.

The Shootins Method

The name comes from the situation in the trnro-point boundary value

problem for a second order D.E. with the initial and final values of the

solution prescribed. Varying Lhe initial slope gives rise to a set of

profiles which suggest the trajectory of a projectile rshotr from the

initial point. The initial slope is sought which

(1.2) - (1.6) also h¡-s a unique solution

(1.6)



results f.n the. traJectory rhitttngt tñe target, the. final value.

Consider tT¡-e boundary value proËlem C1.21 - (1.5) assumed to have

a unique solution. We make Ëhe. inittal guess o, for the quantity yt (a) aË the

iniÈial point. Ttre D.E. nor,¡ becomes an initial value problem and may be

solved easily. As a result we get a value B, for the end poÍnt, which in

general will be different from B, the correct value. Repeating the pro-

cess with a ner{ slope c2, $¡e get another value B, at the end point. From

these values at the end point, Èhe correct initial slope is sought by

interpolation and the. problem is solved as an initial value problern"

Finite Difference Mettrod

-6-

In this method, the. D"B. is repl¿ced by an appropriate finiËe

difference equation. The solution of the problem is soughÈ at discrete

values of ttre independent variable. The effect is to replace the original

problem by the problem of solving a finite number of algebraic equations.

If the original D.E. is linear, the finite difference equaËions will be

linear" If, on the other hand, the original D.E. is non-linear, the re-

sulting finite difference equations will be non-linear.

A Finite Difference Scheme

In thís scheme, vie set up a finite number of grid points xl, *2,

...' \+t where

x = a*n h, û=0, 1r..., N+l
n

1-¡ = (b_a)/(N+r1

and *o="'\+1 =b

N j-s an approoriate positive integer.

If we denote th-e true solution of the boundary value problem at

*r, by y (*rr), a method is designed to obÈain the numbers lrr, l¡hich approxi-



mate closely the values of y Cxrr). A convenient qay Ëo ohtain such- a

scheme is to have the values I' satisfy a difference equatlon (V.U.) of

the form

k -z
I ^"i rn+i = h
I=U

v¡here yi = f (xr, lr)
otlo

lool+leol+ o

^7 -

Llere, k is the order of the V.E. The equatÍon may be nor,malised

by choosing ok=1. Equation (1.7) leads to N-k-l-2 equations involving

Yy y2r.o.e yN it a linear or non-linear form.y'and T¡.+l "r" determined

by the boundary conditions.

If we denoËe bI Tn+k, the Ëruncation error, the true solution of

the boundary value problems will satisfy a V.E. of Ëhe form

k

I ^ 
ßi 

"ü*r, 
n-0,1,2,..., N-k+1

I=U

k ok
I ^ 

oi v (xn*r) = n' 
T: n 

ß.' y', (*rr*i) * Trr+kr=U 
.i=U 

l'

Defining tTLe discretisation error. r, by

er, = Y(xrr) - Yn

we have frorn (1.8) and (1.9)

(L.7)

k
t. q. e.. =

l_ ffil-
l-= u

=

= âf (x ..9-;- n+I-
dy

where e ..-n+1

"td Y.r+r'

1.
,N.* 

L out 
[v" (*rr+i) - r"rr*rJ +

,kh- f, 
^ 

ßi "n+i Bn+i t rn+k
l-= u

) 5. being an appropriate value

Assuming that y(x) has continuous derivaËives

(1" B)

Tn+k

(1. e)

betrveen y(x ..)- n+t

(1.10)

of sufficiently fuigh
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orders, r.re associate with- Cl:7) the oPeratdr

kk
L ly(x) irr-l = I ^ot 

ycxriÈ) - # LoUr 
r"G+in)

1=0 *

Expanding (1.11) using Tayl-orts Thegrem, we:have

L IYCx;hl =î ^ t. ot Y(t) Cx)
n=u

where

C0 = f,arr C1 = f,íarr C,

and c = I -'q 1

q q! )'a'0 '

the summations being from g to k.

Now we define the degree

p such that

cq, = OCq=Or1r..., pl-1)i

Then we have

l, IyG); hl = cn*2h?*z

l_

2

riq-2

li2c - -x ß.I -l

ßr, {=3 ,4' , , ,

Th-erefore, the truncati.on error

Tn+k = 
"n*2 

h?*z ,(n+2) (xn) +

C1 " 11)

of the v.E" (1.7) as

However , for a number of di.ff erence- operators \{e can l'rrite

L Iy(x);hl = co*z hP*2 ,(l+2) ¡u¡ (1.16)

where 5 is a suitable number

to (1.16) as the generalised

Let the polYnomials

a(x) = f,o' *i
l-

co+z # o

(L.L2)

(p+2)v-

Ehe unique integer

(1.13)

(x) + o (rLP+3,

is given by

o (rrP+3,

ß (x) = f,g. xa

the summations again from 0 to k"

in the interval (x,x*kh). Henrici I4l refers

mean value therom.

[4] associated \,rith Ëhe V "E. (1.7) be

(1.17)

(1.14)

(1.ls)
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If the V.E. has a positlve

C0=Cl=Cr=0

In terms of q(x) and ß(x),

o(1) = 0

ct (1) = 0

cÌ"Cl) = 28C1)

The first tt^¡o conditions

a(x)=Q of a.t least nultiplicit]¡
't
a(x) = (x-f)- t(x)

where ¡(x) is a monic pollmomial

degree p > 1,

r,¡e tïren have

we have

of C1.18) inply

2, Hence T¿¡e can

of degree 1c-2"

thaË x=l is a

r,rrite c (x) în

(1.18)

root

the

of

form

tl.re)



1. Hull and Ner,rberry have dlscussed in a paper 16], the fntegratîon

procedures with respect to initial value problems of the first order.

They have derived three farnilies of one parameter formulas. llere, we

shall consider inËegration procedures with respect, to D.E. ts of the second

order.

2. Using Taylorrs Theorem, C1. B) can be expanded as

.,ovn + a, Ir nj""c)l + or- Ir Qt')i 
"rr(')ljI j!

(krL¡ 'i -- (j ) .,

+. +aO [x-Jn r

Jr

= h2 {ßo r" + Br Ix * "rtt*')l 
* c, r, -(^É 

"r,fi*')lJ! J !

+ . + ßk I, (kh)J 
vrrfi*2)1 i

All the ",r**"iiorrs are from 0 to -. (2.1)

Equating the coefficienËs of Ëhe por¡¡ers of Tt2, h3r.., hk*2

we obËain

DEVELOPMENT OF FAÞÍILIES OF ONE PARAHETER FORMULAS

CTIAPTER T.T

1_.2
Tl àr oi=rÞi

1_.3
ãr f,i-q. -[ißi

1 r .4 I _ .2 ^À I þ.4l ^*i 2l r
;l
1 -k+2 t _.k^
G2|! I oi=kJrr6i

Th-is system of k*l equations can he r.¡ritten in matrÍx form

(2"2)



as fol-lows:

01_

o1

-11 -

.1

t

0r|k-

22

4.11 the summations are from i=0 to l=Ic.

If we denote the square matrix by M, tlrc vector of ßrs by B

and the vector on the right hand side of (2.3) by A, rùe can t^rrite

MB=A

The above *iar* is a Vandermonde rnatrix and h-ence it Ís non-

singular and the coefficients ßts are unicuely determined" The ßts

can be obtained either by using the inverse of the maËrix (Parlcer,

J9l) or by using Gaussian elimination.

3. The TruncatÍon Error

(k-1)

tk-l) 2

øoo

o1

o2

Êtu

k2

t1 I i-c^
L"2 .-

. *.3I ¿ ]. G.-2-.3 r-

lL1 X i'a^
3"4r

1-
-t(
N ßk

rr,+k=fuffr(o*r)(*rr)

v¡here R is given by the equation

(k+r¡ (k+2)

If we denote the t.runcation

c2"3)

* .k+2à I o,.
l_

klr
r i ik*3o_.=l- ik+lß.+R (2.5)

@Ttø i=o t i=D I

r¿hich is obtained by equati-ng the coefficients of hk*3 in the e:rpansion

of (2.1) .

The l-ast k equations of (2.2) and Ëhe equation C2.5) form a system

error by Tn+k, r^re get an expression

+ o(nk+4) e"4)
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of k+l equations rritlr- 91, 6-2, a, ßk-,

can be r,¡"ritten in a matrix form

0 k (k-1) "z 1

o k2 0.-1) 
2. zz 1

o k3 Ck-r)3. 23 I

R

o t 
k ck-r)k. 2k 1

I kk+l (k-1)k+1. . ,1c*1 1

as Ëhe

the summations again being from i=0 to i=k.

In solving these equations, Ít is convenient to introduce the

foJ-lowing polynomial in x:

unknor¡ms and these

R

uok

8n-l

I I i3a^
L3 I

L1 f, i'cr^
3.4 I

E

I f, iJq-
4.5 r

ooz

IJ

1

D(x) =

x k (k-1) I

.2 kz ck-1) 1

Using Cramerts Rule an expression for R can be obtained which is

the quotient of tvzo determinants.

The denominator is

1 dlc+1 D (x)
lt.+ÐT A;kFi

r,¡hile th.e numerator is the polynomial D(x) r¿ith thu power *j is replaced

by I t .ri*2o, for j=1, 2r..., k+1.
I]TÐGÐ I

-k+2I à ]. d.
@1Ir
I f ik+3o.GTZt@t r-

xk+1 kk+l (k-1)k+1 I

(2.6)

(2.7)



minator, Ì,¡e have

R=x(x-l)Cx-2)" ".(x-kf = nCx)

J
= *k+1 + boxk + . + brxr wriere Ëh-e power xJ îs

replaced bf 1,- 
- 

f, ij+2oo,
c+1xj+2) À

=f Iik+3o.+btc f,ik*2o^+.".+
Grire+3)lGmFI

bt r. i3o.
L3 I

f.È
=f,a- f f n(x)dxdt

l-óor.Ë

=f, (a* *c--r *. . . +cl.){ 1 6 n(x) dxdt (2.8)-L l-+I K r-.

k
_FT- i - oi-l "i

l-=l-

. where L. = t, 
Ï n (*) di dr

i-1 t.

and_ k
û, = X. 0..t i=1+1 j

After cancelling conmorl facËors: frorn tñ-e numerator and deno-

-13-

4" A Difference Scheme of Order k=4

If r,^¡e consider a difference equation of order k=4, from (1.19)

v¡e have

cr(x) = (x-1)2 v(*) (2.e)

where yCx) is a monic polynomial of degree 2.

ïn order to study Ëhe behaviour of the propa8ated error, let us

consider the initial value problem

Y" = ÀY, Y(a) = h, YtCa) = 11

If we use a corrector formula of type (1.4), we get an error



equation

f, oi "rr+i = n2 À f, 8Í trr+i t rrr+k

wfiere .i i" as given in (1.10).

i.e., x(o, - rl-2rOr) en+l = T,

assuming Trr+k i" a constanË equal to T.

The general solution of (2.L0) is given by the relation

.r, = 41"1t + Ar"r_t + Arsun -l Aoson 
foq

where s, (i=lr2,314) are roots of the equati.on

-1-4-

Norv

and

, (cri - rr2rßr) "i = o.

s, = 1*'ã-r'= "f 
n

s2 = r-YT h= t-'"f= ¡

The oth-er roots s, and s4 are extrarieous and have been introduced be-

cause a second order D.E. is replaced by a fourth order V.E.

For stable methods, we nee-d not know s, and s4 so long as they

have magnitudes less than unity.

Ïlence 
".t 

* o for i=3r4
l-

Therefore, "r, = Al"lt + Arsrn - L_
t 2lte 

.'l

c2. 10)

and

"0=A1 *AZ-)_
h"Àr.ßi

.1 = At"l t ÃZtZ _+_
h-À)Ìß,

If weput "O+î_=EO
h-Àrß.

].



and e, + T = E,rt-z-r
h-Àf,ß._I

we have

Ar*Ar=EO

Arsr*A.rsr=8,

Solving for A, and Ar, we have

À-I.-Ì'o"l- "1 "o"2

"t-%
and A, = EOsr-E,

-15-

Hence "r, = (ur-tng¿) "rt * $t'fl "rt -
"l. - % hzlx8i

Now "O=0 , "1=0

"1-"2

Er-Er.rsn = t 
U

"r - % 2hzÀlßi

E^s' -E. = T

"r - % z:h¿l,tß-

Hence e -T (".t+"^t -l)
"n-;--L¿ nzlrß, -- 2-

= T [ "Ã("rr-"o) + ã ñ("rr-*o) _r1
h1¿ß- L - 

J
]t

- n f¡,ttrtslnce sl = e

r. -/ln1 -v[ (xrr-xo)t2 = e = e

: T { cosh 6,4- (x,.,-x]) - I ]
h-Àr ß i

= .r4- ("rr-*¡) and



This expresston suggests Ëhat e, r¿i1l- be small if Ca) T is smal1

Cb) f ß, is large. For T to 6e small, we need r=o(fuP), P Ëfumaximum

possible. From (1.13) r,¡e have th-e expressions

X Íq. = 0
I

and

x ß_ = 
1 x .,-.2 a

i2^i

-16-

= 2T ' t Cx -xJ--;- sinh - Il v

L'Àr.6. 
-T-

If t3 and rO are the extraneous roots, lve have

o(x) = xo. *i = (*å)2 (x-rr) (x-rO)

^4
0" (1) =f, izai = 2 r. 

^ 
(1-rr)

4 '=t
Hence, Xßi=T^(1-r.)

l-=J

= (product of- the distances of the extrarleous roots

from unity)

To minimize t1te esLi¡ated error r7e I^ranË xß. to be as large as

possible. But f.or sEability r rs must be in or near the uniË circle.

Analogous to the three families considered by Ï1u11 and lìer,zberry

we sha1l also consider here three different one parameter family of

formulas.

For the firsË fanrily, rver+i-11 takerZ=13 = - ". Equation

(2,9) norv becomes

cr (x) = (x-1) 2 
C**") 

2 Q.tt)

5. tl,,Iestr+ard I Family

The family of one parameter formulas v¡e ¡.rí11- derive based on

equation (2.11), \dill be called tl^Iest',¡ardt, analogous to the naming



convention

The

cl

-17-
used by llull and t{ew6err¡I6-J.

cl 
t s are given by tlre vecËor

For

we have

= (h, 01, oZ, o3, oO)

= ("2 , 2c-2c2, "2-4.*L, 2c^2, L)

k=4, using the înverse of lne resulting Vandermond.e. matrÍx,

| -so/24 35124 ^LA/24

o e6/24 -LO4l24 36124

o -72/24 LL4/24 -48/24

0 32/24 - s6/24 28/24

On solving, Bts are given by the vector

g - Go, 81, Bz, 83, B+)

= ¡q (19c2 -Zc-L) , e(204c2+4ac+4) , q (14c2+3BBc+1-4) ,

q(+c2+4Bc +204), Q (19-2c -"2))

where Q=L/240.

o - 6/24

Ll24

_4/24

6124

-4/24

-r/24LL/24

cz"L21

In
1
23
1m
1
4J

I
s3'

2
àl q,-

I

* 6/24

The expression for

^.3àI

-_4àt

_-5LI

1R=4 cl- :à l_-r /
i-1

a=u

,
= (_c') Lo7

B4

,
= (c--1) / Z

Using (2"4), the

ß9

t1a-].

].

C'.
].

=l8z

^.6Àr q,^
I

R

t

0

is given by

ß
Ĵ

84

(2.13)

{x(x-1) (x-2) (x-3) (x-4) } ax ar

+ (.2-2") L4g + (2e-T)
84

truncation error

(2.L4)

L49 +
B4

nor,¡ becomes

I 107
B4



T.E. = 1
24A

C"2-rl

.B CB)rLy

,B CB)ny

.1

{

24A

The differerice equation now is

.2I' n (zc-2e2\yn+l_ * (c2 -4c+t)ïn+2 * C2c-2)yrr*3 * yrr+4

18-
Q)

)Dr

t

'r4 =e- Tr-' f, ß- yt'
i=o "i' n*i

where c is an arbitrar¡ real constant and the ßls are given by

6. rEast-l,lest I Family

2

94s

c#+1

C=-]-

c=t1

In this famîly, we Èake tLe Èr¡ro exËraneous roots aË -c and *c

respectively, so that (2.9) now becomes

o (x) = (x-1)2(**") (x-c)

The ots are gÍven by the vector

c2.15)

c! = (cA, clr, dZ, ar, cl4)

= G"2, 2"2, L-.2 , -2, L)

From the system of equations (2.L3), ßrs are ohtained as

8 = (fu, ß1, ß2, ß3, S+)

= IQ(-l -tg e2), Q(4- 204 .2), Q(14 - r4c2),

Qc2O4 - 4"2), Q("2 + 19)l

where Q = L/240.

The V.E.,
2-cv +,n

(2"L6)

(2.14).

therefore, is

2"2yn+I+ (t-c2) yn+2 - 2ïrr*3 t yrr*4

tt

h2; ß.y"
i=0 r - n-rl

(2.L7)

C2. 18 )

ç,Lg)
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r¡here the ßrs are given bv (2"18).

Th-e truncatton error associaLed rrfttlt tliîs V.B" Î.s

r.E.=-L(c2+r)rJrOl
240

7. rRadialr Family

If k is the order
t

cr (x) = (x-l_)- n

For k=4, this then becomes

a(x) = (x-d6*2+"*+"2¡

From thls equation r'¡e have the a t s given hy

q' = (o0, o1 , dZ, o3, o4)

= ç"2r"-2"2, "2-2"*L, c-2, 1)

The grs are obËained as before, as

g = (5, Ê1, 82, ß3, S-¿)

= [Q(19c2-c-1), 4Q(s1c2+6c+1), zq(lc2+olc*7),

4e(c2+6c+.51), Q (tg-c-c2) l
r^rhereQ=7/240.

of the V.E; for thLs family, we have tÏre

Cx-c e(2ni m) / (k-r)l' 
m=1,2,. ".,k-2

The !.8. then becomes

2)
¿:y *(c-2c-)yrr*, t (c

relation

where gts are given by Q.zJ-).

The truncation error associated with this V.E. is given by

4

- h2 T=o 8i vil* i =

2-z"+L)yn*,

Q.2a)

T.E.=

1.
z¿ro (."-t)

- 22L hB
Zõaeo

- 158 hB -_,

60480

+ (c-2)yrr*3 * yrr+4

0

(2.2L)

.7 0)rLYt

y(B) ,

(B)

cf xL

C= -1

(2.22)

c= *1

(2 "23)



B. Another Family

Anoth-er orre parameter family of formulas of order lc¡4 <leveloped

by UsmanÌ I12), has crrs and Srs given by

cl = (oo, cr1, o2, o3, d4) Q"z4)

= (L, c-2, 2-2c, c-2, L)

and ß - (ß0, 81, ß2, 63, ß,r) Q.25)

= [0(18-c), BQC3c+26) , 2Q(97c.r14),8q(3c+26), Q(18-c)]

wh-ere Q = L/240.

Here, the V"E. is

Yrr*Cc-2)vn+1 * C2-2c)yrr*r+ (c-2) In+3 * yn+4 Q.26)

^4
-ï¿ x B. ytt ... = o.^*i"n*i.a=u

-20-

where ßrs are given bV (2.25) and has a truncation erïor

T.E. =

with2<c<74/3,

3lc-190 h8y(B), cl 190
60,480

-7g h10 y(10), c= 190
585,900 31

31 (2 "27)
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approximate solution of the initial value problem (1.3).

multi-sËep methods of tñ-e predictor-corrector tyoe" For

use the V.E. given by C1.4). I^lÏren onl0 and [oo[+lßrl , o,

k of Ëhe V.-E. is uniquely deËermined. For predictor, r're

ß, = Q.
K

2. Existence and Uniqueness of Sol-utÍon

In Èh-is chapter we shall consider the. prolilem of

CHAPTER, II]-

INITIAL V,ALUE PROBLEMS

Let f(*ry) satisfy the conditions stated earlier. If Ëhe V"E.

(1.4) has a unique soluËion {yr.} rvhere (xrre [a,b]) for arbitrarily chosen

initial values ¡rO, )'1 t ,Yk-, then vre h¿.ve to shot¡ that Ëhe relation

(1.4) considered as an equation to. yrr*k has a unique solution for

arbitrary values o, Irr, ïn*1, , yn*k-'. This is the ca-se if ß-f0,

because Ëhe relation (1.4) represents Yn+k explicitly as a function of

Yn' Yn+l

V.E. of this type. If , on the other l*td Y.'.'+k occurs las an argument

ir f.,-,+k = f (*rr*k, yn+k)l also on the right hand side, C1"4) represents an

equation fot yrr+k, which conceivably might have several solutions or

no soluËion aË all. If a uníque solution exists, t're have to find it"

If r¿e write (1.4) in Èhe form

obtaining

!,Ie use

correcLor r \,'7e

the order of

use (1.4) with

where

v = F(y)

Y = rttl¡'

r(v) = h2 fu y" (xrr*o, r)*c
dlc

C:. r)

ß "2)



r¡here

-22
,

c = 1 { h-Ig.i._fttt*O_,
dk

r¡here y(0) i= a suitable first approximatlon. Tl¡-e fol-lorv-ing theorem

enables us to prove (for sufficiently small values of t¡-) not only the

convergence of th-e sequerr"" {y(u)} to a soluËion of C1.4), but also the

uniqueness of the solution.

Theorem 3.1

An iterative procedure takes the form

"(v+1) 
=¡' (y(u)), v=0,1,2,...

.h

Let Ëhe functÍon Fþ) be defined for -<¡* and le-Ë there exisË

a consËanr K such thar 0 < K <1 anc l¡tvo) - F(y)l . rly*-vl Q.4)

for arbitrary values of y* and y. Then Ëhe following statements hold:

(í) Equatíon (S.f) has a unique solution y.

(ii) For arbitttty y(0) the sequence defined by (3.3) converges

.. +ftt''ol - dt-trn+aJ..¡ooL

to y.

(iii) For v = L,2,... there hold the estimates

l"-r(u) I :- folv(u)-v(v-1) I . *ty(1)-y(0) I

I-I\

If F(y) is defined by (3.2) and if f(x'y) satisfíes a Lipschitz

condition r.rith respecË to y w:ith Lipschitz constant L, Ëhen condition

(3.4) is satisfied with

(3"¡)

and this is less

Proof

K - | n'uu l.r.
%

than

If y and y* are tr,¡o solutions of C3.f¡, then

y = F(y), y* = F(Y*)

1 for all sufficiently small values of h.

(3. s)

(3"6)



hte have

-2j_

Subtractfng the first relatiun from tñe second and using (3"4),

¡,¿hîch- by virtue of ll(l < 1 is, i-urposslble unless y*=f"

Thus, (S.f¡ can have at rnost one solutrton. In order to prove

the exist,ence of a soluËion, sutjtract fron (3.3) ttre relatio., ycu)

= F(yfu-r)t. Then t¿e have

1"(v+1) -r(v)¡ = lnç(v)) -Fg(v-r)¡
Using Ca.4), there follor'¡s

1*(v+1) - 
"(v) 

I . rl"(v) - 
"Cv-l) 

I

Using Èhis estimate repeatedly, there exist the relatÍons

ly(u*u) - 
"cv+u-l) 

I ' *u lr(u) - 
"(v-r-) 

|

and ¡r(u+r) - ,(v) I ' *u l"crl - yco) I , cv,u=l ,2,. ".)
As a consequence, for anv posiËive integer p

I v(u+)-"(v) ¡. ¡r(v+u)-"(v+u-1) lo" . .* 1r(v+1)-r(v) I

< (rpaçu-1+. . .+K) I"(u)-"(v-1) |

.rc lr(1)-.r(o) ¡

1-ir

Given any e>0rt,here exists an integer vO sueh that

rv ¡r(r)-v(o)l .,
1-K

I r*-:rl j- Kly"*yl

for e.11 uruo. The seguence {y(u)1 is thus shor¿n to satisfy tbe Cauchy

criterion for convergence and thus has a finite limit y. Letting v-+-

in (3.3) and using the fact that F(y) is continuous by virtue of its

satisfying a Lipsclultz condition, we get

v = +iE r(u)=+ig'*(v)) = F("t+grcu)) = '(r)
The limit y is thus recognised as being a so1-ution, and in view

(3,7)
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of Ëhe uniqueness al-ready established, tlie..onJ-¡ solutton of Ca.1). TTre.

estimate C3.5) follor¿s by leËting p+f. in (3.7) wh.ile keeping v fÍxed"

3. Co-nvergence of a V.E. of Order k

Althouglr- (1.4) represents an implicit equaËion for )" +k Ìf SUlo,

it follo¡vs by theorern 3.1 that if the function f Cxry) satisfies a LÌps-

ch:itz condition r,,¡ith- Lipschitz constant L,(1.4) has a unique solutîon

y ., for all values of h- satisfying- n+l<

For all values of h satisfying Ca.B), the values Tr(m=krk+lr...)

uray thus be regarded as unÍquely determined functions of the starËing

val-ues Ygr 11 Yt-t, rn'hictl in turn are functions of h:

'lþ1"'

y., = rL,.Ch)r u = 0r1r....IJ 
F

tr7e expect that the values

the exact solution at the point x

values are properly chosen.

Definition of Convergence

The linear multí-step defined by (1.4) is called

the following staËement is true for all functions f (xry)

conditions given earlier and all constantsrr and n1:

If y (x) denote the solution of the in-itial value

then

' 
k-l.

v thus'rt
as Ir+0

1im.
bfl0
n+@

such that nh

{v } defined., n,

generated tend to the value of

provided that the starËing

('g. s)

rr, = Y Cxrr)

+ (x -a)n

by (1.4)

and holds for all xr.

r¿ith starting values

convergent

satisfying

(3,9)

e [arb] and for all sequences

y = n (h) satisfying the Ëwo
FF

if

the

problem Cl"3),



condiËions

and

1im
fL+o

The sufficient, but noË nece-ssary condition, in order that C3.10)

and C3.11) are satisfied, is that the starting values are exact, iì.e",

Yo=l(x*)

Convergence: CondÍtîon of StaÊility

n.(h) = Ir þ=or1¡o""rk-lg

*uCrrt-nóCn). = t1, l1=Lr2r...,k-1- "

pñ-
lirnfl+o

^25^

Let polynomials

Theorem 3.2

A necessary condiËion for the convergence of tlp linear multÍ-

sËep method defined by (1.4) is thar the modulus of no root of the

polynomial q(x) exceed 1 and that the multipliciry of rhe roors of

modulus 1 be at most 2.

For a proof of the above Ëheorem, see ll.enrici ([4], p. 301).

The condition thus irnposed on the roots of o (x) ís the condition

of stability and this condition guarantees that s¡rall initial disËurbances

are not unduly amplified.

Converqence: Condition of Consistency

Cl.17) are associated with the V.E. Cl.4).

C3. 10)

c3.11)

The conclition of consistency ensure.s th.at the V.Ë. is locally

a good approximation to Ëhe D.E.

Iheorem 9._3

The degree of a convergent linear multi-step method is at least 1"

For proof of this theorem, see Henrici C[4], p. 301-303)"

Nov¡ we shal1 discuss some stable and consistent formulas (both

explícit and implicit) fox k=\ 3 and 4. The explicit V.E. will- be



k k-1t
l_^oir.*i=f, ß-ry"rr+r (n=0r1r2r..,) (3.L2)
t=o rrrr i=o Å

4. V. E. of Order I¿=2

The explicit !.E. of order k=2 is of the forrn

rrr-2yrr+1 *rrr+2=#yttrr+1 (3.r3)

Tfuis formula has a truncation error given 6y
L (4)

T.E. = t h'y'
L2

^26*

The implicit V.E. of order k=2 turns out to be

yr, - 2ïrr+1 * ïrr+2 = 
* 

b"r, * 10 y"n*l t y"rr+2) (3.14)

which has a truncation error

T.E.=-1 h6y(6)
240

Ecluation (3.13) can be usecl as a predictor and (3.14) as a

corrector

5. V.E_. of Ílrd.er k=3

when Ic=3, a one parameter farnily of v.E. ts can be obtained

involving a real arbitrary constant c.

Consider an equation of the form

a (x) = (*:f(x+c)

The o,rs are then given by the vector

0 = (o0, o1 , a2, a3)

= Cc, L-2c, c-2, 1)

Using a system of equations similar to (2.L3) when k=3, the Srs

are obtained as

ß - (ß0, ß1, ß2, ßg)
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= fc/L2, C10 c+L)/L2, Cc_h1.0) l,Iz, Llr2l
The þrs are given by th-e vector

È = (ä0, ä1, ir)
= [ (c+1)/12, Cr1c_Z) /L2, Cc+13]/12-l

TIie explicit V.E. of order k=3 îs then r,¡ritten as

" yrr* (1-2c)yn+1 * (c-2)yr*Z + yrr+:

t-t (c-*)yrrrr+ c'0c-2)r',rr+r+ (c+r3)y,,rr+2 1= 0 (3.15)

Ths truncation eïror associated with this V.E. is
T.E.=r n5"Cs)

72

The iurplicit V.E. of order k=3 is given by

. Yr, * (l-2c)yrr*, + (c-2)yn+2 * yn+3

t-t " y"rr* (1-0cfl)y,rn+1 * (c*10)v'rr*2*y,,rr+3 I =0 (3.16)

rr¡hich has a truncation error

r.E. = 
[ ]ç* h6 ],(6) , c*-L

t-'
| - r t7 ,(17, c=-1
L 240

6 , V. E. I s of orcler k=4

(i) First røe shall consider the fh'estwardr family. For Ëhe

explicit v.E., the a's are given by (2.12) ancl trt" ärs are given by the

vector

ä = (ã0, il ,lr, är) ( 3.L7>

= I Q("2-r), o(10c2+2c+4), e("2+20c-5), Q(2c-14) l
wlrere Q=L/IZ.

The V.E. for the predictor can then be written as
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2 2 -?

"-t' n (2c-2c'\yn+1 * Cc--4c+1)-Xn+2 t C2c-2)yrrn: + y;++ C3.fB)

3
-n2 z ä. v".. = o

i=O a 'n+l-

where fit" ".. given by C3.17) and this e.o.uation has a truncatiorl error

associated r¡ith it given by

T.E. = I h6 (r9^2c^c2)"C6)
T4o

The inplicît V.E. for the corrector vrill be tle equaÈÌon (2.16).

Cii¡ For the lEast-I^iestr family, the cl,ts are given by (2.L7)

and ttr-e 'à t 

" "t. given by

ä = Go, Èr, 'àr, "ðr) (3.19)

= I QGt-.2), Q(4-10c'), Q(-t-.2¡, t4 q ¡

r,zhere Q = 7/LZ,

Tlr-e explicit V.E. then becomes

-"2y +2.2yn+1 * (l-"2)yrr+ 
z^2yn+3 * yr,*4 (3.20)

t
tJ .ì,

- h-x ß. Y".. - o
j-=C r - n+l-

where ät" "t" 
given by (3.19) and the truncaËíon error associated wÍth

tLís equation is

T.E. = t (c2+t9) h6 y(6)
240

For the corrector, the V"E. will be (2.L9),

(iii) For the third family, i.e", tRadialr, the o,rs are given by

(2.20) ancl the 'à ,r""aor i"

Ë = (bo, 3r, 3r, ?r) ß.zt)
= [ Q(.2-r), Q(10c2+c*4), 0(c2+1oc-5), Q(c+14) ]

where Q=Ll7Z.



The V.E.

2c\¡ +

^29-

for the. predictor ls
tt

Cc-2c-)¡rrr*r_ * Cc--2ct1)y n, + (c-2-)yn+3 t yr,+4

ruith þls given by C3.21) ancl this eguation has a truncation error

r.E. = I (19-c'-"2¡ 6C0) 
"C0)m

The implicit !.E. is given by (2,22).

Civ) For the fourth family v¡e outlined in cinapter 2, the ats

are given by (2.24) arrd. th. äts by the vecror
N-tutututu
ß - (ß0, ß1, ß2, ß¡)

= I 0, 1 Cc+14), 1 (1Oc-4), 1 (c+14) l
L2 L2 L2

The explicit V.E. ttlen is given by

Yr, * Cc*2)trr*, + (2-2c)yn+2 * (c-2)yn+g + X.r+4

J3 ^.- h" f, È. v". = Q

i=0 l- - n+l-

3

-nzt, ã. v".. = o' l- 'n+r
I={J

with äts given

V.E. is

T. E.

c3.22)

by C3.23). The truncatíon error associated rvith this

= I (18-c) h(6) y(6) '
240

For the corrector r^¡e have the V.E. (2.26).

Error Bound for the rlfestr^¡ardr family of Order k=lr7.

The error equation associated with V.E. (2.L6)

where

4 ,4
X cr. e ,. = 1n'f ß.
i=o r n-rt i=o t

s.e. - f (x., y(x.) ) --ll_tl

(3 " 23)

(3 "?.4)

o ò +'f'-n*i "n*i -n*4

f (x., v-)l -r

IS

ß.2s)
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so that g. is âf evaluated at a point betr¿een Cxr,lCxr) )- and Cxrr}nr).-r 
ay

For the derivation of a

lemmas:

r,et a(6) and 6Cç) be the

1, 1, 61, Ç, be the rooËs of a Ce ) .
t

=0Cl)=0,0"(1)=2gcl).
Leinm-a 3.1

If
uO * arr,

then Ëlrcre exist two

ttlrnl < ør

For a proof

In the case

l=1 and y=1 for c=1.

Lemrna 3. 2 (i)

bound ott l"rrt we will need the follor,ring

polynomials gíven

Then!;.1<lfor
't-

+ orÇ2+o1ç3+doe4

constants f and y (non-negative) such that

*T, 1, = 0r1 ,2r..

of this lemma, see H-enrici [4, p " 3L2].

of the rl7estrvardr famÍly, (3.27 ) is true when

If Tg (&=0,L,2, . . ) are given by (3.27), then

o4y.ro3y.q,_r+ s2ts_2tuly¿_3+o üs._h = 
{å; t;B

Proof

by C1"17). Let

Í > 3. Also, cr(l)

= Tc + yt6 + trÇ2 +.,.,

The proof follorvs frorn the relation

| = (oo+crrÇ+u 
re2+ore3+onra) $ +-r 

r.e+-v re'*. . . ) .

.Ìfe assume yf,= f or 1,< 0.

l-emma 3. 2 (ii)

Proof

rr A = l"ol+lo,rl+lorl+lorl+loo I v,ith

From lemma (3.1), s4 T0 = I or 1O = 1

(3.26)

(3 "27)

dt.=L, then yA>l.
1-

sLn-ce o4 = 1'



Also A >1. Using relation C3.27) for ,Q,=0, we Tiave

., =1Y0=t<0'f+1
r¿hich ÍmplÍes that

1>1. ThereforerAT>1.

Lemma 3.3

Let {x-^} be a sequence of numbers (n = 0, 1r..., N) thatn

satisfy the following inequality

l*l.s,n-l l*l+s,--n ,_ - I fr=¡ '-h, - 2

-31 -

wh-ere S, and S, are certain non-nsg¿¡ive constants independent of n

and

l"rrl f s2 Cn=O,1,...,M), ¡f<II

Ttren l"rrl < s, (1+s1)n, (n=0,1,...,N)

For a proof of this lemma, see Usmani 1151.

Theorem 3.4

Let {e_} saËisf;r the error equation (3.25) ancl lern

o = Tgö, !,2,3 {1".1)

rnen lerrl .. K'i- Ð(p { ,, h2to} , (3.28)

r,¡here

r.n = I4Au (nr+a ¡+ nzcr+z *r*, (* x+nr) J / fi-nz g 
oq , ß.2g)

i;
Ll = tBL(Nr+a)l /{r-brzg^r¡

{ = lool+lorl+lorl+lorl+loal, s=lßol*lerl*lßzl+lsg¡+leal,

M- = max lù I for x, [x.,xrrl , the range of integrationr- l-i
dx

and C. are given by (1.13).
].



Proof

If n is replaced E-y n-g=/¡ irr the- error equation C3,25), r,re have

oo "rr-'c-4 
t o'ltr-g-3 +" '+ o4",r-&

= * [ßo9rr-ø-4 tr-&-4 * ß18rr-¿-3 Çrr-g-3t" "* ß48rr-.Q, t,--g*Trr-g (3'30)

Mulriply (3.30) U" ,r, (.9,= 0,1,...,n-4). on adding rhe rerms on

tñe left hand side, we have

sum on l.tr.s. = ïgd4en * 
{=o 

0.., C3.31)

where

-32-

Other terms on the left hand side vanish in view of Lemma (Z.Z(L)) 
"

sum onr "h.s. - n2roeoe,r. + h2 
i=r^rer.t 

.;=i ysrr,-r,, (3.33)

i
V=F^/Yi - lj-.., Ttt-4-¡ oi-.i

J-u

i
where A. = f, r, ß.r " .Q 'n-4-J ' r--J

J=

From (3.31) and C3.33), rve have
3 2 ,n-L n-4

e =- I V ?+h-ß¿grrerr*h-X A*g,-e**I r-n t=o 
't t -- "4-n n t=C "t"t Ë [=0 | g. "n-9,

3 ^ n-l n-4
i.e., l.r,l =l=o I v.o.l + trzror lrr,l + r,2lf_ l ^r"rl 

*l=o lvul.lto-ul

r.¡here L is the Lipschitz constanË.

G-n2s^r) l."l: ,t_o lv.",r'. "";=. l¡r..' .;=: lrul.lr"-¿l (3"3s)

Now, Itil . ihP*2 cp+2[p+2

(3 "32)

(3.34)



From (3.32), we have

I vi I . A. max. of lr*l used

or lVi I . A. (nt+y)

Siurilarly,

lAi I . B. (nr+1)

a1so,

r'-4 ,
x v-. <n'f f n,y' 11i=0 2

From (3.33), it follor^rs

-JJ-

(r-r,2ear) l"r,l ' 4A(nFv)r+h2i.s(nrt) j=. 
'"r,

r t-l
. h2sr.("r--t)r;" l"ul ++eu(nr\)+rrp*2"r*2rp*rÇ r**) (3.36)

n-1
l. l.to t2 I l."l +K""'n [=0 v.

+ hP+2 cp,+2 rrp+2i-1 

't, 
f

l=0

Since

A"¡ > 1, by using lemma 3.2(ii) E < I(*

Using lemma (3.3), from equation (3.36) we have

| . l.ro (1+h2r,")t
' n o':k - -q J:

.K* ç"h2t-irtt, using rhe inequaliry l+h21,'k . "n'"
-r- ô -r-

j5" "*p {ntr'i.'- }

This completes the proof.


































































































