

OPTIMIZING THE FLEXIBLE JOB-SHOP SCHEDULING

PROBLEM USING HYBRIDIZED GENETIC ALGORITHMS

by

Nasr H. Al-Hinai

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical and Manufacturing Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2011 by Nasr Al-Hinai

 ii

Abstract

Flexible job-shop scheduling problem (FJSP) is a generalization of the classical job-shop

scheduling problem (JSP). It takes shape when alternative production routing is allowed

in the classical job-shop. However, production scheduling becomes very complex as the

number of jobs, operations, parts and machines increases. Until recently, scheduling

problems were studied assuming that all of the problem parameters are known

beforehand. However, such assumption does not reflect the reality as accidents and

unforeseen incidents happen in real manufacturing systems. Thus, an optimal schedule

that is produced based on deterministic measures may result in a degraded system

performance when released to the job-shop. For this reason more emphasis is put towards

producing schedules that can handle uncertainties caused by random disruptions. The

current research work addresses solving the deterministic FJSP using evolutionary

algorithm and then modifying that method so that robust and/or stable schedules for the

FJSP with the presence of disruptions are obtained.

Evolutionary computation is used to develop a hybridized genetic algorithm (hGA)

specifically designed for the deterministic FJSP. Its performance is evaluated by

comparison to performances of previous approaches with the aid of an extensive

computational study on 184 benchmark problems with the objective of minimizing the

makespan.

After that, the previously developed hGA is modified to find schedules that are quality

robust and/or stable in face of random machine breakdowns. Consequently, a two-stage

hGA is proposed to generate the predictive schedule. Furthermore, the effectiveness of

 iii

the proposed method is compared against three other methods; two are taken from

literature and the third is a combination of the former two methods.

Subsequently, the hGA is modified to consider FJSP when processing times of some

operations are represented by or subjected to small-to-medium uncertainty. The work

compares two genetic approaches to obtain predictive schedule, an approach based on

expected processing times and an approach based on sampling technique. To determine

the performance of the predictive schedules obtained by both approaches with respect to

two types of robustness, an experimental study and Analysis of Variance (ANOVA) are

conducted on a number of benchmark problems.

 iv

Acknowledgment

In writing this thesis I have made much use of the work of a generation of scientists,

researchers, and engineers. To all those to whose work I have made reference I am

greatly beholden. I am particularly indebted to those sessions of discussions filled with

guidance, support, patience and encouragement with my supervisor, Dr. Tarek

ElMekkawy, without which this work would not be possible. I would also like to

acknowledge Dr. Youssef Loukili and Mr. Fouad Alallah for their great help and valuable

advice in writing the C++ code used in this work. I extend my gratitude to Dr. Qingjin

Peng and Dr. Jun Cai, my advisory committee members, as well as Dr. Tariq Gulam for

their revisions and valuable suggestions. Also, I would like to express my great

appreciation to Sultan Qaboos University (SQU) for giving me this chance to continuing

my PhD study at the University of Manitoba (U of M) and providing me with the

financial assistance throughout these years.

 v

To my respectful Father, my caring Mother,

my compassionate Wife,

and my lovely Daughters.

 vi

Table of Contents

 Page

List of Tables x

List of Figures xi

Acronyms xii

CHAPTER 1: INTRODUCTION 1

1.1 Background.. 1

 1.1.1 The flexible job-shop scheduling problem.. 3

1.2 Optimization of Scheduling Problems... 5

 1.2.1 Performance modeling tools………………………..............……..…. 6

 1.2.2 Comparison of analytical, simulation and meta-heuristic approaches.. 7

 1.2.3 An overview of genetic algorithms…………………………………... 9

 1.3 Motivation and Thesis Research Objectives…………………..........………. 11

1.4 List of Publications…………………………………………………..…….. 14

1.5 Thesis Outline…………………………………………………………..….. 15

 vii

CHAPTER 2: AN EFFICIENT HYBRIDIZED GENETIC ALGORITHM

 ARCHITECTURE FOR THE FLEXIBLE JOB SHOP

 SCHEDULING PROBLEM 17

2.1 Introduction……………...………………………………………………... 17

 2.2 Problem Definition……....………………………………………………... 19

2.3 Literature Review... 20

2.4 GA Structure ………………………………………..……………............. 23

 2.4.1 Chromosome coding... 23

 2.4.2 Chromosome decoding... 25

 2.4.3 Initial population... 27

 2.4.4 Selection.. 31

 2.4.5 Genetic operators.. 33

 2.4.5.1 Crossover operator... 34

 2.4.5.2 Mutation operator... 35

 2.4.6 Local search.. 37

 2.4.7 Elitism strategy... 42

2.5 Computational Results... 43

2.6 Conclusion...………………………………………….................................. 53

 viii

CHAPTER 3: ROBUST AND STABLE FLEXIBLE JOB-SHOP

 SCHEDULING WITH RANDOM MACHINE

 BREAKDOWNS USING A HYBRIDIZED

 GENETIC ALGORITHM

55

3.1 Introduction………….. 56

3.2 Literature Review………………….……………………………………… 58

3.3 Problem Definition………………...……………………………………… 65

3.4 Scheduling with Machine Breakdown Disruptions..……………...……… 66

 3.4.1 Robustness and Stability for FJSPs…………………………………. 66

 3.4.2 Proposed approach………………………………………………….. 68

 3.4.3 Generating machine breakdown…………………………………….. 71

 3.4.4 Framework of the two-stage hGA…….…………………………….. 74

 3.4.4.1 Shared two-stage elements….…………………………….. 78

3.5 Benchmark Problems……………………………………………...……… 80

 3.5.1 Computational results…………………………………………..…... 80

 3.5.1.1 Analysis of robustness and stability measures……….….... 82

 3.5.1.2 Predictive schedules performance……………...……….... 86

 3.5.1.3 Overview of the proposed bi-objective approach……….... 93

3.6 Conclusion………………………...……………………………………… 96

 ix

CHAPTER 4: ROBUST SCHEDULING OF FLEXIBLE JOB-SHOP

 WITH PROCESSING TIME UNCERTAINTY:

 A COMPARISON STUDY

97

4.1 Introduction………………...……………………………………...……… 97

4.2 Literature Review……..…………………………………………...……… 99

4.3 Problem Description…………….………………………………...……… 103

4.4 Hybridized Genetic Algorithm for the FJSP…...…..……………...……… 104

 4.4.1 Deterministic hGA for the FJSP………………………………..…... 105

 4.4.2 Modified hGA for the FJSP…...………………………………..…... 107

4.5 Analysis and Results…………………………...…..……………...……… 109

 4.5.1 hGA parameters………………….……………………………..…... 111

 4.5.2 Analysis of robustness measures………………………………..…... 112

 4.5.3 Computational results…………………………………………..…... 117

4.6 Conclusion…………...………………………...…..……………...……… 121

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 122

5.1 Conclusions and Contributions………………...…..……………...……… 122

5.2 Future Work……….....………………………...…..……………...……… 124

REFERENCES 126

 x

List of Tables

 Page

Table 2.1: Processing times for a FJSP with 3 jobs and 3 machines 25

Table 2.2: d value and population size used in test sets 45

Table 2.3: Comparison with other meta-heuristics on KMData 47

Table 2.4: Comparison with other meta-heuristics on BRData 49

Table 2.5: Comparison with algorithms proposed by Zribi et al. (2007); Girish

 and Jawahar (2009); Pezzella et al. (2008); and Gao et al. (2008) on

 BRData

52

Table 2.6: Mean relative error over the best-known lower bound 53

Table 3.1: Breakdown combinations 74

Table 3.2: ANOVA results concerning RQULT 84

Table 3.3: Computational results of instances subjected to breakdown type BD1

 and BD2

89

Table 3.4: Computational results of instances subjected to breakdown type BD3

 and BD4

90

Table 3.5: One-way ANOVA results concerning AMSRI and ASTBI of the

 proposed method

93

Table 4.1: Different processing time variation’s combinations 110

Table 4.2: Computational results – deviation of schedules when subjected to

random uniform processing time variations

119

Table 4.3: ANOVA results concerning RE, ݁ݒܣ. ݏܾܣ and Ave. RDev 120 ,∆ܵܯܴ

 xi

List of Figures

 Page

Figure 1.1: An example of Gantt-chart 4

Figure 2.1: (a) Chromosome coding (b) Alternative routing 24

Figure 2.2: A few steps of the Ini-PopGen algorithm 31

Figure 2.3: POX example 34

Figure 2.4: (a) Sample procedure of MBM (b) Sample procedure of modified

 PBM.

37

Figure 2.5: Gantt-charts of three neighborhoods 40

Figure 2.6: Diagram of Gantt-chart for the production scheduling of Ex5 48

Figure 3.1: Example of schedule robustness and stability. For the breakdown

 specified by triangles, schedule (b) is more robust and stable than

 schedule (a)

70

Figure 3.2: Flow chart of the two-stage hGA 77

Figure 3.3: Significant interaction effects of factors on RQULT 85

Figure 3.4: Significant interaction effects between different measures and BD

 type on RQULT

86

Figure 3.5: Main effects of BD type on: a) AMSRI, b) ASTBI 91

Figure 4.1: Two schedules illustrating the difference between quality robustness

and solution robustness

117

 xii

Acronyms

AC Ant Colony

.݁ݒܣ Average Absolute Relative Makespan Deviation ∆ܵܯܴ ݏܾܣ

.݁ݒܣ Average Relative Deviation ݒ݁ܦܴ

AGV Automated Guided Vehicle

AMSRI Average Realized Makespan Improvement Percentage

ANOVA Analysis of Variance

ASTBI Average Stability Improvement Percentage

BD Breakdown Type

CDR-PopGen Composite Dispatching Rules Population Generation

CIM Computer Integrated Manufacturing

CNC Computer Numerically Controlled machines

DMS Makespan of Schedules Obtained Using Deterministic Method

DSTB Stability of Schedules Obtained Using Deterministic Method

DT Disturbance Type

FJS Flexible Job-shop

FJSP Flexible Job-shop Scheduling Problem

FMS Flexible Manufacturing System

GA Genetic Algorithm

GENACE Cultural Evolution Genetic Algorithm

hGA Hybridized Genetic Algorithm

IT Information Technology

Ini-PopGen Initial Population Generation

 xiii

JIT Just-in-Time

JSP Job-shop Scheduling Problem

JSSANT Job-Shop Scheduling Using Ant Colony

JSSGA Job-Shop Scheduling Using Genetic Algorithm

LB Lower Bound

LEGA LEarnable Genetic Architecture

LS Local Search

MBT Machine Busy Time

MBM Machine Based Mutation

MRP I Material Requirement Planning

MRP II Manufacturing Resource Planning

MS Makespan

Pc Crossover Probability

Pm Mutation Probability

P-FJSP Partial Flexible Job-Shop Scheduling Problem

PBM Position Based Mutation

POX Precedence Preserving Order-Based Crossover

RE Relative Error

RMS Makespan of Schedules Obtained Using Robust Method

RQULT Relative Solution Quality Measure

RSTB Stability of Schedules Obtained Using Robust Method

SA Simulated Annealing

T-FJSP Total Flexible Job-Shop Scheduling Problem

 xiv

TS Tabu Search

TSP Travelling Salesman Problem

tot_noper Total Number of Operations

 1

CHAPTER 1

INTRODUCTION

1.1 Background

The main driving factors to improve the performance of manufacturing systems are the

continuous changing demands of customers and the need to deliver better quality and

low-priced products. To achieve these requirements the manufacturing system has to

have flexibility that enables it to quickly respond to this changing environment.

During the past three decades, manufacturing systems have gone through tremendous

changes by introducing and implementing different managerial concepts and tools that

controls the production procedure related to mass production or mass customization

production such as Just-in-Time (JIT), Kanban, Material Requirement Planning (MRP I),

Manufacturing Resource Planning (MRP II), etc, as well as coordinating the

communications between different levels of the organization or factory using information

technology (IT). Using IT tools, the computer integrated manufacturing (CIM) concept

attempted to integrate all activities within a manufacturing facility. The CIM concept was

expected (at its early stages in 1980s and early 1990s) to be able to deliver the best

solution for all the manufacturing problems. However, CIM implementations resulted in

rigid centralized systems that are incapable to deliver the expected flexibility in response

to changes of any nature (Babiceanu and Chen, 2006). For that reason, the conventional

centralized manufacturing systems with their traditional planning, scheduling and control

mechanism are concluded to be insufficiently flexible to respond to restructuring the

manufacturing system production style caused by the highly dynamic nature of

 2

customers’ demands and global competition. Hence, the need for a new manufacturing

paradigm has become more demanding than ever.

As a result, advanced equipment like Computer Numerically Controlled machines

(CNC), Automated Guided Vehicles (AGV), and material handling systems like robots

were integrated with computers and assimilated within a manufacturing system forming

what is called Flexible Manufacturing System (FMS). These systems provided a balance

between mass production, capacity, and high flexibility, wide variety. Consequently,

FMSs have better adaptability to variable production plans and goals as well as producing

a higher quality and wider variety of products, with minimal machines’ setups.

However, FMS usually exhibit a high degree of resource sharing. Thus, a number of

challenges related to the constraints of different jobs’ processing plans, machines and

other resources availability during the scheduling horizon were raised. Among them is

the scheduling task, which is concerned with allocating a number of tasks to limited

resources in order to optimize a certain performance criteria. Depending on the problem

size, represented by the number of tasks and resources, the scheduling task may turn out

to be the most time consuming and challenging activity within an enterprise. Therefore,

the performance of an FMS not properly supported by an efficient scheduling may be

significantly limited and the advantages derived from its flexibility may suffer a sharp

decrease. For example, an inefficient scheduling results in poor utilization of resources,

over-loaded/idle capacity, long production lead time and unreliable due date

commitments, which in turn increases production costs and reduces competitiveness in

the market place. Furthermore, ineffective scheduling often delays orders and results in

unsatisfied customers and may subject the firm to penalties.

 3

1.1.1 The flexible job-shop scheduling problem

Since flexible job-shops (FJS) provide great flexibility on the shop floor and the

efficiency of large volume production, the production scheduling and control in FJS

becomes very complex as the number of jobs, operations, parts and machines increases.

Setting different processes in a FJS is subjected to various constraints such as processing

time of an operation, capacity, tooling and processing sequence (sometimes called the

technological constraints). In those systems, each entity has to share efficiently the

available resources in order to optimize the tasks scheduling. The tasks scheduling

consist of defining a schedule that can meet all timing and logical constraints of the jobs’

operations, and in general, it has been classified as an NP-hard problem. In literature, this

scheduling problem is called the flexible job-shop scheduling problem (FJSP).

In order to visualize a final schedule, A Gantt-chart is usually used. Figure 1.1 shows an

example of a Gantt-chart describing a schedule for an FJS consisting of four jobs and

three machines. In the Gantt-chart, each row represents a machine whereas boxes

represent operations. These boxes are tagged with two-digit numbers. The first digit

refers to the job number and the second digit refers to the operation’s number of that job.

The time-axis shows the timetabling information of each operation.

The objective of the scheduling task is to optimize a certain criterion1. This criterion is

usually referred to as the performance measure. Number of time-based performance

measures exist in literature. These measures are:

 Makespan: the objective is to minimize the maximum completion time of the

schedule.

1 More in depth definitions are given in Section 1.2

 4

 Mean flow time: the objective is to minimize the average time spent by a job in

the system. Flow time is defined as the elapsed time since the job is ready to be

processed until it has finished

 Total tardiness: the objective is to minimize the summed lateness of all jobs in the

system. Lateness is defined as how much later a job has finished after its deadline.

 Total earliness: the objective is to minimize the summed earliness of all jobs in

the system. Earliness is defined as how much earlier a job has finished before its

deadline.

At this stage, it is worth pointing out that schedules are divided into two classes, feasible

schedule and unfeasible schedules. The unfeasible schedules are those schedules that

violates some or all of the timing and technological constraints. Feasible schedules are

categorized in the following classes (French, 1982; and Pinedo, 2002):

Figure 1.1: An example of Gantt-chart.

M3

M2

M1

22 11

31

21 32 12

13

8

41

42

time 4

 5

1- Semi-active schedule wherein no operation can be started earlier without

changing the process order or violating the technological constraints.

2- Active schedule wherein no operation can be started earlier without delaying at

least one other operation or violating the technological constraints.

3- Non-delay schedule wherein no machine is kept idle if an operation is ready to be

processed.

French (1982) and Pinedo (2002) demonstrated that the set of non-delay schedules is a

sub-set of the active schedules which is a sub-set of the semi-active schedules. They also

verified that for regular performance measures2 an optimal solution schedule exists

within the set of active schedules.

1.2 Optimization of Scheduling Problems

Before going further in describing modeling tools and methods used in FJSP optimization

problems, the word optimization and other related definitions in scheduling have to be

introduced. An optimization problem is the task of minimizing or maximizing an

objective function under a set of constraints. Many researchers classified scheduling

optimization problems as combinatorial problems, which in the simplest case mean that

some or all of the decision variables take only discrete values. For a given optimization

problem, an assignment of values to the variables such that all constraint equations hold

is called feasible solution. The value of the objective function for a given variable

assignment is called the objective value. A solution for which it is not possible to find

another solution with a better objective value is called optimal. Therefore, for an

2 Regular performance measures are measures that can never be increased by finishing an operation earlier
(French, 1982).

 6

optimization problem, the solution with respect to the objective function does not imply

best, but it is a value that is connected to the constraints.

A solution method or algorithm for an optimization problem is well-defined procedure

for finding a feasible solution (as good as possible) to the problem. If the method

guarantees to find an optimal solution for any problem given enough computing time and

memory, then the method is called exact, otherwise it is called approximate or heuristic.

1.2.1 Performance modeling tools

Modeling and performance evaluation play vital role in the planning, design, and

operation of an FMS. This is because of the fact that a decision making is involved in

various stages of planning, design, and operation. The role of performance modeling is to

aid this decision making in effective way. The high cost of FMS development motivates

the need for modeling and analysis. It is critical that one be able to determine accurate

estimates for system performance of a given system design or reconfiguration before

implementation.

During the operation phase of an FMS, performance modeling can help in making

decisions related to finding the best routes in the event of breakdowns, predicting the

effect of adding or withdrawing resources and parts, obtaining optimal schedules in the

event of machine failures, uncertainty of processing times of operations or sudden

changes in part mix or demands, and in avoiding unusable situation, such as deadlocks

(Wang, 1998).

Performance of the system can be evaluated at different levels of flexibility to enable

managers to set the amount of flexibility in order to get a reasonable performance. In the

 7

literature, a variety of approaches have been proposed to study FMS problems at the

different levels. General classifications of these approaches are analytical, simulation,

heuristic, and meta-heuristic approaches.

1.2.2 Comparison of analytical, simulation, and meta-heuristic

approaches

Several mathematical techniques are reported for scheduling project activities.

Unfortunately, the mathematical formulations are extremely cumbersome because of the

complexity inherent in large projects. One difficulty that most mathematical scheduling

method encountered is the high computational complexity involved in finding an

optimum solution, especially in systems with high processing flexibility. This is because

high processing flexibility implies that there exist a large number of alternative solutions.

Consequently the search space of these problems tends to be very large (Chen and Luh,

1993; and Reddy et al., 2001).

Recently, there has been an increased interest in the use of simulation for real-time

planning, scheduling, and control. Traditionally, simulation has been applied to long-term

planning and design of manufacturing systems. The use of simulation has appeared

favorable to purely analytical methods which often fail to capture complex interactions of

a particular FMS (Wu and Wysk, 1989). Applying simulation as a real-time tool requires

insight into the responsibilities of the simulation model and its role within the FMS.

In the case of simulation techniques, a system’s model is generated based on assumptions

and observations. It is defined as the representation of the dynamic behavior of the

modeled system. It can capture the most details of the manufacturing systems and can be

 8

built as accurate as one desire, limited only by cost and time. However, for complex

systems simulation run can be lengthy and expensive, hence preventing the analyst from

trying wide range of parameters values. Moreover, the model validation will become

quite difficult.

It is clear from what stated above that scheduling is one of the most important issues in

the operations of FJSP. However, scheduling problems are known to be NP-hard

combinatorial problems. That is, the optimal schedule for a large system is hard to obtain

within reasonable computation time and time grows exponentially with the problem size.

Hence, a practical approach to scheduling is through the application of heuristics. The

heuristics solve complex problems by reducing the number of evaluations and obtaining

solutions within reasonable time, but it is difficult to evaluate the performance of the

schedules (Chen and Jeng, 1995; and Reddy et al., 2001). Furthermore, heuristics, which

can be efficient for some problem instances do not have a guaranteed distance from the

optimal solution.

All the above-mentioned factors and alternative methods make performing the scheduling

optimization for a FJS a complex task. Hence, the need arises for more powerful search

techniques. Recently, using a high-level strategy to guide other heuristics, better known

as meta-heuristics, led to better and more appreciated results in a relatively short period.

A number of meta-heuristics were proposed in literature for the past few decades to deal

with FJSP such as simulated annealing (SA), tabu search (TS) and genetic algorithm

(GA).

 9

1.2.3 An overview of genetic algorithms

The concept of GA is an abstraction of the process of information transfer in natural

organisms through a sequence of genes called chromosome. The success of this transfer

of information allows a certain organism to excel above other competing organisms and

survive. Thus, those organisms that survive have the opportunity to reproduce. This

allows dominate characteristics to survive. This survival process can be very instrumental

in the development of techniques for solving combinatorial optimization problems such

as job-shop scheduling (Gilkinson et al., 1995; Chiu and Fu, 1997).

The main advantage of using GA in scheduling problems is its ability to find optimal or

near-optimal scheduling solutions in a relatively short period of time. Therefore, genetic

algorithms have gained an increasing popularity as a search tool used for global

optimization in a complex search space. The assumption underlying the use of GA’s for

scheduling is that the optimal solution will be found in the neighborhood of good

solutions. In general, GA consists of:

1. A chromosome representation of the nodes in the search space.

2. A set of simple operations that takes the current population into consideration and

generates the successive imposed population.

3. A fitness function to evaluate the search nodes which represent the chosen

performance measure.

4. A set of stochastic assignments to control the genetic operations.

The first and very important step in a successful implementation of GA is the selection of

string format or formally, the chromosome encoding or representation. Holland (1975) as

 10

well as early researchers used binary digits to represent a chromosome. While this kind of

representation has its advantages, sometimes it is meaningless to be used in many

problems such as the travelling salesman problem (TSP) and FJSP in which permutation

of cities or operations is more appropriate. Usually, the initial population is performed

randomly to ensure high degree of diversity in it. Once an appropriate syntax is chosen, it

is required to convert the chromosome to a solution by an interpretation method. That

interpretation is used in the evaluation of the chromosome according to the selected

fitness function.

The second step is the selection mechanism that determines which individuals in the

population will undergo the mating pool. The selected individuals or parents will be

subjected to a crossover operator which is regarded as the main genetic operator. It is

worth mentioning here that the performance of genetic algorithms depends to a great

extent on the performance of the crossover operator used (Gen and Cheng, 2000).

Crossovers operate on two chromosomes, namely parent 1 (or donor) and parent 2 (or

receiver), and combine the genetic features of both to produce an offspring. Following

this, a single selected chromosome is forced to undergo mutation. Mutations affect one or

more genes within that chromosome and change its characteristics to reproduce a new

chromosome, which is put into the population or replaces the parent chromosome

depending upon the implementation. However, it should be emphasized that crossovers

and mutations may produce an invalid chromosome representation that may violate some

of the constraint. Hence, these invalid chromosomes have to be identified and either

repaired or replaced by some other valid chromosomes.

 11

In GA, different termination criteria are used. However, the most common one is the

maximum number of generations or maximum number of function evaluations. Other can

be related to maximum stall generation, which is the maximum allowed number of

generations with no improvement in the fitness function.

1.3 Motivation and Thesis Research Objectives

This thesis focuses on solving the flexible job-shop scheduling problem. In general,

scheduling problems are classified into two main classes, offline scheduling, and online

dynamic scheduling (sometimes called complete reactive scheduling). In the former, a

detailed schedule is prepared beforehand and is then released to the shop floor for

implementation. On the other hand, in dynamic scheduling no schedule is prepared in

advance, but decisions related to which operation to be processed next are done in real

time using priority dispatching rules. Each of the previously mentioned scheduling types

has its own advantages and disadvantages. Briefly, offline scheduling enables a firm or a

company to have a clearer future expectations related to when to release materials,

material handling, set-up times of machines, possible satisfactions of due dates, etc.

However, such scheduling procedure leads to shop floor that is prone to a decreased

efficiency in face of any unexpected disruptions like orders cancelation, new orders,

machine breakdowns, processing time variation, etc. In contrast, dynamic online

scheduling can cope with such disruptions, but may lead to a poor utilization of resources

due to the greedy nature of the heuristics used in this kind of scheduling. Therefore,

implementing static offline scheduling procedure or dynamic online scheduling

procedure is intensely problem dependent. In a relevant work, Wu et al. (1999) concluded

 12

that dynamic online scheduling performs best when levels of disturbances and

uncertainties are high.

Offline scheduling takes two paths. The first path assumes that all of the problem

parameters are deterministic and known beforehand. However, such assumption does not

reflect the reality as unforeseen events happen in real manufacturing systems. This makes

the optimization a process of sustained pursuit, trying to follow an optimal solution that

changes over time. The second path is about producing a predetermined schedule that is

implemented until some unforeseen disruptions occurs in the system. After occurrence of

disruption, the system uses some control strategies that aid the system to recover from

those disruptions.

When considering control strategies in face of disruptions, two main issues will rise. The

first is concerned about how to perform the rescheduling when a disruption occurs, and

most importantly how to generate the predictive schedule. The importance of handling

those issues on the best possible way determines the overall performance of the system.

For example, if it was decided that whenever a disruption occurs, then the system must

undergo a total rescheduling procedure may result in a very high schedule nervousness

causing the manufacturing system to be unstable as this may affect the material handling,

material ordering, disruptions to workers as they may need to move from one job to

another one, etc. Furthermore, how fast the rescheduling algorithm is as well as

determining the solution space that has to be searched and how to search it are very

important concerns in such cases, as the entire shop floor may be idle waiting for the new

schedule.

 13

In light of the above, this research work has the following objectives. The first objective

is to develop a meta-heuristic approach to provide an optimal or near optimal solutions

for the deterministic FJSP. The approach to solve the deterministic FJSP is based on

hybridizing GA with an initial population (or schedule) generation heuristic and then

combing it with a local search method. The second is to modify the deterministic hGA to

find solutions or schedules that are quality robust and/or stable in face of machine

breakdown disruptions, as well as determining appropriate robustness and stability

measures and when they should be applied. This objective has to satisfy two conflicting

objectives where it first has to efficiently utilize the resources, and second, it has to allow

sufficient flexibility for changes. Furthermore, this research work is extended by

considering FJSP when processing times of some operations are represented by or

subjected to a low-to-medium uncertainty level. The target is to compare the robustness

of the predictive schedules obtained by two possible hGA methods. Moreover,

experimental studies and Analysis of Variance (ANOVA) are conducted on number of

benchmark problems.

Specifically, the methodology followed in this thesis can be detailed as follows:

1. Development of a heuristic method capable of solving deterministic FJSP and

producing optimal or near optimal schedules for small and medium systems. This

heuristic is then used as the initial stage to solve larger and/or more complicated

systems.

2. Development of a meta-heuristic approach, genetic algorithm method, capable of

solving the scheduling problems that cannot be solved optimally or nearly

optimally due to computational limitations. Nevertheless, this GA is designed

 14

such that it can easily be integrated with other heuristics as well as easily

modified to accommodate different objectives.

3. Development of a local search procedure that can improve a given schedule by

the exploitation of neighboring solutions.

4. Integration of the three previously approaches to form a hybridized genetic

algorithm (hGA) and verify the quality of obtained schedules using benchmarks.

5. Modification of the hGA to obtain schedules for the FJSP that are robust and/or

stable in face of random machine breakdowns.

6. Modification of the hGA to obtain predictive schedules for the FJSP when

processing times of some operations are represented by or subjected to a low-to-

medium uncertainty level.

7. Conducting an experimental study and Analysis of Variance to study the effect of

different proposed robustness and stability measures on the performance of

schedules obtained using different methods.

1.4 List of Publications

During the advancement of this research work and achieving the set of previously stated

objectives, results were presented in the form of papers that have been published or

submitted to be published. For example, objective #2 was first introduced in Al-Hinai and

ElMekkawy (2009) and the details of the achieved objectives #1 through #4 were

published in Al-Hinai and ElMekkawy (2011a). Similarly, after the success in achieving

objective #5 and its relevant part from objective #7, the research work results were

published in Al-Hinai and ElMekkawy (2011b). Furthermore, the details for achieving

 15

objective #6 and its relevant part from objective #7 are presented in Al-Hinai and

ElMekkawy (2011c) and submitted to the Journal of Manufacturing System.

 Al-Hinai, N. and ElMekkawy, T. (10-12 Feb 2009) ‘A robust genetic algorithm

approach for the flexible job-shop scheduling problem’, PEDAC’2009,

Alexandria, Egypt.

 Al-Hinai, N. and ElMekkawy, T. (2011a) ‘An efficient hybridized genetic

algorithm architecture for the flexible job-shop scheduling problem’, Flexible

Services and Manufacturing Journal, Vol. 23, pp. 64-85, doi: 10.1007/s10696-

010-9067-y.

 Al-Hinai, N. And ElMekkawy, T.Y (2011b) ‘Robust and stable flexible job shop

scheduling with random machine breakdowns using a hybrid genetic algorithm’,

International Journal of Production Economics, Vol. 132, pp. 279-291, doi:

10.1016/j.ijpe.2011.04.020.

 Al-Hinai, N. And ElMekkawy, T.Y (2011c) ‘Robust scheduling of flexible job

shop with processing time uncertainty: A comparison study’, Manuscript

Submitted to the Journal of Manufacturing Systems.

1.5 Thesis Outline

The outline of this thesis is as follows. Chapter 2 introduces the definition of

deterministic FJSP and related literature with emphasis on evolutionary algorithms used

to solve FJSP. Moreover, it covers the formulation of a heuristic approach used to

generate initial schedules, the GA architecture and the local search procedure. Chapter 3

presents the basic concepts and definitions of robustness and stability of schedules

subject to disturbances. The chapter gives more focus to disturbances that are in the form

of random machine breakdowns. Furthermore, it discusses the idea of how to integrate

the knowledge of the expected machine breakdowns in the determination of predictive

 16

schedules. An effectiveness of the proposed approach is evaluated via a comparative

analysis against three other methods. In Chapter 4, a comparative study is presented for

the FJSP when processing times of some operations are represented by or subjected to a

low-to-medium uncertainty level. Two hybridized genetic algorithm approaches used to

obtain predictive schedules are compared using experimental study and ANOVA. Finally,

the conclusions of this research and recommended directions for future work are covered

in Chapter 5.

 17

CHAPTER 2

AN EFFICIENT HYBRIDIZED GENETIC

ALGORITHM ARCHITECTURE FOR THE

FLEXIBLE JOB SHOP SCHEDULING PROBLEM

© [2011] Reprinted, with kind permission from Springer Science+Business
Media: <Flexible Service and Manufacturing Journal, volume 23, issue 1,
2011, pp. 64-85, Al-Hinai, N. and ElMekkawy, T, doi: 10.1007/s10696-010-
9067-y>

This chapter provides the definition for the deterministic flexible job-shop scheduling

problem (FJSP) and highlights the most relevant literature review. Also, it proposes new

hybridized genetic algorithm architecture for the FJSP. The efficiency of the genetic

algorithm is enhanced by integrating it with an initial population generation algorithm

and a local search method. The usefulness of the proposed methodology is illustrated

with the aid of an extensive computational study on 184 benchmark problems with the

objective of minimizing the makespan.

2.1 Introduction

Scheduling is concerned with allocating number of tasks to limited resources in order to

optimize a certain performance criteria. Depending on the problem size, represented by

the number of tasks and resources, the scheduling task may turn out to be the most time

consuming and challenging activity within an enterprise.

 18

Flexible job-shop scheduling problem (FJSP) is a generalization of the classical job-shop

scheduling problem (JSP). It takes shape when alternative production routing is allowed

in the classical job-shop. Here, the scheduling problem becomes more difficult to deal

with as it introduces a further machine assignment decision level beside the operations’

sequencing level. In manufacturing systems, most scheduling problems are very complex

in nature and very complicated to be solved by conventional optimization techniques to

obtain a global optimal schedule. For example, determining an efficient schedule for a

flexible job-shop (FJS) with n jobs and m machines will have (n!)m possible sequences

(Mellor, 1966). Hence, scheduling problems are considered as combinatorial optimization

problems and classified as NP-hard problems (Garey, Johnson and Sethi, 1976).

Nevertheless, modeling and solving the more complex FJSP is increasingly attracting the

interest of many researchers. This can be recognized by the increase in the number of

research papers addressing this problem.

As highlighted in Chapter 1, using a pure mathematical optimization approach to

determine an optimal solution may not be efficient in practice (due to the NP-hard nature

of the FJSP). Similarly, heuristics, which can be efficient for some problem instances do

not have a guaranteed distance from the optimal solution. Recently, using a high-level

strategy to guide other heuristics, known as meta-heuristics, led to better and more

appreciated results in a relatively short period. Therefore, a number of meta-heuristics

were proposed in literature for the past two decades to deal with FJSP such as simulated

annealing (SA), ant colony (AC), genetic algorithm (GA), etc.

The main advantage of using GA approaches in contrast of local search techniques, is the

fact that GA utilizes a population of solutions in its search, giving it more resistance to

 19

premature convergence on local minima. The proposed approach to solve the FJSP is

based on hybridizing GA with an initial schedule generation heuristic and then combing

it with a local search method. The current proposed method modifies some of the already

known techniques in literature and combines them to produce efficient hybridized GA

architecture.

The remainder of this Chapter is organized as follows: Section 2.2 describes the FJSP

definition. Previous research work in this area is summarized in Section 2.3. Section 2.4

introduces the proposed GA architecture and the local search method. The computational

results are presented and discussed in Section 2.5. Finally, the research summary is

covered in Section 2.6.

2.2 Problem Definition

FJSP is strongly NP-hard due to a) assignment decisions of operations to a subset of

machines and b) sequencing decisions of operations on each machine (Tay and Wibowo,

2004). The FJSP can be formulated as follows:

 There are n independent jobs of each other and indexed by i.

 All jobs are ready to start at time zero.

 Each job i has Qi operations and the operations’ sequence is given by Oij for j = 1,

…, Qi.

 There are m machines indexed by k.

 Machines never breakdown and are always available.

 20

 For each operation Oij, there is a set of machines capable of performing it

represented by },...,1{, mMM kijkij  .

 The processing time of an operation Oij on machine k is predefined and given by

tijk.

 The setup time of any operation is independent of the schedule, fixed, and

included in the corresponding processing time.

 A started operation cannot be interrupted (non-preemption condition).

 Each machine can process at most one operation at any time (resource

constraints).

 The precedence constraints of the operations in a job can be defined for any pair

of operations.

The objective is to find a schedule that has lowest possible value of makespan, where the

makespan is the time required for all jobs to be processed according to a given schedule.

2.3 Literature Review

Generally, used approaches to solve the complex FJSP can be categorized into two main

basic approaches: concurrent approaches and hierarchical approaches. Hierarchical

approaches are based on decomposing the problem to reduce its complexity. This

complexity reduction is achieved by separating the assignment decisions level (or flexible

routing) from the sequencing decisions of operations into two sub-problems. It is worth

mentioning here that the sequencing decisions sub-problem is in fact a classical job-shop

 21

scheduling problem. Thus, this approach had gained the interest of researchers at earlier

stages like Brandimarte (1993) and Paulli (1995) both of whom solved the assignment

problem using some heuristic dispatching rules and then used tabu search to solve the

remaining sequencing problem. Similarly, Bona et al. (1990) followed a similar heuristic

approach to handle the machine assignment part and then used simulated annealing

heuristic.

On the other hand, concurrent approaches (also known as integrated approaches)

integrate both problem levels and solve them simultaneously. Although this approach was

attempted at early stages like in Lee and Mirchandani (1988) and in Mirchandani et al.

(1988), hierarchical approaches were favored over it for sometime due to the

simplifications associated with the later. However, the high quality results obtained using

concurrent approach shifted the interest towards this approach to deal with the FJSP. For

example, the concurrent approaches developed using tabu search methodologies as in

Hurink et al. (1994); Brucker and Neyer (1998); Dauzére-Pérés and Paulli (1997); and

Mastrolilli and Gambardella (2000); and simulated annealing as in Najid et al. (2002).

Among different meta-heuristic algorithms, GA is considered to be a very successful to

tackle the FJSP and this can be noticed by the growing number of papers discussing this

topic. Falkenauer and Bouffouix (1991) were among the first to propose a machine

parallel representation to solve JSP. They encoded the chromosomes using list of

machines operating in parallel. Their work was then extended by other researchers like

Mesghouni et al. (1997) who proposed parallel job representation and Chen et al. (1999)

who divided the chromosome into two strings; A and B; where the first is defining the

routing policy and the second defines the sequence of operations on each machine.

 22

Similarly, Ho and Tay (2004) proposed a new GA structure called GENACE. Their

chromosome consists of two parts, one dedicated to define the operation order and the

second for machine selection. GENACE was then combined with a learning knowledge

procedure and converted to another GA structure called LEGA by Ho et al. (2007). A

similar chromosome representation was adapted by Gao et al. (2008) who developed a

GA hybridized with variable neighborhood descent local search procedures for the

flexible job-shop problem.

Kacem et al. (2002a, 2002b) suggested using an assignment table representation of

chromosomes. In the assignment table, a machine is mapped to a consequent operation.

This work was recently modified by Pezzella et al. (2008) by integrating more strategies

in the genetic framework that led to better results. Kacem (2003) used a task sequencing

representation of chromosomes where each cell represents an operation on a machine.

Giovanni and Pezzella (2010) proposed an improved genetic algorithm for the distributed

and flexible job-shop scheduling problem. Wei and Qiaoyun (2009) offered an adaptive

genetic algorithm that considers the processing time, the completion time of previous

operation and the idle time of current machine to select a suitable machine in the

decoding process when solving the FJSP.

Hussain and Joshi (1998) proposed a two pass GA for the job-shop scheduling problem

with alternate routing. Yang (2001) offered GA-based discrete dynamic programming

approach. Jia et al. (2003) proposed a modified GA to solve distributed scheduling

problems. Chan et al. (2006) introduced the idea of dominant genes, which is based on

the principle of Automata introduced by White and Oppacher (1994). Zribi et al. (2007)

used a hierarchical GA approach to solve the machine assignment and scheduling of

 23

FJSP. Girish and Jawahar (2008) proposed two concurrent meta-heuristic approaches,

genetic algorithm (JSSGA) and ant colony (JSSANT) to solve job-shops with multiple

routings. Xu et al. (2009), Xing et al. (2010) and Ling et al. (2010) presented an ant

colony optimization algorithm for the FJSP.

Xia and Wu (2005) combined particle swarm optimization algorithm with simulated

annealing to form hybrid approach for the multi-objective FJSP. Girish and Jawahar

(2009) offered particle swarm algorithm to solve FJSP. Also, Zhang et al. (2009)

proposed a hybridized particle swarm optimization algorithm with tabu search to solve

multi-objective FJSP. Liu et al. (2009) formulated a multi-particle swarm approach to

solve multi-objective FJSP. Xing et al. (2009) addressed a local search method based on

empirical knowledge for the multi-objective FJSP. Another local search method that

adapts the concept of climbing discrepancy search method is proposed by Hmida et al.

(2010).

2.4 GA Structure

2.4.1 Chromosome coding

A proper chromosome representation has a great impact on the success of the used GA.

Cheng et al. (1996) gave a detailed tutorial survey on papers using different GA

chromosome representations to solve classical JSP. It can be concluded from their work

(and others like Ho et al., 2007; Mattfeld, 1996; and Tay and Wibowo, 2004) that the

search space of an operation-based representation covers the whole solution space and

any permutation of operators can correspond to a feasible schedule. For a recent overview

discussing

the current

used in Kac

representati

the chromo

 k is

 i is

 j is

This chrom

sequence d

the memor

Subsection

Another ad

problem by

number of o

a chromoso

times given

these aspec

work uses

cem et al. (2

ion compos

osome, wher

machine as

current job

the progres

Figure

mosome rep

decision leve

ry usage an

2.4.5).

dvantage of

y changing

operations (

ome for FJS

n in Table 2

cts readers a

a similar e

2002a and 2

ses of a stri

re

ssigned to th

number;

sive numbe

2.1: (a) Ch

presentation

el in one sim

nd permits m

this represe

the index

(tot_noper)

SP with thr

2.1. In Figur

2

are referred

effective pe

2002b), Ka

ing consisti

he operation

er of that op

hromosome

n integrates

mple gene r

more effici

entation is i

k. The leng

to be sched

ee jobs and

re 2.1(a), th

24

d to Hart et

ermutation-b

cem (2003)

ing of triple

n;

eration with

coding (b) A

the machin

representati

ient genetic

its ability to

gth of the c

duled. Figur

d three mach

e first gene

t al. (2005).

based chrom

) and Chan

es (k,i,j) for

hin job i.

Alternative

ne assignm

ion. Such a

c operators

o model alt

chromosom

re 2.1 show

hines accor

(221) chara

. In light of

mosome rep

et al. (2006

r each oper

routing

ent decision

representat

to be cons

ternative rou

me is equal

s a sample e

rding to the

acterizes tha

f the above

presentation

6). The used

ration forms

n level and

tion reduces

sidered (see

uting of the

to the total

encoding of

e processing

at operation

,

n

d

s

d

s

e

e

l

f

g

n

 25

1 of job 2 is assigned to machine 2. Since this operation can be carried out on another

machine, machine 1, then the gene can be modified to (121) as shown in Figure 2.1(b).

The scheduling priority of operations is set to be from left to right. Based on this priority,

a chromosome is decoded to produce an active schedule (see Subsection 2.4.2).

Furthermore, both FJSP sub-problems known as total FJSP (T-FJSP) and partial FJSP (P-

FJSP) can be represented with this representation without any modification (T-FJSP and

P-FJSP are addressed in Section 2.5).

Table 2.1: Processing times for a FJSP with 3 jobs and 3 machines

J O M1 M2 M3

J1 O11 2 - 4

O12 - 3 -

J2 O21 2 3 -

O22 4 3 5

O23 - 1 -

J3 O31 2 3 1

O32 1 2 3

2.4.2 Chromosome decoding

Even though the used chromosome representation or genotype corresponds to feasible

solution (schedule), mapping it to a proper phenotype is essential to reduce the very large

feasible solution-space. Feasible schedules are categorized into semi-active schedules,

active schedules and non-delay schedules. French (1982) and Pinedo (2002)

demonstrated that the set of non-delay schedules is a sub-set of the active schedules

 26

which is a sub-set of the semi-active schedules. They also verified that for regular

performance measures an optimal solution exists within the set of active schedules.

Accordingly, the proposed decoding algorithm minimizes the solution-space by

constructing active schedules, while still ensuring that an optimal solution can be found.

The decoding algorithm to produce active schedule is shown in Algorithm Decode.

Algorithm Decode (decoding a chromosome to an active schedule)

1. Initialize Gantt-chart structure

2. For each gene reading from left to right do

3. Identify the operation Oi,j

4. Identify the machine Mk which processes Oi,j from the first gene’s digit and its

 processing time ti,j,k

5. If Oi,j is the first operation Then

 Set t0 to 0

6. Else

 Set t0 to be stop time of the predecessor operation Oi,j-1

7. End If

8. If Mk did not process any operation Then

 Set t1 to 0

9. Else

 Set t1 to be the stop time of the last operation on Mk

10. End If

 27

11. If t1 ≤ t0 Then

 Add Oi,j to Mk starting at t0

12. Else If it exist between t0 to t1 (time interval between two consecutive operations

 on Mk) ≥ ti,j,k Then

 Add Oi,j to Mk starting at the end of the finished processing time of the

 operation to the left

13. Else

 Add Oi,j to Mk starting at t1

14. End if

15. End for

2.4.3 Initial population

The efficiency of meta-heuristic algorithms that use initial solutions as a starting point

can be improved by generating proper solutions at promising points on the solution-

space. However, if all initial solutions are generated and tuned to satisfy the objective

function, then the risk of the algorithm being trapped at local minima increases. To

satisfy these two conflicting requirements, the genetic search process adopts two tactics

to generate the initial population.

The first procedure is to randomly generate a certain percentage of chromosomes. Each

chromosome’s gene is generated first by randomly selecting a progressive operation

number of an unscheduled operation and then by randomly assigning that operation to an

appropriate machine. This procedure is repeated until all operations are coded.

 28

The second procedure uses a heuristic approach to construct a Gantt-chart which is used

to generate a chromosome. The procedure considers the processing time as well as the

work load on the machine while assigning an operation. Thus, an operation may not

necessarily be assigned to the machine with minimum processing time, but it will be

assigned to the machine that will finish it sooner than other appropriate machines. The

pseudo-code of the developed heuristic is shown in Algorithm Ini-PopGen. It should be

emphasized that this algorithm generates active schedules.

Algorithm Ini-PopGen (initial population generation to form an active schedule)

1. Initialize Gantt-chart structure

2. Generate a random job order array J (e.g. J2 J1 J3)

3. Set oper_count = 1and oper = 1

4. While (oper_count ≤ tot_noper) do

5. For jobs i  J do

6. Find all proper machines M that can process operation Oi,oper (e.g. M1 M3)

7. Generate an Oi,oper stopping time array T of the same size of M

8. Initialize t0 and t1

9. If Oi,oper is the first operation Then

10. Set t0 to 0

11. Else

12. Set t0 to be stop time of the predecessor operation Oi,oper-1

13. End If

14. For machines k  M do

 29

15. Identify processing time ti,oper,k of Oi,oper on machine Mk

16. If Mk did not process any operation Then

17. Set t1 to 0

18. Else

19. Set t1 to be the stop time of the last operation on Mk

20. End If

21. If t1 ≤ t0 Then

22. Add Oi,oper to Mk starting at t0 and set Toper,k = t0 + ti,oper,k

23. Else If it exist between t0 to t1 (time interval between two

 consecutive operations on Mk) ≥ ti,oper,k Then

24. Add Oi,oper to Mk starting at the end of the finished processing

 time of the operation to the left and set Toper,k equal to this

 time + ti,oper,k

25. Else

26. Add Oi,oper to Mk starting at t1 and set Toper,k = t1 + ti,oper,k

27. End If

28. End For

29. Find the min. stopping time on T and assign Oi,oper to that machine. If more

 than one machine satisfy this, Then assign Oi,oper to the first machine with

 the min. stopping time on T

30. Encode the selected machine M, job Ji, and operation oper into the

 chromosome

31. oper_count ++

 30

32. End For

33. oper ++

34. End While

Figure 2.2 demonstrates how Ini-PopGen algorithm creates an active schedule for the

data given in Table 2.1. Suppose the randomly created jobs priority is [3, 1, 2] (step 2).

Therefore, the first operations of jobs 3, 1, and then 2 will be scheduled in the Gantt-chart

as shown in Figure 2.2 (a), respectively (steps 4 to 34). Figure 2.2(b) shows the

scheduling of the second operations of the jobs. If we consider for example O22, then it

can be noted that the operation was assigned to M1 even though the processing time on

machine M2 is the smallest among the other machines. However, M1 is selected as it is the

machine that can finish processing this operation before others (Step 29). The final Gantt-

chart is shown in Figure 2.2(c), which indicates that it is the optimal schedule for this

machines’ assignment as the operations of job 2 falls on the critical path of this schedule

and they cannot be finished sooner without violating the precedence constraints. This

emphasizes the strength of this algorithm in obtaining good initial schedules or

chromosomes.

 31

2.4.4 Selection

Selection is an important element in GA. The task is to select individuals for reproduction

by moving them into a mating pool. The selection method of individuals for mating is

divided into two phases:

1. Phase 1 (forming the donors’ mating-pool): Roulette wheel technique is chosen to

be the main driving motor in selecting the donor chromosomes and form what is

termed as, ‘the donors’ mating-pool’. The donors’ mating-pool is formed at the

beginning of each evolution process before the crossover stage starts. Two

procedures were tested in this phase. The first procedure starts by first linearly

ranking the individuals and sorting them according to their fitness values. Then,

roulette wheel is used to select ranked individuals based on a selection probability

given by the equation:

Figure 2.2: A few steps of the Ini-PopGen algorithm

c)

M1

M2

M3

1221

31

11 32 22

23

a)

21

31

11 M1

M2

M3

b)

12 21

31

11 32 22 M1

M2

M3

 32

௦ܲ ൌ ி೔೙೏

ி೟೚೟
, ݅݊݀ ൌ 1, … , ܰ (2.1)

Where, Ps is the probability of choosing the indth individual; N is the population

size; Find is the indth individual fitness; and Ftot is the total fitness of all individuals

in the current generation.

The second procedure is to apply roulette wheel to form the donors’ mating-pool

using Eq. (2.1) without ranking the individuals. After comparing the two methods,

results show that the second procedure performs better than the first one. This

could be related to the population diversity that results from both procedures.

When individuals are ranked according to their fitness values this gives

individuals with better fitness values higher chances to be selected to form the

mating pool and have higher chances to reproduce. Though such outcome is

preferred to enhance the exploration around promising areas of the solution-space,

at a certain stage of the evolution process, this causes the algorithm to converge

prematurely to a local optimum. This is avoided in the second procedure by

giving individuals with less fitness values the chance to be part of the evolution

process and reduce the chances of the algorithm being trapped in local minima.

2. Phase 2 (forming the receivers’ mating-sub-pool): After the donor’s mating-pool

has been formed and at the beginning of each crossover process, individual in the

donors’ mating-pool are subjected to a crossover probability Pc. If the individual

satisfies this probability, then Phase 2 in the selection procedure starts by forming

what is termed as ‘receivers’ mating sub-pool’ using an n-Size tournament

method, otherwise the donor will form a child. Phase 2 procedure starts by

 33

selecting n different random number of chromosomes from the population and

moves them to the receivers’ mating-sub-pool. Following on, the individuals

within the sub-pool are ranked according to the fitness and the best is chosen for

reproduction. It is worth mentioning here that the donor is prevented from being

reselected in this procedure.

2.4.5 Genetic operators

The performance of genetic algorithms to a great extent depends on the performance of

the genetic operators used (Gen and Cheng, 2000). Therefore, designing the right genetic

operators is very essential for the success of any GA. Furthermore, when applying

genetic operators; crossover and/or mutation; there is a high chance of forming infeasible

chromosomes by, for example, violating the precedence constraints among operations of

the same job. In such cases, a repair or correction mechanism has to be implemented on

the infeasible offspring. Such repair procedure is time-consuming. Therefore, it is more

practical to design the operators to respect such precedence constraints. Ho et al. (2007)

and Gao et al. (2008) satisfied this by dividing their chromosome into two parts where the

first defines the operation order and the second defines the machine selection. Their

genetic operators were separately applied to each part. Therefore, they were able to avoid

producing infeasible chromosomes. However, such chromosome representation

complicates the GA architecture and requires that the genetic operators to independently

be applied to each part, which in turn increases the required computational time.

Since the proposed algorithm implements a chromosome representation that integrates

both FJSP levels by adopting a gene of three triples (machine, job, operation), a genetic

 34

operator which satisfies the previous requirement has to be carefully designed otherwise a

repairing technique will be a necessity. In order to satisfy this, Precedence Preserving

Order-based Crossover (POX) (Kacem et al., 2002a) and a modified Position Based

Mutation (PBM) (Mattfeld, 1996) as well as Machine Based Mutation (MBM) are

selected as the genetic operators.

2.4.5.1 Crossover operator

The idea in POX is to transfer the selected operations in the donor to the same position in

the offspring. Furthermore, we have modified the POX operator so that it does not treat

the parents symmetrically. This modification assists the algorithm to control the spread of

the genetic information and keep the genetic drift to minimum. The crossover is

implemented in two steps. In step 1, a gene is randomly selected from the donor and all

genes containing operations belonging to the job found in that gene are copied to the

offspring. Meanwhile, the corresponding operations in the receiver are located and

deleted. In step 2, the remaining offspring’s genes are completed by moving the

remaining operations from the receiver and inserting them in the offspring’s empty genes

in the same order. Figure 2.3 exemplifies this procedure for two randomly created

Figure 2.3: POX example

 35

chromosomes representing the 3 × 3 problem given in Subsection 2.4.1. The selected

genes from the donor have been pointed to by an arrow, and the corresponding deleted

operations in the receiver are marked by (×). It can be observed from Figure 2.3 that POX

includes an implicit mutation. For example, consider the relative position of operation 2

of job 2 to operation 2 of job 1. In both parents, operation 2 of job 1 precedes operation 2

of job 2. However, this is not the case in the offspring. Therefore, if both operations are

to be processed on the same machine, then unlike the parents, operation 2 of job 2 will be

scheduled before operation 2 of job 1 in the offspring. Moreover, when implementing

POX the operations belonging to the same job are moved from the parent to the offspring

in the same order. Consequently, the precedence constraints of jobs are not violated and

hence no infeasible chromosome is produced. Thus, no repairing mechanism is required.

2.4.5.2 Mutation operator

After creating a number of children equal to the number of parents using crossover

according to a crossover probability Pc, children are subjected to mutation according to a

mutation probability Pm. This is done to maintain the diversity of the chromosomes and

to introduce some extra variability into the population. Two strategies were followed

during the mutation process:

1. The first strategy called Machine Based Mutation (MBM), where a random

number of operations (denoted as nrand) are selected and reassigned to another

machine. As introduced earlier, the purpose of mutation is to increase the

diversity of the population. However, if a drastic change is imposed in the

 36

chromosomes’ structure, then the genetic search will turn to be a random search.

Therefore, the resultant chromosome from mutation should not be significantly

different from the original chromosome. Number of experiments were conducted

to select the appropriate values of nrand that satisfy the previous condition.

Hence, nrand is limited between [1, 3]. After nrand is uniformly selected from

that range, nrand operations are randomly selected within the child’s

chromosome. The selected operations are then reassigned to another machine if

applicable to form a child’. In order to reduce the computational time, a local

memory is linked to each operation. This local memory contains information

about the machines that can process this specific operation and their number. This

mutation procedure is illustrated in Figure 2.4, where it is assumed that the

generated nrand = 2 and the randomly selected genes are pointed to by an arrows.

Figure 2.4(a) expresses that only one of the two operations can reassigned to

another machine.

2. The second strategy called modified Position Based Mutation (PBM) (Mattfeld,

1996). PBM was originally designed for JSP using single triple permutation-based

chromosomes representation. Thus, the PBM is modified so that no infeasible

chromosomes are produced. This mutation starts by randomly selecting an

operation from child’ and reinserting it at another position in the new child. Then,

the remaining operations are copied from child’ to the new child taking care of the

precedence constraints of the moved operation. Figure 2.4(b) demonstrates this

mutation procedure, where the selected gene is underlined and the new position is

pointed to by an arrow.

 37

After crossover and mutation is implemented, the children are taken to form the new

generation. The algorithm terminates after reaching a maximal number of generations.

2.4.6 Local search

The use of local search techniques has been proven to be useful in solving combinatorial

problems. Local search methods are applied to a neighborhood of a current solution. In

the case of JSP, a neighborhood is achieved by moving and inserting an operation in a

machine sequence. Therefore, when designing a local search method that works on

neighborhood of solutions, two main issues have to be considered. The first issue is that

the size of the neighborhood has to be limited. The second issue is the feasibility of

solutions.

Generally, there are two scenarios to deal with the feasibility issue. The first scenario is

to design a local search that only considers feasible moves as in the two neighborhood

functions proposed by Mastrolilli and Gambardella (2000). The second scenario is to

design a local search that accepts all moves and then either rejects the infeasible moves or

Figure 2.4: (a) Sample procedure of MBM (b) Sample procedure of modified PBM.

 38

implement a repairing procedure like the proposed repairing technique presented by

Murovec and Šuhel (2004).

Brandimarte (1993) suggested the following neighborhood structures:

1. Neighborhood N1 where a sample size is set to randomly sampling the potential

exchanges within the neighborhood.

2. Neighborhood N2 where a job is randomly selected and it is exchanged on each

machine with the adjacent jobs in each machine sequence.

3. Neighborhood N3 where a machine is randomly selected and the complete set of

job exchanges on that machine is considered.

4. Neighborhood N4 where operations on the critical path are considered for the

exchange.

The second and third neighborhood structures limit the search space by confining it to

either focus on a specific arrangement, whereas the first gives some degree of random

exploration. Several researchers have verified that when the makespan is the considered

objective function, then neighborhood N4 is very useful since operations not laying on

the critical path do not affect the makespan (see for example Brandimarte, 1993;

Mastrolilli and Gambardella, 2000; Murovec and Šuhel, 2004). However, a local search

that is solely devoted to work on critical path heads directly toward deterministically

predictable local minima. On the other hand, a local search that is based on random

search helps preserving the diversification of the population. Hence, a local search that

combines both approaches by introducing randomness in a local search that is related to

the critical path may be more desirable. Therefore, it is proposed using a local search

method that combines neighborhoods N1 and N3 while defining hill climbing heuristic

 39

that works on blocks of moves that contain a critical block as subset (for more details

about critical blocks, readers are referred to Mattfeld, 1996).

The proposed local search starts with a feasible schedule S as an input. The input

schedule is set to Sbest which stands for the best found solution. Then, a neighborhood

consisting of blocks containing feasible moves on each machine is constructed. A

feasible move is defined by two consecutive operations on the same machine that can be

interchanged without violating the precedence constraint. Therefore, each block will

contain at least two consecutive operations which correspond to one move. To that, an

ordinary hill climbing heuristic is applied to bring the new schedule S’ to the local

optimum with respect to the used neighborhood. The hill climbing heuristic works by

interchanging or swapping two consecutive operations within one block at a time. Every

time a move is done, the new makespan of S’ is estimated. If the new S’ is better (i.e. has

a lower makespan) than Sbest, then Sbest is replaced by S’. The procedure is repeated until

a maximal number of iterations (loc_iter) without improving moves is reached. The

pseudo-code of the local search heuristic is shown in Algorithm LS.

Algorithm LS (local search)

35. Calculate the performance Cmax(Sbest) of the current schedule S

36. Set count to 1

37. While ((count ≤ loc_iter) && (S’  Nhc,feasible(Sbest)) do

38. If Cmax(S’) < Cmax(Sbest) Then

39. Update Sbest by setting Sbest = S’

 40

40. Set count to 1

41. Else

42. Count++

43. End If

44. End While

Figure 2.5: Gantt-charts of three neighborhoods.

c)

M1

M2

M3

1221

31

11 32 22

23

b)

M1

M2

M3

1221

31

1132 22

23

a)

M1

M2

M3

12 21

31

1132 22

23

 41

To illustrate how the local search works, consider the Gantt-charts shown in Figure 2.5.

Assuming that Figure 2.5(a) represents an input schedule Sbest to the local search, blocks;

which may or may not include critical operations; containing feasible moves are in

machine 1 (O32, O22, O11), and in machine 2 (O23, O12). It can be seen that O21 is not

included in the second block as if it is to be swapped with O23; it will result in an

infeasible schedule. Since machine 3 does not process any operation other than O31, then

no block is formed. The first move is done by swapping O32 and O22. However, since the

proposed algorithm considers active scheduling this move does not change the schedule.

The second move is done by interchanging O22 and O11. This produces a better schedule

S’ as shown in Figure 2.5(b) and hence, Sbest is replaced by S’. In the same time, the

blocks are automatically updated with the new changes in the schedule and the modified

blocks become in machine 1 (O32, O11, O22), and in machine 2 (O12, O23). Since an

improvement was found in the previous move, the algorithm continues by moving

operations on the second block (O12, O23). Again, since active schedules are considered,

this move will result in no improvement of the makespan of the current schedule.

Assuming that the maximum number of allowed moves without improvement is not

reached, the algorithm continues the search by considering moves within block (O32, O11,

O22). Interchanging O32 and O11 results in an improved schedule as shown in Figure

2.5(c) and again Sbest is replaced by S’. The algorithm iterates until the termination

criterion is met.

In order to reduce the computation time, loc_iter is limited and rather kept small.

However, this is compensated for by combining the local search with the GA many times

during the optimization process and every time the local search is called there is a

 42

different starting solution. Hence, it is designed for exploitation purposes whereas GA

takes care of the exploration of the solution space. Furthermore, unlike other memetic

algorithms, the local search is only applied at every dth generations of the evolution

process. This is to allow the population to have some diversity and enhancing the chances

of preventing the solution from being trapped on local minima.

2.4.7 Elitism strategy

To prevent the loss of the genetic information of the current best chromosome during the

evolutions, a global memory containing the elitism is generated. During the evolution

process (crossover or mutation) both best and worst chromosomes are identified and

recorded. At the end of each generation, the best chromosome is compared with the

elitism. If the best chromosome has a better fitness value than the elitism, then the global

memory is updated by replacing the elitism with this new chromosome. On the other

hand, the global memory does not interfere with the genetic evolution except if the fitness

value of the best chromosome is worse than that of the elitism. In such case, the elitism is

used to replace the worst chromosome in the population. However, this replacement

procedure takes place every kth generation. This strategy enables chromosomes to

naturally evolve in almost all generations and hence, allowing an acceptable level of

diversity on the population. Meanwhile, the knowledge gained from all generations is

accumulated and only used to guide the evolution process when necessary.

 43

2.5 Computational Results

FJSP are classified into two sub-problems known as total flexible job-shop problems (T-

FJSP) and partial flexible job-shop problems (P-FJSP). In T-FJSP each operation can be

processed on any machine of M. On the other hand, in P-FJSP each operation can be

processed on at least one machine of a subset of M. Therefore, several sets of problem

instances have been considered.

1. The first set (KMData) consists of 6 instances, 3 T-FJSP taken from Kacem et al.

(2002b); 1 T-FJSP taken Mesghouni et al. (1997), 1 P-FJSP taken from Lee and

DiCesare (1994); and 1 P-FJSP taken Kacem et al. (2002a).

2. The second set (BRData) consists of 10 P-FJSP instances taken from Brandimarte

(1993).

3. The third set (BCData) consists of 21 P-FJSP instances taken from Barnes and

Chambers (1996).

4. The fourth set (DPData) consists of 18 P-FJSP instances taken from Dauzére-

Pérés and Paulli (1997).

5. The fifth set (HUData) consists of 129 P-FJSP instances created from 43 classical

job-shop instances divided into three subsets, EData, RData and VData taken

from Hurink, Jurisch and Thole (1994).

The performance of the different components of the proposed hybrid algorithm is

analyzed using all sets.

For the hGA, experiments were conducted on an Intel® Pentium® D CPU 2.8 GHz with

2 GB RAM. For each test problem, a set of 5 runs were performed. A number of

 44

experiments were conducted for the same test problem in order to determine the hGA

parameters. In order to identifying the values for each parameter, the following procedure

was adopted. First, from each of the five set instances number of test cases are randomly

selected. For each selected problem the values of all hGA parameters are fixed and only

the value of the parameter under consideration is varied. For example, to determine the

value of the crossover probability, the parameters for the evolution were fixed to:

mutation probability = 0.3, number of maximal generations = 1000; maximum number of

moves without improvement in the local search loc_iter = min [tot_noper, 175]; the worst

chromosome is replaced by the elite chromosome every k = 3 generations; number of

parents in the receivers’ mating sub-pool = 4; number of generations to perform local

search (d value) 10, and the population size = 200. Then crossover probability of 0.9, 0.7,

and 0.5 were investigated by solving the test problem 5 times. After solving all randomly

selected test problems, the crossover probability that performed better in terms of

solution quality is selected for the remaining instances. A similar procedure is followed in

determining the values of remaining other parameters. In conclusion of the previous

analyses, the following parameter values are common in all test cases: crossover

probability 0.7; mutation probability 0.3; number of maximal generations 1000;

maximum number of moves without improvement in the local search loc_iter = min

[tot_noper, 175]; the worst chromosome is replace by the elite chromosome every k = 3

generations; number of parents in the receivers’ mating sub-pool 4 for the KMData and

BRData sets, and 6 for the rest; and number of generations to perform local search (d

value) as well as the population size are reported in Table 2.2.

 45

Table 2.2: d value and population size used in test sets

Test Set Instance d value Population size

KMData all 10 200

BRData

MK1/6/7/10 30 1200

all remaining 10 200

BCData all 30 1500

DPData all 30 1200

HUData EData mt6/10 20 200

mt20 30 800

la01-la13 20 400

la14-la25 20 500

la26-la40 30 1200

RData mt6/10/20 20 300

la01-la25 20 400

la26-40 30 1000

VData mt6/10/20 10 200

la01-la40 10 300

The first two sets are solved by using initial population generation heuristic (Ini-

PopGen), initial population generation heuristic with local search procedure (Ini-

 46

PopGen+LS), and finally using the full hybridized algorithm (hGA). In each instance of

these sets, 60 instance schedules are created using the Ini-PopGen and another 60

schedules are created using Ini-PopGen+LS. The best and the average makespan of 5

runs are compared. Table 2.3 shows the results obtained for KMData set and compares

them with these obtained by Ho et a. (2007) and Gao et al. (2008). The values in bold-

face identify the best values obtained for each instance using all algorithms. The values

between braces are the average results. It can be seen from Table 2.3 that the proposed

algorithms are very efficient in solving all instances. Ho et al. (2007) solved these

instances using two methods. Firstly they used composite dispatching rules population

generation (CDR-PopGen), and in the second they used LEarnable Genetic Architecture

(LEGA). The proposed Ini-PopGen is able to obtain the minimum known results for all

instances except for Ex4. It even outperformed the best and the average results obtained

by CDR-PopGen in Ex3 and Ex6; and the average results obtained by LEGA in Ex3 and

Ex4. In Ex3 proposed by Mesghouni et al. (1997); Ini-PopGen was able to obtain the

optimal results of 7 time units. The optimal result was also obtained by Mesghouni et al.

(1997) using GA, but after 1500 generations. Furthermore, results in Table 2.3 indicate

that Ini-PopGen can handle small and medium T-FJSP instances. The P-FJSP instance

Ex5 consists of 5 jobs, 3 machines and 4 operations in each job with a lot size of 10. This

problem was solved by Lee and DiCesare (1994) using Petri Nets combined with

heuristic search and obtained an average makespan of 439; Kumar et al. (2003) using Ant

Colony approach and obtained an average makespan of 420; and by Chan et al. (2006)

using GA with dominant genes (DGA) and obtained minimum makespan of 360 with an

average of 374. It can be noticed from Table 2.3 that the proposed algorithms

 47

outperformed the previous results in both minimum and average makespans. Figure 2.6

shows the Gantt-chart for the production scheduling of this example. For Ex6 taken from

Kacem et al. (2002a), the algorithms outperform that proposed by Ho et al. (2007) as the

Ini-PopGen is able to obtain the best known minimum makespan. Moreover, the best

results obtained by hGA for Ex3, Ex4 and Ex6 are the same as these obtained by Gao et

al. (2008).

Table 2.3: Comparison with other meta-heuristics on KMData

Reference Problem

size

Gao et al.
(2008)

Ho et al. (2007) Proposed methods

CDR-
PopGen

LEGA Ini-PopGen Ini-
PopGen+LS

hGA

Kacem et al.

(2002b)

Ex1 4 × 5 - 11(11) 11(11) 11(11) 11(11) 11(11)

Ex2 10 × 7 - 11(11) 11(11) 11(11) 11(11) 11(11)

Mesghouni et

al. (1997)

Ex3 10 × 10 7(7) 8(8) 7(7.56) 7(7) 7(7) 7(7)

Kacem et al.

(2002b)

Ex4 15 × 10 11(11) 12(12.24) 12(12.04) 12(12) 12(12) 11(11.2)

L and DC

(1994)

Ex5 5 × 3 - - - 350(352.5) 350(351) 350(350)

Kacem et al.

(2002a)

Ex6 8 × 8 14(14) 16(16) 14(14) 14(14.5) 14(14.2) 14(14)

Values written in bold are the best values

 48

Table 2.4 compares the BRData set results obtained by the proposed algorithms with

these obtained by Ho et al. (2007) using CDR-PopGen and LEGA; and these obtained by

Girish and Jawahar (2008) who solved them using Ant Colony Optimization (JSSANT)

and Genetic algorithms (JSSGA). Table 2.4 shows that the proposed hGA either

outperforms other algorithms or obtain the same minimum makespan in all cases.

Furthermore, Table 2.4 also highlights that the proposed Ini-PopGen has a very

acceptable efficiency in solving P-FJSP as it is able to produce comparative results with

these obtained by other best methods of JSSANT and LEGA. For example, Ini-PopGen is

outperforming JSSGA in seven out of ten MK instances; and JSSANT in instances

MK06, MK09 and MK10. Moreover, the noticeably close values of the obtained results

between the minimum and the average makespan in both benchmark sets (T-FJSP, and P-

FJSP) highlights the repeatability of the proposed hGA and its consistency in obtaining

optimal or near optimal result.

Table 2.4: Comparison with other meta-heuristics on BRData

Figure 2.6: Diagram of Gantt-chart for the production scheduling of Ex5.

 49

Problem size Girish and Jawahar

(2008) Ho et al. (2007) Proposed methods

JSSANT JSSGA CDR-PopGen LEGA Ini-PopGen PopGen +LS hGA

MK01 10 × 6 40(40) 40(41.2) 42(42) 40(41.5) 42(42) 42(42) 40(40)

MK02 10 × 6 26(26.8) 26(29.6) 30(30) 29(29.1) 28(28.88) 28(28.8) 26(27.10)

MK03 15 × 8 204(204) 212(215.2) - - 204(204) 204(204) 204(204)

MK04 15 × 8 66(66.8) 71(74) 68(68) 67(68.82) 74(74.75) 73(74) 61(62.83)

MK05 15 × 4 174(176.4) 188(191.2) 179(179.3) 176(178.1) 179(179.63) 177(179.4) 173(174.67)

MK06 10 × 15 77(78.4) 81(83) 69(69.2) 67(68.82) 70(70.63) 69(70) 62(64.83)

MK07 20 × 5 143(143.8) 152(154) 153(153.88) 147(152.9) 150(153.75) 150(153.4) 141(143)

MK08 20 × 10 523(523) 533(545) 527(528.44) 523(523.34) 544(544.25) 523(524.2) 523(523)

MK09 20 × 10 328(341.2) 378(382) 326(328.78) 320(327.74) 326(326) 319(323.2) 307(307)

MK10 20 × 15 247(254.8) 265(281.4) 234(236.12) 229(235.72) 233(234) 233(234) 214(218.33)

Values written in bold are the best values

When comparing the performance of Ini-PopGen algorithm with the performance of Ini-

PopGen combined with LS (Ini-PopGen+LS) in Tables 2.3 and 2.4, it can be observed

that no improvements are achieved in all T-FJSP and, in general, improvements in P-

FJSP instances are small. This can be related to two main reasons. The first reason can be

related to the possibility that the obtained solution using Ini-PopGen algorithm is the

minimum or near minimum feasible solution. This reason can be supported by

considering results obtained using different algorithms in Table 2.4, where different

algorithms obtained the same minimum solutions. The second reason may be related to

the nature of FJSP where it consists of two decision levels. Here, it is possible that

solutions produced using Ini-PopGen are optimized to a near optimal local solution for

 50

that machines’ assignment decision level. In such case, expected improvements using any

local search method that only works on the sequencing decision level, like the proposed

LS, are small. This conclusion can be sustained by the obtained results of instances

MK08 and MK09 where the LS has much improved the results obtained by Ini-PopGen

and it even brought the solution of MK08 to optimality.

Table 2.5 compares the best results obtained by the proposed hGA to the best results of

the particle swarm algorithm proposed by Girish and Jawahar (2009); and GA algorithms

proposed by Zribi et al. (2007); Pezzella et al. (2008); and Gao et al. (2008), on the

BRData set instances. The first column reports the instance name, the second reports the

best-known lower bound and the third reports the currently best obtained results. The

remaining columns report the best results of the three algorithms with the relative

deviation with the respect to the proposed algorithm defined as follows:

ݒ݁݀ ൌ ൣ൫ܵܯ௖௢௠௣ െ ௛ீ஺൯ܵܯ ⁄௛ீ஺ܵܯ ൧ ൈ 100 (2.2)

Where, MScomp is the makespan we compare to and MShGA is the makespan obtained by

the proposed hGA algorithm. The results show that the obtained results by hGA are either

outperforming other methods or of comparable quality.

Table 2.6 compares the relative error of the obtained computational results over the last

four sets BRData, BCData, DPData, and HUData and the relative error of the results

obtained by Zribi et al. (2007); Pezzella et al. (2008); and Gao et al. (2008); with respect

to the best-known lower bound. The relative error (RE) is defined as:

ܧܴ ൌ ሾሺܵܯ െ ሻܤܮ ⁄ܤܮ ሿ ൈ 100 (2.3)

 51

Where, MS is the best makespan obtained by the reported algorithm and LB is the best-

known lower bound. The first column reports the data set, the second column reports the

number of instances in each set, the third column reports the average number of

alternative machines per operations. The last three columns report the RE of the results

obtained by the proposed hGA algorithm; Zribi et al. (2007); Pezzella et al. (2008); and

Gao et al. (2008); respectively. The results support the conclusion drawn from Table 2.3

above that the proposed hGA is stronger with high degree of flexibility. Also, it shows

that the proposed hGA outperforms the GA proposed by Zribi et al. (2007) and by

Pezzella et al. (2008); and produces a comparable quality to the algorithm proposed by

Gao et al. (2008). It may worth to mention here that the proposed hGA has obtained these

results with less number of chromosomes than the other two algorithms. For example,

Pezzella et al. (2008) used 5000 chromosomes in all their experiments; and Gao et al.

(2008) used on average +2000 chromosomes, however, the proposed hGA used on

average 700 chromosomes to solve the test cases. Furthermore, the advantage of the hGA

approach is that it can work for instances with different flexibility. Also, it can be adapted

to deal with other criteria than the makespan. This is because the local search algorithm is

designed to work in combined neighborhoods N1 and N3, rather than only considering

neighborhood N4.

 52

Table 2.5: Comparison with algorithms proposed by Zribi et al. (2007); Girish and

Jawahar (2009); Pezzella et al. (2008); and Gao et al. (2008) on BRData

Name LB hGA Z.K.K. dev (%) G.J. dev (%) P.M.C. dev (%) G.S.G. dev (%)

MK01 36 40 41 +2.5 40 0 40 0 40 0

MK02 24 26 28 +7.69 27 +3.85 26 0 26 0

MK03 (204) 204 204 0 204 0 204 0 204 0

MK04 48 61 67 +9.84 62 +1.64 60 -1.64 60 -1.64

MK05 168 173 177 +2.31 178 +2.89 173 0 172 -0.58

MK06 33 62 61 -1.61 78 +25.81 63 +1.61 58 -6.45

MK07 133 141 154 +9.22 147 +4.26 139 -1.42 139 -1.42

MK08 (523) 523 523 0 523 0 523 0 523 0

MK09 299 307 321 +4.56 341 +11.07 311 +1.3 307 0

MK10 165 214 219 +2.34 252 +17.76 212 -0.93 197 -7.94

 53

Table 2.6: Mean relative error over the best-known lower bound

Data Set Num. of Ins Alter. hGA Z.K.K. P.M.C. G.S.G.

BRData 10 2.59 17.58 21.62 17.53 14.92

BCData 21 1.18 24.74 - 29.56 22.61

DPData 18 2.49 6.83 8.27 7.63 2.12

HUData

EData 43 1.15 3.92 - 6.00 2.51

RData 43 2 3.68 - 4.42 1.21

VData 43 4.31 0.80 - 2.04 0.09

2.6 Conclusion

In this Chapter, a hybridized genetic algorithm for the flexible job-shop scheduling

problem is proposed. The hybrid architecture consists of three main parts, initial

population generation heuristic, a local search method, and a genetic algorithm. The

experimental results advocate the good performance of the proposed Ini-PopGen heuristic

by outperforming some of the existing approaches in the literature. The performance of

Ini-PopGen is improved when combining it with the proposed LS. This performance

indicates that Ini-PopGen with LS can be used as a stand-alone tool for small to medium

sized T-FJSP and P-FJSP. The proposed hGA has the ability to further improve the

quality of results obtained by using Ini-PopGen with LS. Thus, the hGA structure is very

effective and has a good potential of obtaining optimal or near optimal results. A very

strong advantage of the proposed hGA architecture is that the genetic operators of

 54

crossover and mutation do not require a repair process to obtain a feasible schedule.

Furthermore, the current work maintains the diversity of population by implementing

different techniques like the individuals selection method, the mutation techniques, the

elitism strategy, and by applying the local search every d generations. This allows the GA

to explore more solution space whereas Ini-PopGen and LS does the exploitation part.

 55

CHAPTER 3

 ROBUST AND STABLE FLEXIBLE JOB-SHOP SCHEDULING

WITH RANDOM MACHINE BREAKDOWNS USING A

HYBRIDIZED GENETIC ALGORITHM

© [2011] Reprinted, with kind permission from Elsevier: <International
Journal of Production Economics, volume 132, 2011, pp. 279-291, Al-Hinai,
N. and ElMekkawy, T.Y, doi: 10.1016/j.ijpe.2011.04.020>

This Chapter addresses the problem of finding robust and stable solutions for the flexible

job-shop scheduling problem with random machine breakdowns. A number of bi-

objective measures combining the robustness and stability of the predicted schedule are

defined and compared while using the same rescheduling method. Consequently, a two-

stage hybrid Genetic Algorithm (hGA) is proposed to generate the predictive schedule.

The first stage optimizes the primary objective, minimizing makespan in this work, where

all the data is considered to be deterministic with no expected disruptions. The second

stage optimizes the bi-objective function and integrates machines assignments and

operations sequencing with the expected machine breakdown in the decoding space. An

experimental study and Analysis of Variance (ANOVA) is conducted to study the effect

of different proposed measures on the performance of the obtained results. Results

indicate that different measures have different significant effects on the relative

performance of the proposed method. Furthermore, the effectiveness of the current

 56

proposed method is compared against three other methods; two are taken from literature

and the third is a combination of the former two methods.

3.1 Introduction

Job-shop scheduling problems are among the most intensive combinatorial problems

studied in literature. Until recently, scheduling problems were studied assuming that all

of the problem parameters are known beforehand. However, such an assumption does not

reflect the reality as unforeseen incidents happen in real manufacturing systems. Thus, an

optimal schedule that is produced based on deterministic measures may result in a

degraded system performance when released to the shop floor (Leon et al., 1994). For

this reason more emphasis is put towards producing schedules that can handle

uncertainties caused by random disruptions.

Generally, job-shop scheduling can be classified into two main classes, static or

deterministic (offline) scheduling, and dynamic (online) scheduling. Liu et al. (2007a)

classified attempts to scheduling in the presence of disruptions into two groups. One

group with completely reactive job dispatching scheduling, and the second group offers

control strategies to aid the system recovery from disruptions with consideration of an

initial schedule. The main difference between the two groups is that no schedule is

generated in advance in the complete reactive scheduling, but decisions are made on real

time using priority dispatching rules. On the other hand, the second group uses a

predetermined schedule called preschedule or predictive schedule that optimizes a certain

performance measure and is implemented until some unforeseen disruption occurs in the

system. Based on the nature of the control strategy the system will respond to the

 57

disruption by rescheduling the part of the predictive schedule that is not implemented

into a new schedule to accommodate that disruption.

This Chapter studies the scheduling robustness and stability of flexible job-shops where

disruptions in the form of machine breakdown are expected. It proposes an approach to

obtain a predictive schedule that minimizes the effect of machine breakdowns in the

overall performance such that the makespan is preserved and increases the schedule

stability with respect to the sum of the absolute deviations of operation completion times

between the realized schedule and the predictive schedule. The obtained predictive

schedule is meant to satisfy two conflicting objectives where it first has to efficiently

utilize the resources, and second, it has to allow sufficient flexibility for changes. This is

achieved by considering the robustness and stability as a bi-objective, with a primary

objective to minimize the schedule makespan. The approach adopted here was first

introduced by Liu et al. (2007b) for single machine scheduling problem with random

machine breakdowns and we extended it for the FJSP. Unlike the approach of Liu et al.

(2007b), the current proposed approach is a non-idle time insertion method. It is modified

to utilize the available flexibility of machine routing with the expected machine

breakdowns to obtain the predictive schedule. Furthermore, a two-stage hybridized

Genetic Algorithm (hGA) is proposed to generate the predictive schedule. The first stage

optimizes the primary objective where all data is considered to be deterministic with no

expected disruptions. The second stage uses the final population from the first stage as its

initial population. This stage optimizes the bi-objective function and integrates the

determination of the operations sequence with the expected machine breakdown in the

decoding space. Furthermore, Analysis of Variance (ANOVA) is conducted to study the

 58

effect of different proposed robustness and stability measures on the performance of the

obtained results.

The remained of this Chapter is organized as follows. Section 3.2 presents the literature

review. Section 3.3 describes the problem formulation of the flexible job-shop scheduling

problem. In Section 3.4, the measures of robustness and stability, the generation of

machine breakdown and the rescheduling methods used in the experiments are illustrated.

Section 3.5 presents the analysis of using the different robustness and stability measures,

and the comparison between the proposed methodology and a classical model that

assumes deterministic data with no disruptions. Finally, a concluding summery is given

in Section 3.6.

3.2 Literature Review

Most scheduling problems including FJSP have been considered as NP-hard. Hence,

heuristic and meta-heuristic approaches have received much attention in literature. In the

following, a brief survey of stochastic scheduling approaches is given.

Numerous papers addressed stochastic single machine with uncertain jobs processing

times, such as the work of Daniels and Kouvelis (1995); Kouvelis et al. (2000); Möhring

et al. (1985); Montemanni (2007); Pinedo (1982); Wu et al. (2009); and Xia et al. (2008).

Al-Turki et al. (1996); Cai and Tu (1996); and Liu et al. (2007b) considered single

machine shops subjected to machine breakdowns. Furthermore, Sevaux and Sörensen

(2004) used a modified GA to find robust solution in single machine environment

subjected to stochastic release dates of jobs.

 59

Byeon et al. (1998); Kutanoglu and Wu (1998); Kutanoglu and Wu (2004); and Wu et al.

(1999) used decomposition heuristic to divide the classical job-shop scheduling problem

with uncertain processing times into a series of subproblems and iteratively update the

problem parameters to analyze the effect of the processing time variation using a priori

stochastic information. Shafaei and Brunn (1999); and Shafaei and Brunn (2000) used the

rolling time approach to investigate the robustness of schedules. Cowling et al. (2004)

used a previously proposed multi-agent architecture with two measures of stability and

utility to produce a robust predictive/reactive schedule. Policella et al. (2004) and

Policella et al. (2005) studied two-stage approach to generate a robust flexible partial

order schedule for the Resource-Constraint Project Scheduling problem with minimum

and maximum time lags.

Leon et al. (1994) proposed a slack-time based robustness measures to analyze the effects

of machine breakdowns and processing-time variability on the quality of the classical

job-shop schedules. The most promising robustness measure is found to be

ܼ௥ୀଵሺݏሻ ൌ ௠௜௡ܵܯ െ ሻ (3.1)ݏ3ሺܦܴ

where, MSmin is the makespan of schedule s, and RD3(s) is the average operation slack in

schedule s. Lawrence and Sewell (1997) studied the performance of simple dispatching

heuristics versus algorithmic solution techniques in job-shops subjected to uncertain

processing times. A similar study was done by Sabuncuoglu and Karabuk (1999) which

showed that dispatching rules are more robust to interruptions than the optimum seeking

off-line scheduling algorithms. Mehta and Uzsoy (1998) presented an algorithm based on

disjunctive graph representation to integrate random breakdowns of machines and

minimizing their effect by inserting idle time into the predictive schedule of a job-shop to

 60

absorb the impact of breakdowns. Jensen (2001b) and Jensen (2003) tried to improve the

robustness and flexibility of the job-shop schedules when minimizing maximum

tardiness, summed tardiness, total flow-time and makespan measures. Both studies used

GA (developed in Mattfeld, 1996) and considered two robustness measures, the

neighborhood-based robustness measure and the lateness-based robustness measure. He

defined schedule neighborhood N1 (s) robustness measure, where N1 (s) contains s and

all feasible schedules that can be created from s by interchanging two consecutive

operations on the same machine, as a weighted average of makespans of schedules in

N1(s) and is given as follows

ܼெௌ೘೔೙
ሺݏሻ ൌ

ଵ

|Nభሺ௦ሻ|
∑ Nభሺ௦ሻ (3.2)אᇱሻ௦ᇱݏ௠௜௡ሺܵܯ

where, ܵܯ௠௜௡ሺݏᇱሻ is the makespan of schedule s'. Laslo et al. (2008) considered the case

of determining the machine booking schedule for a virtual job-shop problem to maximize

the economic gain from outsourced rented machines. Authors assumed that operations

processing times are normally distributed, and hence proposed a heuristic based method.

Anglani et al. (2005) proposed a fuzzy mathematical model of scheduling parallel

machines with sequence-dependent cost while considering uncertainties in processing

times. Recently, Bouyahia et al. (2009) presented a probabilistic generalization to design

robust a priori scheduling that assumes the number of jobs to be processed on parallel

machines as a random variable with respect to the total weighted flow time.

Guo and Nonaka (1999) studied how to reduce the effect of machine failure on a three-

machine flow shop by proposing a method to evaluate initial schedules (preschedules)

and a rescheduling method that is applied after machine failure. Matsveichuk et al. (2009)

proposed a two-stage scheduling decision framework to execute schedules of a two-

 61

machine flow shop with interval processing times. Qi et al. (2006) introduced a

rescheduling approach for single and parallel two-machine environment subjected to

random machine unavailability and processing time variations.

Artigues et al. (2003) proposed insertion techniques for static and dynamic resource-

constrained project scheduling. Surico et al. (2006) suggested a hybrid meta-heuristic that

integrates a mathematical programming, multi-objective evolutionary computation

(genetic algorithm), and a problem-specific constructive heuristic that returns a number

of solutions or the pareto sets (schedules), each with a cost and risk trade-offs, for the

problem of Supply Network (SN) for ready-mixed concrete (RMC). Chtourou and

Haouari (2008) presented a two-stage algorithm to produce robust resource-constrained

project scheduling subjected to unpredictable increase in processing times. Lambrechts et

al. (2008) proposed a tabu search algorithm that uses a free slack-based objective

function to produce robust predictive-reactive project schedules in the presence of

uncertain renewable resource availabilities.

Rangsaritratsamee et al. (2004) proposed a rescheduling method based on local search

genetic algorithm for a job-shop with dynamically arriving jobs. Their proposed

algorithm simultaneously considers the efficiency by preserving the makespan, tardiness

and stability by minimizing the jobs starting time deviations. In their work, the

rescheduling takes place at specific time intervals using all available jobs at the

rescheduling moment. Fattahi and Fallahi (2010) combined the work of

Rangsaritratsamee et al. (2004) and Fattahi et al. (2007) and developed a multi-objective

genetic algorithm based method to scheduling a flexible job-shop with dynamically

arriving jobs. Mahdavi et al. (2010) presented a real-time simulation-based decision

 62

support system to control the production of a stochastic flexible job-shop subjected to

stochastic processing times.

Vinod and Sridharan (2009) experimentally studied different scheduling decision rules

for scheduling dynamic flexible job-shop (jobs arrive intermittently) using a discrete

simulation-based model. They considered a partial flexible job-shop system. The system

consists of eight machines wherein an operation can be executed on three different ones.

Vinod and Sridharan (2011) continued the previous study by studying the interaction

between due-date assignment methods and scheduling rules in a dynamic job-shop

system using a discrete-event simulation model. Their simulation analysis showed that

due-date assignment methods and the used scheduling rules are significantly affecting the

performance measures of the shop.

For a recent overview discussing aspects of scheduling with uncertainties readers are

referred to Davenport and Beck (2002), Aytug et al. (2005), Herroelen and Leus (2005)

and Mula et al. (2006) who gave detailed review of literature related to scheduling under

uncertainty.

In light of the above literature, approaches used to achieve schedule robustness are

classified into two categories, preservation of solution quality approach and execution-

oriented quality approach. In the first, robustness is considered as the ability to preserve

some level of solution quality, such as preservation of makespan in Leon et al. (1994) and

Jensen (2003) or preservation of tardiness and total flow-time as in Jensen (2001b), etc.

In the later, also known as rolling time approach, robustness is achieved by producing

partial schedules and the final decisions are delayed until the execution time is reached or

 63

nearly reached as in Kutanoglu and Wu (1998); Kutanoglu and Wu (2004); and Policella

et al. (2004); etc. Hence, two definitions for a robust schedule can be distinguished:

1. A schedule is considered to be robust if it has low cost relative to other schedule

when facing disruption and when right-shifting is used as a rescheduling algorithm

(Jensen, 2003).

2. A schedule is considered to be robust if it can absorb the external events (disruptions)

without loss of consistency while keeping the pace of execution (Policella et al.,

2004), i.e. without amplifying the effects of a change over all schedule components.

Despite of the apparent similarity between the two definitions, it can be concluded that

the first definition is more suitable for offline scheduling such as predictive scheduling,

whereas the second definition is falling in some category belonging to dynamic

scheduling and more precisely to proactive/reactive (or predictive/reactive) scheduling

and knowledge-based scheduling. Furthermore, the second definition has some

resemblance with the definitions of stable and/or flexible schedule found in literature. In

Cavalieri and Terzi (2006); Policella et al. (2004); and Policella et al. (2005) flexibility

was defined as “the ability to respond effectively to changing circumstances”. A more

thorough definition of flexibility was given by Jensen (2001a) as “a schedule expected to

perform well relative to other schedules, when facing disruption and when some

rescheduling method using search (other than right-shift) is used”. Similarly, Gören

(2002); Liu et al. (2007b); and Wu et al. (1993) defined stable schedule as a schedule that

has a very small deviation either in time or sequence between the predicted schedule and

the realized schedule. At this point one may conclude that the two types of schedules

named stable schedule and flexible schedule used in literature are actually describing the

 64

same schedule. This schedule (stable or flexible) can be related to the system (or

schedule) nervousness measure, i.e. if the performance measure of the schedule

nervousness is high then the stability of the schedule is low (representing an unstable

manufacturing system) and vice versa. Furthermore, a schedule is called robust or stable

depending on how it was designed to adapt to changes and unforeseen future events.

Furthermore, it can be observed that unlike single machine environment, two machines

environment, and job-shop environment, vast majority of the literature published in the

area of stochastic scheduling gives less attention to the FJSP. The literature focuses either

on deterministic FJSP, stochastic classical job-shop scheduling problem (JSP) or dynamic

FJSP. To the best of the author’s knowledge, the literature on predictive scheduling for

the FJSP under random machine breakdowns is almost void. Therefore, the goal of this

work is to improve robustness and stability of predictive schedule for the FJSP subjected

to random machine breakdowns. This Chapter introduces a new methodology that

integrates the non-idle time insertion approach, a modification of the idle time insertion

method of Liu et al. (2007b), and the hGA proposed in Chapter 2. The proposed

methodology is based on a bi-objective hybrid genetic algorithm. Moreover, the current

work relates the robustness of a schedule to its degree of makespan degradation under

disruptions and considers it to be stable when its sum of the absolute deviations of

operation completion times from the realized schedule is small. The used measures are

covered in Section 3.4.

 65

3.3 Problem Definition

FJSP is a generalization of the classical job-shop scheduling problem (JSP). It forms

when alternative production routing of operations is allowed in the classical job-shop.

Therefore, FJSP is strongly NP-hard due to: (a) assignment decisions of operations to a

subset of machines and (b) sequencing decisions of operations on each machine (Tay and

Wibowo, 2004). Hence, allowing stochastic data (like random machine breakdowns in

this works) further complicates the problem. A hypothetical or deterministic FJSP is

usually formulated as follows:

 There are n independent jobs that are indexed by i.

 All jobs are ready to start at time zero.

 Each job i has Oi operations and the operations’ sequence is given by Oij for j = 1,

…, Oi.

 There are m machines indexed by k.

 Machines never breakdown and are always available.

 For each operation Oij, there is a set of machines capable of performing it

represented by },...,1{, mMM kijkij  .

 The processing time of an operation Oij on machine k is predefined and given by

pijk.

 The setup time of any operation is sequence independent and included in its

processing time.

 A started operation cannot be interrupted (non-preemption condition).

 66

 Each machine can process at most one operation at any time (resource

constraints).

 The precedence constraints of the operations in a job can be defined for any pair

of operations.

 The objective is to find a schedule that has the lowest possible value of makespan.

In practical manufacturing environment, disruptions and unforeseen incidents occur.

Therefore, a schedule that is built based on deterministic information of having perfect

knowledge of all problem’s parameters, is impractical and may lead to poor performance.

In this study, it is assumed that the uncertainty of the machine breakdown disruption in

terms of occurrence and duration can be quantified using some distributions determined

from historical data. The prediction of machine breakdown time and duration is covered

in more details in Section 3.4.

3.4 Scheduling with Machine Breakdown Disruptions

3.4.1 Robustness and stability for FJSPs

Dooley and Mahmoodi (1992) stated that the robustness of a schedule refers to its ability

to perform well under different operational environments including dynamic and

uncertain conditions. Thus, it is important to develop a scheduling heuristic (or method)

that enhances the performance in the face of variations during the process

implementations.

This study considers using a bi-objective optimization measure of performance where

weighted sum is used to form a scalar objective function.

 67

Three measures Mh of stability are suggested to be examined:

1) The average difference between the completion times of the predicted operations

and the realized ones:

ଵܯ ൌ ݉݅݊
∑ ∑ ห஼ை೔ೕುି஼ை೔ೕೃห

೜೔
ೕసభ

೙
೔సభ

∑ ை೔
೙
೔సభ

 (3.3)

Where n: number of jobs, qi: number of operations of job i, COijP: the predicted

completion time of operation j of job i, COijR: the realised completion time of

operation j of job i, and Oi: the total number of operations of job i.

2) The difference between the completion times of the predicted operations and the

realized ones:

ଶܯ ൌ ݉݅݊ ∑ ∑ หܥ ௜ܱ௝௉ െ ܥ ௜ܱ௝ோห௤೔
௝ୀଵ

௡
௜ୀଵ (3.4)

3) The average difference between the completion times of the affected predicted

operations and the affected realized ones:

ଷܯ ൌ ݉݅݊
∑ ∑ ห஼ை೔ೕುି஼ை೔ೕೃห

೜೔
ೕసభ

೙
೔సభ

∑ ∑ ஺ை೔
೜೔
ೕసభ

೙
೔సభ

 (3.5)

Where, AOi: the total number of affected operations of jobs i.

These measures are linearly combined (using weighted sum) with the primary objective

function (makespan) to form a bi-objective function to guide the genetic algorithm search

procedure. Since this analysis may result in two schedules, the predictive schedule and

the realized schedule, the performance of using either makespan is investigated by

independently considering both of them in the bi-objective. This results in the following

bi-objective expression:

 68

Ztype,h = min γMStype + (1-γ)Mh (3.6)

Where,

݁݌ݕݐ ൌ ൜
ܲ for predicted schedule makespan; or
ܴ for realized schedule makespan

݄ ൌ ൝
1 for stability measure ܯଵ;
2 for stability measure ܯଶ; or
3 for stability measure ܯଷ

and, γ is a parameter  [0,1].

This, in total, gives six possible combinations of the bi-objective Ztype,h. Each of these bi-

objectives may lead to generate different solutions or schedules. Hence, number of

benchmark problems are used to evaluate which Ztype,h combination performs better in

terms of solution quality. These experiments are addressed in Section 3.5.

3.4.2 Proposed approach

Schedules that are developed based on minimum makespan are not just very short, but

also very dense and compact. Therefore, minimum makespan schedules are prone to a

high level of disruption and instability. Moreover, strategies that are based on inserting

idle times in the predictive schedule to serve as time buffering to absorb the effects of

disruptions face two main difficulties. First, they have to decide how to find the

appropriate locations of inserting that idle times. Second, they have to decide the amount

of inserted idle times amount to be inserted in that location. Hence, inserting idle times to

the schedule may turn the schedule to be inactive and reduce the resources utilization. For

this reason, a non-idle time insertion method is proposed as explained below.

 69

Historical records of a certain shop floor can provide an approximated distribution for the

machine breakdowns. Such distribution can be used in generating the predictive schedule.

The idea behind this is to simultaneously integrate the knowledge of the machine

breakdown probability distribution along with the available flexible routing of machines

to obtain a predictive schedule that assigns and sequence operations on machines in such

a way that has less impact on the overall performance of the schedule in case of

occurrence of machine breakdown, while still maintaining a high level of solution quality

(minimum makespan in the current work). This is achieved in the decoding procedure of

the genetic algorithm, where the effect of disruptions on the predicted activities is

measured using the robustness and stability measure. As a result of this combination, the

algorithm searches for a predictive schedule that can work around the expected

breakdown. This increases the probability of finding a predictive schedule that is located

on a broad beak.

 70

To illustrate this, consider schedules shown in Figure 3.1. The left-hand-side of the figure

shows two Gantt-charts of two possible schedules for a flexible job-shop with three jobs

and three machines according to the processing times given in Table 2.1. When

considering a deterministic FJSP with an objective to minimize makespan, there will be

no preference in selecting either one to be released to the shop floor as both have the

same makespan. However, when the probability of machine breakdown is integrated into

the problem, then selecting a schedule that can absorb the impact of a possible future

machine breakdown can be achieved. For example, if the historical data indicate that

machine M1 has a high chance of failure, then the predicted schedule shown in Figure

Figure 3.1: Example of schedule robustness and stability. For the breakdown specified by
triangles, schedule (b) is more robust and stable than schedule (a).

a)

b)

M1

M2

M3

12 21

31

11 32 22

23

8

M1

M2

M3

12 21

31

11 32 22

23

8

M1

M2

M3

22

31

21 32 12

23

11

8

M1

M2

M3

22

31

21 32 12

23

11

8

After rescheduling:

After rescheduling:

 71

3.1(b-left) is more appropriate to be selected. Consider the right-hand-side of Figure 3.1,

both original predicted schedules are subjected to the same breakdown specified by the

triangles and rescheduling is performed (the used rescheduling method is covered in

Subsection 3.4.3). Since, after rescheduling, schedule (b) has smaller makespan and less

number of disrupted operations than schedule (a), then schedule (b) is more robust and

stable than schedule (a) when facing machine breakdown. The idea behind this is

motivated by the work done in robust optimization of continuous functions which states

that robust optima are located on broad beaks in the fitness landscape. For example,

Branke (1998); and Tsutsui and Ghosh (1997) used genetic algorithm in which they

perturb solutions according to a noise distribution before fitness evaluation and used this

perturb fitness as the fitness of the evaluated phenotype. Similarly, the breakdown

probability is used to perturb the predicted solutions (or schedules) in the decoding

procedure of the proposed algorithm.

3.4.3 Generating machine breakdown

A shop floor may experience number of machine breakdowns during a scheduling

horizon. Having extensive simulations to evaluate the effects of all possibilities of

machine breakdowns at the initial schedule is a cumbersome task and may take

tremendous time. Hence, this work proposes aggregating all breakdowns as one

breakdown and accordingly evaluates the schedule stability. When a machine breakdown

occurs, the operation being processed is resumed after the repair is finished. In this work,

modified Affected Operations Rescheduling (mAOR) proposed by Subramaniam and

Raheja (2003) is used to reschedule operations after the occurrence of the machine

 72

breakdown. In mAOR operations' sequence remains the same as in the predictive

schedule to avoid the setup costs incurred by sequence deviations and only the operations

directly and indirectly affected are pushed in time to account for the disruption. Thus, the

realized operations’ completion time after the occurrence of machine breakdown can be

calculated as follows:

ܥ ௜ܱ௝ோ ൌ ൜
ܵ ௜ܱ௝ோ ൅ ,௜௝௞, for unaffected operations݌ or
ܵ ௜ܱ௝ோ ൅ ௜௝௞݌ ൅ ߬௞,ௗ௨௥௔௧௜௢௡ for affected operations (3.7)

Where, pijk:the processing time of operation j of job i on machine k, k,duration: the

aggregated breakdown duration of machine k; and SOijR: the realized starting time of

operation j of job i and is given by:

ܵ ௜ܱ௝ோ ൌ ܥ൛ݔܽ݉ ௜ܱሺ௝ିଵሻோ,ݐ௞ൟ (3.8)

Where, tk: is the progressive time of machine k.

In practice, the repair duration of a machine may not precisely be known at the

breakdown time. However, its estimate will probably be more precise as the time

progresses. This aspect is ignored in the present work due to the difficulties of its

formulation. Hypothetically, to simulate a machine breakdown, three parameters are

required a) choosing which machine to breakdown, b) the breakdown time, and c) the

breakdown duration. Where most of the previous works randomly select a machine to

breakdown, the current work takes a more practical direction by relating the three

previous parameters to the busy time of the machine. This work assumes that a machine

put in service more than others has a higher probability to fail and its breakdown time

 73

and duration are based on the its elapsed busy time or hours of operations. Thus, all these

parameters are approximated based on the machine’s busy time (MBT).

The probability of machine k to fail is approximated by the following empirical relation:

௞ߩ ൌ
ெ஻்ೖ

ெ஻ ೟்೚೟
 (3.9)

Where, MBTk: the busy time of machine k, and MBTtot: the total busy time of all

machines.

Furthermore, the current work assumes two levels of machine breakdown disruptions,

low level and high level; and two intervals of machine breakdown time, early and late.

This leads to four breakdown parameters combinations. The machine breakdown time

and the aggregated breakdown duration are generated using the following uniform

distributions, respectively:

߬௞ ൌ ሾߙଵܤܯ ௞ܶ, ܤܯଶߙ ௞ܶሿ (3.10)

߬௞,ௗ௨௥௔௧௜௢௡ ൌ ሾߚଵܤܯ ௞ܶ, ܤܯଶߚ ௞ܶሿ (3.11)

Where, k: is the breakdown time of machine k, MBTk: is the busy time of machine k, and

the parameters α and β: are given by Table 3.1. Limiting the values of β between 0.1 and

0.15 keeps the disruption level to a relatively low level, whereas increasing these values

to be between 0.35 and 0.4 raises the disruption level to be from 35% to 40% of the

machine’s busy time. Similarly, limiting the values of α between 0 and 0.5 ensure that the

breakdown occurs during the first half of the scheduling horizon, while the values 0.5 and

1 ensure that the breakdown occurs at a later stage during the second half of the

scheduling horizon.

 74

Table 3.1: Breakdown combinations

Breakdown type Disruption level & occurrence time β1 β2 α1 α2

BD1 Low, early 0.1 0.15 0 0.5

BD2 Low, late 0.1 0.15 0.5 1

BD3 High, early 0.35 0.4 0 0.5

BD4 High, late 0.35 0.4 0.5 1

3.4.4 Framework of the two-stage hGA

As highlighted in Section 3.2, literature related to finding predictive schedules for the

FJSP with stochastic data is almost void. To the best of the author’s knowledge, there is

not previously study that addresses obtaining predictive schedules for the FJSP subject to

random machine breakdowns. Hence, comparing the currently proposed method against

other previous methodologies is not attainable. However, to facilitate the efficiency

assessment of the proposed method, we will adopt the slack-based robustness measure

proposed by Leon et al. (1994) and the neighborhood robustness measure proposed by

Jensen (2003) that are proposed for the classical JSP. These two measures are selected for

three main reasons. First, similar to the proposed method, both are non-idle time insertion

methods. Second, both were originally proposed using genetic algorithm. Third, classical

JSP can be considered as a special case of FJSP without alternative routing of operations.

 75

In the previous Chapter, Chapter 2, a hybrid Genetic Algorithm (hGA) is proposed to

solve deterministic FJSP and the computational results show that the approach is very

efficient in solving these problems. Therefore, eleven different hGAs are created to

minimize eleven objective functions: MSmin (minimum makespan for deterministic

schedules), Ztype,h (minimum bi-objectives of Eq. (3.6) for robust and stable schedules),

 Z୰ୀଵሺsሻ (Eq. (3.1) for minimizing the slack-based robustness, Leon et al. (1994)),

 ZMSౣ౟౤
ሺsሻ (Eq. (3.2) for minimizing the neighborhood robustness measure, Jensen

(2003)), and a robustness measure Zୡ୭୫ୠሺsሻ (Eq. (3.12)) combining the latter two.

ܼ௖௢௠௕ሺݏሻ ൌ
ଵ

|ேభሺ௦ሻ|
∑ ܼெௌ೘೔೙

ሺݏ`ሻ௦`אேభሺ௦ሻ (3.12)

All algorithms used to solve the previous objective functions are based on the hGA

proposed in Chapter 2. This is done by replacing the fitness function of the hGA by the

so-called robust evaluation functions. Replacing the fitness function of the hGA by

different objective functions will lead to obtaining different solutions. Hence, number of

experiments is conducted to evaluate and compare their performance in Section 3.5. At

this stage it may worth highlighting that the advantage of using GA in contrast of other

techniques is the fact that GA utilizes a population of solutions in its search. Taking this

fact along with the fact that finding robust solutions requires the exploration of a diverse

set of solutions, GA may have a higher chance of locating solutions that are located on

broad beaks (see Subsection 3.4.2).

The originally proposed hGA in Chapter 2 to minimize the makespan turned to be easy to

modify so that it minimizes the other robustness and stability measures. The hGA is

modified to work in two stages except for the hGA that minimizes MSmin which consists

 76

of only one stage. Both stages of the proposed two-stage hGA use the same chromosome

representation, chromosome decoding, and genetic evolution. However, in the first stage,

the population is evolved based on the objective of minimizing the makespan assuming

deterministic problem parameters where no disruptions are to occur. This stage is a

common stage shared by all eleven algorithms. After a given number of generations are

reached, the algorithm switches to the second stage. The second stage starts by taking the

final population generated in the first stage as its initial population. Then the algorithm

continues to evolve based on the bi-objective robustness and stability measure with the

random machine breakdown, or by the other robustness measures given in Eq. (3.1), Eq.

(3.2) or Eq. (3.12). Figure 3.2 shows the general flow chart of the proposed two-stage

hGA.

 77

Ini-PopGen

Genetic Evolution

Switching
criterion

Re-initialization

Genetic Evolution

Stopping
criterion

Report Result &
Exit

Yes

Yes

No

No

Figure 3.2: Flow chart of the two-stage hGA

 78

3.4.4.1 Shared two-stage elements

The used chromosome representation is a permutation-based representation; where each

operation is represented by triples (k,i,j) such that k is machine assigned to the operation,

i is current job number, and j is the progressive number of that operation within job i. A

schedule for FJSP with three jobs and three machines can be represented by (221-131-

111-212-322-223-332). This representation has the advantage of solving the scheduling

problem using a concurrent approach as well as modeling alternative routing of the

problem by changing the index k.

The initial population for the first stage is produced using two techniques. The first

technique is to generate half of the population by randomly selecting a progressive

operation number of an unscheduled operation and then randomly assigning it to an

appropriate machine. The second half of the population is generated using a schedule

construction heuristic called Ini-PopGen that randomly assigns priority to jobs. Based on

this priority an operation is scheduled on the machine that can finish processing sooner

from the set of appropriate machines. This procedure considers the processing time and

the work load on the machine while assigning operations.

Chromosomes decoding follows an active decoding procedure, wherein no operation can

be started earlier without delaying at least one other operation or violating the

technological constraints. The active decoding starts by scheduling left operation before

right ones. After the active decoding, the schedule is improved by a local search

procedure that results in a local optimal schedule (Lamarckian learning). However, this

local search procedure is only applied every dth generation and number of moves is

 79

limited to a maximum loc_iter moves without improvements. At the end of this

procedure, the schedule is transferred back to a chromosome.

The selection of individuals for mating is divided into two phases. The first phase uses

roulette wheel technique to form donors’ mating-pool based on a selection probability

given by Eq. (2.1).

The second phase starts if the individual in the donors’ mating-pool passes a crossover

probability Pc. Here, an n-Size tournament method is used to select n chromosomes from

the population to form the receivers’ mating-sub-pool. Then, the best individual (one with

lowest makespan or lowest robustness measure) in the sub-pool is chosen for

reproduction.

The genetic operators are specially designed for the proposed chromosome representation

to avoid creation of invisible chromosomes. The designed crossover operator is based on

the Precedence Preserving Order-based Crossover (POX) (Kacem et al., 2002a) and was

modified to not treat the parents symmetrically. Two mutation operators are used here.

The first operator is Machine Based Mutation (MBM), where a random number of

operations (denoted as nrand) are selected and reassigned to another machine. After

subjecting the chromosome to POX, modified Position Based Mutation (PBM) (Mattfeld,

1996) is applied. PBM was originally designed for JSP using single triple permutation-

based chromosomes representation. Thus, the PBM is modified so that no infeasible

chromosomes are produced. This mutation starts by randomly selecting an operation

within the chromosome and then reinserting it at another position in a way that does not

violate the technological constraints. Readers are referred to Chapter 2 for a detailed

description of this hGA.

 80

3.5 Benchmark Problems

Since there are no standard benchmarks for stochastic flexible job-shop scheduling

problem, a number of deterministic FJSP benchmarks found in literature are used for the

experiments. Selected benchmarks are chosen to represent realistic flexible job-shop

systems. Most literature used systems consisting of four to ten machines (Vinod and

Sridharan, 2009). Hence, the following benchmarks are selected to be similar to the

contemporary research of FJSP.

1- Three T-FJSP benchmarks; Ex1 consisting of 10 x 7, Ex2 consisting of 15 x 10,

and Ex3 consisting of 10 x 10, where the first two are taken from Kacem et al.

(2002b), and the third is taken from Mesghouni et al. (1997).

2- Twelve P-FJSP benchmarks; Ex4 consisting of 5 x 3 taken from Lee and

DiCesare (1994), Ex5 consisting of 8 x 8 taken from Kacem et al. (2002a), and

examples MK01 – MK10 with different sizes varying between 10 x 6 and 20 x 15

proposed by Brandimarte (1993).

3.5.1 Computational results

Although great care is paid in selecting representative benchmarks that covers wide range

of reported FJSP systems in literature, it is unlikely to generalize the conclusions. This is

because the results depend on the assigned values to the parameters of the simulated

system. However, since the used benchmarks cover wide range of systems and

 81

conditions, it may be sensible to anticipate that results and conclusions are relevant in a

broader sense.

The experimental work in this section is divided into three parts. In Subsection 3.5.1.1

experiments are conducted to analyze the performance of the predictive schedule

generated by the method proposed in this Chapter while using different bi-objective

robustness and stability measures given in Eq. (3.6). In Subsection 3.5.1.2 the

performance of the predictive schedule generated using the proposed method while using

the best found bi-objective robustness and stability measure with the random machine

breakdown from Subsection 3.5.1.1 is compared with the predictive schedules obtained

using other robustness measures given in Eq. (3.1) Eq. (3.2) and Eq. (3.12) against

schedule generated by optimizing the MSmin. The last Subsection 3.5.1.3 discusses why

predictive schedules obtained by the proposed algorithm outperform the predictive

schedules obtained by other methods.

The two-stage hGA is coded and executed using C++ on an Intel® Core™ 2 Quad CPU

@ 2.4 GHz with 3.24 GB RAM. For comparability and ease of implementation reasons,

all hGA are closely related and the parameters are experimentally tuned according to the

performance of the deterministic hGA (minimizing MSmin). The parameter values that are

chosen for the two-stage hGA algorithm are as follows: population size 500, crossover

probability 0.7, mutation probability 0.3, number of generations 500, number of parents

in the receivers’ mating sub-pool 4, number of generations to perform local search d =

10, maximum number of moves without improvement in the local search loc_iter = min

[tot_noper, 150], the worst chromosome is replace every k = 3 generations, the algorithm

switches to stage-two after 100 generations, and for Eq. (3.4)  = 0.6 (Liu et al., 2007b).

 82

3.5.1.1 Analysis of robustness and stability measures

To analyze the performance of the different robustness and stability measures with the

random machine breakdowns proposed in this Chapter in terms of solution quality, four

different test cases are used. These are Ex3, Ex1, MK02, and MK05; and will be referred

to by test case 1, test case 2, test case 3, and test case 4, respectively. The analysis of

variance (ANOVA) is performed using the commercial statistical software Minitab 14.

Each test case is subjected to the four different levels of the breakdown type, and each

time is solved using one of the six robustness and stability measures (Eq. (12)), resulting

in 4 x 6 = 24 settings per problem. In order to draw more accurate responses, five

replications for each of the 24 different settings of each test case is used. Then each

generated predictive schedule is subjected to 400 random machine breakdowns which

results in 24 x 5 x 400 = 48000 test problems per test case and 48000 x 4 = 192000 test

problems in total.

Since this comparative study is done to evaluate the performance of the predictive

schedule obtained using robust method against the obtained schedule using the

deterministic method, both obtained schedules are subjected to the same machine

breakdown disruption and their performance is compared in terms of the predictive

makespan, realized makespan, and stability measure. Usually a scheduler requires a

schedule that has a minimum makespan when released to the shop floor and that this

same schedule, if a disruption occurred, has the minimum realized makespan after

rescheduling is implemented with the highest stability (i.e. lowest system nervousness).

Hence, the pervious performance criteria of each obtained schedule using the two

 83

methods are combined in a relative solution quality measure. This relative measure

enables us to examine the results’ quality with respect to the average values of

replications at each combination, and analyze the effect of the considered factors on the

performance measures and their interaction effects using analysis of variance (ANOVA).

The relative solution quality of the obtained robust schedule compared to the

deterministic schedule for each test problem is given by:

min ܶܮܷܴܳ ൌ ቀோெௌುି஽ெௌು

஽ெௌು
ቁ ൅ ቀோெௌೃି஽ெௌೃ

஽ெௌೃ
ቁ ൅ ቀோௌ்஻ି஽ௌ்஻

஽ௌ்஻
ቁ (3.13)

Where, RMS and RSTB: are the makespan and the stability of the obtained schedule using

robust method, respectively; DMS and DSTB: are the makespan and the stability of the

obtained schedule using deterministic method, respectively; and the subscripts P and R:

refer to predictive (or the original released schedule to the shop floor) and realized (or the

actual schedule after breakdown), respectively.

 84

Table 3.2: ANOVA results concerning RQULT

Factor F-ratio P-value

A: Measure 80.93 0.000

B: Test case 23.16 0.000

C: BD Type 34.70 0.000

AB 10.95 0.000

AC 3.33 0.000

BC 2.29 0.017

Table 3.2 shows F-ratio and P-value of the ANOVA results from the experiments. This

test results show the effect of the used robustness and stability measure, the considered

test case, breakdown type and the interaction between these factors on the relative quality

of the predictive schedule. In this study, effects are considered significant if the P-value

is less than 0.05. The F-ratio indicates that the used robustness and stability measure has

the most statistical significant effect on the relative quality of the obtained results

followed by the breakdown type (BD type). However, the interaction between them does

not have the same significance. Figure 3.3 shows the RQULT is generally constant when

applying different robustness and stability measures to the first two test cases except for

measures ZR,1 and ZR,3. However, ZR,2 and ZP,2 show their superiority over other measures

in terms of providing lower RQULT per test case and both provide significantly better

results for test cases 3 and 4. This result can be related to the nature and the problem size

 85

of the test cases. Test cases 1 and 2 are both T-FJSP and have relatively smaller total

number of operations (30 and 29, respectively), whereas test cases 3 and 4 are P-FJSP

and have higher total number of operations (58 and 106, respectively). The domino effect

in small shop floors has less impact than on the large shop floors. Furthermore, it can be

observed from Figures 3.3 and 3.4 that the different measures have a similar behavior to

the different BD types and that all measures perform better with early expected

breakdowns rather than with late expected breakdowns. Moreover, it can be concluded

that the third robustness and stability measure, ZR,2, offers the best RQULT when

comparing it against different test cases and BD types and hence it is used for the

computational results in the next subsection.

Figure 3.3: Significant interaction effects of factors on RQULT.

 86

3.5.1.2 Predictive schedules performance

The previous subsection concluded that optimizing the bi-objective ZR,2 offers the best

RQULT. Hence, this subsection compares the performance of the predictive schedules

obtained using the bi-objective ZR,2 and the predictive schedules obtained using the

robustness measures given in Eq. (3.1) Eq. (3.2) and Eq. (3.12) against the schedules

obtained using deterministic scheduling approach that minimizes MSmin. Similar to

Subsection 3.5.1.1, each benchmark is subjected to the four different BD types with 5

Figure 3.4: Significant interaction effects between different measures and BD type on

RQULT.

 87

replications per instance per BD type. After that, each generated predictive schedule is

subjected to a 400 random machine breakdowns. Table 3.3 and Table 3.4 show the

compared results in terms of the average improvement percentage for BD1 and BD2; and

BD 3 and BD 4, respectively.

The average realized makespan improvement percentage (AMSRI) is obtained by:

ܫோܵܯܣ ൌ
∑ ∑ ோெௌೃሺ௤ሻ೛ି∑ ∑ ஽ெௌೃሺ௤ሻ೛

రబబ
೛సభ

ఱ
೜సభ

రబబ
೛సభ

ఱ
೜సభ

∑ ∑ ஽ெௌೃሺ௤ሻ೛
రబబ
೛సభ

ఱ
೜సభ

ൈ 100 (3.14)

The average stability improvement percentage (ASTBI) is obtained by:

ܫܤܶܵܣ ൌ
∑ ∑ ோௌ்஻ሺ௤ሻ೛ି∑ ∑ ஽ௌ்஻ሺ௤ሻ೛

రబబ
೛సభ

ఱ
೜సభ

రబబ
೛సభ

ఱ
೜సభ

∑ ∑ ஽ௌ்஻ሺ௤ሻ೛
రబబ
೛సభ

ఱ
೜సభ

ൈ 100 (3.15)

Where, q and p are the replication predictive schedule, and the breakdown number,

respectively.

Tables 3.3 and Table 3.4 consist of 11 columns. The first and second columns represent

the instance name and size. The third column refers to the average improvement

percentage of each instance. The remaining columns are labeled according to the

performance robustness measure compared against deterministic scheduling approach

when subjected to a specific breakdown type. For each column, the best performance;

lowest average improvement percentage; is printed in bold. Furthermore, negative values

in the tables indicate that there are improvements whereas positive values indicate that

there are degradations when comparing different methods.

 88

When comparing the proposed approach to the deterministic approach computational

results in Table 3.3 and Table 3.4 show that it has improved the stability in all instances,

whereas the efficiency has improved in 76.67%, slightly degraded in 18.33%, and

remained the same in 5% of the instances. A closer look at Table 3.3 and Table 3.4

reveals that the degradation is very minimal as in average the degradation was less than

1.5%. Furthermore, the proposed approach is performing better in stability in 95% and

slightly worse in 5% of the instances; and the efficiency is better in 75%, similar in

6.67% and worse in 18.33% of the instances when compared to the other robustness

approaches. This finding confirms that using the proposed bi-objective methodology is

very useful in improving efficiency and stability of predictive schedules. Also, it shows

that stability is improved far more the efficiency even for instance where the efficiency is

degraded. This is a very tempting outcome in real FJSP. In practice schedule stability is

often very important as changing starting of activities may complicate prior commitments

with suppliers or subcontractors and increases the system nervousness.

To further investigate the impact of the breakdown type on the performance of the

proposed approach, a one-way ANOVA test is performed. Table 3.5 shows the F-ratio

and the P-value of the one-way ANOVA results. Since the AMSRI and ASTBI distribution

functions are not known, the results of this statistical test has to be taken with care as

ANOVA tests requires the observations to be normally distributed. Nevertheless,

ANOVA test is robust with respect to violations of this condition (Rutherford, 2001).

Results from Table 3.4 indicate that the BD type has a significant effect on both

measures. This is supported by Figure 3.5 which shows the main effects of BD type on

the performance of efficiency and stability of the proposed approach.

 89

Table 3.3: Computational results of instances subjected to breakdown type BD1 and BD2

Instance Size

 BD1 BD2

ZR,2 ZR,2

Ex1 10 x 7
AMSRI -1.64 -1.64 4.92 1.64 -1.75 3.51 0 0

ASTBI -53.66 -26.83 26.83 24.39 -61.11 -22.22 -38.89 -38.89

Ex2 15 x 10
AMSRI -1.64 4.82 6.56 1.64 3.28 4.92 6.56 3.28

ASTBI -96.97 -3.56 9.09 0 -58.26 11.3 32.17 73.91

Ex3 10 x 10
AMSRI -5.41 0 -2.7 -2.7 -5.41 0 -2.7 0

ASTBI -100 50 -40 50 -90.91 -63.64 -72.73 11.14

Ex4 5 x 3
AMSRI -5.03 1.51 -0.5 -2.51 2.65 4.76 2.12 2.65

ASTBI -86.91 -9.06 -15.77 -19.46 -24.14 8.62 14.66 12.07

Ex5 8 x 8
AMSRI -1.35 0 1.35 1.35 -4.37 -2.56 -2.56 1.28

ASTBI -73.33 -20 -20 -36.67 -37.12 38.46 -30.77 61.54

MK01 10 x 6
AMSRI -4.7 -4.98 -3.17 -3.42 0.91 2.87 4.78 2.87

ASTBI -62.64 -40.64 -44.65 -34.06 -81.74 1.68 11.77 1.68

MK02 10 x 6
AMSRI 0 2 4.67 4 0 -1.33 1.32 -0.66

ASTBI -55.61 18.56 15.81 -1.92 -5.89 51.9 13.92 -8.86

MK03 15 x 8
AMSRI -4.45 -5.45 -4.45 -5.45 -7.27 -8.52 -7.18 -8.52

ASTBI -85.85 -20.12 -21.89 -26.92 -66.79 -35.95 -50.55 -62.63

MK04 15 x 8
AMSRI 0.29 4.39 3.51 2.92 0.3 3.25 4.14 5.92

ASTBI -49.09 31.63 26.18 -20.36 -32.63 -3.76 -11.68 22.96

MK05 15 x 4
AMSRI -1.33 0.41 1.64 0.72 -1.05 -0.51 1.11 0.2

ASTBI -61.02 5.81 -9.27 -15.21 -9.01 1.71 -1.81 -8.21

MK06 10 x 15
AMSRI -1.31 0.28 1.01 1.96 0.25 -0.85 2.54 3.11

ASTBI -58.78 -23.6 -29.68 -30.36 -42.61 -51.66 21.54 6.93

MK07 20 x 5
AMSRI -1.87 0.79 2.53 3.54 -2.5 -0.13 3.87 1.72

ASTBI -83.42 -8.32 -7.18 -26.06 -40.26 56.12 41.82 -17.96

MK08 20 x10
AMSRI -4.05 1.35 1.28 -0.04 1.72 2.32 3.8 0.86

ASTBI -86.57 7.54 15.81 -1.7 -31.54 79.02 161.22 70.13

MK09 20 x 10
AMSRI -4.23 -1.61 -2.39 -2.39 -2.51 -0.87 -0.66 -0.66

ASTBI -66.60 -10.96 -10.75 -10.75 -46.96 -17.24 -16.15 -16.15

MK10 20 x 15
AMSRI 2.87 -0.48 3.36 2.98 0.74 0.49 3.3 4.04

ASTBI -58.23 -16 -3.96 -2.13 -48.32 6.10 -7.82 10.21

Average
AMSRI -2.26 0.09 1.17 0.28 -1 0.49 1.36 1.07

ASTBI -71.91 -4.37 -7.3 -10.08 -45.15 4.03 4.45 7.86

 90

Table 3.4: Computational results of instances subjected to breakdown type BD3 and BD4

Instance Size

 BD3 BD4

ZR,2 ZR,2

Ex1 10 x 7
AMSRI -11.11 -8.33 -8.33 -9.72 -16.67 7.25 -8.7 -11.59

ASTBI -94 -6 -15 -13.28 -18.75 70 130 45

Ex2 15 x 10
AMSRI -2.86 8.57 1.79 11.43 -1.76 -2.7 5.41 2.7

ASTBI -82.73 23.21 4.96 56.96 -37.34 -23.81 -19.05 -23.81

Ex3 10 x 10
AMSRI -6.98 -2.33 -2.33 2.07 -9.52 -7.14 0 -4.76

ASTBI -46.15 0 -5.13 40.13 -60 -6.67 26.67 -13.33

Ex4 5 x 3
AMSRI -0.83 3.75 0 1.67 -11.67 -7.5 -1.25 1.25

ASTBI -69.03 2.53 -4.41 16.44 -34.69 -13.7 16.62 -11.95

Ex5 8 x 8
AMSRI -13.33 -5.56 -2.22 -3.67 2.47 6.17 6.17 8.64

ASTBI -83.96 0.53 -5.88 15.51 -86.96 139.13 143.48 121.74

MK01 10 x 6
AMSRI -9.39 -6.56 -6.53 -5.31 -8.8 -6.4 -3.2 -7.2

ASTBI -69.71 -8.42 -35.62 -9.14 -44.67 -18.27 -18.78 -23.35

MK02 10 x 6
AMSRI 0 3.28 0 2.73 -7.73 -3.31 4.97 -4.42

ASTBI -57.64 20.56 -20.94 -1.92 -11.3 75.67 80.27 5.98

MK03 15 x 8
AMSRI -5.24 -5.14 -4.24 -5.24 -13.18 -11.09 -6.11 -17.19

ASTBI -70.51 -9.24 -15.13 -17.66 -49.82 0.93 14.58 -30.64

MK04 15 x 8
AMSRI -8.74 4.92 3.55 1.37 -13.83 -1.61 -0.25 -0.25

ASTBI -96.38 28.05 22.28 -25.49 -92.11 -4.1 -13.82 -13.82

MK05 15 x 4
AMSRI -7.32 0.61 1.5 0.62 -13.87 -0.34 1.52 0.59

ASTBI -70.19 -28.63 -28.2 -29.98 -60.6 20.14 26.36 3.96

MK06 10 x 15
AMSRI -7.28 6.31 4.09 1.86 -4.23 -0.32 1.38 1.2

ASTBI -66.23 23.16 1.23 -12.04 -36.99 -21.77 -23.63 -28.99

MK07 20 x 5
AMSRI 0.31 2.15 1.02 3.15 -6.28 -2.94 2.53 0.14

ASTBI -31.18 -14.22 -30.34 -21.35 -32.28 4.8 -19.41 3.52

MK08 20 x10
AMSRI -8.4 0.47 -2.51 -1.44 -1.93 4.4 5.94 7.07

ASTBI -61.78 6.65 -13.47 -0.15 -33.38 23.87 78 95.04

MK09 20 x 10
AMSRI -5.4 -2.05 -2.77 -2.8 -5.58 -1.29 -0.46 -0.46

ASTBI -36.99 -4.3 -11.4 1.16 -26.34 -18.75 -25.78 -25.78

MK10 20 x 15
AMSRI -9 -0.38 1.73 3.72 -3.11 -0.46 2.35 2.74

ASTBI -75.88 -9.11 -7.56 -4.13 -2.04 -6.61 53.56 56.33

Average
AMSRI -6.37 -0.02 -1.02 0.03 -7.71 -1.82 0.69 -1.44

ASTBI -67.49 1.65 -10.97 -0.33 -41.82 14.72 29.94 10.66

 91

a)

b)

Figure 3.5: Main effects of BD type on: a) AMSRI, b) ASTBI.

4321

0

-1

-2

-3

-4

-5

-6

-7

-8

BD Type

A
M

S
R

I

4321

-40

-45

-50

-55

-60

-65

-70

-75

BD Type

A
S

TB
I

 92

Furthermore, most of the degradation in efficiency happened in the predicted schedules

obtained for the instances when BD2 was expected, 63.64% of degraded cases to be

exact. This may be explained by recalling that the inspiration of the proposed algorithm is

to find a predictive schedule that is located on a broad beak where the breakdown is

expected (see Subsection 3.4.2). Since BD2 assumes that the breakdown disruption is low

and its occurrence is expected at a late stage of the schedule implementation, then the

chance of obtaining a schedule with a relatively narrow beak is high. Hence, more

emphasis was put to make the predictive schedule stable at the cost of sacrificing some of

the efficiency (due to the bi-objective function that is used to guide the hGA

convergence). Another possible cause of this can be attributed to the intuition since the

expected late occurrence of breakdown disruption means that fewer operations are

affected by the breakdown. Thus, the chance of critical operations to be among the

affected operations by the breakdown is also less. This reduces the possibility of delaying

the schedule (i.e. increasing its makespan) and hence minimizing the stability term in the

bi-objective function is emphasized more. These conclusions are supported when we

consider the results of the predictive schedules obtained when BD1 and BD4 are

expected. Similar to BD2, BD1 assumes a low disruption level, but at an early stage. This

means that more operations are affected by rescheduling and as result solutions with

narrow beaks will be rejected in order to minimize the degradation in efficiency

measured by the makespan. Moreover, BD4 assumes a late disruption occurrence, but

with a high level. The expected high level disruption influences the hGA to converge

towards solutions that are less sensitive to such disruptions. This seems to forcing the

 93

hGA to search for predictive schedules that are located at a broader beak around the

expected disruptions to reduce its possible effects in efficiency and stability.

Table 3.5: One-way ANOVA results concerning AMSRI and ASTBI of the proposed

method

 AMSRI ASTBI

Factor F-ratio P-value F-ratio P-value

BD Type 10.22 0.000 7.63 0.000

3.5.1.3 Overview of the proposed bi-objective approach

Results in the previous subsection suggest that the proposed bi-objective approach is able

to find predictive schedules that can perform better (in terms of both, efficiency and

stability) than predictive schedules obtained by using slack-based robustness measure

(ܼ௥ୀଵ) and neighborhood robustness measure (ܼெௌ೘೔೙
). The superiority of the proposed

approach in increasing the predictive schedule’s stability can be explained by recalling

the fact that both later algorithms do not consider stability in their objective function

whereas ours does. However, this argument does not explain the achieved efficiency.

Nevertheless, the improved performance in terms of efficiency and stability can probably

be justified by summon up the basic principle behind the different algorithms.

The driving motor of the slack-based robustness measure (Eq. (3.1)) is to generate a

schedule in which operations have slack. Since slack of an operation is defined as the

time by which an operation can be delayed without worsening the schedule performance

 94

(makespan), this slack works as a buffering time that can absorb effects of disruptions.

Furthermore, according to the Slack Hypothesis proposed by Jensen (2003),

neighborhood robustness measure (Eq. (3.2)) generates a predictive schedule that has

slack too. However, the slack created by neighborhood robustness measure is less than

that created by the slack-based robustness measure. This is supported by results shown in

Table 3.3 and Table 3.4. In general, these results suggest that the predictive schedules’

performance of these two measures are first dependent on the details of the experiments,

and second in most cases the performance of the slack-based robustness measure is better

than the neighborhood robustness measure when especially the breakdown duration is

high. This finding is in fact complying with the finding of Jensen (2003). The enhanced

performance of the slack-based robustness measure in favor of neighborhood robustness

measure is actually related to the slack amount imposed by each of the two measures.

Unlike the slack-based robustness measure, the amount of slack formed by the

neighborhood robustness measure is probably less. This is due to legitimacy that

neighborhood-based robustness measure is intended to find a predictive schedule close to

a set of schedules in the neighborhood N1 where all have a good performance, whereas

the slack generated by this measure in the obtained predictive schedule is only a

secondary of that search.

In Subsection 3.4.2, it was stated that the aim of this Chapter is to develop a non-idle time

insertion approach so that a predictive schedule that can work around an expected

machine breakdown is obtained. This was achieved by simultaneously integrating the

knowledge of the machine breakdown probability distribution along with the available

flexible routing of machines and accordingly assigning and sequencing operations of the

 95

predictive schedule. The efficient performance of predictive schedules subjected to

machine breakdown disruptions obtained using this approach suggests that these

schedules have more slack than ordinary schedules obtained by minimizing MSmin as well

as schedules obtained by minimizing ܼ௥ୀଵand ܼெௌ೘೔೙
. This slack is a result of small

delays in schedule caused by considering operations swaps and alternative machines

assignments done to accommodate the expected machine breakdown disruption in the

decoding procedure of the genetic algorithm. In order to have smaller objective function

value for the hGA (low bi-objective value ZR,2), the predictive schedule is necessitated to

still have good performance even with these delays. This two conflicting requirements

forces the hGA to search for schedules that concentrate more slack for operations close to

where the breakdown disruption is expected to occur and reduce it elsewhere. To verify

this hypothesis, predictive schedules obtained for the instance MK08 by the proposed

approach when BD2 machine disruptions are expected were randomly selected. After

that, these schedules were subjected to BD3 machine breakdown disruptions instead of

BD2 machine disruptions. The results showed that on average the expected AMSRI and

ASTBI of these schedules with respect to predictive schedules obtained by minimizing

MSmin, i.e. deterministic approach, have increased from -8.4 and -61.78 to 0.60 and 6.98,

respectively. This increase indicates that these predictive schedules are more compact and

dense around the region where the actual breakdown disruptions occurred and the

schedule slack was not enough to absorb the effect of the disruptions.

 96

3.6 Conclusion

This Chapter proposed a preservation of solution quality approach that considers both

robustness and stability in obtaining predictive schedules of flexible job-shops subject to

machine breakdowns. The stability of the predictive schedule is evaluated by an

aggregated machine breakdown. Furthermore, this Chapter defined six different bi-

objective performance robustness and stability measures and investigated their

effectiveness in producing robust and stable predictive schedules. For this, an ANOVA

comparative study is conducted to compare the performance of these bi-objective

measures. ANOVA results revealed that the robustness and stability measure called ZR,2

can significantly improve the relative quality of the predictive schedule (RQULT) of FJSP

where longer and/or early breakdown are expected.

The performance of the bi-objective robustness and stability measure ZR,2 was compared

against a neighborhood-based and a slack-based robustness measures taken from the

literature. The predictive schedules for the FJSP were obtained using a two-stage genetic

algorithm that was proposed to solve the previous measures. Computational results

showed that predictive schedules generated using the proposed approach is superior in

most cases in terms of robustness and stability than the referred methods. Moreover,

results showed that the breakdown details of the experiments have a significant effect on

the relative performance of the proposed approach.

 97

CHAPTER 4

 ROBUST SCHEDULING OF FLEXIBLE JOB-SHOP
WITH PROCESSING

TIME UNCERTAINTY: A COMPARISON STUDY

This Chapter considers the flexible job-shop scheduling problem when processing times

of some operations are represented by or subjected to low-to-medium uncertainty. This

uncertainty is represented by a uniform distribution with given lower and upper bounds.

The objective is to find a predictive schedule that can deal with this uncertainty while

maintaining its robustness. In this Chapter, two genetic approaches to obtain predictive

schedule are compared. An approach based on expected processing times and an

approach based on sampling technique. To determine the performance of the predictive

schedules obtained by both approaches with respect to two types of robustness, an

experimental study and Analysis of Variance (ANOVA) are conducted on a number of

benchmark problems.

4.1 Introduction

Flexible job-shop scheduling problem (FJSP) is computationally difficult problem to

solve. Hence, classical FJSP where all related data about the problem is assumed to be

fixed or deterministic are considered as combinatorial optimization problems and

classified as NP-hard problems (Garey et al., 1976). Recently, the use of meta-heuristics

methods such as simulated annealing (SA), tabu search (TS) and genetic algorithm (GA)

 98

in solving FJSP proved that an optimal or near optimal solution can be found with

relatively small computational effort.

However, in real manufacturing systems unforeseen incidents happen. For this, classical

models that assume deterministic data about processing times of operations, machines

availability; etc; may; in theory; produce an optimal or near optimal schedule, but its

performance may deteriorate when implemented in practice; i.e.; released to the shop

floor; due to unexpected disruptions. Nevertheless, when incorporating the data

uncertainty in the formulation of the already NP-hard FJSP, the problem becomes even

more difficult and complicated to solve.

A number of methods are suggested in literature to deal with stochastic parameters of a

certain scheduling problem. However, based on the desire of the decision maker these

methods can be classified and accordingly choose a method that fulfills his need. For

example, some decision makers favor a solution that can hedge against the worst possible

scenario; others prefer a solution that has a high quality on average; whereas some look

for a solution that minimizes the risk of ending with a bad solution. Sevaux and Sörensen

(2004) presented a GA that uses sampling technique to estimate the robustness of a single

machine schedule subjected to small variation in release dates. They stated that, in a

similar way, other types of stochastic problem data can be easily incorporated. This

Chapter modifies the hybridized genetic algorithm (hGA) proposed in Chapter 2 to deal

with FJSP when some operations are represented by or subjected to variations

characterized by a uniform processing time. Furthermore, the study compares two

methods, a method based on sampling technique similar to Sevaux and Sörensen (2004)

 99

and a method that optimizes the objective function based on the expected processing time

of the operations (i.e. simple method similar to deterministic approach).

Schedules obtained from both methods are compared based on two robustness measures,

quality robustness and solution robustness. This Chapter adopts the same definitions for

both robustness measures adopted by Sevaux and Sörensen (2004). Quality robustness is

measured by the objective function value (makespan of the predictive schedule). Here, a

schedule is said to be of quality robust when its objective value does not deviate much

from the best obtained optimal or near optimal solution. On the other hand, solution

robustness measures how much the solution has deviated after the disturbance from the

original solution (makespan of the realized schedule). This means that the first robustness

measure, quality robustness, is concerned with the objective function space whereas

solution robustness is concerned with the solution space. The advantage of considering

these two measures when comparing obtained schedules is emphasized more in Section

4.5.

The remainder of this Chapter is structured as follows: after the literature review in

Section 4.2, Section 4.3 describes the FJSP. Section 4.4 discusses the modified hGA

architecture. Analysis of the computational results is presented and discussed in Section

4.5. Finally, the research summary is covered in Section 4.6.

4.2 Literature Review

For decades the emphasis of literature that discusses scheduling problems is put towards

deterministic scheduling problems where the data parameters are assumed to be fixed and

 100

known beforehand. Nevertheless, recently more attention is given to schedule systems

where some data parameters are unknown or are represented by some probabilistic

distributions. Since most scheduling problems are classified as NP-hard, heuristic and

meta-heuristic approaches received much attention to deal with the presence of

uncertainty in the problem’s data parameters. This section gives a brief survey of

stochastic scheduling approaches found in literature.

Daniels and Kouvelis (1995); Kouvelis et al. (2000); Möhring et al. (1985); Montemanni

(2007); Pinedo (1982); Wu et al. (2009); and Xia et al. (2008) addressed stochastic single

machine with uncertain jobs processing times. Single machine environment subjected to

machine breakdowns was considered by others like Al-Turki et al. (1996); Cai and Tu

(1996); and Liu et al. (2007b). Similarly, Sevaux and Sörensen (2004) used a modified

GA to find robust solution in single machine environment subjected to stochastic release

dates of jobs.

Also, Leon et al. (1994) analyzed effects of machine breakdowns and processing time

variability on the quality of job-shop schedules using slack-time based robustness

measure. The performance of simple dispatching heuristics versus algorithmic solution

techniques in job-shops subjected to uncertain processing times were studied by

Lawrence and Sewell (1997) and Sabuncuoglu and Karabuk (1999) showed that

dispatching rules are more robust to interruptions than the optimum seeking off-line

scheduling algorithms. Mehta and Uzsoy (1998) proposed a two-step algorithm based on

disjunctive graph representation to minimize maximum lateness and absorb the impact of

random machine breakdowns on the predictive schedule of a job-shop by inserting idle

time. Furthermore, Jensen (2001b, and 2003) used GA (proposed in Mattfeld, 1996) to

 101

improve the robustness and flexibility of the job-shop schedules when minimizing

maximum tardiness, summed tardiness and total flow-time measures using two

robustness measures, a neighborhood-based robustness measure and a lateness-based

robustness measure.

Guo and Nonaka (1999) studied how to reduce the effect of machine failure on a three-

machine flow shop by proposing a method to evaluate initial schedules (predictive

schedules) and a rescheduling method that is applied after machine failure. Shafaei and

Brunn (1999) and Shafaei and Brunn (2000) used the rolling time approach to investigate

the robustness of schedules. Byeon et al. (1998); Kutanoglu and Wu (1998); Kutanoglu

and Wu (2004); and Wu et al. (1999) applied decomposition heuristic to divide the

classical job-shop scheduling problem with uncertain processing times into a series of

subproblems and then the problem parameters are iteratively updated to analyze the effect

of the processing time variation using a priori stochastic information.

Anglani et al. (2005) presented a fuzzy mathematical model of scheduling parallel

machines with sequence-dependent cost while considering uncertainties in processing

times. Matsveichuk et al. (2009) proposed a two-stage scheduling decision framework to

execute schedules of a two-machine flow shop with interval processing times. Also,

Bouyahia et al. (2009) proposed a probabilistic generalization to design robust a priori

scheduling that assumes the number of jobs to be processed on parallel machines as a

random variable with respect to the total weighted flow time. Mahdavi et al. (2010)

presented a real-time simulation-based decision support system to control the production

of a stochastic flexible job-shop subjected to stochastic processing times. Readers are

referred to Davenport and Beck (2002), Herroelen and Leus (2005), Aytug et al. (2005)

 102

and Mula et al. (2006) who gave detailed review of literature related to scheduling under

uncertainty.

In light of the literature, scheduling under uncertainty can be classified into number of

categories depending on the adopted strategy by the decision maker on how to react to

uncertainties. Hence, methods compared in this chapter falls under the category proactive

(robust) scheduling which is defined as a schedule with relatively insensitive quality to a

changing environment (Aytug et al., 2005; Herroelen and Leus, 2005). At this point, it is

worth mentioning that Aytug et al. (2005) highlighted a very interesting conclusion

stating that “if the level of uncertainty is low enough, an optimization-based predictive

scheduling algorithm can outperform an on-line dispatching algorithm”. Accordingly,

the choice of the optimization method depends on the level of uncertainty. For this, while

an algorithm based on finding a predictive schedule that can hedge against worst possible

scenario may end up with a very conservative schedule, decision makers and/or

schedulers may prefer a predictive schedule that minimizes risk of ending up in bad

scenario. This is because an extremely conservative predictive schedule may come at the

cost of sacrificing the initial predictive performance measure of that schedule. In such

case, decision maker and/or scheduler may be in a trade-off situation between sacrificing

the performance of the predictive schedule allowing it to absorb almost all of the

disruptions, or having a higher performance of the predictive schedule with a lesser

ability to absorbing effects of disruptions. Moreover, algorithms that are purely based on

inserting additional idle times in predictive schedules may turn it to be inactive schedule.

Therefore; in our opinion; if the expected level of uncertainty is low enough decision

makers and/or schedulers might consider using two possible optimization-based

 103

algorithms. The first is to adopt an algorithm that optimizes a schedule based on the

average values of parameters with uncertainties (such as processing time). The second is

to implement an algorithm based on sampling technique from the random distributions of

these parameters. The later approach subjects different schedules’ sequences to different

sets of uncertainties and then selects the one that performs well on average. To the best of

the author’s knowledge, there is not a previous study that addresses a comparison of the

two former algorithms for obtaining predictive schedules of the FJSP when some

operations are represented by or subjected to low-to-medium processing time variations.

Hence, the goal of this work is to evaluate and compare the quality and the solution

robustness of predictive schedules obtained using these two choices in flexible job-shop

environment where the processing times of some operations are represented by or

subjected to low-to-medium uncertainty. Specifically, processing times of these

operations are represented by an interval of equally possible real value between given

lower and upper bounds. For clarity and ease of referencing, the algorithm that optimizes

expected average data will be referred to as MSexp and the algorithm that is based on

sampling will be referred to as MS%Rob.

4.3 Problem Description

This work considers a non-preemptive flexible job-shop scheduling problem (FJSP) with

the objective of minimizing the makespan. There is a set of J = {J1, J2, …, Jn} jobs and

each job i has a set of O = {Oi1, Oi2, …, ௜ܱ௤೔
} operations where qi denotes the total

number of operations of job Ji. Each operation Oij is to be processed in a subset of

 104

machines Mij M = {M1, M2, …, Mm}. An operation Oij cannot start processing until

its precedence operation Oi(j-1) has finished its processing. All n jobs are available at time

t = 0 and the processing time ݌௜௝௞of some operations Oij of job Ji in machine Mk may

equally take any real value between given lower ݌௜௝௞ and upper ݌ҧ௜௝௞ bounds. This

processing time variation of operation is due to, e.g., incomplete or unreliable

information or unavoidable stochastic variability related to machine’s tools and/or

workers skills, etc. The processing time uncertainty can be described by a set of all

possible scenarios (infinite) . Each unique set of processing times  is obtained by

equally selecting a value from the associated interval of each operation:

௜௝௞݌
క א ቂ݌௜௝௞, ҧ௜௝௞ቃ  i  {1, 2, …, n}, j  {1, 2, …, qi}, k  {1, 2, …, m} (4.1)݌

In practice the actual operations’ processing time of some operations may not be known

or difficult to verify until the operation has finished processing. In such case, assuming an

expected value helps the scheduler or decision maker in obtaining a schedule that

satisfies a certain performance measure. In this work, the expected processing times

 ௜௝௞൧ of operations that are represented by or subjected to variations according to a݌ൣܧ

uniform time intervals are given by:

௜௝௞൧݌ൣܧ ൌ ൬൬݌
݆݅݇

൅ ഥ݆݅݇൰݌ 2ൗ ൰ (4.2)

4.4 Hybridized Genetic Algorithm for the FJSP

Chapter 2 proposed hybridized genetic algorithm (hGA) architecture for the deterministic

FJSP and results illustrated that the approach is very effective in minimizing the

 105

makespan of this problem. The work conducted in Chapter 3 shows that this hGA can be

modified to deal with FJSP subjected to random machine breakdowns by replacing its

fitness function. In the following sections, describes the original deterministic hGA and

then show how it can be modified to minimize the makespan of schedules according to

average expected processing times data or according to the sampling technique method.

4.4.1 Deterministic hGA for the FJSP

The proposed hGA in Chapter 2 used permutation-based representation chromosome

representation; where each operation is represented by triples (k,i,j) such that k is

machine assigned to the operation, i is current job number, and j is the progressive

number of that operation within job i. A schedule for FJSP with three jobs and three

machines can be represented by (221-131-111-212-322-223-332). In this architecture, the

initial population is created by two ways. The first way is to generate half of the

population randomly. The second half of the population is generated using a schedule

construction heuristic called Ini-PopGen. Ini-PopGen starts by randomly assigning

priority to jobs. Then, based on this priority an operation is scheduled on the machine

(from the set of appropriate machines) that can finish it sooner. This procedure considers

the processing time and the work load on the machine while assigning operations.

Chromosomes decoding follow an active decoding procedure, wherein no operation can

be started earlier without delaying at least one other operation or violating the

technological constraints. After the active decoding, the schedule is improved by a local

search procedure that results in a local optimal schedule (Lamarckian learning).

 106

However, this local search procedure is only applied every dth generation and number of

moves is limited to a maximum loc_iter moves without improvements.

Two chromosomes are selected from the population. At first, roulette wheel technique is

used to form donors’ mating-pool based on a selection probability given by:

௦ܲ௘௟ ൌ
ி೔೙೏

ி೟೚೟
, ݅݊݀ ൌ 1, … , ܰ (4.3)

Where, Psel: is the probability of choosing the indth individual; N: is the population size;

Find: is the indth individual fitness; and Ftot: is the total fitness of all individuals in the

current generation.

Then, if the individual in the donors’ mating-pool passes a crossover probability Pc, an n-

Size tournament method is used to select n chromosomes from the population to form the

receivers’ mating-sub-pool. Then, the best individual (one with lowest fitness value,

makespan) in the sub-pool is chosen for reproduction.

The crossover operator is based on the Precedence Preserving Order-based Crossover

(POX) (Kacem et al., 2002a) and was modified not to treat the parents symmetrically.

Mutation of individuals is implemented through using two operators. The first operator is

a Machine Based Mutation (MBM), where a random number of operations (denoted as

nrand) are selected and reassigned to another machine. After that, modified Position

Based Mutation (PBM) (Mattfeld, 1996) is applied. PBM was originally designed for JSP

using single triple permutation-based chromosomes representation. Thus, the PBM is

modified so that no infeasible chromosomes are produced and it starts by randomly

selecting an operation within the chromosome and then reinserting it at another position.

 107

4.4.2 Modified hGA for the FJSP

In this section, a description of how the original deterministic hGA can be modified to

solve the FJSP to find schedules using the two methods, MSexp and MS%Rob is provided.

Historical records of a certain shop floor can provide approximated distribution

uncertainties that can affect it; such as machine breakdowns, processing times variations,

cancelations or arrivals of new jobs, etc. In FJSP, Chapter 3 shows that such distributions

can be used as a guide when generating the predictive schedule. This can be achieved by

integrating the probability distribution of that specific uncertainty with the machine

routing and sequencing of operations so that overall performance, measured by

makespan, of the schedule is not affected to a high degree in case such disruption occurs.

Previous Chapter as well as previous studies like Jensen (2001b, and 2003), Leon et al.

(1994), Sevaux and Sörensen (2004), etc, showed that such objective can be achieved by

replacing the fitness function of the GA by a fitness function that satisfies the new

objective, usually referred to as robust fitness function. The main purpose of such robust

fitness evaluation functions is to guide the evolution of solutions towards solutions that

are not or slightly affected by perturbed data parameters. This is motivated by the robust

optimization of continuous mathematical functions which suggests that robust optima are

located on broad beaks in the fitness space. For example, Tsutsui and Ghosh (1997),

Tsutsui (1999) and Branke (1998, and 2001) used genetic algorithm in which they perturb

solutions according to a noise distribution before fitness evaluation and used this perturb

fitness as the fitness of the evaluated phenotype.

 108

For the suggested comparison between the two methods in this work, the ordinary

objective function of the deterministic FJSP with minimum makespan is given by:

௠௜௡ܵܯ ൌ ݉݅݊ ሼ݉ܽݔሺܥ௜ሻሽܬ׊௜ ൌ ሼJଵ, Jଶ, … , J௡ሽ (4.4)

where, MSmin is the minimum makespan, and Ci is the completion time of job Ji; can be

applied and/or modified as follows. First, the same ordinary objective function Eq. (4.4)

is used for optimizing the MSexp method. The only difference is when using the

processing times of operations represented by or subjected to uncertainty. In this case, the

expected processing operations’ times replaces the uniform interval processing times and

then these expected processing time values are used to generate the sequence of the

predictive schedule. The advantage of using such method is reducing the complexity of

dealing with sampling of data values to a single data value making it similar to the

classical deterministic approach. However, for the second method MS%Rob the procedure

is not straight forward. Here, according to Sörensen (2001), the solution of such objective

fitness function has to be implemented on a randomly modified sample set of

characteristics (or data parameters) and then combining a number of evaluations of the

same schedule s sequence solution in the objective fitness function. A possible sampling

objective fitness for uncertain processing times can be represented by a weighted average

of m derived evaluations such that:

ሻݏRobሺ%ܵܯ ൌ ଵ

௠
∑ ௟߮ݓ ቀܵܯ௠௜௡ሺݏሻ, ௜௝௞݌௟൫ߞ

క ൯ቁ௠
௟ୀଵ

  ݅  ሼ1, 2, … , ݊ሽ, ݆  ሼ1, 2, … , ,௜ሽݍ ݇  ሼ1, 2, … , ݉ሽ (4.5)

 109

where, wl is the weight related to the derived schedule s sequence evaluation, ߞ௟ ቀ݌௜௝௞
క ቁ is

sampling function that takes a random sample of a certain processing time scenario ݌௜௝௞
క

,

and m is the number of samples used to evaluate the schedule s.

Therefore, the previously described hGA in Subsection 4.4.1 is modified to first use Eq.

(4.4) with the expected processing times for MSexp method, and then modified by

replacing its fitness function by Eq. (4.5) for MS%Rob method. The hGA used for each

method will be referred to as MSexp-hGA and MS%Rob-hGA, respectively. Using different

objective fitness function in the hGA will lead to obtaining different schedule sequences.

Thus, each schedule’s sequence may respond differently to disruptions as some may be

able to absorb their effects more than others. Furthermore, since GA utilizes a population

of solutions in its search, this gives higher chances to explore a diverse set of solutions.

Hence, GA will have higher chances of finding schedule sequences that are less sensitive

to data uncertainties.

4.5 Analysis and Results

At this stage, it may worth emphasizing that details of reported results here depend on the

assigned values to the parameters of the simulated system. As a result, it may not be

possible to generalize conclusions reached in this section to all situations. Nevertheless,

since great care is paid in selecting representative benchmarks covering wide range of

FJSP systems and conditions, it may be sensible to anticipate that results and conclusions

are relevant in a broader sense and acknowledge that they serve as a reason to be

carefully optimistic.

 110

Numbers of FJSP benchmarks with a wide range of sizes, from 5 x 3 to 20 x 15 found in

literature are used for the experiments. These benchmarks are Ex1 taken from Lee and

DiCesare (1994), and examples MK01 – MK10 proposed by Brandimarte (1993). For this

work, the expected processing time ݌ൣܧ௜௝௞൧ of an operation is to be equal to processing

time of that operation in the original problem. Hence, the upper and lower processing

time bounds of an operation affected by uniform variation in its processing time is

calculated by:

ቂ݌௜௝௞, ҧ௜௝௞ቃ݌ ൌ ܧ ቂ݆݇݅݌ቃ ൈ ሾሺ1 െ ,ሻߚ ሺ1 ൅ ሻሿ (4.6)ߚ

 where, β is the percentage difference from the original expected processing time.

Parameter β represents the level of variability of the operation’s processing time. In order

to control the number of operations that are affected by the processing time variability,

the parameter α has been used. Table 4.1 shows different combinations of the two

parameters, α and β, that are used to generate the different test cases of the experiments.

Table 4.1: Different processing time variation’s combinations

Disturbance Type % of affected operations & disturbance level α β

DT1 Low, low 0.20 0.15

DT2 Low, medium 0.20 0.40

DT3 Medium, low 0.40 0.15

DT4 Medium, medium 0.40 0.40

 111

There is no clear definition of low, medium or high variation of processing time in the

literature. However, based on experience and personal judgment each researcher sets his

own definition of low, medium or high variation. For example, Shafaei and Brunn (1999)

considered approximately 5% variation of expected processing time to be low and 25%

variation to be high. On the other hand, both Daniel and Kouvelis (1995) and Kouvelis et

al. (2000) considered 10% variation to be low, 30% variation to be medium and 50%

variation to be high. Nonetheless, from the industrial experience is noted that such

classification is a problem dependent. It depends on number of factors related mainly to

the used unit time and how time variation is interpreted in the overall cost. For simplicity,

it is defined that a 15% variations in the expected processing times to be low level and up

to 40% variations to be medium.

4.5.1 hGA parameters

The number of function evaluations m, i.e. the number of samples used to evaluate the

schedule s, in Eq. (4.5) requires being sufficient. This is due to the fact that using a

smaller m value may lead to selecting a non-robust solution, whilst using a larger value

leads to unacceptable increase in the computational time. Hence, three different m values

of evaluations are tested in all experiments. Here, all values of m are related to the total

number of operations of each instance. The m value is set to 50%, 75% and 100% of the

total number of operations, and hence, the corresponding MS%Rob-hGA is referred to as

MS50Rob-hGA, MS75Rob-hGA and MS100Rob-hGA, respectively. All sequence evaluations

are given the same importance and hence the weight wl in Eq. (4.5) is set to 1.

 112

All test codes are implemented and executed using C++ on an Intel® Core™ 2 Quad

CPU @ 2.4 GHz with 3.24 GB RAM. For comparability and ease of implementation, all

hGA are closely related and the parameters are experimentally tuned according to the

performance of MSexp-hGA (minimizing MSexp). The parameter values that are chosen for

the two-stage hGA algorithm are as follows: population size 200, crossover probability

0.7, mutation probability 0.3, number of generations 200, number of parents in the

receivers’ mating sub-pool 4, number of generations to perform local search d = 10,

maximum number of moves without improvement in the local search loc_iter = min

[tot_noper, 150], and the worst chromosome is replace every k = 3 generations.

4.5.2 Analysis of robustness measures

To compare the performance of methods, MSexp-hGA and MS%Rob-hGA, a simulation

procedure is applied. Consequently, a standard MSexp-hGA using the ordinary evaluation

function (described in Subsection 4.4.2) minimizing MSexp is first run to obtain schedules

with sequence referred to as expected sequence. Then, MS%Rob-hGA, with the systematic

application of sampling function evaluation (Eq. (4.5)), is used to obtain schedule with

sequence referred to as sampling sequence. In order to draw more accurate responses,

five schedules for each of the hGA different settings of each test case is used. After the

sequences are obtained, 400 replications of each problem instance with randomly

modified processing times according to the disturbances are evaluated. This results in 5

(number of obtained schedules’ sequences) x 4 (disturbances levels) x 400 (replications)

= 8000 test runs per test instance. The comparative study of the two methods, MS%Rob-

 113

hGA and MSexp-hGA, is performed using analysis of variance (ANOVA) through the use

of the commercial statistical software Minitab 15.

Since this comparative study is done to compare the performance of the predictive

schedules’ sequence obtained using MSexp method and predictive schedules’ sequence

obtained using the MS%Rob method, all obtained sequences are subjected to the same

processing time variation disturbances and their performance is compared in terms of:

1- The relative error (RE) predictive makespan deviation with respect to the best-

known lower bound value defined as:

ܧܴ ൌ ൣ൫ܵܯ௖௢௠௣ െ ൯ܤܮ ⁄ܤܮ ൧ ൈ 100 (4.7)

where, MScomp is the initial predicted makespan obtained using either method, and

LB is the best-known lower bound. It is worth pointing out that since for every

replication the processing times are randomly modified, estimating its LB value is

not possible. Therefore, the used LB is the same LB reported in literature for the

same test case group. The relative error measures the robustness in the objective

function space, i.e. quality robustness.

2- The average relative deviation (Ave. RDev) of the 400 modified instances with

respect to the initial expected makespan defined as:

.݁ݒܣ ݒ݁ܦܴ ൌ 1
ܰ

∑ ቂቀܵܯሺݍሻܴ݌ െ ሻܲቁݍሺܵܯ ሻܲൗݍሺܵܯ ቃ400
ൌ1݌ ൈ 100 (4.8)

The relative deviation evaluates the robustness in the solution space, i.e. solution

robustness, which quantifies how much the solution has deviated after the

disturbance from the original solution.

3- The average absolute relative makespan deviation between the initial predicted

schedule makespan and the actual realized makespan after the 400 disturbances’

 114

replications according to the following equation:

.݁ݒܣ ∆ܵܯܴ ݏܾܣ ൌ
ଵ

ே
∑ ቊටൣܵܯሺݍሻோ௣ െ ሻ௉൧ݍሺܵܯ

ଶ
ሾܵܯሺݍሻ௉ሿଶൗ ቋସ଴଴

௣ୀଵ ൈ 100 (4.9)

where, q is the replication predictive schedule, and the subscripts P, R and p :

refer to predictive (or the original released schedule to the shop floor), realized (or

the actual schedule after disturbance simulation), and the processing time

disturbance number, respectively.

The performance measures addressed above examine the average values related to the

obtained replications’ schedules at each combination before or after the disruptions. One

of the essential concerns associated with any proposed method, a heuristic or a meta-

heuristic method, to solve a problem is arbitrating the quality of its obtained solutions

(predictive schedules in this study). Therefore, the first measure RE seeks to answer that

concern by measuring how far are the obtained schedules from the optimal or near

optimal schedules? This ensures that only methods that are capable of obtaining

predictive schedules of high quality, minimum makespan, as well as proving their

repeatability, or robustness in obtaining such schedules, are given the credit. For this

reason, RE measure is designed to work on the objective function space by comparing the

quality of obtained solution of any method to a standard benchmark solution.

While RE measure quantifies the quality robustness of obtained predictive schedules,

Ave. RDev and ݁ݒܣ. measures, on the other hand, assist evaluating the ∆ܵܯܴ ݏܾܣ

solution robustness of these schedules and their sustainability in the face of uncertainties.

To achieve this evaluation it is required to find a way of comparing the original solution,

i.e. predictive schedule released to the floor shop, to the final solution, i.e. the realized

 115

schedule after the disruptions. Levenshtein (1966) was first to introduce the concept of

edit distance in the context of correcting binary codes. This concept was used as a

measure determining the similarity between two strings. He defined it as the sum of the

minimum costs of the elementary edit operations; insertion, deletion and substitution; that

transform string ः into string ऄ.

The edit distance concept can be generalized to measure the distance between two

schedules by interpreting the edit distance as the changes that have to be done in order to

transfer a schedule and turn it to be like a given baseline schedule. These changes can be

in the form of an operation insertion, an operation deletion or the substitution of an

operation by another one in the schedule. Nevertheless, the exact interpretation of the edit

distance concept is highly problem nature dependent. As previously presented in Section

4.4, in this Chapter the role of the studied methods, MS%Rob-hGA and MSexp-hGA, is to

obtain a schedule sequence that is released to the shop floor without future alternation in

its sequences. Thus, a more appropriate distance measure is to consider the difference in

the main performance measure between the predictive schedule and the realized schedule,

i.e. makespan deviation. For this reason, Ave. RDev measure is used and is interpreted as

the relative mean of the deviations between the realized schedules after disruptions and

the originally released predictive schedules. Moreover, ݁ݒܣ. is also used to ∆ܵܯܴ ݏܾܣ

draw more accurate conclusions. It is considered as a quantity that measures how close,

in average, the realized schedules are to the predictive schedules.

At this point, it is important to stress that while it is enough to consider the RE measure to

test the solution quality of an algorithm or method developed to solve deterministic

scheduling problems, Ave. RDev and/or ݁ݒܣ. cannot be used as the only ∆ܵܯܴ ݏܾܣ

 116

measure for the stochastic problems with uncertain data. Practically, they have to be

considered along with a quality robustness measure. To illustrate this, consider the Gantt-

charts shown in Figure 4.1. The Gantt-charts show two possible schedules for an arbitrary

flexible job-shop with three jobs and three machines. In Figure 4.1, schedule (b) differs

from schedule (a) by inserting a 2 unit idle time in-between an operation and its

preceding operation. Implementing schedule (b) as is makes that idle time a buffering

time zone that absorb a possible variation in the processing time of operations. Thus, it is

highly expected that Ave. RDev and/or ݁ݒܣ. will have a very low value ∆ܵܯܴ ݏܾܣ

indicating that schedule (b) is of high solution robustness in face of disruptions.

However, considering RE measure demonstrate that this solution is of low quality as it is

far from the optimal baseline solution, schedule (a). Furthermore, such idle time insertion

has turned schedule (b) to be an inactive schedule. On the other hand, if the decision

maker or scheduler implemented schedule (a) as is, because of its very low RE measure,

then any possible processing time variation in operations that form the critical-path of

schedule (a) will have a direct impact on increasing its makespan leading to a low

solution robustness.

 117

4.5.3 Computational results

Table 4.2 shows the detailed results obtained using MSexp-hGA and MS%Rob-hGA. Table

4.2 consists of 15 columns. The first and second columns represent the instance name and

size. The third column refers to used method to obtain the corresponding schedule. The

remaining columns are labeled according to the performance measures given above and

give the results of the 400 replications of specific disturbance type for the modified

instances, i.e. test case groups. For each column, the best performance; lowest average

Figure 4.1: Two schedules illustrating the difference between quality robustness and
solution robustness.

a)

M3

M2

M1

22 11

31

21 32 12

13

8

b)

M3

M2

M1

22 11

31

21 32 12

13

13

 118

deviation percentage; is printed in bold-face. When considering RE results in Table 4.2, it

can be noted that including variations of the processing times in the objective function

(MS%Rob-hGA) to obtain a schedule has a negligible effect on increasing the makespan of

the predictive schedule. Therefore, the maximum increase in RE when using the robust

sampling objective function, MS%Rob-hGA, compared to the expected ordinary fitness

function evaluation, MSexp-hGA, is 6.66% (for the MK06 test case group) and on average

0.86% for all modified instances. Furthermore, in some cases the sampled solutions

obtained by MS%Rob-hGA were sometimes slightly better than the expected solutions

obtained by MSexp-hGA like for the test cases MK01, MK04, MK07, MK09 and MK10.

This may be explained by the change in how the population is handled when using the

sampling function evaluation, Eq. (4.5), which may allow escaping from local optima. In

addition, in terms of ݁ݒܣ. and Ave. RDev, the robust solutions results acquired ∆ܵܯܴ ݏܾܣ

by MS%Rob-hGA are outperforming those obtained by MSexp-hGA. Thus, using a schedule

sequence obtained by MS%Rob-hGA performs mostly better after disturbance occurrence

compared to a schedule obtained by MSexp-hGA. These findings highlight the capability

of MS%Rob-hGA to find solutions that are both quality robust and solution robust.

 119

Table 4.2: Computational results – deviation of schedules when subjected to random uniform
processing time variations

Inst.

Size Method

DT1 DT2 DT3 DT4

RE
.݁ݒܣ ݏܾܣ

 ∆ܵܯ
Ave.
RDev

RE
.݁ݒܣ ݏܾܣ

∆ܵܯ

Ave.
RDev

RE
.݁ݒܣ ݏܾܣ

∆ܵܯ

Ave.
RDev

RE
.݁ݒܣ ݏܾܣ

∆ܵܯ

Ave.
RDev

Ex1 5 x 3

MSexp-hGA 52.17 1.47 1.3 52.17 4.09 3.97 52.17 1.97 1.76 52.17 5.48 5.12
MS50R-hGA 56.52 1.37 0.44 58.26 3.56 2.28 53.91 1.91 1.37 54.78 4.91 3.82
MS75R-hGA 54.78 1.50 0.77 55.65 3.58 2.18 55.65 1.77 0.91 55.65 4.81 3.51
MS100R-hGA 56.52 1.46 0.72 55.65 3.67 2.53 53.91 1.81 1.21 56.52 4.47 3.11

MK01 10 x 6

MSexp-hGA 13.89 1.14 0.52 13.89 2.77 1.87 13.89 1.49 0.85 13.89 3.81 2.91

MS50R-hGA 13.33 1.16 -0.03 11.11 2.43 0.41 12.22 1.41 0.35 16.67 3.68 0.21

MS75R-hGA 11.11 1.07 0.06 13.33 2.70 0.28 16.67 1.48 -0.01 16.67 3.74 -0.07

MS100R-hGA 11.11 1.03 0.10 13.33 2.74 0.46 14.44 1.44 0.37 16.67 4.11 0.16

MK02 10 x 6

MSexp-hGA 15.83 1.11 1.07 15.83 2.99 2.9 15.83 1.84 1.79 15.83 4.97 4.90
MS50R-hGA 16.67 1.08 0.19 15.83 2.89 2.55 16.67 1.24 0.65 15.83 5.88 5.84
MS75R-hGA 17.5 1.13 0.81 15.83 3.38 3.10 16.67 1.85 1.39 16.67 4.18 3.66
MS100R-hGA 16.67 1.14 0.62 16.67 3.36 3.32 16.67 1.75 1.48 16.67 5.48 5.38

MK03 15 x 8

MSexp-hGA 0.00 0.88 0.00 0.00 2.29 0.00 0.00 1.17 0.02 0.00 3.24 0.04
MS50R-hGA 0.00 0.90 0.00 0.00 2.44 -0.06 0.00 1.19 -0.05 0.00 3.12 0.03
MS75R-hGA 0.00 0.92 -0.04 0.00 2.37 0.04 0.00 1.11 0.00 0.00 3.03 0.11

MS100R-hGA 0.00 0.10 0.01 0.00 2.35 -0.01 0.00 1.18 -0.10 0.00 3.01 0.11

MK04 15 x 8

MSexp-hGA 37.92 0.97 0.55 37.92 2.66 2.21 37.92 1.32 0.92 37.92 3.83 3.55

MS50R-hGA 37.92 0.88 0.08 37.08 2.06 0.58 36.67 1.21 0.48 37.5 2.98 1.64
MS75R-hGA 37.08 0.67 0.08 36.25 2.33 1.43 37.08 1.19 0.11 39.17 3.12 1.47
MS100R-hGA 38.33 0.87 0.10 40 2.64 0.33 36.25 1.18 0.32 37.08 3.58 3.20

MK05 15 x 4

MSexp-hGA 4.167 0.59 0.43 4.17 1.71 1.54 4.17 0.90 0.74 4.17 2.70 2.59
MS50R-hGA 4.167 0.56 0.41 4.76 1.72 1.58 4.40 0.90 0.74 5.00 2.50 2.31
MS75R-hGA 4.52 0.49 0.17 5.24 1.55 1.28 5.24 0.75 0.30 4.64 2.84 2.73
MS100R-hGA 5.00 0.55 0.24 4.64 1.63 1.40 5.00 0.82 0.50 4.76 2.47 2.27

MK06 10 x 15

MSexp-hGA 98.79 1.03 1.03 98.79 2.84 2.83 98.79 1.70 1.70 98.79 4.72 4.71
MS50R-hGA 101.21 1.47 1.42 101.81 2.00 1.83 103.64 1.09 0.92 103.64 3.90 3.83
MS75R-hGA 103.64 0.86 0.79 103.64 2.44 2.37 102.42 1.41 1.38 104.85 3.47 3.40

MS100R-hGA 102.42 0.71 0.56 101.81 2.50 2.43 101.82 1.11 0.98 105.45 3.88 3.84

MK07 20 x 5

MSexp-hGA 10.53 0.83 0.77 10.53 2.49 2.40 10.53 1.37 1.29 10.53 4.11 3.99

MS50R-hGA 10.98 0.80 0.55 9.32 2.38 2.21 9.92 1.17 0.89 11.28 3.92 3.81
MS75R-hGA 10.23 0.88 0.75 10.98 2.43 2.30 9.62 1.27 1.03 9.77 4.17 4.10
MS100R-hGA 10.23 0.80 0.51 11.28 2.08 1.84 11.58 1.28 1.13 11.73 3.91 3.81

MK08 20 x10

MSexp-hGA 0.00 0.40 0.26 0.00 1.19 0.94 0.00 0.57 0.38 0.00 1.61 1.32

MS50R-hGA 0.00 0.38 -0.01 0.00 0.95 0.05 0.00 0.52 0.02 0.00 1.38 0.19
MS75R-hGA 0.00 0.36 0.01 0.00 0.98 0.02 0.00 0.52 -0.01 0.00 1.42 0.07

MS100R-hGA 0.00 0.37 0.00 0.00 0.97 0.04 0.00 0.53 0.02 0.00 1.32 0.08

MK09 20 x 10

MSexp-hGA 3.41 0.71 0.65 3.41 2.15 2.13 3.41 0.99 0.92 3.41 3.26 3.24
MS50R-hGA 3.34 0.73 0.05 4.01 1.95 0.98 3.41 0.90 0.23 4.08 2.24 1.32
MS75R-hGA 3.48 0.76 0.20 3.68 1.93 0.59 3.41 0.88 0.27 3.68 2.93 2.54
MS100R-hGA 4.15 0.70 0.12 4.21 1.68 0.51 3.55 0.87 0.07 4.15 2.15 1.21

MK10 20 x 15

MSexp-hGA 39.64 0.80 0.71 39.64 2.34 2.30 39.64 1.17 1.12 39.64 3.80 3.79
MS50R-hGA 39.39 0.62 0.30 40.36 2.23 2.19 38.67 0.90 0.62 40.48 3.41 3.39
MS75R-hGA 39.15 0.64 0.48 41.09 1.73 1.56 39.76 0.82 0.43 41.82 3.30 3.26
MS100R-hGA 40.61 0.68 0.27 39.52 2.05 1.73 39.27 0.99 0.87 40.48 3.46 3.44

Values written in bold are the best values

 120

To get a deeper insight about the effects of using the four different methods MSexp-hGA,

MS50Rob-hGA, MS75Rob-hGA and MS100Rob-hGA along with the different levels of

disturbances on the performance of schedules before and after disturbance we used

ANOVA. Table 4.3 shows the F-ratio and P-value of the ANOVA results. The F-ratio of

the RE measure confirms the previous conclusions that solutions obtained using MS%Rob-

hGA are quality robust since the used method, MS%Rob-hGA, does not have significant

effect on them. Furthermore, the F-ratio indicates that ݁ݒܣ. and Ave. RDev of ∆ܵܯܴ ݏܾܣ

the schedules are mainly affected by disturbance type (DT) whereas the method used to

obtain the schedule does not have the same significance. This is supported by the similar

values noted in Table 4.2.

Table 4.3: ANOVA results concerning RE, ݁ݒܣ. ݏܾܣ and Ave. RDev ,∆ܵܯܴ

Factor

RE ݁ݒܣ. ݏܾܣ Ave. RDev ∆ܵܯܴ

F-ratio P-value F-ratio P-value F-ratio P-value

A:Method 0.05 0.985 3.58 0.014 16.78 0.000

B:DT 0.02 0.996 557.92 0.000 165.16 0.000

AB 0.00 1.00 0.57 0.825 0.88 0.538

The previous findings raise an essential concern about the benefit of using a simulation

based objective function method, like MS%Rob, in favor of an ordinary evaluated objective

function method that works by using an expected processing time, like MSexp.

Specifically, the concerns are related to obtaining predictive schedules’ sequences for the

 121

FJSP when processing times of some operations are represented by low-to-medium

uniform distribution. These concerns are raised from two points. This first one is deduced

from the finding that though simulation based objective function methods MS%Rob

produce solutions that are both quality and solution robust, yet these improvements in the

solution robustness, when compared with the expected evaluated objective function

method MSexp, are marginal. The second drawback of simulation based methods is their

required high computational time compared to the expected processing time method. For

example, when solving Ex1, which is a small instance problem used in this study, the

computational time increased by 38%, 70%, and 108% when MS50Rob-hGA, MS75Rob-hGA

and MS100Rob-hGA were used compared to using MSexp-hGA, respectively.

4.6 Conclusion

This Chapter presented how a hybridized genetic algorithm for a flexible job-shop

problem can be modified to find robust solutions when it is subjected to low-to-medium

random variations in the operations' processing times. For this, two methods were

compared. Computational results showed that obtained solutions are both solution robust

and quality robust. Furthermore, computational results revealed an interesting finding

showing if an FJSP is subjected to a low-to-medium level of processing time uncertainty,

then an optimization-based method working with expected processing times value may

obtain schedules that are as good as schedules obtained using a sampling technique

method and hence saving the computational efforts.

 122

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions and Contributions

In this thesis, efficient concurrent meta-heuristic scheduling architectures for the flexible

job-shop scheduling problem are proposed. The main focus of this work is on the offline

scheduling aspect for the FJSP. It considers the two cases of offline scheduling, when the

problem’s parameters are deterministic, and the case when some of the problem’s

parameters are stochastic. The developed architectures in this research work are an

integration and/or modification tools detailed as follows:

 A heuristic method (called Ini-PopGen) capable of obtaining optimal or near

optimal schedules for small and medium flexible job-shop systems. The

method optimizes a completion time-based objective function, makespan,

while maintaining an acceptable balanced machine work load (Subsection

2.43). Furthermore, this method can be modified to consider other time-based

objective criteria such as minimizing the mean flow time.

 A genetic algorithm approach that can work in larger systems where optimal

schedules cannot be achieved due to computational limitations. The genetic

algorithm is designed such that its modification to accommodate different

objectives is achievable while sustaining a high performance in obtaining

optimal or near optimal schedules.

 123

 A local search (LS) approach that exploit the neighborhood of a given

schedule and accordingly improving it.

In the previous chapters, the proposed methods were introduced in details and evaluated

to validate their performances. At first, these main three components are first integrated

forming an efficient hybridized genetic algorithm (hGA) structure that is very effective

and has a good potential of obtaining optimal or near optimal results for the deterministic

FJSP. The experimental results advocate the good performance of the proposed Ini-

PopGen heuristic by outperforming some of the existing approaches in the literature. The

performance of Ini-PopGen is further improved when combining it with the proposed LS

for small to medium sized T-FJSP and P-FJSP indicating that Ini-PopGen with LS can be

used as a stand-alone tool.

Furthermore, in Chapter 3, a non-idle time inserting methodology to deal with FJSP

subjected to machine breakdown disruptions is proposed. The methodology is based on

modifying the previously proposed deterministic hGA and converting it to a two-stage

hGA. For that, the stability of the schedule is approximately evaluated by an aggregated

machine breakdown. Also, the chapter provided an extensive ANOVA comparative study

conducted to compare the performance of six different bi-objective performance

robustness and stability measures. The chapter is concluded by an experimental study

comparing the performance of the proposed method against the performance of other

methods found in literature and gave an insight explaining its superiority to them.

Following that, another type of disruption that usually faces a manufacturing system,

processing time uncertainty, is considered in Chapter 4. It discussed two possible

methods that can be used to find robust schedules when a FJS is subjected to low-to-

 124

medium random variations in the operations' processing times. Furthermore,

computational results revealed an interesting finding. The chapter shows that if a FJSP is

subjected to a low-to-medium level of processing time uncertainty, then a method based

on optimizing expected processing times value may obtain schedules that are as good as

schedules obtained using a sampling technique method and hence saving the

computational efforts.

5.2 Future Work

Many interesting extensions of the current work can be investigated. For example, the

proposed Ini-PopGen heuristic that have been shown to be efficient in scheduling small

to medium FJSP follows a greedy nature that schedules operations after the other. This

limits its efficiency when considering large scale FJSP. Hence, a more global approach

can be exploited to obtain schedules. This global approach may consider a more realistic

case that detects deadlock situations3 and embed techniques that resolve such situations.

Furthermore, the proposed methodology in Chapter 3 may be explored to handle other

uncertainties such as arrival of new jobs, job cancellations, etc, and find out how such

uncertainties affects the operational decisions. Moreover, developing a detailed

framework that relates the different hierarchy levels, managerial and operational levels,

of a manufacturing system and then use it to show how different performance measures,

either time-based like makespan and flow time or cost-based measures, are sensitive to

different uncertainties. Such framework model can be then used to associate a risk factor

3 A deadlock situation is a situation that occurs when a set of jobs enter a circular wait. Here, each job in
this set is blocking a resource it is using waiting for another resource to become available, which is in the
same time is being block by another job from that set.

 125

aiding the decision-making process. Another interesting direction for future research is to

develop a multi-objective approach that returns Pareto frontier solutions for the decision

maker to select a preferable robust and/or stable schedule.

The presented work in Chapter 4 can be extended to study the impact of other kinds of

processing time distributions on the conclusions found in this study. Another interesting

direction for future research is to develop a multi-objective approach that returns Pareto

frontier solutions for the decision maker to select a preferable robust and/or stable

schedule.

In addition, the current work did not consider material handling. Such consideration is of

quite importance for any manufacturing systems as deciding the most appropriate type of

the material handling will help in determining the overall production cost. Furthermore, it

helps in the design aspect of the shop floor. Hence, the material handling can be added to

the hGA by changing the chromosome representation so that each gene is represented by

four digits instead of three. The fourth digit represents the material handling assignment

to the operation represented by that gene.

 126

REFERENCES

Al-Turki, U.M., Mittenthal, J. and Raghavachari, M. (1996) ‘The single-machine

absolute-deviation early-tardy problem with random completion times’, Naval

Research Logistics, Vol. 43, pp. 573–587.

Al-Hinai, N. and ElMekkawy, T. (10-12 Feb 2009) ‘A robust genetic algorithm approach

for the flexible job-shop scheduling problem’, PEDAC’2009, Alexandria, Egypt.

Al-Hinai, N. and ElMekkawy, T. (2011a) ‘An efficient hybridized genetic algorithm

architecture for the flexible job-shop scheduling problem’, Flexible Services and

Manufacturing Journal, Vol. 23, pp. 64-85, doi: 10.1007/s10696-010-9067-y.

Al-Hinai, N. And ElMekkawy, T.Y (2011b) ‘Robust and stable flexible job shop

scheduling with random machine breakdowns using a hybrid genetic algorithm’,

International Journal of Production Economics, Vol. 132, pp. 279-291, doi:

10.1016/j.ijpe.2011.04.020.

Al-Hinai, N. And ElMekkawy, T.Y (2011c) ‘Robust scheduling of flexible job shop with

processing time uncertainty: A comparison study’, Submitted to the Journal of

Manufacturing Systems, June 2011, Manuscript No. SMEJMS-D-11-00123.

Anglani, A., Grieco, A., Guerriero, E. and Musmanno, R. (2005) ‘Robust scheduling of

parallel machines with sequence-dependent set-up costs’, European Journal of

Operational Research, Vol. 161; pp. 704–720.

 Artigues, C., Michelon, P. and Reusser, S. (2003) ‘Insertion techniques for static and

dynamic resource-constrained project scheduling’, European Journal of Operational

Research, Vol. 149, pp. 249-267.

 127

Aytug, H., Lawley, M.A., McKay, K., Moha, S., and Uzsoy, R. (2005) ‘Executing

Production Schedules in the Face of Uncertainties: A Review and Some Future

Directions’, European Journal of Operational Research, Vol. 161, pp. 86-110.

Barnes, J.W., and Chambers, J.B. (1996) ‘Flexible job shop scheduling by tabu search’,

Graduate Program in Operations Research and Industrial Engineering, The University

of Texas, Austin, Technical Report Series, ORP 96-09.

Babiceanu, R.F., and Chen, F.F. (2006) ‘Development and applications of holonic

manufacturing systems: A survey’, Journal of Intelligent Manufacturing, Vol. 17, pp.

111-131.

Bierwirth, C. (1995) ‘A generalized permutation approach to job shop scheduling with

genetic algorithm’, OR Spektrum, Vol. 17, pp. 87-92.

Bona, B., Brandimarte P., Greco, C., and Menga, G. (1990) ‘Hybrid hierarchical

scheduling and control systems in manufacturing’, IEEE Transactions on Robotics

and Automation, Vol. 6, No. 6, pp. 673-686.

Bouyahia, Z., Bellalouna, M., Jaillet, P., and Ghedira, K. (2009) ‘A priori parallel

machines scheduling’, Computers & Industrial Engineering, doi:

10.1016/j.cie.2009.11.009

Branke, J. (1998) ‘Creating robust solutions by means of evolutionary algorithms’,

Parallel Problem Solving from Nature V – PPSN V, LNCS, Vol. 1498/1998, pp. 119-

128.

Branke, J. (2001) ‘Reducing the sampling variance when searching for robust solutions’,

In: Spector L et al. (ed), GECCO 2001 – Proceedings of the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann Publishers, pp. 235-242.

 128

Brandimarte, P. (1993) ‘Routing and scheduling in a flexible job shop by tabu search’,

Annals of Operations Research, Vol. 41, pp. 157–183.

Brucker, P. and Neyer, J (1998) ‘Tabu-search for the multi-mode job-shop problem’, OR

Spektrum, Vol. 20, pp. 21-28.

Byeon, E., Wu, S.D. and Storer, R.H. (1998) ‘Decomposition heuristics for robust job-

shop scheduling’, IEEE Transactions on Robotics and Automation, Vol. 14, No.2, pp.

303-313.

Cai, X. and Tu, F.S. (1996) ‘Scheduling jobs with random processing times on a single

machine subject to stochastic breakdowns to minimize early-tardy penalties’, Naval

Research Logistics, Vol. 43, pp. 1127–1146.

Cavalieri, S. and Terzi, S. (2006) ‘Proposal of a performance measurement system for the

evaluation of scheduling solutions’, International Journal of Manufacturing

Technology and Management, Vol. 8, No. (1/2/3), pp. 248-263.

Chan, F.TS., Chung, S.H., and Chan, P.LY. (2006) ‘Application of genetic algorithms

with dominant genes in a distributed scheduling problem in flexible manufacturing

systems’, International Journal of Production Research, Vol. 44, No. 3, pp. 523-543.

Chen, Q. and Luh, J.Y.S., (1993) ‘Generation of Optimum Schedules in Multi-Robot

Workcells With High Processing Flexibility’, Proceedings of The 1993 IEEE/RSJ

International Conference on Intelligence Robots and Systems, Yokohama, Japan, pp.

662-669.

Chen, S.C. and Jeng, M.D., (1995) ‘A heuristic approach based on the state equations of

petri nets for FMS scheduling’, Proceedings of The 1995 IEEE Transactions on

Industry Applications, Piscataway, NJ., USA, pp. 275-281.

 129

Chen, H., Ihlow, J. and Lehmann, C. (1999) ‘A genetic algorithm for flexible job-shop

scheduling’, Proceedings of the 1999 IEEE International Conference on Robotics &

Automation, Detroit, Michigan, Vol. 2, pp. 1120-1125.

Cheng, R., Gen, M., and Tsujimura, Y. (1996) ‘A tutorial survey of job-shop scheduling

problems using genetic algorithms – I. Representation’, Computers & Industrial

Engineering, Vol. 30, No. 4, pp. 983-997.

Chiu, Y-F, and Fu, L-C, (1997), ‘A GA embedded dynamic search algorithm over a petri

net model for an FMS scheduling’, Proceedings of the 1997 IEEE International

Conference on Robotics & Automation, Albuquerque, New Mexico, pp. 513-518.

Chtourou, H. and Haouari, M. (2008) ‘A two-stage-priority-rule-based algorithm for

robust resource-constrained project scheduling’, Computers & Industrial Engineering,

Vol. 55, pp. 183-194.

Cowling, P. I., Ouelhadj, D. and Petrovic, S. (2004) ‘Dynamic Scheduling of Steel

Casting and Milling Using Multi-Agents’, Production Planning & Control, Vol.

15(2), pp. 178 – 188.

Dauzére-Pérés, S., and Paulli, J., (1997) ‘An integrated approach for modeling and

solving the general multiprocessor job-shop scheduling problem using tabu search’,

Annuals of Operations Research, Vol. 70, pp. 281–306.

Daniels, R.L., and Kouvelis, P,. (1995) ‘Robust scheduling to hedge against processing

time uncertainty in single-stage production’, Management Science, Vol. 41, No. 2, pp.

363-376.

Davenport, A.J. and Beck, J.C. (2002) ‘A survey of techniques for scheduling with

uncertainty’, unpublished manuscript. Available online from

 130

<http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps> or

<http://eil.utoronto.ca/profiles/chris/chris.papers.html>

Dooley, K.J. and Mahmoodi, F. (1992) ‘Identification of robust scheduling heuristics:

Application of Taguchi methods in simulation studies’, Computers & Industrial

Engineering, Vol. 22, No. 4, 359- 368.

Fattahi, P., Saidi Mehrabad, M., and Jolai, F. (2007), ‘Mathematical modeling and

heuristic approached to flexible job shop scheduling problems’, Journal of Intelligent

Manufacturing, Vol. 18, pp. 331-342.

Fattahi, P., and Fallahi, A., (2010) ‘Dynamic scheduling in flexible job shop systems by

considering simultaneously efficiency and stability’, CIRP Journal of Manufacturing

Science and Technology, Vol. 2, No. 2, Pages 114-123.

Falkenauer, E., and Bouffouix, S. (1991) ‘A genetic algorithm for job shop’, Proceedings

of the 1991 IEEE International Conference on Robotics and Automation, Sacramento-

California, pp.824-829.

French, S. (1982) Sequencing and scheduling: An introduction to the mathematics of the

job-shop, Ellis Horwood Limited, West Sussex: John Wiley.

Garey MR, Johnson, DS, and Sethi R (1976) ‘The complexity of flow shop and job-shop

scheduling’, Mathematics of Operations Research, Vol. 1-2, pp. 117-129.

Gen, M., and Cheng, R. (2000) Genetic algorithms & engineering optimization, Wiley

Series in Engineering Design and Automation, John Wiley & Sons.

Giovanni, L.D., and Pezzella, F. (2010) ‘An improved genetic algorithm for the

distributed and flexible job-shop scheduling problem’, European Journal of

Operational Research, Vol. 200, pp. 395-408.

 131

Girish, B.S., and Jawahar, N. (2008) ‘Scheduling job shop associated with multiple

routings with genetic and ant colony heuristic’, International Journal of Production

Research, Vol. 99999, Issue 2, pp. 1-27, (doi: 10.1080/00207540701824845).

Girish, B.S., and Jawahar, N. (2009) ‘A particle swarm optimization algorithm for

flexible job shop scheduling problem’, 5th Annual IEEE Conference on Automation

Science and Engineering, Bangalore, India, August 22-25, pp. 298-303.

Gilkinson, J.C., Rabelo, L.C., and Bush, B.O. (1995) ‘a real-world scheduling problem

using genetic algorithms’, Computers in Industrial Engineering, Vol. 29, No. (1-4),

pp. 177-181.

Gören, S. (2002) Robustness and stability measures for scheduling policies in a single

machine environment. MSc Thesis. Department of Industrial Engineering, The

Institute of Eng. and Sci., Bilkent University, Ankara , Turkey.

Guo, B. and Nonaka Y (1999), ‘Rescheduling and optimization of schedules considering

machine failure’, International Journal of Production Economics, Vol. 60-61, pp. 503-

513.

Hart, E., Ross, P., and Corne, D., (2005) ‘Evolutionary scheduling: A review’, Genetic

Programming and Evolvable Machines, Vol. 6, pp. 191-220.

Herroelen, W., and Leus, R. (2005) ‘Project Scheduling under uncertainty: Survey and

research potentials’ European Journal of Operational Research, Vol. 165, pp. 289-

306.

Hmida, AB., Haouari, M., Huguet, M-J., and Lopez, P. (2010) ‘Discrepancy search for

the flexible job shop scheduling problem’, Computers & Operations Research, Vol.

37, pp. 2192-2201.

 132

Ho, NB., and Tay, JC. (2004) ‘GENACE: An efficient cultural algorithm for solving the

flexible job-shop problem’, Proceedings of the Congress on Evolutionary

Computation CEC2004, pp. 1759–1766.

Ho, NB., Tay, JC., and Lai, E M-K. (2007) ‘An effective architecture for learning and

evolving flexible job-shop schedules’, European Journal of Operational Research,

Vol. 179, pp. 316-333.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor.

Hurink, E., Jurisch, B., and Thole, M., (1994) ‘Tabu search for the job shop scheduling

problem with multi-purpose machines’, Operations Research-Spektrum, Vol. 15, pp.

205-215.

Hussain, MF., and Joshi, SB. (1998) ‘A genetic algorithm for job shop scheduling

problem with alternate routing’, IEEE International Conference on Systems, Man and

Cybernetics, Vol. 3, pp. 2225-2230.

Jensen, M.T. (2001a) Robust and flexible scheduling with evolutionary computation. PhD

Thesis, Dept. Comput. Sci., University of Aarhus, Aarhus, Denmark.

Jensen, M.T. (2001b) ‘Improving robustness and flexibility of tardiness and total flow-

time job shops using robustness measure’, Applied Soft Computing, Vol. 1, pp. 35-52.

Jensen, M.T. (2003) ‘Generating robust and flexible job shop schedules using genetic

algorithms’, IEEE Transactions on Evolutionary Computation, Vol. 7, No. 3, pp. 275-

288.

 133

Jia, HZ., Nee, AYC., Fuh, JYH., and Zhang, YF. (2003) ‘A modified genetic algorithm

for distributed scheduling problems’, Journal of International Manufacturing, Vol.

14, 351–362.

Kacem, I., Hammadi, S., and Borne, P., (2002a) ‘Approach by localization and

multiobjective evolutionary optimization for flexible job-shop scheduling problems’,

IEEE Transactions on Systems, Man and Cybernetics, Vol. 32-1, pp. 1-13.

Kacem, I., Hammadi, S., and Borne, P., (2002b) ‘Pareto-optimality approach for flexible

job-shop scheduling problems: Hybridization of evolutionary algorithms and fuzzy

logic’, Mathematics and Computers in Simulation, Vol. 60, No. 3, pp. 245-276.

Kacem, I. (2003) ‘Genetic algorithm for the flexible job-shop scheduling problem’, IEEE

International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3464 – 3469.

Kouvelis, P., Daniels, R. L. and Vairaktarakis, G. (2000) ‘Robust scheduling of a two-

machine flow shop with uncertain processing times’, IIE Transactions, Vol. 32, 421-

432.

Kumar, R., Tiwari, MK., and Shankar, R. (2003) ‘Scheduling of flexible manufacturing

systems: An ant colony optimization approach’, IMechE, Vol. 217(B), pp. 1443-1453,

(doi: 10.1243/095440503322617216).

Kutanoglu, E. and Wu, S.D. (1998) ‘Improving schedule robustness via stochastic

analysis and dynamic adaptation’, IMSE Technical Report 98T-001.

Kutanoglu, E. and Wu, S.D. (2004) ‘Improving scheduling robustness via preprocessing

and dynamic adaptation’, IIE Transactions, Vol. 36, No. 11, pp. 1107 – 1124.

 134

Lee, DY., and DiCesare, F., (1994) ‘Scheduling flexible manufacturing systems using

petri nets and heuristic search’, IEEE Transactions on Robotics and Automation, Vol.

10, No. 2, pp. 123 – 132

Lee, EJ., and Mirchandani, PB. (1988) ‘Concurrent routing, sequencing, and setups for a

two-machine flexible manufacturing cell’, IEEE Journal of Robotics and Automation,

Vol.4, No. 3, pp.256-264.

Liu, H., Abraham, A., and Wang, Z., (2009) ‘A multi-swarm approach to multi-objective

flexible job-shop scheduling problems’, Fundamenta Informaticae, Vol. 95, pp. 465–

489.

Ling, QI., Jian-dong, Y., Bao, LI., and Han-cheng, YU., (2010) ‘Flexible job-shop

scheduling problem based on adaptive ant colony algorithm’ Journal of Mechanical

and Electrical Engineering, (doi: CNKI:SUN:JDGC.0.2010-02-016)

Lambrechts, O., Demeulemeester, E. and Herroelen, W. (2008) ‘A tabu search procedure

for developing robust predictive project schedules’, International Journal of

Production Economics, Vol. 111, pp. 493-508.

Laslo, Z., Golenko-Ginzburg, D. and Keren, B. (2008) ‘Optimal booking of machines in

a virtual job-shop with stochastic processing times to minimize total machine rental

and job tardiness costs’, International Journal of Production Economics, Vol. 111, pp.

812-821.

Lawrence, S.R. and Sewell, E.C. (1997) ‘Heuristic, optimal, static, and dynamic

schedules when processing times are uncertain’, Journal of Operations Management,

Vol. 15, pp. 71-82.

 135

Lee, D.Y. and DiCesare, F. (1994) ‘Scheduling flexible manufacturing systems using

petri nets and heuristic search’, IEEE Transactions on Robotics and Automation, Vol.

10, No. 2, pp. 123 – 132.

Leon, V. J., Wu, S.D. and Storer, R. H. (1994) ‘Robustness measures and robust

scheduling for job shops’, IIE Transactions, Vol. 26, No. 5, pp. 32-43.

Levenshtein VI (1966) ‘Binary codes capable of correcting deletions, insertions, and

reversals’, Soviet Physics – Doklady, Vol. 10, pp. 707-710.

Liu, N., Abdelrahman, M.A. and Ramaswamy, S. (2007a) ‘A complete multiagent

framework for robust and adaptable dynamic job shop scheduling’, IEEE Transactions

on Systems, Man, and Cybernetics – Part C: Applications and Reviews, Vol. 37, No.

5, pp. 904-916.

Liu, L., Gu, H. and Xi, Y. (2007b) ‘Robust and stable scheduling of a single machine

with random machine breakdowns’, International Journal of Advanced

Manufacturing Technology, Vol. 31, pp. 645-654.

Mastrolilli, M., and Gambardella, LM., (2000) ‘Effective neighbourhood functions for

the flexible job shop problem’, Journal of Scheduling, Vol. 3, pp. 3-20.

Mattfeld, DC (1996) Evolutionary search and the job shop: investigations on genetic

algorithms for production scheduling, Germany, Heidelberg: Physica-Verlag.

Mahdavi, I., Shirazi, B. and Solimanpur, M. (2010) ‘Development of a simulation-based

decision support system for controlling stochastic flexible job shop manufacturing

systems’, Simulation Modelling Practice and Theory, Vol. 18, No. 6, pp. 768-786.

 136

Matsveichuk, N.M., Sotskov, Yu.N., Egorova, N.G. and Lai, T.-C. (2009) ‘Schedule

execution for two-machine flow-shop with interval processing times’, Mathematical

and Computers Modelling, Vol. 49, pp. 991-1011.

Mellor, P., (1966) ‘A review of job shop scheduling’, Operation Research Quarterly,

Vol. 17, No. 2, pp. 161-171.

Mesghouni, K., Hammadi, S., and Borne, P., (1997) ‘Evolution programs for job-shop

scheduling’, IEEE International Conference on Systems, Man, and Cybernetics,

Orlando, Florida, Vol. 1, pp. 720-725.

Mehta, S.V. and Uzsoy, R.M. (1998) ‘Predictable scheduling of a job shop subjected to

breakdowns’, IEEE Transactions on Robotics and Automation, Vol. 14, No. 3, pp.

365-378.

Mirchandani P., Lee, EJ., and Vasquez A. (1988) ‘Concurrent scheduling in flexible

automation’, Proceedings of the 1988 IEEE International Conference on Systems,

Man, and Cybernetics, Vol. 2(8-12), pp.868-872.

Montemanni, R. (2007) ‘A mixed integer programming formulation for the total flow

time single machine robust scheduling problem with interval data’, Journal of

Mathematical Modelling Algorithms, Vol. 6, pp. 287-296.

Möhring, R. H., Radermacher, F. J. and Weiss, G. (1985) ‘Stochastic scheduling

problems II: Set strategies’, ZOR – Zeitschrift für Operations Research, Vol. 29, pp.

65–104.

Mula, J., Poler, R., García-Sabater, J.P., and Lario, F.C. (2006) ‘Models for production

planning under uncertainty: A review’, International Journal of Production

Economics, Vol. 103, pp. 271-285.

 137

Murovec, B., and Šuhel, P., (2004) ‘A repairing technique for the local search of the job-

shop problem’, European Journal of Operational Research, Vol. 153, pp. 220-238.

Najid, NM., Dauzére-Pérés, S., and Zaidat, A. (2002) ‘A modified simulated annealing

method for flexible job shop scheduling problem’, Oct 2002 IEEE International

Conference on Systems, Man and Cybernetics, Vol.5, No. 6, pp. 1-6.

Paulli, J. (1995) ‘A hierarchical approach for the FMS scheduling problem’, European

Journal of Operational Research, Vol. 86, No. 1, pp. 32–42.

Pezzella, F., Morganti, G., and Ciaschetti, G. (2008) ‘A genetic algorithm for the flexible

job-shop scheduling problem’, Computers & Operations Research, Vol. 35, pp. 3202-

3212.

Pinedo, M. (1982) ‘On the computational complexity of stochastic scheduling problems’,

In M. Dempster, J. Lenstra, & A. R. Kan (Eds.), Deterministic and stochastic

scheduling. Dordrecht: Reidel.

Pinedo, M., (2002) Scheduling: Theory, Algorithms and Systems, Prentice-Hall,

Englewood cliffs, NJ.

Policella, N., Oddi, A., Smith, S.F. and Cesta, A. (2004) ‘Generating robust partial order

schedules’, M. Wallace (Ed.): CP 2004, Lecture Notes in Computer Science, Vol.

3258, pp. 496-511.

Policella, N., Cesta, A., Oddi, A. and Smith, S.F. (2005) ‘Schedule robustness through

broader solve and robustify search for partial order schedules’, S. Bandini and S.

Manzoni (Eds.): AI*IA 2005, Lecture Notes in Artificial Intelligence, Vol. 3673, pp.

160-172.

 138

Qi, X., Bard, J.F., and Yu, G. (2006) ‘Disruption management for machine scheduling:

The case of SPT schedules’, International Journal of Production Economics, Vol.

103, pp. 166-184.

Rangsaritratsamee, R., Ferrell, W.G., and Kurtz, M.B. (2004) ‘Dynamic rescheduling that

simultaneously considers efficiency and stability’, Computers & Industrial

Engineering, Vol. 46, No. 1, pp. 1-15.

Reddy, J.P., Kumanan, S. and Chetty, O.V.K., (2001) ‘Application of petri nets and a

genetic algorithm to multi-mode multi-resource constrained project scheduling’,

International Journal of Advanced Manufacturing Technology, Vol. 17, pp. 305-314

Rutherford, A. (2001) Introducing ANOVA and ANCOVA: A GLM Approach, SAGE

Publications Ltd, Athenaeum Press, Gateshead.

Sabuncuoglu, I. and Karabuk, S. (1999) ‘Rescheduling frequency in an FMS with

uncertain processing times and unreliable machines’, Journal of Manufacturing, Vol.

18, No. 4, pp. 268-283.

Sevaux, M. and Sörensen, K. (2004) ‘A genetic algorithm for robust schedules in a one-

machine environment with ready times and due dates’, Quarterly Journal of the

Belgian, French and Italian Operations Research Societies, 4OR 2; pp. 129–147.

Shafaei, R. and Brunn, P. (1999) ‘Workshop scheduling using practical (inaccurate) data

Part 2: An investigation of the robustness of scheduling rules in a dynamic and

stochastic environment’, International Journal of Production Research, Vol. 37, No.

18, pp. 4105 – 4117.

Shafaei, R. and Brunn, P. (2000) ‘Workshop scheduling using practical (inaccurate) data

Part 3: A framework to integrate job releasing, routing and scheduling functions to

 139

create a robust predictive schedule’, International Journal of Production Research,

Vol. 38, No. 1, pp. 85 – 99.

Sörensen, K. (2001) ‘Tabu searching for robust solutions’, Proceedings of the 4th

metaheuristics international conference, Porto, Portugal, pp. 707-712

Surico, M., Kaymak, U., Naso, D. and Dekker, R. (2006) ‘Hybrid Meta-Heuristic for

Robust Scheduling’, ERIM Report Series Reference No. ERS-2006-018-LIS, Available

at SSRN: http://ssrn.com/abstract=902747

Subramaniam, V. and Raheja, A.S. (2003) ‘mAOR: A heuristic-based reactive repair

mechanism for job shop schedules’, International Journal of Advanced Manufacturing

Technology; Vol. 22, No. (9-10), pp. 669-680.

Tay, JC., and Wibowo, D., (2004) ‘An effective chromosome representation for

evaluating flexible job shop schedules’, Genetic and Evolutionary Computation

(GECCO 2004), Vol. 3103, pp. 210-221.

Tsutsui, S. and Ghosh, A. (1997) ‘Genetic algorithms with robust solution search

scheme’, IEEE Transactions in Evolutionary Computation, Vol. 1, No. 3, pp. 201-208.

Tsutsui, S. (1999) ‘A comparative study on the effects of adding perturbations to

phenotypic parameters in genetic algorithms with a robust solution searching scheme’,

Proceedings of the 1999 IEEE systems, man, and cybernetics conference (SMC’99

Tokyo), pp. III-585-591.

Vinod, V. and Sridharan, R. (2009) ‘Development and analysis of scheduling decision

rules for a dynamic flexible job shop production system’, International Journal of

Business Performance Management, Vol. 11, No. 1/2, pp. 43-71.

 140

Vinod, V. and Sridharan, R. (2011) ‘Simulation modeling and analysis of due-date

assignment methods and scheduling decision rules in a dynamic job shop production

system’, International Journal of Production Economics, Vol. 129, pp. 127-146.

Wang, J., (1998) Timed Petri Nets: Theory and Application, Kluwer Academic

Publishers, Boston, ISBN: 0-7923-8270-6.

Wei, Q., and Qiaoyun, L., (2009) ‘Solving the flexible job shop scheduling problem

based on the adaptive genetic algorithm’, 2009 International Forum on Computer

Science-Technology and Applications, Vol. 1, pp. 97-100.

White, T., and Oppacher, F., (1994) ‘Adaptive crossover using automata’, Lecture Notes

in Computer Science, Springer Berlin – Heidelberg, Vol. 866, pp. 229-238.

Wu, D.S., and Wysk, R.A., (1989) ‘An application of discrete-event simulation to on-line

control and scheduling in flexible manufacturing’, International Journal of Production

Research, Vol. 27, pp. 1603-1624.

Wu, D.S., Storer, R.H., and Chang, P.C., (1993) ‘One-Machine rescheduling heuristics

with efficiency and stability as criteria’, Computers in Operations Research, Vol. 20,

pp. 1-14.

Wu, S.D., Byeon, E., and Storer, R.H., (1999) ‘A graph-theoretic decomposition of the

job shop scheduling problem to achieve scheduling robustness’, Operations Research,

Vol. 47, No. 1, pp. 113-124.

Wu, C.W., Brown, K.N. and Beck, J.C. (2009) ‘Scheduling with uncertain durations:

Modeling β-robust scheduling with constraints’, Computers & Operations Research,

Vol. 36, pp. 2348-2356.

 141

Xia, W., and Wu, Z., (2005) ‘An effective hybrid optimization approach for multi-

objective flexible job-shop scheduling problems’, Computers & Industrial

Engineering, Vol. 48, Issue 2, pp. 409-425.

Xia, Y., Chen B. and Yue J. (2008) ‘Job sequencing and due date assignment in a single

machine shop with uncertain processing times’, European Journal of Operational

Research, Vol. 184, pp. 63-75.

Xing, L-N., Chen,Y-W., and Yang, K-W., (2009) ‘An efficient search method for multi-

objective flexible job shop scheduling problems’, Journal of Intelligent

Manufacturing, Vol. 20, pp. 283-293.

Xing, L-N., Chen, Y-W., Wang, P., Zhao, Q-S., and Xiong, J., (2010) ‘A knowledge-

based ant colony optimization for flexible job shop scheduling problems’, Applied Soft

Computing, Vol. 10, pp. 888–896.

Xu, D-S., Ai, X-Y., and Xing, L-N., (2009) ‘An improved ant colony optimization for

flexible job shop scheduling problems’, Proceedings of the 2009 International Joint

Conference on Computational Sciences and Optimization, Vol. 1, pp. 517-519.

Yang, J-B., (2001) ‘GA-based discrete dynamic programming approach for scheduling in

FMS environments’, IEEE Transactions on Systems, Man, and Cybernetics-Part B,

Vol. 31, No. 5, pp. 824-835.

Zhang, GH., Shao, XY., Li, PG., and Gao, L., (2009) ‘An effective hybrid particle swarm

optimization algorithm for multiobjective flexible job-shop scheduling problems’,

Computers and Industrial Engineering, Vol. 56, Issue 4, pp. 1309-1318.

 142

Zribi, N., Kacem, I., and Kamel, AE., (2007) ‘Assignment and scheduling in flexible job-

shops by hierarchical optimization’, IEEE Transactions on Systems, Man, and

Cybernetics-Part C: Applications and Reviews, Vol. 37, No. 4, pp. 652-661.

