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Abstract—Development of a daily duty cycle based on real-5
world driving behavior and parking times is a critical requirement6
in the optimal design of power-train components of a plug-in7
vehicle. Standard driving cycles cannot completely emulate the8
real-world power demand of a vehicle and its downtimes in par-9
ticular. To address these shortcomings, a large database of one10
year of measured data collected from a fleet of 76 cars in the11
city of Winnipeg, MB, Canada is obtained and is then used to12
develop a new duty cycle. This paper describes a methodology13
for statistical analysis of the fleet data, including while a vehicle14
is parked. Due to the intrinsic differences in vehicle usage profiles15
during weekdays and weekends, two 24-h duty cycles with suitable16
windows of opportunity for charging are developed for weekday17
and weekend driving patterns. The uniqueness of the proposed18
statistical methodology and the resulting duty cycles contribute to19
addressing the present shortcomings of standard driving cycles.20

Index Terms—Battery storage, driving cycle, duty cycle, electric21
vehicle, plug-in hybrid vehicles, renewable energy.22

I. INTRODUCTION23

E LECTRIFICATION of transportation for light-duty vehi-24

cles is a prominent step toward sustainable transportation25

[1], [3]. It can also contribute to efficient integration and use26

of existing and emerging renewable energy resources. Plug-in27

vehicles (i.e., pure electric or plug-in hybrids) have a strong28

potential to reduce petroleum consumption by shifting energy29

demand away from fossil fuels to electrical energy that is30

domestically produced using renewable sources. A plug-in31

vehicle allows its battery storage to recharge via connection32

to a utility grid while the vehicle is parked. Therefore, it33

covers a wide range of vehicles using electricity as a source of34

propulsion either partially, such as in a plug-in hybrid electric35

vehicle (PHEV), or entirely, such as in a battery electric vehicle36

(BEV). When used in conjunction with a distributed high-37

capacity-storage electric utility, it will also help accommodate38
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the variable and unpredictable nature of renewable sources. It 39

is envisioned that by increasing the share of renewable energies 40

for electric power generation and optimizing rechargeable en- 41

ergy storage battery units in plug-in vehicles, major concerns 42

with regard to peak oil, greenhouse gases leading to climate 43

change, energy security, and emissions, can be simultaneously 44

addressed [4]. Due to high cost and large weight per unit energy 45

capacity of current battery cells, the technology pathway for 46

PHEVs to lower the battery size and cost includes providing 47

additional daily charging opportunities during periods when the 48

vehicles are parked and opportunities for charging exist [3]–[7]. 49

Complete assessment of the potential power and energy 50

demand in plug-in vehicles is required to simulate and optimize 51

their energy-storage systems [8]. Optimal sizing of the electric 52

drive-train components, choice of battery chemistry and storage 53

size, development of controllers tuned and optimized to vehicle 54

driving patterns, as well as realistic opportunity charging sce- 55

narios, all require detailed information on the vehicle’s usage 56

profile. Obviously, recharging scenarios and grid impacts can be 57

better analyzed with detailed information on parking durations, 58

as well as time and location of parking events in drivers’ 59

daily routines. Real-world driving patterns provide insight into 60

speed and acceleration characteristics. However, only stan- 61

dard driving schedules conducted on dynamometers or well- 62

documented tracks have been accepted as a systematic approach 63

to mimic real-life situations. Standard certification driving 64

cycles such as the Urban Dynamometer Driving Schedule 65

(UDDS) or Highway Fuel Economy Test have been convention- 66

ally used in conjunction with controlled chassis dynamometer 67

testing to represent average driving behavior of the drivers in 68

fuel economy and emission certification of the vehicles. 69

It is important to note that the standard certification cycles are 70

still unable to handle extreme acceleration or deceleration rates 71

that fall beyond capabilities of laboratory equipment and are 72

bound to limited cycle durations, i.e., usually less than 20 min, 73

to keep test costs low [5], [12]. For instance, the FTP72 driving 74

cycle, which dates back to early 1970s, was primarily developed 75

to measure exhaust emissions of typical light-duty vehicle 76

operations in the Los Angeles urban area [13]. To address the 77

shortcomings of the FTP72 cycle in representing more aggres- 78

sive speeds and accelerations, a Unified Cycle was developed 79

in 1992 based on collected data, known as LA92. However, 80

there are still many concerns about the problems inherent in the 81

existing driving cycles, which lead to underestimation of cruise, 82

acceleration, or stop-and-go activities in different brackets of 83
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velocities [14]. It is therefore concluded that such cycles cannot84

completely emulate the real-world daily power demand of a85

vehicle. More importantly, they do not provide information86

on parking times as opportunities for charging in the case of87

emerging plug-in vehicles. In addition, it is important to base88

duty cycles on larger data sets to reduce statistical errors.89

An extensive literature survey conducted revealed no refer-90

ence to the development of a daily driving cycle, taking into91

account power and energy demands as major requirements for92

representing the real-world data. Most studies have focused on93

developing urban driving cycles using snippets extracted from94

recorded speed–time traces to estimate vehicular emissions and95

fuel consumption in different cosmopolitan areas [15], [19].96

The objective of these studies is to represent the driving infor-97

mation in a collected data set using a single driving cycle. Some98

other studies discuss the effectiveness of the methodologies99

used in developing driving cycles to represent the inherent char-100

acteristics of driving behavior in the collected data [20], [21].101

A few recent studies exist that have assessed the performance102

of hybrid electric vehicles (HEVs) in real-world operation.103

For example, data collected for a fleet in the St. Louis, MO,104

metropolitan area were used in the simulation of energy usage105

in a PHEV, but no single driving pattern was extracted from106

the collected data [22]. Fuzzy logic pattern recognition tech-107

niques have also been used to perform driving and duty cycle108

analyses on data collected for a fleet of HEVs [23]. Another109

effort to modify standard cycles for better representing real-110

world behavior introduced a driver model in connection with111

European standard cycles into simulations [24]. A methodology112

that generates a driving cycle has also been reported based113

on the assumption of constant acceleration and deceleration114

rates, along with consideration of the speed limits in different115

road segments in representative areas [25]. It can therefore be116

concluded that there does not exist a single widely accepted117

duty cycle in the literature to appropriately represent typical118

daily activities of the vehicles and to address the energy and119

power demands of the PHEVs and BEVs.120

The study presented in this paper addresses the gap in the121

literature by developing a statistical methodology and con-122

structing the needed duty cycles based on a database of over123

44 million Global Positioning System (GPS) data points124

recorded over the course of one year in Winnipeg, MB, Canada.125

Depending on the context, the terms “driving cycle” and126

“duty cycle” may convey different meanings. In this paper,127

a “driving cycle” refers to a history of daily driving periods128

represented by a speed-versus-time curve. A “duty cycle” refers129

to a profile of daily usage of power by the vehicle, which is130

typically represented by a 24-h history of driving and parking131

events. Note that, in the case of an HEV, only a driving cycle132

is sufficient to calculate vehicle’s power demand, whereas in133

the case of a plug-in vehicle, parking times also become vital134

as they may be used for charging from the electric grid, and135

therefore, they should be included in the daily profile. Parking136

times are also important to utilities servicing jurisdictions with137

large vehicular loads, as they can be used to predict and control138

the load on the grid.139

The objective of the present study is to first develop a140

new driving cycle most closely mirroring the characteristics of141

Fig. 1. Typical variation in the SOC of a PHEV battery.

urban driving, including real-world energy and power demands. 142

Once this is achieved, this study aims to incorporate a pattern 143

representing most probable downtimes of the vehicles to charge 144

during their daily usage profile. A comprehensive daily duty 145

cycle is a crucial component for optimal design of plug-in 146

vehicular drive-trains. This study improves the conventional 147

methods of driving cycle generation [26], [28]. The present 148

study also establishes a set of performance measures required to 149

assess a driving cycle suited for electric/plug-in hybrid vehicles. 150

The methodology used in the precedent study for simulation 151

of a plug-in vehicle is enhanced by including 25 parameters 152

to characterize different velocity brackets in a driving cycle 153

[29]. The uniqueness of this study is proposing a methodol- 154

ogy that addresses the particular requirements associated with 155

the design of plug-in vehicles in construction of a 24-h duty 156

cycle. 157

Following the introduction, in Section II, duty cycle re- 158

quirements to be fulfilled for enhanced simulation and opti- 159

mization of plug-in vehicles are discussed. Data collection, 160

driving cycle generation, and characterization are described 161

in Section III. Parking data analysis for weekdays and week- 162

ends is presented in Section IV. The resulting 24-h duty 163

cycles are given in Section V, and driving characteristics 164

are critically compared with those of the standard cycle for 165

urban driving, i.e., the UDDS. Conclusions are presented 166

in Section VI. 167

II. DUTY CYCLE REQUIREMENTS FOR PLUG-IN VEHICLES 168

The total distance that a plug-in vehicle can electrically 169

drive is an important measure for the vehicle’s performance 170

assessment. For instance, PHEVs are usually classified ac- 171

cording to their all-electric range (AER), which is defined as 172

the total miles electrically driven after a full recharge before 173

the engine turns on for the first time [30]. A fully recharged 174

PHEV operates in charge-depleting mode until the battery is 175

depleted to a target state-of-charge (SOC), at which point, the 176

vehicle switches to charge-sustaining mode, using the internal 177

combustion engine to maintain the target SOC [3]. Fig. 1 shows 178

the typical variation in the SOC of the battery in the operating 179

modes of a PHEV. 180

Obviously, the instantaneous power demand resulting from 181

the driving style of the driver is critical in the definition of the 182

AER. The standard cycle UDDS is usually used to measure 183
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TABLE I
CHARACTERIZING PARAMETERS AND THEIR VALUES

the AER for classifying PHEVs. Therefore, a PHEVx expected184

to travel x miles on battery, in the real world, would perform185

quite differently, depending on the driving habits of the driver.186

The mentioned difficulty in providing a realistic performance187

measure to the end users is also valid in the case of an HEV.188

The dominant mode of operation in an HEV battery is charge189

sustaining, and its fuel efficiency is characterized by a higher190

mile per gallon rate when compared with conventional vehicles.191

Again, using the standard cycle is misleading as, in reality, fuel192

consumption would be higher, depending on the aggressiveness193

of the driver.194

In this study, real-world driving data are collected over a195

sufficiently long period to reduce statistical errors. In addition,196

the characterizing parameters of the driving cycles used to197

generate the standard driving cycles are extended to cover198

average driver’s daily energy demand and maximum power199

demand (positive in acceleration and negative in deceleration)200

for light-duty vehicles (with a dominant share in urban traffic).201

The information on parking events such as the frequency of202

occurrence and the ratio of parking to driving times in an203

average daily driving profile is also included to construct an204

average 24-h duty cycle.205

The characterizing parameters considered in this paper are206

those defining power requirements at different driving modes,207

as listed in Table I. Except for its considerably cold winter208

temperatures, Winnipeg, with a population of 700 000, is a209

typical North American urban setting where driving culture,210

population, and traffic behavior are similar to many other cities211

across the United States and Canada. Although the particular212

duty cycles developed in this study may be applied to many 213

other similarly populated cities, the methodology described in 214

the next section is general and can be used to develop duty 215

cycles for any other urban area of interest. 216

III. METHODOLOGY OF DEVELOPMENT 217

OF A DRIVING CYCLE 218

The proposed methodology comprises two stages: 1) de- 219

veloping a driving cycle based on a large set of data points 220

collected and 2) incorporating results of a statistical analysis 221

on daily parking times to construct a 24-h duty cycle. An 222

enhanced statistical approach is developed using 25 parame- 223

ters to characterize the driving cycle by selecting candidates 224

from the database that have the closest match to the average 225

of the parameters. The candidate cycle is then incrementally 226

enhanced by replacing its microtrips with those extracted from 227

the same traffic group to minimize a figure of merit defined 228

based on average values of the characterizing parameters. The 229

processed parking data are then categorized in various groups 230

and included in the daily usage profile. 231

There are two general methodologies to develop a driving 232

cycle. One is based on creating a pool of trip segments extracted 233

from recorded speed–time traces of vehicles, followed by cat- 234

egorizing them into several driving modes and finally patching 235

snippets selected based on desired selection criteria together 236

to develop a representative driving cycle with a predetermined 237

duration [14]. In the other method, the single most represen- 238

tative speed–time trace is selected among a large number of 239
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Fig. 2. Methodology of developing a 24-h duty cycle.

speed–time traces recorded from real-world driving. A set of240

characterizing parameters describing the driving cycle is used241

to select this representative cycle, and modifications are made242

to the selected cycle to meet certain constraints of import-243

ance [17].244

In this paper, emphasis is placed on the energy and power-245

demand aspects of a cycle to address the concerns in plug-246

in vehicle design and optimization, as mentioned previously.247

Therefore, the second methodology is used in this study to248

develop a cycle realistically mirroring the characteristics of249

urban driving. This study adopts an adequately long-term ap-250

proach to data collection from a fleet of instrumented vehicles251

to reduce the risk of unreal driving behavior resulting from252

any influence of the onboard instruments that may potentially253

bias drivers’ driving behavior. Over a one-year timescale, the254

vehicle owners presumably drive on their ordinary travel routes,255

whereas onboard instruments automatically timestamp the ve-256

hicle’s location and speed on a secondly basis.257

In the present study, data from 76 participant vehicles over a258

one-year period starting from May 2008 to June 2009 collected259

by the University of Winnipeg are used. The participants have260

been selected from different income brackets, education levels,261

and gender and from different areas of the city to create a262

statistical population best representing the drivers in the area.263

The fleet of participating vehicles consists of sedans, both full-264

and midsize (67%), and sport utility vehicles and pickup trucks265

(33%). Recorded raw data are used to create a database for266

further analysis to identify daily driving cycles and parking267

times. The sources of error in collection of data for this study268

can be attributed to GPS loss-of-signal in the beginning of some269

trips due to lack of connection to the positioning satellites or270

blockage due to tall buildings in the downtown area or during271

the days with significant cloud coverage.272

The database includes trip number, date, time, position,273

actual speed, and maximum allowable speed (according to the274

traffic signs at a vehicle’s location), on a secondly basis. The275

recorded driving cycles of participating vehicles are divided276

into two groups of weekday and weekend cycles. Commercial277

fleet users were excluded from this study. The methodology278

used in this study is schematically shown in Fig. 2.279

It comprises three major steps to find a candidate cycle,280

enhancing the candidate cycle for best representativeness, and,281

finally, including results of parking data analysis into the 282

driving cycle to create a 24-h duty cycle. 283

In this paper, two daily driving cycles, i.e., one representing 284

weekdays and one for weekends, are selected among the avail- 285

able recorded cycles to avoid lower resolution resulting from 286

mixing their different parking and driving patterns. The two 287

candidate driving cycles best match the average weekday and 288

weekend behavior of the fleet in terms of a set of characterizing 289

parameters given in Table I. 290

The objective of analyzing parking data, which constitute 291

the potential charging times for plug-in vehicles, is twofold: 292

1) to optimize the battery size for an individual vehicle based 293

on several realistic charging scenarios and 2) to estimate the 294

hourly distributed load on the electric grid of the municipality 295

for preparation of adequate infrastructure to keep pace with 296

increasing popularity of plug-in vehicles in the future. The 297

former is important from a vehicle manufacturer’s perspective, 298

and the latter is crucial for the electric utility to locate high- 299

voltage feeders and redesign required infrastructure to charge 300

vehicles in urban areas. 301

A. Selecting the Candidate Driving Cycles 302

A set of 25 parameters, as listed in Table I, is used to 303

characterize each of the driving cycles in the pool of recorded 304

data. In addition to the parameters describing kinematics of a 305

cycle, average power demand and average breaking power are 306

also used. This is to extend the set of performance measures 307

for driving cycles in line with the objectives of this study for 308

plug-in vehicle design. 309

Characteristic parameters of each individual cycle are mea- 310

sured against their corresponding average values, and a figure 311

of merit is calculated and assigned to each individual cycle as 312

follows: 313

σ =

(
N∑

i=1

(
xi − xi

xi

)2
/

N

)1/2

(1)

where σ is the figure of merit, and N is the number of char- 314

acterizing parameters, which is 25 in this study. Table I shows 315

the list of the characterizing parameters xi, and their average 316

values xi for both the weekday and weekend cycles are then 317

calculated, as given in Table I. 318

The parameters in Table I were selected to ensure that the 319

resulting cycle could be used to optimize a large array of 320

drive-train topologies from conventional gas powered to purely 321

electric and with all possible topologies in between when using 322

combinations of propulsion systems. 323

The cycles that have the closest set of characterizing pa- 324

rameters to the average values in the weekday and weekend 325

groups are selected and will be referred to as the candidate 326

cycles hereinafter. The power and energy demand needed to 327

meet the instantaneous speed of vehicle are calculated based 328

on a longitudinal model for the dynamics of the vehicle, as 329

given in (2) and (3) [31]. The power demand is calculated by 330

integrating net forces acting in the direction of motion over 331

time. The acting forces are the aerodynamic drag FD, the time 332

derivative of momentum in the moving direction mdv/dt, the 333
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TABLE II
VALUES OF PARAMETERS USED IN POWER AND ENERGY CALCULATION

rolling friction FF , and the road grade force FG [32], [33]. The334

governing equations are given as follows:335

P =
(

m
dv

dt
+ FD + FF + FG

)
v (2)

E =

t∫
0

(
m

dv

dt
+ FD + FF + FG

)
· v · dt (3)

where336

FD = ρAfCD(v + vw)2/2 (4)

FF = (1 + v/100) · mg · cos θ/100 (5)

FG = mg sin θ (6)

ρ is the air density, Af is the vehicle frontal area, CD is337

the aerodynamic drag coefficient, VW is the head-wind speed,338

m is the mass of the vehicle, g is the gravitational constant339

(9.8 m/s2), and θ is the grade angle of the road. In this paper,340

typical values for a midsize sedan, as given in Table II, are used341

in the energy and power calculations.342

This assumption is in line with the dominance of sedans in343

urban transportation fleet, which is also mirrored in the fleet of344

participant vehicles in the data-collection phase. Positive values345

of power demand indicate the power to be provided by the346

propulsion system at the wheels. The total daily energy demand347

is calculated by integrating the positive values of the power348

demand over time divided by the number of data-collection349

days. Negative values of power demand represent the power350

to be dissipated as heat by conventional breaking systems or351

partially recovered in regenerative breaking systems.352

B. Enhancement of the Candidate Driving Cycles353

It is clear that the two candidate driving cycles do not354

necessarily match all the average values uniformly well, al-355

though they have the best figures of merit for single daily356

cycles in the database. In this paper, for instance, figures of357

merit for weekday and weekend candidate cycles are 0.197358

and 0.295, respectively. To enhance the quality of the candidate359

cycles, further processing is done with a view to improve their360

figure of merit using microtrips of other cycles available in361

the database. The candidate cycles are then enhanced based362

on a methodology shown in Fig. 3. A maximum 5% deviation363

from average daily energy demand for final driving cycles is364

allowed in the construction of the enhanced candidate cycles.365

The average values for the enhanced candidate cycles are also366

given in Table I.367

The recorded speed–time traces from the database are split368

into “microtrips.” A microtrip is defined as a snippet of the369

speed–time trace that begins and ends at idle states: zero speed.370

The microtrips are then classified according to their traffic371

Fig. 3. Methodology of enhancing the candidate cycles.

TABLE III
MICROTRIP CLUSTERING CRITERIA

groups characterized by average speed and acceleration, as 372

given in Table III. Here, each microtrip of the candidate cycle is 373

iteratively exchanged with microtrips of the same traffic group 374

until the best figure of merit σ is obtained. 375

Classification of microtrips is an important step in the 376

cycle-enhancement method that describes their physical char- 377

acteristics in terms of driving patterns and traffic conditions. 378

Congested traffic such as stop-and-go patterns is characterized 379

by low average speed and mild acceleration (e.g., driving pat- 380

tern in main commuting streets during rush hours). Urban traffic 381

is designated by its moderate average speed and wider range 382

of acceleration typically governed by stop signs and traffic 383

lights in normal urban driving. Finally, the distinct feature of 384

highway traffic is high average speed and moderate acceleration 385

rates. The variations in the speed and acceleration can change 386

the power demand accordingly, and hence, the time percent- 387

ages spent in various speed and acceleration ranges provide 388

important information about power demand in different traffic 389

categories defined in Table III. 390

Speed–acceleration frequency distribution (SAFD) plots pro- 391

vide the needed information about the time proportions of 392

individual driving modes [34]. The use of microtrips of the 393

same traffic group serves to maintain the matching of the SAFD 394

of the two candidate cycles to that of the SAFD of all recorded 395

cycles. 396

An alternative approach to developing a driving cycle is to 397

use random selection methods to select the appropriate number 398

of classified microtrips required to construct a representative 399

cycle matching well with the average characterizing parame- 400

ters with the lowest figure of merit. Random combination of 401

microtrips has been used by other researchers as a means to 402

construct representative driving cycles [35]. Another approach 403

to improve the current methodology would be to give a weight- 404

ing factor to the terms in the definition of the figure of merit [see 405

(1)] to adjust sensitivity of the final result to bias characterizing 406

parameters in accordance with their importance in the final 407
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Fig. 4. Enhanced candidate driving cycles. (Top) Weekday. (Bottom)
Weekend.

duty cycle. In this paper, all weighting factors are considered408

equal to 1. Evidently, energy needed and power demand for409

traveling the same distance in different traffic modes are not410

equal. It is also well understood that the aggressiveness of the411

driver in accelerating and decelerating the vehicle increases412

power consumption. However, it should be noted that replacing413

microtrips of the candidate cycle with microtrips of the same414

traffic mode, but potentially from different driving styles, is415

not misleading from an energy perspective. This is due to the416

fact that all parameters defining aggressiveness, energy level,417

and power consumption are already included in the 25 char-418

acterizing parameters used in this study, and the replacements419

increasing the figure of merit to larger values are not con-420

sidered. Implementing alternative enhancement methodologies421

mentioned earlier and their performance assessment are left for422

further work. Fig. 4 shows the enhanced weekday and weekend423

candidate driving cycles. The metric units are used throughout424

the study.425

The speed in the driving cycles shown in Fig. 4 is given426

in kilometers per hour; however, for more convenience, both427

English and metric versions of the driving cycles in digital428

format are made available to the public [36].429

Durations of the weekday and weekend cycles are 3484 and430

3616 s, respectively. The maximum velocity is higher in the431

weekend cycle, i.e., 114 km/h, whereas in the weekday cycle,432

the maximum velocity is 89.6 km/h. The enhancement process433

does not necessarily finish by yielding a figure of merit equal to434

zero, but a considerable improvement can be expected as, in this435

study, the initial values were improved by approximately 40%.436

The figure of merit for the enhanced weekday and weekend437

driving cycles are 0.15 and 0.2, respectively. Fig. 5 shows438

the SAFD plot for weekday and weekend enhanced candidate439

driving cycles.440

The two patterns are different in nature. Stop-and-go events441

characterized by larger acceleration or deceleration rates at low442

speeds are more probable in the weekday pattern. However,443

high-speed events are more probable in the weekend pattern.444

The driving pattern on the weekend is slightly more aggressive445

Fig. 5. SAFD plots for the enhanced candidate driving cycles. (a) Weekday.
(b) Weekend.

Fig. 6. Power–time traces for the enhanced candidate driving cycles.
(a) Weekday. (b) Weekend.

due to higher acceleration and deceleration rates, which results 446

in higher power demand for weekend driving patterns. 447

The power–time profiles corresponding to the two driving 448

cycles are also presented in Fig. 6. To obtain these profiles, a 449

vehicle with the specifications listed in Table II is considered 450

to have driven the two cycles. Evidently, variations and abrupt 451

changes in power demand are more considerable in the stop- 452

and-go driving mode that is dominant in congested and urban 453

traffics in the weekday driving cycle. This mode of driving 454

considerably contributes to air pollution in downtown areas of 455

large metropolitan areas, and it is particularly important to be 456

covered by electric propulsion in the case of HEVs. 457
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IV. PARKING ANALYSIS458

Vehicle parking at home, the workplace, commercial lo-459

cations, and on the street constitutes a critically important460

element of a modern duty cycle that can address a multitude461

of drive-train topologies, storage technologies, and controllers.462

Developing models to analyze the parking behavior in an urban463

area for city planning may require detailed information on the464

parameters affecting parking behavior during the day, such as465

travel demands, district-based knowledge on cost of parking,466

nature of activities in the area of interest, and supply and467

demand on an hourly basis. However, from the charging per-468

spective only, relatively long parking times provide potential469

charging times to increase the SOC of an onboard energy470

storage device. A typical duration for a full charge under normal471

charging conditions (110 V and 15 A) for current competitive472

battery technologies used in electric vehicles, namely, lithium473

ion and nickel metal hydride, is approximately 6 h; the mini-474

mum duration for partial charging is presently not known with475

a high confidence level. Therefore, it is expected that most476

plug-in electric vehicles will be charged mainly overnight. If477

a relatively long parking time (e.g., more than 3 h) during the478

day is considered as a realistic scenario for a reasonable share479

of the urban fleet, it is possible to downsize the battery storage480

capacity and reduce the capital cost of a plug-in vehicle or,481

in the case of a PHEV with a fixed size of battery storage,482

drive more miles on electricity to improve cost effectiveness.483

In addition, fast charging schemes using level 2 (120 V and484

30 A) and direct dc chargers will facilitate full charging in485

shorter charging durations, i.e., as low as 20 min, depending486

on the battery technology and dc charging infrastructure.487

It is also important to highlight that identification of parking488

locations for charging opportunities is critical; this aspect has489

been of strong interest to utilities, as they need to address both490

power and energy demand for electric mobility, with power491

having a large impact on grid infrastructure costs. Charging492

at residential areas, parking lots at work places, and large493

shopping malls is of interest; however, parking in streets or494

less-frequently open areas is not emphasized due to the large495

infrastructure cost required to achieve this type of opportunity496

charging. In the development of a duty cycle in this work,497

parking events are described for all categories over a 24-h498

period to provide data for any combination of future charging499

scenarios. Inherent in this study is the assumption that plug-500

in vehicle owners will not be significantly modifying their501

parking behaviors, although they may change their parking stall502

to access a plug.503

An extensive literature survey reveals that a few studies504

have focused on the potential charging aspect of parking times505

as a part of daily activities of vehicles; none seem to have506

incorporated this into a duty cycle. This aspect is of critical507

importance to address energy drivers in transportation and508

allow the displacement of fossil fuels with new renewable509

energy generation. The analysis conducted by the Argonne510

National Laboratory (ANL) shows that, in the United States,511

66% of the vehicles driven to work are parked more than512

3 h before noon, potentially allowing a second charge before513

the electric utility peak demand begins [37]. It was also ob-514

served that vehicles were parked for a short time for shop-515

Fig. 7. Mean and standard deviation of parking duration by hour of day.
(a) Weekdays. (b) Weekends. (c) Probability of parking events by hour of day
for both weekdays and weekends.

ping purposes, and parking was often during peak electric 516

demand [36]. 517

In this paper, GPS-based data loggers provide information 518

on location, type of parking, and duration of parking events. 519

The type of parking can be determined from the driver’s 520

behavior, where it is relatively simple to determine where 521

the person lives and works; commercial parking locations 522

are found by digitizing commercial parking lots in Winnipeg. 523

Street parking is deduced from a car staying on the street. Note 524

that studies dedicated to record the instantaneous speed of the 525

vehicle for certification purposes, such as that leading to the 526

FTP72 standard cycle and its enhanced cycles, do not provide 527

information on parking times. Here, probable parking times 528

and average duration for each parking event, as well as the 529

standard deviation of the data points, are included to adequately 530

reflect a daily driving and parking profile for electric vehicle 531

design of drive-train topologies. 532

Parking times of less than half an hour are arbitrarily clas- 533

sified in our study as short; the distribution of such parking 534

events shows that, in early mornings and afternoons, this type 535

of parking is the most likely. It is important to note that stop 536

times of less than 2 min, happening at stop signs or traffic 537

lights, are excluded from short parking. The results of short 538

parking times are not presented here as it is assumed that, in 539

the real world, these occasional parking events are not favored 540

by drivers for charging. However, a cumulative parking time 541
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representing short parking times per day will be included in the542

final duty cycles. The results of studying parking periods that543

exceed 30 min are shown in Fig. 7.544

Fig. 7(a) and (b) shows mean values and standard deviations545

of parking durations by hour of day for weekdays and week-546

ends, respectively.547

Two distinct patterns in daily parking behavior can be recog-548

nized, namely, a mean value less than or equal to the standard549

deviation and a mean value larger than the standard deviation.550

Long parking duration with a mean value larger than the stan-551

dard deviation happens between 8 P.M. and 6 A.M., showing552

that the majority of drivers tend to park their vehicles for a long553

time. However, when the standard deviation is greater than the554

mean value of parking duration, the data show an increase in555

daily trips, happening between 10 A.M. and 4 P.M., and the556

average of the mean values is about 4 h. Peaks in probability557

of parking events in terms of hour of day, as shown in Fig. 7(c),558

reflect the difference in nature of activities between weekdays559

and weekends. While there is only one peak in the weekend560

curve happening at 7 P.M., there are three peaks occurring at561

7A.M., 12 P.M., and 5 P.M. during weekdays.562

On weekdays, 67% of the vehicles park for more than 3 h be-563

tween 6 A.M. and 9 A.M., whereas between 9 A.M. and 12 P.M.,564

only 33% of the vehicles park for more than 3 h. This can565

be justified as many commuters drive to work and park their566

car during working hours at their working place early in the567

morning. However, after 9 A.M., vehicles moving in the streets568

tend to park for a limited duration, i.e., typically less than 3 h,569

which is necessary for activities such as shopping. The analysis570

shows that, while overnight charging is the first choice for571

charging the battery, second charging is most likely to happen572

in the morning around 9 A.M. or in the afternoon around 5 P.M.573

Taking the higher electricity price in peak hours in many574

jurisdictions, a more realistic scenario for charging would be575

overnight followed by early mornings. However, the distribu-576

tion of charging load on the electric grid overnight or during the577

day would be different, which indicates a need to redesign the578

location of feeders in the city. This aspect of charging electric579

cars is beyond the scope of this study and will be published in580

separate articles of various charging opportunities and power581

levels.582

V. ASSEMBLY OF THE DRIVING CYCLES583

Analysis was performed on the raw GPS data in conjunction584

with the digitized maps of the roads and commercial parking585

locations to characterize the driving and parking behavior of586

the vehicles under the one-year span of the survey in the587

city of Winnipeg. Using the method shown in Fig. 2, two588

24-h vehicle usage profiles representing a daily duty cycle589

were developed for both weekdays and weekends. The parking590

patterns obtained from the analysis of parking times, as well as591

cumulative short parking events, are included in the daily duty592

cycles for weekdays and weekends. In creating this, the average593

distance traveled in driving events is considered to separate594

the final driving cycle into parts, and then, parking events are595

inserted in between in the most probable way. The resulting596

cycles are shown in Fig. 8 and are meant to represent the597

Fig. 8. Resulting 24-h duty cycles. (a) Weekdays. (b) Weekends.

Fig. 9. Comparison between the standard cycle UDDS and the enhanced
weekday cycle (EWC).

44 million data points into a condensed duty cycle for studies 598

pertaining to plug-in hybrids, including optimization of power 599

trains [29]. In Fig. 8, D stands for driving, P stands for parking 600

periods, P1 stands for home, P2 stands for work, P3 stands 601

for commercial, P4 stands for short stops, and P5 stands for 602

street parking. The driving cycles are on a 1-h basis, and the 603

duty cycles, with long parking times included, are on a 24-h 604

basis and are both combined into the same figure. The parking 605

durations on a 24-h scale designated by color codes are also 606

shown on a 1-h driving scale for the sake of clarity. The parking 607

events that potentially can be used for charging are P1, P2, or P3 608

when the vehicle is most probably parked in a parking spot with 609

access to level-1 or level-2 charging. The parking events that 610

happen on the street or short parking durations are considered 611

not suitable for charging. 612

Some characteristics of the enhanced driving cycle are com- 613

pared with those of the standard cycle UDDS, and the results 614

are presented in Fig. 9. The comparison indicates that more 615

aggressive characteristics are associated with the real-world 616



IE
EE

Pr
oo

f

SHAHIDINEJAD et al.: DEVELOPMENT OF A DUTY CYCLE FOR PLUG-IN VEHICLES 9

cycle, whereas, on average, the two cycles may be considered617

interchangeable.618

Evidently, the vehicles with the opportunity to charge limited619

to overnight have more time to be fully charged under slow620

charging mode on the weekends. This is particularly important621

for PEVs with larger battery storage capacity. Deriving a grid622

load based on this driving cycle has merit but requires the623

understanding of its limitations for utilities; however, it is624

beyond the scope of this work.625

The data files of the duty cycles and the collected raw data626

are available to the public on the World Wide Web through a627

unique Digital Object Identifier number [36]. Forty-four mil-628

lion speed–time data points, stamped with date and time, and629

collected over the course of one year are made available. The630

latitude and longitude of the position of the vehicles recorded631

on a secondly basis are masked by mapping the starting point of632

every trip to (0,0) to respect the confidentiality agreement with633

the participants in the data-collection phase. However, personal634

information about the participants is used to label the parking635

locations as home or work. Labeled parking locations, as well636

as the duration of parking events needed for further analyses637

with different charging scenarios in the case of plug-in electric638

vehicles, are included in the data files. The parking events that639

are less than 30 min in duration are labeled short stops. Parking640

events happening along the street are not potentially suitable641

for charging. The locations of the parking events longer than642

30 min in duration are marked home, work, shop, and street. The643

effectiveness of the methodology presented in this study, even644

with far fewer data points (about 1 million data points, which645

is equal to about 2% of the data points used in this study),646

for simulation-based optimization of a PHEV was shown in [29].647

VI. CONCLUSION648

A new approach to the development of a duty cycle that ad-649

dresses the requirements associated with the design of electric650

vehicles—e.g., HEV, PHEV, BEV, and extended-range vehi-651

cles, has been proposed and implemented on a 24-h timescale.652

It provides a complete data set for optimization of battery653

size for on-road vehicles in a typical North American urban654

setting. For example, power and energy demand in the daily655

operation of a sedan is directly related to the rate of acceleration656

and deceleration and time spent in different traffic modes;657

charging scenarios depend on parking times and duration. The658

driving behavior of a fleet of 76 participants in a one-year659

voluntary data-collection program in the city of Winnipeg is660

analyzed to develop a driving cycle and is composed of two661

24-h duty cycles for weekdays and weekends. This cycle pro-662

vides information about the time and duration of driving in663

different traffic categories, as well as information on parking664

times when the vehicle is not in use. Further vehicle simu-665

lation tools can use the daily duty cycles developed to op-666

timally design propulsion systems, drive-train configurations,667

and storage components for PEV technologies under real-world668

driving conditions. Furthermore, this information can be used669

to analyze the impact of daytime charging by a fleet of plug-670

in electric vehicles on the electric utility grid that may create a671

peak demand during the day to be met by the local utility grid.672

The target use of the developed cycle is to provide a duty cycle 673

that can be used to optimally address energy drivers simultane- 674

ously facing transportation by displacing fossil fuels with new 675

renewable energy generations with the direct consequences of 676

increasing the renewable energy ratio of various jurisdictions. 677

To achieve this goal, 25 parameters characterizing a driving 678

cycle for further PEV simulations are recognized, and two 679

candidate daily cycles having the closest match to the average 680

of the parameters are selected. The candidate cycles are then 681

incrementally enhanced by replacing their microtrips with those 682

extracted from the same traffic group, minimizing a figure of 683

merit defined based on the characterizing parameters. Finally, 684

the processed parking data are included to complete two 24-h 685

duty cycles. The final result is therefore reflecting more accu- 686

rately a realistic driving pattern than driving cycles resulting 687

from methodologies that patch snippets of driving data from 688

different drivers or occasions to make a driving cycle. Although 689

the data collected represent driving behavior in the city of 690

Winnipeg, MB, Canada, the methodology presented here can 691

be extended to any other urban area of interest. 692

There exist a few directions to continue the research on or 693

using the collected data. Other methods for development of a 694

driving cycle may include a stochastic approach for selecting 695

and patching snippets of speed–time traces using a probability 696

matrix [14], [21], which might be enhanced to incorporate 697

power and energy requirements of the vehicle. Future work 698

may also concentrate on one specific driving pattern, for in- 699

stance, a commuter, to develop a dedicated driving cycle best 700

mirroring that particular driving pattern. The driving cycle may 701

also be used for a wide range of applications, such as energy 702

assessment of the vehicles in daily use in urban transportation, 703

analysis of charging scenarios in PHEVs and PEVs, vehicle-to- 704

grid analysis, and statistical assessment of driving cycle vari- 705

ability on hybrid drive-train design. Finding other applications, 706

particularly from a social driving behavior perspective, can also 707

be viewed as an important extension of the work. 708
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Statistical Development of a Duty Cycle for Plug-in
Vehicles in a North American Urban Setting

Using Fleet Information

1

2

3

Soheil Shahidinejad, Eric Bibeau, and Shaahin Filizadeh, Member, IEEE4

Abstract—Development of a daily duty cycle based on real-5
world driving behavior and parking times is a critical requirement6
in the optimal design of power-train components of a plug-in7
vehicle. Standard driving cycles cannot completely emulate the8
real-world power demand of a vehicle and its downtimes in par-9
ticular. To address these shortcomings, a large database of one10
year of measured data collected from a fleet of 76 cars in the11
city of Winnipeg, MB, Canada is obtained and is then used to12
develop a new duty cycle. This paper describes a methodology13
for statistical analysis of the fleet data, including while a vehicle14
is parked. Due to the intrinsic differences in vehicle usage profiles15
during weekdays and weekends, two 24-h duty cycles with suitable16
windows of opportunity for charging are developed for weekday17
and weekend driving patterns. The uniqueness of the proposed18
statistical methodology and the resulting duty cycles contribute to19
addressing the present shortcomings of standard driving cycles.20

Index Terms—Battery storage, driving cycle, duty cycle, electric21
vehicle, plug-in hybrid vehicles, renewable energy.22

I. INTRODUCTION23

E LECTRIFICATION of transportation for light-duty vehi-24

cles is a prominent step toward sustainable transportation25

[1], [3]. It can also contribute to efficient integration and use26

of existing and emerging renewable energy resources. Plug-in27

vehicles (i.e., pure electric or plug-in hybrids) have a strong28

potential to reduce petroleum consumption by shifting energy29

demand away from fossil fuels to electrical energy that is30

domestically produced using renewable sources. A plug-in31

vehicle allows its battery storage to recharge via connection32

to a utility grid while the vehicle is parked. Therefore, it33

covers a wide range of vehicles using electricity as a source of34

propulsion either partially, such as in a plug-in hybrid electric35

vehicle (PHEV), or entirely, such as in a battery electric vehicle36

(BEV). When used in conjunction with a distributed high-37

capacity-storage electric utility, it will also help accommodate38
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the variable and unpredictable nature of renewable sources. It 39

is envisioned that by increasing the share of renewable energies 40

for electric power generation and optimizing rechargeable en- 41

ergy storage battery units in plug-in vehicles, major concerns 42

with regard to peak oil, greenhouse gases leading to climate 43

change, energy security, and emissions, can be simultaneously 44

addressed [4]. Due to high cost and large weight per unit energy 45

capacity of current battery cells, the technology pathway for 46

PHEVs to lower the battery size and cost includes providing 47

additional daily charging opportunities during periods when the 48

vehicles are parked and opportunities for charging exist [3]–[7]. 49

Complete assessment of the potential power and energy 50

demand in plug-in vehicles is required to simulate and optimize 51

their energy-storage systems [8]. Optimal sizing of the electric 52

drive-train components, choice of battery chemistry and storage 53

size, development of controllers tuned and optimized to vehicle 54

driving patterns, as well as realistic opportunity charging sce- 55

narios, all require detailed information on the vehicle’s usage 56

profile. Obviously, recharging scenarios and grid impacts can be 57

better analyzed with detailed information on parking durations, 58

as well as time and location of parking events in drivers’ 59

daily routines. Real-world driving patterns provide insight into 60

speed and acceleration characteristics. However, only stan- 61

dard driving schedules conducted on dynamometers or well- 62

documented tracks have been accepted as a systematic approach 63

to mimic real-life situations. Standard certification driving 64

cycles such as the Urban Dynamometer Driving Schedule 65

(UDDS) or Highway Fuel Economy Test have been convention- 66

ally used in conjunction with controlled chassis dynamometer 67

testing to represent average driving behavior of the drivers in 68

fuel economy and emission certification of the vehicles. 69

It is important to note that the standard certification cycles are 70

still unable to handle extreme acceleration or deceleration rates 71

that fall beyond capabilities of laboratory equipment and are 72

bound to limited cycle durations, i.e., usually less than 20 min, 73

to keep test costs low [5], [12]. For instance, the FTP72 driving 74

cycle, which dates back to early 1970s, was primarily developed 75

to measure exhaust emissions of typical light-duty vehicle 76

operations in the Los Angeles urban area [13]. To address the 77

shortcomings of the FTP72 cycle in representing more aggres- 78

sive speeds and accelerations, a Unified Cycle was developed 79

in 1992 based on collected data, known as LA92. However, 80

there are still many concerns about the problems inherent in the 81

existing driving cycles, which lead to underestimation of cruise, 82

acceleration, or stop-and-go activities in different brackets of 83

0018-9545/$26.00 © 2010 IEEE



IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

velocities [14]. It is therefore concluded that such cycles cannot84

completely emulate the real-world daily power demand of a85

vehicle. More importantly, they do not provide information86

on parking times as opportunities for charging in the case of87

emerging plug-in vehicles. In addition, it is important to base88

duty cycles on larger data sets to reduce statistical errors.89

An extensive literature survey conducted revealed no refer-90

ence to the development of a daily driving cycle, taking into91

account power and energy demands as major requirements for92

representing the real-world data. Most studies have focused on93

developing urban driving cycles using snippets extracted from94

recorded speed–time traces to estimate vehicular emissions and95

fuel consumption in different cosmopolitan areas [15], [19].96

The objective of these studies is to represent the driving infor-97

mation in a collected data set using a single driving cycle. Some98

other studies discuss the effectiveness of the methodologies99

used in developing driving cycles to represent the inherent char-100

acteristics of driving behavior in the collected data [20], [21].101

A few recent studies exist that have assessed the performance102

of hybrid electric vehicles (HEVs) in real-world operation.103

For example, data collected for a fleet in the St. Louis, MO,104

metropolitan area were used in the simulation of energy usage105

in a PHEV, but no single driving pattern was extracted from106

the collected data [22]. Fuzzy logic pattern recognition tech-107

niques have also been used to perform driving and duty cycle108

analyses on data collected for a fleet of HEVs [23]. Another109

effort to modify standard cycles for better representing real-110

world behavior introduced a driver model in connection with111

European standard cycles into simulations [24]. A methodology112

that generates a driving cycle has also been reported based113

on the assumption of constant acceleration and deceleration114

rates, along with consideration of the speed limits in different115

road segments in representative areas [25]. It can therefore be116

concluded that there does not exist a single widely accepted117

duty cycle in the literature to appropriately represent typical118

daily activities of the vehicles and to address the energy and119

power demands of the PHEVs and BEVs.120

The study presented in this paper addresses the gap in the121

literature by developing a statistical methodology and con-122

structing the needed duty cycles based on a database of over123

44 million Global Positioning System (GPS) data points124

recorded over the course of one year in Winnipeg, MB, Canada.125

Depending on the context, the terms “driving cycle” and126

“duty cycle” may convey different meanings. In this paper,127

a “driving cycle” refers to a history of daily driving periods128

represented by a speed-versus-time curve. A “duty cycle” refers129

to a profile of daily usage of power by the vehicle, which is130

typically represented by a 24-h history of driving and parking131

events. Note that, in the case of an HEV, only a driving cycle132

is sufficient to calculate vehicle’s power demand, whereas in133

the case of a plug-in vehicle, parking times also become vital134

as they may be used for charging from the electric grid, and135

therefore, they should be included in the daily profile. Parking136

times are also important to utilities servicing jurisdictions with137

large vehicular loads, as they can be used to predict and control138

the load on the grid.139

The objective of the present study is to first develop a140

new driving cycle most closely mirroring the characteristics of141

Fig. 1. Typical variation in the SOC of a PHEV battery.

urban driving, including real-world energy and power demands. 142

Once this is achieved, this study aims to incorporate a pattern 143

representing most probable downtimes of the vehicles to charge 144

during their daily usage profile. A comprehensive daily duty 145

cycle is a crucial component for optimal design of plug-in 146

vehicular drive-trains. This study improves the conventional 147

methods of driving cycle generation [26], [28]. The present 148

study also establishes a set of performance measures required to 149

assess a driving cycle suited for electric/plug-in hybrid vehicles. 150

The methodology used in the precedent study for simulation 151

of a plug-in vehicle is enhanced by including 25 parameters 152

to characterize different velocity brackets in a driving cycle 153

[29]. The uniqueness of this study is proposing a methodol- 154

ogy that addresses the particular requirements associated with 155

the design of plug-in vehicles in construction of a 24-h duty 156

cycle. 157

Following the introduction, in Section II, duty cycle re- 158

quirements to be fulfilled for enhanced simulation and opti- 159

mization of plug-in vehicles are discussed. Data collection, 160

driving cycle generation, and characterization are described 161

in Section III. Parking data analysis for weekdays and week- 162

ends is presented in Section IV. The resulting 24-h duty 163

cycles are given in Section V, and driving characteristics 164

are critically compared with those of the standard cycle for 165

urban driving, i.e., the UDDS. Conclusions are presented 166

in Section VI. 167

II. DUTY CYCLE REQUIREMENTS FOR PLUG-IN VEHICLES 168

The total distance that a plug-in vehicle can electrically 169

drive is an important measure for the vehicle’s performance 170

assessment. For instance, PHEVs are usually classified ac- 171

cording to their all-electric range (AER), which is defined as 172

the total miles electrically driven after a full recharge before 173

the engine turns on for the first time [30]. A fully recharged 174

PHEV operates in charge-depleting mode until the battery is 175

depleted to a target state-of-charge (SOC), at which point, the 176

vehicle switches to charge-sustaining mode, using the internal 177

combustion engine to maintain the target SOC [3]. Fig. 1 shows 178

the typical variation in the SOC of the battery in the operating 179

modes of a PHEV. 180

Obviously, the instantaneous power demand resulting from 181

the driving style of the driver is critical in the definition of the 182

AER. The standard cycle UDDS is usually used to measure 183
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TABLE I
CHARACTERIZING PARAMETERS AND THEIR VALUES

the AER for classifying PHEVs. Therefore, a PHEVx expected184

to travel x miles on battery, in the real world, would perform185

quite differently, depending on the driving habits of the driver.186

The mentioned difficulty in providing a realistic performance187

measure to the end users is also valid in the case of an HEV.188

The dominant mode of operation in an HEV battery is charge189

sustaining, and its fuel efficiency is characterized by a higher190

mile per gallon rate when compared with conventional vehicles.191

Again, using the standard cycle is misleading as, in reality, fuel192

consumption would be higher, depending on the aggressiveness193

of the driver.194

In this study, real-world driving data are collected over a195

sufficiently long period to reduce statistical errors. In addition,196

the characterizing parameters of the driving cycles used to197

generate the standard driving cycles are extended to cover198

average driver’s daily energy demand and maximum power199

demand (positive in acceleration and negative in deceleration)200

for light-duty vehicles (with a dominant share in urban traffic).201

The information on parking events such as the frequency of202

occurrence and the ratio of parking to driving times in an203

average daily driving profile is also included to construct an204

average 24-h duty cycle.205

The characterizing parameters considered in this paper are206

those defining power requirements at different driving modes,207

as listed in Table I. Except for its considerably cold winter208

temperatures, Winnipeg, with a population of 700 000, is a209

typical North American urban setting where driving culture,210

population, and traffic behavior are similar to many other cities211

across the United States and Canada. Although the particular212

duty cycles developed in this study may be applied to many 213

other similarly populated cities, the methodology described in 214

the next section is general and can be used to develop duty 215

cycles for any other urban area of interest. 216

III. METHODOLOGY OF DEVELOPMENT 217

OF A DRIVING CYCLE 218

The proposed methodology comprises two stages: 1) de- 219

veloping a driving cycle based on a large set of data points 220

collected and 2) incorporating results of a statistical analysis 221

on daily parking times to construct a 24-h duty cycle. An 222

enhanced statistical approach is developed using 25 parame- 223

ters to characterize the driving cycle by selecting candidates 224

from the database that have the closest match to the average 225

of the parameters. The candidate cycle is then incrementally 226

enhanced by replacing its microtrips with those extracted from 227

the same traffic group to minimize a figure of merit defined 228

based on average values of the characterizing parameters. The 229

processed parking data are then categorized in various groups 230

and included in the daily usage profile. 231

There are two general methodologies to develop a driving 232

cycle. One is based on creating a pool of trip segments extracted 233

from recorded speed–time traces of vehicles, followed by cat- 234

egorizing them into several driving modes and finally patching 235

snippets selected based on desired selection criteria together 236

to develop a representative driving cycle with a predetermined 237

duration [14]. In the other method, the single most represen- 238

tative speed–time trace is selected among a large number of 239
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Fig. 2. Methodology of developing a 24-h duty cycle.

speed–time traces recorded from real-world driving. A set of240

characterizing parameters describing the driving cycle is used241

to select this representative cycle, and modifications are made242

to the selected cycle to meet certain constraints of import-243

ance [17].244

In this paper, emphasis is placed on the energy and power-245

demand aspects of a cycle to address the concerns in plug-246

in vehicle design and optimization, as mentioned previously.247

Therefore, the second methodology is used in this study to248

develop a cycle realistically mirroring the characteristics of249

urban driving. This study adopts an adequately long-term ap-250

proach to data collection from a fleet of instrumented vehicles251

to reduce the risk of unreal driving behavior resulting from252

any influence of the onboard instruments that may potentially253

bias drivers’ driving behavior. Over a one-year timescale, the254

vehicle owners presumably drive on their ordinary travel routes,255

whereas onboard instruments automatically timestamp the ve-256

hicle’s location and speed on a secondly basis.257

In the present study, data from 76 participant vehicles over a258

one-year period starting from May 2008 to June 2009 collected259

by the University of Winnipeg are used. The participants have260

been selected from different income brackets, education levels,261

and gender and from different areas of the city to create a262

statistical population best representing the drivers in the area.263

The fleet of participating vehicles consists of sedans, both full-264

and midsize (67%), and sport utility vehicles and pickup trucks265

(33%). Recorded raw data are used to create a database for266

further analysis to identify daily driving cycles and parking267

times. The sources of error in collection of data for this study268

can be attributed to GPS loss-of-signal in the beginning of some269

trips due to lack of connection to the positioning satellites or270

blockage due to tall buildings in the downtown area or during271

the days with significant cloud coverage.272

The database includes trip number, date, time, position,273

actual speed, and maximum allowable speed (according to the274

traffic signs at a vehicle’s location), on a secondly basis. The275

recorded driving cycles of participating vehicles are divided276

into two groups of weekday and weekend cycles. Commercial277

fleet users were excluded from this study. The methodology278

used in this study is schematically shown in Fig. 2.279

It comprises three major steps to find a candidate cycle,280

enhancing the candidate cycle for best representativeness, and,281

finally, including results of parking data analysis into the 282

driving cycle to create a 24-h duty cycle. 283

In this paper, two daily driving cycles, i.e., one representing 284

weekdays and one for weekends, are selected among the avail- 285

able recorded cycles to avoid lower resolution resulting from 286

mixing their different parking and driving patterns. The two 287

candidate driving cycles best match the average weekday and 288

weekend behavior of the fleet in terms of a set of characterizing 289

parameters given in Table I. 290

The objective of analyzing parking data, which constitute 291

the potential charging times for plug-in vehicles, is twofold: 292

1) to optimize the battery size for an individual vehicle based 293

on several realistic charging scenarios and 2) to estimate the 294

hourly distributed load on the electric grid of the municipality 295

for preparation of adequate infrastructure to keep pace with 296

increasing popularity of plug-in vehicles in the future. The 297

former is important from a vehicle manufacturer’s perspective, 298

and the latter is crucial for the electric utility to locate high- 299

voltage feeders and redesign required infrastructure to charge 300

vehicles in urban areas. 301

A. Selecting the Candidate Driving Cycles 302

A set of 25 parameters, as listed in Table I, is used to 303

characterize each of the driving cycles in the pool of recorded 304

data. In addition to the parameters describing kinematics of a 305

cycle, average power demand and average breaking power are 306

also used. This is to extend the set of performance measures 307

for driving cycles in line with the objectives of this study for 308

plug-in vehicle design. 309

Characteristic parameters of each individual cycle are mea- 310

sured against their corresponding average values, and a figure 311

of merit is calculated and assigned to each individual cycle as 312

follows: 313

σ =

(
N∑

i=1

(
xi − xi

xi

)2
/

N

)1/2

(1)

where σ is the figure of merit, and N is the number of char- 314

acterizing parameters, which is 25 in this study. Table I shows 315

the list of the characterizing parameters xi, and their average 316

values xi for both the weekday and weekend cycles are then 317

calculated, as given in Table I. 318

The parameters in Table I were selected to ensure that the 319

resulting cycle could be used to optimize a large array of 320

drive-train topologies from conventional gas powered to purely 321

electric and with all possible topologies in between when using 322

combinations of propulsion systems. 323

The cycles that have the closest set of characterizing pa- 324

rameters to the average values in the weekday and weekend 325

groups are selected and will be referred to as the candidate 326

cycles hereinafter. The power and energy demand needed to 327

meet the instantaneous speed of vehicle are calculated based 328

on a longitudinal model for the dynamics of the vehicle, as 329

given in (2) and (3) [31]. The power demand is calculated by 330

integrating net forces acting in the direction of motion over 331

time. The acting forces are the aerodynamic drag FD, the time 332

derivative of momentum in the moving direction mdv/dt, the 333
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TABLE II
VALUES OF PARAMETERS USED IN POWER AND ENERGY CALCULATION

rolling friction FF , and the road grade force FG [32], [33]. The334

governing equations are given as follows:335

P =
(

m
dv

dt
+ FD + FF + FG

)
v (2)

E =

t∫
0

(
m

dv

dt
+ FD + FF + FG

)
· v · dt (3)

where336

FD = ρAfCD(v + vw)2/2 (4)

FF = (1 + v/100) · mg · cos θ/100 (5)

FG = mg sin θ (6)

ρ is the air density, Af is the vehicle frontal area, CD is337

the aerodynamic drag coefficient, VW is the head-wind speed,338

m is the mass of the vehicle, g is the gravitational constant339

(9.8 m/s2), and θ is the grade angle of the road. In this paper,340

typical values for a midsize sedan, as given in Table II, are used341

in the energy and power calculations.342

This assumption is in line with the dominance of sedans in343

urban transportation fleet, which is also mirrored in the fleet of344

participant vehicles in the data-collection phase. Positive values345

of power demand indicate the power to be provided by the346

propulsion system at the wheels. The total daily energy demand347

is calculated by integrating the positive values of the power348

demand over time divided by the number of data-collection349

days. Negative values of power demand represent the power350

to be dissipated as heat by conventional breaking systems or351

partially recovered in regenerative breaking systems.352

B. Enhancement of the Candidate Driving Cycles353

It is clear that the two candidate driving cycles do not354

necessarily match all the average values uniformly well, al-355

though they have the best figures of merit for single daily356

cycles in the database. In this paper, for instance, figures of357

merit for weekday and weekend candidate cycles are 0.197358

and 0.295, respectively. To enhance the quality of the candidate359

cycles, further processing is done with a view to improve their360

figure of merit using microtrips of other cycles available in361

the database. The candidate cycles are then enhanced based362

on a methodology shown in Fig. 3. A maximum 5% deviation363

from average daily energy demand for final driving cycles is364

allowed in the construction of the enhanced candidate cycles.365

The average values for the enhanced candidate cycles are also366

given in Table I.367

The recorded speed–time traces from the database are split368

into “microtrips.” A microtrip is defined as a snippet of the369

speed–time trace that begins and ends at idle states: zero speed.370

The microtrips are then classified according to their traffic371

Fig. 3. Methodology of enhancing the candidate cycles.

TABLE III
MICROTRIP CLUSTERING CRITERIA

groups characterized by average speed and acceleration, as 372

given in Table III. Here, each microtrip of the candidate cycle is 373

iteratively exchanged with microtrips of the same traffic group 374

until the best figure of merit σ is obtained. 375

Classification of microtrips is an important step in the 376

cycle-enhancement method that describes their physical char- 377

acteristics in terms of driving patterns and traffic conditions. 378

Congested traffic such as stop-and-go patterns is characterized 379

by low average speed and mild acceleration (e.g., driving pat- 380

tern in main commuting streets during rush hours). Urban traffic 381

is designated by its moderate average speed and wider range 382

of acceleration typically governed by stop signs and traffic 383

lights in normal urban driving. Finally, the distinct feature of 384

highway traffic is high average speed and moderate acceleration 385

rates. The variations in the speed and acceleration can change 386

the power demand accordingly, and hence, the time percent- 387

ages spent in various speed and acceleration ranges provide 388

important information about power demand in different traffic 389

categories defined in Table III. 390

Speed–acceleration frequency distribution (SAFD) plots pro- 391

vide the needed information about the time proportions of 392

individual driving modes [34]. The use of microtrips of the 393

same traffic group serves to maintain the matching of the SAFD 394

of the two candidate cycles to that of the SAFD of all recorded 395

cycles. 396

An alternative approach to developing a driving cycle is to 397

use random selection methods to select the appropriate number 398

of classified microtrips required to construct a representative 399

cycle matching well with the average characterizing parame- 400

ters with the lowest figure of merit. Random combination of 401

microtrips has been used by other researchers as a means to 402

construct representative driving cycles [35]. Another approach 403

to improve the current methodology would be to give a weight- 404

ing factor to the terms in the definition of the figure of merit [see 405

(1)] to adjust sensitivity of the final result to bias characterizing 406

parameters in accordance with their importance in the final 407
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Fig. 4. Enhanced candidate driving cycles. (Top) Weekday. (Bottom)
Weekend.

duty cycle. In this paper, all weighting factors are considered408

equal to 1. Evidently, energy needed and power demand for409

traveling the same distance in different traffic modes are not410

equal. It is also well understood that the aggressiveness of the411

driver in accelerating and decelerating the vehicle increases412

power consumption. However, it should be noted that replacing413

microtrips of the candidate cycle with microtrips of the same414

traffic mode, but potentially from different driving styles, is415

not misleading from an energy perspective. This is due to the416

fact that all parameters defining aggressiveness, energy level,417

and power consumption are already included in the 25 char-418

acterizing parameters used in this study, and the replacements419

increasing the figure of merit to larger values are not con-420

sidered. Implementing alternative enhancement methodologies421

mentioned earlier and their performance assessment are left for422

further work. Fig. 4 shows the enhanced weekday and weekend423

candidate driving cycles. The metric units are used throughout424

the study.425

The speed in the driving cycles shown in Fig. 4 is given426

in kilometers per hour; however, for more convenience, both427

English and metric versions of the driving cycles in digital428

format are made available to the public [36].429

Durations of the weekday and weekend cycles are 3484 and430

3616 s, respectively. The maximum velocity is higher in the431

weekend cycle, i.e., 114 km/h, whereas in the weekday cycle,432

the maximum velocity is 89.6 km/h. The enhancement process433

does not necessarily finish by yielding a figure of merit equal to434

zero, but a considerable improvement can be expected as, in this435

study, the initial values were improved by approximately 40%.436

The figure of merit for the enhanced weekday and weekend437

driving cycles are 0.15 and 0.2, respectively. Fig. 5 shows438

the SAFD plot for weekday and weekend enhanced candidate439

driving cycles.440

The two patterns are different in nature. Stop-and-go events441

characterized by larger acceleration or deceleration rates at low442

speeds are more probable in the weekday pattern. However,443

high-speed events are more probable in the weekend pattern.444

The driving pattern on the weekend is slightly more aggressive445

Fig. 5. SAFD plots for the enhanced candidate driving cycles. (a) Weekday.
(b) Weekend.

Fig. 6. Power–time traces for the enhanced candidate driving cycles.
(a) Weekday. (b) Weekend.

due to higher acceleration and deceleration rates, which results 446

in higher power demand for weekend driving patterns. 447

The power–time profiles corresponding to the two driving 448

cycles are also presented in Fig. 6. To obtain these profiles, a 449

vehicle with the specifications listed in Table II is considered 450

to have driven the two cycles. Evidently, variations and abrupt 451

changes in power demand are more considerable in the stop- 452

and-go driving mode that is dominant in congested and urban 453

traffics in the weekday driving cycle. This mode of driving 454

considerably contributes to air pollution in downtown areas of 455

large metropolitan areas, and it is particularly important to be 456

covered by electric propulsion in the case of HEVs. 457
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IV. PARKING ANALYSIS458

Vehicle parking at home, the workplace, commercial lo-459

cations, and on the street constitutes a critically important460

element of a modern duty cycle that can address a multitude461

of drive-train topologies, storage technologies, and controllers.462

Developing models to analyze the parking behavior in an urban463

area for city planning may require detailed information on the464

parameters affecting parking behavior during the day, such as465

travel demands, district-based knowledge on cost of parking,466

nature of activities in the area of interest, and supply and467

demand on an hourly basis. However, from the charging per-468

spective only, relatively long parking times provide potential469

charging times to increase the SOC of an onboard energy470

storage device. A typical duration for a full charge under normal471

charging conditions (110 V and 15 A) for current competitive472

battery technologies used in electric vehicles, namely, lithium473

ion and nickel metal hydride, is approximately 6 h; the mini-474

mum duration for partial charging is presently not known with475

a high confidence level. Therefore, it is expected that most476

plug-in electric vehicles will be charged mainly overnight. If477

a relatively long parking time (e.g., more than 3 h) during the478

day is considered as a realistic scenario for a reasonable share479

of the urban fleet, it is possible to downsize the battery storage480

capacity and reduce the capital cost of a plug-in vehicle or,481

in the case of a PHEV with a fixed size of battery storage,482

drive more miles on electricity to improve cost effectiveness.483

In addition, fast charging schemes using level 2 (120 V and484

30 A) and direct dc chargers will facilitate full charging in485

shorter charging durations, i.e., as low as 20 min, depending486

on the battery technology and dc charging infrastructure.487

It is also important to highlight that identification of parking488

locations for charging opportunities is critical; this aspect has489

been of strong interest to utilities, as they need to address both490

power and energy demand for electric mobility, with power491

having a large impact on grid infrastructure costs. Charging492

at residential areas, parking lots at work places, and large493

shopping malls is of interest; however, parking in streets or494

less-frequently open areas is not emphasized due to the large495

infrastructure cost required to achieve this type of opportunity496

charging. In the development of a duty cycle in this work,497

parking events are described for all categories over a 24-h498

period to provide data for any combination of future charging499

scenarios. Inherent in this study is the assumption that plug-500

in vehicle owners will not be significantly modifying their501

parking behaviors, although they may change their parking stall502

to access a plug.503

An extensive literature survey reveals that a few studies504

have focused on the potential charging aspect of parking times505

as a part of daily activities of vehicles; none seem to have506

incorporated this into a duty cycle. This aspect is of critical507

importance to address energy drivers in transportation and508

allow the displacement of fossil fuels with new renewable509

energy generation. The analysis conducted by the Argonne510

National Laboratory (ANL) shows that, in the United States,511

66% of the vehicles driven to work are parked more than512

3 h before noon, potentially allowing a second charge before513

the electric utility peak demand begins [37]. It was also ob-514

served that vehicles were parked for a short time for shop-515

Fig. 7. Mean and standard deviation of parking duration by hour of day.
(a) Weekdays. (b) Weekends. (c) Probability of parking events by hour of day
for both weekdays and weekends.

ping purposes, and parking was often during peak electric 516

demand [36]. 517

In this paper, GPS-based data loggers provide information 518

on location, type of parking, and duration of parking events. 519

The type of parking can be determined from the driver’s 520

behavior, where it is relatively simple to determine where 521

the person lives and works; commercial parking locations 522

are found by digitizing commercial parking lots in Winnipeg. 523

Street parking is deduced from a car staying on the street. Note 524

that studies dedicated to record the instantaneous speed of the 525

vehicle for certification purposes, such as that leading to the 526

FTP72 standard cycle and its enhanced cycles, do not provide 527

information on parking times. Here, probable parking times 528

and average duration for each parking event, as well as the 529

standard deviation of the data points, are included to adequately 530

reflect a daily driving and parking profile for electric vehicle 531

design of drive-train topologies. 532

Parking times of less than half an hour are arbitrarily clas- 533

sified in our study as short; the distribution of such parking 534

events shows that, in early mornings and afternoons, this type 535

of parking is the most likely. It is important to note that stop 536

times of less than 2 min, happening at stop signs or traffic 537

lights, are excluded from short parking. The results of short 538

parking times are not presented here as it is assumed that, in 539

the real world, these occasional parking events are not favored 540

by drivers for charging. However, a cumulative parking time 541
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representing short parking times per day will be included in the542

final duty cycles. The results of studying parking periods that543

exceed 30 min are shown in Fig. 7.544

Fig. 7(a) and (b) shows mean values and standard deviations545

of parking durations by hour of day for weekdays and week-546

ends, respectively.547

Two distinct patterns in daily parking behavior can be recog-548

nized, namely, a mean value less than or equal to the standard549

deviation and a mean value larger than the standard deviation.550

Long parking duration with a mean value larger than the stan-551

dard deviation happens between 8 P.M. and 6 A.M., showing552

that the majority of drivers tend to park their vehicles for a long553

time. However, when the standard deviation is greater than the554

mean value of parking duration, the data show an increase in555

daily trips, happening between 10 A.M. and 4 P.M., and the556

average of the mean values is about 4 h. Peaks in probability557

of parking events in terms of hour of day, as shown in Fig. 7(c),558

reflect the difference in nature of activities between weekdays559

and weekends. While there is only one peak in the weekend560

curve happening at 7 P.M., there are three peaks occurring at561

7A.M., 12 P.M., and 5 P.M. during weekdays.562

On weekdays, 67% of the vehicles park for more than 3 h be-563

tween 6 A.M. and 9 A.M., whereas between 9 A.M. and 12 P.M.,564

only 33% of the vehicles park for more than 3 h. This can565

be justified as many commuters drive to work and park their566

car during working hours at their working place early in the567

morning. However, after 9 A.M., vehicles moving in the streets568

tend to park for a limited duration, i.e., typically less than 3 h,569

which is necessary for activities such as shopping. The analysis570

shows that, while overnight charging is the first choice for571

charging the battery, second charging is most likely to happen572

in the morning around 9 A.M. or in the afternoon around 5 P.M.573

Taking the higher electricity price in peak hours in many574

jurisdictions, a more realistic scenario for charging would be575

overnight followed by early mornings. However, the distribu-576

tion of charging load on the electric grid overnight or during the577

day would be different, which indicates a need to redesign the578

location of feeders in the city. This aspect of charging electric579

cars is beyond the scope of this study and will be published in580

separate articles of various charging opportunities and power581

levels.582

V. ASSEMBLY OF THE DRIVING CYCLES583

Analysis was performed on the raw GPS data in conjunction584

with the digitized maps of the roads and commercial parking585

locations to characterize the driving and parking behavior of586

the vehicles under the one-year span of the survey in the587

city of Winnipeg. Using the method shown in Fig. 2, two588

24-h vehicle usage profiles representing a daily duty cycle589

were developed for both weekdays and weekends. The parking590

patterns obtained from the analysis of parking times, as well as591

cumulative short parking events, are included in the daily duty592

cycles for weekdays and weekends. In creating this, the average593

distance traveled in driving events is considered to separate594

the final driving cycle into parts, and then, parking events are595

inserted in between in the most probable way. The resulting596

cycles are shown in Fig. 8 and are meant to represent the597

Fig. 8. Resulting 24-h duty cycles. (a) Weekdays. (b) Weekends.

Fig. 9. Comparison between the standard cycle UDDS and the enhanced
weekday cycle (EWC).

44 million data points into a condensed duty cycle for studies 598

pertaining to plug-in hybrids, including optimization of power 599

trains [29]. In Fig. 8, D stands for driving, P stands for parking 600

periods, P1 stands for home, P2 stands for work, P3 stands 601

for commercial, P4 stands for short stops, and P5 stands for 602

street parking. The driving cycles are on a 1-h basis, and the 603

duty cycles, with long parking times included, are on a 24-h 604

basis and are both combined into the same figure. The parking 605

durations on a 24-h scale designated by color codes are also 606

shown on a 1-h driving scale for the sake of clarity. The parking 607

events that potentially can be used for charging are P1, P2, or P3 608

when the vehicle is most probably parked in a parking spot with 609

access to level-1 or level-2 charging. The parking events that 610

happen on the street or short parking durations are considered 611

not suitable for charging. 612

Some characteristics of the enhanced driving cycle are com- 613

pared with those of the standard cycle UDDS, and the results 614

are presented in Fig. 9. The comparison indicates that more 615

aggressive characteristics are associated with the real-world 616
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cycle, whereas, on average, the two cycles may be considered617

interchangeable.618

Evidently, the vehicles with the opportunity to charge limited619

to overnight have more time to be fully charged under slow620

charging mode on the weekends. This is particularly important621

for PEVs with larger battery storage capacity. Deriving a grid622

load based on this driving cycle has merit but requires the623

understanding of its limitations for utilities; however, it is624

beyond the scope of this work.625

The data files of the duty cycles and the collected raw data626

are available to the public on the World Wide Web through a627

unique Digital Object Identifier number [36]. Forty-four mil-628

lion speed–time data points, stamped with date and time, and629

collected over the course of one year are made available. The630

latitude and longitude of the position of the vehicles recorded631

on a secondly basis are masked by mapping the starting point of632

every trip to (0,0) to respect the confidentiality agreement with633

the participants in the data-collection phase. However, personal634

information about the participants is used to label the parking635

locations as home or work. Labeled parking locations, as well636

as the duration of parking events needed for further analyses637

with different charging scenarios in the case of plug-in electric638

vehicles, are included in the data files. The parking events that639

are less than 30 min in duration are labeled short stops. Parking640

events happening along the street are not potentially suitable641

for charging. The locations of the parking events longer than642

30 min in duration are marked home, work, shop, and street. The643

effectiveness of the methodology presented in this study, even644

with far fewer data points (about 1 million data points, which645

is equal to about 2% of the data points used in this study),646

for simulation-based optimization of a PHEV was shown in [29].647

VI. CONCLUSION648

A new approach to the development of a duty cycle that ad-649

dresses the requirements associated with the design of electric650

vehicles—e.g., HEV, PHEV, BEV, and extended-range vehi-651

cles, has been proposed and implemented on a 24-h timescale.652

It provides a complete data set for optimization of battery653

size for on-road vehicles in a typical North American urban654

setting. For example, power and energy demand in the daily655

operation of a sedan is directly related to the rate of acceleration656

and deceleration and time spent in different traffic modes;657

charging scenarios depend on parking times and duration. The658

driving behavior of a fleet of 76 participants in a one-year659

voluntary data-collection program in the city of Winnipeg is660

analyzed to develop a driving cycle and is composed of two661

24-h duty cycles for weekdays and weekends. This cycle pro-662

vides information about the time and duration of driving in663

different traffic categories, as well as information on parking664

times when the vehicle is not in use. Further vehicle simu-665

lation tools can use the daily duty cycles developed to op-666

timally design propulsion systems, drive-train configurations,667

and storage components for PEV technologies under real-world668

driving conditions. Furthermore, this information can be used669

to analyze the impact of daytime charging by a fleet of plug-670

in electric vehicles on the electric utility grid that may create a671

peak demand during the day to be met by the local utility grid.672

The target use of the developed cycle is to provide a duty cycle 673

that can be used to optimally address energy drivers simultane- 674

ously facing transportation by displacing fossil fuels with new 675

renewable energy generations with the direct consequences of 676

increasing the renewable energy ratio of various jurisdictions. 677

To achieve this goal, 25 parameters characterizing a driving 678

cycle for further PEV simulations are recognized, and two 679

candidate daily cycles having the closest match to the average 680

of the parameters are selected. The candidate cycles are then 681

incrementally enhanced by replacing their microtrips with those 682

extracted from the same traffic group, minimizing a figure of 683

merit defined based on the characterizing parameters. Finally, 684

the processed parking data are included to complete two 24-h 685

duty cycles. The final result is therefore reflecting more accu- 686

rately a realistic driving pattern than driving cycles resulting 687

from methodologies that patch snippets of driving data from 688

different drivers or occasions to make a driving cycle. Although 689

the data collected represent driving behavior in the city of 690

Winnipeg, MB, Canada, the methodology presented here can 691

be extended to any other urban area of interest. 692

There exist a few directions to continue the research on or 693

using the collected data. Other methods for development of a 694

driving cycle may include a stochastic approach for selecting 695

and patching snippets of speed–time traces using a probability 696

matrix [14], [21], which might be enhanced to incorporate 697

power and energy requirements of the vehicle. Future work 698

may also concentrate on one specific driving pattern, for in- 699

stance, a commuter, to develop a dedicated driving cycle best 700

mirroring that particular driving pattern. The driving cycle may 701

also be used for a wide range of applications, such as energy 702

assessment of the vehicles in daily use in urban transportation, 703

analysis of charging scenarios in PHEVs and PEVs, vehicle-to- 704

grid analysis, and statistical assessment of driving cycle vari- 705

ability on hybrid drive-train design. Finding other applications, 706

particularly from a social driving behavior perspective, can also 707

be viewed as an important extension of the work. 708
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