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ABSTRACT 

This research presents a series of projects that contribute to the understanding of how 

traffic variability affects the measurement and application of annual average daily traffic 

(AADT). AADT is the most fundamental traffic statistic in transportation engineering. It is 

defined as the number of vehicles expected to use a facility on an average day. However, 

traffic is known to experience periodical fluctuations over time; these periodicities are 

location-specific. This underlying variability in time and space can be lost when calculating 

and reporting AADT. 

This research comprises four research projects. The first evaluates the effectiveness of 

multiple AADT formulations using simulated data loss scenarios. It finds that a relatively 

new methodology, proposed by the Federal Highway Administration in the United States, 

removes a small, systematic bias (0.1%) from the existing calculation convention and 

reduces the width of the 95% confidence interval by 0.5%. The second project provides a 

method for measuring and reducing the error produced during the assignment step of the 

AADT estimation process. It applies this method to a case study, finding that the novel 

assignment method reduces errors by 2.5% on average. The third project explores the 

use of unconventional traffic data sources (passively-collected vehicle probe data) in 

tandem with conventional sources. The research finds that speed-based probe data are 

most closely correlated with truck-specific volume data, specifically around urban centres 

and along major trade routes. In the studied data, the Pearson correlation coefficient 

reached 0.9 at some sites. The final project tests the sensitivity of grade crossing design 

and regulation to predicted fluctuations in traffic. The results show that daily variations in 

traffic can cause sites to be apparently over- or under-designed for a day or group of days, 

when compared to regulatory standards. Moreover, they show that within-day variations 
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can be used to express more detailed grade crossing exposure estimates than the daily 

averages that are used in current regulations.  

On aggregate, the research finds that, while AADT estimates are convenient to calculate 

and ubiquitously applied, there is a need to better disclose the source data and 

methodologies used to produce AADT estimates to avoid misuse and false assumptions 

about comparability. Further, AADT summarizes the traffic at a site into a single average 

volume, which fails to express the known periodical traffic variability at a site.   
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1 INTRODUCTION 

1.1 PURPOSE 

This research investigates conventional and novel methods for estimating and applying 

annual average daily traffic (AADT) in light of known traffic volume periodicities and spatial 

variability. AADT is the most fundamental traffic volume statistic and is ubiquitously used 

within transportation engineering, planning, and policy applications. Its pervasiveness 

stems from: (1) a logical need to quantify the average daily traffic at a site in a given year, 

and (2) the relative ease with which it can be calculated or estimated using measurements 

of traffic volume readily-produced by traffic monitoring programs.  

On the surface, AADT is seemingly simple to comprehend and offers a convenient way to 

compare traffic volumes between disparate sites or facilities. However, the perceived 

simplicity and convenience of AADT as a measure of traffic volume masks several 

underlying complexities. First, the source data used to estimate AADT may be produced 

by different types of equipment deployed at a fixed location for varying durations—from a 

partial day to a continuous deployment—or, more recently, from mobile probe devices 

within the traffic stream. Second, the methods used to estimate AADT vary depending on 

the source data used and local agency practice. This affects the validity of the AADT 

statistic and creates uncertainties in its application. Third, while some of the methods used 

to estimate AADT rely fundamentally on the inherent traffic volume periodicities at a site, 

paradoxically, the statistic itself—an average—disregards these periodicities. So, two 

sites with identical AADTs may experience different operational conditions but have the 

same average daily traffic volume over a full year. 

In short, not all AADT estimates are created equal. Yet, transportation practitioners that 
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routinely apply AADT statistics may do so without knowledge of this fact. The purpose of 

this research is to “unpack” AADT by evaluating methods used to estimate it, to propose 

novel alternatives to conventional estimation methods, and to demonstrate the need to 

better understand how the assumptions and uncertainties associated with estimating 

AADT impact its application.  

This thesis comprises a series of independent projects, each of which is published or 

submitted for publication in a peer-reviewed journal. The themes explored in each project 

contribute to the purpose of this research. 

1.2 BACKGROUND AND NEED 

AADT is a fundamental statistic used to characterize traffic volume (Chowdhury et al., 

2019; Gastaldi et al., 2013; Jessberger et al., 2016; Pulugurtha and Kusam, 2013). AADT 

is defined as the total volume of vehicle traffic of a highway or road for a year divided by 

365 days (FHWA, 2016b). It is meant to represent traffic on a typical day of the year. Its 

transportation engineering, planning, and policy applications are varied, including safety 

analyses (Chen and Xie, 2016; Wang et al., 2014), infrastructure design and evaluation 

(Li et al., 2009; Muthadi and Kim, 2009), and environmental impact studies (Fu et al., 

2017). This section discusses the estimation and application of AADT. 

1.2.1 Methods for Estimating AADT 

In North America, traffic monitoring practice for estimating AADT is prescribed by the 

Traffic Monitoring Practices Guide for Canadian Provinces and Municipalities (Regehr et 

al., 2017) in Canada and the Traffic Monitoring Guide (FHWA, 2016b) in the United States. 

Most agencies have minimum data reporting requirements, but in general have flexibility 

to monitor traffic for their own needs and purposes. Chief among these reporting 



3 
 

requirements is to provide AADT estimates at representative sites across a network each 

calendar year. Specifically, In the United States, AADT is a required traffic data output for 

all states on an annual basis and will be required for all public roads by 2026 as part of 

the Highway Safety Improvement Program (FHWA, 2016a). No such federal mandate 

exists in Canada, though individual provinces and some municipalities effectively comply 

with this expectation. 

Multiple methods exist to estimate AADT that depend on the source data and desired level 

of accuracy. The most accurate method uses daily traffic volumes obtained from a 

continuously monitored site for a full year and calculates the AADT as the arithmetic mean. 

In cases where data are lost or removed due to quality control practices, the American 

Association of State Highway and Transportation Officials (AASHTO) and Federal 

Highway Administration (FHWA) methods are recommended to minimize the resultant 

errors (FHWA, 2016b; Regehr et al., 2017). These errors can be significant, depending on 

the amount of data removed and the variability in daily traffic experienced at the site 

(Jessberger et al., 2016). Equation 1.1 shows the AASHTO method, considered the state-

of-the-practice for calculating AADT using continuous count data. 

𝐴𝐴𝐷𝑇𝑐 =  
1

12
∑

1

7
∑

1

𝑛𝑗𝑚
∑ 𝑉𝑂𝐿𝑖𝑗𝑚,𝑐

𝑛𝑗𝑚

𝑖=1

7

𝑗=1

12

𝑚=1

 (1.1) 

Where: 

𝑉𝑂𝐿𝑖𝑗𝑚  = total traffic on ith occurrence of jth day of week within mth month  

𝑖  = occurrence of a particular day-of-week in a particular month 

𝑗  = day-of-week (1 to 7) 

𝑚  = month-of-year (1 to 12) 
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𝑛𝑗𝑚  = number of times day j occurs in month m with available traffic data (1 to 5)  

𝑐  = vehicle classification 

 

Unfortunately, continuous count data are not readily available for large or dense networks, 

normally due to resource constraints. Instead, agencies collect short duration count data 

at a relatively large number of sites to maintain high spatial coverage on their networks 

without surpassing resource limitations. Meanwhile, continuous count data are collected 

at strategically selected sites to infer characteristic traffic patterns for different road classes 

and purposes. Generally, these traffic patterns are measured in terms of the average 

proportion of traffic at the continuous count sites by hour of day, day of week, and month 

of year (FHWA, 2016b; Regehr et al., 2017). Traffic patterns form the backbone of the 

entire monitoring program; continuous count data provide the strong temporal data 

needed to identify traffic patterns, which are used to extrapolate sampled short duration 

count data across a network. In this way, these complementary count types are used in 

tandem to produce reasonable AADT estimates given the needs and resources of the 

monitoring agency. This relationship is contingent on knowledge of which traffic patterns 

apply to which short duration count sites.  

Ongoing research has aimed to develop improved AADT estimation methods (Liu et 

al.,2019; Monney et al., 2020; Syfridis and Agnolucci, 2020; Tsapakis et al., 2014; Fu et 

al., 2017; Zhang and Chen, 2020). In most cases, the improvements reduce the average 

bias of calculated AADT estimates and/or expand the spatial coverage of available 

estimates by utilizing data in unique ways. Moreover, there are numerous technologies 

that can be used to enhance the availability of traffic data either by reducing costs, 

providing multiple forms of traffic data, or by improving coverage in time or space.  
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Passive data sources have been identified as a potential revolutionary technology to 

estimate and understand traffic volume (Bachir et al., 2019; Cambridge Systematics Inc. 

and Massachusetts Institute of Technology, 2018; Fu et al., 2017; Wu et al., 2015). 

Passive data sources include those that are seemingly unrelated to traffic monitoring but 

can be used to infer traffic activity (e.g., using location data from cell phones). Passive 

data sources are desirable due to their relatively low cost and unique coverage 

capabilities. Cell phones have become increasingly plausible as a source for travel data 

(e.g., travel behaviour or speed), but have been sparingly utilized as a source for traffic 

volume to date (Chen et al., 2016).  In response to promising research, the FHWA has 

created a pooled fund project specifically aimed at developing methods for inferring traffic 

volume from passively collected data (Transportation Pooled Fund Program, 2018). 

Past projects have researched the use of call detail records (CDRs) from cell phones to 

model travel behaviour (Calabrese et al., 2013; Montero et al., 2019; Zhao et al., 2016). 

However, CDRs have been identified as being sparse in time (records are only generated 

when devices are in use) and coarse in space (the granularity of cell towers defines the 

resolution of the location data) (Becker et al., 2013; Cambridge Systematics Inc. and 

Massachusetts Institute of Technology, 2018), which limits their effectiveness when used 

in isolation. Thus, efforts have been made to combine CDR data with additional sources 

to estimate traffic volume (Toole et al., 2015; Wu et al., 2015).  

Cell phone signals are not limited to cellular transmissions. Bluetooth and Wi-Fi are 

ubiquitous features in smartphones. Roadside sensors can be installed to detect active 

devices within a known radius. Every device has a unique identifier (MAC address) which 

can be re-identified by multiple sensors to provide trajectory information (Michau et al., 

2017). Global positioning systems (GPS) provide highly accurate location information of 
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cell phones. However, these require a constant connection to the GPS network through 

an active application (such as a mapping application) or for the user to opt-in to passively 

collect GPS traces (Cambridge Systematics Inc. and Massachusetts Institute of 

Technology, 2018).  

Conventional and passive sensing technologies provide diverse options for measuring 

various characteristics of traffic with differing levels of accuracy. Table 1.1 summarizes 

the strengths and limitations of common conventional measurement devices and passive 

data sources. 

Table 1.1: Strengths and limitations of traffic data sources 

Data source Strengths Limitations 

Inductive loops Measure vehicles 

Well-known technology 

Provide all basic traffic measures 

High level of accuracy 

Fixed installation 

Multiple loops required at most 

locations 

Invasive technology 

Affected by construction at site 

Road-side and overhead units Monitor multiple lanes with one 

device 

Provide all basic traffic measures 

High level of accuracy 

Some signal types affected by 

weather 

Expensive 

Pneumatic tubes Inexpensive Require factoring 

Susceptible to vandalism and 

wear 

Being replaced by inductive loops 

Travel Surveys Rich data 

Trip chaining evident 

Low sample size 

Expensive 

Require respondent opt-in 

Infrequent 

Cell Phones (CDRs) High penetration rate 

Trip purpose evident 

Collected passively 

Sparse temporally 

Coarse spatially 

Privacy concerns 

GPS 

 

High accuracy 

Can be collected passively 

Require user opt-in 

Bluetooth/Wi-Fi High penetration rate 

Collected passively 

Coarse spatially 

 

The diverse methods and technologies used to estimate AADT are a testament to the 

importance of this research in further understanding their benefits, shortcomings, and 
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underlying assumptions.  

1.2.2 Application of AADT 

Traffic volume data are critical inputs to a variety of transportation applications and 

functions (FHWA, 2016b; Regehr et al., 2017). However, given the widespread nature of 

transportation networks, there are often locations where traffic data may be limited to weak 

estimates of AADT. Moreover, transportation applications that use AADT as an input can 

be agnostic of context, since the means by which traffic volume data are collected and the 

methods used to estimate AADT may not be formally disclosed. Thus, it is possible that a 

particular application may rely on a relatively inaccurate or imprecise estimate of AADT 

without a robust consideration of the impacts of doing so (Sharma and Allipuram, 1993; 

Gadda et al., 2008).  

Traffic volumes vary with time and often fall into patterns (FHWA, 2016; Regehr et al., 

2017). Conventional AADT calculations apply knowledge of these cyclical variations 

(periodicities) to infer relationships between existing and missing or unmeasured data (i.e., 

they assume that missing or unmeasured data would exhibit patterns consistent with 

existing data from the same hour, weekday, and month) (Jessberger et al., 2016; Milligan 

et al., 2016; Monney et al., 2020). However, regardless of the method used to estimate 

AADT, the statistic itself remains an average that masks these underlying variations and 

their potential impacts within the application context. In other words, any application of 

AADT relies on an average value, which may never actually occur and which by its nature 

disregards real variations observed in the data. 

To illustrate the foregoing point, consider an analogy in the field of pavement design and 

evaluation. For several decades, pavement design practice has utilized a summary 
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statistic—equivalent single axle loads (ESALs)—as the principal traffic-related input for 

selecting pavement material thicknesses (AASHTO, 1993). An ESAL is an empirically-

developed value that describes the load-response of an axle passage and expresses it in 

terms of the number of repetitions of a standard 80-kN (18-kip) single-axle load (AASHTO, 

1993; Papagiannakis and Masad, 2008). In design, the cumulative number of ESALs is 

estimated based on the volume and loading characteristics of the traffic expected to use 

a facility. Thus, while the calculation of this cumulative value involves a disaggregated 

assessment of specific axle passages, the design value itself masks this underlying 

complexity. This situation is analogous to the estimation and application of AADT. 

In recognition of this limitation, pavement design practice has evolved toward a 

mechanistic-empirical approach, which estimates the spectrum (or distribution) of loads 

that vehicles will impose on the road (Applied Research Associates, 2004; Li et al., 2009; 

Muthadi and Kim, 2009). This approach retains relevant details that may be lost by using 

summary statistics and, more broadly, aligns with probabilistic (or reliability-based) design 

approaches that are emerging within civil engineering practice (Ellingwood, 2000; Porter 

et al., 2019). Returning to the analogy, the spectrum of loads imposed on roads is 

analogous to the known temporal variations in traffic volume. Like in pavement design, 

there is merit in examining the impact of retaining the underlying distributions when 

reporting and applying traffic volume, rather than relying solely on summary statistics. To 

demonstrate the foregoing concept, this thesis analyzes how accounting for traffic volume 

periodicities rather than reliance on AADT impacts the design and regulation of grade 

crossings. A grade crossing is the intersection of a railway and a roadway at the same 

elevation. Regulations specify minimum grade crossings treatment requirements, which 

may range from passive treatments (e.g., static signs), to active treatments (e.g., crossing 

gates), to full grade separation. The product of AADT and annual average daily rail 
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movements (AADRM) at a crossing is commonly used as a basis for treatment selection 

and design (FHWA, 2019; National ALCAM Group, 2016; Taggart et al., 1987). Transport 

Canada defines this product as the cross-product (Transport Canada, 2014). It is 

synonymous with crossing exposure (FHWA, 2019; National ALCAM Group, 2016) and 

traffic moment (Liang et al., 2018; Pyrgidis et al., 2016; RSSB, 2010). In some cases, non-

annualized versions of average daily traffic (i.e., ADT) and rail movements are considered 

when calculating these statistics. Regardless of the term used, cross-product represents 

the exposure at a grade crossing and acts as a surrogate for both safety risk and user 

delay costs (Nichelson and Reed, 1999). Chapter 5 of this thesis examines cross-product 

regulations in Canada in the context of the uncertainties that exist when estimating AADT. 

1.3 OBJECTIVES AND SCOPE 

The purpose of this research is to investigate conventional and novel methods for 

estimating and applying annual average daily traffic (AADT) in light of known traffic volume 

periodicities and spatial variability. This purpose is accomplished through four research 

objectives, framed below as a set of questions: 

Objective 1: What magnitude of errors are produced when estimating AADT from 

continuous count traffic data using state-of-the-practice methods? What are the 

implications of recent modifications to the methods? 

Objective 2: What magnitude of errors are produced when estimating AADT from short 

duration traffic count data using the state-of-the-practice approach? Can a novel 

assignment method reduce the errors caused by poor assignment to traffic pattern 

groups? 

Objective 3: What attributes of passively-collected probe data can be used to improve 
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short duration count programs?  

Objective 4: How sensitive are grade crossing design and regulation to the known 

variability in traffic relative to average statistics (i.e., AADT)?  

The analyses conducted to pursue the foregoing objectives use traffic data sourced from 

the Manitoba Highway Traffic Information System (MHTIS), the traffic monitoring program 

in the province of Manitoba, Canada. The MHTIS provides traffic statistics for all 

provincially-owned roads. 

The scope for Objective 1 is defined by the source data, the analysis methods, and the 

selected analysis period. Study locations are selected where vehicle classification data 

are available, in an hourly volume format, for an entire year from the MHTIS. Thus, the 

geographic scope of Objective 1 includes 31 automatic vehicle classification sites 

distributed on Manitoba’s provincial highway network. The temporal scope of Objective 1 

includes data from 2010 to 2015, inclusive. The research uses median percent error and 

mean absolute percent error as evaluation measures to align with previous research 

(Gastaldi et al., 2013; Jessberger et al., 2016; Milligan et al., 2016; Wang et al., 2014; 

Zheng and Liu, 2017). Objective 1 considers five methods for calculating AADT. Four of 

these methods are explicitly discussed in Jessberger et al. (2016), while the remaining 

method is an implicit improvement to the state-of-the-practice (AASHTO) method. 

The scope for Objective 2 is defined by the source data and the analysis methods. Study 

locations are selected where hourly traffic data are available for an entire year from the 

MHTIS. Thus, the geographic scope of Objective 2 includes 86 continuous count sites 

distributed on Manitoba’s provincial highway network. The temporal scope of Objective 2 

includes traffic data from 2018. The research uses mean percent error and standard 
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deviation to assess the accuracy and precision of AADT estimates, based on the findings 

from previous research Jessberger et al. (2016). Methodologically, Objective 2 samples 

continuous count data to produce simulated short duration traffic count data, as is done in 

Gadda et al. (2008) and Milligan et al. (2016), and uses these simulated traffic count data 

to estimate AADT following the conventional approach (FHWA, 2016b; Regehr et al., 

2017). 

The Scope for Objective 3 is defined by the source data and the analysis methods. Study 

locations on the Manitoba highway network are selected where hourly traffic data are 

available for an entire year from the MHTIS. Transport Canada provides passively-

collected probe data from HERE Technologies™ , which are available on all highways in 

Canada. These data are combined with Manitoba highway traffic data. Thus, the 

geographic scope of Objective 3 includes 86 continuous count sites distributed on 

Manitoba’s provincial highway network. The temporal scope of Objective 3 includes traffic 

data from 2018. Methodologically, the research analyzes the correlation between multiple 

attributes of passively-collected probe data and traditional traffic data. 

The scope for Objective 4 is defined by multiple data sources and the analysis methods. 

Transport Canada provides geometric, control, and traffic condition data for all grade 

crossings in Canada in their Grade Crossings Inventory, available through their open 

access data portal (Transport Canada, 2018). The Grade Crossings Inventory provides 

data for both publicly and privately controlled grade crossings. The MHTIS provides 

detailed traffic data for rural grade crossings on provincially governed (i.e. publicly 

controlled) roads. Urban traffic data are estimated from the results of Regehr et al. (2012). 

These estimates are also limited to publicly controlled roads. Finally, detailed rail data are 

provided by TRAINFO® sensors at selected grade crossings in Winnipeg. Thus, the 
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geographic scope of Objective 4 varies with the analysis being conducted. Specifically, 

the scope is limited to publicly controlled grade crossings in rural Manitoba for analyses 

only involving detailed traffic data. The scope is further refined to urban roads in Winnipeg 

for analyses that combine detailed traffic and rail data. The temporal scope of Objective 4 

is 2015 to 2017, the years for which sensor data are available. Methodologically, the scope 

of Objective 4 is limited to procedures which yield metrics that are directly comparable to 

current grade crossing regulation in Canada (i.e., that are relatable to the cross-product). 

1.4 APPROACH, THEME, AND CONNECTING CONCEPTS 

The approach for this research achieves the objectives by conducting a series of four 

interrelated projects whose scopes and outcomes map directly to one objective. As a 

whole, the projects contribute to the over-arching research theme of improving the 

estimation and application of AADT in light of known traffic volume periodicities and spatial 

variability. 

The first two projects evaluate uncertainties (accuracy and precision) associated with 

AADT estimates produced through conventional traffic monitoring methods. In these 

projects, accuracy is expressed as the mean percent error or absolute mean percent error 

between a group of estimates and the assumed true value. This represents the tendency 

for estimates to be close to the target value. For example, a group of estimates whose 

mean deviates from the target value by 1% is, on aggregate, more accurate than a second 

group whose mean deviates from the target value by 2%. Conversely, precision 

represents the tendency for estimates to be close to each other. Precision is expressed 

by the variance or standard deviation within a group of estimates.  

More specifically, the first project evaluates the formulations used to calculate AADT at a 
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continuous count site. It uses continuous count data to create simulated data-loss 

scenarios while maintaining knowledge of the ground truth AADT at each tested site. 

Then, it tests each of five different formulations in each scenario to measure the bias, or 

error relative to the ground truth, when estimating AADT. The results are used to reveal 

the effects of each step in the formulations on the resultant AADT estimates in terms of 

their accuracy and precision. 

The second project focuses on AADT estimates obtained from short duration count data 

using conventional methods and proposes a new method that reduces estimation error 

related to the assignment of short-duration counts to traffic pattern groups. Continuous 

count data are sampled to produce simulated short duration count data (in this case, 48-

hour counts). In this way, as in the first project, this process maintains knowledge of the 

ground truth AADT at each tested site. The simulated short duration count data are used 

to benchmark the errors produced when estimating AADT using the conventional method. 

The analysis specifically isolates the portion of this error that can be attributed to the 

assignment step of the AADT estimation procedure by applying temporal adjustment 

factors from various traffic pattern groups. Finally, it develops and applies a method for 

assignment that is data-driven and independent of the roadway or operational 

characteristics at the short-duration count site. 

Like the second project, the third project also proposes a potential enhancement of short-

duration count programs, in this case by exploring the potential to integrate passively-

collected probe data. The analysis explores relationships between attributes of continuous 

count data and speed-based probe data, provided by a third party data analytics company. 

These relationships are evaluated to identify trends temporally, spatially, and with respect 

to vehicle classifications. The strength and form of the relationships reveal opportunities 
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to use probe data to enhance short-duration truck traffic monitoring programs.  

Finally, the fourth project demonstrates the sensitivity of a particular traffic volume data 

application—the design and regulation of grade crossings—to the use of detailed traffic 

volume distributions relative to average statistics. In this project, continuous count data 

and available rail traffic data are used to artificially create daily variations in grade crossing 

exposure. These variations are compared to regulatory limits to test the sensitivity of this 

application to natural fluctuations in traffic over time. The research extends this line of 

thinking by using detailed rail traffic data to test the average variability in grade crossing 

exposure within a single day. Again, this variability is compared to the regulatory limits to 

develop insights on the validity of using daily averages to assess grade crossing exposure.  

1.5 THESIS ORGANIZATION 

The thesis is organized as a grouped manuscript or sandwich style thesis. The following 

four chapters each reproduce self-contained research papers. The papers each 

accomplish one of the objectives of the thesis and provide further detail on the methods 

and findings from the conducted work. Chapter 2 presents a research paper on the effects 

of various calculation techniques on AADT estimates. This chapter addresses Objective 

1 of the research. Chapter 3 presents a research paper on an approach to quantifying and 

reducing errors related to the assignment step of AADT estimation using short duration 

count data. It addresses Objective 2 of the research. Chapter 4 presents a research paper 

on the relationships between speed-based probe data and conventional traffic data. It 

addresses Objective 3 of the research. Chapter 5 presents a research paper on grade 

crossing warning system design and the use of AADT when more detailed traffic data are 

available. It addresses Objective 4 of the research. 
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Finally, Chapter 6 concludes the thesis. It summarizes the contributions to knowledge 

made by each of the individual research papers, draws conclusions from the connecting 

themes between the works, and presents future research opportunities that stem from the 

findings of this research.  

1.6 THESIS TERMINOLOGY 

• Annual average daily traffic (AADT) – the expected number of vehicles using a 

facility or passing a point on a facility on a typical day for a given year. 

• Bias – the difference between an estimated or calculated value and its true value. 

• Exposure – the number of users that are in a situation involving some risk (e.g., of 

a collision). 

• Grade Crossing – an intersection of at least one roadway and one railway facility 

that are at the same elevation. 

• Passively-collected data – data that are collected for non-traffic applications that 

have use in traffic monitoring. 

• Traffic volume – the number of vehicles using a facility or passing a point on a 

facility over a period of time. 
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2 EVALUATING AADT CALCULATION METHODS WITH 

CONTINUOUS TRUCK TRAFFIC DATA 

This chapter begins the investigation of AADT estimation and application by testing the 

validity of AADT formulations using continuous count data. It seeks to answer the first set 

of objective questions: What magnitude of errors are produced when estimating AADT 

from continuous count traffic data using state-of-the-practice methods? What are the 

implications of recent modifications to the methods?  

The analysis in this paper simulates data-loss scenarios at continuous count sites and 

tests five difference formulations to measure the resultant biases. It contributes to the 

thesis theme of improving AADT estimation and application by distilling a novel estimation 

method into two steps and isolating the effect of each step on the validity of the resultant 

AADT estimates. 

The material in this chapter is published in (Grande et al., 2017), and reprinted with 

permission of the publisher and co-authors Steven Wood, Auja Ominski, and Jonathan 

Regehr. The chapter is self-contained with its own abstract, introduction, and conclusion; 

references are provided at the end of the thesis. The thesis author conducted the analysis, 

interpreted results, and prepared the manuscript.  
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2.1 ABSTRACT 

Traffic volume, often measured in terms of annual average daily traffic (AADT), is a 

fundamental output of traffic monitoring programs. At continuous count sites, unusual 

events or counter malfunctions periodically cause data loss, which influence AADT 

accuracy and precision. This paper evaluates five methods used to calculate AADT, 

including the use of a simple average, the commonly-adopted method developed by the 

American Association of State Highway and Transportation Officials (the AASHTO 

method), and methods that incorporate adjustments to the AASHTO method. The 

evaluation imposes data removal scenarios designed to simulate real-life causes of data 

loss to quantify the accuracy and precision improvements provided by these adjustments. 

Truck traffic data are used to reveal issues arising when volumes are low or when they 

exhibit unusual temporal patterns. 

The evaluation showed that the FHWA method, which unlike the AASHTO method 

incorporates a weighted average and an hourly base time period, provided the most 

accurate and precise results in all data removal scenarios. Specifically, when up to 15 

days of data are randomly removed, application of the FHWA method can be expected to 

produce errors within approximately ±1.4 percent of the true AADT, 95 percent of the time.  

The results also demonstrated that including a weighted average primarily improves AADT 

accuracy, while precision is influenced by the use of hourly rather than daily count data. 

As possible, practitioners contemplating the adoption of the FHWA method should assess 

its relative advantages within their local context. 

2.2 INTRODUCTION 

Traffic monitoring programs are implemented by jurisdictions to characterize traffic usage 

of a road network, often as part of broader transportation information or performance 
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measurement systems. Traffic volume is a fundamental output of these programs. Volume 

is commonly expressed in terms of the annual average daily traffic (AADT), which is the 

mean daily traffic volume in a given year at a site. At continuous count sites, AADT can 

be calculated directly from available data. At sites where only a sample of data are 

available, AADT can be estimated by applying adjustment factors derived from continuous 

datasets which account for expected temporal variations in traffic volume at the site. AADT 

is a fundamental input to a range of transportation-related applications including, inter alia, 

road network planning, infrastructure design, and safety analyses (FHWA, 2016b; 

AASHTO, 2009).  

Because of the numerous applications of AADT, it is worthwhile to consider opportunities 

to improve AADT accuracy and precision. To this end, Jessberger et al. (2016) evaluated 

currently-adopted methods of calculating AADT at continuous count sites under various 

data removal scenarios. This analysis utilized data from nearly 500 continuous count sites 

across the United States, representing 43 states plus the District of Columbia, 12 of the 

14 highway functional classes, and various daily total traffic volume ranges. The analysis 

resulted in a proposed new method to calculate AADT at a continuous count site (referred 

to hereafter as the FHWA method). This method improved both AADT accuracy and 

precision relative to current methods. 

The motivation for the research presented in this paper stems from the need to evaluate 

the new FHWA method using locally-collected traffic data to assess its suitability for 

adoption in Manitoba, Canada. The primary objective of the evaluation is to quantify the 

potential improvement provided by the FHWA method at continuous count sites with low 

volumes and which exhibit unusual or highly variable traffic patterns. To accomplish this, 

the evaluation utilizes truck traffic data extracted from a network of 45 continuous 
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classification sites in Manitoba. Truck traffic is normally a relatively small component of 

total traffic at a continuous count site and is known to generate unique temporal traffic 

patterns in response to a host of industry-specific influences (FHWA, 2016b; AASHTO, 

2009; Weinblatt, 1996; Cambridge Systematics Inc., Washington State Transportation 

Center, and Chapparral Systems Corporation, 2005; Regehr and Reimer, 2013). A 

secondary objective of the paper is to quantify separately the effects of the two changes 

proposed in the FHWA method—namely, the introduction of a weighted average and the 

use of an hourly rather than daily base time period. While the evaluation presented in this 

paper utilizes data from Manitoba, the findings are transferrable to any jurisdiction 

interested in assessing the local suitability of the new FHWA method. Moreover, the paper 

presents an independent corroboration of the results reported by Jessberger et al (2016). 

To achieve the foregoing objectives, the evaluation includes five methods used to 

calculate AADT from continuous count data. The first of these utilizes a simple average, 

while the other four are variants of the commonly-adopted American Association of State 

Highway and Transportation Officials (AASHTO) method. The modifications made to the 

AASHTO method are expected to improve AADT accuracy and precision (Jessberger et 

al., 2016). Each method is evaluated under data removal scenarios devised to simulate 

real-world causes of data loss. The following sections of this paper provide a detailed 

description of the evaluation methodology, summarize and discuss the results of the 

evaluation, and outline conclusions and implementation considerations. 

2.3 METHODOLOGY 

This section describes (a) AADT calculation methods, (b) source data, (c) data removal 

scenarios, and (d) bias and statistical measures. 
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2.3.1 AADT Calculation Methods 

Continuous counters ideally provide 24 hours of data for every day of the year. Counters 

with vehicle classification capabilities provide these data by vehicle class, for example, by 

applying the FHWA 13-vehicle classification scheme. The methods available to determine 

the AADT at a continuous count site can be applied to the total traffic dataset, or to class-

based subsets of the dataset. The evaluation in this paper uses only truck traffic data (i.e., 

data for FHWA classes 5 to 13). Thus, annual average daily truck traffic (AADTT) is used 

as a metric instead of AADT. 

When a complete dataset is available for a year (i.e., data exist for each of the 24 hours 

in each day of the year), a simple average of daily traffic can be used to calculate the true 

AADT at a continuous count site (1)(3). Thus, for the Simple Average method, the formula 

for calculating AADT for a vehicle class, c, is given by Equation 2.1: 

𝐴𝐴𝐷𝑇𝑐 =  
1

𝑛
∑ 𝑉𝑂𝐿𝑖,𝑐

𝑛
𝑖 =1   (2.1) 

 

where 

VOLi  = total traffic on ith day of year; 

n  = number of days in a particular year; and 

c  = FHWA vehicle class. 

When data are missing because of counter malfunctions, roadway construction, or other 

causes, the Simple Average method misrepresents the true AADT. 

The AASHTO method (Equation 2.2) mitigates the potential for error in AADT calculations 

when data are missing by leveraging the predictable weekly and monthly periodicities of 
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traffic volume (1)(2)(3). The AASHTO method requires a complete day of data for at least 

one of each day-of-week in each month. The underlying assumption is that the traffic 

volumes on a particular day-of-week in a month are constant. The multiple averages 

included in the formula—sometimes referred to as an ‘average-of-averages’—correspond 

to the day-of-week and monthly factors required for adjusting short-duration counts.   

𝐴𝐴𝐷𝑇𝑐 =  
1

12
∑

1

7
∑

1

𝑛𝑗𝑚
∑ 𝑉𝑂𝐿𝑖𝑗𝑚,𝑐

𝑛𝑗𝑚

𝑖=1

7

𝑗=1

12

𝑚=1

 (2.2) 

 

where 

VOLijm  = total traffic on ith occurrence of jth day of week within mth month;  

i  = occurrence of a particular day-of-week in a particular month; 

j  = day-of-week (1 to 7); 

m  = month-of-year (1 to 12); 

njm  
= amount of times day j occurs in month m for which traffic data is available; 

and 

c  = FHWA vehicle class. 

The AASHTO method is inherently biased, as it assigns equal weights to each of the 84 

averages (7 days-of-week for 12 months) used to calculate AADT (Jessberger et al., 

2016). The AADT produced by this method may differ from the true AADT due to the 

imbalanced occurrence of weekdays in a given month (e.g., some months may have five 

Tuesdays but only four Wednesdays) and the imbalanced number of calendar days in 

each month (i.e., 28, 29, 30, or 31). Jessberger et al. (2016) quantified the median AADT 

bias of the AASHTO method at -0.05 percent, even when no data were missing. 



22 
 

In the FHWA method, Jessberger et al. (2016) proposed two modifications to the AASHTO 

method. First, the FHWA method makes use of weighted averages to eliminate the bias 

in the AASHTO method. Second, the FHWA method uses an hourly rather than daily base 

time period. This means that the first step in the calculation is the summation of hourly 

counts rather than an averaging of daily counts for a particular day-of-week in a month. 

This allows for the use of data from days without a full 24 hours of data. Including partial 

days of data is beneficial because fewer valid data are discarded and the hourly factors 

needed to adjust partial-day counts are directly available from the calculation process. 

Equation 2.3 combines these two modifications: 

𝐴𝐴𝐷𝑇𝑐 =  

∑ 𝑑𝑚 ∗  

∑ 𝑤𝑗𝑚 ∗ ∑ [
1

𝑛ℎ𝑗𝑚
∑ 𝑉𝑂𝐿𝑖ℎ𝑗𝑚,𝑐

𝑛ℎ𝑗𝑚

𝑖=1 ]24
ℎ=1

7
𝑗=1

∑ 𝑤𝑗𝑚
7
𝑗=1

12
𝑚=1

∑ 𝑑𝑚
12
𝑚=1

 

(2.3) 

 

where 

VOLihjm  
= total traffic on ith occurrence of the hth hour within jth day-of-week within 

mth month; 

i  = occurrence of a particular day-of-week in a particular month; 

h  = hour-of-day (1 to 24); 

j  = day-of-week (1 to 7); 

m  = month-of-year (1 to 12); 

nhjm  
= number of times hour h within day j of week occurs during month m for 

which traffic data are available; 

wjm  = number of times day j occurs during month m; 
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dm  = number of days in month m; and 

c  = FHWA vehicle class. 

This paper evaluates the two modifications in the FHWA method independently. Thus, five 

AADT calculation methods are evaluated: (a) the Simple Average method, (b) the 

AASHTO method, (c) the AASHTO method modified to use a weighted average (AASHTO 

Weighted), (d) the AASHTO method modified to use hourly counts rather than daily counts 

(AASHTO Hourly), and (e) the FHWA method. Table 2.1 summarizes the attributes of 

these methods. 

 

Table 2.1: Attributes of AADT Calculation Methods 

Method Systematic 

adjustment for 

missing data? 

Proper weighting of 

days? 

Hourly base time 

period? 

Simple Average  ✓  

AASHTO ✓   

AASHTO Weighted ✓ ✓  

AASHTO Hourly ✓  ✓ 

FHWA ✓ ✓ ✓ 

 

2.3.2 Source Data 

Source data used for the evaluation of the methods were extracted from Manitoba’s 

database of continuous classification data for 2010 to 2015, inclusive. Manitoba currently 

maintains a network for 45 continuous classification sites. For a site to be included in the 

evaluation, a complete set of hourly truck traffic data was required for at least one calendar 

year. In Manitoba, normal data retrieval protocols occasionally result in the loss of a small 
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number of hours in a particular day. Thus, to increase the number of eligible sites for this 

evaluation, sites with at least 22 hours of data for every day of the year were considered. 

In these cases, every hour of missing data was imputed, prior to the evaluation, by taking 

the average of every other occurrence of that hour in that day-of-week within the month. 

In total, 31 sites were used in the evaluation. As shown in Table 2.2, these sites capture 

different truck trip-making purposes and represent a range of truck traffic volumes and 

years. 

Table 2.2: Summary of Continuous Classification Sites Used in the Evaluation 

 

Classification by Prevalent 
Truck Trip Types at Site  

Classification by 
AADTT Range   Classification by Year 

 

 

Trip Type 
Number 
of Sites  AADTT 

Number 
of Sites  Year 

Number 
of Sites 

 Roads that serve 

inter- and intra-

provincial trips 

11  0 - 240 14  2010 4 

 241 - 480 9  2011 4 

 481 - 960 3  2012 8 

 Roads that serve 

primarily intra-

provincial trips 

20  961 - 1920 3  2013 2 

 1920 - 3840 2  2014 10 

    2015 3 

2.3.3 Data Removal Scenarios 

The evaluation examines the accuracy and precision of the AADTT calculated using the 

five methods under three data removal scenarios, as described in the subsequent 

paragraphs. The three scenarios simulate real-life situations known to cause data loss 

such as road closures, road construction, and counter malfunctions. Moreover, the 

scenarios were designed to test the expected advantages and disadvantages of the five 

calculation methods. Holidays were treated as normal weekdays in all data removal 

scenarios.  
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Scenario 1 simulates a short-term data loss corresponding to a day-long non-recurrent 

event (e.g., an extreme weather event) at or near the count site which generates invalid 

truck traffic volumes. As shown schematically in Figure 2.1a, data were removed for the 

full 24-hour period (12:00 AM to 11:59 PM) for each day of the year. This data removal 

scenario was repeated 365 or 366 times for every site, depending on the year. The 

scenario was designed to reveal the impact of removing a relatively small amount of data 

and to isolate the effect of using a weighted average. Since a full 24 hours of data were 

removed, the use of an hourly base time period is expected to have no effect on the 

AADTT calculation. 

Scenario 2 simulates a longer-term data loss corresponding to a non-recurrent event at or 

near the count site which generates invalid truck traffic volumes during normal working 

hours for a two-week period (e.g., a construction project involving a lane closure). As 

shown in Figure 2.1b, data from 7:00 AM to 4:59 PM were removed for every weekday 

(Monday to Friday, inclusive) for two consecutive weeks. Thus, for each iteration of the 

scenario, a total of 100 hours (10 hours for 10 days) of data were removed when applying 

the methods with an hourly base time period, whereas 240 hours (24 hours for 10 days) 

of data were effectively removed when applying the methods with a daily base time period. 

This data removal scenario was repeated 50 times for each site, once per week in the 

year while avoiding partial weeks at the beginning and end of the year. The scenario was 

designed to reveal the effects of two conditions: (a) the loss of data for specific days of 

the week (i.e., by only removing data for weekdays, which tend to have different truck 

traffic patterns than weekends), and (b) removal of data in well-defined hourly cycles (i.e., 

by removing the same 10 hours from every day for a pre-determined interval). It is 

expected that these changes will reveal the impacts of using an hourly base time period 

instead of a daily base time period. 
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Scenario 3 simulates the loss of data for a random duration, ranging from one hour to 

fifteen days, starting at a random time in the analysis year. This type of data loss 

corresponds to a counter malfunction. The data removal in this scenario was conducted 

in two steps. First, a random duration was established within the aforementioned range. 

Second, a random starting hour of the year was chosen, subject to a constraint to ensure 

that the entire duration remain within the analysis year. Figure 2.1c shows one example 

of data removal in this scenario. In this case, data removal starts at 2 PM on January 5th 

and extends for 75 hours to January 8th at 4 PM (data up until 4:59 PM are removed). The 

next iteration would select another random duration and starting hour. The fifteen-day 

maximum duration ensures that sufficient data existed in every month to apply each of the 

calculation methods. Unlike Scenarios 1 and 2, Scenario 3 does not iterate sequentially 

through the year; rather, this data removal scenario was repeated 3000 times for each 

site. This scenario was designed to produce comprehensive results to compare the five 

methods and to evaluate how the duration of data removal influences AADTT accuracy 

and precision.  
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Figure 2.1: Illustration of data removal for (a) scenario 1, (b) scenario 2, and (c) 
scenario 3 

2.3.4 Bias and Statistical Measures 

The five methods were evaluated by determining the bias or error of the AADTT calculated 

by each method, similar to the work documented by Jessberger et al (2016). In the 

evaluation, bias is defined as the percent difference between the calculated AADTT and 

the true AADTT at a site, as given by Equation 2.4: 

 

𝑏𝑖𝑎𝑠 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇𝑇 − 𝑇𝑟𝑢𝑒 𝐴𝐴𝐷𝑇𝑇

𝑇𝑟𝑢𝑒 𝐴𝐴𝐷𝑇𝑇
 ×  100 (2.4) 
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Since the source data are complete, the true AADTT is given by the Simple Average 

method (Equation 2.1). The evaluation references three common statistical measures: 

• The median bias is an indication of the accuracy of the AADTT, accounting for both 

positive and negative biases. 

• The mean absolute bias is an indication of the accuracy of the AADTT which describes 

how far the calculated AADTT is from the true AADTT, without regard for the direction 

of the bias. 

• The 95 percent confidence interval (95% CI) of the biases is a measure of the precision 

of the calculated AADTT. Narrower 95% CIs indicate less deviation from the median 

bias. 

2.4 RESULTS 

This section summarizes the evaluation results for each of the three data removal 

scenarios. It presents the aggregated scenario results for all sites and also discusses site-

specific results to illustrate salient points. For context, key attributes of the two sites 

discussed for illustrative purposes in the evaluation follow: 

• Site 1 is located on an inter-provincial trucking route. The AADTT at the site in 2012 

was 1140 trucks per day. This site experiences larger truck volumes on weekdays than 

weekends and increased truck traffic during spring and fall. 

• Site 2 is located on an intra-provincial trucking route. The AADTT at the site in 2014 

was 90 trucks per day. This site experiences larger truck volumes on weekdays than 

weekends.  In 2014, the truck traffic was relatively constant throughout winter and 

spring, but exhibited substantial increases in July, August, and October due to a 

construction project in the vicinity of the site. 
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2.4.1 Scenario 1 

Scenario 1 involves the removal of a whole day (i.e., 24 hours) of data for each iteration. 

Thus, as expected, the results for the AASHTO and AASHTO Hourly methods are 

identical, as are the results from the AASHTO Weighted and FHWA methods. For 

simplicity, only results for the Simple Average, AASHTO, and FHWA methods are 

discussed. 

Figure 2.2 shows the bias associated with the removal of data for each day of the year 

when the AADTT is calculated using the Simple Average, AASHTO, and FHWA methods 

at Site 1 and Site 2. The figure reveals three pertinent findings. First, application of the 

AASHTO method yields a consistently larger bias compared to the FHWA method. This 

bias is positive at Site 1 and negative at Site 2. Generally, the biases for the FHWA method 

are within ±0.25 percent for both sites, with smaller biases evident at Site 1 which exhibits 

more stable daily truck volumes. Second, the biases generated from the FHWA method 

appear to be less variable than those generated from the AASHTO and Simple Average 

methods. This is particularly evident at Site 2. Third, the relatively high daily truck traffic 

volumes during the summer and fall at Site 2 coincide with erratic results for all three 

methods. In other words, none of the three methods fully compensates for the bias 

introduced when removing data for a day with atypical (but valid) volumes.  
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Figure 2.2: Results from scenario 1 for (a) site 1 and (b) site 2 
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Table 2.3 provides the Scenario 1 results for all sites combined; these results reinforce 

the foregoing site-specific findings. Application of the FHWA method yields smaller median 

and mean absolute biases relative to the Simple Average and AASHTO methods. 

Specifically, for the FHWA method, effectively no median bias is observed and the mean 

absolute bias is 0.05 percent. While larger, the median and mean absolute biases for the 

Simple Average and AASHTO methods are all very small (the median biases are nearly 

zero and the mean absolute biases are within 0.15 percent). Additionally, application of 

the FHWA method produces biases with a narrower 95% CI width than the other methods 

(0.33 percent compared to 0.45 percent for the Simple Average method and 0.86 percent 

for the AASHTO method). Overall, Scenario 1 results show that the introduction of the 

weighted average within the AASHTO Weighted and FHWA methods improves AADTT 

accuracy and may also contribute to better precision.  

Table 2.3: Summary of Results from Scenarios 1, 2, and 3 

  Scenario 1   Scenario 2   Scenario 3 

Method  

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias   

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias   

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias 

Simple Average  -0.02% 0.45% 0.11%   -0.58% 2.56% 0.74%   -0.01% 2.23% 0.38% 

AASHTO  0.03% 0.86% 0.13%   -0.01% 2.09% 0.37%   0.01% 1.87% 0.30% 

AASHTO 
Weighted   - a  - a  - a   -0.03% 2.01% 0.35%   -0.02% 1.78% 0.27% 

AASHTO Hourly   - b  - b  - b   0.00% 1.61% 0.29%   0.01% 1.73% 0.27% 

FHWA  0.00% 0.33% 0.05%   -0.02% 1.51% 0.26%   -0.01% 1.64% 0.24% 
 CI denotes confidence interval 
a identical to results for FHWA method 
b identical to results for AASHTO method      

2.4.2 Scenario 2 

Scenario 2 involves the removal of data for the weekday working hours (i.e., 7:00 AM to 

4:59 PM, Mondays through Fridays) for two consecutive weeks. Table 2.3 provides the 
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Scenario 2 results for all sites combined. When comparing these results to those obtained 

for Scenario 1, it is evident that, regardless of method, the mean absolute biases and 95% 

CI widths for these biases are larger for Scenario 2. Notably, despite the extent of data 

loss, all the mean absolute biases remain within one percent. The median biases do not 

exhibit a consistent trend. Moreover, because a larger quantity of data is removed, the 

relative weakness of the Simple Average in terms of median bias, 95% CI width, and mean 

absolute bias is more apparent in Scenario 2 than in Scenario 1. 

 When comparing the performance of the methods within Scenario 2 specifically, 

the results indicate that the FHWA method has the smallest mean absolute bias (0.26 

percent) and the AASHTO Hourly method has the smallest median bias (0.00 percent). 

The 95% CI widths for the biases produced by the AASHTO and AASHTO Weighted 

methods are nearly identical. Likewise, the 95% CI widths for the biases produced by the 

two hourly methods (AASHTO Hourly and FHWA) are similar to each other, but narrower 

than those produced by the AASHTO and AASHTO Weighted methods. This appears to 

imply that the ability to limit data loss by using an hourly rather than daily base time period 

(as is evident when comparing the AASHTO Hourly and AASHTO methods) is the primary 

contributor to the improved precision of the results, since a precision improvement is not 

evident when comparing the AASHTO Weighted and AASHTO methods.  

2.4.3 Scenario 3 

Scenario 3 involves the removal of data for 3000 random durations and starting times at 

each site. Thus, the results enable comprehensive comparisons of the methods and reveal 

the influence of the duration of data loss on accuracy and precision. Comparisons between 

the Scenario 3 results and those from Scenarios 1 and 2 are not as instructive. 
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Referring again to Table 3, which considers all sites combined, the application of the 

FHWA method produces biases with the narrowest 95% CI width and the smallest mean 

absolute bias (1.64 percent and 0.24 percent, respectively). For all methods, the mean 

absolute bias is within 0.4 percent. As in Scenario 2, the two hourly methods have the two 

smallest 95% CI widths. 

The median biases produced by the five methods in this scenario are all very small (within 

0.02 percent). However, unlike the mean absolute biases and the 95% CI widths, the 

median biases do not exhibit a clear trend. (This was also evident in the results for 

Scenario 2). To investigate this further, the 31 sites were disaggregated into two groups: 

one group containing 18 sites for which the AASHTO method produced positive median 

biases (Group A), and the other group containing the remaining 13 sites for which the 

AASHTO method produced negative median biases (Group B). To illustrate the results, 

consider the probability distribution functions for the biases calculated at Site 1 (from 

Group A) and Site 2 (from Group B), as shown in Figure 2.3. At both sites, the application 

of the two weighted methods (i.e., the AASHTO Weighted and FHWA methods) shifts the 

distributions produced by their un-weighted counterparts (i.e., the AASHTO and AASHTO 

Hourly methods) towards a median bias near zero. Table 4 shows the results for all sites 

combined, Group A, and Group B. When applying the AASHTO method, the median 

biases for Groups A and B are 0.09 percent and -0.12 percent, respectively. The AASHTO 

Weighted and FHWA methods correct these median biases for both groups by moving 

them closer to zero. This effect is not evident when all sites are combined, presumably 

because the positive and negative biases offset one another. Comparatively, the AASHTO 

Hourly method appears to have little influence on the median biases. Moreover, regardless 

of whether the median bias is positive or negative, the improvements in the mean absolute 

bias and 95% CI widths remain when applying the FHWA method. 
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Table 2.4: Scenario 3 Results for All Sites and Groups with Positive (Group A) and 
Negative (Group B) Median Biases for the AASHTO Method 

  All Sites (31 Sites)   Group A (18 Sites)   Group B (13 Sites) 

Method  

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias   

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias   

Median 
Bias 

95% CI 
Width 

Mean 
Abs. 
Bias 

AASHTO  0.01% 1.87% 0.30%   0.09% 1.78% 0.29%   -0.12% 1.90% 0.32% 

AASHTO 
Weighted  -0.02% 1.78% 0.27%   -0.01% 1.74% 0.26%   -0.02% 1.83% 0.27% 

AASHTO Hourly  0.01% 1.73% 0.27%   0.09% 1.63% 0.26%   -0.11% 1.77% 0.29% 

FHWA  -0.01% 1.64% 0.24%   -0.01% 1.61% 0.23%   -0.01% 1.68% 0.24% 
 CI denotes confidence interval 
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Figure 2.3: Probability distribution functions of biases for scenario 3 by method 
from (a) site 1 and (b) site 2 
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Figure 2.4, there is a strong, positive, linear relationship between the duration of data 

removal and the mean absolute bias for each of the methods (R-squared > 0.96). The 

FHWA method has the smallest mean absolute bias regardless of the duration of data 

removal, whereas the Simple Average method yields the largest mean absolute bias for 

data removal durations exceeding the equivalent of one day. As shown in Figure 2.5, the 

FHWA method produces the most precise results (narrowest 95% CI widths) regardless 

of the duration of data removal. For example, when less than seven days of data were 

removed, the 95% CI of biases using the AASHTO method was -0.56 percent to 0.64 

percent. The same CI when using the FHWA method was -0.44 percent to 0.43 percent, 

or 28 percent narrower. For all methods, precision decreases as the duration of data 

removal increases. The median bias is consistently near zero for all methods and 

durations of data removal.   
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Figure 2.4: Relationships between duration of data removal and mean absolute bias 
by method 
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Figure 2.5: Median bias and 95% confidence intervals for biases by duration of data 
removal and method 
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relative to the Simple Average method when more than a single day of data were 

removed. However, this method was less accurate and precise than the three methods 

that introduced adjustments to the AASHTO method. 

• Application of the AASHTO Weighted method improved the accuracy of the results 

relative to the AASHTO method. This was evident in Scenario 1 under conditions 

specifically designed to isolate the effect of using a weighted average. Scenario 3 

revealed the accuracy improvements provided by applying the weighted average even 

when only small amounts of data were missing (or when no data were missing). It was 

also evident from Scenario 3 that the introduction of the weighted average corrected 

the median bias produced by the AASHTO method regardless of whether this bias 

was positive or negative. 

• Application of the AASHTO Hourly method improved the precision of the results 

relative to the AASHTO method when partial days of data were removed (as in 

Scenarios 2 and 3). Improvements in accuracy were also evident when applying the 

AASHTO Hourly method. 

• Application of the FHWA method resulted in the most accurate and precise results 

under all scenarios. Essentially, this method combines the benefits provided by 

introducing the weighted average and those provided by using an hourly base time 

period.    

• The specific analyses included in this evaluation revealed three issues which warrant 

further consideration by researchers and practitioners. First, while the FHWA method 

provided the most accurate and precise results overall, the method was not clearly 

superior when subject to substantial daily traffic volume fluctuations (see results for 

Site 2 in Figure 2.2b). Such conditions are not unusual at sites with low volumes, 

particularly when considering truck traffic which is known to exhibit industry-influenced 
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temporal patterns. 

Second, the site-specific results produced by the AASHTO method in Scenario 3 revealed 

both positive and negative median biases. This finding appears to depart from the 

consistently negative overall median biases produced by the AASHTO method in the work 

by Jessberger et al. (2016) although this work does not provide site-specific results. 

Further investigation suggested that the calendar year being analyzed may partially 

influence the median bias, because each calendar year has a particular day-of-week 

arrangement. This evaluation used data from calendar years 2010 through 2015, 

inclusive. Each of these years starts on a different day-of-week and thus the number of 

days-of-week in a particular month varies from year to year. Sites using data from certain 

years showed a tendency to over- or underrepresent AADTT. For example, when data 

were disaggregated into Groups A and B in Scenario 3, the sites using data from 2011 

and 2012 predominantly fell into Group A (the first day-of-week in these years is Saturday 

and Sunday, respectively). The mean absolute bias ignores the signs of the biases and 

does not appear to be affected by this issue. Thus, while additional research is needed to 

fully quantify this effect, it is instructive to consider both median bias and mean absolute 

bias when assessing AADT accuracy. 

Third, the relative accuracy improvement (as measured by the mean absolute bias) of the 

weighted methods tends to decrease as the duration of data removal increases. This is 

evident in Figure 2.4, where the AASHTO and AASHTO Weighted methods and the 

AASHTO Hourly and FHWA methods appear to converge. It is possible that as more data 

are removed, the inaccuracies associated with missing data outweigh the inaccuracies 

associated with the non-weighted methods. Further research is needed to examine the 

impacts of data removal durations longer than 15 days. 
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2.6 CONCLUSION 

This paper evaluated five methods for calculating AADT at continuous count sites by 

imposing data removal scenarios designed to simulate real-life causes of data loss. The 

five methods were: (a) the Simple Average method, (b) the AASHTO method, (c) the 

AASHTO Weighted method, (d) the AASHTO Hourly method, and (e) the FHWA method. 

The evaluation focused on quantifying the accuracy and precision improvements provided 

by the FHWA method, particularly at low volume sites with potentially erratic temporal 

patterns. Truck traffic volume data collected in Manitoba exhibit these characteristics. 

While the findings stem from the analysis of these particular data, it is expected that they 

are transferrable to other similar contexts. 

 Overall, the FHWA method, which leverages two modifications to the AASHTO 

method, provided the most accurate and precise results in all three data removal 

scenarios. Specifically, when up to 15 days of data are randomly removed, application of 

the FHWA method can be expected to produce errors within approximately ±1.4 percent 

of the true AADT, 95 percent of the time. These results, which were obtained for sites with 

generally low truck traffic volumes, corroborate those reported by Jessberger et al. (2016). 

In addition, the evaluation contributed to a more detailed understanding of the various 

AADT calculation methods. In particular, the results demonstrated that including a 

weighted average primarily improves AADT accuracy, while precision is more influenced 

by the base time period being used. Moreover, the particular arrangement of days-of-week 

in a calendar year appears to systematically influence the median bias observed at a site. 

 While the evaluation demonstrated the relative benefits of the FHWA method, 

practitioners should consider several points when contemplating its adoption into a traffic 

monitoring program.  In its favour, the FHWA method reduces a known, yet small, 
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systematic bias in AADT calculations at continuous count sites by introducing a weighted 

average. It also improves the reliability of AADT calculations at these sites and enhances 

the value of traffic data obtained from partial-day counts that require hourly adjustment 

factors. These advantages should be assessed against the level of effort required to 

implement the FHWA method. Additionally, the rounding policies adopted by a jurisdiction 

and the insensitivity of certain applications to AADT inputs may mitigate the accuracy and 

precision improvements provided by the FHWA method. 
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3 DATA-DRIVEN APPROACH TO QUANTIFY AND REDUCE 

ERROR ASSOCIATED WITH ASSIGNING SHORT DURATION 

COUNTS TO TRAFFIC PATTERN GROUPS 

This chapter continues the investigation of AADT estimation techniques by moving to short 

duration count data, the counterpart to continuous count data that was analyzed in 

Chapter 2. It seeks to answer the second set of objective questions: What magnitude of 

errors are produced when estimating AADT from short duration traffic count data using 

the state-of-the-practice approach? Can a novel assignment method reduce the errors 

caused by poor assignment to traffic pattern groups? 

This analysis develops a procedure to measure and mitigate errors produced when 

assigning traffic count sites to the wrong traffic pattern group. It contributes to the thesis 

theme by applying the traffic patterns developed from continuous count data, which are 

predicated on periodicities in traffic with time, and by considering the possibility of grouping 

traffic count sites using a purely data-driven approach.  

The material in this chapter is submitted for publication to the Transportation Research 

Record and has been accepted for presentation at the 100th Annual Meeting of the 

Transportation Research Board in 2021. It is reprinted with permission of co-authors Puteri 

Paramita and Jonathan Regehr. The chapter is self-contained with its own abstract, 

introduction, and conclusion; references are provided at the end of the thesis. The thesis 

author conducted the analysis, interpreted results, and prepared the manuscript.  
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3.1 ABSTRACT 

Traffic monitoring agencies collect traffic data samples to estimate annual average daily 

traffic (AADT) at short duration count sites. The steps to estimate AADT from sample data 

introduce error that manifests as uncertainty in the AADT statistic and its applications. 

Past research suggests that the assignment of a short duration count site to a traffic 

pattern group (TPG), characterized by known traffic periodicities, represents a significant 

but poorly quantified source of error.     

This paper presents an approach to quantify the range of errors arising from such 

assignments and to mitigate these errors using a novel data-driven assignment method. 

The approach uses simulated 48-hour short duration counts sampled from continuous 

count sites with known AADT to develop a benchmark of the total error expected when 

AADT is estimated from such samples. Likewise, the analysis produces a set of AADT 

estimates using temporal factors from pre-defined TPGs to quantify the range of 

assignment errors. The data-driven assignment method aims to mitigate these errors by 

minimizing the absolute mean deviation in AADT estimates produced from multiple short 

duration counts in a single year. 

The approach is applied to traffic data collected in Manitoba, Canada, as a case study. 

The results indicate that the mean absolute error from 48-hour short duration counts is 

6.40% of the true AADT and that improper assignment can lead to a range in mean 

absolute errors of 9%. When applied to previously unassigned sites, the data-driven 

assignment method reduced mean absolute errors from 10.32%, using a conventional 

assignment method, to 7.86%.  
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3.2 INTRODUCTION 

A principal objective of traffic monitoring programs is to produce accurate and precise 

estimates of traffic volume—ideally expressed as annual average daily traffic (AADT)—

across the system-wide extent of an agency’s highway network. Conventionally, traffic 

monitoring programs estimate AADT on extensive networks by deploying a series of short 

duration counts. These counts use portable equipment to obtain traffic data samples that 

provide broad spatial coverage. While economical, such counts monitor traffic for relatively 

short periods of time (often one to three days); this limits their effectiveness in producing 

annual averages. Practitioners compensate for this limitation by adjusting the measured 

traffic volumes using average temporal factors obtained from continuous traffic counts. 

However, assigning short duration counts to the appropriate continuous count sites is a 

potential source of error in the AADT estimation process. This paper develops a data-

driven approach to quantify and reduce this error.      

3.2.1 Background 

AADT is a ubiquitous traffic statistic, essential for applications such as infrastructure 

design and management, road safety assessments, resource allocation, economic 

appraisals, roadway and transport system planning, operational and environmental 

analyses, and transportation research (Albright, 1991; Tsapakis, 2019; Jessberger et al, 

2016; Grande et al., 2017; Sharma and Allipuram, 1993; Olfert et al., 2019; Eom et al., 

1968; Li et al., 2006). In the United States, state and municipal transportation agencies 

submit system-wide estimates of AADT (and vehicle-miles travelled) on their highway 

networks as required by the Highway Performance Monitoring System (HPMS) (FHWA, 

2016). Having access to AADT for all paved public roads in the United States by 2026 is 

also a requirement of the 2016 Highway Safety Improvement Program (HSIP) Final Rule. 
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In Canada, despite a lack of formal data reporting requirements, there is widespread 

acknowledgement of the value of standardizing and continuously improving highway traffic 

monitoring practices at all levels of government. This is evident through the recent 

national-level publication of the Traffic Monitoring Practices Guide for Canadian Provinces 

and Municipalities (Regehr et al., 2017). 

The conventional approach for estimating AADT at short duration count sites, first 

introduced by Drusch (1993), leverages data collected at continuous and short duration 

count sites (Tsapakis, 2019; FHWA, 2016; Regehr et al., 2017). Table 3.1 describes the 

six main steps of this approach. The first three steps involve data obtained from continuous 

count sites. These data are used to calculate temporal factors at each site (Step 1), to 

develop traffic pattern groups (TPGs)—sometimes referred to as factor groups—

comprising sites that exhibit similar periodicities (Step 2), and to produce average 

adjustment factors for each group (Step 3). Due to their high cost of installation, operation, 

and maintenance, an agency typically deploys a limited number of continuous count sites. 

Thus, agencies use portable equipment to collect short duration (sample) counts for 

broader spatial coverage (Step 4) (Sharma and Allipuram, 1993). The assignment of each 

short duration count site to a TPG (Step 5) facilitates the application of the TPG’s temporal 

adjustment factors and the estimation of AADT at the short duration count site (Step 6). In 

other words, the assignment step presumes that the average traffic periodicities (monthly, 

day-of-week, hourly) observed at the sites comprising the appropriate TPG apply to the 

short duration count site, even though such periodicities are never directly observed at 

that short duration count site. 

Each step of this approach has the potential to introduce error that ultimately manifests as 

uncertainty in the estimated AADT (Tsapakis, 2019). For the first three steps, error arises 
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because average temporal adjustment factors derived from TPGs do not perfectly 

represent traffic variations at any particular continuous count site. In the latter three steps, 

these errors propagate through to the estimation of AADT when assumptions are made 

about the traffic periodicities at short duration count sites. Overall, the table reveals a major 

limitation of the conventional approach, namely that the accuracy and precision of the 

AADT estimated from short duration counts are conditional on multiple sources of error, 

which may not be quantified in practice even when they are duly recognized.  

Table 3.1: Main steps and potential error sources associated with the estimation 
of AADT at short duration count sites 

Step Potential error source Relevant research 

1. Calculate temporal factors at 

each continuous count site. 

Temporal factors summarize data by 

arbitrarily pre-defined periods (e.g., months, 

days-of-week) and thus do not fully-represent 

non-periodic traffic variations.  

Jessberger et al. 

(2016); Grande et 

al. (2017) 

2. Group continuous count sites 

into traffic pattern groups (TPGs) 

with similar temporal factors. 

Continuous count sites may be incorrectly or 

sub-optimally grouped, producing TPGs with 

dissimilar temporal factors. 

Reimer and Regehr 

(2013); Regehr et al 

(2015) 

3. Calculate average temporal 

adjustment factors for each TPG. 

Grouped sites have similar, but not identical, 

traffic periodicities; thus, the average factors 

do not represent the traffic at any individual 

continuous count site in a group. 

FHWA (2016); 

Regehr et al. 

(2017); Regehr et al 

(2015) 

4. Collect sample traffic data at 

short duration count sites. 

Sampled traffic data may not sufficiently 

represent the predominant traffic periodicities 

at the count site. 

Sharma and 

Allipuram (1993); 

Sharma et al 

(1996); Gadda et al 

(2007); Nordback et 

al.(2013); Jackson 

et al (2015); Minge 

et al.(2017)   
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Step Potential error source Relevant research 

5. Assign short duration count 

sites to TPGs based on roadway 

and land use characteristics. 

Short duration counts may be assigned to the 

wrong TPG, particularly if observed roadway 

and land use characteristics poorly correlate 

with expected traffic characteristics at the site. 

Sharma and 

Allipuram (1993); 

Sharma et al 

(1996); Gadda et al 

(2007)  

6. Estimate AADT using temporal 

adjustment factors and short 

duration count data. 

The average temporal adjustment factors 

from the assigned TPG may not represent the 

traffic periodicities at the short duration count 

site. 

Sharma and 

Allipuram (1993); 

Sharma et al 

(1996); Gadda et al 

(2007); Milligan et 

al. (2016); 

Jessberger and 

Schroeder (2016) 

 

As cited in Table 3.1, the literature includes several evaluations of uncertainties arising 

when estimating AADT from short duration counts. Three earlier works specifically focus 

on error arising from the assignment of short duration counts to TPGs (Step 5): 

• Gadda et al (2007) quantified multiple types of error arising from using short duration 

count data to estimate AADT, including what they refer to as misclassification error 

(equivalent to the assignment error discussed in Step 5 above). Using data from 

continuous count sites in Florida, they found that misclassification raised errors from 

6.69% (with ideal factors applied) to 19.35%. They suggested that classifying the count 

sites into different categories based on the functional classification, lane count, and 

area types would help to reduce the estimation error of AADT. 

• Sharma et al (1996) investigated the statistical precision of AADT estimates resulting 

from short duration counts in Minnesota and verified their results using data from two 
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Canadian provinces. They identified that emphasizing proper assignment has a more 

positive impact on estimation errors than extending the length of short duration counts. 

For example, a 72-hour count with improper assignment was expected to produce an 

estimate with higher error than a 24-hour or even 6-hour count using proper 

assignments.  

• Sharma and Allipuram (1993) developed a systematic method to assign short duration 

count sites to pre-existing TPGs in the context of seasonal traffic counts. In this case, 

seasonal traffic counts referred to a series of week-long counts conducted at short 

duration sites for the purpose of assignment. Their method was designed to select the 

most appropriate seasonal traffic count schedule to accurately assign sites to TPGs. 

However, the method used week-long counts and ignored the effects of daily traffic 

variability. They quantified assignment error in terms of ‘assignment effectiveness’, 

which measured the difference between adjusted traffic volumes and ground truth 

AADT, and the percent difference in daily traffic, which compared unadjusted 

measured volumes with ground truth AADT. 

The literature review reveals a limited number of studies that have concentrated on the 

assignment of short duration counts to TPGs and the error associated with this step. 

Further, while some studies have attempted to quantify and reduce the overall error in 

AADT estimates, only Sharma and Allipuram (1993) have gone on to propose a method 

for reducing assignment errors, specifically. Their approach required significantly more 

data than a typical short duration count program would collect. Thus, there is a gap in 

research regarding the quantification and reduction of assignment errors that is addressed 

by the generic approach presented in this paper. 
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3.2.2 Research Objectives and Scope 

This paper seeks to improve upon the state-of-the-practice in short duration count 

programs by addressing three research questions:  

• What are the expected errors in current AADT estimates produced from short 

duration counts? By answering this question, the paper benchmarks errors to 

provide context for subsequent steps. 

• What portion of AADT estimation errors can be attributed to the assignment of 

short duration counts to TPGs? Answering this question identifies the component 

of the error that can be reduced or eliminated by proposing a novel assignment 

method. 

• What reduction of AADT estimation errors is possible by employing a novel 

assignment method? The paper proposes and evaluates a data-driven method to 

reduce the error in AADT estimates that arises when assigning short duration counts 

to TPGs. 

This paper addresses these research questions through a generic approach for 

quantifying and reducing the errors produced during the assignment step of AADT 

estimation. The next section describes this approach. The paper then applies the 

approach using traffic data obtained from Manitoba, Canada as a case study. While the 

results presented are specific to this case study, the insights generated are considered 

transferable to other jurisdictions. The final section of the paper discusses these insights 

and their implications for traffic monitoring programs. 

3.3 APPROACH 

The proposed approach comprises three steps, which map directly to the three foregoing 
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objectives:  

1. Benchmark the total error produced when using the conventional AADT estimation 

approach for short duration count data. 

2. Evaluate the range of errors attributed to the assignment of short duration counts to 

TPGs by applying factors from multiple TPGs. 

3. Develop and apply a data-driven method to assign short duration counts to TPGs and 

compare the errors produced using this method to those evident from the conventional 

assignment approach. 

The following subsections provide detailed descriptions of each step. 

3.3.1 Step 1: Benchmarking total error using the conventional AADT estimation 

approach 

This step begins by calculating the (true) AADT at all continuous count sites, by direction, 

using the AASHTO formulation shown in Equation 3.1 (FHWA, 2016). AADT can only be 

calculated in this fashion if there exists at least one daily volume for each day-of-week 

within each month (i.e., 𝑛𝑗𝑚 ≥ 1 for all days-of-week, 𝑗, and months, 𝑚) at a site. In this 

case, vehicle classification data are not considered (so c represents all vehicle classes). 

𝐴𝐴𝐷𝑇𝑐 =  
1

7
∑ [

1

12
∑

1

𝑛𝑗𝑚
(∑ 𝑉𝑂𝐿𝑖𝑗𝑘,𝑐

𝑛𝑗𝑚

𝑘=1

)

12

𝑗=1

]

7

𝑖=1

 (3.1) 

 

Where:  

𝑉𝑂𝐿𝑖𝑗𝑚  = total traffic on ith occurrence of jth day-of-week within mth month  
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𝑖  = day-of-week (1 to 7) 

𝑗  = month-of-year (1 to 12) 

𝑘  = occurrence of a particular day-of-week in a particular month 

𝑛𝑗𝑚  
= number of times day-of-week i occurs in month j with available traffic 

data 

𝑐  = vehicle class (optional) 

 

Next, simulated short duration count data are produced by sampling data from continuous 

count sites. Forty-eight-hour samples are taken at each site, by direction, at which AADT 

can be calculated. To ensure the assumption of normally distributed errors is valid, 100 

independent samples are taken per site-direction. The sampling periods are the same for 

all studied sites and must meet the following criteria, established based on guidance in 

the literature: 

• All short duration counts are conducted between May and September, inclusive. 

• All short duration counts begin on Mondays or Tuesdays and cannot include holidays. 

• All short duration counts begin between 6:00 a.m. and 6:00 p.m. and last exactly 48 

hours. 

In some cases, sites with the requisite data to produce AADT estimates may have 

relatively short periods of missing data (i.e., a few hours, but not enough to preclude the 

use of Equation 3.1). The sampling criteria require each sample to comprise data from a 

full 48 hours. To address the missing hourly data, the average volume for each hour on 

each day-of-week within each month are calculated at each site. These averages are used 

to impute the missing data at all sites at which AADT can be estimated. Existing data are 
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not altered by this method, as only missing data are imputed.  

The simulated short duration data are used to estimate AADT using the method 

recommended in the FHWA Traffic Monitoring Guide (FHWA, 2016). Continuous count 

sites in each TPG are used to develop average temporal adjustment factors for each day-

of-week and month. Equation 3.2 shows how these factors are used to estimate AADT 

using a single short duration count. Note that the conventional subscripts are presented, 

whose definitions do not align with those shown in Equation 3.1. 

𝐴𝐴𝐷𝑇ℎ𝑖 =  𝑉𝑂𝐿ℎ𝑖 × 𝑀ℎ × 𝐷ℎ × 𝐴𝑖 × 𝐺ℎ (3.2) 

 

Where:  

𝐴𝐴𝐷𝑇ℎ𝑖 
= the estimated annual average daily traffic at site i of traffic pattern group 

h 

𝑉𝑂𝐿ℎ𝑖  = the 48-hour volume measured at site i of traffic pattern group h 

𝑀ℎ  = the applicable seasonal (monthly) factor for traffic pattern group h 

𝐷ℎ = the applicable day-of-week factor for traffic pattern group h (if needed) 

𝐴𝑖   = the applicable axle-correction factor for site i (if needed) 

𝐺ℎ  = the applicable growth factor for traffic pattern group h (if needed)  

 

The analysis applies Equation 3.1 to the continuous count data at each site to calculate 

the true AADT and Equation 3.2 to each sampled short duration count at each site to 

calculate the estimated AADT. Each estimated AADT is compared to the true AADT for 

that site. The analysis measures the deviation between the 100 sampled AADT estimates 

and the true AADT at each site. The range of errors is quantified to establish a benchmark 
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of the errors expected when using the conventional AADT estimation approach. Results 

are discussed in terms of percent error and absolute percent error relative to the true 

AADT. Equation 3.3 shows how the mean percent error (MPE) is calculated for any 

combination of site and TPG using the 100 sampled short duration counts from the site. 

Mean absolute percent error (MAPE) is similarly calculated, considering the absolute 

values of the summands. The analysis identifies the spectrum of errors that are produced 

using this AADT estimation method for current TPG assignments, thus addressing the first 

research question: What are the expected errors in current AADT estimates produced 

from short duration counts? 

𝑀𝑃𝐸𝑖,ℎ =
1

100
× ∑

𝐴𝐴𝐷𝑇𝑖 − 𝐴𝐴𝐷𝑇𝑖,ℎ,𝑘
∗  

𝐴𝐴𝐷𝑇𝑖

100

𝑘=1

 (3.3) 

 

Where:  

𝐴𝐴𝐷𝑇𝑖 = the ground truth AADT at site i 

𝐴𝐴𝐷𝑇𝑖,ℎ,𝑘
∗   

= the estimated AADT at site i, based on traffic pattern group h, for the kth 

data sample 

𝑀𝑃𝐸𝑖,ℎ  
= the mean percent error of AADT estimates at site i, based on traffic 

pattern group h 

3.3.2 Step 2: Evaluating assignment-specific errors 

In Step 2, sampled data are again used to estimate AADTs by applying Equation 3.2. 

However, in this step, the analysis considers temporal adjustment factors from all TPGs, 

not only those to which sites had been previously assigned. This simulates the case in 

which short duration counts are assigned to different TPGs, including those which would 
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be expected to result in sub-optimal AADT estimates.  

The sampled data from each continuous count site are used to estimate AADT as if they 

were assigned to each TPG. Equation 3.3 finds the MPE for each combination of site and 

TPG. The results for Step 2 indicate the range of errors that exist when short duration 

count data are used to estimate AADT. The least of these errors is assumed to be the best 

case, where the TPG is optimally selected based on the available data. In this case, the 

remaining error is also assumed to be the aggregated error produced during each other 

step of the AADT estimation process. Conversely, the highest of these errors is taken to 

be the worst case. Thus, the resulting difference of errors in the AADT estimates 

represents the potential range of assignment errors. This range provides an answer to the 

second research question: What portion of AADT estimation errors can be attributed to 

the assignment of short duration counts to TPGs? 

3.3.3 Step 3: Developing a novel assignment method 

The third step develops a novel method (hereafter referred to as the data-driven 

assignment method or DDA method) to assign short duration counts to TPGs using short 

duration count data and available continuous count data. The DDA method is contingent 

on multiple short duration counts being conducted at each short duration count site during 

a study year. This is not typical practice for every monitoring agency, but is recommended 

in traffic monitoring guidance and the literature (Sharma and Allipuram, 1993; Sharma et 

al, 1996; FHWA, 2016b; Milligan et al, 2016; Regehr et al., 2017). Normally, the AADT at 

a site is estimated by taking the average of all AADT estimates in a year. Theoretically, if 

traffic patterns at a given site follow the periodicities of a TPG to which it is assigned, these 

AADT estimates should be close to each other. If instead these AADT estimates are 

disparate, it suggests that the TPG assignment is inappropriate.  
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The DDA method applies this theory by measuring and minimizing the absolute mean 

deviation in AADT estimates when using short duration count data and temporal 

adjustment factors from multiple TPGs. The method is an optimization problem that 

selects a TPG by minimizing the absolute mean deviation between all AADT estimates at 

a site by changing the applied TPG, as expressed in Equation 3.4. 

𝑇𝑃𝐺𝑖,𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 =  arg min
ℎ ∈ 𝐻

 |
1

𝑛
∑(𝐴𝐴𝐷𝑇𝑖,𝑘,ℎ

∗ − 𝐴𝐴𝐷𝑇̅̅ ̅̅ ̅̅ ̅̅
𝑖,ℎ)

𝑛

𝑘=1

| (3.4) 

  

Where:  

𝑇𝑃𝐺𝑖,𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = traffic pattern group assigned to site i 

ℎ = selected traffic pattern group 

𝐻 = set of all traffic pattern groups 

𝐴𝐴𝐷𝑇𝑖,𝑘,ℎ
∗  

= AADT estimate for site i using short duration count k and traffic 

pattern group h 

𝐴𝐴𝐷𝑇̅̅ ̅̅ ̅̅ ̅̅
𝑔 

= average AADT estimate for site i using all short duration counts and 

traffic pattern group h 

𝑛 = number of short duration counts conducted at a site 

 

The DDA method hypothesizes that minimizing the absolute mean deviation between 

AADT estimates produced from two or more counts at the same site within a year selects 

a TPG which also reduces the error produced during the assignment step (i.e., the TPG 

producing the most precise AADT estimates is also expected to produce the most 

accurate estimate). The following case study tests this hypothesis using data from 
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Manitoba, Canada, thus offering a response to the final research question: What reduction 

of AADT estimate errors is possible by employing a novel assignment method? 

3.4 CASE STUDY: EVALUATION OF SHORT DURATION COUNT ASSIGNMENTS 

IN MANITOBA, CANADA 

3.4.1 Overview of Manitoba’s Traffic Monitoring Program 

The Manitoba Highway Traffic Information System (MHTIS) processes and analyzes traffic 

data collected on Manitoba’s provincial highway network. Principal traffic volume data 

sources include 85 continuous count sites and approximately 2000 short duration count 

sites. The continuous count sites provide the source data for this case study. Each site 

records hourly traffic volumes by direction, yielding a possible 170 total site-direction pairs. 

However, if data are missing from a site for a significant portion of the year, Equation 3.1 

cannot be used to calculate AADT (FHWA, 2016; Regehr et al., 2017); thus, some site-

directions were unavailable for use in this study. Figure 3.1 shows the continuous count 

sites used in the case study, including those where one or both directions of traffic data 

did not meet the criteria for estimating AADT in the study year (2018). Missing data are 

normally the result of temporary equipment malfunctions. 
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Figure 3.1: Continuous count sites in Manitoba, Canada, 2018 

 

The MHTIS has seven established TPGs. Each TPG comprises a set of sites that exhibit 

similar temporal traffic patterns and share common roadway and land use characteristics. 

An unpublished cluster analysis formed the basis for defining these TPGs. The cluster 
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analysis considered the average monthly variation of traffic volume at the continuous 

count sites to develop initial groupings. A secondary cluster analysis further sorted these 

sites into groups based on their hourly and day-of-week traffic variations. Finally, the 

grouping process identified common roadway and land use characteristics shared by the 

continuous count sites within the clusters formed through the statistical analyses. These 

characteristics are used to assign short duration count sites to TPGs. An assignment 

algorithm, based on a sequence of binary-response questions, assists in the assignment 

process (see Figure 3.2). Inherent in this process is the assumption that the unmeasured 

traffic patterns at short duration count sites resemble the measured traffic patterns at the 

continuous count sites that comprise the TPG to which the short duration count is 

assigned. 
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Figure 3.2 Algorithm for assigning short duration count sites to TPGs in Manitoba, 
Canada 

 

Table 3.2 shows the defining characteristics for each of the seven TPGs in Manitoba 

(Olfert et al., 2019). In general, distinctions between the TPGs depend on their proximity 

to population centres and recreational destinations, and related predominant trip-making 

characteristics. For example, sites close to major urban centres generate strong morning 
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and afternoon peaks, higher weekday than weekend traffic, and relatively low seasonal 

variations (e.g., as in TPG 1). In contrast, sites close to recreational destinations generate 

relatively high weekend traffic and more pronounced seasonal variations (e.g., as in TPG 

6). TPG 7 comprises sites located in northern Manitoba. There are 17 continuous count 

sites that are not assigned to any TPG, either because they were installed after the initial 

cluster analysis took place or because they did not align with the characteristics of any 

TPG. 

Table 3.2: Characteristics of Manitoba's traffic pattern groups 

Traffic 
Pattern 
Group (TPG) 

Temporal Characteristics Roadway, Land Use, 
and Related Trip-
Making 
Characteristics 

Number of 
Site-directions 
Used/Total 

TPG1 • High a.m./p.m. peaks on weekdays 

• Steady weekday traffic with lower weekends 

• Low seasonal variation 

• Highways near major 
urban centres 

21/28 

TPG2 • Gradual increase and decrease in hourly traffic 

• Steady weekday traffic with lower weekends 

• Moderate seasonal variation 

• Long-distance trips 
away from major 
urban centres 

44/48 

TPG3 • Gradual increase and decrease in hourly traffic 

• Low weekend traffic and high Friday/Sunday 

• Very high summer peak 

• Long-distance trips 
that connect to 
recreational 
destinations 

3/6 

TPG4 • p.m. peak on weekdays 

• Steady weekday traffic with lower weekends 

• Low seasonal variation 

• Highways near rural 
population centres 

23/28 

TPG5 • p.m. peak on weekdays and weekends 

• Low weekend traffic and high Friday/Sunday 

• High summer peak 

• Highways near 
population centres 
that connect to 
recreational 
destinations 

6/6 

TPG6 • Steady, high, daytime traffic on weekends 

• Low weekend traffic and high Friday/Sunday 

• Very high summer peak 

• Highways near 
recreational 
destinations 

10/10 

TPG7 • p.m. peak on weekdays 

• Steady weekday traffic with lower weekends 

• High summer peak 

• Highways in northern 
Manitoba 

10/10 

No TPG • Excluded from other groups • N/A 29/34 

Total   146/170 
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For this case study, of the 170 total continuous count site-directions, 146 met the 

requirements for calculating AADT using Equation 3.1 (i.e., they measured traffic volumes 

for at least one day-of-week in every month). Of these, 117 site-directions had pre-

assigned TPGs (note that normally TPGs are assigned to sites and not site-directions). 

Data from these sites were used to develop the temporal adjustment factors for each TPG.  

3.4.2 Results 

3.4.2.1 Step 1 

Simulated short duration count data were produced by extracting 48-hour samples from 

the continuous count data at all 146 site-directions for which AADT could be estimated. At 

first, only data from the 117 pre-assigned site-directions were used to estimate AADT, 

using Equation 3.2 and inputting the calculated temporal adjustment factors for the 

assigned TPGs. Figure 3.3 shows the resulting percent errors in a histogram, aggregated 

for all studied sites that have an assigned TPG. Table 3.3 provides a detailed summary of 

results in tabular form. The distribution of errors is approximately normal, with a mean of 

0.2% and standard deviation of 8.6%. In absolute terms, the MAPE was 6.4% with a 

standard deviation of 5.7%. 
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Figure 3.3: Histogram of total errors for AADT estimates from short duration counts 

 

Table 3.3: Summary statistics of total errors for AADT estimates from short 
duration counts 

Statistic Percent Error Absolute Percent Error 

Minimum -85.23% 0.00% 

2.5th percentile -16.46% 0.23% 

First quartile -4.76% 2.34% 

Median 0.38% 4.95% 

Third quartile 5.07% 8.84% 

97.5th percentile 17.49% 20.63% 

Maximum 50.64% 85.23% 

Mean 0.19% 6.40% 

Standard Deviation 8.58% 5.72% 
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3.4.2.2 Step 2 

The analysis was repeated using input temporal adjustment factors from each of the seven 

TPGs to isolate assignment errors. In this case, unassigned sites are included in the 

analysis. Table 3.4 shows the MAPE of AADT estimates using the sampled short duration 

count data from all sites. For comprehensibility, the sites are grouped by their existing 

TPG assignments and averages are reported across these groupings. The ‘best’ and 

‘worst’ columns represent the average errors that are generated by using the TPGs that 

produce the lowest and highest MAPE, respectively. The ‘actual’ column shows the MAPE 

when using the site’s assigned TPG (there is no result for this category for the unassigned 

sites). The average error, aggregated for all assigned sites, ranges from 5.57% using 

optimal assignments to 14.28% using the worst assignments. As expected, given that 

some of the unassigned sites have unique temporal characteristics, the average error at 

these sites is higher, ranging from 10.21% to 19.56%. 

 

Table 3.4: Mean absolute percent error (MAPE) by traffic pattern group 

Traffic Pattern Group Actual 

Assignment 

Best 

Assignment 

Worst Assignment 

TPG1 5.34% 4.87% 15.45% 

TPG2 5.79% 5.23% 13.69% 

TPG3 7.71% 6.54% 13.53% 

TPG4 4.86% 4.75% 14.91% 

TPG5 7.34% 4.34% 11.81% 

TPG6 9.93% 7.51% 12.81% 

TPG7 10.31% 8.92% 16.10% 

All assigned sites 6.40% 5.57% 14.28% 

No assigned TPG - 10.21% 19.56% 
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3.4.2.3 Step 3 

Finally, the DDA method was applied to the unassigned count sites. To align with MHTIS 

operations, the sampled short duration counts from these unassigned sites were split into 

two groups: those that start during summer holidays in July or August (53 out of 100 

counts), and those that start when school is in session in May, June, or September (47 

counts). These counts were used to assign TPGs by applying Equation 3.3, using one 

count from each group of counts (i.e., 𝑛 = 2 in Equation 3.3). In total, 2491 cases were 

tested for each site (the product of 53 July or August counts and 47 May, June, or 

September counts). As a comparison case, the assignment algorithm shown in Figure 3.2 

was used to assign each of the unassigned sites to TPGs, based on their roadway and 

land use characteristics. Table 3.5 shows a sample calculation using the DDA method at 

site 5 NB with one pair of counts. In this case, the DDA method would select TPG 1 for 

this site because it has the smallest absolute difference between AADT estimates. This 

process is repeated for all 2491 combinations of counts at site 5 NB. 

Table 3.5: Sample calculation of the DDA method 

   AADT Estimated Using Factors from Each TPG 

Count Date-time 48-hr Volume TPG 1 TPG 2 TPG 3 TPG 4 TPG 5 TPG 6 TPG 7 

Count 1 
June 4, 1 
pm 

302 132.7 139.1 128.8 131.1 127.3 125.4 127.2 

Count 2 
Aug 14, 3 
pm 

317 132.7 129.1 113.0 133.0 118.7 116.4 121.8 

Absolute 
Mean Dev. 

- - 0.0 5.0 7.9 1.0 4.3 4.5 2.7 

 

Table 3.6 summarizes the results. The DDA method out-performs the algorithmic method 

(i.e., it produces an AADT that is closer to the true AADT) in 68.3% of tested cases. Both 

methods produce average errors of -3.46%. However, the overall average MAPE was 

7.86% using the DDA method and 10.32% using the assignment algorithm. Using a paired 
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t-test, considering each site as an independent sample, the results were statistically 

significant at the 0.01 level (df = 28, t-statistic = 5.3). 

Table 3.6: Comparison of the data-driven and algorithmic assignment methods 
 

Percent Error Abs. Percent Error 

 
DDA Algorithm DDA Algorithm 

Min -42.25% -44.30% 0.00% 0.00% 

Max 68.42% 71.58% 68.42% 71.58% 

2.5% -26.60% -29.57% 0.05% 0.24% 

25.0% -9.96% -11.96% 0.77% 2.81% 

50.0% -0.80% -2.82% 4.97% 8.16% 

75.0% 0.74% 2.79% 12.05% 15.31% 

97.5% 19.17% 23.35% 30.42% 32.84% 

Mean -3.46% -3.46% 7.86% 10.32% 

SD 11.33% 13.44% 8.86% 9.27% 

 

When considering individual sites, the assignment algorithm will always assign the same 

TPG. This static assignment is based on the roadway and land use characteristics at the 

count site, regardless of the data collected. Conversely, the DDA method produces a 

dynamic TPG assignment for each site based on the combination of counts used. Table 

3.7 shows the frequency of TPG assignment for each site-direction using both methods 

and the resulting MAPE. For example, the northbound traffic at site 5 was assigned to 

TPG 7 using the algorithmic method. When applying the DDA method, it was assigned to 

TPG 1 in 516 of the tested cases, to TPG 2 in 401 of the tested cases, and so on. As 

indicated in the final two columns, the MAPE for all test cases using the DDA method for 

this site was 10.97%, compared to 13.49% for the algorithmic method. Considering all 

sites examined, the DDA method out-performed the algorithmic assignment method in 23 
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of the 29 unassigned site-directions (79.3%). 

Table 3.7: Frequency and accuracy of assignments to each TPG by assignment 
method at previously unassigned sites 

   Assignment frequency to each TPG by DDA method   

Site- 

Dir 

True  

AADT 

Alg. TPG  

1 

TPG  

2 

TPG  

3 

TPG  

4 

TPG  

5 

TPG  

6 

TPG  

7 

DDA  

MAPE 

Alg.  

MAPE 

5 NB 186.2 PG7 516 401 250 808 164 150 202 10.97% 13.49% 

5 SB 175.9 PG7 449 524 321 556 238 182 221 8.20% 10.57% 

6 NB 112.3 PG7 588 412 200 948 79 70 194 12.30% 15.09% 

6 SB 100.9 PG7 1158 160 16 939 59 35 124 28.54% 30.42% 

7 EB 96.4 PG7 911 267 70 1070 15 74 84 15.76% 18.42% 

7 WB 93.9 PG7 1215 149 157 912 16 9 33 19.45% 22.20% 

17 EB 569.9 PG6 55 181 1358 128 257 414 98 17.78% 20.02% 

17 WB 576.6 PG6 57 202 1143 157 320 409 203 10.39% 12.63% 

18 EB 560.6 PG6 202 249 930 238 232 485 155 6.51% 8.60% 

18 WB 554.0 PG6 198 291 861 190 336 380 235 7.11% 9.48% 

19 EB 8669.2 PG1 424 571 257 357 243 219 420 2.37% 2.50% 

19 WB 8785.4 PG1 420 596 133 491 144 147 560 2.27% 2.00% 

22 EB 1650.9 PG4 222 983 177 303 308 279 219 4.02% 2.73% 

22 WB 1649.9 PG4 276 954 61 603 211 102 284 2.76% 2.56% 

23 NB 295.8 PG2 92 186 815 138 380 621 259 3.85% 10.70% 

23 SB 308.1 PG2 111 177 635 86 480 730 272 5.43% 13.02% 

26 NB 6524.3 PG1 473 738 42 817 80 101 240 1.36% 2.40% 

26 SB 6507.8 PG1 777 570 79 559 94 185 227 0.85% 1.47% 

29 NB 225.1 PG3 461 645 86 750 116 85 348 7.03% 11.74% 

29 SB 224.5 PG3 228 412 376 335 357 386 397 8.37% 11.31% 

30 NB 438.1 PG2 374 899 62 633 170 43 310 7.29% 5.95% 

30 SB 435.3 PG2 327 604 307 400 229 175 449 7.22% 6.10% 

34 EB 125.8 PG7 1098 407 118 814 5 3 46 8.66% 12.33% 
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   Assignment frequency to each TPG by DDA method   

Site- 

Dir 

True  

AADT 

Alg. TPG  

1 

TPG  

2 

TPG  

3 

TPG  

4 

TPG  

5 

TPG  

6 

TPG  

7 

DDA  

MAPE 

Alg.  

MAPE 

34 WB 126.8 PG7 849 526 2 959 35 17 103 8.79% 12.03% 

44 EB 1560.0 PG4 387 568 229 227 356 241 483 2.75% 2.30% 

52 EB 610.7 PG3 473 507 411 455 184 191 270 3.53% 7.41% 

52 WB 615.2 PG3 481 463 356 425 334 190 242 3.50% 6.92% 

93 EB 101.1 PG2 88 223 520 162 562 522 414 5.06% 11.34% 

93 WB 89.0 PG2 32 63 786 33 415 890 272 5.86% 13.65% 

 

3.5 DISCUSSION 

The case study began by establishing a benchmark for typical (total) error ranges using 

the conventional methods for assigning and factoring short duration count data to estimate 

AADT. The results from Step 1 showed that these values vary, depending on the 

characteristics of the site and its assigned TPG. On average, the simulated 48-hour short 

duration count data produced AADT estimates with an absolute error of 6.40%. These 

errors were roughly normally distributed with a standard deviation of 8.5%. Thus, to 

answer the first research question, an agency could expect a total average absolute error 

of 6.4% when estimating AADT from a single 48-hour count. Moreover, based on the 

distribution of errors, 95% of these estimates would be within 17% of the true AADT at the 

corresponding site. These results corroborate earlier findings by Milligan et al. (2016), 

which estimated the MAPE to be 6.7% using a similar dataset, but show a higher precision 

than the 95% confidence limits presented by Jessberger and Schroeder (2016), which 

were -22.47% to 25.09%. The errors identified here encapsulate each of the sources 

described in Figure 3.1 and represent the total expected error associated with using short 

duration count data to estimate AADT.  
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The analysis in Step 2 disaggregated the results by TPG to isolate the assignment error 

(i.e., the portion of error that is associated with the assignment step). Considering the pre-

assigned sites, the average MAPEs using the best and worst potential assignments were 

5.57% and 14.28%, respectively. This suggests that the range of potential errors in the 

assignment step is up to 8.71%. However, from Step 1, the MAPE for all assigned sites 

was 6.40% using the existing assignments. Thus, the existing assignment error, given the 

study data, was found to be less than 1% on average (i.e., 6.40% minus 5.57%). Notably, 

these sites were already assigned to TPGs based on their roadway, land use, and traffic 

characteristics; this depth of knowledge about the site’s characteristics would not exist at 

typical short duration count sites.  

To address this issue, the currently unassigned sites were included in the analysis in Step 

2. The unassigned sites showed a similar range in assignment errors as the pre-assigned 

sites. The best and worst potential assignments produced average MAPEs of 10.21% and 

19.56%, respectively, or a range of 9.35%. Based on this result and the similar range 

reported for the pre-assigned sites, practitioners may conclude that the worst-case 

assignment would increase AADT errors by up to 9% of the true AADT. This addresses 

the second research question posed in this paper. 

Step 3 considered only the previously unassigned sites. This removed the potential impact 

of autocorrelation between the sampled short duration count data and the temporal 

adjustment factors, both of which were created using continuous count data from the pre-

assigned sites. The DDA method was used to assign each of these sites using the 

sampled short duration count data. This process was repeated for each combination of 

counts, producing a spectrum of assignments for each site. For comparison, the MHTIS 

assignment algorithm was also used to assign the same sites statically, based only on 
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their roadway and land use characteristics. Only TPG 5 was unrepresented in the study 

set using this method. The MPE using both methods was -3.46% when aggregating results 

for all of the unassigned sites. This negative bias indicates that the group of unassigned 

sites have, on average, higher summer traffic volumes than the assigned TPGs. It is 

suspected that using samples from the full year would alleviate these biases, although this 

would deviate from the existing practice and guidance from the literature. 

When considering absolute errors, the results using the DDA method were demonstrably 

more accurate than the assignment algorithm. The MAPE, aggregated for all sites, was 

reduced by nearly 2.5% (10.32% minus 7.86%) when using the DDA method. The results 

provide an answer to the third research question: the DDA method produces modest 

improvements in the overall accuracy of AADT estimates and could be used as a 

reasonable replacement to the existing algorithmic assignment method. However, the 

frequency with which the method assigned samples from the same site to the various pre-

defined TPGs raises questions about the practicality of dynamically assigning short 

duration counts to TPGs in this way. Each site was assigned to each TPG at least once. 

In most cases, one or two TPGs emerge as the predominant assignment selections. While 

the results showed that, on average, dynamic assignments reduced the assignment error, 

in a real life application, the repeated simulated counts from these sites would be 

unavailable and a pair of counts would yield a single TPG assignment using the DDA 

method for a particular year.  

Overall, the results show that given the available data from Manitoba, Canada, the DDA 

method can improve the accuracy of AADT estimates using sampled short duration count 

data. This finding is subject to at least two limitations. First, the study was limited in scope 

to a single year. It is unclear whether the accuracy improvements found using the DDA 
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method would be consistent in a multi-year study. Second, the study assumed that 

sampled short duration count data, taken from a continuous count site, emulates the real-

life short duration count data collected as part of a conventional traffic monitoring program. 

Past studies have also employed this technique (Sharma and Allipuram, 1993; Jessberger 

and Schroeder, 2016; Sharma et al., 1996; Milligan et al., 2016), lending to its credibility. 

Moreover, the results from Step 3 of the study focus solely on the unassigned sites to 

minimize the impacts of this limitation on the overall analysis findings. 

This paper identifies three avenues for future work. First, the DDA method may be applied 

to other jurisdictions and for study periods spanning more than one year. The method is 

meant to be generally applicable, so the results from multiple regions would strengthen 

this assertion. Second, there is a need to further consider the appropriateness of a 

dynamic assignment approach, as embodied by the DDA method in this study. The 

assignment step is predicated on the assumption that a short duration count site 

experiences traffic periodicities that resemble those at a group of continuous count sites 

(for which traffic characteristics are well understood). The results from the case study 

suggest that, perhaps, this assumption does not hold at sites with relatively unknown traffic 

characteristics, as is the case at short duration count sites. Further study is needed to 

corroborate this finding. Finally, should practitioners opt to incorporate the principle of 

dynamic assignment into their traffic monitoring programs, there is a need to evaluate 

potential trade-offs between the error reduction offered by such a change and any 

necessary modifications to the existing short duration count program. Specifically, 

questions remain about the frequency (i.e., number of counts conducted in a calendar 

year), duration, and count cycle (i.e., the number of years between counts at the same 

site) that would generate optimal assignments and ultimately minimize the error in AADT 

estimates from short duration counts. 
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3.6 CONCLUSION 

In general, the assignment step is used to infer some connection between the temporal 

traffic characteristics at a group of continuous counts and those expected at a site for 

which only short duration count data are available. The results in this paper show that this 

step can produce errors of over 9% in worst case scenarios, while the best case scenario 

produced assignment errors less than 1%. 

The standard practice for assignment statically assigns short duration count sites to TPGs, 

inherently assuming that observed similarities in roadway and land use characteristics 

correlate with unobserved similarities in traffic periodicities. The results in this paper 

suggest that any pair of 48-hour counts provides sufficient data about a site’s temporal 

traffic characteristics to yield more accurate AADT estimates than could be produced 

using the conventional approach based on this assumed correlation. In theory, an agency 

could apply these findings to improve their expected average accuracy in AADT estimates 

produced using short duration count data. However, the improved accuracy comes at the 

expense of consistency and context in TPG assignments. The question, then, is whether 

consistency and context are valuable or if these are ingrained in the current state-of-the-

practice unnecessarily. 
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4 EXPLORING PROBE DATA AS A RESOURCE TO ENHANCE 

SHORT TERM TRAFFIC COUNT PROGRAMS  

This chapter broadens the investigation of AADT estimation practice by assessing the 

viability of integrating a new data source, passively-collected vehicle probe data, into 

conventional traffic monitoring practice. It seeks to answer the third objective question: 

What attributes of passively-collected probe data can be used to improve short duration 

count programs? 

The analysis explores multiple relationships between passively-collected probe data and 

conventional continuous count data. The relationships are evaluated to identify trends with 

respect to temporal variability, spatial variability, and vehicle classification data. It 

contributes to the thesis theme by assessing how the relationships between probe data 

and conventional traffic data  produce opportunities to enhance AADT estimation practice. 

The material in this chapter is submitted for publication to the Canadian Journal of Civil 

Engineering and reprinted with permission of co-authors Matthew Lesniak, Louis-Paul 

Tardif, and Jonathan Regehr. The chapter is self-contained with its own abstract, 

introduction, and conclusion; references are provided at the end of the thesis. The thesis 

author conducted the analysis and literature review, interpreted results, and prepared the 

manuscript.  
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4.1 ABSTRACT 

Traffic monitoring practice depends on point-based data collection devices. Annual 

average daily traffic (AADT) is a fundamental traffic statistic in infrastructure design, 

planning, and management. Passively-collected probe data have emerged as a potential 

alternative for providing widespread data collection. This article explores the potential of 

integrating speed-based probe data and traditional traffic volume data in Manitoba, 

Canada, by analyzing the relationships between them.  

The results indicated that mean travel speed appeared to be a poor predictor of traffic 

volumes, as it did not deviate from the free flow speed within the observed volume range. 

The quantity of probe data observations showed moderate correlation with traffic volume 

in some areas (R-squared up to 0.65). At nearly all sites, the correlation was stronger 

between observed probes and truck traffic volume. These findings imply that probe data 

can be used in conjunction with traffic data by providing unique applicability in truck traffic 

monitoring. 

4.2 INTRODUCTION 

Traffic monitoring programs provide input data to highway and infrastructure design 

applications by measuring and estimating the volume, speed, and classification of vehicles 

using roadways. Annual average daily traffic (AADT) is the most common traffic volume 

statistic. AADT describes the expected number of vehicles using a facility for a single day 

in a given year. Resource limitations constrain the means by which agencies measure or 

estimate AADT on large road networks. Such constraints lead to uncertainties (errors) in 

reported AADT statistics or the absence of AADT estimates on certain portions of the 

network. Given these shortcomings, researchers and practitioners have explored novel 

methods and technologies to estimate traffic volumes – particularly AADT. This article 
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explores the use of passively-collected probe data as a resource for improving traffic 

volume estimates at short term count sites. 

Traditionally, traffic monitoring practice uses short term count programs to provide 

network-wide coverage with lower resource requirements than permanently installed 

devices. By definition, short term counts have a duration of less than one year, though 

most range from a few hours to a few days (AASHTO, 2009; FHWA, 2016b; Regehr et al., 

2017). Since these counts do not encapsulate a full year of data, they are prone to biases 

in estimating daily traffic volumes due to the variability of traffic throughout the year (e.g., 

traffic on a summer weekend may be abnormally high compared to the annual average). 

These biases are typically corrected by applying temporal adjustment factors that are 

generated using full-year data. In this way, a short term count can be adjusted for seasonal 

effects to produce a more reliable AADT estimate. The annual average estimates are 

preferred as they are assumed to have captured the periodicities of traffic volumes by day-

of-week and month. 

4.2.1 Research Objectives and Scope 

The primary objective of this article is to assess the strength and form of relationships, if 

any exist, between probe-based speed data and conventional site-specific traffic data. 

This objective supports a broader goal of using probe-based data to supplement 

conventional traffic monitoring programs. The development and testing of specific models 

and approaches to achieve this broader goal are beyond the scope of this research but 

are recommended as potential next steps for future work based on the findings herein. 

The geographic scope of the research is the highway network in Manitoba, Canada, 

specifically those locations that are continuously monitored by permanent traffic count 
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sites (PTCS). The study period encompasses hourly data from 2018. Probe-based speed 

data are provided by Transport Canada from HERE Technologies™, a third party probe 

data analytics company. Conventional traffic data are obtained from the Manitoba 

Highway Traffic Information System (MHTIS). 

4.2.2 Literature Review 

Annual average daily traffic is the most commonly used traffic volume statistic. AADT is a 

key input in numerous infrastructure applications (AASHTO, 2009, 1993; Chen and Xie, 

2016; FHWA, 2016b; Fu et al., 2017; Regehr et al., 2017). It summarizes a year’s worth 

of traffic volume into a simple statistic that is comprehensible and widely applicable. 

Consequently, traffic monitoring agencies place high priority on estimating AADT 

throughout a network. For example, the U.S. Federal Highway Administration (FHWA) 

requires annual estimates of AADT as part of its Highway Performance Monitoring 

System. While no equivalent legislation exists in Canada, most provincial traffic monitoring 

programs prioritize the production of AADT statistics (Regehr et al., 2017). 

Numerous technologies and techniques exist to monitor traffic and estimate AADT. 

Agencies balance the benefits and shortcomings of these technologies and techniques to 

monitor traffic throughout a road network. Conventionally, two general approaches have 

emerged: (1) deployment of permanently-installed and continuously operated equipment 

(i.e., continuous counts) to capture traffic variability over time; and (2) deployment of 

temporarily-installed and/or portable equipment to obtain short term samples of traffic data 

(i.e., short term counts) for broad geographic coverage (FHWA, 2016b; Regehr et al., 

2017). Both approaches collect site-specific traffic data. 

Continuous counts are those that are conducted for an entire year. Often, these counts 
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make use of permanently-installed devices on or near the roadway. Continuous counts 

are resource-intensive, making them unsuitable for covering dense or vast road networks 

in their entirety. A continuous record of count data at a site enables AADT calculations, 

assuming that the data exist for the full counting period (Grande et al., 2017; Jessberger 

et al., 2016), and allows for the production of seasonal factors for calculating AADT at 

short term count sites. 

Two methods are commonly employed for calculating AADT from continuous count data. 

The first is the simple average, wherein the AADT is taken to be the mean of all daily traffic 

volumes for the study year. The simple average produces an accurate estimate of AADT 

in cases where little or no data are missing (FHWA, 2016b; Grande et al., 2017; 

Jessberger et al., 2016). However, if significant portions of data are missing, the AADT 

may be biased due to the variability of traffic volumes. The second method, referred to as 

the AASHTO method in the Traffic Monitoring Guide (FHWA, 2016b), groups all daily 

traffic volumes by weekday and month to account for missing days of data. Equation 4.1 

shows the AASHTO formula for calculating AADT of a certain vehicle classification 

(FHWA, 2016b). Note that the classification of vehicles is not a necessary step in 

calculating AADT, generally. 

𝐴𝐴𝐷𝑇𝑐 =  
1
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 (4.1) 

Where: 

𝑉𝑂𝐿𝑖𝑗𝑚  = total traffic on ith occurrence of jth day of week within mth month; 

𝑖  = occurrence of a particular day-of-week in a particular month; 
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𝑗  = day-of-week (1 to 7); 

𝑚  = month-of-year (1 to 12); 

𝑛𝑗𝑚  = amount of times day j occurs in month m with available traffic data; and 

𝑐  = FHWA vehicle classification. (optional) 

Short term traffic counts are those that are conducted for less than the full year. Typically, 

these span from a few hours to one week in duration. Short term counts are a cost-

effective way of collecting traffic data on extensive road networks. However, the natural 

variability in traffic, as well as seasonal and daily trends, limit the use of average daily 

traffic volumes as surrogates for AADT (Regehr et al., 2017). Instead, short term counts 

are adjusted to account for traffic variability when estimating AADT (FHWA, 2016b). This 

is done by assigning short term counts to factor groups (or traffic pattern groups), which 

comprise a set of continuous count sites that exhibit similar traffic characteristics. 

Gadda et al. (2008) provide a comprehensive review of several error sources associated 

with converting short term traffic counts into AADT. They make recommendations for how 

best to mitigate estimation errors, including the use of multiple seasonal counts, counting 

on weekdays, and improving the process by which short term counts are assigned to factor 

groups. Milligan et al. (2016) further quantify these errors in the context of road safety 

performance measures. They find that 48-hour counts substantially reduce error, as 

compared to 24-hour counts, but that multiple counts have little effect on the overall 

accuracy of estimates. Tsapakis et al. (2012) provide alternatives to the assignment 

method for short term count programs. Bagheri et al. (2014) incorporate Bayesian 

statistics with historical data to estimate AADT. Some projects have applied advanced 

algorithms to improve AADT estimates, such as artificial neural networks (Gecchele et al., 

2013; Sharma et al., 2002). 
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On very large networks, even the relatively cost-effective short term count program is 

infeasible for covering the entire network (Wang et al., 2013). Aiming to capture 

classification data further intensifies this issue. The FHWA (2016b) and TAC (2017) 

recommend that agencies collect classification data at 25 to 30% of their short term sites, 

at minimum, leaving room for flexibility based on resource constraints and traffic data 

needs. Paramita et al. (2020) developed a tool to design an appropriate classification 

count program based on multiple agency inputs and desired outputs. Their tool is applied 

to Manitoba’s traffic monitoring program as a case study. The problem of capturing traffic 

on an entire network is particularly noteworthy in urban areas, where traffic conditions 

change frequently in space and time (Regehr et al., 2017). This has led to the advent of 

alternative traffic monitoring technologies and techniques that leverage newly available 

data. 

Passively collected data is perhaps the strongest candidate for enhancing traffic 

monitoring practice (Cambridge Systematics Inc. and Massachusetts Institute of 

Technology, 2018). These data are collected by other means and for other purposes, but 

often reflect certain traffic patterns and thus may be a resource for traffic monitoring 

programs. For example, cell phones’ call detail records (CDRs) have been investigated 

for estimating traffic volumes (Calabrese et al., 2013; Montero et al., 2019; Zhao et al., 

2016). Unfortunately, the spatial granularity of cell towers and the relatively low uptime of 

cell phone activity limits the effectiveness of these as a replacement for traditional 

methods (Becker et al., 2013). Zhang and Chen (2020) use probe data to enhance 

statewide AADT estimates by deriving annual average daily probe volumes and 

betweenness centrality from probe speeds. Other works have sought to combine CDR 

data with other sources, though not to estimate AADT (Toole et al., 2015; Wu et al., 2015). 
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There are now multiple organizations that purchase passively collected probe data and 

repurpose it for traffic analyses. At least two studies have directly assessed the efficacy 

of such programs. Streetlight Data® worked with the Minnesota DOT to develop and test 

the beta version of its traffic volume analysis program (Turner, 2017). They found a wide 

range of estimation errors, particularly on low volume roads, and identified the technology 

as promising but with a need for improvement. The Louisiana Transportation Research 

Center (LTRC) (Codjoe et al., 2018) assessed Streetlytics®’ product for AADT estimates. 

Again, the technology showed promise but produced significant estimation errors that 

were exacerbated on low volume roads. However, the LTRC recommends continued use 

of Streetlytics data, with stipulations, which suggests that the promise of full network 

coverage has benefits that outweigh the inaccuracy costs. 

This article extends past attempts to merge traditional methods with passively collected 

data. Specifically, it investigates potential options for integrating probe-based speed data 

into a traditional traffic monitoring program (in this case, the program in Manitoba, 

Canada). It uniquely considers vehicle classification data in rural environments as they 

relate to probe data. 

4.3 METHODOLOGY 

This article investigates potential relationships between conventional traffic monitoring 

methods and passively-collected probe data. This section describes the databases used 

for the research and the analysis methods applied. 

4.3.1 Data 

Traffic data are provided by the MHTIS. The data provided are obtained, by hour, from 85 

permanently-installed traffic count sites (PTCS) across Manitoba on provincially controlled 
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highways. Note that each PTCS measures traffic by direction, and so there are 170 PTCS-

direction pairs of data available. However, if data are missing from a site for a significant 

portion of the year, AADT cannot be estimated. 

Transport Canada provided probe data sourced from HERE Technologies’ Traffic 

Analytics data set. HERE Technologies collects probe data from multiple sources, 

including commercial and non-commercial vehicles. The data used in the analysis are 

speed-based probe data, aggregated by hour and road segment. Note that these are post-

processed data, where HERE Technologies cleans and prepares the speed data using 

their own proprietary methods. While the use of post-processed data places certain 

constraints on the analysis, it nevertheless facilitates a pragmatic assessment of the utility 

of a readily-available commercial data product for enhancing short term traffic count 

programs. Only hours with at least one available probe device are included in the 

database, meaning that hourly speed statistics exist for every link if at least one probe is 

measured during that period. The attributes considered in the exploratory analysis follow: 

• Mean speed (km/h): This attribute represents the arithmetic mean of speed 

observations. It is calculated by hour for each road segment. 

• Free-flow speed (km/h): This attribute represents the estimated unimpeded travel 

speed of traffic. It is estimated by HERE Technologies using speed observations 

during off-peak hours and is assumed to be constant for each road segment. 

• Probe count: This attribute represents the number of probe devices detected. It is 

measured by hour for each road segment.  

• Functional classification: This attribute represents the type of road segment. It is 

defined by HERE Technologies on a scale from 1 to 5, where 1 represents the 

road segments with the heaviest traffic. 
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Both MHTIS data and probe data are provided for the entirety of calendar year 2018. The 

analyses require that the site-specific MHTIS data be mapped to the same road segments 

as the link-based probe data. Road segments are defined by HERE Technologies based 

on an assumption of homogeneous traffic conditions. MHTIS uses a linear referencing 

system that differs from that of the probe data. GPS coordinates were used in a GIS 

environment to find the concurrent probe data links. In this way, each MHTIS PTCS was 

mapped to a single corresponding probe data link. One limitation of this method is that the 

probe data links are variable in length, based on changes in roadway conditions. This 

variability is lost when conducting one-to-one pairing of MHTIS PTCS with probe data 

links. 

4.3.2 Methods 

This article explores the relationships between commercially-available (post-processed) 

probe-based speed data and conventional traffic data collected at continuous count sites. 

Specifically, it examines the relationships between probe vehicle speed or volume and 

site-specific traffic volume and classification over multiple periods. The analytical methods 

proceed sequentially as described in the following paragraphs. The next section contains 

additional analysis details. 

Based on previous research, the analysis first explores the question: Is there a relationship 

between mean travel speed (as measured by probe data) and traffic volume (as measured 

at a PTCS)? Traffic flow theory suggests that mean travel speed (space mean speed) and 

traffic flow rate are related (Kong et al., 2009; Mahmassani et al., 2013). As commonly 

depicted by the fundamental diagrams of traffic flow, when the number of vehicles using 

a facility reaches some critical flow rate, the mean travel speed starts to deteriorate. Flow 

rate describes the number of vehicles using a facility over some period, often expressed 
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in terms of an equivalent hourly rate. Likewise, traffic volume describes the number of 

vehicles per unit time that use a facility (measured, for example, in vehicles per hour or 

vehicles per day). It follows that traffic volumes may have some relationship with detected 

speeds, since both flow rate and volumes describe the quantity of vehicles over time. 

Consequently, the analysis examines the relationships between traffic volumes and mean 

recorded speeds for hourly and daily periods. 

The classical Greenshields’ model suggests that the relationship between mean travel 

speed and traffic flow rate is parabolic, expressed mathematically as given by Equation 

4.2: 

𝑞 = 𝑘𝑗𝑣 − (
𝑘𝑗

𝑣𝑓
) 𝑣2 (4.2) 

where: 

𝑞  = traffic flow rate (veh/h) 

𝑘𝑗  = jam density of the facility (veh/km) 

𝑣  = mean travel speed (km/h) 

𝑣𝑓  = free-flow speed of the facility (km/h) 

Note that the jam density and free-flow speed of a facility are assumed to be constant. 

However, other models have shown that mean travel speed remains nearly constant 

relative to the flow rate (i.e., a horizontal line) in uncongested conditions (Hall et al., 1992). 

Preliminary analysis of the traffic data available from MHTIS predominantly revealed free-

flow traffic conditions (i.e., the capacity of the roads greatly exceeds the demand for 
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service on these roads). 

As a second step, and based on recent findings by Zhang and Chen (2020), the analysis 

considers another question: Is there a correlation between the count of vehicle probes and 

traffic volume? Traditional traffic monitoring practice uses sampling to overcome resource 

limitations in collecting traffic data. Probe vehicles represent a form of vehicle sampling 

that is parallel to the principles of sampling in space or time (that is, sampling must be 

conducted carefully and/or accounted for when producing AADT estimates). If the 

penetration rate of probes within the total traffic stream is constant, there should be a 

strong, linear correlation between probes detected and total traffic volume. As an 

exploratory analysis, this step assesses this relationship by reporting the coefficient of 

determination (R-squared), but does not attempt to test the significance of the relationship 

or propose a linear model.  

Findings from the foregoing analysis lead to further questions. What spatial and temporal 

patterns are evident in the relationship between the count of vehicle probes and traffic 

volumes? And, what impact does vehicle classification have on the observed 

relationships? Spatially, the analysis considers the location of the PTCS relative to major 

highways and urban centres. Temporally, the analysis considers hourly and daily periods, 

and groups data by day of week and month of year (based on findings from the literature 

review). Finally, the analysis filters traffic data to consider only truck traffic. In this case, 

truck traffic refers to any vehicle that fits into FHWA vehicle class 5 or higher (FHWA, 

2016b). Again, results of the correlation analyses are reported using the R-squared 

statistic. 
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4.4 RESULTS AND DISCUSSION 

The analyses described in this section utilize vehicle probe data provided by HERE 

Technologies and continuous count traffic data for a total of 170 PTCS-direction pairs in 

Manitoba. Of these, 145 satisfied the requirement for producing an AADT estimate using 

2018 traffic data and applying Equation 4.1 (i.e., they measured traffic volumes for at least 

one entire day for every combination of day-of-week and month). Missing data were 

attributed to temporary equipment malfunctions at the PTCS during the study year.  Only 

the locations with valid AADT estimates were featured in the analysis. 

4.4.1 Speed-volume relationship 

The first test for a relationship between the probe data and traffic data considered the 

mean travel speed, provided hourly by road segment, and the total traffic measured at the 

corresponding MHTIS PTCS. Figure 4.1(a) shows this relationship, aggregated for all 

studied sites. In this case, speed is shown as the dependent variable. Mean speed is 

depicted as a percentage of free-flow speed to normalize data across multiple sites. The 

results show that, regardless of hourly traffic volume, mean travel speeds as a percentage 

of free-flow speed are randomly distributed around the free-flow speed. Further, the data 

show considerable variance, especially at low volumes, and are roughly normally 

distributed around the mean. 
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Figure 4.1: Relationship between mean travel speed (expressed as percentage of 
free-flow speed, FFS) and (a) hourly total traffic and (b) daily total traffic 

 

This process was repeated to check for a relationship at the daily time scale, as shown in 

Figure 4.1(b), where daily mean travel speed is taken to be the average of hourly mean 

travel speeds, weighted by the number of observations per hour, over an entire day. The 

results provide some clarity on the speed-volume relationship. Specifically, summing the 

hourly volumes to produce daily equivalents reduces the amount of variance around the 

free-flow speed, though at very low volumes the problem persists. Regardless, the 

resultant conclusion is the same for both base time units – no matter the recorded volume, 

the mean travel speed is randomly distributed around the free-flow speed and the 

expected mean travel speed does not vary. This is consistent with the assumption that the 

traffic data represent uncongested conditions. As volumes get higher, the variance in 

mean travel speed is reduced. 

A series of outliers are apparent at roughly 140% of the free-flow speed. These 

observations all come from one site in northern Manitoba, whose reported free-flow speed 

is 64 km/h, which is well below expected travel speeds on a rural highway. This suggests 

that there is a systematic reduction in speed at this site during the off-peak hours, which 
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are used to produce the free-flow speed, and that a majority of the traffic operates at higher 

speeds. 

As described earlier, traffic flow theory suggests that mean travel speed and traffic flow 

rate are related, where very high demand (i.e., high traffic flows) creates congested 

conditions on a facility and reduces the mean travel speed. This analysis considered the 

assumption that traffic volumes, which represent an aggregate of instantaneous flows, 

could be applied in the same way. The observed data support this theory by exemplifying 

part of the expected parabolic relationship between speed and flow. However, the 

observed traffic volumes on the Manitoba highway network seldom reach saturated flow 

conditions. It is likely that the recorded volumes are not high enough to meaningfully 

reduce travel speed for an entire hour or day. Thus, the observed speed-volume 

relationship agrees with traffic flow theory, but there is no reduction of traffic speeds and 

no meaningful speed-volume relationship to infer from the available data. 

4.4.2 Probe count-volume correlation 

The second test for a relationship between probe data and traffic volume data considered 

the proportion of probe vehicles to total traffic, or the penetration rate of probe vehicles in 

the traffic stream. Figure 4.2(a) shows this relationship, at an hourly time scale, across all 

studied sites. The hourly scatter plots feature a considerable amount of noise, similar to 

the speed-volume data. However, unlike the speed-volume data, there is no random 

distribution around the mean – implying that some correlation is plausible. 
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Figure 4.2: Relationship between (a) hourly probe counts and hourly total traffic 
volumes and (b) daily probe counts and daily total traffic volumes 

 

Traffic volumes and probe counts were also examined at a daily time scale. Figure 4.2(b) 

shows the relationship between daily traffic volumes and probe vehicle counts, aggregated 

for all study sites. Again, summing hourly data into daily equivalents starts to provide more 

clarity on the underlying relationships. In this case, multiple clusters of data emerge that 

were not evident at the hourly level. The two clusters on the bottom-right and top-right of 

the figure represent data from two sites on Winnipeg’s Perimeter Highway. The traffic 

volumes at these sites are high relative to the other studied sites, and exhibit different 

probe count-volume behaviour. This suggests that the probe count-volume relationship 

may vary with roadway characteristics, similar to the concept of traffic pattern groups that 

is common in traffic monitoring. 

Indeed, when considering individual sites, as shown in Figure 4.3, patterns emerge more 

clearly. Two sites, labeled A and B, are used to illustrate the findings from the analysis. 
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Figure 4.3: Relationship between AADPV and AADT at (a) site A and (b) site B 

 

• Site A is located on Winnipeg’s south Perimeter Highway (PTH 100). The AADT 

at this site is roughly 14,000 vehicles per day with a 50-50 directional split. Traffic 

at this site exhibits typical commuter traffic behaviour, with peaks in the morning 

and afternoon on weekdays, and generally lower traffic volumes on weekends. 

Seasonally, the traffic at this site is highest in the summer, with the monthly 

average daily traffic (MADT) in July reaching 127% of AADT. 

• Site B is located on the Trans Canada Highway (PTH 1). The AADT at this site is 

roughly 7,800 vehicles per day with a 50-50 directional split. Traffic at this site 

exhibits high weekend traffic and no clear hourly peaks. Seasonally, the traffic at 

this site is very high in the summer (MADT peaks in August at July is 163% of 

AADT) and low in the winter (MADT in January is 61% of AADT). 

These figures normalize the input data against annual average daily values. The analysis 

assumes that the traffic periodicities underlying the AASHTO method for estimating AADT 

are applicable to probe vehicle counts, based on the findings of Zhang and Chen (2020). 

In this way, annual average daily probe vehicles (AADPV) are estimated for all sites by 

applying Equation 4.1. 
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These two sites are both located near the southeast corner of Winnipeg and are 34 km 

apart. Despite their close proximity, they exhibit different relationships between probe 

counts and total traffic volumes (as shown by the R-squared statistics). Notably, the traffic 

data at site A has a relatively strong correlation with probe data (R-squared = 0.652) while 

at site B the correlation is weaker (R-squared = 0.296). Thus, the probe count-volume 

relationship likely exists, but external factors affect the nature of this relationship at 

different sites. 

4.4.3 Variation in probe count-volume correlations 

The analysis continued, post hoc, by investigating the causes for varied probe count-

volume behaviour at different sites. The analyses shown in Figure 4.3 were replicated for 

all sites with a valid AADT estimate. Figure 4.4 shows the resultant R-squared statistic for 

each correlation conducted using probe count and volume data. The figure also shows 

major highways in Manitoba, designated as classes 1, 2, or 3 in the 5-class scheme 

provided in the probe data. 
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Figure 4.4: Results from correlation analysis of probe count and total traffic volume 
for all sites in Manitoba 
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The resultant R-squared statistic is below 0.4 for 128 of the 145 studied site-directions. 

The exceptions to this predominantly occur at sites around Winnipeg and Brandon – the 

two largest urban centres in Manitoba. The results imply that the probe count-volume 

relationship does vary in space. Seemingly, proximity to urban centres has a positive 

influence on the correlation. This also helps to explain the visible outlier clusters in Figure 

4.2, where unique probe count-traffic relationships are apparent. Given that spatial 

relationships were apparent in the data, the analysis continued by analyzing temporal 

relationships as well. 

The temporal variations were tested by comparing the variance in traffic at each site to the 

variance in probe counts. To illustrate, Figure 4.5 shows the traffic variations at sites A 

and B by day of week. The values used in these graphics are the proportion of average 

daily traffic for the weekday (e.g., all daily counts on Mondays) relative to the annual 

average value (i.e., AADT for traffic and AADPV for probe counts). A third measure is 

shown for truck-only traffic, based on potential relationships between probe counts and 

truck traffic, explored in the final part of the analysis. Error bars indicate one standard 

deviation of the data in both directions. 

 

Figure 4.5: Day of week traffic ratios for (a) site A and (b) site B 
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The results show that probe counts differ significantly from total traffic in terms of daily 

variation. Probe counts are disproportionately low on weekends, compared to total traffic. 

This is a trend that is more common to trucks and other commercial vehicles that tend not 

to operate on weekends, so trucks are included in the figures for comparison. The variance 

on weekends is also disproportionately low. This contrasts with traffic data, particularly in 

near-urban areas like the sites shown, where weekday traffic is more stable. The 

similarities between probe counts and a subset of total traffic (i.e., trucks) provide impetus 

for the final component of this analysis. 

4.4.4 Probe count-truck volume correlation 

The prior analyses on probe count-volume data were repeated using filtered traffic data 

that only included truck traffic. Note that vehicle classification data are only available at 

certain PTCS that automatically classify vehicles into the FHWA 13-class scheme (FHWA, 

2016). In this case, trucks encompass all vehicles of class 5 and above. In order to be 

used in the analysis, truck traffic data at each site must be sufficient for calculating annual 

average daily truck traffic (AADTT) using the AASHTO formula (Equation 4.1, stipulating 

that only vehicles class 5 and above are included). In total, 48 sites contained valid data 

for the analysis and a total of 89 site-direction pairs were used. Figure 4.6 shows this 

relationship, aggregated for all sites with valid truck data, using hourly and daily time 

scales. 
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Figure 4.6: Relationship between (a) hourly probe counts and hourly truck traffic 
volumes and (b) daily probe counts and daily truck traffic volumes 

 

The results show a clearer linear relationship between truck traffic volume and the probe 

count. The noise and clustering that were apparent in the total traffic data are considerably 

reduced when filtering the data into only trucks. To illustrate, Figure 4.7 shows this 

relationship at sites A and B, with both axes normalized against annual average daily 

values at those sites. Note that the correlation is very strong at site A (R-squared = 0.873, 

compared to 0.652 for total traffic) and is also stronger at site B than it was for total traffic 

(R-squared increased from 0.296 to 0.589). This process was repeated at each site with 

valid data, using the R-squared statistic to represent the relative strength of the linear 

correlation. Figure 4.8 shows how this relationship varies across Manitoba. 
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Figure 4.7: Relationship between daily truck volumes and probe counts at (a) site A 
and (b) site B 

 

The province-wide results corroborate the earlier findings. Probe count data are shown to 

have a stronger linear correlation with truck traffic than total traffic at most sites in the 

province. 39 of the 89 site-directions tested yielded an R-squared statistic of 0.6 or greater 

(19 of the 48 sites satisfied this condition when considering data for both directions). Once 

again, the correlation around urban centres is very strong. Further, the correlation is very 

strong along the class 1 roads (i.e., on major highways). These routes serve high levels 

of inter-provincial truck trips, which are likely captured by HERE Technologies as probe 

vehicles. Conversely, roads that are not on major truck routes tend to show very poor 

correlation between probe count and truck volumes (in addition to the established weak 

correlations between probe count and total traffic). Thus, the probe count-truck traffic 

correlation is shown to exist and has a spatial relationship that is a function of the truck 

traffic patterns at those sites. 
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Figure 4.8: Results from correlation analysis of probe count and truck traffic volume 
for all sites in Manitoba 
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Generally, R-squared values exceeding 0.6 can be considered strong (60% of the 

variance in the dependent variable can be explained by variance in the independent 

variable). However, the value of the R-squared statistic is application-dependent. Lower 

R-squared values may be considered to be valuable if the alternatives are insufficient or 

non-existent, whereas very high R-squared values may be considered weak in cases 

where strong models already exist. When considering truck traffic (in this case, a binary 

classification), the available alternatives for collecting network-level classification data are 

known to be poor (Paramita et al., 2020). 

4.5 CONCLUSION 

4.5.1 Findings 

Reliable AADT data are fundamental for numerous civil engineering applications. This 

article explored the potential for a new resource – passively-collected probe data – to 

supplement conventional traffic monitoring practice for generating network-wide estimates 

of AADT. 

Generally, the quality of traffic data may be enhanced by implementing techniques that 

improve (1) the accuracy of estimates and/or (2) the precision of estimates. Past research 

has benchmarked such values in the context of network-level AADT estimates (Milligan et 

al., 2016; Sharma et al., 2002). However, probe data are highly pervasive in space and 

time – data are available for the entire year on an entire network. Moreover, post-

processed data products generated by probe data are increasingly available from 

commercial providers. Thus, the spatial coverage provided by probe data offers a third 

dimension by which data quality from short term count programs may be enhanced. 

Based on the available data, the results suggest that mean travel speed cannot be used 
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to predict traffic volumes on Manitoba highways. These highways carry relatively low traffic 

volumes in comparison to their roadway capacity, and so the mean travel speed is almost 

always near the free-flow speed, regardless of the hourly or daily volume measured. In 

terms of traffic flow theory, the demand is too low to ever reach breakdown conditions at 

any of the measured sites. Thus, the expected parabolic relationship between speed and 

traffic flow is not apparent in the results. A lower capacity or busier roadway may exhibit 

the expected decline in mean travel speed that would allow for inferences about the 

speed-volume relationship, which could be the focus of future research. 

Observations of traffic flow suggest that speed variance should be relatively high when 

volumes are low, since vehicles are free to travel at their desired speed (Blandin et al., 

2012). As volumes increase, individual drivers are constrained by surrounding traffic, so 

the speed variance decreases. While the results presented in this article agree with this 

expectation, this agreement is likely influenced by sampling issues. The lower volume 

sites, generally, have fewer available probes. Thus, the resultant speed estimates at low 

volume sites are generated from a relatively small sample size and exhibit higher variance 

than the data at higher volume sites. 

Probe vehicle volumes show more promise in being able to support volume estimation 

processes. The general upward trend in probe vehicle counts with total traffic volumes 

implies some correlation between them. Intuitively, as traffic volumes increase, so too 

should probe vehicle observations. However, the majority of sites showed very weak linear 

correlations between probe counts and total traffic volumes. This indicates variability in 

the probe penetration rate when using passively-collected probe data. The results show 

that the proportion of probes to total vehicles is quite volatile. Since current traffic 

monitoring practice already implements multiple methods that are known to mitigate errors 
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in AADT estimates (e.g., by employing traffic pattern groups and collecting multiple 

samples in a single year), there is a low likelihood that introducing passively-collected 

probe data would reduce existing errors with such weak correlations. 

Probe vehicles are a sample of the total population. Thus, probe vehicle counts could be 

used to estimate traffic volumes if penetration rates were consistent. Instead, there is 

some expected noise and multiple apparent relationships in the data. Based on the results, 

the penetration rate varies in space and time. Moreover, the available probe count data 

more closely resemble a subset of traffic data – trucks. Indeed, the available probe count 

data showed strong correlation with truck traffic data, particularly in urban areas and on 

major highways, where trucks are more prevalent and contribute meaningfully to the pool 

of probe vehicles. This also helps to explain the modest improvements to correlation with 

total traffic around urban centres. Roads that are not on major truck routes show weak 

probe count truck volume correlation. These findings point to two conclusions regarding 

probe count and traffic volumes in Manitoba: 

• Where trucks are meaningfully present within the traffic stream, it may be possible 

to use them as probes to reasonably estimate the truck traffic volume on road 

segments. 

• The penetration rate of probes among non-truck traffic appears too inconsistent to 

reliably make inferences about traffic volumes. 

At its outset, this article considered whether readily-available probe-based data could be 

used to support traffic monitoring practice by searching for relationships between probe-

based speed data and conventional traffic volume data from Manitoba. The findings show 

that there are, at best, tenuous relationships between the available total traffic data and 
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these probe data. However, the findings reveal potential for using probe counts for 

supplementing truck traffic volume estimates. 

This potential has implications for civil engineering applications. Infrastructure design and 

management, in particular, depend on accurate traffic data. For example, truck volume 

data are a fundamental input to the design of pavements, bridges, and roadway geometry 

(AASHTO, 2008). Normally, classification data are sourced from fixed sensors or 

extrapolated from short term counts at strategic locations. The findings from the analysis 

presented in this article suggest that probe data could be used to develop reasonably 

accurate estimates of truck volumes on major trade corridors and in urban areas. 

While the post-processed nature of the data inhibits conclusive statements about the 

reasons behind these findings, it appears that the type of sampled vehicles, the sampling 

variations in space and time, and the post-processing techniques influence the results. 

More generally, then, traffic monitoring professionals need to consider how best to balance 

the potential new value of probe-based data (despite uncertainties about the underlying 

sampling and post-processing approaches) with the opportunity to enhance a known 

weakness in traffic monitoring practice, namely, the estimation of system-wide truck traffic 

volumes. Further research is needed to better inform such decisions. 

4.5.2 Limitations and future research 

The findings from this article support future research on using probe data as an additional 

resource for conventional traffic monitoring practice. The most prudent extension appears 

to be the development of a model that could predict truck traffic volumes using probe data 

as an input. In this way, a traffic monitoring program could potentially improve the spatial 

coverage and accuracy of truck traffic volume estimates, based on the findings herein. 
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However, this analysis is limited in scope to Manitoba highways. Future work may extend 

the methodology to other provinces to verify whether the results are still applicable in other 

locales. Future work may also consider extending the temporal scope of the analysis to 

view the results over a multi-year analysis. 

Truck traffic percentages vary in space and time, which lends to the need for improved 

truck traffic data collection. The analysis in this article was limited to using mixed-traffic 

probe data, as provided by HERE Technologies via Transport Canada.  HERE 

Technologies also offers speed data using only trucks as probes.  Unfortunately, by using 

post-processed passively-collected probe data, this analysis does not control which data 

sources are used as probes. This limitation would extend to the truck-only analysis where 

“trucks” would be defined by HERE Technologies, and this definition may be inconsistent 

with classification schemes used in highway traffic monitoring practice. Future research 

should consider repeating the analyses using truck-only probe data, if available, given the 

apparently strong correlation between conventionally measured truck traffic data and 

mixed-traffic probe data. 
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5 IMPACTS OF ROAD AND RAIL TEMPORAL TRAFFIC 

VARIATIONS ON GRADE CROSSINGS EXPOSURE, DESIGN, 

AND REGULATION IN MANITOBA 

This chapter concludes the investigation of AADT estimation and applications by 

measuring the impacts of traffic variability on a particular  traffic data application: grade 

crossings. It seeks to answer the final objective question: How sensitive are grade 

crossing design and regulation to the known variability in traffic relative to average 

statistics (i.e., AADT)? 

The analysis tests the sensitivity of grade crossing regulations in Canada to detailed traffic 

volume distribution data, relative to average statistics.. It uses continuous count data and 

available rail data to artificially create variability in grade crossing exposure and compares 

these variations to regulatory limits. It contributes to the thesis theme by developing 

insights on the state-of-the-practice in a particular AADT application and proposes an 

alternative that explicitly considers temporal variability. 

The material in this chapter is published in Transportation Engineering (Grande et al., 

2020) and reprinted with permission of co-authors Garreth Rempel and Jonathan Regehr. 

The chapter is self-contained with its own abstract, introduction, and conclusion; 

references are provided at the end of the thesis. The thesis author conducted the analysis 

and literature review, interpreted results, and prepared the manuscript.  
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5.1  ABSTRACT 

Transport Canada has recently published regulations and guidance for design 

considerations at grade crossings. Cross-product, or the product of average daily vehicles 

and trains, is one of several criteria that define warning system requirements. While based 

on readily available data, application of the cross-product may oversimplify the interactions 

between vehicles and trains at a crossing by failing to account for known temporal 

variations in both modes. 

Through two analyses, this paper investigates the effects of temporal traffic variations on 

estimated grade crossing exposure and develops insights about alternatives to quantify 

this exposure. The first analysis considers the effect of daily road traffic variations on grade 

crossing exposure and compliance at 240 rural grade crossings. Nine of the studied 

crossings (4%) experienced at least one day for which the estimated single-day exposure 

indicated a need for an upgraded warning system, based on the cross-product criterion 

alone. Conversely, 91 crossings (38%) had warning systems that would be considered 

over-designed for the entire year. The second analysis considers the effect of hourly road 

and rail traffic variations on grade crossing exposure at 13 urban grade crossings by 

estimating hourly cross-product equivalents. Each of the eleven studied gated crossings 

featured at least seven hourly cross-product equivalents that exceeded the cross-product 

threshold for gated crossings.  

The findings demonstrate that the cross-product may misrepresent vehicle-train 

interactions at a crossing by suppressing temporal variability in road and rail traffic. 

Consequently, these variations should be considered in design and prioritization decisions 

for reducing risk and delay at grade crossings. 
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5.2 INTRODUCTION 

A grade crossing (also referred to as a road-railway crossing, level crossing, train crossing, 

or at-grade crossing) is the intersection where a road or path crosses one or more railway 

tracks at the same elevation (Transport Canada, 2014). Grade crossings are designed to 

mitigate safety risks and user delays. Their design, operation, and regulation must 

consider the physical and operational properties of motorized vehicles, trains, and non-

motorized users (Lu and Tolliver, 2016; Oh et al., 2006; Sperry et al., 2017). Because of 

the safety and economic implications for all users, there is a need to better understand 

interactions occurring at grade crossings to improve grade crossing policy and engineering 

practice. 

Grade crossing safety risk and potential user delays influence the type of treatment at the 

grade crossing. Generally, treatments are categorized as passive or active (Hsu and 

Jones, 2017; Wang et al., 2019). Passive crossings are controlled exclusively by non-

activated systems, such as stop signs, crossbucks, and crossing ahead signs (FHWA, 

2019). Active crossings feature electronic components to notify drivers of approaching 

trains. Active warning systems must at least have flashing lights but may also feature bells 

to audibly alert drivers and gates to physically impede vehicles from moving through a 

crossing when a train is present. Grade separations eliminate the interactions between 

road and rail traffic and are implemented when safety risks and/or user delays are 

expected to be unacceptably high. However, grade separation is significantly more 

expensive than at-grade design alternatives (Ghaffari Dolama et al., 2019). 

Regulations dictate the types of design treatments required at grade crossings. Annual 

average daily traffic (AADT) and annual average daily rail movements (AADRM) are 

commonly used to determine the appropriate treatment for a crossing. AADT and AADRM 



105 
 

describe the expected average daily total volumes of road and rail traffic, respectively, for 

a single day (i.e., 24-hour period). Transport Canada defines the product of these two 

values as a crossing’s cross-product in their recently-enacted Grade Crossings Standards 

(Transport Canada, 2014). This concept exists in many other jurisdictions as well. The 

term “cross-product” is synonymous with “crossing exposure” (FHWA, 2019; National 

ALCAM Group, 2016) and “traffic moment” (Liang et al., 2018; Pyrgidis et al., 2016; SSB, 

2010), although, in some cases, non-annualized average daily values are used instead. 

Regardless of the terminology, cross-product represents grade crossing exposure and 

acts as a surrogate for both safety risk and user delay (Nichelson and Reed, 1999). Grade 

crossing regulations, including those in Canada, define minimum design treatments in 

terms of cross-product thresholds, amongst other considerations.  

Both AADT and AADRM are convenient measures of volume for their respective modes, 

but “flatten” variance in the underlying count data into a single representative (average) 

number. Transportation practitioners commonly use AADT as a measure of traffic volume 

(FHWA, 2016b; Regehr et al., 2017), despite the known traffic periodicities (by month, 

day-of-week, and hour) that influence its estimation and application (AASHTO, 2009; 

Grande et al., 2017). AADRM is an analogous measurement for trains.  Normally, AADRM 

data are provided by railroad companies and are based on proprietary information. 

However, the analysis in this paper utilizes data collected by new sensors designed to 

detect rail movements, providing a unique data source for understanding temporal 

variations in train volumes that were previously unavailable.  

This paper investigates the effects of temporal road and rail traffic variation on estimated 

grade crossing exposure (i.e., the cross-product) through two exploratory analyses. 

Specifically, the objectives of the paper are: 
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1. To identify the effects of daily road traffic variations on grade crossing exposure 

and compliance with specified cross-product thresholds (Analysis 1); and 

2. To identify the effects of hourly road and rail traffic variations on grade crossing 

exposure and compliance with specified cross-product thresholds (Analysis 2). 

The analyses offer insights about exposure at grade crossings in Manitoba, Canada, by 

measuring the degree of variability in exposure measures at grade crossings and relating 

the variations to regulatory criteria. The methods applied are generic and transferrable to 

other contexts within and outside of Canada. As in other Canadian provinces, recently 

updated federal regulations govern the design of grade crossings on all federally regulated 

properties in Manitoba. Thus, while the results of the research pertain specifically to the 

Manitoba context, the motivation for the analyses is evident nationwide.  

The analyses leverage unique data available in Manitoba to characterize temporal 

variations for road and rail traffic. These data provide an opportunity to explore the 

decisions made within recent updates to federal grade crossing regulations. The research 

comprises two separate analyses to best utilize the available road and rail traffic data. 

This paper comprises seven sections. Section 5.3 provides a summary of relevant 

literature. Section 5.4 outlines the analytical framework. Sections 5.5 and 5.6 describe the 

data, methods, and results of the two analyses, respectively. Section 5.7 discusses the 

findings of the analyses in the context of grade crossing policy and engineering practice. 

Finally, Section 5.8 presents concluding remarks. 
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5.3 BACKGROUND 

5.3.1 Existing Grade Crossing Regulations 

In Canada, the federal government regulates grade crossings on public and private roads. 

In 2014, Transport Canada released Standards which dictate minimum safety 

requirements for all grade crossings (Transport Canada, 2014). The Standards apply 

immediately to all new crossings, while existing crossings must be compliant with the 

Standards by 2021. Compliance rates with the former, voluntary, design standards ranged 

from 50% to 70% in a sampling exercise conducted by Transport Canada in 2011 (Canada 

Gazette, 2014). Consequently, most provincial and municipal jurisdictions have 

undertaken inspections of their grade crossings to determine whether they comply with 

the updated Standards and to prioritize required upgrades (Reimer et al., 2015).  

The Standards specify warning system requirements based on the following criteria: 

• Rail design speed, 

• Number of lanes and tracks, 

• Nearby sidewalks, paths, or trails, 

• Nearby traffic control devices (such as signage and signalized intersections), 

• Whether the crossing is private or public, and 

• Forecast cross-product. 

Given its relatively objective nature, the forecast cross-product has become a commonly 

used criterion for preliminary assessments of grade crossing compliance. The Standards 

feature two thresholds for the forecast cross-product at a grade crossing. Crossings whose 

forecast cross-product exceeds 2000 must feature an active warning system. If this 
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number exceeds 50,000, the warning system must also feature gates. These 

specifications indicate that the cross-product influences the final design requirements of 

grade crossings. In some cases, a third threshold may be considered for grade separation. 

Some Canadian jurisdictions have reported 200,000 as a cross-product threshold for 

investigating the feasibility of grade separation (BC Ministry of Transportation and 

Infrastructure, 2014; City of Ottawa, 2017; Peel Regional Council, 2014; Town of Oakville, 

2009; Town of Whitby, 2014); however, Transport Canada recommends consideration of 

grade separation when cross-product exceeds 1,000,000 and no formal grade separation 

thresholds exist in the Standards. 

Internationally, grade crossing regulatory approaches vary by country. In the United 

States, the Federal Highway Administration (FHWA) prohibits grade crossings on fully 

access-controlled highways (FHWA, 2019). Additionally, passive control devices are 

federally regulated in the Manual on Uniform Traffic Control Devices (FHWA, 2012). 

Otherwise, the FHWA makes grade crossing design recommendations for additional 

crossing treatments, but state departments of transportation (DOTs) are ultimately 

responsible for regulating their crossings (FDOT, 2012; MDOT, 2017). The FHWA 

recommends passive, active, or gated warning systems based on measurable conditions 

at all crossings (e.g., crossing exposure, sight lines, and road and rail traffic speeds). In 

this way, the FHWA guidance makes recommendations akin to the mandated warning 

system requirements in the Canadian Standards. The FHWA also recommends 

consideration for grade separation where crossing exposure exceeds 1,000,000 in urban 

areas or 250,000 for rural areas (FHWA, 2019). Transport Canada has recently aligned 

with this recommendation in their Grade Separation Assessment Guidelines, which list 

cross-product exceeding 1,000,000 as a criterion for considering grade crossing 

separation (Transport Canada, 2019). Unlike the Standards, these guidelines are not 
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required and are provided to jurisdictions as guidance. In some cases, models are used 

to prioritize crossings for upgrades. In Australia, modeled risk using the ALCAM tool 

selects the highest priority crossings (National ALCAM Group, 2016). Conversely, the 

Ministry of Transportation of Israel applies economic modelling to select grade separation 

candidates (Gitelman et al., 2006). 

5.3.2  Characterizing Risk at Grade Crossings 

Many jurisdictions employ hazard ranking systems to identify grade crossing candidates 

for potential upgrades (Sperry et al., 2017; Saccomanno et al., 2007). Ranking systems 

are categorized as either hazard index or crash prediction techniques. Hazard index 

techniques struggle to differentiate between many crossings with similar traffic and control 

conditions. This, in turn, leads practitioners to select from pools of crossings that are 

practically equivalent. Conversely, crash prediction methods estimate the frequency and 

severity of expected crashes at grade crossings. Moreover, crash prediction techniques 

produce a necessary input for economic analyses (Eluru et al., 2012; Fan et al., 2015; 

Haleem and Gan, 2015). 

Daily traffic volume and cross-product are ubiquitous measures used in predictive models. 

The USDOT prediction formula, often considered the industry standard (Saccomanno et 

al., 2007), incorporates average daily traffic and average train movements per day. The 

formula additionally includes the number of trains during daytime hours, supporting the 

use of hourly measurements. The relatively simple New Hampshire Hazard Index 

technique only considers the product of AADT, average daily train traffic, and a coefficient 

corresponding to the existing warning system. Some jurisdictions have modified this 

technique, though none have considered temporal variability (FHWA, 2019). The 

Peabody-Dimmick Formula, developed in 1941, predicts the expected number of 
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accidents in a five-year window using the same inputs as the New Hampshire Hazard 

Index. Australia has modified this formula to estimate the exposure factor in its hazard 

index model (National ALCAM Group, 2016). 

More recently, data mining techniques have gained popularity as an approach to predict 

safety performance at grade crossings. Crashes are rare and random occurrences, 

leading to issues when selecting parametric models to fit crash data (Lu and Tolliver, 2016; 

Oh et al., 2006; AASHTO, 2010; Lord and Mannering, 2010). By contrast, data mining 

techniques are non-parametric and focus on the relationships within the data, producing 

more accurate crash rate estimates regardless of the underlying data distribution 

(Iranitalab and Khattak, 2017; Lu et al., 2020; Yan et al., 2010; Yu et al., 2018; Zhou et 

al., 2020). However, the data mining techniques proposed in the literature focus solely on 

crash prediction and fail to consider the user delay implications of grade crossing 

exposure. Moreover, none of the studies in the literature explicitly consider the temporal 

variations of road and rail traffic volume, as is the focus of this paper. 

Cross-product has historically had a pivotal role in the design and predicted safety and 

operational performance of grade crossings and remains prominent in recently issued 

grade crossing regulation and guidance. Despite this, previous research has disregarded 

the potential influence that known temporal variations in road and rail traffic volume have 

on crossing exposure and, by extension, on the safety and operational consequences that 

crossing exposure is used to predict. The analyses in this paper contribute new knowledge 

to address this gap in the state-of-the-practice by providing alternative considerations for 

grade crossing policy and engineering practice. 



111 
 

5.4 ANALYTICAL FRAMEWORK 

The analytical framework applied in this paper extends the current practice for estimating 

average daily road traffic volume to estimate analogous measures of rail traffic volume. 

These volumes are used to develop cross-product measures as the arithmetic product of 

road and rail volumes. This section summarizes methods for estimating average daily road 

traffic and describes the analytical framework applied in this paper. 

Highway traffic monitoring programs produce average traffic volume statistics from 

discrete traffic observations. As noted in Lord and Mannering (2010), aggregating discrete 

observations into coarse time periods (e.g., days or hours) assumes homogeneity within 

those time periods that may not exist, thus resulting in information loss and increased 

uncertainty.  

The simplest method for determining the average daily road traffic volume (ADT) involves 

counting the number of vehicles passing a site for a multi-day period and dividing the total 

count by the number of days. At minimum, the duration of such a count should be 48 hours 

to calculate an average (FHWA, 2016b; Regehr et al., 2017). While simple, this method 

fails to consider the known periodicities in traffic volumes by day-of-week and month. 

Thus, the ADT is biased by the sampling period and duration of traffic volume counts. 

Longer counting periods tend to improve the reliability of estimating AADT using ADT 

(Milligan et al., 2016).  

In practice, resource constraints inhibit an agency’s ability to continuously monitor traffic 

throughout a highway network. Consequently, most traffic monitoring programs implement 

short-duration sample counts to provide spatial coverage. Short-duration count data can 

be adjusted to estimate AADT using temporal adjustment factors. These factors are 
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calculated from full-year data at continuous counting sites with assumed similarities in 

traffic characteristics. Equation 5.1 shows this formulation.  

𝐴𝐴𝐷𝑇ℎ𝑖 = 𝑉𝑂𝐿ℎ𝑖 × 𝑀ℎ × 𝐷ℎ × 𝐴𝑖 × 𝐺ℎ (5.1) 

Where: 

𝑉𝑂𝐿ℎ𝑖  = total traffic observed during traffic count 

𝑀ℎ  = the applicable seasonal (monthly) factor 

𝐷ℎ  = the applicable day-of-week factor 

𝐴𝑖   = the applicable axle-correction factor (if needed) 

𝐺ℎ  = the applicable growth factor (if needed) 

If a complete record of data is available for a year, the calculation of AADT at a continuous 

count site involves calculating the arithmetic mean of daily traffic volumes. However, 

interruptions in data collection (e.g., due to equipment malfunctions) are commonplace. 

The recommended practice applies the so-called AASHTO method (FHWA, 2016b) to 

account for missing data by considering the known periodicities in traffic volumes by day-

of-week and month. Equation 5.2 shows the AASHTO method calculation. 

𝐴𝐴𝐷𝑇𝑐 =  
1

12
∑

1

7
∑

1

𝑛𝑗𝑚
∑ 𝑉𝑂𝐿𝑖𝑗𝑚,𝑐

𝑛𝑗𝑚

𝑖=1

7

𝑗=1

12

𝑚=1

 (5.2) 

Where: 

𝑉𝑂𝐿𝑖𝑗𝑚  = total traffic on ith occurrence of jth day of week within mth month  

𝑖  = occurrence of a particular day-of-week in a particular month 

𝑗  = day-of-week (1 to 7) 



113 
 

𝑚  = month-of-year (1 to 12) 

𝑛𝑗𝑚  = number of times day j occurs in month m with available traffic data (1 to 5)  

𝑐  = vehicle classification 

The formulation involves the calculation of monthly average daily traffic (MADT) and 

average day-of-week traffic (ADWT) as steps to producing AADT. 

Recently, a new formulation to calculate AADT has been recommended and validated 

(Grande et al., 2017; Jessberger et al., 2016), which uses an hourly rather than daily base 

time period. This two-step calculation produces AADT in a similar fashion to the AASHTO 

method, while improving precision and accuracy of results when data are removed. To 

summarize, the estimation of AADT involves one of several methods, which vary 

considerably in terms of the nature and extent of count data utilized and the calculation 

procedure applied. This complexity is not readily apparent in guidance used to estimate 

grade crossing exposure and risk. Yet, as will be explored in the subsequent sections, the 

validity of AADT and the known variability in the underlying traffic data may influence grade 

crossing design decisions and risk assessments. Moreover, despite the lack of 

documented practice, analogous issues arise when estimating average daily rail 

movements and these issues extend to the estimation and application of the cross-

product.  
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Figure 5.1: Potential measures of road or rail traffic exposure (values in parentheses 
represent the number of outputs from each method) 

 

Figure 5.1 offers a visualization of the concepts explored in this paper. As depicted in the 

figure, practitioners can elect various measures to represent average daily road and rail 

traffic. Of the available methods, the ADT and ADRM are least capable of representing 

traffic volume periodicities and may misrepresent annualized conditions. The ALCAM 

(National ALCAM Group, 2016) is one example of an application that specifies the use of 

ADT (though, in practice, AADT could be used in place of ADT). Moving to the right, the 

more robust option recommended in the Canadian Standards and by FHWA utilizes AADT 

and AADRM to calculate grade crossing exposure, since they represent an annualized 

average and limit potential bias caused by missing data. These measures, however, are 

still averages and do not enable explicit consideration of the range of daily or sub-daily 

volumes at a grade crossing. Rather than relying on an annualized average, the 
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practitioner may wish to understand the magnitude and nature of these periodicities – by 

month, by day-of-week, by hour, or at a sub-hourly temporal scale. Ultimately, road and 

rail traffic volumes could be decomposed into singular traffic events to examine 

microscopic interactions between vehicles and trains. This level of disaggregation is 

beyond the scope of this paper, as it may not provide practical value in system-wide grade 

crossing assessments given the relative difficulty of collecting per-vehicle and per-train 

data at a crossing. 

The following two sections describe analyses designed to explore the effect of road and 

rail temporal traffic variation on cross-product. Analysis 1 examines the effects of daily 

road traffic periodicities and Analysis 2 examines the effects of hourly periodicities for both 

road and rail traffic. Both analyses present the products of road and rail traffic volume in 

terms of cross-product equivalents, that is, the cross-product that would be experienced 

at a grade crossing if the input road and rail traffic data represented the AADT and AADRM 

at that crossing, respectively. Specifically, Analysis 1 utilizes a daily cross-product 

equivalent and Analysis 2 utilizes an hourly cross-product equivalent. In this way, it is 

assumed that estimated crossing exposure can be related to the cross-product, its 

applications, and the relevant thresholds identified in the Standards. 

5.5 ANALYSIS 1: DAILY VARIATIONS IN GRADE CROSSING EXPOSURE 

Analysis 1 examines the effect of measured daily periodicities (by month and day-of-week) 

in road traffic volume on grade crossing exposure at a sample of rural grade crossings in 

Manitoba, Canada. For each crossing, the analysis produces a set of 366 daily cross-

product equivalents using the input road traffic data and a constant AADRM. Daily 

variations in rail movements are unavailable at the rural grade crossings assessed. The 

analysis assesses compliance with the Standards by comparing these daily cross-product 
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equivalents with relevant cross-product thresholds.  

5.5.1 Methodology 

Initial grade crossing data are obtained from Transport Canada’s Grade Crossings 

Inventory (Transport Canada, 2018) for all grade crossings in Manitoba. The inventory 

provides the AADT, AADRM, existing warning system, and geographic coordinates for 

22,820 grade crossings in Canada, 2299 of which are located in Manitoba. Spatial analysis 

software is used to identify grade crossings that are situated on provincially-owned 

highways in Manitoba (262 crossings meet this criterion). These crossings are then 

screened to remove all crossings that contain erroneous or incomplete data. This yields a 

set of 240 grade crossings in rural Manitoba for the analysis. 

Manitoba’s traffic monitoring program, the Manitoba Highway Traffic Information System 

(MHTIS), collects and disseminates traffic data on all provincial roads, including temporal 

traffic variation data (Grande et al., 2018). Raw data are not publicly available but aremade 

available for this research. Specifically, to support AADT estimation at short-duration count 

sites, the program assigns all locations on the provincial highway network to one of seven 

traffic pattern groups (TPGs). The seven TPGs were developed in an unpublished study 

in 2006 by applying Ward’s minimum variance hierarchical clustering procedure (Ward, 

1963). Each TPG comprises a set of continuous count sites with unique monthly, day-of-

week, and hourly adjustment factors and characterizes the sites in terms of highway 

functionality and proximity to trip generators. Table 5.1 shows the range of monthly and 

day-of-week adjustment factors in each TPG and their distinguishing characteristics. 
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Table 5.1: Characteristics of Manitoba's traffic pattern groups 

TPG 

Monthly Factors (%) Day-of-Week Factors (%)  

Minimum Maximum Minimum Maximum Description 

1 81 114 75 114 Routes in or near major 

urban centres 

2 80 120 89 117 Routes serving longer-

trip purposes to 

population centres 

3 54 180 77 124 Routes serving longer-

trip purposes to 

recreational destinations 

4 83 114 79 114 Routes near rural 

population centres 

5 72 141 93 122 Routes near population 

centres and recreational 

destinations 

6 63 160 84 118 Routes connecting to 

recreational destinations 

7 76 137 87 118 Routes in northern 

Manitoba 

 

Analysis 1 uses spatial analysis software to associate each grade crossing with the road 

segment on which it is situated, as defined in the MHTIS linear referencing system. Each 

grade crossing is assumed to have the same traffic characteristics as the road segment 

to which it is associated. Further, each road segment adopts the TPG of the nearest traffic 

counting site (either short-duration or continuous). In this way, grade crossings are 

assigned TPGs using the MHTIS data. Table 5.2 summarizes the grade crossings used 

in the analysis by TPG assignment, existing warning system, and AADRM and AADT 

ranges. 
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Table 5.2: Characteristics of grade crossings used in analysis 1 

Crossings by TPG 

Crossings by Warning 

System Crossings by AADRM Crossings by AADT 

TPG Count of 

Crossings 

Warning 

System 

Count of 

Crossings 

AADRM Count of 

Crossings 

AADT Count of 

Crossings 

1 38 Passive 47 0 – 10 174 0 – 200 49 

2 50 Active 131 11 – 20 23 200 – 

400 

34 

3 6 Gated 62 21 – 30 35 400 – 

800 

44 

4 118   > 30 8 800 - 

1600 

48 

5 9     1600 – 

3200 

36 

6 11     3200 – 

6400 

13 

7 8     > 6400 16 

Total 240 Total 240 Total 240 Total 240 

 

Initially, daily volumes at all crossings are considered equal to the AADT at the grade 

crossing. The MHTIS TPG data are then used to simulate daily traffic variability through 

the assumption that the day-of-week and monthly factors can be used to predict daily 

volumes. Day-of-week and monthly factors are calculated, by TPG, as described in the 

Traffic Monitoring Guide (FHWA, 2016b). Equation 5.3 shows the method by which daily 

volumes are predicted at a given grade crossing, using the attributed traffic data. 
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𝐷𝑉𝑛,𝐺 = 𝐴𝐴𝐷𝑇 × 𝑀𝑛,𝐺 × 𝐷𝑛,𝐺 (5.3) 

Where: 

𝐷𝑉𝑛,𝐺  
= estimated daily traffic volume on the nth day of the year at a crossing in 

pattern group, G 

𝑀𝑛,𝐺   
= monthly factor, expressed as a proportion, for the nth day of the year in 

pattern group, G 

𝐷𝑛,𝐺   
= day-of-week factor, expressed as a proportion, for the nth day of the year in 

pattern group, G 

This method produces a realistic estimate of daily traffic volume for all 366 days in 2016 

by using factors derived from continuous traffic count data. Further, the method ensures 

that the AADT at the site (and, by extension, its cross-product) is unaffected by the 

simulated traffic variability. No further rail data are used in Analysis 1. Thus, the daily train 

volumes are assumed to be equal to the AADRM (i.e., the daily volumes of trains are 

assumed to be constant). 

Finally, daily cross-product equivalents are produced. The actual cross-product at each 

site is the product of its AADT and AADRM. Analysis 1 produces 366 cross-product 

equivalents at each site by multiplying the simulated daily traffic volume and daily train 

volume. The analysis investigates the frequency at which these daily cross-product 

equivalents deviate from the cross-product thresholds specified in the Standards. 

Compliance with the Standards is also considered. Note that the cross-product is only one 

of several criteria used to stipulate warning system requirements. Thus, a crossing could 

be over-designed according to the cross-product criterion, but could be adequately or even 

under-designed when considering criteria holistically.  
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5.5.2 Results 

As discussed earlier, the Standards specify ranges of cross-product values suitable for 

each type of grade crossing warning system. Crossings with a cross-product exceeding 

2000 must have an active warning system to comply with the cross-product criterion. 

Similarly, crossings with a cross-product exceeding 50,000 must additionally feature 

gates. Thus, if a passive crossing has a cross-product exceeding 2000, it is considered 

under-designed with respect to the cross-product criterion. This is also true of non-gated 

crossings whose cross-product exceeds 50,000. Conversely, if a gated crossing has a 

cross-product below 50,000, it is considered over-designed with respect to the cross-

product criterion (this is also true of active crossings with cross-products below 2000). 

The analysis revealed that, of the 240 crossings examined, two were actually under-

designed (i.e., their actual cross-product exceeded the cross-product threshold specified 

by the Standards for the crossing’s existing warning system. The remaining 238 crossings 

were compliant with the cross-product criterion in the Standards. Of these, 112 crossings 

featured a warning system that would be considered over-designed with respect to the 

cross-product.  

Extending this logic, Analysis 1 yielded 366 daily cross-product equivalents rather than 

the singular cross-product for each crossing. Table 5.3 summarizes the results of the 

analysis. Each column indicates the number of crossings that would be considered under 

or over-designed for the condition listed in the top of the header row. Results are broken 

down by TPG. The table reveals the following findings: 

• Nine crossings featured at least one day in which the daily cross-product equivalent 

exceeded the specified cross-product threshold (i.e., the crossing would be 
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considered under-designed on that day). The number of under-designed crossings 

decreased as the number of days considered increased, with no crossing exceeding 

the specified cross-product threshold for all 366 days. 

• Ninety-one crossings had warning systems that would be considered over-designed 

(conservative) for all 366 days of the year (i.e., the daily cross-product equivalent 

was always less than the minimum applicable threshold). The number of over-

designed crossings increased as the number of days considered decreased. Over 

half (135) of the crossings had warning systems that would be considered over-

designed for at least one day.  

• All crossings that are either over- or under-designed for a portion of the year are 

properly designed with respect to the cross-product criterion for the remaining days 

(i.e., no crossing is over-designed for some days and under-designed for others). 

Ninety-six crossings were neither over- nor under-designed for all 366 days of the 

year. 

• A crossing’s assigned TPG does not appear to influence the likelihood that a 

crossing is under- or over-designed for some portion of the year. 

Table 5.3: Number of Crossings Under- and Over-Designed When Comparing Daily 
Cross-Product Equivalents to Specified Thresholds in the Canadian Standards 

 At least 1 day At least 10% of days At least 50% of days All 366 days  

  Over-
designed1 

Under-
designed2 

Over-
designed1 

Under-
designed2 

Over-
designed1 

Under-
designed2 

Over-
designed1 

Under-
designed2 

Total 

PG1 23 1 21 1 16 1 14 0 38 

PG2 28 0 28 0 23 0 19 0 50 

PG3 4 2 4 2 4 0 4 0 6 

PG4 62 2 56 2 53 1 47 0 118 

PG5 7 0 7 0 6 0 3 0 9 

PG6 5 3 4 1 4 0 2 0 11 

PG7 6 1 5 0 5 0 2 0 8 

Total 135 9 125 6 111 2 91 0 240 

1 Over-designed means that, for the condition listed above, the crossing’s cross-product is less 
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than the minimum cross-product threshold for the existing warning system as specified in the 

Standards. 

2 Under-designed means that, for the condition listed above, the crossing’s cross-product exceeds 

the maximum cross-product threshold for the existing warning system as specified in the 

Standards. 

To illustrate further, Figure 5.2 shows the daily cross-product equivalents at two crossings. 

The crossing depicted in (a) is a gated crossing in TPG 2. For 116 days, the daily cross-

product equivalent at this crossing is below the minimum cross-product threshold for a 

gated crossing (i.e., 50,000), which implies that the installed warning system is over-

designed for those 116 days with respect to the cross-product criterion. The crossing 

depicted in (b) is a passive crossing in TPG 3. For 61 days, the daily cross-product 

equivalent at this crossing exceeds 2000, which implies that the installed warning system 

is under-designed for those 61 days.  
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Figure 5.2: Daily cross-product equivalents for samples sites located in (a) traffic 
pattern group 2 and (b) traffic pattern group 3 
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5.6 ANALYSIS 2: HOURLY VARIATIONS IN GRADE CROSSING EXPOSURE 

Analysis 2 examines the effect of hourly road and rail traffic variations on grade crossing 

exposure at thirteen grade crossings in Winnipeg, Manitoba, Canada. The analysis 

produces 24 hourly cross-product equivalents for each crossing and assesses compliance 

with the Standards by comparing these equivalents with relevant cross-product 

thresholds. 

5.6.1 Methodology 

Rail traffic data are collected using TRAINFO® sensors installed at the thirteen grade 

crossings in Winnipeg. Figure 5.3 depicts the crossings that are used for the analysis (data 

for crossing A were omitted from the analysis due to missing road traffic data). These 

sensors detect and log time stamps for crossing occupancy events (i.e., when a train 

occupies the crossing and blocks road traffic) and clearances (i.e., when the crossing re-

opens to road traffic after the train passes). The analysis assumes that each crossing 

occupancy represents a single train movement (i.e., a through train movement or 

switching movement) at a crossing, thus ignoring cases of occlusion or improper 

activations. No special considerations are made for observations during specific portions 

of the day (e.g., for daytime versus nighttime occupancies). Sensor installation periods 

were inconsistent at each crossing; thus, data availability varies between crossings. A full 

year of data are available at eleven of the thirteen crossings.  
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Figure 5.3: Locations of TRAINFO sensors used to detect train movements in 
Winnipeg, Manitoba, Canada 

Road traffic volume data (i.e., AADTs) are obtained from Transport Canada’s Grade 

Crossing Inventory (2018) for the thirteen studied crossings. Three of these crossings (L, 

M, and N) exist on provincial highways. The remaining ten exist on municipal roads. Hourly 

temporal adjustment factors are obtained from Regehr et al. (2012) for municipal roads 

and from the MHTIS for provincial roads. 

Crossing occupancy data are used to estimate rail traffic volumes. Average daily rail 

movements at each crossing are calculated as the simple average of rail movements per 

day. Twenty-four hourly occupancy factors are calculated at each crossing as the ratio of 
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occupancies which began in each hour to the total number of occupancies at the site. This 

process aligns the rail and road traffic data and enables calculations at sites without a full-

year record of rail data. 

Twenty-four hourly cross-product equivalents are calculated at each crossing. Each 

equivalent represents the cross-product that would occur at the selected crossing if its 

hourly road and rail traffic persisted for the entire day. These cross-product equivalents 

combine the effects of within-day traffic variability and the interactions between two modes 

at grade crossings. Equation 5.4 shows the formula used to calculate hourly cross-product 

equivalents. 

 

𝑋𝑃ℎ,𝑐 = (𝐴𝐴𝐷𝑇𝑐 × 𝑇𝐹ℎ,𝑐) × (𝐴𝐴𝐷𝑅𝑀𝑐 × 𝑂𝐹ℎ,𝑐) × 242 

 

(5.4) 

Where: 

𝑋𝑃ℎ,𝑐   = hourly cross-product equivalent for hour, h, at crossing, c 

𝐴𝐴𝐷𝑇𝑐  = annual average daily traffic at crossing, c 

𝑇𝐹ℎ,𝑐  = traffic factor for hour, h, and crossing, c 

𝐴𝐴𝐷𝑅𝑀𝑐  = annual average daily rail movements at crossing, c 

𝑂𝐹ℎ,𝑐  = occupancy factor for hour, h, and crossing, c 

The analysis investigates the frequency at which these hourly cross-products deviate from 

the cross-product thresholds specified in the Standards and those used in practice in 

Canada and the United States.  
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5.6.2 Results 

Analysis 2 estimated hourly cross-product equivalents for thirteen grade crossings using 

available road and rail traffic data. Figure 5.4 shows the number of hourly cross-product 

equivalents for each studied crossing that exceeded the displayed cross-product values. 

Note that the minimum abscissa value is 2000, which aligns with the active warning system 

daily cross-product threshold specified in the Standards. The two non-gated crossings, B 

and I, had the lowest hourly cross-product equivalents; neither had a single hourly cross-

product equivalent exceeding 75,000. Of the 11 gated crossings, most exhibited cross-

product equivalents that exceeded 2000 for all 24 hours (crossing K being the exception). 

Crossing E was the only crossing whose hourly cross-product equivalents all exceeded 

25,000. 

 

Figure 5.4: Number of hourly cross-product equivalents exceeding select cross-
product values by crossing 
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Certain cross-product thresholds are considered in current grade crossing policy and 

practice. Table 5.4 shows the number of hours at each crossing where the hourly cross-

product equivalents exceeded four specific thresholds: 

1. 2000 – According to the Standards, a crossing with a cross-product above 2000 

must have an active warning system. 

2. 50,000 – According to the Standards, a crossing with a cross-product above 

50,000 must have a gated warning system. 

3. 200,000 – According to Canadian literature but not specified by the Standards, a 

crossing with a cross-product above 200,000 may be a candidate for grade 

separation. 

4. 1,000,000 – According to FHWA and Transport Canada guidelines (FHWA, 

2019; Transport Canada, 2019) but not specified in the Standards, an urban 

crossing with a cross-product above 1,000,000 should be considered for grade 

separation. 

Highlighted values in the table represent the number of hourly cross-product equivalents 

which exceeded the cross-product threshold identified. All crossings were compliant with 

the Standards with respect to cross-product. However, two (crossings D and E) would be 

considered as potential candidates for grade separation if considering the state of the 

practice in some Canadian jurisdictions. Only crossing E surpasses the 1,000,000 cross-

product threshold for grade separation according to Canadian and American guidelines. 

 

 



129 
 

Table 5.4: Crossing Conditions and Number of Hourly Cross-Product Equivalents 
above Specified Thresholds 

 

Crossing Conditions 

Number of Hourly Cross-Product Equivalents 

Above Cross-Product Thresholds 

Crossing Warning 

System 

AADT AADRM Cross-

Product 

> 2000 

(Active) 

> 50000 

(Gated) 

> 200,000 

(Separated) 

> 1,000,000 

(Separated) 

B Active 10248 2.24 22994 20 3 0 0 

C Gated 4941 31.81 157 189 24 18 9 0 

D Gated 10975 30.80 338 061 24 20 16 0 

E Gated 33675 35.22 1 185 526 24 24 20 15 

F Gated 24518 3.22 78956 24 16 0 0 

G Gated 21700 2.21 47999 24 8 0 0 

H Gated 31992 3.23 108 197 24 17 3 0 

I Active 1496 5.94 8889 18 0 0 0 

J Gated 24400 7.66 186 801 24 18 11 0 

K Gated 7348 4.45 32684 21 9 0 0 

L Gated 16340 4.99 96600 24 14 3 0 

M Gated 7480 21.79 162 987 24 18 9 0 

N Gated 2460 16.46 40471 24 7 0 0 

 

The results for two crossings provide particularly relevant insights. Crossing E, a gated 

crossing, featured the highest hourly cross-product equivalents. Its actual cross-product 

exceeds 1,000,000 and 15 hourly cross-product equivalents exceeded this number. 

Figure 5.5(a) shows the hourly cross-product equivalents for all 24 hours at crossing E. 

The hourly cross-product equivalents exceeded the actual cross-product at this location 

for twelve hours (i.e., exactly half of the day). The largest differences between hourly 

cross-product equivalents and actual cross-product occurred at 4:00 pm, when the hourly 
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cross-product equivalent was 99% higher than the crossing’s actual cross-product, and at 

3:00 am, when the hourly cross-product equivalent was 93% lower than the actual cross-

product. In the case of crossing E, even the lowest hourly cross-product equivalent 

exceeded the thresholds for active and gated warning systems. 
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Figure 5.5: Hourly cross-product equivalents for (a) crossing E and (b) crossing B 
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Crossing B is an active crossing that experienced high variance in hourly cross-product 

equivalents, as shown in Figure 5.5(b). Peaks in the morning and mid-day were principally 

associated with hourly peaks in road traffic, while train traffic was more evenly distributed 

throughout the day. The hourly cross-product equivalents during these hours suggest a 

potential need for a gated warning system, but for most hours in the day the hourly cross-

product equivalents were below the threshold for gated systems. In addition, the hourly 

cross-product equivalents at crossing B were below the actual cross-product for 15 hours. 

The hourly cross-product equivalents demonstrated wider variation at this crossing than 

at crossing E, peaking at 157% of the actual cross-product at 07:00 am. Three hourly 

cross-product equivalents were above the gated system threshold (07:00 am, 3:00 pm, 

4:00 pm), some were only above the active system threshold (e.g., from 5:00 pm to the 

end of the day), and others fell below the active system threshold (e.g., in the night time 

hours after midnight).  

5.7 DISCUSSION 

The analyses in this paper sought to demonstrate the effects of temporal variations on 

grade crossing exposure and compliance. Cross-product, or the product of AADT and 

AADRM, is the most common measure of exposure at a grade crossing. While cross-

product is simple to calculate and apply, it is hard to understand and its units lack real-life 

meaning. Moreover, the use of average values for road and rail traffic volumes neglects 

the effect of temporal variations. These patterns are well-known in the road traffic sector 

and are the foundation of AADT calculations. Rail traffic, conversely, has less predictable 

patterns due to the nature of its operation; rail movement schedules are predominantly 

controlled by the rail operator and not subject to the travel tendencies of the public. 

Consider the contrived scenario in which a crossing experiences high daytime and low 

nighttime road traffic volumes, but low daytime and high nighttime rail traffic volumes. In 
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this case, the crossing could be designed based on a cross-product that does not 

accurately reflect vehicle-train interactions at the crossing. 

Analysis 1 considered the daily variability in road traffic, a well-known and quantifiable 

phenomenon. The results illustrated the possibility for crossings to experience daily road 

traffic conditions that would warrant a more aggressive warning system – though this 

occurred rarely in the study. Only 9 of the 240 crossings studied were identified as being 

under-designed with respect to the cross-product criterion. Conversely, many of the 

studied crossings were apparently over-designed with respect to the cross-product. This 

result is expected, as cross-product is only one of multiple criteria used to define warning 

system requirements in the Standards. If another criterion governs the design at a 

crossing, then the warning system may seem over-designed when considering only the 

cross-product criterion. The relative rarity of under-designed crossings and the observed 

propensity for over-design, with respect to cross-product alone, demonstrates general 

compliance with regulations and conservatism in design. 

Two principal limitations influence the results of Analysis 1. First, the analysis assumed 

no variation in daily rail traffic at each crossing. This assumption was necessary, due to 

the data available, but does not preclude the conclusion that daily variability in traffic – 

even in only one mode – can affect the selection of an appropriate warning system. More 

detailed information about rail traffic variations would enable a detailed examination of the 

interactions between road and rail traffic at the crossing. Second, the analysis assumed 

that hourly traffic variability had no bearing on the cross-product equivalents. This 

assumption is consistent with the use of cross-product, as defined in the Standards, which 

also disregards the effects of within-day traffic variability. 
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Analysis 2 addressed the two foregoing limitations by considering cross-product 

equivalents generated by hourly traffic data for both road and rail traffic. The analysis 

showed that, by accounting for hourly traffic variations expressed as hourly cross-product 

equivalents and comparing these values to the thresholds defined in the Standards, all 

crossings featured vehicle-train interactions that could warrant the need for different 

warning systems through an average day. Consequently, hourly cross-product 

equivalents at these crossings represent an alternative measure by which to assess 

warning system requirements.  

Like the cross-product, hourly cross-product equivalents measure the exposure or 

interactions between two modes at shared infrastructure (i.e., grade crossings). However, 

unlike cross-product, hourly cross-product equivalents encapsulate the within-day 

variability of two modes that do not share the same temporal variability. There are no 

current guidelines, nor best practices, for the number of hours in a day that a warning 

system should be designed to accommodate. In the most conservative case, a warning 

system selection could consider a crossing’s peak hour or highest hourly cross-product 

equivalent. Alternatively, a pragmatic approach could consider the existing warning 

systems at the studied crossings and the number of hours for which the cross-product 

equivalents exceed each threshold. For example, Figure 5.4 illustrates that all of the 

studied gated crossings have at least seven hourly cross-product equivalents exceeding 

the gated crossing threshold of 50,000. Further, crossing B has only three hourly cross-

product equivalents exceeding 50,000 and is not gated. Thus, based on this limited 

evidence, a crossing could be required to have a gated warning system if seven hourly 

cross-product equivalents exceed the gated threshold. Alternatively, the hourly cross-

product equivalents presented in this work could be used to support prioritization 

decisions. 
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Analysis 2 used a relatively small sample size compared to Analysis 1. Crossings were 

selected based on data availability, with the locations of TRAINFO sensors defining the 

study sample. Three of eleven crossings have a cross-product below the gated threshold 

of 50,000 and all crossings are compliant with the Standards (with respect to the cross-

product criterion). However, one crossing (E) would be considered for grade separation 

based on Transport Canada’s Grade Separation Assessment Guidelines. Fittingly, this 

crossing has been upgraded to a grade separated crossing since the analysis for the 

research concluded. Another crossing (crossing D) would require separation if using 

200,000 as a threshold, as some Canadian jurisdictions have done. 

Overall, the results of the two analyses reveal two issues with the current use of cross-

product. First, cross-product is meant to serve as a surrogate for crossing safety and user 

delay. However, in terms of safety, using the average assumes constant conditions at the 

crossing. Crashes do not necessarily occur on average days; they occur at specific times, 

on specific days, in specific months. Making inferences about risk at crossings based on 

averages carries this assumption into the models being used. The results from these 

analyses show that crossing conditions can vary by day or by hour. Second, cross-product 

is also used as a surrogate for user delay. Analysis 2 reveals that a disproportionate 

number of vehicles interact with trains at peak hours, and that variance in train traffic has 

the potential to compound these peaks. By extension, microscopic analysis of vehicle-

train interactions at a crossing may lead to more refined estimates of user delay (Rempel, 

2018).  

Methodologically, both Analyses 1 and 2 revert to the use of averages, as measured by 

daily and hourly cross-product equivalents. This is a limitation of the available data and 

reflects the strength of averages in summarizing results. However, the impetus for the 
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research is the unspecified weakness of averages in representing traffic variability—a 

phenomenon that often follows predictable patterns. The critical distinction is that both 

analyses ‘unpack’ AADT and AADRM to better characterize train-vehicle interactions while 

providing comparison cases to the current state of practice. Future work may quantify the 

magnitude and frequency with which actual rail traffic deviates from the hourly and daily 

averages. These deviations are expected to play a major role in the inadequacy of 

averages to characterize rail movements.  

Figure 5.6 visualizes the theoretical range of road and rail traffic data inputs by their 

temporal resolution. The cross-product (as currently defined) sits on the low end of both 

spectra. Analysis 1 disaggregated AADT into estimated daily values instead, while 

Analysis 2 did the same for hourly road and rail volumes. Detailed traffic data are 

becoming increasingly available, making analyses such as these more plausible. 

Agencies must decide what level of detail is appropriate for a range of applications. The 

results of the analyses imply that cross-product inadequately represents the vehicle-train 

interactions at a crossing. Daily cross-product equivalents are a useful tool to observe the 

range in daily exposure that can be seen at a crossing over a year. This would be further 

strengthened by detailed rail data, which were not widely available for the rural crossings 

tested in Analysis 1. Hourly cross-product equivalents are an apparent opportunity to 

differentiate between sites with similar cross-products. These could be implemented as 

an additional step in selecting crossings for upgrades or closures, after using the cross-

product as an initial screening step. Further disaggregation of road and rail traffic data into 

per vehicle and/or per train data would reveal further details about vehicle-train 

interactions and help identify outliers from the average or general cases normally 

assessed by the cross-product. 
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Figure 5.6: Spectrum of temporal resolutions in input road and rail traffic data 

 

5.8 CONCLUSION 

This paper investigated the effects of temporal variations in road and rail traffic on grade 

crossing warning system regulation and compliance. This is timely because of the recent 

changes to Canadian grade crossing regulations. Cross-product, or the product of average 

daily vehicles and trains at a crossing, is one measure used in the Canadian Standards to 

determine warning system requirements. Averages are simple and conveniently 

summarize data, but they also flatten the variability within the data into a single value. This 

paper used known variations in road and rail traffic to partially undo this flattening effect 

and explore its influence on regulatory conditions. 

Analysis 1 varied road traffic volumes at rural grade crossings using known daily road 

traffic patterns for an entire year. Daily train volumes were assumed to be constant. The 
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findings demonstrated that daily road traffic variations generate sufficiently large variations 

in the daily cross-product equivalent to warrant a change in the warning system required 

at the crossing, when applying the cross-product thresholds specified in the Standards. 

Analysis 2 considered hourly road and rail traffic variations within an average day and 

compared hourly cross-product equivalents to the cross-product thresholds specified in 

the Standards. Hourly road traffic factors and crossing occupancy data were used to 

create hourly cross-product equivalents at the 13 studied crossings. All of these crossings 

were compliant with the Standards and two were potential candidates for grade separation 

based on the state of the practice in some Canadian jurisdictions, though only one 

surpasses the cross-product threshold stipulated in Transport Canada’s Grade Separation 

Assessment Guidelines. Each of the 11 gated studied crossings featured at least seven 

hourly cross-product equivalents above the cross-product threshold for gated crossings.  

On aggregate, the findings demonstrated that the cross-product, as currently defined, 

potentially oversimplifies vehicle-train interactions at a crossing, thereby misrepresenting 

the safety risks and delays associated with these interactions. Consequently, there is an 

apparent need to consider temporal traffic variability when modelling risk and operational 

delay at grade crossings, specifying grade crossing warning system requirements through 

guidance and standards, and prioritizing grade crossing upgrades. Specifically, the cross-

product should be supplemented with detailed temporal traffic data, where available, and 

new criteria should be developed to select appropriate crossing treatments using these 

data. 
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6 CONCLUSIONS 

This concluding chapter of the thesis summarizes the key findings and discussion points 

from each of the foregoing research projects and ties them into the connecting themes of 

the thesis. A list of recommended future research topics follows, including those presented 

in the earlier chapters and topics derived from the connecting themes in this thesis. Finally, 

the last subsection provides a succinct set of concluding remarks on the benefits and 

shortcomings of AADT in light of known temporal and spatial traffic volume variability, thus 

satisfying the purpose of the research. 

6.1 SUMMARY OF KEY FINDINGS 

In Chapter 2, truck traffic data in Manitoba, Canada were used to estimate the effects that 

two systematic changes to AADT calculations had on the accuracy and precision of 

estimates. The use of truck traffic data, specifically, was selected to test these changes in 

conditions where traffic volumes were lower and tended to have different periodicities from 

total traffic. In this case, implementing a weighted average to account for the numbers of 

days in each month removed a clear, systematic bias in the AASHTO method of 

approximately 0.1% when considering up to 15 days of missing data (Scenario 3). Using 

hourly periods rather than daily units had little impact on the accuracy of the calculations 

but did reduce the width of the 95% confidence interval by 0.5%. The FHWA method, 

which incorporates both of these changes, was therefore the most accurate and precise 

formulation tested.  

The AASHTO and FHWA methods to calculate AADT from continuous count data assume 

that the hourly, weekday, and monthly variations in traffic volumes are periodic. This 

allows for consistent treatment of missing data and has been shown to reduce errors, 
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relative to a simple average approach that ignores those periodicities. Chapter 2 shows 

the improvements to AADT estimates, in terms of both precision and accuracy, when using 

the various formulations. Given the data used, the best tested method (the FHWA formula) 

reduced the width of the 95% confidence interval from 2.23% to 1.64% of AADT in the 

most robust test of missing data and reduced the mean absolute error (bias) from 0.38% 

to 0.24% of AADT. While these improvements are relatively modest, the FHWA provides 

the added benefit of calculating hourly, weekly, and monthly traffic factors as intermediate 

steps when estimating AADT. These factors are required for the expansion of short 

duration traffic count data into AADT estimates.  

In Chapter 3, short duration count data were simulated using continuous count data in 

Manitoba, Canada. These simulated data were used to benchmark the expected ranges 

of errors produced when using short duration count data to estimate AADT. The results 

showed that, on average, the absolute percent error was 6.40% when using traffic 

adjustment factors from pre-assigned groupings. These errors grew to over 10% when 

using data from unassigned sites, which was expected due to the nature of the unassigned 

sites (they tend to have traffic patterns that do not align with the existing groupings).  

Similarly to continuous count data, AADT estimates produced using short duration count 

data leverage knowledge of traffic periodicities to improve performance. By convention, 

short duration count data require temporal adjustment factors, developed from traffic 

pattern groups, to estimate AADT. The results from the case study conducted as part of 

Chapter 3 benchmark the errors produced using this conventional method. As expected, 

the accuracy and precision of AADT estimates using short duration count data were worse 

than those using continuous count data (mean absolute error was 6.40% compared to 

0.24% and the 95% confidence interval width was 33.95% compared to 1.64%), even 
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when incorporating simulated data losses to the continuous count data. When considering 

only the previously unassigned sites, the novel assignment method proposed as part of 

Chapter 3 reduced the mean absolute error from 10.32% to 7.86% (i.e., it reduced the 

assignment error by 2.46%). 

Chapter 4 presented multiple tests for correlation comparing conventional traffic data with 

speed-based probe data available in Manitoba, Canada. Among these, the strongest 

correlation was found when relating truck traffic volume and probe observations. 

Specifically, sites around urban centres and on highways that served interprovincial trips 

produced R-squared values of up to 0.9. Truck traffic data are generally more difficult to 

obtain than total traffic data, since there are additional resources required to produce 

classification data. Given the relative difficulty in obtaining truck traffic data, the results 

from this analysis show that probe data may be a promising tool to supplement 

conventional traffic monitoring practice. Future research is required to develop a model 

that validates and utilizes this relationship. However, it is envisioned that speed-based 

probe data could also be used to broaden the spatial coverage of reliable truck traffic 

estimates in a way that is more cost-effective than the current state of the practice. Since 

this relationship only applies to certain contexts (i.e., near urban centres and along major 

interprovincial routes), there remains the potential for future research investigating probe 

data traffic groups, similarly to the traffic patterns that are explored in Chapters 3 and 5 of 

this thesis. 

Finally, Chapter 5 disaggregated AADT and AADRM into periodic averages (by hour, 

weekday, or month) to evaluate the sensitivity of grade crossing design and regulation to 

the expected variations in traffic. The results showed that, in the rural Manitoba setting, 

the day-to-day variability in traffic can cause some sites to experience traffic volumes that 
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would suggest the site belonged to a different regulatory range. For example, a non-gated 

site may have high daily traffic volume in the summer, resulting in a single-day cross-

product that exceeds the threshold for gated crossings. Overall, 135 of the 240 crossings 

tested showed that this was true for at least one day in the study year while assuming a 

constant AADRM.  

The analysis in Chapter 5 also assessed 13 crossings in the urban setting of Winnipeg, 

Manitoba. This analysis considered the hourly variations in road and rail traffic volumes to 

build hourly cross product equivalents – or the expected cross-product that would be 

experienced if the hourly road and rail traffic conditions persisted for an entire day.  In two 

cases, the hourly cross-product equivalents exceeded the regulatory thresholds for their 

existing warning system treatment. These equivalents were presented as an alternative 

means for assessing the exposure at a grade crossing. 

This research provides insights on AADT and, more generally, traffic volumes, through a 

series of related investigations. These insights can be categorized as those that contribute 

to knowledge of AADT at a site and those that contribute to knowledge of the effects of 

traffic variability at a site. The literature reveals numerous examples of efforts to improve 

the accuracy of AADT estimates, including those presented in Chapters 2 and 3 of this 

thesis. The improved accuracy in AADT estimates are relatively modest when compared 

to the variability in traffic volumes between or within days, as seen in Chapter 5.  Most 

often, practitioners focus on the average (i.e., AADT) because it is common, convenient, 

and ingrained into many of the applications that use traffic data (e.g., the cross product). 

However, there are well-known traffic volume periodicities that are lost when reporting 

AADT. Paradoxically, these periodicities are ingrained in AADT production processes.  
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More generally, applications that use AADT, but fail to consider the periodicities in traffic 

that are explored in this thesis, are vulnerable to the impact those periodicities have on 

the application context—whether it relates to regulatory compliance, infrastructure design, 

or safety and operations. Conversely, the demonstrated consideration of these 

periodicities, as with the hourly cross-product equivalents introduced in Chapter 5, 

provides evidence that practitioners may benefit from a more explicit representation of the 

distribution of traffic volume in time and space. Such an approach could be similarly 

applied to other AADT use cases to determine the extent to which such benefits might 

occur in other transportation applications. 

6.2 FUTURE RESEARCH 

Future research topics are presented in each chapter that extend the findings of each 

individual work. To summarize, these recommendations are: 

• To test the accuracy and precision of each AADT estimation formula, presented in 

Chapter 2, for longer periods of data loss (i.e., greater than 15 days). 

• To test the applicability of the data-driven assignment method, presented in 

Chapter 3, in other regions and over multi-year spans. 

• To test the validity of dynamic traffic pattern group assignments relative to static 

assignments over multi-year spans. 

• To test the correlation between speed-based probe data and truck traffic on major 

highways in provinces outside of Manitoba. 

• To develop a model that estimates AADT by integrating passively-collected probe 

data and conventional traffic data.  

• To test the validity of cross-product equivalents, presented in Chapter 5, using 

detailed rail and traffic data (i.e., per-vehicle records). 
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More broadly, the previous subsection discussed the discrepancy between modest 

improvements to AADT estimates and relatively large variability in traffic volumes over 

time. Research into improving AADT estimation procedures is ongoing. It is unclear, 

however, how valuable this knowledge is in the context of traffic data applications. For 

example, employing the data-driven assignment method developed in Chapter 3 is shown 

to potentially reduce errors by roughly 2.5% of the true AADT, on average. Meanwhile, the 

daily traffic variations at a single site can be in excess of 100% of the AADT, as shown in 

Chapters 4 and 5. This reveals a potential avenue for future research: to investigate the 

elasticity of multiple traffic data applications to AADT inputs. This would reveal the relative 

value of allocating resources to refining AADT estimates. 

A similar direction for future research could focus on revising traffic data applications 

themselves. This thesis has shown that AADT estimates are not always easily 

comparable. There are multiple methods and technologies available to collect traffic data 

and produce AADT estimates, each of which has their own underlying assumptions, 

strengths, and weaknesses. Further, identical AADT estimates may also summarize traffic 

with different underlying traffic patterns that, paradoxically, were likely used when 

generating the AADT estimates. However, many applications, like the use of the cross-

product to assess grade crossing performance as explored in Chapter 5, require AADT as 

an input. As shown for this application, there is merit in revising the fundamental 

application of AADT in various transportation engineering and planning contexts to 

consider the spectrum of traffic volumes experienced at sites or the measured periodic 

tendencies of traffic by hour, weekday, or month.  

6.3 FINAL REMARKS 

AADT is the fundamental statistic to describe traffic volume. It is easy to understand, 
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conveniently summarizes traffic volume at a site, and is widely applied thanks to this 

simplicity. However, the research presented in this thesis highlights critical limitations of 

AADT. Specifically: 

• AADT estimates may be produced using different source data with inherent effects 

on the accuracy of the estimates (e.g., comparing AADT estimates using short 

duration count data with those using continuous count data). 

• AADT estimates may be produced using different formulations, each of which may 

bias the resultant estimates by imposing their own built-in assumptions to the 

AADT calculation (e.g., calculating AADT using the simple average or the 

AASHTO method makes different assumptions about any missing data). 

• The only traffic characteristic that AADT expresses is the average daily traffic (i.e., 

it does not represent the natural, measurable periodicities in traffic volumes that 

are experienced at a site).  

In conclusion, the research finds that, while AADT estimates are convenient to calculate 

and ubiquitously applied, there is a need to better disclose the source data and 

methodologies used to produce AADT estimates to avoid misuse and false assumptions 

about comparability. Further, AADT summarizes the traffic at a site into a single average 

volume, which fails to express the periodical traffic variability at a site known to influence 

various transportation applications.  
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