A STRUCTURED CONDITION NUMBER FOR KEMENY’S
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Abstract. Kemeny’s constant is an interesting and useful quantifier describing the global average
behaviour of a Markov chain. In this article, we examine the sensitivity of Kemeny’s constant to
perturbations in the transition probabilities. That is, we consider the problem of generating a
condition number for Kemeny’s constant, to give an indication of the size of the change in its value
relative to the size of the perturbation. We provide a structured condition number and determine
some illuminating upper and lower bounds which connect the conditioning of Kemeny’s constant to
well-studied condition numbers for the stationary vector of the Markov chain. We also investigate
the behaviour of this structured condition number for several infinite families of Markov chains.
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1. Introduction. A Markov chain is a mathematical model which may be used
to describe a dynamical system which transitions between a finite number of distinct
states, in discrete time-steps. The movement from one state to another is dictated by a
prescribed transition probability; in particular, given a finite set of states {s1, ..., sn},
the probability of the system moving from s; to s; in a single time-step is given by
some t; ; € [0,1]. In this way, the evolution of the Markov chain is a stochastic
process which is memoryless, in that the behaviour of the system in the next time-
step depends only on the current state of the system. More formally, a Markov chain
is thought of as a sequence of random variables { Xy | k =0,1,2,...}, where each X},
takes on a value from {si,..., s, } with some probability, and this stochastic process
satisfies

P[Xk_;,_l = xk_H | Xk = Tky--- ,XO = xo] = P[Xk_;,_l = xk_H | Xk = .Tk].

The transition probability P[Xx11 = s; | Xi = s;] is written as ¢; ;.

The Markov chain is represented completely by its probability transition matriz
T = [t; ;], which is a nonnegative, row-stochastic matrix—i.e. all rows sum to one,
which we write as T'1 = 1, where 1 represents the vector of all ones. Given an initial
probability distribution vector wug, the probability distribution after k time-steps is
given by ukT = ug T*. Furthermore, if T is irreducible, the long-term probability
distribution of the Markov chain is given by the left eigenvector w of T corresponding
to the eigenvalue 1, normalised so that w1 = 1. This is referred to as the stationary
distribution vector of the chain, having the property that w'T = w'". The short-term
behaviour of the Markov chain is described by the mean first passage times m; ;, for
1,7 = 1,...,n. The mean first passage time from s; to s;, m; ;, gives the expected
number of time-steps before the system reaches s;, given that it starts in s;; that is,

mi}j = E[k | Xk = Sj,X() = Si],

where E[-] denotes the expected value. Note that m;; denotes the mean first return
time of state i, and is given by wi

*The results of this article also appear in the Ph.D. thesis of the first author (see [3]).
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2 J. BREEN AND S. KIRKLAND

An extremely interesting quantifier of the behaviour of an irreducible Markov
chain is Kemeny’s constant. This was first defined in [18], and can be written as

KZ(T> = ijmi,j,
J#i
which may be interpreted in terms of the expected number of time-steps required to
reach a randomly-chosen destination state from a fixed starting state s;. Remarkably,
this was shown to be independent of the index ¢, and so is named Kemeny’s constant,
and denoted by K(T'). It is easily seen that Kemeny’s constant may also be written

IC(T) = Z Z w;m4 ;Wj,
i g
admitting the interpretation of IC(T") in terms of the expected length of a random
trip between states in the chain, where the initial and terminal states are chosen
randomly according to the stationary distribution of the Markov chain. Levene and
Loizou showed in [27] that Kemeny’s constant can also be expressed in terms of the
eigenvalues 1, \a, ..., A, of T, with

(1.1) K =3 EA .

Remark 1.1. There is some inconsistency in the literature regarding the definition
of Kemeny’s constant as

’C(T) = Z wjmi,j,

j=1

for any index i. In particular, the quantity 2?21 w;m, ; is often considered, which is
equal to O(T') 4+ 1. There is no great difference in the analysis of these two quantities,
but it is worth noting. The issue is further confounded by the fact that some consider
first hitting times as opposed to first passage times, which are equivalent save for the
convention that m;; = 0 when considering hitting times. When expressing Kemeny’s
constant in terms of hitting times, K(T') = > , wjm,; and K(T) = 3_,,; wjm, ; are
interchangeable, although we note that in [2], the former is used since equality still
holds in the expression for continuous-time Markov chains.

There are many applications of irreducible Markov chains to real dynamical sys-
tems, including urban road network dynamics (see [9]), molecular conformation dy-
namics (see [10]), and the spread of infectious disease (see [1]). In each of these, Ke-
meny’s constant is a valuable measure: in urban road networks, the value of K(T') pro-
vides insight into how well-connected the urban area is; in molecular conformational
dynamics, the value of K(T') could indicate the presence or absence of metastable
sets (which is extremely useful in computational drug design); in an infectious disease
setting, K(T') provides a measure of how quickly epidemic levels are approached.

Given the utility of Kemeny’s constant in practical applications, it is worthwhile to
consider how sensitive it is to perturbations in the transition probabilities. For those
modeling with Markov chains using real data, the transition probabilities derived from
these data are usually only sample estimates, and not true values. The transition
matrix of this model can then be viewed as a perturbation of the ‘true’ transition
matrix, and answering the question of how sensitive the calculation of K(T') is to
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KEMENY’S CONSTANT CONDITION NUMBER 3

errors in the data gives a measure of confidence in the computed value for Kemeny’s
constant. Further, numerical techniques for computing Kemeny’s constant are subject
to round-off errors, and hence an understanding of the conditioning of Kemeny’s
constant is needed in that setting as well.

In this article, we develop a structured condition number for Kemeny’s constant in
Section 3. In Section 4, we determine bounds which provide insight into the transition
matrices for which Kemeny’s constant is poorly-conditioned, and also connect the
conditioning of Kemeny’s constant to other notions of conditioning in Markov chain
theory. We also explore the value of this structured condition number for some infinite
families of matrices in Section 5. The results of this article also appear in part in [3].

Central to the results of this article is a certain type of generalized matrix inverse
of a singular matrix known as the group inverse. The singular matrix of concern in
Markov chain theory is I —T', which has 0 as a simple eigenvalue when 7' is irreducible.
From the eigenvalue expression (1.1) for (T'), and from spectral properties of the
group inverse, it may be shown that K(T) is equal to the trace of the group inverse
of I —T. We give a short introduction to the group inverse of a singular matrix here
before proceeding with the subject of the article.

1.1. The group generalized inverse of a singular matrix.

DEFINITION 1.2. Let A be a complex singular matrix for which the algebraic and
geometric multiplicities of the eigenvalue 0 of A are equal (that is, 0 is a semisimple
eigenvalue). Then the group inverse of A, denoted A%, is the unique matriz satisfying

AA* A = A; A AAF = A AA* = AT A.

To find the group inverse of a singular matrix A for which the eigenvalue 0 is
semisimple, one may consider the Jordan form of A. That is, there exists an invertible

matrix P such that o
_ B -1
A=r [%W} P

such that B is invertible. Then the matrix

[ Bt'0],.,
X_P[ 5 O}P

can readily be seen to satisfy the three equations of the above definition. To prove
uniqueness, one must consider the range and null space of X and of A; see [26, Section
2.1] for more details. We remark that the group inverse is a special case of the Drazin
inverse of a singular matrix.

We give some spectral properties of A# which will be useful in the remainder of
the paper. For detailed discussion on the group inverse, the interested reader may
refer to [26].

LEMMA 1.3. Let A be a singular complex n x n matriz with 0 as a semisimple
eigenvalue, and let A% be the group inverse of A. Then A% has the following spectral
properties:

(a) A% has 0 as a semisimple eigenvalue, and its multiplicity is equal to the multi-

plicity of 0 as an eigenvalue of A.

(b) For a vector v, Av = 0 if and only if A%v = 0. Similarly, v A =0 if and only if

vl A# = 0.

(c) X # 0 is an eigenvalue of A of multiplicity m if and only zf% is an eigenvalue of

A# of multiplicity m.
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4 J. BREEN AND S. KIRKLAND

(d) AilvT: v if and only if A%v = %v. Similarly, v' A= X' if and only if vT A% =
X'U .

(e) The matriz I — AA¥ is the eigenprojection of A onto the eigenspace of A corre-
sponding to the eigenvalue 0. In particular, if 0 is a simple eigenvalue of A (having

multiplicity 1), with right and left null vectors v and u' respectively, normalised
so thatu'v =1, then AA# = A#A =T —ovu'.

From the statement of this lemma, we know the following about the group inverse
of @ = I — T where T is the transition matrix of an irreducible Markov chain, with
stationary vector w:

(a) Q7 has 0 as an eigenvalue of multiplicity 1.
(b) Q#1 =0, and w' Q* = 0.
(c) If 1,Xa,..., A\, are the eigenvalues of T, the eigenvalues of Q¥ are given by

0, ﬁ, ce ﬁ Hence K(T') = trace(Q%).

() QQF =Q#Q=T- 1.

Finally, we make a short remark about the computation of the group inverse of
I — T where T is the n X n transition matrix of an irreducible Markov chain. One
method involves the inversion of any (n — 1) x (n — 1) principal submatrix of I — T,
which is discussed in [26, Prop. 2.5.1], with a cost of approximately 2n? floating point
operations (or flops). Another method involves the QR factorisation of the matrix
I — T, which may be accomplished with approximately 1—31713 flops, and we remark
that this method is known to be more computationally stable. The interested reader
may find further discussion in [26, Chapter 8].

2. Conditioning problems in Markov chain theory. Suppose T is an ir-
reducible stochastic matrix representing a Markov chain, with stationary vector w.
Then suppose that T' is perturbed to form some new irreducible stochastic matrix T,
with stationary vector w. How different can w and w be, relative to the magnitude of
the perturbation? An answer to this question determines how sensitive the long-term
behaviour of a system modelled by a Markov chain can be to small changes in the
transition probabilities.

The above problem is referred to as conditioning of the stationary vector, and is
formalised as follows: Given T, an irreducible stochastic matrix with stationary vector
w, we wish to determine some function f(T), such that if T = T+ E is also irreducible,
nonnegative and stochastic with stationary vector w, then for some appropriate p, g,

(2.1) lw = wll, <[[Ellq - f(T)-

This function f(T) is referred to as a condition number. The norms we will most
frequently discuss are the co-norm and the 1-norm. We recall that for any real m x n
matrix A,

n
[Allo = max > agl,
i=1,...,m <

Jj=1

and
m
Ay = max > lai;l,
j=1,..n 4
i=1
so that [[AT|l1 = [[A]lo- The matrix norm || - ||o is sometimes referred to as the
absolute row sum norm, and || - |1 as the absolute column sum norm. For more on

vector and matrix norms, see [13, Chapter 5].
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KEMENY’S CONSTANT CONDITION NUMBER 5

Solutions to these conditioning problems usually rely upon some generalized in-
verse of the singular matrix I — T'; one example of this is the ‘fundamental matrix’,
defined in [18] as Z = (I — T + 1w")~'. However, in the landmark article [30] by
Meyer, the group inverse is introduced as the generalized inverse of choice to be used
in Markov chain theory, with the author stating that “If T is the one-step transition
matrix of a finite homogeneous Markov chain and if A = I — T, it will be shown
that once the group inverse, A%, of A is known, then the answer to every important
question concerning the chain can be obtained from A#.”

The group inverse of @ = I — T is valuable in answering questions regarding
the conditioning of the stationary vector due to the following argument: Given T,
w, T and W as above (so that T = T + E), from the eigenequation @' T = o', it
follows that ' (T+E) =@ ", and sow'E = @' (I —T). Multiplying on the right by
Q# = (I —T)#, we have @' EQ¥ = " QQ¥. Since I — QQ7 is the eigenprojection
of Q onto the eigenspace corresponding to the eigenvalue 0, QQ¥ = I — 1w (from
Lemma 1.3 (e).) Hence

WTEQY = (I —1w')=u" —w'.

It is from this relationship that many condition numbers of the type in (2.1) are
derived; hence this f(T) is frequently some function of the entries of the group inverse
(I —T)%.

We note that Meyer’s assertion in [30] that the group inverse is the “correct”
choice of generalized inverse in Markov chain theory is not universally accepted; in
[14], Hunter presents a more comprehensive study of the uses of generalized inverses in
Markov chain theory, giving expressions for the stationary vector, mean first passage
times and their moments in terms of multiple classes of generalized inverses. As is
elaborated in, for example [15, 16], Hunter shows how many Markov chain theory
results can be expressed in more general terms via any choice of a generalized inverse.
A discussion of the usefulness of choosing other generalized inverses is given in [14,
Section 7]. We exclusively consider the group inverse in this article, but remark that
when T is irreducible with stationary vector w, and if G is any generalized inverse of
I—T, then Q% = (I —1w")G(I — 1w") (as shown in [14, Thm 6.3]), and conceivably
the results of the present paper could be generalized using this observation to results
concerning other choices of generalized inverses.

Originally, Schweitzer approached conditioning theory regarding the stationary
vector of a Markov chain using the fundamental matrix of the chain, 7 = (I = T +
Tw")~!, and showed in [31] that

[ = wlly < [|Z]|oo] | Ellco-

This was followed by Meyer in [28], who instead used the group inverse Q¥ and showed
that
1% = wlls < Q" [loo | Elloc-

Succeeding these are a long list of improvements to and variations of these condition
numbers, along with new approaches to analysing the sensitivity of the stationary
vector by determining bounds on the condition numbers in terms of the eigenvalues of
the matrix (see [29]) and the mean first passage times (see [8]), as well as determining
the sensitivity of a single entry of the stationary distribution vector (see [23]). A
survey is given in [7], and we also refer the reader to further work since then in
[22, 23].
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6 J. BREEN AND S. KIRKLAND

We now give two examples of condition numbers of the stationary vector which
will also be used throughout this article.
Let T be an irreducible stochastic matrix, and let Q = I — T. Define

1
(2.2) r3(T) = 5 g}%gn(qﬁ —aly)
and
1 n
_ 1 # gt
(2,3) n6(T) =3 1?}?)%711; |qi,k 4kl

Both x3(T") and ke(T) act as condition numbers, proven by Haviv and Van der
Heyden (see [11]) and by Seneta (see [34]), respectively. In particular:

THEOREM 2.1 ([11, 34]). Let T' be an irreducible stochastic matriz with stationary
vector w, and let T =T + E also be an irreducible stochastic matrix for some matriz
E, with stationary vector w. Then:

(a)

[ = wlloo < [|E|oors(T).
(b)

[@ = w1y < [ Ellocks(T).-

As we will show in Theorem 4.2 and Proposition 4.4 below, the condition numbers
k3(T') and ke(T') are closely connected with the conditioning properties of Kemeny’s
constant. Note that rg(7T') is also a special case of the coefficient of ergodicity of the
group inverse Q¥ (see [33, 34]), and is sometimes denoted as 7(Q#). We note that
the numbering of these condition numbers originated in the survey paper [7] by Cho
and Meyer, in which the most prominent condition numbers in the literature at the
time were listed and compared.

The condition numbers k3(T) and xg(7T) are well-known as the “most optimal”
condition numbers in Markov chain theory. In particular, a study of condition num-
bers for the stationary vector is given in [20], in which the authors show that if f(T)
is any condition number with respect to the (p,o0) norm pair—that is, satisfying
o =l < | Elloc f(T)—then 7,(Q#) < F(T), where

TO#
Tp(Q#) = sup ||y g HP
i
y#0

Furthermore, 7,(Q%) is shown to be a condition number for the stationary vector of
a Markov chain, and so together this gives that it is the minimum of all condition
numbers with respect to the (p, 00) norm pair. Since 71 (Q%) = rg(T) and 7., (Q%) =
k3(T'), and since the 1- and co-norms are the most commonly-used vector norms in
considering conditioning problems of the stationary vector, it is arguable that these
two condition numbers are the most useful ones to consider. Indeed, much of the
literature focuses on these two in particular (see for example [22, 19], and an overview
in [26, Section 5.3]).

This manuscript is for review purposes only.
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KEMENY’S CONSTANT CONDITION NUMBER 7

Remark 2.2. Note that in [34], it is shown that for an irreducible stochastic matrix
T of order n, with eigenvalues 1, Ag, ..., A

1
<
K’G(T) —Z 1_)\j7
Jj=2

ie. k(T) < K(T). Therefore || — wl||; < [|E|«cK(T), so that Kemeny’s constant is
itself a condition number for the stationary distribution of the chain. Note that this
was shown independently in [15].

The body of work on perturbation analysis and condition numbers for station-
ary distribution vectors has grown and developed since the 1960s, and the field is
well-established. In this article, we begin the development of a body of work on per-
turbation analysis and condition numbers for Kemeny’s constant. That is, we wish
to tackle the question of how sensitive Kemeny’s constant is to perturbations or er-
rors in the transition probabilities of the Markov chain, for a given transition matrix
T. More formally, given an irreducible stochastic matrix 7" and perturbing matrix
E (such that T + E is also stochastic and irreducible), can we determine an upper
bound for |K(T + E) — K(T)| in terms of ||E| (for some choice of norm || - ||) and
some function of 77 In the following sections we will prove some results to this end,
and determine a structured condition number for K(T)—that is, a condition number
under the restriction that the size of the perturbation is small.

DEFINITION 2.3. Let T be an irreducible stochastic matrixz. The structured con-
dition number for Kemeny’s constant is defined as

{ IK(T + E) - K(T)]

C(T) := limsup
€

e—0+

T + E is irreducible, stochastic; ||El|c < 6} .

The structured condition number for K(7') may be interpreted as a measure of the
maximum change in K£(T') when T' undergoes some perturbation, where it is assumed
that the norm of the perturbing matrix is vanishingly small. This lends itself more to
the application of considering numerical errors in a computational setting, with C(T')
interpreted in terms of how robust the calculation of I(T') is. A similar concept has
been examined in the context of generalized eigenvalue problems in [12].

It is important to note that while the natural inclination is to attempt to derive
an expression of the form

IK(T + E) = K(T)| < |[Ellooc(T),
where ¢(T") depends only on T, the following key example shows that there is no
possibility of such a general expression.

Remark 2.4. Let T be any irreducible stochastic matrix, and consider a pertur-
bation which results in a convex combination of T" and the identity matrix; that is,
for some a € (0,1], let £, = (1 —a)({ — T, so that

T+ E,=aT+ (1-a)l.

Then ||E,|loo < 2(1 —a) by the triangle inequality. However, it is clear that as a — 0,
K(T + E,) — oo, since the group inverse of I — (T + E,) is (I — T)#; that is,
K(T + E,) = 1K(T). In particular, since || E,[|« is bounded above by 2 there is no
general expression of the type

[K(T + E) = K(T)] < [|Ellooc(T)

This manuscript is for review purposes only.



8 J. BREEN AND S. KIRKLAND

that holds for all admissible perturbing matrices E. That observation further moti-
vates our interest in analysing the situation where the norm of E is small, as antici-
pated by Definition 2.3.

An analysis of the behaviour of Kemeny’s constant of a Markov chain under
perturbation has also been considered in [5]. The authors consider two specific types
of perturbations: the first, when E = e;u' and only one row of T is changed; the
second, when E = 1u', so that every row is perturbed in the same way. In both
cases the vector u is chosen appropriately so that nonnegativity, irreducibility, and
stochasticity of T+ E is preserved.

3. A structured condition number for Kemeny’s constant. Throughout
this section, T is considered to be a nonnegative stochastic matrix of order n with 1
as an algebraically simple eigenvalue, and w denotes the stationary vector of T'. Let
FE denote some perturbation matrix of T; that is, F' is an n X n matrix whose rows
sum to zero, such that T =T+ E is also nonnegative and stochastic, with 1 as an
algebraically simple eigenvalue. Let Q =1 — T, and Q =7-T.

In [28], the following is proven to give an expression for Q% in terms of Q# and
E.

THEOREM 3.1 ([28]). Let T, E, T, w, Q, and Q be defined as above. Then
I — EQ# is invertible, and

Q* =Q*(I - EQ*) ™' — 1w (I - EQ*)'Q*(I — EQ¥)~".

We now use this perturbation formula to derive an expression for (T + E).

LEMMA 3.2. Let T, E, T, Q, Q be defined as above. If the spectral radius
p(EQ*) < 1, then

K(T)=K(T)+ Ztrace (@7 (EQ)).
j=1
Proof. Recall that K(T) = trace(I — T)#. Hence from Theorem 3.1,

K(T + E) = trace(Q%)
= trace(Q¥ (I — EQ™)™!) — trace(lw ' (I — EQ¥) Q¥ (I — EQ¥)™1).

T

Then since the trace of any rank-one matrix uv " is v u, the trace of the second term

above is
trace(lw' (I — EQ*)7'Q# (I — EQ#) ") =w' (I — EQ#)™'Q* (I — EQ¥) 'l
Now, I — EQ* is invertible, and if p(EQ*) < 1, then
(I— BQ#)' = I + EQ* + (EQ*)? + (BQ#) + .-
and hence, since Q%1 = 0, (I — EQ#)~'1 = 1. Moreover,

trace(lw ' (I — EQ¥)~'Q* (I — EQ*)™') =0,

This manuscript is for review purposes only.
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again because Q#1 = 0. So

K(T) = trace(Q%)
= trace(Q¥ (I — EQ#)™1)
= trace(Q + QT EQ™ + Q7 (EQ™")? +---)
= trace(Q%) + Z trace(Q7 (EQ™)7)
j=1
=K(T)+ Z trace(Q¥ (EQ™)).
j=1
|
Remark 3.3. The result above requires p(EQ%) < 1. However, it is well-known
(see [13, Theorem 5.6.9]) that for any matrix norm || - || and n x n matrix A,
p(A) < || A].
That is, given any matrix norm || - ||, it is a sufficient condition for Lemma 3.2 that

|EQ#|| < 1. Consequently, by the submultiplicativity of matrix norms, it is hence
sufficient that ||E| < m. Thus for any matrix norm, if || E|| is sufficiently small,

the expression for K(T') given in the result above will hold. We will typically use the
absolute row sum norm || - ||oo-

THEOREM 3.4. Let T be an irreducible stochastic n x n matrix; let Q = I —T;

and let ¢'\*) denote the (i.j) entry of (Q#)?. Then
B em) = 3 max {maxleff?} - ali) 56) - mindafi) ).
j=1
where
a(j) = min{g [ |t;; > 0};
B(j) = max{g/ ;" |t;; > 0}.
Proof. Let € > 0 be given. Let T be an irreducible stochastic matrix of order

n, and let E be a matrix of order n with zero row sums, such that 7 = T + E is
irreducible, nonnegative and stochastic, and ||E||cc < €. From Lemma 3.2, we have

K(T) = K(T) = _ trace(Q* (EQ¥)).

Jj=1

We first concentrate our attention on trace(Q# EQ#) = trace(E(Q%)?). Repre-
senting the rows of F by u;r, i1 =1,...,n, and letting e; denote the jth standard basis
vector, we can write

trace(E(Q")?) = Z ujT(Q#)Zej-

For every j, ujT = ejTE can be written as 7 — y ', where 2 and y are nonnegative
vectors, and ' 1 = y'1 < . Note that if y; > 0, then ¢;; > 0, since T + E is

nonnegative.

This manuscript is for review purposes only.
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Fixing j, we have

uj (Q%)%; = fET(Q#)er — 5 (Q7)%;

#(2
- Ziﬂqu] Zqul J( :
< ;:m -max{q/ ¥}y - ;yz ‘a

where a(j) = min;{g;’; #(2) | t;; > 0}. Therefore

(3.2)

o] (@ ey < 5 (maslaf?} - ).

Also consider that

u;‘r(Q#)er = Z lql j Zqul j
=1
> Y a - minfgf} - Zyl

I
-

where 3(j) = max;{q;; #(2) | ;1 > 0}. Therefore

(3.3)

o] (@ Pe; 2 § (minfaf*) - 50) )

Hence from (3.2) and (3.3),

] (@] < § - max {max(afi?} - (7). 5) - minlaf; 7} }.

and so

(3.4)

| trace(Q* EQ™)| < Z lu) (Q%)¢]

j=1

3 - . . .
= > max {max{¢*'} — a(j), B(j) — min{g#{*}} .
j=1

IN

Finally, we conclude

|K(T) — K(T)]

€

= é trace(Q¥ EQ™) + Ztrace(Q#(EQ#)j)

=2

3 2 max {max(al§?) = a(i). 96) - min{al§”) } + 00)

IN

and hence as ¢ — 07, the supremum is bounded above by

(3.5)

%Z ax{max{qz (2 >} a(j), B() — mln{qz #(2 )}}

This manuscript is for review purposes only.
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KEMENY’S CONSTANT CONDITION NUMBER 11

To show that the supremum is in fact equal to (3.5), it suffices to show that
for any matrix 7', there is some matrix E for which this bound is achieved by
| trace(Q# EQ#)|. We will demonstrate how to choose the matrix E—in particular,
the u;—so that equality holds in the upper bound (3.4) on |trace(Q* EQ#)|.

Fix j, and for conciseness, let a; = max;{q;, #(2 )} a(j), and b; = B(j) —
mlnz{q } Let 71 be an index such that

#(2 . . 2
qi % = a(j) = minfg/* | £, > 0},

and 79 be an index such that

ah = B() = max{e/* | ;1 > 0}.

Let s; be an index such that

#(2) _

G5, = max{q;; 7o,

and so be an index such that
#(2 . #(2
q52(]) _ mlm{ql,j( )}.

Then the j** row of E, u]T = ejTE, is chosen as follows:

S(el —el) if max{a;,b;} = ay;

(esT2 - 6;2) if max{a;, b;} =b;.

Then
u) (Q%)e; = |u; (Q%)%e;| = max{a;,b;}.

Choosing in this way for each j, we have E = Z?Zl ujejT, with ||E||ec = €, and with

| trace(@QTEQ)| = mem@w aj), B() — minfg? P} } .

Furthermore the (7, j) entry of E is negative only if ¢, ; > 0; hence T+ E is
nonnegative (for appropriate ). d

We present the following small example to further reinforce the distinction be-
tween a condition number and a structured condition number and why it is important
to keep in mind that the structured condition number only provides information of
value when it is assumed that the norm of the perturbing matrix is small. This is a
subcase of Remark 2.4.

Example 3.5. Consider the 2 x 2 stochastic matrix
0 1
=i o
which has K(T') = 1. Furthermore,
1

Q# = {_41 _fq and (Q#)2 = [ %1

4 4

|
ool
0ol I
ool
[E
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12 J. BREEN AND S. KIRKLAND

Hence C(T) can be calculated to be 1.
Now consider the perturbing matrix

for 0 < a <1 so that ||E||o = 2a and

T eT4E— [ a 1- a]
1—a a
which is a stochastic matrix with eigenvalues 1,2a — 1. Hence IC(T )= 27—12(1, and
K(T) = K(T)| = 5=
2-2a
Bl
4 —4a
1
> 1Bl = CD)|Elloe-

In fact, as a — 1, the associated Markov chain with transition matrix T approaches
a chain which is completely decoupled, and so K(T') — oc.

3.1. Interpretations for C(T) and (Q#)2. In this section, we give some ex-
ploratory observations which connect the expression for C(T) in terms of (Q#)? with
some other properties of the chain. It is expected that these may lead to other work
regarding the nature of Kemeny’s constant and how it is intricately interconnected
with other key quantifiers of a Markov chain’s behaviour, such as first passage times.

We note that the basic building block of the formula for C(T) in Theorem 3.4 is

the term qf @ _ q,ﬂ?), for some 1, j, k. This term and alternate expressions for it are

the subject of this section.

First, we remark that if one has already computed the mean first passage matrix
M and the stationary vector w for a chain, then the group inverse @# can be readily
computed from these. In particular, it is known (see [30]) that

M= (I-Q*+JQf)yw,

where W = diag(w), Aqg represents the diagonal matrix with entries a;; on the
diagonal, and J = 117, the n x n all-ones matrix. Hence

MW -1 = —Q* + JQF.
Multiplying on the left by w ', we obtain

w (MW —1)=1"Q}
hence

Q* =I1+JQh — MW
=T+ 1w (MW —1I) - MW
= (I —1w")(I - MW).

Note that this argument is given in [26, Remark 6.1.2].

This manuscript is for review purposes only.



KEMENY’S CONSTANT CONDITION NUMBER 13

From this, we can derive an expression for (Q#)? in terms of M and w.

Q%) = (I = Tw")(I - MW))?
=T —MW —1w' + 1w MW)2.

We now consider the difference of two entries in the same column of (Q#)2:

2 2
P — gD = (e — en)T(QF)e;
=(ei—ex) (I —MW — 1w + 1w MW)3e;
=(ei—ex) (I —MW)YI MW —1w' + 1w MW)e;,

since (e; — ex) ' 1 = 0. From here, we have

qf.(Z) _ q;‘#’é?) = (e; — ek)T<I _ MW)ej
—(e;—ex) TMW(I — MW — 1w + 1w MW)e;
=(e;—er) (I —MW)I - MW)e;

+(ei —er) T MWIlw' (I — MW)e;,

and since the matrix MW1lw" = (K(T) 4+ 1)1wT, and all rows are equal, it follows

that

qz#,j(2) _ qt;m — (ei _ ek)T(I _ MW)er

= (es —ex) (I = 2MW + (MW)?)e;.

This expression shows the dependence of the sensitivity of Kemeny’s constant on

relationships between mean first passage times and the stationary vector.

Next we relate the term qu@) — qf;z) with variances of first passage times. We

find it particularly interesting that the sensitivity of Kemeny’s constant should depend
on how widely varying first passage times are in the chain. Recall from [4, Theorem
8.4.4] that the matrix V of variances of first passage times is given by V = B — Mj,
where

B = MQQ,W ™! +1) +2(Q* M — J(Q¥ M)a),
and My = [(m; ;)?]. That is, B is the matrix of second moments of first passage times.

Since M can be expressed in terms of Q7 , and the term Q% M is present in the above,
it should be possible to write (Q#)? in terms of M, W, and B. In particular, we have

B =2MQI,W ™" + M +2Q*(I - Q% — JQ )W —2J(Q* M)y
— BW =2MQ} + MW +2Q% — 2(Q%)? — 2J(Q% M) 4,W
— Q)2 = MQF + SMW + Q¥ — LBW — J(Q# M)y, W.

So

a7 = g = (e — er) T (QF) e

= (mij —mrg)ql; + 3(miy —mp)ws + (qf; — af ;) — $(big — brj)w;.
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14 J. BREEN AND S. KIRKLAND

# _ #
. qds c— 4. o . .
Since m, s = T if r #£ s, we can rewrite

s

(3.6) a; =it = —wi(mij —ma ;) + 65 — O,

where 6, s is the Kronecker delta function, accounting for the cases where i = j or
k=j.
To further analyse this expression, recall (see [25]) that the quantity

n
Q; = Zwkmk,j
k=1
k#j
is known as the accessibility index of the j'" state of the Markov chain, with an

interpretation in terms of the expected time to reach state j, beginning at a random
state (distinct from j) in the chain. Recalling also that the accessibility index may

be written «; = 2—] (see [25, Theorem 1.1(a)]), we use this in the above to write:
J

2 2
¢ - q;fﬁ- ) = (mig — mug)agw; — Jwjl(mi; —mig) + (big = bey)] + (855 — Gry),
or
2 2
qu( ) q;ﬁﬁ V= wi(miy — mp) (g — ) — S (biy — by) + (81 — Oj).

From these expressions, we can see that the sensitivity of Kemeny’s constant (i.e. the
value of C(T')) depends on the differences between first and second moments of first
passage times from distinct pairs of states (i and k) to the same state (j). Both the
importance of that state j (as described by the corresponding entry of the stationary
distribution) and the accessibility of that state play a role in this expression.

We note that in [17] an expression is given for the entries of the group inverse
in terms of the accessibility indices, stationary vector entries, and mean first passage
times:

af; = wjla; —1—mij) + 6 ;.

Given that qu@) — q,ﬂ?) = lel(ql#l — q/,f&l)ql#j7 along with (3.6) and the above, we
have

n n
2 2
qu( ) — q?f; = > —wi(mig — mea)af; + > (660 — dka)af,
P =1
n
== wilmag —mag) (wiay — 1 —muy) +65) + (af; — gt )
=1
n n
= —wj(a; = 1) > (wi(mig —mya)) + > wi(mig —my)m,
=1 =1

—wj(mi; —mp;) = w;i(mi; —my;) + ;5 — Ok,

n n n
= —w;(a; — 1) (E wimig — Y wzmm) + ) wi(mi g — my)m
=1 =1 =1

—2w;(mij — mi ;) + 0ij — Okj-
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KEMENY’S CONSTANT CONDITION NUMBER 15

Note that K(T) +1 = Y, wym,,; for any r, the first two summations cancel, and
we have
n
ij<2) - Q;ﬁ;m = Zwl(mi,l — my)my — 2w (Mg — my ;) + 0 — Ok -
1=1

This is an expression for a key quantity which is present in our expression for C(T),
qf @) _ q,ﬁj@), in terms of the stationary vector entries and mean first passage times.
It is difficult to interpret this as it involves products of various quantities, and these
products do not have a natural or intuitive interpretation as to their role in the Markov
chain. In particular, the summation terms Y ;" wym; my; and — > ,_, wymgmy
make it difficult to work towards an intuitive understanding of the behaviour of Ke-
meny’s constant. One could argue intuitively that if ¢ indexes a state which has poor
access to relatively important states in the chain, which in turn have poor access to
state j, then the value of 2?21 wymgmy; will be large, where we interpret w; as a
measure of the ‘importance’ of state [, and m; ; as a measure of how ‘accessible’ state
7 is from state . These descriptions would need to be extended to the other terms
in the expression, and then finally rephrased in terms of their influence on the value
of C(T) itself, in order to obtain further understanding of the circumstances under
which the value of Kemeny’s constant is sensitive to perturbations. More success
might be achieved if one considers only very simple perturbations of the transition
matrix. For now, it is enough for us to say that it is clear that the sensitivity of /C(T')
appears to depend on the stationary probabilities, the mean first passage times, and
the accessibility of each state, as well as the variances of the first passage times.

4. Bounds on C(T).

4.1. An upper bound for C(T"). While the expression of C(T") in Theorem 3.4 is
accurate, it is a complex expression and provides little direct insight into the nature of
Kemeny’s constant and how it acts under perturbation of the transition probabilities.
We provide below an upper bound which does supply some insight, after the following
technical lemma, originally proven in [32], and of which a proof may be found in [26,
Lemma 5.3.4].

LEMMA 4.1. Let v be a vector in R™ such that v'1 = 0.
(a) Suppose that A is an n X n matriz with complex entries. Then

n
T 1
A ofly < ol - 5H3%XZ|%/¢ — ajkl-
k=1
(b) Suppose that z € C™. Then

lzi — ]

lv" 2 < Jlv[ly - max
i,j 2

THEOREM 4.2. Let T be an n X n irreducible stochastic matriz. Then
(4.1) C(T) <n-k3(T) - ke(T).

Proof. Let T be an irreducible stochastic matrix of order n, and let E' be a matrix
with zero row sums such that T' = T+ F is also irreducible and stochastic. We consider

trace(Q* EQ") = trace(E(Q¥)?) = i e; B(Q%)%e,.

i=1
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16 J. BREEN AND S. KIRKLAND

For any 4, we have from Lemma 4.1(b):

q, — ai;
o] B@F)%e:] < lle] BQ¥ |, - max <2>

-
el BQ| - max(f; — af ).
since qﬁ > qﬁ, for all 4, and j # .
Next, consider that
le) EQ*[lr = (@) ETesllx

n
< |IETeill - 3max 3 lafh — il (by Lemma 4.1(2))
k=1
= |le] Elliro(T).

Hence

s

lef B(Q#)Pes| < glle] Blluro(T) max(e]; — o).

Finally, we have

n
| trace(E(Q%)?)| = ZejE(Q#)%i
=1
<D lel B@Q#)eil
i=1
<35> lle Ellino(T) max(qf; — af)
i=1
< 3B oors(T) ;mkaxmﬁ —af,)
< lIBllsors(T) - nmax(af; - off,)
= n||E||ooks(T)k3(T) (from (2.2)).
It follows that C(T') < n - k3(T)ke(T). |

Remark 4.3. Since we have observed in Remark 2.2 that kg(7T") < K(T') this means
that

C(T) < n - K(T)rs(T).
This furnishes another relative bound, where both the original size of Kemeny’s con-

stant and the size of the perturbation are taken into account. That is,

lim sup
e—=0

{ KT + E) - K(T)]

= K(T) T + E irreducible, stochastic; ||E||s < 5} <n-k3(T).

4.2. Lower bounds for C(T'). In this section we give a lower bound for the
structured condition number in terms of Kemeny’s constant K(7'), and also in terms
of k3(T), ke(T), and as a function of n, the number of states.

This manuscript is for review purposes only.
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KEMENY’S CONSTANT CONDITION NUMBER 17
PROPOSITION 4.4. Let T be an irreducible stochastic matriz. Then

o(T) > L

_ >

K(T).

Proof. Since C(T) is defined as a limit-supremum over all admissible perturbing
matrices F with ||El| < € ase — 0, a lower bound may be produced by determining
this supremum over some subfamily of perturbing matrices E. In particular, for a
given € > 0, by choosing £ := 5(I —T) = §Q, we have E1 = 0, and T=T+Eis
nonnegative and irreducible for small enough €. Furthermore,

[Elloc = emax{l —t;;} <e.
Then, since BQ* = §QQ* = §(I — 1), we have
K(T + E) = K(T) = trace(Q" EQ¥) + trace(Q* (EQ¥)?) + - --

2
= %trace(Q#) + % trace(Q%) 4 - --
5

= 5 - trace(Q#)~
So
KT+ E) KD _ 1 ce(@#)
c 2—¢
and

1
C(T) > B trace(Q%).
Finally, note that by choosing

€
E = 1-T
2 - max;{1 _ti,i}( )

we have | F||- = ¢, and obtain the improvement

o(T) > !

S — #).
Z S0 ming £, aee@”)

Since KC(T) = trace(Q*), the result follows. 0

Remark 4.5. Since kg(T) < K(T) as shown in [34] (and referenced in Remark 2.2
above) and since it is shown in [7] that k3(T") < ke(T"), we obtain from Proposition 4.4
that

C(T) = sre(T)

1
2
and ]
C(T) > 5’13(T)'
In conclusion, Theorem 4.2 and Proposition 4.4 indicate that the conditioning of
Kemeny’s constant is closely tied with the conditioning of the stationary vector.
PROPOSITION 4.6. Let T be an n X n irreducible stochastic matriz. Then

n—1
1

C(T) >

This manuscript is for review purposes only.
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18 J. BREEN AND S. KIRKLAND
Proof. We have that
(4.2) C(T) > LK(T),

and it is well-known (see, for example, [15]) that

(4.3) o) > "2

The result follows. We remark that the inequality is strict since the characterization
of equality in (4.3) is shown in [24] that T' must be permutation equivalent to

o010 --- 0
0 01 0
000 --- 1
100 --- 0
and equality does not hold in (4.2) for this matrix. |

5. Examples. In this section, we investigate the structured condition number
C(T) for some infinite families of matrices. We also examine the upper bound of
Theorem 4.2 and determine some families for which C(T') is on the same order of
magnitude as this upper bound.

T -,
Example 5.1. Let w = [wl wy - wn} be any positive vector such that
>, w; = 1, and form T as a convex combination of the identity matrix and the
rank-one stochastic matrix 1w ; that is, for some c € [0, 1],

T=cl+(1—-c¢)lw'.
Then we have Q = (1 —¢)(I — 1w") and so

1

— 1w’
170(1 w')

Q* =

and
@ = 5
It is easily calculated that

n

1 1
‘= o

Jj=

S =

2(1—¢)?

Meanwhile,

1 1
P E— d T) = .
sa—o 2 me(M) =1

Hence the upper bound (4.1) is (oo coinciding with the value of C (T).

r3(T) =

Note also that in the special case that ¢ = 0 and w' = 217, we have T' = 1.J
and equality holds in both the lower bound of Prop. 4.4 and the upper bound (4.1).
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KEMENY’S CONSTANT CONDITION NUMBER 19

Ezxample 5.2. Consider the Markov chain whose transition matrix is the adjacency
matrix of the directed cycle

0 1 0 0
0 0 1 0
T= oL R
o o0 o0 --- 1
100 --- 0

That is, we consider the random walk on the directed cycle on n vertices. To determine
C(T), we require (Q*)2. In fact, we require the maximum and minimum entries of
each column of (Q#)?2, along with «(j) and 3(j), which in this example are both equal

to qj:_(f?j, foreach j=1,...,n—1, and a(n) = B(n) = qﬂf).
This is an example of a periodic Markov chain, and there is an expression for the

group inverse of I — T (see [21]) which we can use, producing

[ n—1 n—3 n->5 —(n—=3) —(n—1)]
—(n—-1 mn—-1 n-3 n-5 —(n—13)
—-(n-3 —-(n—-1) n—-1 n-3 —(n—25)
Q#:i
2n
| n—3 n—>5 - —(n=3) —(n—-1) n-1 |
Alternatively,

n—l . if i >

2n

1 i—i e
# _ ] o 5, i<y
q;; = _ ontj—i

n

Since Q¥ is a circulant matrix (that is, each row is a shift to the right of the one
preceding it), (Q#)? will also be a circulant matrix. Hence every term in the sum
indexed by j in (3.1) is equal, and it suffices to determine only the first term, and
then multiply by %n; that is,

o(T) = max {max{ ¥} — a(1), 8(1) - min{g#}}
Some tedious computation produces

5 1 1 . 23
g = el <_3n3 + (2k — 4)n? — S+ @k - 2k2)n> ;

if k# 1, and qﬂQ) = =L (n—1)(n—5). It is not difficult to show that

12n

#2) _ @ _ ni-1

Mtk = ©221 12n
while )
n 2
qﬁi) T if n is even;
£2) 2l 24n
maxgq, ;" =
b #e _n -1
= — if n is odd.
Ings 24n

This manuscript is for review purposes only.



20 J. BREEN AND S. KIRKLAND

654 Hence

n2
— if n is even;
655 C(T) == n21§
6 if n is odd.
656  However, with some computation we find
n . .
1 if n is even;
657 ke(T) =1q p2_
if n is odd;
658 and k3(T) = %=L, The upper bound for C(T') given in Theorem 4.2 is then equal to
n?—n e
if n is even;
o9 n3 — n28— n+1
—————— if nis odd;
8n

660 Hence for n large enough, C(T) ~ inks(T)ke(T).

661 Ezxample 5.3. Consider the random walk on the path on n vertices. The transition
662 matrix of this Markov chain is

01 0 O 0
1 1

5 0 5 0 0
0 & 0 3 0

663 T = .
1 1

6o o0 - 5 0 3
0o 0o 0 -~ 1 0]

664  From [26, Example 5.5.1], we have the following formula for the entries of (I — T)%:

4 4An?—8n+3 (i—-1)(2n—i—1)

565 o= — fori=1,...

‘ b1 = T om - 1) oin—1) T heen
an?—8n+3 (n—i)(n+i—2)

# :

66¢ r= — fori=1,...

566 q%n 12(TL71) 2(7171) y or © y ,n

4 4n?—8n+3 (n—1i)(n+1i—2)

667 (5.1 = 2(n — 1, 7)) —
o0 ( ) 4q; ; 6(7’L — 1) + (77, max{z,]}) (’I’L — 1)
_ )
668 _(n N t] ), forj=2,...,n—1landi=1,...,n.
2(n—1)
669 The group inverse of I — T and in particular its square do not follow as neat a

670 pattern as the previous example, so we do not produce here a closed-form expression
671 for C(T'). However, we can determine a lower bound by choosing, for each index j,
672 indices for the terms in the sum (3.1) which may not necessarily be maximum. In
673 particular, for the path on n vertices, we have

1

_ 2 2 2 2
674 C(T) = 5 S @ -aiH+ Y @ -t
1< 25j<n
N 2 2
675 = 3 (@ -a%)).
1<
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KEMENY’S CONSTANT CONDITION NUMBER 21

where the equality comes from the structure in Q% and (Q#)2. In particular, by
examining the expressions in (5.2), one can see that qu = G 41—int1—;; the same
relationships hold for entries of (Q#)2.

Some tedious computation with the aid of symbolic computation software allows
us to compute the following lower bounds for C(T'), where T is the transition matrix
of the random walk on a path on n vertices:

11n® + 65n* + 100n°® — 104002 + 1704n — 720 . .
if n is even

2880(n — 1)
e(r) = 11n® + 80n* — 50n° — 1040n2? + 19591 — 720 e
if n is odd.
2880(n — 1)

Note that both lower bounds are on the order of n?.

Next, we examine the upper bound given in Section 2.2. From [26, Example 5.5.1]
it is known that
(n—2)?

/ﬁg(T) = m

For ¢;(T) = max; ;{>_}_, |ql#k - q;&’fk|}7 it is not difficult to show that the maximum is
attained when ¢ = 1 and j = n (or vice versa). A proof of this claim may be found in
the Appendix. Hence we have k(7)) =Y ;_; |qf e qi | and with some more tedious
computation we find that

—-1)2+1
) % if n is even
l‘<66T = - 2

% if n is odd.

Hence the upper bound is on the order of %4 (ignoring lower order terms), while C(T") is
bounded below by a function which is also on the order of n*. That is, C(T') = ©(n?),
and it is on the same order as the upper bound.

Such a high order of magnitude indicates that Kemeny’s constant is extremely
poorly-conditioned for the random walk on a path on n vertices, particularly since

Kemeny’s constant for this Markov chain with transition matrix 7' is known to be
2n274n+3
T

Fig. 1: The directed cycle on 12 vertices, for which a ‘bad’ perturbation introduces
new transitions displayed here as dashed arcs.
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22 J. BREEN AND S. KIRKLAND

In each of these examples where the conditioning of Kemeny’s constant is poor,
the structure of the transition matrix is very specific. Furthermore, the perturbation
which produces such a large difference in Kemeny’s constant breaks the structure com-
pletely. In the directed cycle example, we observe that this ‘worst-case’ perturbation
introduces many new possible transitions into the chain, taking what is essentially
a deterministic process and making it much more stochastic; see Fig. 1 for the new
transitions introduced under this perturbation to the directed cycle on twelve vertices.

It is natural, then, to ask about the conditioning of Kemeny’s constant where
perturbations must respect the given structure of the transition matrix; that is, con-
sider only perturbations where zero entries are preserved. More formally, consider a
directed graph D, consisting of a vertex set V = {1,...,n} and a directed edge set
E C V x V; then define Sp as the set of all stochastic irreducible matrices T such
that ¢; ; > 0 only if (¢,j) € E. With this definition, we can re-frame the above as
an examination of the conditioning of Kemeny’s constant for a matrix 7' € Sp (for a
given D) where we consider only the perturbations T + E of T where T + E € Sp.
While this is an interesting and natural question, we remark that there is an entire
family of directed graphs given in [5] for which the value of K(T') depends only on the
directed graph, and not on the values of the transition probabilities. Directed graphs
with this property are characterised by the following conditions:

1. Every vertex of D has positive outdegree.

2. There exists an integer k such that all cycles of D have length k.

3. There is a vertex in D that lies on every cycle in D.
Then K(T) = 22=E=L for all irreducible T € Sp, where n is the number of vertices
in D. An example of such a directed graph is displayed in Fig. 2.

U1
V12 @ V2
./7/ \.

Fig. 2: A directed graph D on twelve vertices for which every T € Sp has K(T') equal
to nine.
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Appendix. The following is a short proof of a claim used in Example 5.3 in the
computation of kg(T') := max; ;{> ,_, \qfh - qfk|}, where T is the transition matrix
of the random walk on a path on n vertices.

LEMMA 5.4. Let T be the transition matrixz for the random walk on a path. Then
n
ke(T') = Z |Qf£k - Q#,H-
k=1

Proof. First, we note that by the symmetry in the entries of @, that

n
Z\qfk—qu:Q ‘ka_kaL
k=1 k=1

w3

if n is even, and with an extra term corresponding to k = (n+ 1)/2 if n is odd.
Next we show that for 1 <k <[], minj{qfk} = qf’k. This follows from [6], in
which it is proven that for a tridiagonal stochastic matrix, the group inverse has the
property that
# # #
g 2 Qot1,k = " 2 oo
and that
ay<dh, < <dy

To show that qfﬁ i is a minimal entry in the first [ ] columns of Q#, it suffices to

show that qf < qfﬁ - This is easily confirmed from the formulas given for the entries
of Q# in Example 5.3.

Hence
3] 2l
# _ # g
Hzl%X k:1|q1‘,k aj.k| fg?gn ;(q%k qu)

It remains to show that this maximum is obtained for i = 1. Some computation with
the formulas given in (5.2) produces the following:
] n? —2n — 2i% + 4i

[ if n is even

# # 0\ 4
(@ = @) =4 3 —3n?+n—23(n—2)+4i(n—2)+3

1 =1) if n is odd.

k=1

Both expressions are decreasing functions in ¢ for ¢ > 1; hence the maximum is
attained for i = 1. d
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