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Abstract. Kemeny’s constant is an interesting and useful quantifier describing the global average4
behaviour of a Markov chain. In this article, we examine the sensitivity of Kemeny’s constant to5
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1. Introduction. A Markov chain is a mathematical model which may be used14

to describe a dynamical system which transitions between a finite number of distinct15

states, in discrete time-steps. The movement from one state to another is dictated by a16

prescribed transition probability; in particular, given a finite set of states {s1, . . . , sn},17

the probability of the system moving from si to sj in a single time-step is given by18

some ti,j ∈ [0, 1]. In this way, the evolution of the Markov chain is a stochastic19

process which is memoryless, in that the behaviour of the system in the next time-20

step depends only on the current state of the system. More formally, a Markov chain21

is thought of as a sequence of random variables {Xk | k = 0, 1, 2, . . .}, where each Xk22

takes on a value from {s1, . . . , sn} with some probability, and this stochastic process23

satisfies24

P[Xk+1 = xk+1 | Xk = xk, . . . , X0 = x0] = P[Xk+1 = xk+1 | Xk = xk].25

The transition probability P[Xk+1 = sj | Xk = si] is written as ti,j .26

The Markov chain is represented completely by its probability transition matrix27

T = [ti,j ], which is a nonnegative, row-stochastic matrix—i.e. all rows sum to one,28

which we write as T1 = 1, where 1 represents the vector of all ones. Given an initial29

probability distribution vector u0, the probability distribution after k time-steps is30

given by u>k = u>0 T
k. Furthermore, if T is irreducible, the long-term probability31

distribution of the Markov chain is given by the left eigenvector w of T corresponding32

to the eigenvalue 1, normalised so that w>1 = 1. This is referred to as the stationary33

distribution vector of the chain, having the property that w>T = w>. The short-term34

behaviour of the Markov chain is described by the mean first passage times mi,j , for35

i, j = 1, . . . , n. The mean first passage time from si to sj , mi,j , gives the expected36

number of time-steps before the system reaches sj , given that it starts in si; that is,37

mi,j = E[ k | Xk = sj , X0 = si],38

where E[·] denotes the expected value. Note that mi,i denotes the mean first return39

time of state i, and is given by 1
wi

.40
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2 J. BREEN AND S. KIRKLAND

An extremely interesting quantifier of the behaviour of an irreducible Markov41

chain is Kemeny’s constant. This was first defined in [18], and can be written as42

Ki(T ) :=
∑
j 6=i

wjmi,j ,43

which may be interpreted in terms of the expected number of time-steps required to44

reach a randomly-chosen destination state from a fixed starting state si. Remarkably,45

this was shown to be independent of the index i, and so is named Kemeny’s constant,46

and denoted by K(T ). It is easily seen that Kemeny’s constant may also be written47

K(T ) =
∑
i

∑
j 6=i

wimi,jwj ,48

admitting the interpretation of K(T ) in terms of the expected length of a random49

trip between states in the chain, where the initial and terminal states are chosen50

randomly according to the stationary distribution of the Markov chain. Levene and51

Loizou showed in [27] that Kemeny’s constant can also be expressed in terms of the52

eigenvalues 1, λ2, . . . , λn of T , with53

(1.1) K(T ) =

n∑
j=2

1

1− λj
.54

Remark 1.1. There is some inconsistency in the literature regarding the definition55

of Kemeny’s constant as56

K(T ) =

n∑
j=1
j 6=i

wjmi,j ,57

for any index i. In particular, the quantity
∑n
j=1 wjmi,j is often considered, which is58

equal to K(T ) + 1. There is no great difference in the analysis of these two quantities,59

but it is worth noting. The issue is further confounded by the fact that some consider60

first hitting times as opposed to first passage times, which are equivalent save for the61

convention that mi,i = 0 when considering hitting times. When expressing Kemeny’s62

constant in terms of hitting times, K(T ) =
∑
j wjmi,j and K(T ) =

∑
j 6=i wjmi,j are63

interchangeable, although we note that in [2], the former is used since equality still64

holds in the expression for continuous-time Markov chains.65

There are many applications of irreducible Markov chains to real dynamical sys-66

tems, including urban road network dynamics (see [9]), molecular conformation dy-67

namics (see [10]), and the spread of infectious disease (see [1]). In each of these, Ke-68

meny’s constant is a valuable measure: in urban road networks, the value of K(T ) pro-69

vides insight into how well-connected the urban area is; in molecular conformational70

dynamics, the value of K(T ) could indicate the presence or absence of metastable71

sets (which is extremely useful in computational drug design); in an infectious disease72

setting, K(T ) provides a measure of how quickly epidemic levels are approached.73

Given the utility of Kemeny’s constant in practical applications, it is worthwhile to74

consider how sensitive it is to perturbations in the transition probabilities. For those75

modeling with Markov chains using real data, the transition probabilities derived from76

these data are usually only sample estimates, and not true values. The transition77

matrix of this model can then be viewed as a perturbation of the ‘true’ transition78

matrix, and answering the question of how sensitive the calculation of K(T ) is to79
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KEMENY’S CONSTANT CONDITION NUMBER 3

errors in the data gives a measure of confidence in the computed value for Kemeny’s80

constant. Further, numerical techniques for computing Kemeny’s constant are subject81

to round-off errors, and hence an understanding of the conditioning of Kemeny’s82

constant is needed in that setting as well.83

In this article, we develop a structured condition number for Kemeny’s constant in84

Section 3. In Section 4, we determine bounds which provide insight into the transition85

matrices for which Kemeny’s constant is poorly-conditioned, and also connect the86

conditioning of Kemeny’s constant to other notions of conditioning in Markov chain87

theory. We also explore the value of this structured condition number for some infinite88

families of matrices in Section 5. The results of this article also appear in part in [3].89

Central to the results of this article is a certain type of generalized matrix inverse90

of a singular matrix known as the group inverse. The singular matrix of concern in91

Markov chain theory is I−T , which has 0 as a simple eigenvalue when T is irreducible.92

From the eigenvalue expression (1.1) for K(T ), and from spectral properties of the93

group inverse, it may be shown that K(T ) is equal to the trace of the group inverse94

of I − T . We give a short introduction to the group inverse of a singular matrix here95

before proceeding with the subject of the article.96

1.1. The group generalized inverse of a singular matrix.97

Definition 1.2. Let A be a complex singular matrix for which the algebraic and98

geometric multiplicities of the eigenvalue 0 of A are equal (that is, 0 is a semisimple99

eigenvalue). Then the group inverse of A, denoted A#, is the unique matrix satisfying100

AA#A = A; A#AA# = A#; AA# = A#A.101

To find the group inverse of a singular matrix A for which the eigenvalue 0 is102

semisimple, one may consider the Jordan form of A. That is, there exists an invertible103

matrix P such that104

A = P

[
B O
O O

]
P−1,105

such that B is invertible. Then the matrix106

X = P

[
B−1 O
O O

]
P−1107

can readily be seen to satisfy the three equations of the above definition. To prove108

uniqueness, one must consider the range and null space of X and of A; see [26, Section109

2.1] for more details. We remark that the group inverse is a special case of the Drazin110

inverse of a singular matrix.111

We give some spectral properties of A# which will be useful in the remainder of112

the paper. For detailed discussion on the group inverse, the interested reader may113

refer to [26].114

Lemma 1.3. Let A be a singular complex n × n matrix with 0 as a semisimple115

eigenvalue, and let A# be the group inverse of A. Then A# has the following spectral116

properties:117

(a) A# has 0 as a semisimple eigenvalue, and its multiplicity is equal to the multi-118

plicity of 0 as an eigenvalue of A.119

(b) For a vector v, Av = 0 if and only if A#v = 0. Similarly, v>A = 0 if and only if120

v>A# = 0.121

(c) λ 6= 0 is an eigenvalue of A of multiplicity m if and only if 1
λ is an eigenvalue of122

A# of multiplicity m.123
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4 J. BREEN AND S. KIRKLAND

(d) Av = λv if and only if A#v = 1
λv. Similarly, v>A = λv> if and only if v>A# =124

1
λv
>.125

(e) The matrix I − AA# is the eigenprojection of A onto the eigenspace of A corre-126

sponding to the eigenvalue 0. In particular, if 0 is a simple eigenvalue of A (having127

multiplicity 1), with right and left null vectors v and u> respectively, normalised128

so that u>v = 1, then AA# = A#A = I − vu>.129

From the statement of this lemma, we know the following about the group inverse130

of Q = I − T where T is the transition matrix of an irreducible Markov chain, with131

stationary vector w:132

(a) Q# has 0 as an eigenvalue of multiplicity 1.133

(b) Q#
1 = 0, and w>Q# = 0.134

(c) If 1, λ2, . . . , λn are the eigenvalues of T , the eigenvalues of Q# are given by135

0, 1
1−λ2

, . . . , 1
1−λn

. Hence K(T ) = trace(Q#).136

(e) QQ# = Q#Q = I − 1w>.137

Finally, we make a short remark about the computation of the group inverse of138

I − T where T is the n × n transition matrix of an irreducible Markov chain. One139

method involves the inversion of any (n− 1)× (n− 1) principal submatrix of I − T ,140

which is discussed in [26, Prop. 2.5.1], with a cost of approximately 2n3 floating point141

operations (or flops). Another method involves the QR factorisation of the matrix142

I − T , which may be accomplished with approximately 11
3 n

3 flops, and we remark143

that this method is known to be more computationally stable. The interested reader144

may find further discussion in [26, Chapter 8].145

2. Conditioning problems in Markov chain theory. Suppose T is an ir-146

reducible stochastic matrix representing a Markov chain, with stationary vector w.147

Then suppose that T is perturbed to form some new irreducible stochastic matrix T̃ ,148

with stationary vector w̃. How different can w and w̃ be, relative to the magnitude of149

the perturbation? An answer to this question determines how sensitive the long-term150

behaviour of a system modelled by a Markov chain can be to small changes in the151

transition probabilities.152

The above problem is referred to as conditioning of the stationary vector, and is153

formalised as follows: Given T , an irreducible stochastic matrix with stationary vector154

w, we wish to determine some function f(T ), such that if T̃ = T+E is also irreducible,155

nonnegative and stochastic with stationary vector w̃, then for some appropriate p, q,156

(2.1) ‖w − w̃‖p ≤ ‖E‖q · f(T ).157

This function f(T ) is referred to as a condition number. The norms we will most158

frequently discuss are the ∞-norm and the 1-norm. We recall that for any real m×n159

matrix A,160

‖A‖∞ = max
i=1,...,m

n∑
j=1

|ai,j |,161

and162

‖A‖1 = max
j=1,...,n

m∑
i=1

|ai,j |,163

so that ‖A>‖1 = ‖A‖∞. The matrix norm ‖ · ‖∞ is sometimes referred to as the164

absolute row sum norm, and ‖ · ‖1 as the absolute column sum norm. For more on165

vector and matrix norms, see [13, Chapter 5].166
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KEMENY’S CONSTANT CONDITION NUMBER 5

Solutions to these conditioning problems usually rely upon some generalized in-167

verse of the singular matrix I − T ; one example of this is the ‘fundamental matrix’,168

defined in [18] as Z = (I − T + 1w>)−1. However, in the landmark article [30] by169

Meyer, the group inverse is introduced as the generalized inverse of choice to be used170

in Markov chain theory, with the author stating that “If T is the one-step transition171

matrix of a finite homogeneous Markov chain and if A = I − T , it will be shown172

that once the group inverse, A#, of A is known, then the answer to every important173

question concerning the chain can be obtained from A#.”174

The group inverse of Q = I − T is valuable in answering questions regarding175

the conditioning of the stationary vector due to the following argument: Given T ,176

w, T̃ and w̃ as above (so that T̃ = T + E), from the eigenequation w̃>T̃ = w̃>, it177

follows that w̃>(T +E) = w̃>, and so w̃>E = w̃>(I−T ). Multiplying on the right by178

Q# = (I − T )#, we have w̃>EQ# = w̃>QQ#. Since I −QQ# is the eigenprojection179

of Q onto the eigenspace corresponding to the eigenvalue 0, QQ# = I − 1w> (from180

Lemma 1.3 (e).) Hence181

w̃>EQ# = w̃>(I − 1w>) = w̃> − w>.182

It is from this relationship that many condition numbers of the type in (2.1) are183

derived; hence this f(T ) is frequently some function of the entries of the group inverse184

(I − T )#.185

We note that Meyer’s assertion in [30] that the group inverse is the “correct”186

choice of generalized inverse in Markov chain theory is not universally accepted; in187

[14], Hunter presents a more comprehensive study of the uses of generalized inverses in188

Markov chain theory, giving expressions for the stationary vector, mean first passage189

times and their moments in terms of multiple classes of generalized inverses. As is190

elaborated in, for example [15, 16], Hunter shows how many Markov chain theory191

results can be expressed in more general terms via any choice of a generalized inverse.192

A discussion of the usefulness of choosing other generalized inverses is given in [14,193

Section 7]. We exclusively consider the group inverse in this article, but remark that194

when T is irreducible with stationary vector w, and if G is any generalized inverse of195

I−T , then Q# = (I−1w>)G(I−1w>) (as shown in [14, Thm 6.3]), and conceivably196

the results of the present paper could be generalized using this observation to results197

concerning other choices of generalized inverses.198

Originally, Schweitzer approached conditioning theory regarding the stationary199

vector of a Markov chain using the fundamental matrix of the chain, Z = (I − T +200

1w>)−1, and showed in [31] that201

‖w̃ − w‖1 ≤ ‖Z‖∞‖E‖∞.202

This was followed by Meyer in [28], who instead used the group inverse Q# and showed203

that204

‖w̃ − w‖1 ≤ ‖Q#‖∞‖E‖∞.205

Succeeding these are a long list of improvements to and variations of these condition206

numbers, along with new approaches to analysing the sensitivity of the stationary207

vector by determining bounds on the condition numbers in terms of the eigenvalues of208

the matrix (see [29]) and the mean first passage times (see [8]), as well as determining209

the sensitivity of a single entry of the stationary distribution vector (see [23]). A210

survey is given in [7], and we also refer the reader to further work since then in211

[22, 23].212
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6 J. BREEN AND S. KIRKLAND

We now give two examples of condition numbers of the stationary vector which213

will also be used throughout this article.214

Let T be an irreducible stochastic matrix, and let Q = I − T . Define215

(2.2) κ3(T ) :=
1

2
max

1≤i,j≤n
(q#j,j − q

#
i,j),216

and217

(2.3) κ6(T ) :=
1

2
max

1≤i,j≤n

n∑
k=1

|q#i,k − q
#
j,k|.218

Both κ3(T ) and κ6(T ) act as condition numbers, proven by Haviv and Van der219

Heyden (see [11]) and by Seneta (see [34]), respectively. In particular:220

Theorem 2.1 ([11, 34]). Let T be an irreducible stochastic matrix with stationary221

vector w, and let T̃ = T +E also be an irreducible stochastic matrix for some matrix222

E, with stationary vector w̃. Then:223
(a)

‖w̃ − w‖∞ ≤ ‖E‖∞κ3(T ).224

(b)

‖w̃ − w‖1 ≤ ‖E‖∞κ6(T ).225

As we will show in Theorem 4.2 and Proposition 4.4 below, the condition numbers226

κ3(T ) and κ6(T ) are closely connected with the conditioning properties of Kemeny’s227

constant. Note that κ6(T ) is also a special case of the coefficient of ergodicity of the228

group inverse Q# (see [33, 34]), and is sometimes denoted as τ(Q#). We note that229

the numbering of these condition numbers originated in the survey paper [7] by Cho230

and Meyer, in which the most prominent condition numbers in the literature at the231

time were listed and compared.232

The condition numbers κ3(T ) and κ6(T ) are well-known as the “most optimal”233

condition numbers in Markov chain theory. In particular, a study of condition num-234

bers for the stationary vector is given in [20], in which the authors show that if f(T )235

is any condition number with respect to the (p,∞) norm pair—that is, satisfying236

‖w − w̃‖p ≤ ‖E‖∞f(T )—then τp(Q
#) ≤ f(T ), where237

τp(Q
#) := sup

y>1=0
y 6=0

‖y>Q#‖p
‖y>‖1

.238

Furthermore, τp(Q
#) is shown to be a condition number for the stationary vector of239

a Markov chain, and so together this gives that it is the minimum of all condition240

numbers with respect to the (p,∞) norm pair. Since τ1(Q#) = κ6(T ) and τ∞(Q#) =241

κ3(T ), and since the 1- and ∞-norms are the most commonly-used vector norms in242

considering conditioning problems of the stationary vector, it is arguable that these243

two condition numbers are the most useful ones to consider. Indeed, much of the244

literature focuses on these two in particular (see for example [22, 19], and an overview245

in [26, Section 5.3]).246
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KEMENY’S CONSTANT CONDITION NUMBER 7

Remark 2.2. Note that in [34], it is shown that for an irreducible stochastic matrix247

T of order n, with eigenvalues 1, λ2, . . . , λn,248

κ6(T ) ≤
n∑
j=2

1

1− λj
,249

i.e. κ6(T ) ≤ K(T ). Therefore ‖w̃ − w‖1 ≤ ‖E‖∞K(T ), so that Kemeny’s constant is250

itself a condition number for the stationary distribution of the chain. Note that this251

was shown independently in [15].252

The body of work on perturbation analysis and condition numbers for station-253

ary distribution vectors has grown and developed since the 1960s, and the field is254

well-established. In this article, we begin the development of a body of work on per-255

turbation analysis and condition numbers for Kemeny’s constant. That is, we wish256

to tackle the question of how sensitive Kemeny’s constant is to perturbations or er-257

rors in the transition probabilities of the Markov chain, for a given transition matrix258

T . More formally, given an irreducible stochastic matrix T and perturbing matrix259

E (such that T + E is also stochastic and irreducible), can we determine an upper260

bound for |K(T + E) − K(T )| in terms of ‖E‖ (for some choice of norm ‖ · ‖) and261

some function of T? In the following sections we will prove some results to this end,262

and determine a structured condition number for K(T )—that is, a condition number263

under the restriction that the size of the perturbation is small.264

Definition 2.3. Let T be an irreducible stochastic matrix. The structured con-265

dition number for Kemeny’s constant is defined as266

C(T ) := lim sup
ε→0+

{
|K(T + E)−K(T )|

ε

∣∣∣∣T + E is irreducible, stochastic; ‖E‖∞ ≤ ε
}
.267

The structured condition number for K(T ) may be interpreted as a measure of the268

maximum change in K(T ) when T undergoes some perturbation, where it is assumed269

that the norm of the perturbing matrix is vanishingly small. This lends itself more to270

the application of considering numerical errors in a computational setting, with C(T )271

interpreted in terms of how robust the calculation of K(T ) is. A similar concept has272

been examined in the context of generalized eigenvalue problems in [12].273

It is important to note that while the natural inclination is to attempt to derive274

an expression of the form275

|K(T + E)−K(T )| ≤ ‖E‖∞c(T ),276

where c(T ) depends only on T , the following key example shows that there is no277

possibility of such a general expression.278

Remark 2.4. Let T be any irreducible stochastic matrix, and consider a pertur-279

bation which results in a convex combination of T and the identity matrix; that is,280

for some a ∈ (0, 1], let Ea = (1− a)(I − T ), so that281

T + Ea = aT + (1− a)I.282

Then ‖Ea‖∞ ≤ 2(1−a) by the triangle inequality. However, it is clear that as a→ 0,283

K(T + Ea) → ∞, since the group inverse of I − (T + Ea) is 1
a (I − T )#; that is,284

K(T + Ea) = 1
aK(T ). In particular, since ‖Ea‖∞ is bounded above by 2 there is no285

general expression of the type286

|K(T + E)−K(T )| ≤ ‖E‖∞c(T )287
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8 J. BREEN AND S. KIRKLAND

that holds for all admissible perturbing matrices E. That observation further moti-288

vates our interest in analysing the situation where the norm of E is small, as antici-289

pated by Definition 2.3.290

An analysis of the behaviour of Kemeny’s constant of a Markov chain under291

perturbation has also been considered in [5]. The authors consider two specific types292

of perturbations: the first, when E = eiu
> and only one row of T is changed; the293

second, when E = 1u>, so that every row is perturbed in the same way. In both294

cases the vector u is chosen appropriately so that nonnegativity, irreducibility, and295

stochasticity of T + E is preserved.296

3. A structured condition number for Kemeny’s constant. Throughout297

this section, T is considered to be a nonnegative stochastic matrix of order n with 1298

as an algebraically simple eigenvalue, and w denotes the stationary vector of T . Let299

E denote some perturbation matrix of T ; that is, E is an n × n matrix whose rows300

sum to zero, such that T̃ = T + E is also nonnegative and stochastic, with 1 as an301

algebraically simple eigenvalue. Let Q = I − T , and Q̃ = I − T̃ .302

In [28], the following is proven to give an expression for Q̃# in terms of Q# and303

E.304

Theorem 3.1 ([28]). Let T , E, T̃ , w, Q, and Q̃ be defined as above. Then305

I − EQ# is invertible, and306

Q̃# = Q#(I − EQ#)−1 − 1w>(I − EQ#)−1Q#(I − EQ#)−1.307

We now use this perturbation formula to derive an expression for K(T + E).308

Lemma 3.2. Let T , E, T̃ , Q, Q̃ be defined as above. If the spectral radius309

ρ(EQ#) < 1, then310

K(T̃ ) = K(T ) +

∞∑
j=1

trace
(
Q#(EQ#)j

)
.311

Proof. Recall that K(T ) = trace(I − T )#. Hence from Theorem 3.1,312

K(T + E) = trace(Q̃#)313

= trace(Q#(I − EQ#)−1)− trace(1w>(I − EQ#)−1Q#(I − EQ#)−1).314

Then since the trace of any rank-one matrix uv> is v>u, the trace of the second term315

above is316

trace(1w>(I − EQ#)−1Q#(I − EQ#)−1) = w>(I − EQ#)−1Q#(I − EQ#)−11.317

Now, I − EQ# is invertible, and if ρ(EQ#) < 1, then318

(I − EQ#)−1 = I + EQ# + (EQ#)2 + (EQ#)3 + · · ·319

and hence, since Q#
1 = 0, (I − EQ#)−11 = 1. Moreover,320

trace(1w>(I − EQ#)−1Q#(I − EQ#)−1) = 0,321
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KEMENY’S CONSTANT CONDITION NUMBER 9

again because Q#
1 = 0. So322

K(T̃ ) = trace(Q̃#)323

= trace(Q#(I − EQ#)−1)324

= trace(Q# +Q#EQ# +Q#(EQ#)2 + · · · )325

= trace(Q#) +

∞∑
j=1

trace(Q#(EQ#)j)326

= K(T ) +

∞∑
j=1

trace(Q#(EQ#)j).327

328

Remark 3.3. The result above requires ρ(EQ#) < 1. However, it is well-known329

(see [13, Theorem 5.6.9]) that for any matrix norm ‖ · ‖ and n× n matrix A,330

ρ(A) ≤ ‖A‖.331

That is, given any matrix norm ‖ · ‖, it is a sufficient condition for Lemma 3.2 that332

‖EQ#‖ < 1. Consequently, by the submultiplicativity of matrix norms, it is hence333

sufficient that ‖E‖ < 1
‖Q#‖ . Thus for any matrix norm, if ‖E‖ is sufficiently small,334

the expression for K(T̃ ) given in the result above will hold. We will typically use the335

absolute row sum norm ‖ · ‖∞.336

Theorem 3.4. Let T be an irreducible stochastic n × n matrix; let Q = I − T ;337

and let q
#(2)
i,j denote the (i, j) entry of (Q#)2. Then338

(3.1) C(T ) =
1

2

n∑
j=1

max
{

max
i
{q#(2)
i,j } − α(j), β(j)−min

i
{q#(2)
i,j }

}
,339

where340

α(j) := min
i
{q#(2)
i,j |tj,i > 0};341

β(j) := max
i
{q#(2)
i,j |tj,i > 0}.342

Proof. Let ε > 0 be given. Let T be an irreducible stochastic matrix of order343

n, and let E be a matrix of order n with zero row sums, such that T̃ = T + E is344

irreducible, nonnegative and stochastic, and ‖E‖∞ ≤ ε. From Lemma 3.2, we have345

K(T̃ )−K(T ) =

∞∑
j=1

trace(Q#(EQ#)j).346

We first concentrate our attention on trace(Q#EQ#) = trace(E(Q#)2). Repre-347

senting the rows of E by u>i , i = 1, . . . , n, and letting ej denote the jth standard basis348

vector, we can write349

trace(E(Q#)2) =

n∑
j=1

u>j (Q#)2ej .350

For every j, u>j = e>j E can be written as x> − y>, where x and y are nonnegative351

vectors, and x>1 = y>1 ≤ ε
2 . Note that if yi > 0, then tj,i > 0, since T + E is352

nonnegative.353
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10 J. BREEN AND S. KIRKLAND

Fixing j, we have354

u>j (Q#)2ej = x>(Q#)2ej − y>(Q#)2ej355

=

n∑
l=1

xlq
#(2)
l,j −

n∑
l=1

ylq
#(2)
l,j356

≤
n∑
l=1

xl ·max
l
{q#(2)
l,j } −

n∑
l=1

yl · α(j)357

where α(j) = minl{q#(2)
l,j | tj,l > 0}. Therefore358

(3.2) u>j (Q#)2ej ≤
ε

2

(
max
l
{q#(2)
l,j } − α(j)

)
.359

Also consider that360

u>j (Q#)2ej =

n∑
l=1

xlq
#(2)
l,j −

n∑
l=1

ylq
#(2)
l,j361

≥
n∑
l=1

xl ·min
l
{q#(2)
l,j } −

n∑
l=1

yl · β(j)362

where β(j) = maxl{q#(2)
l,j | tj,l > 0}. Therefore363

(3.3) u>j (Q#)2ej ≥
ε

2

(
min
l
{q#(2)
l,j } − β(j)

)
.364

Hence from (3.2) and (3.3),365

|u>j (Q#)2ej | ≤
ε

2
·max

{
max
l
{q#(2)
l,j } − α(j), β(j)−min

l
{q#(2)
l,j }

}
,366

and so367

| trace(Q#EQ#)| ≤
n∑
j=1

|u>j (Q#)2ej |368

≤ ε

2

n∑
j=1

max
{

max
i
{q#(2)
i,j } − α(j), β(j)−min

i
{q#(2)
i,j }

}
.(3.4)369

370

Finally, we conclude371

|K(T̃ )−K(T )|
ε

=
1

ε

∣∣∣∣∣∣trace(Q#EQ#) +

n∑
j=2

trace(Q#(EQ#)j)

∣∣∣∣∣∣372

≤ 1

2

n∑
j=1

max
{

max
i
{q#(2)
i,j } − α(j), β(j)−min

i
{q#(2)
i,j }

}
+O(ε),373

374

and hence as ε→ 0+, the supremum is bounded above by375

(3.5)
1

2

n∑
j=1

max
{

max
i
{q#(2)
i,j } − α(j), β(j)−min

i
{q#(2)
i,j }

}
.376
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KEMENY’S CONSTANT CONDITION NUMBER 11

To show that the supremum is in fact equal to (3.5), it suffices to show that377

for any matrix T , there is some matrix E for which this bound is achieved by378

| trace(Q#EQ#)|. We will demonstrate how to choose the matrix E—in particular,379

the uj—so that equality holds in the upper bound (3.4) on | trace(Q#EQ#)|.380

Fix j, and for conciseness, let aj = maxi{q#(2)
i,j } − α(j), and bj = β(j) −381

mini{q#(2)
i,j }. Let r1 be an index such that382

q
#(2)
r1,j

= α(j) = min
l
{q#(2)
l,j | tj,l > 0},383

and r2 be an index such that384

q
#(2)
r2,j

= β(j) = max
l
{q#(2)
l,j | tj,l > 0}.385

Let s1 be an index such that386

q
#(2)
s1,j

= max
l
{q#(2)
l,j },387

and s2 be an index such that388

q
#(2)
s2,j

= min
l
{q#(2)
l,j }.389

Then the jth row of E, u>j = e>j E, is chosen as follows:390

u>j =


ε
2 (e>s1 − e

>
r1) if max{aj , bj} = aj ;

ε
2 (e>s2 − e

>
r2) if max{aj , bj} = bj .

391

Then392

u>j (Q#)2ej = |u>j (Q#)2ej | = max{aj , bj}.393

Choosing in this way for each j, we have E =
∑n
j=1 uje

>
j , with ‖E‖∞ = ε, and with394

| trace(Q#EQ#)| = ε

2

n∑
j=1

max
{

max
i
{q#(2)
i,j } − α(j), β(j)−min

i
{q#(2)
i,j }

}
.395

Furthermore the (i, j) entry of E is negative only if ti,j > 0; hence T + E is396

nonnegative (for appropriate ε).397

We present the following small example to further reinforce the distinction be-398

tween a condition number and a structured condition number and why it is important399

to keep in mind that the structured condition number only provides information of400

value when it is assumed that the norm of the perturbing matrix is small. This is a401

subcase of Remark 2.4.402

Example 3.5. Consider the 2× 2 stochastic matrix403

T =

[
0 1
1 0

]
404

which has K(T ) = 1
2 . Furthermore,405

Q# =

[
1
4 − 1

4
− 1

4
1
4

]
and (Q#)2 =

[
1
8 − 1

8
− 1

8
1
8

]
.406
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12 J. BREEN AND S. KIRKLAND

Hence C(T ) can be calculated to be 1
4 .407

Now consider the perturbing matrix408

E =

[
a −a
−a a

]
,409

for 0 < a < 1 so that ‖E‖∞ = 2a and410

T̃ = T + E =

[
a 1− a

1− a a

]
411

which is a stochastic matrix with eigenvalues 1, 2a− 1. Hence K(T̃ ) = 1
2−2a , and412

|K(T̃ )−K(T )| = a

2− 2a
413

=
‖E‖∞
4− 4a

414

>
1

4
‖E‖∞ = C(T )‖E‖∞.415

In fact, as a → 1, the associated Markov chain with transition matrix T̃ approaches416

a chain which is completely decoupled, and so K(T̃ )→∞.417

3.1. Interpretations for C(T ) and (Q#)2. In this section, we give some ex-418

ploratory observations which connect the expression for C(T ) in terms of (Q#)2 with419

some other properties of the chain. It is expected that these may lead to other work420

regarding the nature of Kemeny’s constant and how it is intricately interconnected421

with other key quantifiers of a Markov chain’s behaviour, such as first passage times.422

We note that the basic building block of the formula for C(T ) in Theorem 3.4 is423

the term q
#(2)
i,j − q#(2)

k,j , for some i, j, k. This term and alternate expressions for it are424

the subject of this section.425

First, we remark that if one has already computed the mean first passage matrix426

M and the stationary vector w for a chain, then the group inverse Q# can be readily427

computed from these. In particular, it is known (see [30]) that428

M = (I −Q# + JQ#
dg)W

−1,429

where W = diag(w), Adg represents the diagonal matrix with entries ai,i on the430

diagonal, and J = 11
>, the n× n all-ones matrix. Hence431

MW − I = −Q# + JQ#
dg.432

Multiplying on the left by w>, we obtain433

w>(MW − I) = 1
>Q#

dg;434

hence435

Q# = I + JQ#
dg −MW436

= I + 1w>(MW − I)−MW437

= (I − 1w>)(I −MW ).438

Note that this argument is given in [26, Remark 6.1.2].439
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From this, we can derive an expression for (Q#)2 in terms of M and w.440

(Q#)2 = ((I − 1w>)(I −MW ))2441

= (I −MW − 1w> + 1w>MW )2.442

443

We now consider the difference of two entries in the same column of (Q#)2:444

q
#(2)
i,j − q#(2)

k,j = (ei − ek)>(Q#)2ej445

= (ei − ek)>(I −MW − 1w> + 1w>MW )2ej446

= (ei − ek)>(I −MW )(I −MW − 1w> + 1w>MW )ej ,447448

since (ei − ek)>1 = 0. From here, we have449

q
#(2)
i,j − q#(2)

k,j = (ei − ek)>(I −MW )ej450

− (ei − ek)>MW (I −MW − 1w> + 1w>MW )ej451

= (ei − ek)>(I −MW )(I −MW )ej452

+ (ei − ek)>MW1w>(I −MW )ej ,453454

and since the matrix MW1w> = (K(T ) + 1)1w>, and all rows are equal, it follows455

that456

q
#(2)
i,j − q#(2)

k,j = (ei − ek)>(I −MW )2ej457

= (ei − ek)>(I − 2MW + (MW )2)ej .458459

This expression shows the dependence of the sensitivity of Kemeny’s constant on460

relationships between mean first passage times and the stationary vector.461

Next we relate the term q
#(2)
i,j − q#(2)

k,j with variances of first passage times. We462

find it particularly interesting that the sensitivity of Kemeny’s constant should depend463

on how widely varying first passage times are in the chain. Recall from [4, Theorem464

8.4.4] that the matrix V of variances of first passage times is given by V = B −Ms,465

where466

B = M(2Q#
dgW

−1 + I) + 2(Q#M − J(Q#M)dg),467

and Ms = [(mi,j)
2]. That is, B is the matrix of second moments of first passage times.468

Since M can be expressed in terms of Q#, and the term Q#M is present in the above,469

it should be possible to write (Q#)2 in terms of M,W , and B. In particular, we have470

B = 2MQ#
dgW

−1 +M + 2Q#(I −Q# − JQ#
dg)W

−1 − 2J(Q#M)dg471

=⇒ BW = 2MQ#
dg +MW + 2Q# − 2(Q#)2 − 2J(Q#M)dgW472

=⇒ (Q#)2 = MQ#
dg + 1

2MW +Q# − 1
2BW − J(Q#M)dgW.473

So474

q
#(2)
i,j − q#(2)

k,j = (ei − ek)>(Q#)2ej475

= (mi,j −mk,j)q
#
j,j + 1

2 (mi,j −mk,j)wj + (q#i,j − q
#
k,j)−

1
2 (bi,j − bk,j)wj .476
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14 J. BREEN AND S. KIRKLAND

Since mr,s =
q#s,s−q

#
r,s

ws
if r 6= s, we can rewrite477

(3.6) q#i,j − q
#
k,j = −wj(mi,j −mk,j) + δi,j − δk,j ,478

where δr,s is the Kronecker delta function, accounting for the cases where i = j or479

k = j.480

To further analyse this expression, recall (see [25]) that the quantity481

αj :=

n∑
k=1
k 6=j

wkmk,j482

is known as the accessibility index of the jth state of the Markov chain, with an483

interpretation in terms of the expected time to reach state j, beginning at a random484

state (distinct from j) in the chain. Recalling also that the accessibility index may485

be written αj =
q#j,j
wj

(see [25, Theorem 1.1(a)]), we use this in the above to write:486

q
#(2)
i,j − q#(2)

k,j = (mi,j −mk,j)αjwj − 1
2wj [(mi,j −mk,j) + (bi,j − bk,j)] + (δi,j − δk,j),487

or488

q
#(2)
i,j − q#(2)

k,j = wj(mi,j −mk,j)(αj − 1
2 )− 1

2wj(bi,j − bk,j) + (δi,j − δk,j).489

From these expressions, we can see that the sensitivity of Kemeny’s constant (i.e. the490

value of C(T )) depends on the differences between first and second moments of first491

passage times from distinct pairs of states (i and k) to the same state (j). Both the492

importance of that state j (as described by the corresponding entry of the stationary493

distribution) and the accessibility of that state play a role in this expression.494

We note that in [17] an expression is given for the entries of the group inverse495

in terms of the accessibility indices, stationary vector entries, and mean first passage496

times:497

q#i,j = wj(αj − 1−mi,j) + δi,j .498

Given that q
#(2)
i,j − q#(2)

k,j =
∑
l=1(q#i,l − q

#
k,l)q

#
l,j , along with (3.6) and the above, we499

have500

q
#(2)
i,j − q#(2)

k,j =

n∑
l=1

−wl(mi,l −mk,l)q
#
l,j +

n∑
l=1

(δi,l − δk,l)q#l,j501

= −
n∑
l=1

wl(mi,l −mk,l) (wj(αj − 1−ml,j) + δl,j) + (q#i,j − q
#
k,j)502

= −wj(αj − 1)

n∑
l=1

(wl(mi,l −mj,l)) +

n∑
l=1

wl(mi,l −mk,l)ml,j503

−wj(mi,j −mk,j)− wj(mi,j −mk,j) + δi,j − δk,j504

= −wj(αj − 1)

(
n∑
l=1

wlmi,l −
n∑
l=1

wlmj,l

)
+

n∑
l=1

wl(mi,l −mk,l)ml,j505

−2wj(mi,j −mk,j) + δi,j − δk,j .506
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Note that K(T ) + 1 =
∑n
l=1 wlmr,l for any r, the first two summations cancel, and507

we have508

q
#(2)
i,j − q#(2)

k,j =

n∑
l=1

wl(mi,l −mk,l)ml,j − 2wj(mi,j −mk,j) + δi,j − δk,j .509

This is an expression for a key quantity which is present in our expression for C(T ),510

q
#(2)
i,j − q#(2)

k,j , in terms of the stationary vector entries and mean first passage times.511

It is difficult to interpret this as it involves products of various quantities, and these512

products do not have a natural or intuitive interpretation as to their role in the Markov513

chain. In particular, the summation terms
∑n
l=1 wlmi,lml,j and −

∑
l=1 wlmk,lml,j514

make it difficult to work towards an intuitive understanding of the behaviour of Ke-515

meny’s constant. One could argue intuitively that if i indexes a state which has poor516

access to relatively important states in the chain, which in turn have poor access to517

state j, then the value of
∑n
l=1 wlmi,lml,j will be large, where we interpret wl as a518

measure of the ‘importance’ of state l, and ml,j as a measure of how ‘accessible’ state519

j is from state l. These descriptions would need to be extended to the other terms520

in the expression, and then finally rephrased in terms of their influence on the value521

of C(T ) itself, in order to obtain further understanding of the circumstances under522

which the value of Kemeny’s constant is sensitive to perturbations. More success523

might be achieved if one considers only very simple perturbations of the transition524

matrix. For now, it is enough for us to say that it is clear that the sensitivity of K(T )525

appears to depend on the stationary probabilities, the mean first passage times, and526

the accessibility of each state, as well as the variances of the first passage times.527

4. Bounds on C(T ).528

4.1. An upper bound for C(T ). While the expression of C(T ) in Theorem 3.4 is529

accurate, it is a complex expression and provides little direct insight into the nature of530

Kemeny’s constant and how it acts under perturbation of the transition probabilities.531

We provide below an upper bound which does supply some insight, after the following532

technical lemma, originally proven in [32], and of which a proof may be found in [26,533

Lemma 5.3.4].534

Lemma 4.1. Let v be a vector in Rn such that v>1 = 0.535

(a) Suppose that A is an n× n matrix with complex entries. Then536

‖A>v‖1 ≤ ‖v‖1 · 12 max
i,j

n∑
k=1

|ai,k − aj,k|.537

(b) Suppose that z ∈ Cn. Then538

|v>z| ≤ ‖v‖1 ·max
i,j

|zi − zj |
2

.539

Theorem 4.2. Let T be an n× n irreducible stochastic matrix. Then540

(4.1) C(T ) ≤ n · κ3(T ) · κ6(T ).541

Proof. Let T be an irreducible stochastic matrix of order n, and let E be a matrix542

with zero row sums such that T̃ = T+E is also irreducible and stochastic. We consider543

trace(Q#EQ#) = trace(E(Q#)2) =

n∑
i=1

e>i E(Q#)2ei.544
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16 J. BREEN AND S. KIRKLAND

For any i, we have from Lemma 4.1(b):545

|e>i E(Q#)2ei| ≤ ‖e>i EQ#‖1 ·max
j,k

(
q#j,i − q

#
k,i

2

)
546

= 1
2‖e
>
i EQ

#‖1 ·max
k

(q#i,i − q
#
k,i),547

since q#i,i > q#j,i, for all i, and j 6= i.548

Next, consider that549

‖e>i EQ#‖1 = ‖(Q#)>E>ei‖1550

≤ ‖E>ei‖1 · 12 max
i,j

n∑
k=1

|q#i,k − q
#
j,k| (by Lemma 4.1(a))551

= ‖e>i E‖1κ6(T ).552

Hence553

|e>i E(Q#)2ei| ≤ 1
2‖e
>
i E‖1κ6(T ) max

k
(q#i,i − q

#
k,i).554

Finally, we have555

| trace(E(Q#)2)| =

∣∣∣∣∣
n∑
i=1

e>i E(Q#)2ei

∣∣∣∣∣556

≤
n∑
i=1

|e>i E(Q#)2ei|557

≤ 1
2

n∑
i=1

‖e>i E‖1κ6(T ) max
k

(q#i,i − q
#
k,i)558

≤ 1
2‖E‖∞κ6(T )

n∑
i=1

max
k

(q#i,i − q
#
k,i)559

≤ 1
2‖E‖∞κ6(T ) · nmax

i,k
(q#i,i − q

#
k,i)560

= n‖E‖∞κ6(T )κ3(T ) (from (2.2)).561

It follows that C(T ) ≤ n · κ3(T )κ6(T ).562

Remark 4.3. Since we have observed in Remark 2.2 that κ6(T ) ≤ K(T ) this means563

that564

C(T ) ≤ n · K(T )κ3(T ).565

This furnishes another relative bound, where both the original size of Kemeny’s con-566

stant and the size of the perturbation are taken into account. That is,567

lim sup
ε→0

{
|K(T + E)−K(T )|

ε · K(T )

∣∣∣∣T + E irreducible, stochastic; ‖E‖∞ ≤ ε
}
≤ n · κ3(T ).568

4.2. Lower bounds for C(T ). In this section we give a lower bound for the569

structured condition number in terms of Kemeny’s constant K(T ), and also in terms570

of κ3(T ), κ6(T ), and as a function of n, the number of states.571
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Proposition 4.4. Let T be an irreducible stochastic matrix. Then572

C(T ) ≥ 1

2(1−mini ti,i)
K(T ) ≥ 1

2
K(T ).573

Proof. Since C(T ) is defined as a limit-supremum over all admissible perturbing574

matrices E with ‖E‖∞ ≤ ε as ε→ 0, a lower bound may be produced by determining575

this supremum over some subfamily of perturbing matrices E. In particular, for a576

given ε > 0, by choosing E := ε
2 (I − T ) = ε

2Q, we have E1 = 0, and T̃ = T + E is577

nonnegative and irreducible for small enough ε. Furthermore,578

‖E‖∞ = εmax
i
{1− ti,i} ≤ ε.579

Then, since EQ# = ε
2QQ

# = ε
2 (I − 1w>), we have580

K(T + E)−K(T ) = trace(Q#EQ#) + trace(Q#(EQ#)2) + · · ·581

=
ε

2
trace(Q#) +

ε2

4
trace(Q#) + · · ·582

=
ε

2− ε
trace(Q#).583

So584
|K(T + E)−K(T )|

ε
=

1

2− ε
trace(Q#)585

and586

C(T ) ≥ 1

2
trace(Q#).587

Finally, note that by choosing588

E :=
ε

2 ·maxi{1− ti,i}
(I − T )589

we have ‖E‖∞ = ε, and obtain the improvement590

C(T ) ≥ 1

2(1−mini ti,i)
trace(Q#).591

Since K(T ) = trace(Q#), the result follows.592

Remark 4.5. Since κ6(T ) ≤ K(T ) as shown in [34] (and referenced in Remark 2.2593

above) and since it is shown in [7] that κ3(T ) ≤ κ6(T ), we obtain from Proposition 4.4594

that595

C(T ) ≥ 1

2
κ6(T )596

and597

C(T ) ≥ 1

2
κ3(T ).598

In conclusion, Theorem 4.2 and Proposition 4.4 indicate that the conditioning of599

Kemeny’s constant is closely tied with the conditioning of the stationary vector.600

Proposition 4.6. Let T be an n× n irreducible stochastic matrix. Then601

C(T ) >
n− 1

4
.602
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18 J. BREEN AND S. KIRKLAND

Proof. We have that603

(4.2) C(T ) ≥ 1
2K(T ),604

and it is well-known (see, for example, [15]) that605

(4.3) K(T ) ≥ n− 1

2
.606

The result follows. We remark that the inequality is strict since the characterization607

of equality in (4.3) is shown in [24] that T must be permutation equivalent to608 
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ,609

and equality does not hold in (4.2) for this matrix.610

5. Examples. In this section, we investigate the structured condition number611

C(T ) for some infinite families of matrices. We also examine the upper bound of612

Theorem 4.2 and determine some families for which C(T ) is on the same order of613

magnitude as this upper bound.614

Example 5.1. Let w =
[
w1 w2 · · · wn

]>
be any positive vector such that615 ∑

i wi = 1, and form T as a convex combination of the identity matrix and the616

rank-one stochastic matrix 1w>; that is, for some c ∈ [0, 1],617

T = cI + (1− c)1w>.618

Then we have Q = (1− c)(I − 1w>) and so619

Q# =
1

1− c
(I − 1w>)620

and621

(Q#)2 =
1

(1− c)2
(I − 1w>).622

It is easily calculated that623

C(T ) =
1

2

n∑
j=1

1

(1− c)2
624

=
n

2(1− c)2
.625

Meanwhile,626

κ3(T ) =
1

2(1− c)
, and κ6(T ) =

1

1− c
.627

Hence the upper bound (4.1) is n
2(1−c)2 , coinciding with the value of C(T ).628

Note also that in the special case that c = 0 and w> = 1
n1
>, we have T = 1

nJ629

and equality holds in both the lower bound of Prop. 4.4 and the upper bound (4.1).630
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Example 5.2. Consider the Markov chain whose transition matrix is the adjacency631

matrix of the directed cycle632

T =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .633

That is, we consider the random walk on the directed cycle on n vertices. To determine634

C(T ), we require (Q#)2. In fact, we require the maximum and minimum entries of635

each column of (Q#)2, along with α(j) and β(j), which in this example are both equal636

to q
#(2)
j+1,j , for each j = 1, . . . , n− 1, and α(n) = β(n) = q

#(2)
1,n .637

This is an example of a periodic Markov chain, and there is an expression for the638

group inverse of I − T (see [21]) which we can use, producing639

Q# =
1

2n



n− 1 n− 3 n− 5 · · · −(n− 3) −(n− 1)
−(n− 1) n− 1 n− 3 n− 5 · · · −(n− 3)
−(n− 3) −(n− 1) n− 1 n− 3 · · · −(n− 5)

...
...

...
. . .

. . .
...

n− 3 n− 5 · · · −(n− 3) −(n− 1) n− 1


.640

Alternatively,641

q#i,j =

{
n−1
2n −

j−i
n , if i ≤ j;

n−1
2n −

n+j−i
n , if i > j.

642

Since Q# is a circulant matrix (that is, each row is a shift to the right of the one643

preceding it), (Q#)2 will also be a circulant matrix. Hence every term in the sum644

indexed by j in (3.1) is equal, and it suffices to determine only the first term, and645

then multiply by 1
2n; that is,646

C(T ) =
n

2
max

{
max
i
{q#(2)
i,1 } − α(1), β(1)−min

i
{q#(2)
i,1 }

}
.647

Some tedious computation produces648

q
#(2)
k,1 =

1

4n2

(
−1

3
n3 + (2k − 4)n2 − 23

3
n+ (8k − 2k2)n

)
,649

if k 6= 1, and q
#(2)
1,1 = −1

12n (n− 1)(n− 5). It is not difficult to show that650

min
k
q
#(2)
k,1 = q

#(2)
2,1 = −n

2 − 1

12n
,651

while652

max
k

q
#(2)
k,1 =


q
#(2)
n+4
2 ,1

=
n2 + 2

24n
if n is even;

q
#(2)
n+5
2 ,1

=
n2 − 1

24n
if n is odd.

653
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Hence654

C(T ) =


n2

16
if n is even;

n2 − 1

16
if n is odd.

655

However, with some computation we find656

κ6(T ) =


n

4
if n is even;

n2 − 1

4n
if n is odd;

657

and κ3(T ) = n−1
2n . The upper bound for C(T ) given in Theorem 4.2 is then equal to658 

n2 − n
8

if n is even;

n3 − n2 − n+ 1

8n
if n is odd;

659

Hence for n large enough, C(T ) ∼ 1
2nκ3(T )κ6(T ).660

Example 5.3. Consider the random walk on the path on n vertices. The transition661

matrix of this Markov chain is662

T =



0 1 0 0 · · · 0
1
2 0 1

2 0 · · · 0
0 1

2 0 1
2 · · · 0

. . .
. . .

. . .

0 0 · · · 1
2 0 1

2
0 0 0 · · · 1 0


.663

From [26, Example 5.5.1], we have the following formula for the entries of (I − T )#:664

q#i,1 =
4n2 − 8n+ 3

12(n− 1)
− (i− 1)(2n− i− 1)

2(n− 1)
, for i = 1, . . . , n665

q#i,n =
4n2 − 8n+ 3

12(n− 1)
− (n− i)(n+ i− 2)

2(n− 1)
, for i = 1, . . . , n666

q#i,j =
4n2 − 8n+ 3

6(n− 1)
+ 2(n−max{i, j})− (n− i)(n+ i− 2)

(n− 1)
(5.1)667

− (n− j)(n+ j − 2)

2(n− 1)
, for j = 2, . . . , n− 1 and i = 1, . . . , n.668

The group inverse of I − T and in particular its square do not follow as neat a669

pattern as the previous example, so we do not produce here a closed-form expression670

for C(T ). However, we can determine a lower bound by choosing, for each index j,671

indices for the terms in the sum (3.1) which may not necessarily be maximum. In672

particular, for the path on n vertices, we have673

C(T ) ≥ 1

2

∑
1≤j≤n

2

(q
#(2)
1,j − q

#(2)
j+1,j) +

∑
n
2<j≤n

(q
#(2)
n,j − q

#(2)
j−1,j)674

=
∑

1≤j≤n
2

(q
#(2)
1,j − q

#(2)
j+1,j),675
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where the equality comes from the structure in Q# and (Q#)2. In particular, by676

examining the expressions in (5.2), one can see that q#i,j = q#n+1−i,n+1−j ; the same677

relationships hold for entries of (Q#)2.678

Some tedious computation with the aid of symbolic computation software allows679

us to compute the following lower bounds for C(T ), where T is the transition matrix680

of the random walk on a path on n vertices:681

C(T ) ≥


11n5 + 65n4 + 100n3 − 1040n2 + 1704n− 720

2880(n− 1)
if n is even

11n5 + 80n4 − 50n3 − 1040n2 + 1959n− 720

2880(n− 1)
if n is odd.

682

Note that both lower bounds are on the order of n4.683

Next, we examine the upper bound given in Section 2.2. From [26, Example 5.5.1]684

it is known that685

κ3(T ) =
(n− 2)2

2(n− 1)
.686

For c1(T ) = maxi,j{
∑n
k=1 |q

#
i,k−q

#
j,k|}, it is not difficult to show that the maximum is687

attained when i = 1 and j = n (or vice versa). A proof of this claim may be found in688

the Appendix. Hence we have κ6(T ) =
∑n
k=1 |q

#
1,k−q

#
n,k| and with some more tedious689

computation we find that690

κ6(T ) =


(n− 1)2 + 1

4
if n is even

(n− 1)2

4
if n is odd.

.691

Hence the upper bound is on the order of n
4

8 (ignoring lower order terms), while C(T ) is692

bounded below by a function which is also on the order of n4. That is, C(T ) = Θ(n4),693

and it is on the same order as the upper bound.694

Such a high order of magnitude indicates that Kemeny’s constant is extremely695

poorly-conditioned for the random walk on a path on n vertices, particularly since696

Kemeny’s constant for this Markov chain with transition matrix T is known to be697
2n2−4n+3

6 .698

v10

v11

v12
v1

v2

v3

v4

v5

v6
v7

v8

v9

Fig. 1: The directed cycle on 12 vertices, for which a ‘bad’ perturbation introduces
new transitions displayed here as dashed arcs.
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In each of these examples where the conditioning of Kemeny’s constant is poor,699

the structure of the transition matrix is very specific. Furthermore, the perturbation700

which produces such a large difference in Kemeny’s constant breaks the structure com-701

pletely. In the directed cycle example, we observe that this ‘worst-case’ perturbation702

introduces many new possible transitions into the chain, taking what is essentially703

a deterministic process and making it much more stochastic; see Fig. 1 for the new704

transitions introduced under this perturbation to the directed cycle on twelve vertices.705

It is natural, then, to ask about the conditioning of Kemeny’s constant where706

perturbations must respect the given structure of the transition matrix; that is, con-707

sider only perturbations where zero entries are preserved. More formally, consider a708

directed graph D, consisting of a vertex set V = {1, . . . , n} and a directed edge set709

E ⊆ V × V ; then define SD as the set of all stochastic irreducible matrices T such710

that ti,j > 0 only if (i, j) ∈ E. With this definition, we can re-frame the above as711

an examination of the conditioning of Kemeny’s constant for a matrix T ∈ SD (for a712

given D) where we consider only the perturbations T + E of T where T + E ∈ SD.713

While this is an interesting and natural question, we remark that there is an entire714

family of directed graphs given in [5] for which the value of K(T ) depends only on the715

directed graph, and not on the values of the transition probabilities. Directed graphs716

with this property are characterised by the following conditions:717

1. Every vertex of D has positive outdegree.718

2. There exists an integer k such that all cycles of D have length k.719

3. There is a vertex in D that lies on every cycle in D.720

Then K(T ) = 2n−k−1
2 , for all irreducible T ∈ SD, where n is the number of vertices721

in D. An example of such a directed graph is displayed in Fig. 2.722

v10

v11

v12
v1

v2

v3

v4

v5

v6
v7

v8

v9

Fig. 2: A directed graph D on twelve vertices for which every T ∈ SD has K(T ) equal
to nine.
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Appendix. The following is a short proof of a claim used in Example 5.3 in the806

computation of κ6(T ) := maxi,j{
∑n
k=1 |q

#
i,k − q

#
j,k|}, where T is the transition matrix807

of the random walk on a path on n vertices.808

Lemma 5.4. Let T be the transition matrix for the random walk on a path. Then809

κ6(T ) =

n∑
k=1

|q#1,k − q
#
n,k|.810

Proof. First, we note that by the symmetry in the entries of Q#, that811

n∑
k=1

|q#i,k − q
#
j,k| = 2

n
2∑

k=1

|q#i,k − q
#
j,k|,812

if n is even, and with an extra term corresponding to k = (n+ 1)/2 if n is odd.813

Next we show that for 1 ≤ k ≤ dn2 e, minj{q#j,k} = q#n,k. This follows from [6], in814

which it is proven that for a tridiagonal stochastic matrix, the group inverse has the815

property that816

q#k,k > q#k+1,k > · · · > q#n,k,817

and that818

q#1,k < q#2,k < · · · < q#k,k.819

To show that q#n,k is a minimal entry in the first dn2 e columns of Q#, it suffices to820

show that q#n,k < q#1,k. This is easily confirmed from the formulas given for the entries821

of Q# in Example 5.3.822

Hence823

max
i,j


dn2 e∑
k=1

|q#i,k − qj,k|

 = max
1≤i≤n


dn2 e∑
k=1

(q#i,k − q
#
n,k)

 .824

It remains to show that this maximum is obtained for i = 1. Some computation with825

the formulas given in (5.2) produces the following:826

dn2 e∑
k=1

(q#i,k − q
#
n,k) =


n2 − 2n− 2i2 + 4i

4
if n is even

n3 − 3n2 + n− 2i2(n− 2) + 4i(n− 2) + 3

4(n− 1)
if n is odd.

827

Both expressions are decreasing functions in i for i > 1; hence the maximum is828

attained for i = 1.829
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