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ABSTRACT 22 

Antibiotics have been widely supplemented in feeds at sub-therapeutic concentrations to prevent 23 

post-weaning diarrhea and increase the overall productivity of pigs. However, the emergence of 24 

antimicrobial-resistant bacteria worldwide has made it urgent to minimize the use of in-feed 25 

antibiotics. The development of promising alternatives to in-feed antibiotics is crucial for 26 

maintaining the suitability of swine production. Both medium-chain fatty acids (MCFA) and 27 

essential oils exhibit great potential to post-weaning diarrhea; however; their direct inclusion has 28 

compromised efficacy because of several factors including low stability, poor palatability and 29 

low availability in the lower gut. Therefore, the objective of this study was to develop a 30 

formulation of microparticles to deliver a model of essential oil (thymol) and MCFA (lauric 31 

acid). The composite microparticles were produced by the incorporation of starch and alginate 32 

through a melt-granulation process. The release of thymol and lauric acid from the microparticles 33 

was in vitro determined using simulated salivary fluid (SSF), simulated gastric fluid (SGF) and 34 

simulated intestinal fluid (SIF), consecutively. The microparticles prepared with 2% alginate 35 

solution displayed a slow release of thymol and lauric acid in the SSF (21.2 ± 2.3%; 36 ± 1.1%), 36 

SGF (73.7 ± 6.9%; 54.8 ± 1.7%) and SIF (99.1 ± 1.2%; 99.1 ± 0.6%), respectively, whereas, the 37 

microparticles without alginate showed a rapid release of thymol and lauric acid from the SSF 38 

(79.9 ± 11.8%; 84.9 ± 9.4%), SGF (92.5 ± 3.5%; 75.8 ± 5.9%) and SIF (93.3 ± 9.4%; 93.3 ± 39 

4.6%), respectively. The thymol and lauric acid in the developed microparticles with or without 40 

alginate both exhibited excellent stabilities (> 90%) during being stored at 4˚C for 12 weeks and 41 

after being stored at room temperature for 2 weeks. These results evidenced that the approach 42 

developed in the present study could be potentially employed to deliver thymol and lauric acid to 43 
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the lower gut of pigs, although, further in vivo investigations are necessary to validate the 44 

efficacy of the microparticles.  45 

Keywords: Encapsulation; Gut, Lauric acid, Microparticles, Slow release, Thymol 46 

1. INTRODUCTION 47 

Young animals are very vulnerable to diseases, and using antimicrobials is the most cost-48 

effective method to improve the health and productivity of food production animals raised with 49 

conventional agricultural techniques (Looft et al., 2012; Yang et al., 2015). Although this 50 

practice has been banned in Europe and other countries have also started to minimize the use of 51 

antibiotics in the animal production, it still exists in major parts of the world (Hassan et al., 52 

2018). Therefore, replacing antibiotics with cost-effective alternatives remains crucial to ensure a 53 

sustainable food animal production.  54 

Essential oils are considered as valid candidates to replace antibiotics in the feed industry (Li et 55 

al., 2012; Gong et al., 2014; Omonijo et al., 2018). Essential oils (e.g., thymol) are extracted 56 

from plants and can promote growth performance and health in animals because of their 57 

biological activities and antimicrobial activities (Si et al. 2006a; Edris, 2007; Del Nobile et al. 58 

2008; Brenes et al., 2010; Puvaca et al., 2013; Rassu et al, 2014). With the identification and 59 

characterization of bioactive components in plant extracts and significant progress in mechanistic 60 

research with these components in food production animals, many research efforts have been 61 

made to use essential oils substituting antibiotics within the animal production chain (Omonijo et 62 

al., 2018). The rationales for using essential oils in animal feeds have relied on their abilities to 63 

inhibit bacterial growth, reduce virulence through quorum-sensing disruption, and regulate innate 64 

immunity of animals (Hassan et al., 2018). However, most essential oils have a high minimum 65 

inhibitory concentration (MIC) that are unlikely accepted in the industry regarding cost-66 
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efficiency, feed palatability and government regulation (Yang et al., 2015; Omonijo et al., 2018; 67 

Hassan et al., 2018). Therefore, it is vital to ensure the delivery of essential oils to the target site 68 

for increasing their efficacy. 69 

Essential oils have very high volatility, and their bioactive compounds are readily degradable 70 

when exposed to heat, oxygen, light, or during their interactions with other compounds, thus, 71 

negatively affecting their biological activities and antimicrobial activities (Si et al., 2006a ; 72 

Zhang et al., 2016a; Gonçalves et al., 2017). Additionally, several studies are demonstrating that 73 

several essential oils including thymol and carvacrol have almost completely vanished in the 74 

upper digestive tract of pigs (Michiels et al., 2008; Zhang et al., 2016a). Therefore, unprotected 75 

essential oils can be significantly vanished at the manufacture, transportation, and storage of 76 

feeds and as well as during delivery to the pig gut, thus hindering access to the distal part of pig 77 

intestine (Omonijo et al., 2018). This serves as a major challenge to the use of essential oil in pig 78 

feeds. Thus, it is crucial to establish a useful and practical delivery approach for using essential 79 

oils in feeds.  80 

Medium-chain fatty acids (MCFA) including lauric acid (C12) and its ester derivatives also have 81 

potential to substitute antibiotics in weaning piglets (Han et al., 2011; Zentek et al., 2012; 2013; 82 

Hanczakowska et al., 2013; De Smet et al., 2016). Several studies indicated that MCFA could 83 

inhibit Salmonella growth (Van Immerseel et al., 2004; Messens et al., 2010). Synergistic 84 

antimicrobial activities between oregano oil and caprylic acid were observed with several strains 85 

including Salmonella (Hulánková and Bořilová, 2011). Similarly, Vande Maele et al. (2016) 86 

demonstrated in an in vitro study that a combination of lauric acid and cinnamaldehyde had 87 

synergistic effects in inhibiting the growth of Brachyspira hyodysenteriae that causes swine 88 

dysentery. The use of MCFA is popular both in the food and feed industries. However, some 89 
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MCFA and their ester derivatives can compromise feed palatability and acceptance and reduce 90 

feed intake in pigs due to their unpleasant odors (Omonijo et al., 2018). Thus, it is also essential 91 

to develop a useful and practical delivery approach for using MCFA in feeds.  92 

Microencapsulation has been becoming one of the most popular and practical approaches to 93 

mask the unpleasant taste/odor, and deliver bioactive compounds in food production animals 94 

(Piva et al., 2007; Chitprasert et al., 2014). Ideal microencapsulation should not only stabilize 95 

essential oils but also release them specifically in the targeted regions of the intestine (Chen et 96 

al., 2017; Omonijo et al., 2018). Therefore, the objective of the present study was to develop a 97 

formulation of microparticles containing both thymol and MCFA for effective delivery to pig 98 

intestinal tract.  99 

2. MATERIALS AND METHODS 100 

2.1. Materials 101 

Thymol (≥ 98.5%), lauric acid (LA), palmitic acid (PA, C16), stearic acid (SA, C18), amylase, 102 

sodium alginate (low viscosity), pepsin originated from porcine and pancreatin originated from 103 

porcine were purchased from Sigma-Aldrich (Oakville, Ontario, Canada). Cornstarch was 104 

purchased from Cargill (Cargill Inc., Minneapolis, MN, USA) and pre-gelatinized starch (1500) 105 

from Coloran (West Point, PA, USA). 106 

2.2. Selection of a suitable fatty acid 107 

Three fatty acids including lauric acid, palmitic acid, and stearic acid were used in this 108 

experiment because those have a melting point above a melting point (42˚C) of thymol and have 109 

been used to deliver bioactive compounds (Ma et al., 2016; Pitigraisorn et al., 2017). The melting 110 

points of lauric acid, palmitic acid, and stearic acid are 43˚C, 63˚C and 69˚C, respectively. Ten 111 

grams of each fatty acid was mixed with 10 g of thymol, respectively. The mixtures were then 112 
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melted in a water bath at 70˚C. After melting, the mixtures were stirred for 30 min. The molten 113 

mixture of each fatty acid with thymol was left to stay at 55˚C without stirring for 2 h before 114 

placing at room temperature (23˚C) up to 6 h to allow for solidification.  115 

To observe the crystal morphology of thymol, lauric acid, and their mixture, an emulsion of 116 

thymol, lauric acid and the mixture of thymol and lauric acid (ratio 1:1) were prepared. Lauric 117 

acid and thymol were melted at 70˚C individually or mixed at a ratio of 1:1, and then added into 118 

the water at 10% with 1% tween 80 as a surfactant. The mixture was mixed using a Polytron 119 

(PT10-35GT, Kinematica AG, Switzerland) for 2 min at 13,000 rpm to make an emulsion. Then, 120 

three emulsions were stored at 4˚C overnight allowing the emulsions to crystallize. The crystal 121 

morphology was examined under a microscope (Eclipse Ci, Nikon, Japan). 122 

 123 

2.3. The melting point of thymol, lauric acid, and their mixture 124 

Among the three fatty acids tested, lauric acid was selected for further study because its mixture 125 

with thymol remained a homogeneous liquid at room temperature for 6 h. Before use, 1 g of 126 

thymol and lauric acid each were kept at -80˚C for 30 min and then mixed by vortexing for 30 127 

sec at 3,000 rpm. The mixture was kept in -80˚C for 3 h and then ground to a fine powder using a 128 

grinder. The grinder was kept -20˚C for 3 h before use to avoid increasing temperature to higher 129 

than the melting temperature of thymol and lauric acid. The melting temperature of the thymol, 130 

lauric acid, and their mixture (50: 50 wt%) was measured by differential scanning calorimetry 131 

(DSC). For the measurement, 12.1 mg thymol, 13.1 mg lauric acid, and 10.7 mg mixture were 132 

weighed into individual Tzero Aluminum hermetic pans. The pan was placed in the chamber of 133 

DSC (Q Series DSC, TA Instrument). The DSC was programmed as follow: 1) Equilibrate at 134 
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25˚C; 2) Jump to -10˚C; 3) Ramp 10˚C/min to 80˚C (1st run); 4) Cooling; 5) Equilibrate at -135 

10˚C; 6) Isothermal for 5 min; and 7) Ramp 10˚C/min to 80˚C (2nd run).  136 

2.4. Preparation of microparticles  137 

For preparing microparticles without adding 2% alginate solution, 5 g of lauric acid and 5 g of 138 

thymol were weighed into a closed vial separately and melted at 70˚C in a water bath, mixed 139 

together and stirred for 30 min. Thirty grams of cornstarch and 5 g of pre-gelatinized starch (a 140 

ratio of 6:1) were weighed separately and then mixed in a container by hand shaking. The molten 141 

thymol and lauric acid mixture was added into the starch mixture and then mixed by hand 142 

stirring. Fifteen milliliters of distilled water (3 times of pre-gelatinized starch) was added to the 143 

mixture. The containers were immediately placed into an ice-water bath for 1.5 h and kept in a 144 

refrigerator (4˚C) overnight for solidification. The solid particles were then granulated into 145 

micro-particles with a granulating machine (UAM Pharmag, Germany) at 90 rpm using a pore 146 

size of 0.1 mm and dried at room temperature (23˚C) for 1 h before being stored in a refrigerator 147 

(4˚C).  148 

For preparing microparticles with alginate, a total of 0.3 g of alginate was weighed and dissolved 149 

in 15 mL of distilled water to make a 2% (w/v) alginate solution. The same protocol described 150 

above was used to make the microparticles except for replacing the 15 mL of water with the 2% 151 

alginate solution.  152 

 153 

2.5. Morphology of microparticles 154 

The morphology of the microparticles produced with or without adding a 2% alginate solution 155 

was determined with a light microscope (Axio Cam 105, Carl-Zeiss, Switzerland; Nikon eclipse, 156 
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Japan) at 10 × magnification and the Zen Image Software (2012) was used to determine the 157 

surface diagram of the microparticles. 158 

2.6. In vitro release of thymol and lauric acid from the microparticles  159 

In vitro release of thymol and lauric acid from the microparticles was determined with simulated 160 

digestive fluid using previously published procedures with some modifications (Minekus et al. 161 

2014). The simulated salivary fluid (SSF) contained 15.1 mmol/L KCl, 13.6 mmol/L NaHCO3, 162 

3.7 mmol/L KH2PO4, 0.15 mmol/L MgCl2(H2O)6 and 0.06 mmol/L (NH4)2CO3. The simulated 163 

gastric fluid (SGF) contained 47.2 mmol/L NaCl, 25 mmol/L NaHCO3, 6.9 mmol/L KCl, 0.9 164 

mmol/L KH2PO4, 0.5 mmol/L (NH4)2CO3 and 0.1 mmol/L MgCl2(H2O)6. The simulated 165 

intestinal fluid (SIF) contained 85 mmol/L NaHCO3, 38.4 mmol/L NaCl, 6.8 mmol/L KCl, 0.8 166 

mmol/L KH2PO4 and 0.33 mmol/L MgCl2(H2O)6. The pH of SSF, SGF and SIF was adjusted 167 

using HCl or NaOH to 7.0, 3.0 and 7.0, respectively. The final digestion mixtures of the 168 

electrolyte solution for SSF, SGF and SIF contained 1.5, 0.15 and 0.6 mmol/L of CaCl2(H2O)2, 169 

respectively. Respective enzymes were also added to simulate digestion in pig digesta. Alpha-170 

amylase originated from human saliva was included in the SSF final digestion mixture at a 171 

concentration of 75 U/mL. Pepsin originated from porcine gastric mucosa was added to the SGF 172 

final digestion mixture at a concentration of 2000 U/mL and pancreatin originated from porcine 173 

pancreas was added to the SIF final digestion mixture at a concentration of 100 U/mL.  174 

Forty microparticle samples (each 0.5 g) were employed to mimic digestion within the mouth, 175 

stomach and small intestine in pigs. Four samples were taken from each sampling point (0, 2, 30, 176 

60, 90, 120, 150, 180, 210 and 240 min) with points between 0 to 2 min representing the 177 

digestion in the mouth, 2 to 120 in the stomach and 120 to 240 min in the small intestine. All 178 

simulated solutions were maintained at 37˚C. The SSF was added to each of the samples at a 179 
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ratio of 1:1 and placed in the incubator with shaking (Innova TM. 4200, New Brunswick 180 

Scientific, Edison/ NJ. USA) for 2 min. The pH was adjusted to 3 with 1M HCl before SGF was 181 

added. At the end of the SGF stage, the pH was adjusted to 7 with 1 M NaOH followed by 182 

addition of the SIF. To measure the concentration of thymol and lauric acid, 5 mL of oil 183 

extraction solvent (hexane) was added to each of the supernatants, shaken (IKA Vibrax VXR 184 

Basic, U.S.A) for 20 min and allowed to stay for 30 min. Each of the supernatant from each point 185 

was diluted 10 times and the diluent was filtrated using a syringe-driven filter unit 186 

(polyetrafluoroethylene, 0.22 nm) and further analyzed by gas chromatography (GC) following 187 

the method explained below. Two replicates for each sample were used.  188 

The column installed was SUPELCO WAX
TM

 10 (fused silica capillary column; 60 m × 0.25 189 

mm × 0.50 nm film thickness and the temperature limits from 35-280˚C). Thymol and lauric acid 190 

were identified by comparing the retention time with the standard thymol and lauric acid and 191 

their concentrations were calculated by comparing the total peak area of thymol and lauric acid 192 

with the standard curve. Released thymol or lauric acid content = thymol or lauric acid 193 

concentration in GC vial × 5 (volume of added hexane) × dilution times/thymol or lauric acid in 194 

the dry samples × 100%. 195 

2.7. Determining the stability of thymol and lauric acid in the microparticles 196 

The stability of thymol and lauric acid in the microparticles with or without alginate was 197 

measured after being stored at room temperature (23˚C) for 2 weeks and during the storage at 198 

4˚C for 12 weeks. The recovery rate of thymol and lauric acid were determined with the 199 

procedure described as below. Samples were taken at different time points (1 week, 3 weeks, 6 200 

weeks and 12 weeks) for analysis. Each sample (0.5g) was suspended in 15 mL of distilled water 201 
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containing Pancreatin (100 U/mL). The mixture was incubated and analyzed as described above. 202 

Each of the samples was measured in triplicate. 203 

3. RESULTS AND DISCUSSION 204 

3.1. Selection of a fatty acid 205 

There was no visible phase separation for all three mixtures at the molten state (Fig. 1A). After 206 

being placed at room temperature (23˚C) for 6 h, the molten mixture of thymol and lauric acid 207 

was still in a clear liquid state without having phase separation, however, the other two molten 208 

mixtures (thymol / palmitic acid and thymol / stearic acid) solidified and formed a gel-like 209 

mixture (Fig.1B).  210 

These results are consistent with the DSC measurements. As shown in Fig. 2, the mixture of 211 

lauric acid and thymol exhibited a single melting peak with a value of 30.6˚C, which is lower 212 

than both that of thymol (52.8˚C) and lauric acid (47.4˚C). This suggested that the mixture of 213 

lauric acid and thymol was in a eutectic solution, that is, a mixture of two or more pure 214 

chemicals at certain ratios, in which the chemicals inhibit the crystallization process of one 215 

another, resulting in a system having induced melting point depression (Washburn, 1924). 216 

Once cooling the emulsions, thymol crystalized in irregular shapes (Fig. 3A), whereas lauric acid 217 

crystalized in round shapes (Fig. 3B). The resulted mixture of the two crystalized into somewhat 218 

ovular shaped particles without visible distinctions between the two individual components (Fig. 219 

3C). This observation indicates that thymol and lauric acid co-crystalized together. Both results 220 

from DSC and microscopy observation showed that thymol and lauric acid form a pair of a good 221 

candidate for a formulation of antimicrobial microparticles for the following reasons. Firstly, 222 

since lauric acid significantly reduced the melting point of thymol, it served as a liquid carrier for 223 

thymol at room temperature for a period up to 6 h. This property provides an excellent 224 
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convenience for processing of thymol products such as in the present study. This is because 225 

when at a liquid state, thymol and fatty acids can be easily mixed and better absorbed by the 226 

starch granules which helps to ensure even distribution and better protection of the core 227 

ingredients within the encapsulation matrix. Secondly, a combination of thymol with lauric acid 228 

in one product may provide additional protective benefits to the animals. An in vitro study 229 

demonstrated that lauric acid could effectively inhibit the growth of Brachyspira hyodysenteriae 230 

with a MIC value less than 1.5 mM (Vande Maele et al., 2016). Dietary fats with a considerable 231 

level of lauric acid and myristic acid increased broiler growth performance that may be related to 232 

lauric acid’s antimicrobial properties (Zeitz et al., 2015). Most recently there was a study 233 

showing that lauric acid can reduce Campylobacter spp. in broiler meat (Zeiger et al., 2017). 234 

Lauric acid’s ester derivatives (e.g., monolaurin) are also known for their protective biological 235 

activities as antimicrobial agents (Seleem et al., 2016). The exact mechanism of lauric acid anti-236 

microbial effect is still unclear. However, it is believed that some MCFA can damage the cell 237 

membrane, therefore, causing bacterial death (Desbois et al. 2010). It has been believed that the 238 

amphipathic structure of MCFA allows them to cause pores with a different size in the cell 239 

membrane. MCFA also could cause bacteria death by reducing enzyme function, blocking 240 

nutrient absorption and producing toxic compounds for bacteria (Desbois et al. 2010). Therefore, 241 

in this study lauric acid is not only a suitable carrier for thymol but also a bioactive compound 242 

with antimicrobial properties. 243 

3.2. Morphology of microparticles 244 

The compositions of microparticles with/without alginate include 66.22%/66.67% cornstarch, 245 

11.03%/11.11% pre-gelatinized starch, 11.03%/11.11% thymol, 11.03%/11.11% lauric acid and 246 

0.7%/0% alginate. The average particle sizes of the microparticles were 800 µm in diameter, and 247 
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this was similar to the average size of 890 µm for microparticles produced by Benavides et al. 248 

(2016) through the method of ionic gelation of alginate. There is no difference in the average 249 

particle size between the microparticles produced with or without alginate; however, the shapes 250 

and surfaces of the two types of microparticles were different (Fig. 4). The microparticles with 251 

alginate were mostly spherical with a relatively smooth surface, whereas those without alginate 252 

had irregular shapes with rough edges and coarse surfaces. 253 

Many kinds of polymers have been employed to encapsulate and deliver bioactive compounds in 254 

both food and feed applications (Almeida et al., 2013; Zhang et al., 2016a; Chen et al., 2017). 255 

For applications in animal feeds, it is better to use natural polymers that have been approved for 256 

use in feeds. Starch is popularly used for microencapsulation because it is biodegradable, edible, 257 

commonly available at low cost, nonallergic, easy to use and thermo-processable (Zhu, 2017). 258 

Starch consists of both amylose and amylopectin (Tester et al., 2004; Udachan et al., 2012). Pre-259 

gelatinized starch has undergone processing under intense heat conditions by cooking, drying 260 

and making into fine powder thus, leading to better solubility in water and being readily 261 

solubilized at room temperature (Romano et al., 2018; Fiorda et al., 2015). The combined use of 262 

cornstarch and pre-gelatinized starch in this study increases the water retentivity (Romano et al. 263 

2018), thus promotes hydrogen bonding and the formation of the network in the encapsulation 264 

matrix. As a natural polymer derived from brown seaweed, alginate is a linear and anionic 265 

polysaccharide (Dragan, 2014). At room temperature, alginate is soluble in water allowing the 266 

formation of gel without heating and cooling cycles, which make alginate as an attractive 267 

microencapsulation material for feed applications (Benavides et al., 2016; Agüero et al., 2017). 268 

The inclusion of alginate to the starch matrix improved the shape and surface properties. This 269 
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could be attributed to its remarkable crosslinking capability and excellent film-forming 270 

properties.  271 

 272 

3.3. In vitro release profiles of thymol and lauric acid from the microparticles  273 

As shown in Fig. 5A, both thymol and lauric acid encapsulated in the microparticles with 274 

alginate exhibited slow release profiles in the simulated gastrointestinal fluids. The cumulative 275 

release (%) of thymol and lauric acid increased gradually to 21.2 ± 2.3 and 36.0 ± 1.1 in the SSF, 276 

73.7 ± 6.9 and 36.8 ± 0.6 in SGF. Both thymol and lauric acid were completely released in the 277 

SIF within 240 min. However, as shown in Fig. 5B, the microparticles produced without alginate 278 

had a rapid release of thymol (79.9 ± 11.8%) and lauric acid (80.8 ± 5.9%) after incubation in the 279 

SSF for 2 min. When the microparticles were placed in the SGF for 120 min, the cumulative 280 

release rates reached 92.5 ± 3.5% and 75.8 ± 5.9% respectively for thymol and lauric acid. The 281 

rest of thymol and lauric acid were released from both types of microparticles in less than 40 282 

mins after they were placed in the SIF. 283 

The goal of a current delivery method is to release thymol and lauric acid at a low percentage in 284 

the mouth and stomach but have a sustained release as it passes through the intestine (Piva et al. 285 

2007). The fast release of thymol and lauric acid in SSF from the microparticles without alginate 286 

is primarily due to the presence of alpha-amylase in the SSF, an enzyme that is known to digest 287 

starch quickly. The excellent solubility of pre-gelatinized starch could also have contributed to 288 

the fast release of the active components. The inclusion of alginate to the starch matrix markedly 289 

reduced the release rate in the SSF. This is mainly due to the existences of carboxylic groups in 290 

alginate molecules and calcium ions in the simulated digestive fluids. Calcium ions may form 291 

crosslinks between carboxylic groups in addition to hydrogen bondings, leading to enhanced 292 
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networks of encapsulation matrix, therefore, retard the dissolution of starch molecules and slow 293 

the release of thymol and lauric acid. The globular shaped and smooth surface of microparticles 294 

with alginate would have a smaller specific surface area compared to the irregular shaped and 295 

rough surface of microparticles without alginate. This may be another factor contributing to the 296 

better release property of alginate containing microparticles. Notably, alginate also effectively 297 

reduced the release of active components in the SGF which can be explained by the pH 298 

sensitivity of alginate molecules. When it is under very acidic conditions (e.g., pH at stomach) 299 

that are lower than its pKa, the carboxylic groups are not ionized and stay as COOH resulting in 300 

an insoluble structure (Agüero et al., 2017). When pH is close to 7 which is similar to the 301 

intestinal pH, the carboxylic groups became ionized (COO-) resulting in that the polymer chain 302 

significantly expands and the hydrophilic alginate matrix enlarges (Agüero et al., 2017). In this 303 

study, the results indeed demonstrated that alginate significantly decreased the release of thymol 304 

and lauric acid in SGF and increased their release in the SIF. Many studies have shown that 305 

alginate matrix prevented a quick release of active components in the acidic environment of the 306 

stomach and allowed a prolonged release under the intestinal conditions (Zastre, 1997, Zhang et 307 

al. 2016a). However, compounds that are highly soluble and have a low molecular weight cannot 308 

be prevented from releasing in the mouth and stomach even though the granules matrix does not 309 

erode or swell. The alginate-containing microparticles developed in this study need to be further 310 

optimized to reduce the release rates in the SSF and SGF.  311 

Although the release behavior of thymol and lauric acid from the microparticles provides 312 

precious information, it is challenging to precisely demonstrate release behavior in pig gut 313 

because of the complexity of gut physiological environments. This was supported by the study 314 

indicating that the rate of release of encapsulated carvacrol in the pig stomach via in vivo studies 315 
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was 25% higher than the rate obtained from in vitro studies (Zhang et al., 2016a), which may be 316 

due to the phenolic binding to other components such as fats and hydrophobic compounds 317 

present in the diet (Lallès et al., 2009). Therefore, in vivo release behavior of the microparticles 318 

has to be determined eventually in the gastrointestinal tract of pigs. 319 

 320 

3.4. The stability of microparticles with/without alginate during storage 321 

As shown in Fig. 6, thymol and lauric acid had good stabilities (> 95%) in both types of 322 

microparticles with or without alginate after being stored at room temperature (23˚C) for 2 323 

weeks. As shown in Fig. 7, thymol and lauric acid had good stabilities (> 90%) in both types of 324 

microparticles with or without alginate after being stored at 4˚C for 12 weeks. Durante et al. 325 

(2012) showed that the encapsulation of wheat bran oil into 2% (w/v) sodium alginate beads 326 

significantly increased the stability of wheat bran oil at 4˚C. This was also found in the research 327 

conducted by Otálora et al. (2016), that the encapsulation of betalain with calcium-alginate had 328 

good stability when stored at low relative humidity. 329 

Stability during storage is an essential factor that should be considered for a feed additive. Feed 330 

additives have a 1-2 year shelf life under current industry practice. Our preliminary data 331 

demonstrated that the current microparticles are stable during short-term storage. However, the 332 

stability of long-term storage (e.g.1-2 year) must be further investigated. The inclusion of 333 

antioxidants in the formula may be considered to enhance the stability of encapsulated thymol 334 

and lauric acid. In conclusion, the formulation and method established in this study for the 335 

encapsulation of thymol and lauric acid in microparticles are relatively simple and can be used as 336 

a potential method to effectively deliver essential oils and MCFA to the pig intestinal tract. This 337 

unique essential oil formula will be further optimized for better-controlled release though 338 
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investigating the physicochemical and molecular property of the microparticles. Retention of 339 

encapsulated thymol and lauric acid during feed processing will be mimicked by the treatments 340 

of steam for different time periods and validated in a real pelleting process. Further 341 

investigations are needed to confirm the efficacy of the microparticles with in vivo studies. 342 

 343 
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Figure legends  505 

Fig. 1. A) Pictures showing the molten mixture of thymol and fatty acids at 0 min at room 506 

temperature (23°C). B) Pictures showing the molten mixture of thymol and fatty acids at 6 h at 507 

room temperature (23°C). FA1- mixture of thymol and lauric acid, FA2 – mixture of thymol and 508 

palmitic acid; FA3 – mixture of thymol and stearic acid. 509 

 510 

Fig. 2. Differential scanning calorimetry (DSC) of (A)Thymol, (B) Lauric acid, and (C) Mixture 511 

of thymol and lauric acid (50: 50wt%). The second run with heating rate 10 °C/min from -10°C 512 

to 80°C. 513 

 514 

Fig. 3. Morphology of crystals of thymol (A) and lauric acid (B) and a mixture of thymol and 515 

lauric acid (C) after crystallization. The measuring bar in the pictures were 1µm. 516 

 517 

Fig. 4. Morphology and surface diagram of the microparticles of lauric acid and thymol with and 518 

without 2% alginate observed with a light microscope. (A) Morphology of microparticles with 519 

alginate; (B) Morphology of microparticles without alginate; (C) Surface diagram of 520 

microparticles with alginate and (D) Surface diagram of microparticles without 2% alginate. 521 

 522 

Fig. 5. In vitro release profile of thymol and lauric acid from the microparticles with (A) and 523 

without (B) alginate using simulated fluids (SSF - simulated salivary fluid, SGF - simulated 524 

gastric fluid and SIF - simulated intestinal fluid). (Mean ± SD, n = 4). 525 

 526 
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Fig. 6. Stability of the microparticles of: (A) thymol in the microparticles with alginate, (B) 527 

lauric acid in the microparticles with alginate, (C) thymol in the microparticles without alginate 528 

and (D) lauric acid in the microparticles without alginate. Samples were stored at room 529 

temperature (23˚C) for 2 weeks. (Mean ± SD, n = 4).  530 

Fig. 7. Stability of the microparticles of thymol and lauric acid with (A) and without (B) alginate 531 

stored at 4˚C for 12 weeks. (Mean ± SD, n = 4). 532 

 533 

 534 

 535 

 536 

 537 

 538 
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Fig. 1. Omonijo et al. (2018) 540 
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Fig. 2. Omonijo et al. (2018)  553 
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Fig. 3. Omonijo et al. (2018) 563 
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Fig. 4. Omonijo et al. (2018) 569 
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Fig. 5. Omonijo et al. (2018) 580 
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Fig. 6. Omonijo et al. (2018) 596 
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Fig. 7. Omonijo et al. (2018) 606 
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