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Abstract

Weather index insurance has become a popular subject in agricultural risk management.

Under these policies farmers receive payments if they experience adverse weather for

their crops. Spatial basis risk is the risk that weather observed at stations does not cor-

respond to the weather experienced by the farmer. The objective of this research is to

determine to what extent spatial basis risk can be impacted by the interpolation tech-

nique used to estimate weather conditions. Using forage crops from Ontario, Canada, as

an example, a temperature based insurance index is developed. Seven different interpo-

lation methods are used to estimate indemnities for forage producers. Results show that

the number of weather stations in the interpolation area has a larger impact on spatial

basis risk than the choice of interpolation technique. For insurers wishing to implement

this type of insurance, more focus should be placed on increasing the number of available

weather stations.
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Chapter 1: Introduction

Weather index insurance has become a popular subject in agricultural risk management

with many papers devoted to its discussion (Heimfarth and Musshoff, 2011; Lin et al.,

2015; Okhrin et al., 2013). Under these policies farmers receive payments if their crops

experience adverse weather during the growing season. These policies offer many ben-

efits, such as reduced administrative costs and decreased adverse selection and moral

hazard. However, this type of insurance is particularly susceptible to the problem of

spatial basis risk (Lin et al., 2015). Spatial basis risk occurs when the weather observed

at weather stations does not match the weather experienced by the farmer’s crops, caus-

ing improper indemnities to be paid to the farmer (Dick and Stoppa, 2011). However,

spatial basis risk may be reduced through the use of averaging and spatial interpolation

techniques such as inverse distance weighting and kriging. These techniques make it

possible to incorporate multiple weather stations in the estimation process rather than

using only the single closest station, potentially resulting in more accurate estimates and

thereby reducing spatial basis risk.

The objective of this study is to determine if an insurer’s choice of spatial interpolation

technique can impact the amount of spatial basis risk in a weather based insurance model.

To evaluate the performance of different spatial interpolation techniques, temperature

based policies for forage crops in Ontario, Canada, are considered as an example. A

weather insurance index is developed based on cooling degree days, a weather metric

which represents the excess heat stress that the crops experience over the growing sea-

son. Seven different interpolation methods are applied to temperature data and estimated

indemnities are calculated for forage producers across the province. By analyzing the cor-

relation between the estimated indemnities and reported forage yields, the impact of the

different interpolation techniques on spatial basis risk is quantified.
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The results of this study will provide valuable insight for any insurer who wishes to de-

velop these types of policies. By comparing the differences in spatial basis risk for various

spatial interpolation techniques, it can be determined if there is any benefit to using more

complex, computationally intensive methods such as spatio-temporal regression kriging

over simpler methods such as inverse distance weighting. If the difference in spatial ba-

sis risk between these techniques is minimal, an insurer may prefer to avoid the added

complexity of methods such as kriging in favor of simpler, easier to understand methods.

This study also contributes to the current body of literature by comparing the impact of

spatial basis risk in regions with varying amounts of weather stations. The analysis is

split into two regions, one with a large number of weather stations and one with a small

number of weather stations. This distinction helps to determine if different approaches

need to be considered for areas with varying amounts of weather stations.

In addition, this study examines whether temperature is a suitable variable for designing

index-based insurance policies. In general, temperature mainly impacts forage quality

while precipitation mainly impacts forage yields (Buxton, 1995), therefore it is likely that

rainfall is a better proxy for forage yields than temperature. Temperature was chosen

as the variable of interest in this study because the data sets used in the analysis have

more extensive observations for temperature than for rainfall, which results in more in-

formation being available for spatial interpolation. In addition, past research has noted

that relatively little is known about the basis risk for high temperature based products

(Clarke et al., 2012) and this study provide valuable insight into the basis risk associated

with these policies.

The remainder of this paper proceeds as follows. First, past research on the subjects of

forage, basis risk, and spatial interpolation is reviewed. Second, the data used in the

analysis is described. Third, the methodology for the analysis is outlined, including all

of the spatial interpolation techniques and the design of the insurance index. Lastly, the
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results of the analysis are presented and the paper concludes with a discussion of the

results and a summary.
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Chapter 2: Background Review

2.1 Forage Insurance Challenges

This section consists of a brief background on the subject of forage crops, including their

importance to the agricultural sector in Canada and the difficulties in designing insurance

plans to protect them. Forage is defined as plant matter that is consumed by livestock for

food and includes alfalfa, straw, hay, and other grasses (AAFC, 2016). In Canada the most

popular forage products are compressed bales of hay and alfalfa with 19 million acres

planted in 2007, grown mostly in the western provinces of Alberta and Saskatchewan.

The production of forage materials is essential to Canadian agriculture, with 80% of cows

for beef production and 60% of dairy cows being dependent on forage for feed (Porth and

Tan, 2015). In addition Canadian hay and alfalfa are both valued around the world as

high quality feed for dairy cows and other livestock, and in 2007 Canada exported over

$194 million worth of processed forage products in the form of compressed hay bales,

alfalfa pellets, and alfalfa cubes (AAFC, 2012b).

Canada exports forage all over the world, however, Japan and the United States are the

largest single purchasers of Canadian forage exports, accounting for 67% and 25% of

2007 exports respectively (Yungblut and Jalbert, 2012). Given these statistics it is clear to

see that the forage industry plays an important role in feeding livestock not just within

Canada’s borders, but all around the world as well.

Despite the importance of the forage industry in Canada and despite the fact that roughly

44% of Canada’s farm lands are devoted to forage, participation rates in forage insurance

programs have historically been much lower than for other forms of crop insurance. As

of 2015 only 20% of all forage acres and 12% of all pasture acres in Canada were insured

even though premiums were heavily subsidized (Porth and Tan, 2015). Ever since 1967
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when forage became covered under AgriInsurance, there have been two main obstacles

that have stood in the way of increasing participation rates. Since forage is generally

consumed as necessary by livestock, many producers choose not to keep track of the

amount of forage they produce. This makes it very difficult to make accurate estimates

of forage yields which in turn makes it difficult to design an effective insurance plan

that forage producers will want. In addition, forage is a commodity with a market price

that can vary significantly over the course of a year, making the process of establishing

actuarially fair premiums very challenging (AAFC, 2012a).

Faced with these low participation rates, the Canadian government has been pressured

to help forage producers by providing disaster assistance. In the years since 2008 there

have been four initiatives organized by the Canadian government in order to provide

assistance to forage producers. The first two initiatives provided money to offset rising

feed costs in times of drought while the other two initiatives covered feed and transporta-

tion costs during times of flooding (AAFC, 2012a). It is estimated that $148 million was

distributed to forage producers through these four initiatives, demonstrating the neces-

sity of adequate forage protection in Canada. Troubles in the forage industry can ripple

throughout the entire livestock sector, and so it is vital that producers be offered afford-

able, effective insurance to protect themselves against downturns.

2.2 Basis Risk Review

This section includes a brief discussion about basis risk in general as well as a review of

the existing literature regarding how spatial basis risk can be analyzed and quantified.

Basis risk is defined as “...the difference between the loss experienced by the farmer and

the payout triggered.”(Dick and Stoppa, 2011, p. 22). Basis risk can result in a farmer

receiving a payment without experiencing any losses or experiencing losses without re-

ceiving a payment. This definition of basis risk specifically refers to the loss experienced
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by the farmer, which is usually expressed as a percentage of historical average yield,

however, because this information was not available for this analysis, yield was used as a

proxy for losses under the assumption that lower yields correspond to higher losses and

vice versa. In general, there are three different types of basis risk (Dick and Stoppa, 2011):

• Product Basis Risk: Occurs when there is no clear relationship between losses and

the chosen weather index.

• Temporal Basis Risk: Occurs when insurance phases are not temporally aligned

with the intended crop growth stage.

• Spatial Basis Risk: Occurs when there is local variation in the weather index within

the area surrounding a weather station.

As an example of product basis risk, an insurance policy might be designed using tem-

perature when in reality the amount of rainfall has a greater impact on crop losses. As an

example of temporal basis risk, a farmer might receive no rain during the most important

growth phases of their crops, yet still receive enough rain during the rest of the season

to avoid triggering a payment. As an example of spatial basis risk, a weather station may

record no rain when in fact the farmer’s crops, located many kilometers away, receives

enough rain to avoid any losses. While all of these situations can result in improper in-

demnities being paid to farmers, the focus of this research is on spatial basis risk, which

occurs as a result of uncertainty in estimating the weather index at the farmer’s property

(Dick and Stoppa, 2011).

There are often a limited number of weather stations available to the insurer, and as a

result indemnities must be calculated based on observations from weather stations that

are not located in the farmer’s fields. Therefore, there is a chance that the weather ob-

served at the station may not match exactly with the weather experienced by the farmer,

creating uncertainty when indemnities are calculated. Without placing weather stations

in every farmer’s field, a certain degree of spatial basis risk is unavoidable when dealing
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with index-based insurance. However, spatial basis risk may be reduced by using spatial

interpolation techniques to create better estimates of weather conditions in the farmer’s

fields. Basis risk continues to be an important and challenging area of research, often

limited by the amount of reliable data that is available (AAFC, 2012a; Lin et al., 2015).

Major (1999) was one of the first academic papers to propose a method for analyzing

basis risk as it applies to catastrophe derivative contracts. These contracts are designed

to payout if an index based on insured losses exceeds a certain threshold, and were first

developed to help insurers hedge their positions. First, in order to simulate weather and

loss data, a computer model was constructed based on the geographic features of the in-

sured property and the location of the property underlying the index. A large number of

simulations were then performed in order to calculate the sample correlation in between

the index value and the losses from the insurer’s book of business. A high degree of cor-

relation, positive or negative, indicates that there is very little basis risk, meaning that

the conditions measured by the index closely reflect the losses sustained by the insured.

Conversely a correlation coefficient close to zero would indicate that the index gives very

little information about the losses sustained by the insured. By comparing models Major

(1999) was able to conclude that a model where indices are measured by Zip codes would

help increase correlation when compared to a model where indices are measured by state.

Paulson and Hart (2006) approached the spatial basis risk problem by using a kriging

technique with weather data from the state of Iowa in order to estimate the level of rain-

fall at unobserved locations. For comparison, a simple inverse distance weighted esti-

mator was also used to provide estimates of rainfall. It was found that both methods

produced nearly equivalent results despite the sophistication of the kriging model. In

addition a Monte Carlo analysis was used to calculate premiums for precipitation based

index insurance using both the kriging and inverse distance weighted models, and both

methods were found to be nearly equivalent with respect to ratemaking. When they per-
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formed a historical analysis to determine how this index insurance would have performed

in the past it was shown that it would have been successful in triggering payouts in areas

of low precipitation. They note, however, that the loss areas for this type of insurance

product would be geographically concentrated due to the nature of precipitation events.

This implies that any such insurance policies would require a geographically large cover-

age area in order for the insurer to create a sufficient risk pool, meaning that these policies

would be difficult for smaller, private companies to administer.

Norton et al. (2010) considered the inclusion of variables such as longitude, latitude, and

elevation into their model when measuring spatial basis risk for both temperature and

precipitation based insurance products. They concluded that for temperature events,

differences in altitude have the most significant impact on basis risk while for precip-

itation events, distance in between the unobserved location and the weather station is

the most significant factor. Interestingly the analysis also shows that other than these

two relationships, there is little evidence to support any other relationships in between

indemnities and other geographic variables. Their final conclusion was that the best pos-

sible approach to managing spatial basis risk might be to create insurance policies based

on multiple weather stations. These policies would be relatively easy to price and would

be easy to customize based on the perceived needs of the consumer. As such future re-

search should focus on methods for calculating optimal weights to assign to each weather

station.

2.3 Spatial Interpolation Review

The focus of the methodology of this study is on the use of several different spatial inter-

polation techniques. With this in mind this section is dedicated to a review of existing

literature on the subject of spatial interpolation, in particular kriging. Kriging methods

are the most statistically sophisticated of all of the methods in this analysis and so their
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background is covered here. The background of the simpler methods such as inverse

distance weighting are covered in the methodology section. Kriging is a term that is of-

ten used synonymously with geostatistics and spatial interpolation. Originating in the

1950’s, kriging was initially used to determine ore grades in South African mines (Krige,

1951). Since then the use of kriging has expanded into many different fields, including

meteorology and agriculture.

Chien et al. (1997) used both ordinary kriging and cokriging to make predictions of soil

properties in Taiwan. Of interest were the concentrations of iron, phosphorus, calcium

and magnesium. The estimation of these properties is extremely important in manag-

ing agricultural fields, however, the sampling process can be time consuming and labor

intensive. The results of this research were able to show that by using geostatistical tech-

niques like kriging, the existing sampling density could potentially be reduced by up to

half and still provide enough spatial information to make meaningful estimates of soil

properties.

Hudson and Wackernagel (1994) provides one of the earliest examples of using universal

kriging as a method for interpolating temperatures. By using universal kriging with tem-

perature data from Scotland, they were able to eliminate concerns of stationarity in the

data, and concluded that performance was improved when compared to ordinary krig-

ing. They note in their conclusion that further studies would benefit from incorporating

data regarding elevation and proximity to large bodies of water.

Wu and Li (2013) used regression kriging to interpolate temperatures across the United

States using data recorded at weather stations. The goal of this paper was to improve tem-

perature prediction methods in response to increased demands caused by the greenhouse

effect. They showed that by including elevation information in the kriging model, as well

as cross products and squares of explanatory variables, temperature predictions became

more accurate, and they concluded that regression kriging outperformed standard krig-

9



ing algorithms employed by the popular ArcGIS software. In addition they showed that

latitude and elevation were the most important of the explanatory variables included in

the model.

Kilibarda et al. (2014) used spatio-temporal regression kriging with data from the MODIS

satellite project to estimate daily temperatures across the entire globe. Temperature was

modeled as a function of latitude and time of year. They were able to create predictions

with an average error of ±3℃, however, it was found that spatio-temporal regression

kriging did not significantly reduce the estimation error when compared to standard re-

gression kriging. Despite the lack of improvement in the estimation error, they note that

spatio-temporal techniques greatly reduce the complexity of parameter estimation, since

only one model must be estimated for the entire season rather than estimating a new

model for each day as would be required in a standard regression kriging model.
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Chapter 3: Data

This section describes the data that was used in the analysis. The steps used to prepare the

data for analysis are outlined and some basic geographic information about the Canadian

province of Ontario is provided. Finally, the number of weather stations and forage farms

in each region of Ontario is summarized and discussed. All data used in this analysis was

provided by Agricorp, an agricultural risk management firm from Ontario.

3.1 Data Sets

Two separate data sets are used for the analysis of this paper. The first data set contains

information collected from weather stations located throughout Ontario, Canada, from

the years 1967 to 2004 in the months of April to August. Twenty-four of these weather

stations have observations from 1967-2004 while the remaining stations only have ob-

servations from 1997-2004. Included in the weather data are the daily maximum and

minimum temperatures in Fahrenheit as well as the longitude and latitude for each sta-

tion. Many days also included measurements of rainfall, however there are more missing

observations for rainfall than temperature.

Temperature was chosen as the variable of interest in this study because the data set has

more temperature observations than rainfall observations, which results in more infor-

mation being available for spatial interpolation. Since the goal of this study is to examine

spatial basis risk, and not to develop the most optimal weather insurance index, it is

preferable to use the weather variable with more complete and extensive observations. In

addition, past research has concluded that more research needs to be done on basis risk

in high temperature insurance policies (Clarke et al., 2012) and this study will help to

address this gap in the literature.
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The second data set contains information regarding Ontario forage producers. In addition

to the latitude and longitude of each farm, the data set also contains the total acreage and

the reported yield in tonnes per acre. This data was collected from 1981 to 2004, however,

not all farms reported yields in each year. Forage crops can be harvested up to three times

per year, however this data set provides information on the first harvest exclusively. The

first harvest of forage is generally performed at the end of June or the beginning of July,

therefore for this study the growing season is considered to be from April 1st to June 30th

for a total of ninety-one days.

To prepare the data for analysis, the following steps were taken.

1. All temperatures were converted from Fahrenheit to Celsius→℃ = 5
9(°F − 32).

2. Elevation data was added for each farm and weather station.

3. The distance to the Great Lakes was calculated for each farm and weather station.

4. Six weather stations had duplicate entries recorded at the same location which were

removed.

5. One weather station was geographically isolated in the middle of Hudson Bay and

was removed.

6. Five farms were geographically isolated and were excluded to restrict the analysis

to within the borders of Ontario

All elevation data was obtained using the “elevation” function in the R package “rgbif”.

Given a set of latitude and longitude coordinates this function retrieves elevation data

using the Google Elevation API. For any weather stations located on the surface of the

Great Lakes, the elevations were changed to accurately reflect the elevation on the sur-

faces of the lakes. Stations on Lake Superior were changed to 183 m, Lake Michigan and

Lake Huron to 177 m, Lake Erie to 174 m, and Lake Ontario to 75 m (Herdendorf, 1982).
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In addition to elevation data, the distance to the nearest large body of water was calcu-

lated using the ArcGIS software package. For the purposes of this research, “large body

of water” includes all five Great Lakes along with the channels and locks between them.

Distance to large bodies of water can have a significant impact on the temperatures of a

region, and so it is important to include this variable in the analysis.

3.2 Region of Study - Ontario

At just over one million km2, Ontario is Canada’s second largest province and is bounded

approximately by 42°N to 57°N latitude and 75°W to 95°W longitude. The climate of

Ontario is characterized by cold, dry polar air coming from the Arctic during the winter

and warm, moist air coming from the Gulf of Mexico during the summer. As expected,

temperatures in Ontario increase from North to South, however, they can also be influ-

enced by the presence of the Great Lakes as well as Hudson Bay (Baldwin et al., 2011).

As an example of the impact these large bodies of water can have on temperatures, con-

sider the example of Winnipeg, Manitoba and Cochrane, Ontario. Although these two

locations have approximately the same latitude, Cochrane has about one thousand less

growing degree days than Winnipeg (Baldwin et al., 2011). This is caused by Cochrane’s

proximity to Hudson Bay, a source of cold air from Canada’s arctic. These types of pat-

terns can be observed in other areas of the province as well, such as warm air coming

from the South being cooled by Lake Superior, causing drops in temperature along the

northern shore.

Ontario also contains several elevated highlands in the areas around Thunder Bay, Algo-

nquin Park, and Sault Ste. Marie. It has been shown that there is a negative correlation

in between elevation and temperature (Wu and Li, 2013), and as a result these highlands

have fewer growing degree days than the areas surrounding them (Baldwin et al., 2011).

Figure 3.1 shows a detailed map of the elevation of Ontario. Ontario is bordered in the
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North by Hudson Bay, and so the elevation is close to sea level in these areas. Mov-

ing South, the elevation gradually increases to an average of around 175 m in the Great

Lakes region and then slowly decreases to 75 m around Lake Ontario.

Due to a lack of long-term consistent weather data, it is difficult to analyze and identify

any temporal trends in temperature. Studies by Environment Canada have shown that

from the late 1800’s onward a general warming trend has been present in Ontario, how-

ever it is unclear whether this is a result of short or long-term climate change (Baldwin

et al., 2011). In more recent years, it has been observed from satellite data that subarc-

tic regions in Ontario have had progressively earlier thaws, leading to a longer active

growing season (Baldwin et al., 2011).

3.3 Distribution of Stations and Farms

Figure 3.2 shows a map of the agricultural divisions in Ontario while Table 3.1 provides

statistics regarding the number of farms and weather stations in Ontario for each year.

For the purposes of this analysis “southern Ontario” refers to the four southernmost agri-

cultural divisions while “northern Ontario” refers to the northernmost agricultural divi-

sion.

Figure 3.3 shows how the weather stations are distributed across the province, with the

vast majority being located in southern Ontario. A similar pattern is visible in Figure

3.4, which shows the location of the long-term weather stations with data going back

to 1967. In terms of spatial interpolation, southern Ontario represents a nearly opti-

mal scenario where weather stations are very densely distributed throughout the entire

prediction space. This dense distribution of weather observations is ideal for spatial in-

terpolation, and it is expected that the interpolation methods will perform well in this

region.

14



Figure 3.1: Elevation Map of Ontario

Note: This map was generated from the Ontario Provincial Digital Elevation Model -
Version 3.0. The vertical grid lines represent longitude while the horizontal grid lines
represent latitude.
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Table 3.1: Summary of the Number of Weather Stations and Forage Farms in Each Region
of Ontario

Region 1997 1998 1999 2000 2001 2002 2003 2004

All
Ontario

Stations 189 210 212 205 197 179 170 154

Farms 286 330 287 236 267 239 226 56

South
Ontario

Stations 160 167 169 164 157 141 135 121

Farms 221 264 224 187 210 188 180 26

North
Ontario

Stations 29 43 43 41 40 38 35 33

Farms 65 66 63 49 57 51 46 30

Note: This table shows the number of forage farms and weather stations that were used
in each year of the analysis.

Conversely, northern Ontario represents a very poor scenario for performing spatial in-

terpolation. Weather stations are grouped together in several small clusters that are sep-

arated by large distances, with many areas having no observations at all. Using spatial

interpolation in an area like this is analogous to making predictions out of sample, and

as such it is expected that the spatial interpolation methods will perform significantly

worse in this region. In addition, northern Ontario has very few long-term weather sta-

tions, meaning that indemnities for farms are often calculated based on a weather station

that is very far away.

In Figure 3.5 this trend continues with respect to forage farms. The vast majority of

farms are located in the four southern agricultural divisions while very few are located in

the North. By comparing Figure 3.3 and Figure 3.5 it is clear that the northern weather

stations are located in roughly the same areas as the forage farms, however there are still

large areas where there are no weather observations.

With all of this information in mind, the analysis of this paper is split into three sections.

The first uses data from all of Ontario, the second uses data from southern Ontario only

and the third uses data from northern Ontario only. By subsetting the data in this way,
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this study provides valuable insight as to how spatial basis risk is impacted by the number

of weather stations available for performing spatial interpolation.
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Figure 3.2: Map of Ontario’s Agricultural Divisions

Note: These agricultural divisions are based on the 2011 census from Statistics Canada.
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Figure 3.3: Map of Weather Stations in Ontario

Note: This map shows the locations of all of the weather stations used to estimate
temperature conditions at the forage farms. Not all stations were available in all years
from 1997 to 2004.
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Figure 3.4: Map of Weather Stations in Ontario With Long-Term Data

Note: This map shows the subset of weather stations which have long-term temperature
data from 1967 to 2004. These stations are used to calculate the long-term average
cooling degree days when calculating indemnities.
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Figure 3.5: Map of Forage Farms in Ontario

Note: This map shows the locations of all of the forage farms in Ontario where
temperature conditions were estimated. Not all farms reported yields in all years from
1997 to 2004.
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Chapter 4: Methodology

In order to analyze and quantify any potential reduction in spatial basis risk, seven differ-

ent spatial interpolation techniques are used to estimate the mean daily temperature at

each of the forage producer’s farms. These daily estimates are calculated for each farmer

from April 1st to June 30th in the years 1997 to 2004. Using these temperature estimates,

indemnities are calculated and spatial basis risk is analyzed by calculating the sample

correlation between indemnities and forage yields. This process is repeated three times

over: once for southern Ontario, once for northern Ontario, and once for all Ontario.

This analysis gives insight into how spatial basis risk is impacted not only by the choice

of interpolation technique, but also by the number of weather stations available for per-

forming analysis.

Apart from regression, all of the interpolation techniques featured in this study take the

form of a weighted average of observations from the surrounding area. Each of these

spatial interpolation techniques provides a different approach for calculating the weights

associated with each station. These weighted average estimates are given by:

ẑ(s0) =
N (h)∑
i=1

wi · z(si) (4.1)

where s0 represents the unobserved location (A farm with an insurance policy in this

case), z represents the weather process being interpolated (mean daily temperature in this

case), N(h) is the number of stations within distance h of the unobserved location, and wi

is the weight assigned to station i. Ideally, the weights should minimize the prediction

error variance, which is given by (Li and Heap, 2008):
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Var
(
ẑ(s0)− z(s0)

)
= C(s0, s0) +

N (h)∑
i=1

N (h)∑
j=1

wiwjC(si , sj)− 2
N (h)∑
i=1

wiC(si , s0) (4.2)

where C(si , sj) = Cov[Z(si),Z(sj)]. For all the weighted average techniques h has been set

to 200 km and the maximum number of stations to be used in estimations is ten. This

means that if there are more than ten stations within 200 km of an unobserved location

then only the closest ten stations are used, and if there are less than ten stations within

200 km then all the stations are used.

The maximum number of stations and the maximum search distance (h) can be difficult to

determine. The most common method to objectively select these parameters is to perform

cross-validation analysis (see Chapter 4.8) and to select the model with the smallest er-

ror, however this quickly becomes computationally prohibitive for any moderate to large

sized problem. This combined with the fact that a model must be estimated for every

day during the growing season makes this approach impractical. With this in mind the

values of ten stations and 200 km were selected based on a heuristic examination of the

number of weather stations available.

The methodology section of this paper proceeds by following a ten step process. The

first seven steps consist of estimating mean daily temperature using each of the seven

different interpolation methods and outlining the various procedures used to obtain the

results. The seven interpolation methods are: regression, nearest neighbor, inverse dis-

tance weighting, regression-based inverse distance weighting, ordinary kriging, regres-

sion kriging, and spatio-temporal regression kriging. A brief description of each of these

methods is given in Appendix A.

Step 8 is used to perform cross-validation and estimate the amount of variance caused by

each spatial interpolation method. Step 9 involves designing an insurance index using

cooling degree days for the purpose of estimating the indemnities that would have been
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paid to each farmer if they had purchased this type of insurance. Step 10 concludes the

analysis by calculating the sample correlation between the estimated indemnities and

reported forage yields in order to determine if any of the interpolation methods could

potentially reduce spatial basis risk.

4.1 Step 1: Regression

The goal of step 1 is to develop daily linear regression models for estimating mean daily

temperatures. This method is used as a benchmark to compare against the more sophisti-

cated methods such as kriging. Regression is also the only one of the seven interpolation

techniques in this analysis which is not a weighted average.

Regression is a well known and extensively documented estimation method that uses

explanatory variables to make predictions. Assume that there are k explanatory variables

that are observed at n locations, then X represents an n x k matrix of those variables. Let

~Z represent the vector of mean daily temperatures observed at n locations. The marginal

effects of the explanatory variables can be estimated by:

β̂ = (X ′X)−1X ′~Z (4.3)

Once the marginal effects have been calculated, the regression estimate of the mean daily

temperature is given by:

ẑ(s0) = X0β̂ (4.4)

where X0 is the vector of explanatory variables measured at s0. For this analysis the

explanatory variables that are used are: longitude, latitude, elevation, and distance to the
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Great Lakes. The cross products of these variables are also included, making a total of

ten explanatory variables. The regression estimator therefore takes the form of:

ẑ(s0) = β̂0 + β̂1Long + β̂2Lat + β̂3Elev + β̂4Dist + β̂5Long ·Lat + β̂6Long ·Elev

+ β̂7Long ·Dist + β̂8Lat ·Elev + β̂9Lat ·Dist + β̂10Elev ·Dist
(4.5)

In order to determine which variables should be included in each linear model, stepwise

regression is used. Stepwise regression is an algorithm which successively adds and re-

moves variables into the regression model based on their significance levels. Once no

more statistically significant variables can be added or insignificant variables removed,

the algorithm terminates. More information on stepwise regression can be found in

Mendenhall et al. (1996).

For this analysis, a regression model is estimated for every day in the growing season

using stepwise regression. These models are then used in order to make predictions of

the daily mean temperature for each farm. This process is also used in step 4, step 6

and step 7 to model the deterministic portions of the estimators. Regression has the

advantage of being simple to implement and is also very well understood, however, the

regression model does not incorporate any information about spatial autocorrelation. In

addition, all weather stations in the sample are used to make predictions regardless of

their proximity to the farm, which may result in a loss of accuracy when used in a large

geographic area.

4.2 Step 2: Nearest Neighbor

The goal of step 2 is to implement an interpolation method which only considers infor-

mation from one weather station. This is in order to determine how spatial basis risk
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is impacted when only one weather station is used for making estimations rather than

using multiple weather stations as in step 3. This method is perhaps the most intuitive

of all the interpolation techniques presented here. For each day in the growing season,

the estimate of the mean daily temperature at the unobserved farm is equal to the mean

daily temperature recorded at the closest weather station.

ẑ(s0) = z(sc) (4.6)

where sc represents the weather station that is closest to s0 . The nearest neighbor method

is a special case of Equation 4.1 wherewi=1 for the station closest to the unobserved farm.

In order to find the weather station that is closest to each farm, the Haversine formula is

used (see Appendix B).

This method is simple and easy to understand, however, it does not incorporate any addi-

tional information in terms of explanatory variables or a spatial autocorrelation structure.

In addition, this method only considers information from a single weather station instead

of making use of multiple stations in the surrounding area which may not result in the

most accurate estimate possible.

4.3 Step 3: Inverse Distance Weighting (IDW)

The goal of step 3 is to begin incorporating information from multiple weather stations to

determine if this provides any significant advantage over using only the closest weather

station as in step 2. Inverse distance weighting is among the most simple of the spatial

interpolation techniques and is the purest mathematical representation of Tobler’s first

law of geography: “Everything is related to everything else, but near things are more

related than distant things” (Tobler, 1970, p. 236). The weight assigned to each station is

simply the inverse of its distance to the unobserved location.
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wi =
1/dpi∑N (h)
i=1 1/dpi

(4.7)

where di is the distance from si to s0, and p is the power-decay parameter. Higher values

of p assign less weight to stations that are further away. In practice p=2 is a very common

choice (Li and Heap, 2008) and this is the value used in this paper. The inverse distance

weighting technique is applied for every day in the growing season. The weights for the

closest ten stations (up to a maximum of 200 km away) are calculated using Equation 4.7.

The main advantage of inverse distance weighting is its simplicity, since these distances

are very easily calculated using the longitude and latitude coordinates of the farmer’s

property and the model requires only one simple parameter. However, inverse distance

weighting assumes that distance from nearby weather stations is the most important fac-

tor in calculating estimates, and this may not be the case (Paulson and Hart, 2006). An-

other disadvantage to inverse distance weighting is that the power-decay parameter p

must be applied uniformly in all directions when in reality it may vary based on direc-

tion and distance.

4.4 Step 4: Regression-Based Inverse Distance Weighting

The goal of step 4 is to extend the inverse distance weighting model so that it becomes

possible to incorporate variables other than distance in the estimation process, similar to

step 1. Regression-based inverse distance weighting allows the model to incorporate ad-

ditional information by combining inverse distance weighting and regression techniques.

The estimator is split into two distinct terms: a stochastic term and a deterministic term.

ẑ(s0) = m̂(s0)︸︷︷︸
Deterministic

+ ê(s0)︸︷︷︸
Stochastic

(4.8)
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The stochastic term represents the residual from a linear regression model and so is as-

sumed to follow a N(0,1) distribution. The regression-based inverse distance weighting

estimator is given by:

ẑ(s0) = X0β̂︸︷︷︸
Deterministic

+
N (h)∑
i=1

wi · ei︸     ︷︷     ︸
Stochastic

(4.9)

where ei is the residual calculated at station i and thewi are calculated using Equation 4.7.

For this interpolation method, the following steps are used for each day in the growing

season:

1. Estimate a linear model using the process outlined in step 1.

2. Calculate the regression estimate for each farm.

3. Calculate the model residuals for each weather station.

4. Estimate the residuals at each farm using the inverse distance weighting technique

from step 3.

5. The final temperature estimate is given by the sum of the regression estimate and

the inverse distance weighting estimate.

In addition to incorporating explanatory variables, regression-based inverse distance weight-

ing is nearly as easy to implement as inverse distance weighting. However, there is still

no attempt to define a spatial autocorrelation structure and there is no way of knowing if

the weights that are assigned to each station are optimal in terms of reducing prediction

error variance.
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4.5 Step 5: Ordinary Kriging

The goal of step 5 is to make temperature estimates more accurate by introducing a spa-

tial autocorrelation function which describes the correlation between two points in space.

This makes it possible to calculate station weights in a way which minimizes the predic-

tion error variance. This is done by working with a type of spatial interpolation technique

known as kriging. Ordinary kriging is an interpolation method which is subject to the

following conditions:

1. The variable being interpolated has a constant, stationary mean over the entire in-

terpolation area.

2.
∑N (h)

1 wi = 1.

3. The wi are selected such that the variance in Equation 4.2 is minimized.

This results in an estimator that is considered to be the best linear unbiased prediction

model (BLUP) for spatial data (Li and Heap, 2008).

The minimization of the error variance is the defining characteristic of a kriging model.

In order to calculate values for the covariance terms, the concept of semivariance needs

to be introduced, often denoted by γ(h). The semivariance is a function of distance and

describes the dependency structure for the correlation between two locations. The semi-

variance is defined as:

γ(h) =
1
2
E

[(
Z(si)−Z(si + h)

)2
]

(4.10)

where Z(si) and Z(si + h) are measured values of Z separated by a distance of h. From a

set of spatial data, the semivariance is estimated as:

γ̂(h) =
1

2M(h)

∑
i,j∈M(h)

[
z(si)− z(sj)

]2
(4.11)
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where M(h) is the number of pairs of sample points such that the distance between them

is equal to h. A plot of γ̂(h) against h is known as a sample variogram, and provides

information regarding how correlation varies with distance (Li and Heap, 2008).

A variogram can be defined using three model parameters: the nugget, the sill and the

range. The nugget is a positive constant that represents γ(h) for small values of h, the sill

represents the asymptotic value of the variogram, and the range represents the distance

required for the variogram to reach the sill for the first time. Using these three param-

eters the sample variogram can be fit to one of several predefined variogram functions.

The three most popular are the spherical, exponential, and Gaussian models (Kuzyakova

et al., 2001) :

Spherical: γ(h) =


λ0 +λ

[
3h
2a −

h3

2a3

]
If 0 < h ≤ a

λ0 +λ If h > a
(4.12)

Exponential: γ(h) = λ0 +λ
[
1− exp

(
− h
r

)]
(4.13)

Gaussian: γ(h) = λ0 +λ
[
1− exp

(
− h

2

r2

)]
(4.14)

where λ0 is the nugget, λ is selected so that λ0+λ is equal to the sill, and a is equal to the

range. Because the exponential and Gaussian functions approach the sill asymptotically,

they technically do not have a finite range. Therefore for these functions a represents the

effective range. The effective range is defined as the distance required to reach 95% of the

sill variance. For the exponential function the parameter r is selected so that a=3r and for

the Gaussian a =
√

3r. These values are selected so that γ(a) ≈ λ0 + 0.95λ. See Appendix

C for an example of fitting a spatial variogram.
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In the case of ordinary kriging, once the variogram model has been defined the kriging

weights for an unobserved location can be derived as (Hengl, 2009):

w0 = C−1 · c0 (4.15)

where C is the N(h) x N(h) covariance matrix and c0 is the vector of the covariances mea-

sured at the unobserved location. In order to ensure that the kriging weights sum to one,

an additional row and column of ones are added to the C matrix, making it
(
N(h)+1

)
x(

N(h)+1
)
. Equation 4.15 can be expanded as :



w1

...

wN (h)

ψ


=



C(s1, s2) . . . C(s1, sN (h)) 1
...

. . .
...

...

C(sN (h), s1) . . . C(sN (h), sN (h)) 1

1 . . . 1 0



−1

·



C(s0, s1)
...

C(s0, sN (h))

1


(4.16)

where ψ represents the Lagrange multiplier, a constant which is not used in any of the

calculations for this paper.

The ordinary kriging estimation proceeds as follows for every day of the growing season:

1. Estimate the variogram function using the procedure in Appendix C.

2. Use Equation 4.15 to calculate the kriging weights for the closest ten stations (up to

a maximum distance of 200 km away) for each farm.

While ordinary kriging is a relatively straight forward process, the entire method relies

on an assumption that may not be applicable in practice: stationarity. Ordinary krig-

ing assumes that all observations are identically and independently distributed with a

stationary mean, an assumption that is not reasonable for the applications of this paper.
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Given the geographic size of Ontario, as well as the known correlations in between eleva-

tion/latitude and temperature (Wu and Li, 2013), the idea of a stationary mean across the

entire sampling area seems unlikely. It is for this reason that the ordinary kriging model

is now extended to the regression kriging model. Cressie (1988) provides an in depth

discussion on the assumptions underlying ordinary kriging, including independence and

stationarity.

4.6 Step 6: Regression Kriging

The goal of step 6 is to extend the ordinary kriging model so that it becomes possible

to incorporate variables other than distance in the estimation process. This is done by

combining linear regression methods with ordinary kriging. Regression kriging splits

the estimator into two distinct terms, a deterministic term and a stochastic term. This is

similar to the motivation behind step 4, and in fact these two steps differ only in how the

stochastic portion of the estimator is calculated. The regression kriging estimator is given

by (Hengl, 2009):

ẑ(s0) = m̂(s0)︸︷︷︸
Deterministic

+ ê(s0)︸︷︷︸
Stochastic

(4.17)

Once again the stochastic term is assumed to follow a N(0,1) distribution. Combining

Equation 4.4 and the kriging weights from Equation 4.15 the regression kriging estimate

is given by:

ẑ(s0) = X0β̂︸︷︷︸
Deterministic

+ C−1c0 ·~e︸   ︷︷   ︸
Stochastic

(4.18)
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where ~e is the vector of residuals from the stations in the surrounding area. The re-

gression kriging method can be summarized in the following steps for every day of the

growing season:

1. Estimate a linear model using the process outlined in step 1.

2. Calculate the regression estimate for each farm.

3. Calculate the model residuals for each weather station.

4. Estimate the residuals at each farm using ordinary kriging from step 5.

5. The final temperature estimate is given by summing the regression estimate and the

ordinary kriging estimate.

In addition to allowing the incorporation of explanatory variables, the regression krig-

ing model also addresses the issue of stationarity that is present in the ordinary kriging

model. Because the residuals from a linear regression model are used, the assumption of

mean stationarity is more realistic in the regression kriging model than in the ordinary

kriging model.

4.7 Step 7: Spatio-Temporal Regression Kriging

The goal of step 7 is to extend the regression kriging model to include the dimension

of time as well as space. This is done not only to include more information in the esti-

mation process, but also to simplify the variogram fitting process by only requiring one

variogram to be fitted for each year. Given that kriging was first developed for use in the

fields of mining and geology, many applications of kriging are not concerned with the di-

mension of time. Unlike meteorological events such as rainfall and temperature, mineral

deposits do not change drastically over short time periods, and so there is no need to ana-

lyze the impact of time on interpolations. However in the last several years, geostatistics
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has been applied to many fields of study other than geology such as agriculture, meteo-

rology, and epidemiology. As a result there has been an increased interest in methods of

interpolation that can account for autocorrelation across time as well as space.

The rationale behind spatio-temporal regression kriging is that for certain processes (such

as weather events), there exists not only a spatial autocorrelation structure, but also a tem-

poral autocorrelation structure which impacts observations that are taken at the same lo-

cation but separated through time (Hengl, 2009). The spatio-temporal regression kriging

estimator can be expressed as:

ẑ(s0, t) = m̂(s0, t)︸  ︷︷  ︸
Deterministic

+ ê(s0, t)︸︷︷︸
Stochastic

(4.19)

The first step of the spatio-temporal regression kriging model is identical to the regres-

sion kriging model outlined previously, where the deterministic part of the model is cal-

culated using regression. Where the model differs is in the estimation of the stochastic

portion. As with ordinary kriging there are many forms that the spatio-temporal var-

iogram can take, however, the analysis of this paper makes use of the sum-metric vari-

ogram model which allows the variogram to be broken into three distinct parts (Kilibarda

et al., 2014).

γ(h,u) =
1
2
E[e(s, t)− e(s+ h, t +u)]2 = γS(h) +γT (u) +γST

(√
h2 + (α ·u)2

)
(4.20)

where e(s,t) represents the zero-mean stochastic residual, γS , γT , and γST represent the

spatial, temporal, and joint variograms respectively and α represents the spatio-temporal

anisotropy ratio. The anisotropy ratio takes a value between zero and one, and serves

to convert the temporal units (u) into spatial units (h). Thus, the spatio-temporal var-

iogram is a function of ten parameters: three sill parameters, three range parameters,
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three nugget parameters, and the spatio-temporal anisotropy ratio. See Appendix D for

an example of fitting a spatio-temporal variogram.

The spatio-temporal regression kriging method can be summarized in the following steps

for every year from 1997 to 2004:

1. Estimate daily linear regression models using the techniques from step 1.

2. Calculate the model residuals for each weather station for every day in the growing

season.

3. Estimate the spatio-temporal variogram using the methods in Appendix D.

4. Use the spatio-temporal variogram to estimate the residuals at each farm for every

day in the growing season

5. The final temperature estimate is given by summing the regression estimate and the

spatio-temporal regression kriging estimate.

In addition to allowing the incorporation of temporal autocorrelation, spatio-temporal

regression kriging is also advantageous because it only requires one variogram model to

be fitted in each year. Under the regression kriging model one variogram model must be

estimated for every day in the growing season. This simplified variogram model means

that it is much easier to estimate the variogram parameters visually rather than relying on

automated variogram fitting using rules of thumb to make initial estimates of variogram

parameters.

4.8 Step 8: Cross-Validation

The goal of step 8 is to calculate the variance for each one of the spatial interpolations

techniques using cross-validation. For each of the spatial interpolation methods, cross-

validation is performed using leave-one-out analysis. Leave-one-out cross-validation is
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an iterative process that removes the stations one by one from the sample, and then uses

the model to predict mean temperature at the station that was removed. The end result

is that every weather station has a predicted mean temperature and an observed mean

temperature for each day in the growing season. Once the predicted temperature value

is calculated at each of the stations, the root mean square error is calculated as (Hengl,

2009):

RMSE =

√∑n
i=1

(
ẑ(si)− z(si)

)2

n
(4.21)

where ẑ(si) and z(si) are the predicted and observed values at station i, and n is the number

of observations. Techniques that give a lower value for RMSE have less variance in their

estimates and vice versa. The cross-validation was performed individually for each year

in the analysis as well as with all data from all years.

4.9 Step 9: Cooling Degree Days (CDD) Insurance Index

The goal of step 9 is to develop a temperature based insurance index using the concept

of cooling degree days (CDD) in order to calculate indemnities based on the estimated

temperatures from steps 1 through 7. CDD are primarily used in the heating and ven-

tilation industry, where they are used to quantify the amount of energy required to cool

a building (Büyükalaca et al., 2001). For example, if 18℃ is used as a base temperature

(approximately room temperature) and the daily mean temperature is 25℃, then the

cooling degrees for the day is 25℃-18℃= 7℃ and the building requires enough energy

to lower the average temperature by 7℃. In the context of this analysis, cooling degree

days is meant to capture the total heat stress experienced by the crops over the entire

growing season instead of the amount of cooling required. Taking this into considera-

tion, “Heating Degree Days” might be a more appropriate name for the index, however,
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in order to remain consistent with the existing literature, the term cooling degree days is

used.

For any given year, the estimated cooling degree days index for an unobserved farm is

calculated as:

�CDD0 =
n∑
i=1

Max(0, ẑi(s0)− 20) (4.22)

where n is the number of days in the growing season, ninety-one in this case. For cool

season species of forage (the species predominantly grown in Canada), the optimal tem-

perature for growth is 20℃. Research has shown that for every 1 degree increase in tem-

perature, the forage digestibility is decreased by 0.3-0.7 percentage units (Buxton, 1995).

With this in mind the CDD index was designed to measure the cumulative heat stress

experienced by the forage crops throughout the growing season.

In order to calculate indemnities, the CDD index is compared to the long-term average

CDD measured at the weather station closest to the farm.

I0 = Max(0,�CDD0 −CDDc) (4.23)

Figure 3.4 shows the location of all weather stations with long-term observations dating

back to 1967, and these are the stations used to calculate CDDc. This process is repeated

for every farm with recorded yields during the year.

4.10 Step 10: Correlation Analysis

The goal of step 10 is to determine whether spatial basis risk can be significantly reduced

by any of the interpolation techniques. In order to assess the performance of each spatial
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interpolation technique, the sample correlation in between forage yields and indemnities

is calculated.

ρxy =
Cov(x,y)
σxσy

(4.24)

where σ represents the standard deviation. The definition of basis risk (see Chapter 2.2)

refers to the loss experienced by the farmer, however this information was not available in

the data sets provided. Forage yields were used as a proxy for losses under the assumption

that higher yields represent lower losses and vice versa. If the hypothesis that increased

CDD results in lower forage yields is true, then it is expected that the correlation in

between CDD and yields will be negative.

Following the logic of Major (1999), the level of correlation is used to assess the amount

of basis risk in each model. A higher (more negative) correlation value indicates less

basis risk and vice versa. Given that the same weather index was used and that the index

was calculated over the same time period, any difference in the amount of basis risk

between the different methods can be attributed to spatial basis risk, and not temporal

or product basis risk. Therefore if any of the methods produce correlation results which

are drastically lower (less negative) than the others, it implies that the method is more

susceptible to spatial basis risk.
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Chapter 5: Results

5.1 Regression Variable Results

Table 5.1 shows the percentage of daily regression models which include each explana-

tory variable at the 5% significance level. The table is broken down by month in order to

determine whether certain variables have a greater impact during different parts of the

growing season. All four of the main variables (longitude, latitude, elevation and dis-

tance to the Great Lakes) are statistically significant in the vast majority of the models

across all three regions. The one exception to this result is elevation in northern Ontario,

which is included in 75% of the models as opposed to 95% in the other regions. Figure

3.1 shows a map of the elevation in Ontario, and this can explain why elevation is less

significant in northern Ontario.

When Figure 3.1 is compared to Figure 3.5, most of the farms in northern Ontario are

located to the West of 80° W and South of 50° N, an area which is fairly homogeneous in

elevation when compared to southern Ontario. The elevation in southern Ontario varies

greatly from the lowlands on the shores of Lake Ontario to the highlands on the Southeast

shore of Lake Huron, and this is likely the reason that elevation is more statistically sig-

nificant in this region. The larger differences in elevation creates more variance in daily

mean temperature and so the variable is more significant. This trend is also visible in the

cross products long · elev and elev ·dist for the same reasons.

The cross product long · lat is more significant when creating models for all Ontario than

for southern or northern Ontario alone. This is likely caused by the size of the interpola-

tion area. The range of latitude and longitude is larger when considering all of Ontario,

resulting in the interaction between longitude and latitude becoming more significant.

For the remainder of the explanatory variables, there is little difference in between the
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different regions and even in between the different months. For any practitioner seek-

ing to model temperatures, these results suggest that all ten of the explanatory variables

featured here would be suitable candidates for regression analysis. In addition, it does

not appear necessary to consider different regression variables for different months when

such a short time period (3 months) is being considered.

5.2 Cross-Validation Results

The results of the cross-validation analysis from step 8 are summarized in Table 5.2. The

first interesting result from this table is that the nearest neighbor method has the highest

RMSE in all of the regions. If nearest neighbor is compared to inverse distance weight-

ing the impact of using multiple weather stations becomes clear. When inverse distance

weighting is used the RMSE is significantly reduced, and this is caused by the additional

information that is used in the estimation process. This shows that insurers should avoid

using only the closest station when estimating weather conditions since these estimates

are prone to have higher variance than estimates which incorporate multiple weather

stations.

For northern Ontario the regression method had the lowest RMSE not only overall but

also for each year individually. Regression is the only one of the seven interpolation

methods which does not take the form of a weighted average from surrounding stations

and (unlike the kriging methods) does not make any attempt to define a spatial autocorre-

lation structure. The fact that regression has the lowest RMSE shows that great care needs

to be taken when applying spatial interpolation techniques to areas with a small number

of weather stations. By attempting to use less-than-ideal data to define spatial autocor-

relation structures the model ends up having more variability than if simple regression

had been used.
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Table 5.1: Percentage of Daily Regression Models Where Each Explanatory Variable is Statistically Significant

Region Month long lat elev dist long·lat long·elev long·dist lat·elev lat·dist elev·dist

All
Ontario

April 99.58 100.00 99.17 97.08 79.17 55.83 65.83 43.75 71.25 44.58

May 99.60 100.00 95.97 99.60 76.21 51.61 64.11 50.00 59.68 38.31

June 99.58 100.00 97.50 99.58 70.83 53.33 65.42 51.25 64.17 44.17

Total 99.59 100.00 97.53 98.76 75.41 53.57 65.11 48.35 64.97 42.31

South
Ontario

April 96.67 99.17 97.08 95.00 54.17 45.83 50.83 36.25 51.67 49.17

May 97.98 98.39 96.37 96.77 63.31 41.94 58.87 46.37 43.95 63.71

June 97.08 100.00 97.50 93.33 61.67 44.17 58.33 46.25 43.75 63.75

Total 97.25 99.18 96.98 95.05 59.75 43.96 56.04 42.99 46.43 58.93

North
Ontario

April 98.75 98.75 78.33 93.75 59.17 36.67 57.08 36.67 53.75 26.25

May 97.18 90.73 81.45 92.34 56.85 33.06 56.85 37.50 41.53 31.05

June 97.08 96.25 75.83 92.08 58.33 26.25 59.17 47.50 44.58 29.17

Total 97.66 95.19 78.57 92.72 58.10 32.01 57.69 40.52 46.57 28.85

Note: This table shows the percentage of daily regression models which include each of the explanatory variables used in
the analysis. The percentages were calculated using the regression models from April 1st to June 30th in the years from
1997 to 2004. The total percentages were calculated using all daily models across all months. The table is divided into the
three regions of Ontario: all Ontario, South Ontario, and North Ontario. Variables were selected using stepwise regression.
All variables are significant at the 5% level.
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In southern Ontario, it is interesting to note that regression kriging has a very high RMSE

when compared to the other methods (except nearest neighbor). To gain some insight into

why this occurs, the regression kriging approach should be compared to the regression-

based inverse distance weighting. These methods both produce temperature estimates

by summing a regression estimator and a stochastic estimator that is used to estimate

model residuals. The only way in which these two methods differ is the estimation of the

model residuals. Regression kriging uses a variogram function to determine a spatial au-

tocorrelation structure while regression-based inverse distance weighting uses a (nearly)

non-parametric equation to calculate station weights. With this in mind it is interesting

that the overall RMSE for regression kriging is so much larger than it is for regression-

based inverse distance weighting.

When comparing the regression kriging RMSE for each year in southern Ontario, 1999 is

the only year in which regression kriging has a larger RMSE than regression-based inverse

distance weighting. For all of the regions in Ontario, 1999 is a year with significantly

higher RMSE than all of the others. The regression kriging model has exaggerated this

increased variability enough to significantly impact the overall RMSE. It was expected

that the regression kriging model would have less variance than the ordinary kriging

model, therefore these results are somewhat unexpected.

The regression kriging model requires that a variogram be estimated for every day in the

three month (91 day) growing season. With this many models an automated process for

variogram fitting is required in order to perform analysis efficiently. In order for opti-

mization algorithms to fit the variogram parameters, initial estimates must be provided

and in order to automate this process, some “rules of thumb” must be used (see Appendix

C). Most literature on the subject of fitting variograms suggests that the process be done

by hand after thoroughly examining the data to ensure that appropriate parameter values

are used (Olea, 2006).
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Fitting the variogram function is the most crucial step in any kriging method, there-

fore the fact that the variograms are fitted using an automated procedure is the most

likely cause for this increased RMSE. This conclusion is supported by the RMSE results

from the spatio-temporal regression kriging method, which produced the lowest RMSE

of 1.231. Due to the fact that only one variogram must be modeled for each year, the

spatio-temporal variograms were all inspected visually and initial estimates for parame-

ters were estimated by hand (see Appendix D). This results in better fits for the variogram

functions when compared to standard regression kriging and a lower RMSE in the year

with the most variability.

5.3 Correlation Analysis Results

The results of the correlation analysis from step 10 are summarized in Table 5.3. Tem-

perature estimates from April 1 to June 30th were used for these calculations. Initial

impressions from this table are that temperature based policies administered in southern

Ontario have the highest (most negative) correlations, followed by all Ontario. Mean-

while, policies administered in northern Ontario have correlation values that are closest

to zero. This is consistent with expected results based on the fact that southern Ontario

has a larger number of weather stations. With few exceptions the results for each inter-

polation method are mostly consistent in south Ontario and all Ontario while the results

from northern Ontario appear more varied.

Similar to the RMSE analysis, the regression kriging method for southern Ontario pro-

duces results that are distinctly different from the other interpolation methods. Regres-

sion kriging produces a correlation value of -0.032 while the other methods have correla-

tions closer to -0.15. This indicates that the regression kriging model is more susceptible

to spatial basis risk when applied in southern Ontario. This is contrary to the expected

results, which assumed that regression kriging would outperform ordinary kriging. The
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Table 5.2: Root Mean Square Error (RMSE) for Each Interpolation Technique

Region Method 1997 1998 1999 2000 2001 2002 2003 2004 Total

All
Ontario

Nearest Neighbor 1.016 1.576 2.994 1.365 1.334 1.306 1.365 1.494 1.678
Regression 1.140 1.347 2.199 1.289 1.212 1.182 1.277 1.311 1.420
IDW 0.838 1.330 2.406 1.127 1.087 1.085 1.133 1.213 1.371
Regression IDW 0.868 1.328 2.401 1.138 1.082 1.068 1.130 1.209 1.371
Ordinary Kriging 0.804 1.262 2.276 1.091 1.063 1.043 1.111 1.169 1.312
Regression Kriging 0.898 1.282 2.268 1.108 1.072 1.036 1.117 1.179 1.324
ST Regression Kriging 0.889 1.271 2.218 1.139 1.147 1.112 1.175 1.210 1.337

South
Ontario

Nearest Neighbor 1.035 1.570 2.821 1.282 1.227 1.232 1.272 1.440 1.594
Regression 1.040 1.227 1.988 1.092 1.057 1.009 1.092 1.169 1.258
IDW 0.833 1.310 2.264 1.055 1.012 1.018 1.062 1.195 1.302
Regression IDW 0.825 1.304 2.232 1.061 1.014 1.007 1.065 1.184 1.292
Ordinary Kriging 0.796 1.242 2.130 1.016 0.994 0.968 1.033 1.139 1.239
Regression Kriging 0.810 1.242 3.146 1.031 0.999 0.973 1.046 1.148 1.511
ST Regression Kriging 0.862 1.225 2.035 1.046 1.014 0.977 1.059 1.156 1.231

North
Ontario

Nearest Neighbor 0.905 1.609 3.402 1.678 1.690 1.550 1.672 1.687 1.939
Regression 0.830 1.093 2.360 1.192 1.103 1.114 1.124 1.042 1.338
IDW 0.904 1.419 2.902 1.428 1.365 1.334 1.410 1.329 1.646
Regression IDW 0.968 1.344 2.779 1.344 1.257 1.209 1.278 1.200 1.551
Ordinary Kriging 1.061 1.332 2.720 1.352 1.298 1.271 1.331 1.257 1.564
Regression Kriging 0.939 1.228 2.573 1.296 1.217 1.158 1.231 1.141 1.461
ST Regression Kriging 0.934 1.212 2.429 1.305 1.182 1.158 1.211 1.133 1.417

Note: This table shows the root mean square error (RMSE) for each interpolation method in each year from 1997 to 2004.
These values were calculated using temperature estimates from April 1 to June 30th with each different interpolation
method. The total RMSE was calculated using all estimates across all years. The table is divided for the three regions of
Ontario: all Ontario, South Ontario, and North Ontario.
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increased variability discussed in the RMSE analysis has translated into a lower degree of

correlation in the year 1999, where regression kriging gave a correlation of -0.032 while

the other interpolation methods (except nearest neighbor) gave correlation values as low

as -0.072. Norton et al. (2010) found that changes in elevation had the most significant

impact on spatial basis risk for temperature based policies, and southern Ontario is the

region with the largest variance in elevation (see Chapter 5.1). The changes in elevation

in this region combined with the difficulties in the variogram fitting process described

earlier create a situation which may result in increased spatial basis risk.

The regression method also shows significantly increased spatial basis risk when used

for all Ontario. Regression gives a correlation value of -0.065 while the other methods

have correlation value closer to -0.090. Regression does not take the form of a weighted

average and does not take into account the distance in between weather stations and

farms when making predictions. When using regression for all Ontario, this means that

weather stations in northern Ontario are used to make predictions at farms in southern

Ontario and vice versa. Conversely, the kriging and inverse distance weighting methods

only use observations in the surrounding area up to a maximum of 200 km away. This

shows that linear regression models lose some of their predictive power when they are

applied to a geographic area that is too large, resulting in increased spatial basis risk.

When compared to southern Ontario, the insurance policies created in northern Ontario

are much more sensitive to the type of interpolation method used. The correlation values

range from -0.009 to 0.076, with many of the interpolation methods producing different

results. The methods which produce the most negative correlations are the regression-

based methods, although these correlations are close to zero. Nearest neighbor, inverse

distance weighting, and ordinary kriging have positive correlation values significantly

different from zero, which is contrary to the assumption that increased CDD should result

in decreased yields. This is likely caused by the fact that these methods do not consider
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any information except the proximity of the stations to the farm, resulting in inaccurate

predictions in an area with very few weather stations. These results suggest that tem-

perature based policies in northern Ontario are very susceptible to basis risk in general,

with most of the correlation values being very close to zero. In addition, the difference in

correlation between the regression-based methods and the other methods shows that it

is important to include explanatory variables when the amount of weather stations avail-

able is limited, since this can help to reduce the amount of spatial basis risk and these

methods have the lowest RMSE in Table 5.2.

Taking these results into consideration, the best approach to reducing spatial basis risk

is to increase the amount of weather stations that are available for performing spatial in-

terpolation, rather than focusing on the type of spatial interpolation method that is used.

In an area like southern Ontario where there are many weather stations the differences

between spatial interpolation methods is minimal, with the exception of regression krig-

ing, indicating that the choice of interpolation technique has only a limited impact on the

amount of spatial basis risk in the insurance model. Meanwhile in an area like northern

Ontario with a small number of stations, the impact of the spatial interpolation method

becomes more pronounced with different methods producing significantly different re-

sults.

It also should be noted that although the policies in southern Ontario have the least

amount of basis risk, the correlation values are still quite low for this index. A correlation

value of -0.15 is not strong enough to design a profitable and effective insurance index,

and this indicates that temperature based contracts are highly susceptible to product ba-

sis risk (see Chapter 2.2) when used to insure forage crops. This is as expected, since it is

known that temperature impacts forage quality rather than forage yields (Buxton, 1995).

These results show that temperature based policies such as these should be combined
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Table 5.3: Correlations Between Estimated Indemnities and Reported Forage Yields for Each Interpolation Technique

Region Method 1997 1998 1999 2000 2001 2002 2003 2004 Total

All
Ontario

Nearest Neighbor -0.163 0.141 -0.044 0.026 -0.096 0.106 -0.104 0.067 -0.093
Regression -0.126 0.224 -0.026 0.006 -0.015 0.137 -0.166 0.088 -0.065
IDW -0.166 0.179 -0.074 0.017 -0.051 0.115 -0.139 -0.012 -0.093
Regression IDW -0.171 0.156 -0.077 0.014 -0.075 0.098 -0.154 -0.012 -0.094
Ordinary Kriging -0.161 0.215 -0.073 0.025 -0.002 0.138 -0.114 NA -0.086
Regression Kriging -0.148 0.185 -0.080 0.023 -0.057 0.107 -0.143 NA -0.092
ST Regression Kriging -0.180 0.160 -0.064 0.024 -0.067 0.100 -0.140 0.194 -0.091

South
Ontario

Nearest Neighbor -0.238 0.069 -0.014 0.011 -0.131 0.086 -0.216 -0.051 -0.154
Regression -0.300 0.107 -0.048 -0.001 -0.050 0.119 -0.228 -0.330 -0.146
IDW -0.245 0.112 -0.054 0.005 -0.071 0.110 -0.226 -0.112 -0.151
Regression IDW -0.269 0.072 -0.062 0.011 -0.108 0.096 -0.208 -0.104 -0.154
Ordinary Kriging -0.227 0.134 -0.072 0.014 -0.037 0.137 -0.209 NA -0.150
Regression Kriging -0.261 0.081 -0.032 0.018 -0.089 0.108 -0.202 -0.152 -0.032
ST Regression Kriging -0.259 0.051 -0.060 0.001 -0.088 0.119 -0.218 NA -0.152

North
Ontario

Nearest Neighbor 0.018 -0.015 -0.032 -0.160 0.186 0.078 0.381 NA 0.091
Regression -0.099 -0.165 -0.092 NA 0.023 -0.331 -0.015 NA -0.009
IDW 0.038 0.056 -0.036 NA 0.183 -0.153 0.267 NA 0.069
Regression IDW -0.099 -0.180 -0.080 NA -0.035 -0.308 0.116 NA 0.003
Ordinary Kriging 0.143 0.049 -0.009 NA 0.234 -0.219 0.185 NA 0.076
Regression Kriging -0.073 -0.165 -0.070 NA -0.001 -0.384 0.171 NA -0.001
ST Regression Kriging -0.136 -0.169 -0.060 NA 0.036 -0.047 0.260 NA 0.022

Note: This table shows the sample correlation in between the estimated indemnities and reported forage yields for each
interpolation method in the years from 1997 to 2004. Calculations were done using temperature estimates from April 1st
to June 30th. Total correlation was calculated using all estimates across all years. The table is divided for the three regions of
Ontario: all Ontario, South Ontario, and North Ontario. Entries with NA correspond to years with no indemnities, making
correlation calculations impossible.
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with policies based on other variables such as rainfall in order to improve correlation and

reduce product basis risk.

5.4 Summary of Results

There are several interesting results that can be taken from the analysis of this study.

From the regression analysis it is clear that longitude, latitude, elevation, distance to the

Great Lakes, and their cross-products are all significant variables when considering mean

daily temperatures. Furthermore, there is no need to consider different explanatory vari-

ables when estimating temperatures in different months. In the RMSE analysis it is shown

that the variance of temperature estimates can be significantly reduced by including mul-

tiple weather stations in the estimation process rather than considering only the closest

weather station. The RMSE analysis also shows that problems with variance can arise

when automated variogram fitting procedures are applied. Using “rules of thumb” to

estimate variogram parameters can result in increased variance which in turn can cause

increased spatial basis risk.

The correlation analysis shows that the number of weather stations available in the in-

terpolation area can have a significant impact on the amount of spatial basis risk. For

northern Ontario where there are very few weather stations, the different interpolation

methods produce more varied results, indicating that policies in this area are susceptible

to spatial basis risk. Meanwhile in southern Ontario where there is a large number of

weather stations, most of the interpolation methods produce very consistent results with

only minor differences in between them, indicating that policies in this region are less

susceptible to spatial basis risk. In addition, the correlation analysis shows that the cool-

ing degree days index is not strongly correlated with forage yields, indicating that these

types of policies should be combined with policies based on other weather variables like

rainfall in order to reduce overall basis risk.
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As weather based insurance products become more popular and more prominent in the

marketplace, these results are important for any insurer who wants to design these types

of policies. The results imply that insurers should spend more of their time and effort

on increasing the amount of weather stations that are available in the area of interest,

rather than being preoccupied with the interpolation method that is used to make es-

timates. Concerning the choice interpolation techniques, an insurer should choose a

method which uses multiple weather stations from the surrounding area rather than only

the closest station. If the number of weather stations available in the area is a concern,

regression-based methods should be implemented in order to incorporate as much infor-

mation as possible and reduce the prediction variance. Insurer’s should also take great

care if using methods like kriging which require parameter fitting, since these methods

can result in higher variance due to poor fits of the variogram function.
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Chapter 6: Summary

Weather index insurance has become a popular subject in agricultural risk management

with many papers devoted to its discussion (Heimfarth and Musshoff, 2011; Lin et al.,

2015; Okhrin et al., 2013). Under these policies farmers receive payments if they expe-

rience adverse weather for their crops during the growing season. These policies offer

many benefits, such as reduced administrative costs and decreased adverse selection and

moral hazard. However, this type of insurance is particularly susceptible to the problem

of spatial basis risk (Lin et al., 2015). Spatial basis risk occurs when the weather observed

at weather stations does not match the weather experienced by the farmer’s crops, caus-

ing improper indemnities to be paid to the farmer (Dick and Stoppa, 2011). However,

spatial basis risk may be reduced through the use of averaging and spatial interpolation

techniques such as inverse distance weighting and kriging. These techniques make it

possible to incorporate multiple surrounding weather stations in the estimation process

rather than using only the single closest station, potentially resulting in more accurate

estimations and thereby reducing spatial basis risk.

The objective of this study was to determine if an insurer’s choice of spatial interpola-

tion technique can impact the amount of spatial basis risk in a weather based insurance

model. To evaluate the performance of different spatial interpolation techniques, tem-

perature based policies for forage crops in Ontario, Canada, were considered as an exam-

ple. A weather insurance index was developed based on cooling degree days, a weather

metric which represents the excess heat stress that the crops experienced over the grow-

ing season. Seven different interpolation methods were applied to temperature data and

estimated indemnities were calculated for forage producers across the province. By ana-

lyzing the correlation between the estimated indemnities and reported forage yields, the

impact of the different interpolation techniques on spatial basis risk was quantified.
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The analysis of this study was repeated three times over. The first analysis used data from

all of Ontario, the second used data from southern Ontario only and the third used data

from northern Ontario only. This subsetting of the data was done in order to compare

the impact of spatial basis risk in areas with many weather stations (southern Ontario) to

areas with few weather stations (northern Ontario). The results of this analysis show that

the impact of spatial interpolation techniques on spatial basis risk is determined mainly

by the number of weather stations that are available for analysis. When there are many

stations available, the insurer’s choice of interpolation technique has only a limited im-

pact on the amount of spatial basis risk in the index insurance model. In this situation,

the technique which was the most susceptible to spatial basis risk was regression krig-

ing, an issue likely caused by the fact that the daily variograms were estimated using an

automated fitting process. When there are few weather stations available the difference

in between the methods becomes more pronounced, with regression-based interpolation

methods showing the least amount of spatial basis risk.

The correlation analysis also showed that the cooling degree days index is not well suited

for designing weather based index insurance. Even in the area with the most weather

stations (southern Ontario) the correlation values never exceeded -0.154, and this is not

a strong enough correlation to design effective index insurance. This indicates that the

cooling degree day policies designed here are highly susceptible to product basis risk (see

Chapter 2.2). Future attempts at designing temperature based insurance policies should

focus on trying to include information regarding other variables such as rainfall in order

to reduce basis risk in general.

It was also shown that the variance of the temperature estimates can be significantly

reduced by using interpolation methods which incorporate information from multiple

weather stations into the estimate, rather than relying only on the closest available sta-

tion. Even the simplest of these methods (inverse distance weighting) showed a signif-
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icantly improved root mean square error over the nearest neighbor method. Given the

simplicity and ease of implementation of inverse distance weighting, there is little (if

any) reason why a practitioner should choose to consider only the single closest weather

station when making estimates of weather conditions.

Taking these results into consideration, an insurer may prefer to forgo the additional

steps and complexities of a kriging model in favor of an easier to implement method

such as inverse distance weighting. If a practitioner is determined to apply more complex

methods to their analysis, spatio-temporal regression kriging is a better option than either

ordinary kriging or regression kriging since only one variogram model needs to be fitted

in each year rather than one variogram model for each day. This makes it easier to fit these

models visually, avoiding the complications that can arise from the automated variogram

fitting process. The results of this study are primarily of interest to insurance firms who

are in the process of designing weather based insurance policies. For these practitioners

it is important to know whether the additional effort and computational power required

by methods like kriging produce any tangible results in terms of reducing spatial basis

risk.

Future research should examine the impact of using less than ten weather stations in the

spatial interpolation methods. It was shown that increasing the number of stations can

reduce prediction variance, however, it may be the case that fewer than ten stations are

required for this to occur. It is desirable for the index insurance to use fewer stations in

order to keep the policy as simple as possible, making this topic an important one for

consideration. In addition, future research should examine the possibility of combining

temperature based policies with those based on rainfall. The temperature based policies

were shown to be highly susceptible to product basis risk and this risk must be reduced

in order to implement these policies practically and effectively.
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Appendix A - Summary of Spatial Interpolation Techniques

Table A.1: Summary of the Spatial Interpolation Techniques Used to Estimate Temperature

Interpolation Technique Description Advantages Disadvantages
Nearest Neighbor For each day, the temper-

ature estimate is equal to
the observed temperature
at the weather station clos-
est to the farm.

Simple to implement and
only requires the coordi-
nates of the farms and
stations to calculate dis-
tances.

Only the closest station is
used in the estimation pro-
cess, regardless of its prox-
imity to the farm.

Regression Daily linear regression
models are used to make
temperature estimates.
Latitude, longitude, eleva-
tion, and distance to the
Great Lakes are the ex-
planatory variables, along
with their cross products.

Simple to implement, well
documented, and well un-
derstood. Incorporates in-
formation other than dis-
tance in the form of ex-
planatory variables.

All weather stations are
used in the estimation pro-
cess regardless of their
proximity to the farm and
no attempt is made to de-
fine a spatial autocorrela-
tion structure.

Inverse Distance
Weighting

Weights for multiple sta-
tions around the farm are
calculated based on the in-
verse of the distance from
the station to the farm.
These weights are used to
estimate temperature con-
ditions at the forage farms.

Multiple stations are used
rather than only using the
closest station. The model
only requires one easy to
fit parameter and only the
coordinates of the stations
and farms are required to
calculate distances.

No explanatory variables
are incorporated in the es-
timation process. Because
no spatial autocorrelation
structure has been defined,
the weights assigned to
each station may not be
those which minimize the
prediction error variance.

Continued on next page
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Continued from previous page

Interpolation Technique Description Advantages Disadvantages
Regression-Based
Inverse Distance

Weighting

Daily regression models
are used to make tem-
perature estimates and
calculate model residuals
at weather stations. In-
verse distance weighting
is used to estimate the
model residuals and the
final estimate is the sum of
these two estimates.

Compared to inverse dis-
tance weighting, more in-
formation is included in
the model in the form
of explanatory variables.
This method is also rel-
atively simple to imple-
ment.

Because no spatial auto-
correlation structure has
been defined, there is no
way of knowing whether
the weights assigned to
each station during the in-
verse distance weighting
are minimizing the predic-
tion error variance.

Ordinary Kriging Every day, the tempera-
ture data is used to esti-
mate a variogram function.
This variogram function is
used to determine the sta-
tion weights which mini-
mize the prediction error
variance.

Once the variogram has
been defined, the krig-
ing formulas are straight-
forward. Because of the
variogram function, the
weights that are assigned
to each station are optimal
in terms of reducing pre-
diction error variance.

Ordinary kriging assumes
that the variable being es-
timated has a stationary
mean over the entire inter-
polation area. This method
also does not incorporate
explanatory variables in
the estimation process.

Continued on next page
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Continued from previous page

Interpolation Technique Description Advantages Disadvantages
Regression Kriging Daily regression models

are used to make temper-
ature estimates and cal-
culate model residuals at
weather stations. Ordi-
nary kriging is used to es-
timate the model residu-
als and the final estimate is
the sum of the regression
and kriging estimates.

Compared to ordinary
kriging, more information
is included in the model
in the form of explana-
tory variables. Because
ordinary kriging is being
applied to residuals from
regression models, con-
cerns of stationarity are
largely eliminated.

The variogram function
must be estimated for
every day during the
growing season, meaning
that automated variogram
fitting methods must be
used in order to perform
analysis efficiently.

Spatio-Temporal
Regression Kriging

Each year, daily regression
models are used to make
temperature estimates and
calculate model residuals
at weather stations. A
spatio temporal variogram
function is estimated from
the data and used to make
estimates of the model
residuals for each day. The
final estimate is the sum of
the regression and kriging
estimates.

Only one variogram model
must be estimated for each
year, rather than one for
each day. This makes it
easier to fit the variogram
function visually to ensure
that appropriate parame-
ter values are selected.

Spatio-temporal regres-
sion kriging is more
computationally intensive
then other interpolation
methods. In addition, the
software and algorithms
for performing this type
of kriging are still being
actively developed.
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Appendix B - The Haversine Formula

When calculating the distance between two points on a flat two dimensional surface,

Euclidean distance is used:

d =
√

(∆x)2 + (∆y)2

where ∆x and ∆y represent the the differences in x and y coordinates respectively. How-

ever the Earth is roughly a sphere, and so Euclidean distance is not an accurate represen-

tation of the distance in between two points on the Earth’s surface. For these calculations

a formula called the Haversine formula is used. This formula assumes that longitude and

latitude have been converted to radians (Veness, 2011):

a = sin2
(
∆Lat

2

)
+ cos(lat1) · cos(lat2) · sin2

(
∆Long

2

)

c = 2 · atan2(
√
a,
√

1− a)

d = R · c

Here ∆Lat and ∆Long represent the change in latitude and longitude respectively, lat1

and lat2 represent each of the latitude coordinates, and R represents the radius of the

Earth in the desired unit of measurement. The Haversine formula is suitable for distance

calculations over short distances and produces distance measurements with an average

error of 0.3% (Veness, 2011).
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Appendix C - Spatial Variogram Fitting

The graph above shows the sample variogram for the regression model residuals in south-

ern Ontario on April 10th, 2000. The variogram is a function of three parameters: The

nugget, the sill, and the range. These parameters can be visually identified from the sam-

ple variogram using the following reasoning. The nugget is defined as the value of the

variogram for small distances, and theoretically it should be equal to 0. However due to

measurements errors this is often not the case. From the sample variogram, the nugget is

equal to approximately 0.5. The sill is the value of the plateau that the variogram eventu-

ally reaches as h increases. From the sample variogram, the sill is equal to approximately

1.2. Finally, the range is defined as the distance required for the variogram to reach the
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sill for the first time. From the sample variogram the range is equal to approximately 75

km. Using these values as initial estimates, the “fit.variogram” function from the gstat

package in R is used to fit the three most popular variogram models (exponential, spheri-

cal, and Gaussian) and the model with the lowest sum of squared errors (SSE) is selected.

This procedure works well in theory, however, the analysis of this study covers eight years

of data with each year having a ninety-one day growing season. This combined with the

fact that the analysis is repeated three times for the different regions (southern Ontario,

northern Ontario, and all Ontario) means that a total of 91 ·8 ·3 = 2184 variogram models

must be fitted for the analysis of this study. It is not feasible to fit all of these models

visually, and so an automated fitting procedure must be implemented. In order to provide

initial estimates for the variogram parameters, the method of Hengl (2009) is used:

1. Nugget=0

2. The sill is set to the variance of the data set→ Sill=Var(~Z)

3. The range is set to 100 km1

Using these initial estimates, the “fit.variogram” function fits the sample variogram to

each of the three variogram functions(exponential, spherical, and Gaussian) and the func-

tion with the lowest SSE is selected.

1Hengl (2009) recommends the range be set to one quarter the diagonal of the interpolation area, how-
ever, due to the size of the interpolation area in this analysis this value was modified to 100 km. This results
in a more accurate estimate of the range.
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Appendix D - Spatio-Temporal Variogram Fitting

The graph above shows the sample spatio-temporal variogram for southern Ontario from

the year 2003. The first difference in between this variogram and the purely spatial vari-

ogram is the units used for distance. The algorithms and software packages for perform-

ing spatio-temporal kriging in R are still actively being developed and as such there are

certain features that have not been implemented yet. One of these features is the use of

coordinates that are given in the longitude/latitude format, and so a Cartesian projection

of the data must be used. Therefore, the distances in this variogram are given in the form

of Euclidean distances assuming that one degree of latitude is equal in distance to one

degree of longitude. It is a known fact that there is no method for projecting data from
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a sphere to a flat surface without distorting some of the distances, and indeed this is vis-

ible in Figure 3.1 where it can be seen that one degree of latitude covers more distance

than one degree of longitude. However, research has shown that transforming projec-

tions from a spherical surface to a planar surface has a negligible impact on the spatial

interpolation process (Jiang and Li, 2014).

Since only one model must be fit for each year, there are only twenty-four spatio temporal

variograms that must be fitted for this analysis (eight years times three regions) and so

this task is much less daunting than the process of fitting 2184 spatial variograms. As

mentioned in Chapter 4.7, the spatio temporal variogram is a function of three distinct

variograms with a total of ten parameters.

To fit the spatial variogram, consider the shape of the graph when time is 0 and follow the

procedure outlined in Appendix C. The spatial nugget is estimated as 0, the spatial sill as

1.2 and the spatial range as 1.0. The temporal variogram is fit in a similar fashion, except

by examining the shape of the variogram when distance is 0. This gives a temporal nugget

of 0, a temporal sill of 1.05 and a temporal range of approximately 4 days. The spatio-

temporal anisotropy ratio is estimated as the ratio of the spatial range to the temporal

range which gives a value of 1.0/4=0.25.

The joint variogram is estimated by considering the shape of the variogram as both the

distance and time increase. The joint nugget is estimated as 0 and the joint sill as 1.3.

To estimate the joint range, the spatial and temporal ranges are considered. Using the

anisotropy ratio the temporal range can be converted to spatial units, and the joint range

is equal to the distance to the point with the spatial and temporal ranges as coordinates.

Therefore, the joint range can be estimated as the diagonal of a square with the spatial

range as the length of its sides and the estimate is given by
√

2 · 1.0 = 1.41.

Once the parameters have been estimated, the variograms are each fitted to the three

most popular variogram functions (exponential, spherical, and Gaussian) and the model
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with the lowest SSE is selected. Since there are three marginal variograms to be fitted and

three possible variogram functions, there are 33=27 possible combinations of models.
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