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Abstract

The distribution theory of runs and patterns has a long and rich history.

In this dissertation we study the distribution of some run-related statistics

in sequences and random permutations of arbitrary multi-sets. Using the

finite Markov chain imbedding technique (FMCI), which was proposed by

Fu and Koutras (1994), we proposed an alternative method to calculate the

exact distribution of the total number of adjacent increasing and adjacent

consecutive increasing subsequences in sequences.

Fu and Hsieh (2015) obtained the exact distribution of the length of the

longest increasing subsequence in random permutations. To the best of our

knowledge, little or no work has been done on the exact distribution of the

length of the longest increasing subsequence in random permutations of

arbitrary multi-sets. Here we obtained the exact distribution of the length

of the longest increasing subsequence in random permutations of arbitrary

multi-sets. We also obtain the the exact distribution of the length of the

longest increasing subsequence for the set of all permutations of length N

generated from {1, 2, . . . , n}.
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Chapter 1

Introduction

The distribution theory of runs has a rich history. As early as 1738,

De Moivre (1738) studied the probability of getting a success run of

length r or more in n trials in his book The Doctrine of Chances. Many

researchers have discussed this problem further; for more details, see Mood

(1940).

In the 1940’s many researchers were interested in the concept of runs

and patterns in Bernoulli trials, but the main focus was on the conditional

distributions of runs given the total number of successes (see, for example,

Stevens, 1939). Even though little research was done on the exact distribu-

tion, there were some useful approximation formulas for the distributions

of runs developed in the period between 1950 and 1970 (see, for example,

Walsh, 1962; Gibbons, 1985).

When interest in run-related statistics began in the nineteenth century,

the tools used to study the distributions of run-related statistics were

combinatorial methods. Due to the complexity in the combinatorial

1



calculations, the exact distribution of many run-related statistics remains

unknown. For example, in the cases where the study involves elements

of more than two types and/or they are non-iid trials, the formula tend

to be more complicated and difficult to compute. Much of the research

in the nineteenth century focused on finding the conditional distribution

of the number of success runs given the number of successes in the iid

Bernoulli trials (see, for example, Wald and Wolfowitz, 1940). Despite the

complexity of this approach, it gave some interesting results. For example,

Hirano (1986), Philippou and Makri (1986), and Godbole (1990) all were

able to find the exact distribution for non-overlapping consecutive success

runs in iid Bernoulli trials.

Many researchers started to realize the complexity of finding the exact

distribution of run-related statistics using combinatorial methods (see, for

example, Aki and Hirano, 1994). It did not take long until they revealed the

recurrence relations hidden within the sequence of trials, and by identifying

these relations they were able to use probability generating functions to

find the exact distribution of the run-related statistic. After deriving

the probability generating function, it could be differentiated the desired

number of times to yield the probability distribution function. Ling (1988)

gave recurrence relations for the probability generating function of the

number of overlapping consecutive k successes until the n-th trial for iid

trials and an extension for non-iid trials was proposed by Chryssaphinou

et al. (1993).

Both the combinatorial approach and the probability generating func-
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tion approach shared the same difficulties of complicated calculation and

the complexity of the results. These methods become increasingly difficult

when studying more complicated patterns. That left the exact distribu-

tion of many run-related statistics unknown. Instead, researchers used

approximation methods, such as the Chen-Stein method and compound

Poisson approximations, to help them with these cases (see, for example,

Chen, 1975). These approximation methods have their own disadvantages,

such as the difficulty in finding the bounds of the error and defining the

distribution parameters. Boutsikas and Koutras (2000) presented an upper

bound for the approximation error and offered a simple formulae for the

distribution parameters.

Fu and Koutras (1994) introduced an entirely different approach based

on the Chapman-Kolmogorov equation and the ability to imbed a random

variable into a finite Markov chain. They proposed the “finite Markov

chain imbedding technique” (FMCI) to solve some run-related statistic

problems via transition matrices of the induced Markov chain. This

approach has been used in many areas, such as reliability and quality

control (see, for example, Fu and Hu, 1987; Chao and Fu, 1989, 1991),

and random permutation problems (see, for example, Fu, 1995; Fu et al.,

1999; Johnson and Fu, 2000).

Brook and Evans (1972) used the Markov chain representation for

calculating the distribution of the run-length of a Cumulative Sum control

chart (CUSUM). Chao and Lin (1984) used the Markov chain imbedding

technique to study the reliability of “consecutive-k-out-of-n:F ” systems (a

3



system of n ordered components such that the system fails if, and only if,

k-consecutive components fail). They imbedded the general “consecutive-

k-out-of-n:F ” system into a Markov chain with 2k states. Fu (1986) was

able to reduce the size of the state space of the general “consecutive-k-

out-of-n:F ” system to (k − 1). Later, Fu and Hu (1987), and Chao and

Fu (1989, 1991) proposed a formula for the general case of s-independent

elements. Fu and Koutras (1994) formalized the finite Markov chain

imbedding technique by adopting the ideas of Chao and Lin (1984), Fu

(1986), Fu and Hu (1987), and Chao and Fu (1989, 1991) papers on system

reliability.

The finite Markov chain imbedding technique has been successfully

applied in different cases and models and it gave simple and clear expres-

sions that were easy to work with. For example, Fu and Koutras (1994)

found the exact distributions of many run-related statistics with the finite

Markov chain imbedding technique.

Fix N, n and let [dn] be a partition of N into n parts so that [dn] =

[d1, d2, . . . , dn], where the di’s are non-negative integers, and let N =

d1 + d2 + · · · + dn. The naturally ordered multi-set with specification

[dn] is the set D([dn]) = {1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n}, where there are

di copies of the integer “i” for each i = 1, 2, . . . , n. Let
∏

[dn] denote

the set of all permutations of D([dn]). For example, for N = 7, n = 4

and [d4] = [2, 1, 1, 3], we have D([d4]) = {1, 1, 2, 3, 4, 4, 4}. Note that,

with [1n] = [1, 1, . . . , 1], the set
∏

([1n]) is the usual symmetric group on

{1, 2, . . . , n}.
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Every permutation π ∈
∏

[dn] can be obtained by inserting the N

integers from D([dn]) one by one into gaps between previously inserted

integers (including the two end gaps), starting by inserting the d1 integers

“1”, followed by inserting the d2 integers “2”, and continuing this insertion

procedure until the last dn integers “n” have been inserted. In general, for

t = 1, 2, . . . , N , the t-th element inserted is the c(t)-th copy of the integer

“k(t)”, where

k(t) = min{k ∈ N |
k∑

r=1

dr ≥ t}, and c(t) = t−
k(t)−1∑
r=1

dr.

If the insertion positions are randomly chosen, then the sequence

of insertions can be viewed as a sequence of trials. The above insertion

procedure provides a way of studying the distributions of runs and patterns

on random permutations via the finite Markov chain imbedding technique.

The number of random permutations of n elements with certain pat-

terns has a rich history in mathematics, statistics and computer science.

For example, many researchers have studied the number of random permu-

tations with exactly k increasing subsequences of length ` (see, for example,

Carlitz et al., 1964; Roselle, 1968; Dillon and Roselle, 1969; Dwass, 1973;

Tanny et al., 1973; Tanny, 1976; Reilly and Tanny, 1979; Johnson, 2001).

For a given permutation π ∈
∏

[dn] there are several types of increasing

subsequences, such as:

• Increasing subsequence (IS): A permutation π ∈
∏

[dn] contains

an increasing subsequence of length ` if there exists {e1, . . . , e`} ⊆
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{1, . . . , N}, such that, e1 < e2 < · · · < e` and π(e1) < π(e2) < · · · <

π(e`).

• Adjacent increasing subsequence (AIS): A permutation π ∈
∏

[dn]

contains an adjacent increasing subsequence of length ` if, for some

i = 1, 2, . . . , N − `+ 1, π(i) < π(i+ 1) < · · · < π(i+ `− 1).

• Adjacent consecutive increasing subsequence (ACIS): A permutation

π ∈
∏

[dn] contains an adjacent consecutive increasing subsequence

of length ` if, for some i = 1, 2, . . . , N − ` + 1, and for all k =

i, . . . , i+ `− 1, π(k) = π(k − 1) + 1.

An adjacent increasing subsequence of length ` is sometimes referred

to as a rise of length ` (see, for example, Roselle, 1968), and an adjacent

consecutive increasing subsequence of length ` is sometimes referred to

as a succession of length ` (see, for example, Fu, 1995). It is clear that

an adjacent consecutive increasing subsequence of length ` is also an

adjacent increasing subsequence of length `, and an adjacent increasing

subsequence of length ` is also an increasing subsequence of length `. Thus

for any permutation π ∈
∏

[dn] the total number of adjacent consecutive

increasing subsequences of length ` is less than or equal to the total number

of adjacent increasing subsequences of length `, which is less than or equal

to the total number of increasing subsequences of length `. There are a

number of problems of interest with these run-related statistics in π, for

example:

• What is the probability that a random permutation π ∈
∏

[dn] has
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exactly k adjacent consecutive increasing subsequences of length `?

• What is the probability that a random permutation π ∈
∏

[dn] has

exactly k adjacent increasing subsequences of length `?

• What is the probability that a random permutation π ∈
∏

[dn] has

exactly k increasing subsequences of length `?

• What is the probability that the longest increasing subsequence in a

random permutation π ∈
∏

[dn] is of length `?

We studied the first two cases for sequences, as well as the probability that

the longest increasing subsequence in a random permutation π ∈
∏

[dn] is

of length `.

Let A([dn], `, k) denote the total number of permutations in
∏

[dn]

with exactly k adjacent increasing subsequences of length `. The most

studied numbers associated with A([dn], `, k) are the Eulerian numbers,

which are given by A([1n], 2, k) and the Simon Newcomb numbers given

by A([dn], 2, k). The Eulerian and Simon Newcomb numbers have been

studied extensively (see, for example, Carlitz et al., 1964; Dillon and

Roselle, 1969; Tanny et al., 1973; Carlitz, 1974; Nicolas, 1991; Giladi and

Keller, 1994; Harris and Park, 1994) and references therein. Fu et al.

(1999) used the finite Markov chain imbedding technique to find the exact

distribution of the Eulerian and Simon Newcomb numbers. To the best of

our knowledge, little or no work has been done on A([dn], `, k) for ` > 2.

Let B([dn], `, k) denote the total number of permutations in
∏

[dn]

with exactly k adjacent consecutive increasing subsequences of length `.
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Whitworth (1901) was the first to discuss the number of permutations

in
∏

[1n] with no increasing subsequences of length 2. The number of

permutations in
∏

[1n] with no increasing and/or decreasing subsequences

of length 2 is examined by Wolfowitz (1942, 1944), Kaplansky (1944,

1945), and Abramson and Moser (1967). Many researchers have studied

B([1n], `, k) (see, for example, Roselle, 1968; Dwass, 1973; Roselle et al.,

1974; Tanny, 1976; Dymacek and Roselle, 1978; Reilly and Tanny, 1979).

Permutations in
∏

[1n] with increasing subsequences of length 3 are studied

by Riordan (1945) and the more general case of increasing subsequences of

length ` has been examined by Abramson and Moser (1967). Jackson and

Goulden (1980, 1981) developed a general theory on sequence enumeration,

which allows us to obtain the generating functions for a wide class of

combinatorial problems. For example, when this theory is applied to

study B([1n], `, k) the results lead to those contained in Jackson and Reilly

(1976), and Jackson and Aleliunas (1977). Most recently, Johnson (2001)

examined the distribution of B([1n], `, k) based on the compositions of n

elements, and proposed a new solution which required, at most, k(n−k−`)

summands.

The finite Markov chain imbedding technique has successfully been

applied to B([1n], `, k). A simple method based on the finite Markov chain

imbedding technique is used by Fu (1995) to obtain the exact distribution

of B([1n], 2, k). His approach also gives a direct proof that the limiting

distribution of B([1n], `, k) is a Poisson distribution with parameter λ = 1.

Johnson and Fu (2000) studied the general case of B([1n], `, k) using the
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finite Markov chain imbedding technique. Johnson (2002) obtained the

exact distribution of B([dn], 2, k) using the finite Markov chain imbedding

technique. However, little work has been done on B([dn], `, k) for ` > 2.

Let LN ([dn], π) denote the length of the longest increasing subsequence

in a random permutation π ∈ Π[dn]. Ln([1n], π) has been studied ex-

tensively (see, for example, Odlyzko and Rains, 2000; Deutsch et al.,

2003; Romik, 2014). The expected value of the longest increasing subse-

quence Ln([1n], π) in random permutation π ∈ Π[1n] has also been studied

extensively. There are interesting results using both Monte Carlo and

exact computations that explore the finer structure of the distribution of

Ln([1n], π) (see, for example, Abramowitz and Stegun, 1964; Aldous and

Diaconis, 1999; Baik et al., 1999).

Erdős and Szekeres (1935) showed that every permutation π ∈ Π[1n] has

either increasing or decreasing subsequence of length ≥
√
n− 1 + 1. Since

then many researchers have been motivated to find the exact distribution of

Ln([1n], π). Schensted (1961) derived the Schensted correspondence, which

has been a major tool in studying the distribution of Ln([1n], π) in random

permutations along with Young tableaus (see, for example, Baer and Brock,

1968; Odlyzko and Rains, 2000). Baer and Brock (1968) tabulated the exact

distribution of Ln([1n], π) for n ≤ 36 using the Schensted correspondence

along with Young tableaus. This result was extended by Odlyzko and

Rains (2000) for n ≤ 120, and they carried out Monte Carlo simulations

for n up to 1010.
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Ulam (1961) used Monte Carlo simulations to suggest that

lim
n→∞

E(Ln([1n], π))/
√
n ≡ c (1.1)

and that Ln([1n], π) is usually of the order
√
n. The problem of computing

the value c was known as Ulam’s problem. Several conjectures had been

proposed about the value c (see, for example, Baer and Brock, 1968; Logan

and Shepp, 1977; Pilpel, 1990; Aldous and Diaconis, 1995; Johansson, 1998).

Vershik and Kerov (1977) showed that c = 2. Baik et al. (1999) obtained

the limiting distribution of Ln([1n], π) to be the Tracy-Widom distribution

of the largest eigenvalue of a random Gaussian Unitary Ensemble (GUE)

matrix.

Recently, Fu and Hsieh (2015) obtained the exact distribution of

Ln([1n], π) in random permutations using the finite Markov chain imbed-

ding technique. To the best of our knowledge, no work has been done on

the length of the longest increasing subsequence in random permutations

of arbitrary multi-sets LN([dn], π).

This dissertation is organized as follows. Chapter 2 introduces some

preliminary results regarding the finite Markov chain imbedding technique.

In Chapter 3 we find the exact distributions of the number of adjacent

increasing subsequences, adjacent consecutive increasing subsequences.

These results are general and can be applied to various selection probabili-

ties. Numerical examples for some of these distributions are presented.

In Chapter 4 we first introduce the exact distribution of the length of the

longest increasing subsequence in a random permutation of arbitrary multi-
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sets (the conditional case). Then we obtained the exact distribution of the

length of the longest increasing subsequence in the set of all permutations

of length N generated from {1, 2, . . . , n} (the unconditional case). Finally,

the summary of this thesis and future work are presented in Chapter 5.
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Chapter 2

Finite Markov chain technique

2.1 Finite Markov chain

For m <∞, let Ω = {a1, a2, . . . , am} be a finite state space, and let {Yt}t≥0

be an ordered sequence of random variables defined on Ω. For ease of

notation, we will frequently just write {Yt} for {Yt}t≥0.

Definition 2.1. A sequence {Yt} of random variables is called a finite

Markov chain if, for it ∈ Ω,

Pr(Yt = it | Yt−1 = it−1, . . . , Y0 = i0) = Pr(Yt = it | Yt−1 = it−1). (2.1)

In words, the sequence {Yt} is a finite Markov chain if the probabil-

ity that the system enters the state it at time t depends only on the

immediately preceding state it−1 at time t− 1.

The one-step transition probabilities for the system at time t are the

conditional probabilities given by

Pr(Yt = j | Yt−1 = i) ≡ pij(t), i, j ∈ Ω. (2.2)
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The transition probabilities pij(t), 1 ≤ i, j ≤ m may be represented as an

m×m matrix

Mt = (pij(t)) =


p11(t) p12(t) . . . p1m(t)
p21(t) p22(t) . . . p2m(t)

...
...

. . .
...

pm1(t) pm2(t) . . . pmm(t)

 .

For t ≥ 1, the matrices Mt are called one-step transition probability

matrices.

Definition 2.2. A Markov chain {Yt} is homogenous if the transition

probabilities are constant in time, i.e. for any i, j ∈ Ω and all t =

1, 2, . . . , n, Pr(Yt = j | Yt−1 = i) = pij.

2.2 Chapman-Kolmogorov equation

The n-step transition probabilities Pr(Yt+n = j | Yt = i) = p
(n)
ij (t) for a

non-homogeneous Markov chain {Yt} can be obtained from the one-step

transition probabilities using the Chapman-Kolmogorov equation. For

example, let n = 2; then for t ≥ 2

p
(2)
ij (t) =

∑
k

Pr(Yt−1 = k | Yt−2 = i) Pr(Yt = j | Yt−1 = k)

=
∑
k

pik(t− 1)pkj(t)

(2.3)

which corresponds to summing over all possible intermediate states k in

the transition from state i to state j.
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If {Yt} is a homogeneous Markov chain, then equation (2.3) yields the

two-step transition probabilities

p
(2)
ij =

∑
k

Pr(Yt−1 = k | Yt−2 = i) Pr(Yt = j | Yt−1 = k)

=
∑
k

pikpkj,

(2.4)

which are independent of t.

For any subset C ⊆ Ω at time index n, any initial distribution ζ0 =

(Pr(Y0 = 1),Pr(Y0 = 2), . . . ,Pr(Y0 = m)), and a homogenous Markov

chain {Yt}, let

Pr(Yn ∈ C | ζ0) = ζ0M
nUT(C), (2.5)

where UT(C) denotes the transpose of U(C), where U(C) =
∑

i∈C ei,

where ei is a 1×m row vector with a 1 in the position corresponding to

the i’th state and zeros elsewhere. Generally, if {Yt} is a non-homogeneous

Markov chain, it can be shown (see, for example, Feller, 1968) that

Pr(Yn ∈ C | ζ0) = ζ0(
n∏

t=1

Mt)U
T(C). (2.6)

2.3 Finite Markov chain imbedding

technique

A run denotes a sequence of consecutive successes or failures within a

Bernoulli trials. There are several run statistics in a sequence of n Bernoulli
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trials, such as the number of non-overlapping consecutive k successes (Nn,k),

and the number of success runs of size greater than or equal to k (Gn,k).

There are three type of general patterns of symbols: simple patterns;

compound patterns; and series patterns. A simple pattern is composed of

a specified sequence of k symbols. The length of the pattern is fixed, and

the symbols in the pattern may be repeated. A compound pattern is a

union of simple distinct patterns. Finally, a series pattern is an ordered

sequence of distinct simple patterns.

Let Xn(Λ) denote the number of occurrences of the pattern Λ in a

sequence of n multi-state trials. The exact distribution of Xn(Λ) depends

on three factors: the structure of the pattern, the structure of the sequence

of n multi-state trials, and the counting procedure (overlapping or non-

overlapping counting).

Determining the exact distribution of Xn(Λ) using the traditional

methods, such as combinatorics, can be challenging for complex pat-

terns and non-iid trials. Fu and Koutras (1994) introduced the finite

Markov chain imbedding technique as an alternative to the traditional

combinatorial methods. Let Γn = {0, 1, . . . , n} be an index set, and let

Ω = {a1, a2, . . . , am} be a finite state space.

Definition 2.3. A non-negative integer-valued random variable Xn(Λ)

with support S(X) = {x : x = 0, 1, . . . , ln, and Pr(X = x) > 0} is finite

Markov chain imbeddable if:

• there exists a finite Markov chain {Yt : t ∈ Γn} defined on a finite
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state space Ω with initial probability vector ζ0;

• there exists a finite partition {Cx : x ∈ S(X)} on the state space Ω,

so that for every x ∈ S(X),

Pr(Xn(Λ) = x) = Pr(Yn ∈ Cx | ζ0).

For t = 1, 2, . . . , n, let Mt be the transition probability matrices of the

induced finite Markov chain {Yt} defined on the state space Ω with initial

probability ζ0 = (Pr(Y0 = a1),Pr(Y0 = a2), . . . ,Pr(Y0 = am)).

Theorem 2.1. Let Xn(Λ) be finite Markov chain imbeddable, and let

M1,M2, . . ., denote the induced transition probability matrices. Then

Pr(Xn(Λ) = x) = ζ0(
n∏

t=1

Mt)U
T(Cx), (2.7)

The k−th moment E(Xk
n(Λ)), k = 1, 2, . . . , can be written as

E(Xk
n(Λ)) = ζ0(

n∏
t=1

Mt)V
T
k , (2.8)

where

Vk =
ln∑
x=0

xkU(Cx).

The probability generating function for the random variable Xn(Λ) is

given by

ϕ(s) = ζ0(
n∏

t=1

Mt)W
T(s), (2.9)
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where

W (s) =
ln∑
x=0

sxU(Cx).

Koutras and Alexandrou (1995) introduced the Markov chain imbed-

dable variable of binomial type. They proposed a new model, which is

based on Markov chain imbedding, to study of the exact distribution of

variables related to success runs in a sequence of Bernoulli trials, scan

statistics and success run statistics related to several well known urn

models.

Definition 2.4. Xn(Λ) is called a Markov chain imbeddable variable of

binomial type if:

1. Xn(Λ) is Markov chain imbeddable,

2. for all x ∈ S(X), the sets Cx = {cx0, cx1, . . . , cxs−1} all have the

same size s,

3. and Pr(Yt = cyj | Yt−1 = cxi) = 0 for all y 6= x, x + 1, and t =

1, . . . , n}.

A Markov chain imbeddable variable of binomial type must visit its next

state before jump directly to a higher state. Koutras and Alexandrou

introduced two s× s transition probability matrices

At(x) = (Pr(Yt = cxj | Yt−1 = cxi)),

and

Bt(x) = (Pr(Yt = cx+1j | Yt−1 = cxi)).
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Where the entries of At(x) control the transitions within Cx, and the

entries of Bt(x) control the transitions between Cx and Cx+1. Note that,

the sum At(x) +Bt(x) is a stochastic matrix.

Using these transition probability matrices, they were able to develop

the probability mass function of the Markov chain imbeddable variable of

binomial type as follows:

Pr(Xn(Λ) = x) = fn(x)1T, (2.10)

where, for 0 ≤ x ≤ ln, 1T = (1, 1, . . . , 1) is a row vector and, for t =

1, 2, . . . , n, the probability row vectors ft(x) are given by

ft(x) = (Pr(Yt = cx0),Pr(Yt = cx1), . . . ,Pr(Yt = cxs−1))

=

{
ft−1(x)At(x) for x = 0,

ft−1(x)At(x) + ft−1(x− 1)Bt(x− 1) for 1 ≤ x ≤ ln.

To illustrate the above definitions and to compare the Koutras and Alexan-

drou (1995) approach with the Fu and Koutras (1994) approach, con-

sider a sequence of Bernoulli trials Z1, Z2, . . . with success probabilities

pt = Pr(Zt = 1), and failure probabilities qt = Pr(Zt = 0) = 1− pt, t ≥ 1.

To study the exact distribution of the number of non-overlapping consecu-

tive k successes Nn,k, consider the state space

Ω = {(x, i) : x = 0, 1, . . . , [n/k], and i = 0, 1, . . . , k − 1}.

Fu and Koutras (1994) defined a finite homogenous Markov chain {Yt}nt=1

on Ω as follows:

Yt = (Nt,k, Et), for 1 ≤ t ≤ n,
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where Et equals m modulo k, and m is the number of trailing successes

counting backwards that exist in the sequence after the first t trials (e.g.,

SFFS . . . F

m︷ ︸︸ ︷
SS . . . S). The transition probability matrix Mt of the induced

Markov chain {Yt} associated with the random variable Nn,k is of the

order (ln + 1)k × (ln + 1)k. For more details, see Fu and Koutras (1994).

Koutras and Alexandrou (1995) defined Cx = {cx0, cx1, . . . , cx,k−1},

where

cxi = {(x, i)}, for all x ∈ S(X), and 0 ≤ i ≤ k − 1.

This, along with the Markov chain {Yt = (Nt,k, Et)}nt=1 defined on Ω,

the random variable Nn,k becomes Markov chain imbeddable variable of

binomial type, with

At(x) = At =


(·, 0) (·, 1) (·, 2) . . . (·, k − 1)
qt pt 0 . . . 0
...

...
...

. . .
...

qt 0 0 . . . pt
qt 0 0 . . . 0


k×k

,

and

Bt(x) = Bt =


(·, 0) (·, 1) (·, 2) . . . (·, k − 1)

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
pt 0 0 . . . 0


k×k

.

The advantage of using the Koutras and Alexandrou model to calculate

the exact distribution of Nt,k rather than Fu and Koutras model is the
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fact that the Koutras and Alexandrou model deal with vector recurrences

involving multiplications of k× k matrices instead of multiplying matrices

of order (ln + 1)k × (ln + 1)k.

Recently, Wu (2013) introduced “the double finite Markov chain imbed-

ding technique” as an extension of the finite Markov chain imbedding

technique, which makes it more flexible and helps to overcome the diffi-

culties in finding the transition matrices. The main idea of the double

finite Markov chain imbedding technique is to use the finite Markov chain

imbedding technique repeatedly to obtain the transition probabilities of the

induced Markov chain. Wu argued that, since each row of the probability

transition matrix sums to 1, then such rows can be considered as a prob-

ability distributions for some random variables. If the random variables

are Markov chain imbeddable, then we could use the finite Markov chain

imbedding technique again. Wu (2013) used the double finite Markov

chain imbedding technique to solve the coupon collector’s problem.
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Chapter 3

Runs and patterns in
sequences

Let SN = (s1, s2, . . . , sN) be a sequence of length N generated by se-

lecting N integers from {1, 2, . . . , n} with unequal selection probabilities

p(si = j) = pj for i = 1, 2, . . . , N and j = 1, 2, . . . , n, where pj is the

probability of selecting the integer “j” from {1, 2, . . . , n}. For example,

SN = (4, 3, 5, 5, 2, 3, 1) is a sequence of length 7 generated from {1, 2, 3, 4, 5}

with equal selection probabilities pj = 1
5

for all j = 1, . . . , 5. Let A(SN , `)

denote the total number of adjacent increasing subsequences of length `

in SN (see Section 3.1), let B(SN , `) denote the total number of adjacent

consecutive increasing subsequences of length ` in SN (see Section 3.2),

and let L(SN) denote the length of the longest increasing subsequence in

SN (see Section 3.3).
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3.1 Adjacent increasing subsequences of

length `

For a given SN = (s1, s2, . . . , sN ), and i = 1, . . . , N − `+ 1. (si, . . . , si+`−1)

is said to be an adjacent increasing subsequence of length ` if si < si+1 <

· · · < si+`−1. In this section we study the exact distribution of A(SN , `)

using the finite Markov chain imbedding technique.

If we are interested in finding the exact distribution of A(SN , `) for

` ≥ 2 using the finite Markov chain imbedding technique, first consider

the following state space:

Ω = {(a, r, j) : a = 0, 1, . . . ,m(N,n), r = 1, 2, . . . , `− 1, and r ≤ j ≤ n},

where m(N,n) is the maximum number of overlapping adjacent increasing

subsequences of length ` that can occur in SN given by:

m(N,n) =

{
N − `+ 1 n ≥ N,

bN/nc(n− `+ 1) + max(0, N − nbN/nc − `+ 1) n < N.

Define a finite homogeneous Markov chain {Yt}Nt=1 on Ω as follows:

Yt = (A(St, `), Rt, Jt), for 1 ≤ t ≤ N, (3.1)

where A(St, `) is the total number of overlapping adjacent increasing sub-

sequences of length ` that occurred within the first t elements s1, s2, . . . , st,

Rt is the length of the adjacent increasing subsequence ending at st, and

Jt is the last element we observed (st).
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For example, given N = 8, n = 4, ` = 3, let S8 = (3, 2, 4, 3, 4, 1, 2, 3),

the realization of the imbedded Markov chain {Yt}8t=1 with respect to

this S8 is: {Y1 = (0, 1, 3), Y2 = (0, 1, 2), Y3 = (0, 2, 4), Y4 = (0, 1, 3), Y5 =

(0, 2, 4), Y6 = (0, 1, 1), Y7 = (0, 2, 2), Y8 = (1, 3, 3)}. Note that, for a given

sequence SN , the realization of {Yt}Nt=1 is always unique.

Proposition 3.1. For a statement S, let 1{S} = 1 if S is true, and

1{S} = 0 otherwise. For t = 1, . . . , N , the transition probabilities

P(a′,r′,j′),(a,r,j) are given by:

P(a′,r′,j′),(a,r,j) = Pr(Yt = (a, r, j) | Yt−1 = (a′, r′, j′))

=



pj if a = a′ + 1{r′ = `− 1}, j > j′, and

r = (r′ + 1)1{r′ < `− 1}+ (`− 1)1{r′ = `− 1}
pj if a = a′ < m(N,n), j ≤ j′, and r = 1,

1 if a = a′ = m(N,n), j = j′, and r = r′,

0 otherwise.

(3.2)

Proof: First note that, for all j ≤ j′, the only transitions possible are

(a′, r′, j′) → (a′, 1, j) and each of these happen with probability pj. For

all j > j′, we need to consider the value of r′. If j > j′ and r′ = ` − 1,

then the number of adjacent increasing sequences increases by one and

r′ → r = `− 1; otherwise, r′ → r = r′ + 1 and a′ → a = a′. Each of these

cases happen with with probability pj. If a′ = m(N,n), then we are in the

absorbing state and we stay there with probability 1. �

From Proposition 3.1, we have

Pr(A(SN , `) = k) = ζ1M
N−1UT(k), (3.3)
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where ζ1 is the probability vector of the first observation, M is the induced

transition probability matrix, and U(k) is a row vector with a 1 in the

positions corresponding to the states (k, ·, ·). In general, let

L (A(SN , `)) = ζ1M
N−1U∗T, (3.4)

where

L (A(SN , `)) = [Pr(A(SN , `) = 0), . . . ,Pr(A(SN , `) = m(N,n))],

and

U∗ =


U(0)
U(1)

...
U(m(N,n))

 .

Example 3.1. Let N = 4, n = 4, and ` = 2, with selection probabilities

p1 = 0.20, p2 = 0.30, p3 = 0.35, and p4 = 0.15. Then the state space Ω is

given by:

Ω ={Y = (a, r, j); a = 0, 1, 2, 3, r = 1 and 1 ≤ j ≤ 4}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4),

(2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 1, 4), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4)},

and the transition matrix is given by

M =


A B

A B
A B

I4

 ,
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where, Ik denotes the identity matrix of dimension k × k, and

A =


.20 0 0 0
.20 .30 0 0
.20 .30 .35 0
.20 .30 .35 .15

 , and B =


0 .30 .35 .15
0 0 .35 .15
0 0 0 .15
0 0 0 0

 .

For ζ1 = (.20, .30, .35, .15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), and

U∗ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 ,

we have

L (A(S4, 2))T =


Pr(A(S4, 2) = 0)
Pr(A(S4, 2) = 1)
Pr(A(S4, 2) = 2)
Pr(A(S4, 2) = 3)

 =


0.1532563
0.6091375
0.2344562
0.0031500

 .

Example 3.2. Let N = 4, n = 4 and ` = 3, with equal selection probabil-

ities 1
4
. Then the state space Ω is given by:

Ω ={Y = (a, r, j);u = 0, 1, 2, r = 1, 2, and r ≤ j ≤ 4}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 2), (0, 2, 3), (0, 2, 4), (1, 1, 1),

(1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 2),

(2, 1, 3), (2, 1, 4), (2, 2, 2), (2, 2, 3), (2, 2, 4)},

and the transition matrix is given by

M =

A B
A B

I7

 ,
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where

A =



.25 0 0 0 .25 .25 .25

.25 .25 0 0 0 .25 .25

.25 .25 .25 0 0 0 .25

.25 .25 .25 .25 0 0 0

.25 .25 0 0 0 0 0

.25 .25 .25 0 0 0 0

.25 .25 .25 .25 0 0 0


,

and

B =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 .25 .25
0 0 0 0 0 0 .25
0 0 0 0 0 0 0


.

For

ζ1 = (.25, .25, .25, .25, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 0, 0),

and

U∗ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 ,
we have

L (A(S4, 3))T =

Pr(A(S4, 3) = 0)
Pr(A(S4, 3) = 1)
Pr(A(S4, 3) = 2)

 =

0.87890625
0.11718750
0.00390625

 .
Proposition 3.1 can be generalized for Markov dependent trials. If

we are studying a sequence SN generated by selecting N integers from
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{1, 2, . . . , n} where the selection probabilities are Markov dependent with

probability transition matrix P and ζ1 = (π 01×(N−n)), where π =

(π1,π2, . . . ,πn) is the stationary distribution for the Markov dependent

trials (i.e, π = πP ), and 01×(N−n) is a zero row vector, than the transition

probabilities P(a′,r′,j′),(a,r,j) are given by the following proposition.

Proposition 3.2. For 1 ≤ t ≤ N , the transition probabilities P(a′,r′,j′),(a,r,j)

are given by:

P (a′,r′,j′),(a,r,j) = Pr(Yt = (a, r, j) | Yt−1 = (a′, r′, j′))

=



Pr(st = j | st−1 = j′) if a = a′ + 1{r′ = `− 1}, j > j′,

and r = (r′ + 1)1{r′ < `− 1}+
(`− 1)1{r′ = `− 1},

Pr(st = j | st−1 = j′) if a = a′ < m(N,n), j ≤ j′, and r = 1,

1 if a = a′ = m(N,n), j = j′, and r = r′,

0 otherwise.

(3.5)

Proof: Identical to Proposition 3.1. �

Example 3.3. Let N = 5, n = 3, and ` = 2, and let the selection from

{1, 2, 3} be governed by the probability transition matrix

P =

.35 .25 .40
.25 .15 .60
.25 .25 .50

 .
Then the state space Ω is given by:

Ω ={Y = (a, r, j); a = 0, 1, 2, 3, r = 1, and 1 ≤ j ≤ 3}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (2, 1, 1),

(2, 1, 2), (2, 1, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3)},
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and the transition matrix is given by

M =


A B

A B
A B

I3

 ,

where

A =

.35 0 0
.25 .15 0
.25 .25 .50

 , and B =

0 .25 .40
0 0 .60
0 0 0

 .
For

ζ1 = (.27̄, .227̄2, .4̄9, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and

U∗ =


1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

 ,
we have

L (A(S5, 2))T =


Pr(A(S5, 2) = 0)
Pr(A(S5, 2) = 1)
Pr(A(S5, 2) = 2)
Pr(A(S5, 2) = 3)

 =


0.1220092
0.5132102
0.3398753
0.0249053

 .

3.2 Adjacent consecutive increasing

subsequences of length `

An adjacent consecutive increasing subsequence of length ` occurs in

SN = (s1, s2, . . . , sN ) if there exists (si, . . . , si+`−1) such that sk = sk−1 + 1
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for each k = i, . . . , i+ `− 1. In this section we study the exact distribution

of B(SN , `) using the finite Markov chain imbedding technique.

If we are interested in finding the exact distribution of B(SN , `) for

` ≥ 2 using the finite Markov chain imbedding technique, first consider

the following state space:

Ω = {(b, r, j) : b = 0, 1, . . . , e(N,n), r = 1, 2, . . . , `− 1, and r ≤ j ≤ n}

where e(N,n) is the maximum number of overlapping adjacent consecutive

increasing subsequences of length ` that can occur in SN given by:

e(N,n) =

{
N − `+ 1 n ≥ N,

bN/nc(n− `+ 1) + max(0, N − nbN/nc − `+ 1) n < N.

Define a finite homogeneous Markov chain {Yt}Nt=1 on Ω as follows:

Yt = (B(St, `), Rt, Jt), for 1 ≤ t ≤ N, (3.6)

where B(St, `) is the total number of overlapping adjacent consecutive

increasing subsequences of length ` that occurred within the first t elements

s1, s2, . . . , st, Rt is the length of the adjacent increasing subsequence

associated with st, and Jt is the last element we observe (st). For example,

given N = 8, n = 5, and ` = 3 let S8 = (1, 3, 2, 4, 3, 4, 5, 1), the realization

of the imbedded Markov chain {Yt}8t=1 with respect to this S8 is: {Y1 =

(0, 1, 1), Y2 = (0, 1, 3), Y3 = (0, 1, 2), Y4 = (0, 1, 4), Y5 = (0, 1, 3), Y6 =

(0, 2, 4), Y7 = (1, 3, 5), Y8 = (1, 1, 1)}. Note that for a given sequence SN ,

the realization of {Yt}Nt=1 is always unique.
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Proposition 3.3. For 1 ≤ t ≤ N , the transition probabilities P(b′,r′,j′),(b,r,j)

are given by:

P(b′,r′,j′),(b,r,j) = Pr(Yt = (b, r, j) | Yt−1 = (b′, r′, j′))

=



pj if b = b′ + 1{r′ = `− 1}, j = j′ + 1, and

r = (r′ + 1)1{r′ < `− 1}+ (`− 1)1{r′ = `− 1},
pj if b = b′ < e(N,n), j 6= j′ + 1, and r = 1,

1 if b = b′ = e(N,n), j = j′, and r = r′,

0 otherwise.

(3.7)

Proof: First note that, for all j 6= j′ + 1, the only transitions possible are

(b′, r′, j′) → (b′, 1, j) and each of these happen with probability pj. For

j = j′ + 1, we need to consider the value of r′. If j = j′ + 1 and r′ = `− 1,

then the number of adjacent consecutive increasing sequences increases by

one and r′ → r = `− 1; otherwise, r′ → r = r′ + 1 and b′ → b = b′. Each

of these cases happen with with probability pj. If b′ = e(N,n), then we are

in the absorbing state and we stay there with probability 1. �

Form Proposition 3.3, we have

Pr(B(SN , `) = k) = ζ1M
N−1UT(k), (3.8)

where ζ1 is the probability vector of the first observation, M is transition

probability matrix, and U(k) is a row vector with a 1 in the positions

corresponding to the states (k, ·, ·). In general let

L (B(SN , `)) = ζ1M
N−1U∗T, (3.9)

where

L (B(SN , `)) = [Pr(B(SN , `) = 0), . . . ,Pr(B(SN , `) = e(N,n))],
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and

U∗ =


U(0)
U(1)

...
U(e(N,n))

 .

Example 3.4. Let N = 5, n = 4, and ` = 2, with selection probabilities

p1 = 0.20, p2 = 0.30, p3 = 0.35, and p4 = 0.15. Then the state space Ω is

given by:

Ω ={Y = (b, r, j); b = 0, 1, 2, 3, r = 1, and 1 ≤ j ≤ 4}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4),

(2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 1, 4), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4)},

and the transition matrix is given by

M =


A B

A B
A B

I4

 ,

where

A =


.20 0 .35 .15
.20 .30 0 .15
.20 .30 .35 0
.20 .30 .35 .15

 , and B =


0 .30 0 0
0 0 .35 0
0 0 0 .15
0 0 0 0

 .

For

ζ1 = (.20, .30, .35, .15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
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and

U∗ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 ,
we have

L (B(S5, 2))T =


Pr(B(S5, 2) = 0)
Pr(B(S5, 2) = 1)
Pr(B(S5, 2) = 2)
Pr(B(S5, 2) = 3)

 =


0.35988250
0.43252120
0.18531000
0.02228625

 .
Example 3.5. Let N = 5, n = 4 and ` = 3, with equal selection probability

1
4
. Then the state space Ω is given by:

Ω ={Y = (b, r, j) : b = 0, 1, 2, r = 1, 2, and r ≤ j ≤ 4}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 2), (0, 2, 3), (0, 2, 4), (1, 1, 1),

(1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 2),

(2, 1, 3), (2, 1, 4), (2, 2, 2), (2, 2, 3), (2, 2, 4)},

and the transition matrix is given by

M =

A B
A B

I7

 ,
where

A =



.25 0 .25 .25 .25 0 0

.25 .25 0 .25 0 .25 0

.25 .25 .25 0 0 0 .25

.25 .25 .25 .25 0 0 0

.25 .25 0 .25 0 0 0

.25 .25 .25 0 0 0 0

.25 .25 .25 .25 0 0 0


,
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and

B =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 .25 0
0 0 0 0 0 0 .25
0 0 0 0 0 0 0


.

For

ζ1 = (.25, .25, .25, .25, 0, 0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 0),

and

U∗ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 ,

we have

L (B(S5, 3))T =

Pr(B(S5, 3) = 0)
Pr(B(S5, 3) = 1)
Pr(B(S5, 3) = 2)

 =

0.9140625
0.0781250
0.0078125

 .

Proposition 3.3 can be generalized for Markov dependent trials. Again,

if we are studying a sequence SN generated by selecting N integers from

{1, 2, . . . , n} where the selection probabilities are Markov dependent with

probability transition matrix P and ζ1 = (π 01×(N−n)), where π =

(π1,π2, . . . ,πn) is the stationary distribution for the Markov dependent

trials (i.e, π = πP ), and 01×(N−n) is a zero row vector, then the transition

probabilities P(b′,r′,j′),(b,r,j) are given by the following proposition.
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Proposition 3.4. For 1 ≤ t ≤ N , the transition probabilities P(b′,r′,j′),(b,r,j)

are given by:

P (b′,r′,j′),(b,r,j) = Pr(Yt = (b, r, j) | Yt−1 = (b′, r′, j′))

=



Pr(st = j | st−1 = j′) if b = b′ + 1{r′ = `− 1}, j = j′ + 1, and

r = (r′ + 1)1{r′ < `− 1}+
(`− 1)1{r′ = `− 1},

Pr(st = j | st−1 = j′) if b = b′ < e(N,n), j 6= j′ + 1, and r = 1,

1 if b = b′ = e(N,n), j = j′, and r = r′,

0 otherwise.

(3.10)

Proof: Identical to Proposition 3.3. �

Example 3.6. Let N = 5, n = 4, and ` = 2, and let the selection from

{1, 2, 3, 4} be governed by the probability transition matrix

P =


.25 .25 .10 .40
.20 .30 .35 .15
.30 .15 .10 .45
.20 .10 .30 .40

 .

Then the state space Ω is given by:

Ω ={Y = (b, r, j); b = 0, 1, 2, 3, r = 1 and 1 ≤ j ≤ 4}

={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (1, 1, 1), (1, 1, 2), (1, 1, 3),

(1, 1, 4), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 1, 4), (3, 1, 1), (3, 1, 2),

(3, 1, 3), (3, 1, 4)},
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and the transition matrix is given by

M =


A B

A B
A B

I4

 ,

where

A =


.25 0 .10 .40
.20 .30 0 .15
.30 .15 .10 0
.20 .10 .30 .40

 , and B =


0 .25 0 0
0 0 .35 0
0 0 0 .45
0 0 0 0

 .

For

ζ1 = (.23, .18, .22, .37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and

U∗ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 ,

we have

L (B(S5, 2))T =


Pr(B(S5, 2) = 0)
Pr(B(S5, 2) = 1)
Pr(B(S5, 2) = 2)
Pr(B(S5, 2) = 3)

 =


0.37627650
0.40331770
0.18192950
0.03847639

 .

As we can see from the previous examples, our homogeneous finite

Markov chain is of binomial type, then we can use the results in Koutras

and Alexandrou (1995) to obtain the generating functions and means for

A(SN , `) and B(SN , `).
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3.3 The length of the longest increasing

subsequence

The length of the longest increasing subsequence in a sequence of n

distinct elements generated from a linearly ordered set is determined via

algorithms. Fredman (1975) described an algorithm which determine the

length of the longest increasing subsequence. Fredman shows that for

any algorithm to provide sufficient information to compute the length of

the longest increasing subsequence in a sequence of n distinct elements it

must perform at least [n log n−n log log n+O(n)] comparisons in its worst

case. There are many dynamic programming algorithms to compute the

length of the longest increasing subsequence (see, for example, Fredman,

1975; Gonnet and Baeza-Yates, 1991; Sun and Woodruff, 2007). Even

though, these algorithms apparently are efficient at computing the length

of the longest increasing subsequence in a sequence of n distinct elements

from a linearly ordered set, they do not necessarily give insight into the

distribution of the length of the longest increasing subsequences in such

sequences. The upper bound of the exact distribution of the length of the

longest increasing subsequence of a sequence of n distinct elements has

been studied extensively (see, for example, McDiarmid, 1998).

Let SN = (s1, s2, . . . , sN) be a sequence of length N generated by

selecting N integers from {1, 2, . . . , n} with equal selection probabilities,

and let L(SN) denote the length of the longest increasing subsequence

in SN . The exact distribution of the length of the longest increasing
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subsequence in sequences can be calculated as the exact distribution of

the length of the longest increasing subsequence in random permutation of

arbitrary multi-sets. For a given SN we can calculate the exact distribution

of L(SN) as the exact distribution of LN([dn], π) (for more details, see

Section 4.1). Generally, the exact distribution of the length of the longest

increasing subsequence in the set of all sequences of length N generated

from {1, 2, . . . , n} can be calculated as the exact distribution of LN (
∏

(n))

(for more details, see Section 4.2).

3.4 Alternative methods

A variety of methods have been proposed for studying the exact distribution

for runs and patterns in sequences, none of the available methods is superior.

Fu and Lou (2003) used the finite Markov chain imbedding technique along

with the forward and backward principle to calculate the exact distribution

of the number of compound patterns in sequences of multi-state trials.

To compare between the Fu and Lou (2003) approach and our approach,

consider the case of A(SN , `), for N = 4, n = 4, and ` = 3. Then the state

space Ω for the Fu and Lou (2003) approach is given by:

Ω ={∅, (0, 1), (0, 2), (0, 3), (0, 4), (0, 12), (0, 13), (0, 23), (1, 1), (1, 2), (1, 3),

(1, 4), (1, 12), (1, 23), (1, 13), (1, 123), (1, 124), (1, 134), (1, 234), (2, 1),

(2, 2), (2, 3), (2, 4), (2, 12), (2, 23), (2, 13), (2, 123), (2, 124), (2, 134),

(2, 234)},
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while, the state space Ω for our approach is given by

Ω ={(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 2), (0, 2, 3), (0, 2, 4), (1, 1, 1),

(1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 2),

(2, 1, 3), (2, 1, 4), (2, 2, 2), (2, 2, 3), (2, 2, 4)},

this state space is smaller than Fu and Lou (2003) state space. Also, in

our approach, A(SN , `) is Markov chain imbeddable variable of binomial

type.

Also, Fu and Lou (2003) used the finite Markov chain imbedding

technique for the compound patterns to find the probability Pr(L(SN ) < v).

Let Λ(v) be a compound pattern given by Λ(v) =
⋃j

i=1 Λi, where Λi’s are

all possible distinct increasing v-sequences that could be generated from

{1, 2, . . . , n}. Fu and Lou (2003) used the dual relationship between L(SN )

and the waiting time for the first occurrence of an increasing subsequence

of length v denoted by W (Λ(v)),

{L(SN) < v} if and only if {W (Λ(v)) > N},

to calculate Pr(L(SN) < v) as follows

Pr(L(SN) < v) = Pr(W (Λ(v)) > N).

Nicodeme et al. (2002) proposed using deterministic finite automata

(DFAs) in order to study the exact distribution for run-related statistics.

Regular expressions can be represented by minimal state deterministic
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finite automata or finite state machines, and there exists algorithms for

performing the conversion, which allow us to construct a finite Markov

chain imbedding to study the distributional characteristics of these patterns

in iid sequences of multi-state trials (see, for example, Hopcroft et al., 2001;

Crochemore and Stefanov, 2003; Stefanov et al., 2007). A deterministic

finite automaton is a 5-tuple D = (S,A, δ, s0,F), where S denotes a finite

set of states, A denotes a finite alphabet, δ denotes a transition function

(i.e. δ : S×A → S), s0 is an initial state, and F denotes a set of accepting

states. A deterministic finite automaton D is conveniently represented as

a directed graph or state transition diagram, where the states in S are the

nodes of the graph, with the accepting states F depicted by double circles

and, for every state s ∈ S and every character α ∈ A, there is a direct

edge from s to δ(s, α) with α as part of it’s label. For example, for n = 3

the state transition diagram for the waiting time to the first increasing 3-

sequences shown in Figure 3.1. Then by constructing a deterministic finite

automaton D with transition function δ, the Markov chain induced by D

gives the distribution of the waiting time W (Λ) for a regular expression.
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Figure 3.1: The state transition diagram for n = 3 and v = 3
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Chapter 4

The length of the longest

increasing subsequence in

random permutations of

arbitrary multi-sets

In this chapter we study the exact distribution of the length of the longest

increasing subsequence in random permutations of arbitrary multi-sets

using the finite Markov chain imbedding technique. Numerical examples

are provided to aid in understanding. First, we study the conditional

case. Given [dn], and π ∈
∏

[dn], the exact distribution of the length of

the longest increasing subsequence in π is given in Section 4.1. Then,

we study the unconditional case. In Section 4.2 we introduce the exact

distribution of the length of the longest increasing subsequence for the set

of all permutations of length N generated from {1, 2, . . . , n}.
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4.1 The conditional case

Recall from Chapter 1, that LN([dn], π) denotes the length of the longest

increasing subsequence in a random permutation π ∈
∏

[dn]. Fu and

Hsieh (2015) obtained the exact distribution of Ln([1n], π) using the finite

Markov chain imbedding technique. Expanding their result, we obtain the

exact distribution of the length of the longest increasing subsequence in

random permutations of arbitrary multi-sets LN([dn], π). We will begin

with some notation.

Definition 4.1. For a given [dn], and π(t), we define the vector [ab(t)] =

[a1(t), . . . , ab(t)] where for each j = 1, . . . , b and each 1 ≤ b ≤ k(t), aj(t)

is the position of the last integer in the leftmost increasing subsequence of

length j in π(t).

Note that, a1(t) = 1 < a2(t) < · · · < ab(t) ≤ t, and there may be more

than one π(t) with the same [ab(t)].

Definition 4.2. For a given [dn], and π(t) with [ab(t)], we define [xz(t)] =

[x1(t), . . . , xz(t)] where for i = 1, . . . , z and 1 ≤ z ≤ k(t)− 1, xi(t) is the

position of the last integer of the leftmost increasing subsequence of length

i in π(t), which ends with an integer less than the integer “k(t)”.

Note that, when no such increasing subsequences exist, [xz(t)] = 0. It

is clear that 1 ≤ xz(t) ≤ t. To illustrate these definitions, consider the

following example: let [d8] = [1, 1, 1, 1, 1, 1, 1, 3] and π(10) = (8634851278);

then (8) is the leftmost increasing subsequence of length 1 and a1(10) = 1,
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(34) is the leftmost increasing subsequence of length 2 and a2(10) = 4,

(348) is the leftmost increasing subsequence of length 3 and a3(10) = 5,

(3457) is the leftmost increasing subsequence of length 4 and a4(10) =

9, and (34578) is the leftmost increasing subsequence of length 5 and

a5(10) = 10. Thus [a5(10)] = [1, 4, 5, 9, 10]. Moreover, (6) is the leftmost

increasing subsequence of length 1 which ended with integer less than 8

and x1(10) = 2, (34) is the leftmost increasing subsequence of length 2

which ended with integer less than 8 and x2(10) = 4, (345) is the leftmost

increasing subsequence of length 3 which ended with integer less than

8 and x3(10) = 6, and (3457) is the leftmost increasing subsequence of

length 4 which ended with integer less than 8 and x4(10) = 9. Then

[x4(10)] = [2, 4, 6, 9].

Note that, the leftmost increasing subsequence of length i in π(t) is

the first increasing subsequence of length i in π(t). If there are several

increasing subsequences of length i ending with the same integer, then the

leftmost increasing subsequence is the one that started with the integer

furthest to the left in π(t). For example, let [d6] = [2, 2, 2, 3, 2, 1] and

π(12) = (421134562354) then (23456), (13456) and (13456) are increas-

ing subsequences of length 5 ended with 6, but the leftmost increasing

subsequence of length 5 is the one starting with 2.

Given π(t− 1), let 〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab(t)], [xz(t)])

denote the mapping induced by inserting the c(t)-th copy of the integer

“k(t)” into the i-th gap of the permutation π(t − 1), including the two

end gaps. The following (very long) proposition specifies the relationship
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between ([ab′(t− 1)], [xz′(t− 1)]) and ([ab(t)], [xz(t)]).

Proposition 4.1. For given ([ab′(t− 1)], [xz′(t− 1)]), 1 ≤ b′ ≤ t− 1 and

1 ≤ z′ ≤ b′.

(1) If i = 1, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′(t)], [xb′(t)]),

where a1(t) = 1, al(t) = al(t − 1) + 1 for l = 2, . . . , b′, and xk(t) =

ak(t− 1) + 1 for k = 1, . . . , b′.

(2) If aj−1(t−1) < i ≤ aj(t−1) for some j = 2, . . . , b′, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′(t)], [xb′(t)]),

where

al(t) =


al(t− 1) for l = 1, . . . , j − 1,

i for l = j,

al(t− 1) + 1 for l = j + 1, . . . , b′;

and

xr(t) =

{
ar(t− 1) for r = 1, . . . , j − 1,

ar(t− 1) + 1 for r = j, . . . , b′.

(3) If ab′(t− 1) < i ≤ t, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′+1(t)], [xb′(t)]),

where

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1;
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and

xr(t) = ar(t− 1), for r = 1, . . . , b′.

(4) If i = 1, and c(t) > 1, then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′(t)], [xz′(t)]),

where a1(t) = 1, al(t) = al(t − 1) + 1 for l = 2, . . . , b′, and xr(t) =

xr(t− 1) + 1 for r = 1, . . . , z′.

(5) If aj−1(t− 1) < i ≤ aj(t− 1) for j = 2, . . . , b′, c(t) > 1, then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′(t)], [xz′(t)]),

where

al(t) =



al(t− 1) for l = 1, . . . , j − 1,

i for l = j, and aj−1(t− 1) = xj−1(t− 1) or

aj−1(t− 1) < xj−1(t− 1) < i,

al(t− 1) + 1 for l = j, aj−1(t− 1) < xj−1(t− 1),

xj−1(t− 1) ≥ i,

al(t− 1) + 1 for l = j + 1, . . . , b′;

and, for r = 1, . . . , z′, let

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i

≤ xz′(t− 1),

i for i > xz′(t− 1);

and

xr(t) =

{
xr(t− 1) for 1 ≤ r ≤ m,

xr(t− 1) + 1 for m < r ≤ z′.
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(6) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) > xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′(t)], [xz′(t)]),

where

al(t) = al(t− 1), for l = 1, . . . , b′,

and

xr(t) = xr(t− 1), for r = 1, . . . , z′.

(7) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) = xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab′+1(t)], [xz′(t)]),

where

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1;

and

xr(t) = xr(t− 1), for r = 1, . . . , z′.

(8) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) < xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)]), (t, i)〉 = ([ab(t)], [xz′(t)]),

where b = b′ if xz′(t− 1) ≥ i or b = b′ + 1 if xz′(t− 1) < i, and

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1, and xz′(t− 1) < i;
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and, for r = 1, . . . , z′, let

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i

≤ xz′(t− 1),

i for i > xz′(t− 1);

and

xr(t) =

{
xr(t− 1) for 1 ≤ r ≤ m,

xr(t− 1) + 1 for m < r ≤ z′.

Proof: When c(t) = 1, then the integer “k(t)” is the largest integer among

all the integers in π(t− 1). If i = 1 then a1(t) = 1, and all the leftmost

increasing subsequences of length greater than 1 are the same as in π(t−1),

but the positions of the endpoints of these increasing subsequences will

shift to the right. For [xz′(t)], the leftmost increasing subsequences which

end with an integer less than k(t) are the same as the leftmost increasing

subsequences in π(t − 1), but the positions of the endpoints of these

increasing subsequences will shift to the right, which proves part (1).

If c(t) = 1, and aj−1(t − 1) < i ≤ aj(t − 1), then all the leftmost

increasing subsequences with length less than or equal to j − 1 are the

same as in π(t− 1), and the positions of the endpoints of these increasing

subsequences also stay the same. While, the leftmost increasing subse-

quence associated with aj−1(t − 1), together with the integer k(t), will

form a leftmost increasing subsequence of length j with aj(t) = i. All

the leftmost increasing subsequences of length greater than j are the
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same as in π(t− 1), but the positions of the endpoints of these increasing

subsequences will shift to the right. For [xz′(t)], the leftmost increasing

subsequences which end with an integer less than k(t) are the same as

the leftmost increasing subsequences in π(t− 1), and the positions of the

endpoints of any leftmost increasing subsequences of length less than j

also stay the same as in π(t − 1), otherwise they will shift to the right,

which proves part (2).

If c(t) = 1, and ab′(t − 1) < i ≤ t, then all the leftmost increasing

subsequences of length less than or equal to b′ are the same as in π(t− 1),

and the positions of the endpoints of these increasing subsequences also

stay the same. While, the leftmost increasing subsequence associated with

ab′(t− 1), together with the integer k(t), will form a leftmost increasing

subsequence of length b′ + 1 with ab′+1(t) = i. For [xz′(t)], the leftmost

increasing subsequences which end with an integer less than k(t) are the

same as the leftmost increasing subsequences in π(t− 1), and the positions

of the endpoints of these increasing subsequences also stay the same, which

proves part (3).

When c(t) > 1, then the integer k(t) is equal to at least one of the

integers in π(t−1). If i = 1, then a1(t) = 1, and all the leftmost increasing

subsequences of length greater than 1 are the same as in π(t − 1), but

the positions of the endpoints of these increasing subsequences will shift

to the right. For [xz′(t)], the leftmost increasing subsequences which end

with an integer less than k(t) are the same as in π(t− 1), but the positions

of the endpoints of these increasing subsequences will shift to the right,
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which proves part (4).

If c(t) > 1, and aj−1(t − 1) < i ≤ aj(t − 1), then all the leftmost

increasing subsequences of length less than or equal to j − 1 are the same

as in π(t − 1), and the positions of the endpoints of these increasing

subsequences also stay the same. If the leftmost increasing subsequence

of length j − 1 which ends with integer less than k(t) ended before the

insertion position i, then the leftmost increasing subsequence of length j−1

in π(t− 1), together with the integer k(t), will form a leftmost increasing

subsequence of length j with aj(t) = i, otherwise aj(t) = aj(t − 1) + 1.

While, all the leftmost increasing subsequences of length greater than j

are the same as in π(t − 1), but the positions of the endpoints of these

increasing subsequences will shift to the right. For [xz′(t)], the leftmost

increasing subsequences which end with an integer less than k(t) are the

same as the leftmost increasing subsequences in π(t− 1), and for any of

these increasing subsequences which ends before the insertion position i

the positions of the endpoints also stay the same, otherwise they will shift

to the right, which proves part (5).

If c(t) > 1, ab′(t− 1) < i ≤ t, and ab′(t− 1) > xz′(t− 1), then all the

leftmost increasing subsequences of length less than or equal to b′ are the

same in π(t− 1), and the positions of the endpoints of these increasing

subsequences also stay the same. For [xz′(t)], the leftmost increasing

subsequences which end with an integer less than k(t) are the same as in

π(t−1), and the positions of the endpoints of these increasing subsequences

also stay the same, which proves part (6).
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If c(t) > 1, ab′(t− 1) < i ≤ t, and ab′(t− 1) = xz′(t− 1), then all the

leftmost increasing subsequences of length less than or equal to b′ are the

same as in π(t− 1), and the positions of the endpoints of these increasing

subsequences also stay the same. Since ab′(t− 1) = xz′(t− 1), the leftmost

increasing subsequence of length b′ ended with integer less than k(t), then

the leftmost increasing subsequence associated with ab′(t− 1), together

with the integer k(t), will form a leftmost increasing subsequence of length

b′ + 1 with ab′+1(t) = i. For [xz′(t)], the leftmost increasing subsequences

which end with an integer less than k(t) are the same as in π(t− 1), and

the positions of the endpoints of these increasing subsequences also stay

the same, which proves part (7).

If c(t) > 1, ab′(t − 1) < i ≤ t, and ab′(t − 1) < xz′(t − 1), then all

the leftmost increasing subsequences of length less than or equal to b′

are the same as in π(t − 1), and the positions of the endpoints of these

increasing subsequences also stay the same. Since ab′(t− 1) < xz′(t− 1),

we must have z′ = b′, and if xz′(t − 1) < i then the leftmost increasing

subsequence associated with xz′(t− 1), together with the integer k(t), will

form a leftmost increasing subsequence of length b′ + 1 with ab′+1(t) = i,

otherwise the length of the longest increasing subsequence stays the same.

For [xz′(t)], the leftmost increasing subsequences which end with an integer

less than k(t) are the same as in π(t−1), and the positions of the endpoints

of any leftmost increasing subsequences of length less than or equal to i

also stay the same, otherwise they will shift to the right, which proves

part (8). �
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Definition 4.3. Let v denote the length of the longest increasing subse-

quence of interest. Then for a given N, v, and t = 1, . . . , N , we define

Bt = max(1, v + t−N) and B̄t = min(k(t), v − 1).

Note that, for 1 ≤ t ≤ N − 1, Bt ≤ B̄t, but for t = N , BN > B̄N .

Definition 4.4. A state Yt = ([ab(t)], [xz(t)]) ∈ Ωt is defined as a lower

critical state if b = v+t−N (i.e. Bt = max(1, v+t−N) = v+t−N) and is

defined as an upper critical state if b = v− 1 (i.e. B̄t = min(k(t), v− 1) =

v − 1), otherwise it is referred as a regular state.

The critical states are the only states that could be absorbed. If b = Bt

then Yt could be absorbed into ∅. But if b = B̄t then Yt could be absorbed

into α. Now we are ready to defined the sequence of the state space {Ω}Nt=1

by

Ωt = {([ab(t)], [xz(t)]) : b ≥ Bt, b ≤ B̄t and 1 ≤ z ≤ b}
⋃
{∅, α},

where {Ωt}Nt=1 is the sequence of the states spaces for the non-homogeneous

Markov chain {Yt}Nt=1, where the state {α} represents an absorbing state

such that if Yt ∈ α then the length of the longest increasing subsequence

is greater or equal to v, and the state {∅} represent an absorbing state

such that if Yt ∈ ∅ then the length of the longest increasing subsequence

is less than v. Using Bt and B̄t makes sure that the state spaces {Ωt}Nt=1

are as small as possible. We always start with Ω1 = {∅, ([1], 0), α}, and

since BN > B̄N , ΩN = {∅, α}. While, generating the other states depends
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on [dn] and the current state. Then we can define the following relation

between the dimension of Ωt−1 and Ωt by

|Ωt| ≤ tR + (t− 1)C + 2

where R is the number of regular states in Ωt−1, and C is the number of

critical states in Ωt−1.

Note, the sequence of states spaces {Ωt}Nt=1 is an extension for the

sequence of states spaces {Ωt}Nt=1 in Fu and Hsieh (2015). In the case

of random permutations, for t = 1, 2, . . . , N , we always insert an integer

which is greater than all integers in π(t− 1). While, in the case of random

permutations of arbitrary multi-sets at step t we insert an integer which is

greater or equal to at least one integer in π(t− 1). The vector [xz′(t− 1)]

provides the required information about the endpoints of the leftmost

increasing subsequences in π(t − 1)(the position and the value of these

endpoints).

The above definitions and Proposition 4.1 provide the following propo-

sition, which gives the transition probabilities from Ωt−1 → Ωt induced by

inserting the c(t)-th copy of the integer “k(t)” in the i-th gap.

Proposition 4.2. The transition probabilities from Ωt−1 → Ωt are given

as follows:

1. For the absorbing states ∅ and α,

Pr(Yt = ∅ | Yt−1 = ∅) = Pr(Yt = α | Yt−1 = α) = 1.
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2. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)]) = yt−1 is a lower critical state of

Ωt−1, and the c(t)-th copy of the integer “k(t)” is inserted into the

i-th gap then

Pr(Yt = ∅ | Yt−1 = yt−1) =

ab′ (t−1)
t

if c(t) = 1,
ab′ (t−1)

t
if c(t) > 1, and xz′(t− 1) = ab′(t− 1),

xz′ (t−1)
t

if c(t) > 1, and xz′(t− 1) > ab′(t− 1),

1 if c(t) > 1, and xz′(t− 1) < ab′(t− 1),

0 otherwise.

For Yt = ([ab(t)], [xz(t)]) = yt,

Pr(Yt = yt | Yt−1 = yt−1) =
1
t

if c(t) = 1, b = b′ + 1, and z = b′,
1
t

if c(t) > 1, xz′(t− 1) ≥ ab′(t− 1), b = b′ + 1, and z = z′,

0 otherwise.

3. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)]) = yt−1 is an upper critical state

of Ωt−1, and the c(t)-th copy of the integer “k(t)” is inserted into

the i-th gap then

Pr(Yt = α | Yt−1 = yt−1) =


t−ab′ (t−1)

t
if c(t) = 1,

t−ab′ (t−1)
t

if c(t) > 1, and xz′(t− 1) = ab′(t− 1),
t−xz′ (t−1)

t
if c(t) > 1, and xz′(t− 1) > ab′(t− 1),

0 otherwise.
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For Yt = ([ab(t)], [xz(t)]) = yt,

Pr(Yt = yt | Yt−1 = yt−1) =


1
t

if c(t) = 1, b = b′, and z = b′,
1
t

if c(t) > 1, b = b′, and z = z′,

0 otherwise.

4. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)]) = yt−1 be a regular state in Ωt−1,

Yt = ([ab(t)], [xz(t)]) = yt, and the 1st copy of the integer “k(t)” is

inserted into the i-th gap then

Pr(Yt = yt | Yt−1 = yt−1) =

1
t

if b = b′, z = b′, a1(t) = 1, al(t) = al(t− 1) + 1 for

l = 2, . . . , b′, and xr(t) = ar(t− 1) + 1 for r = 1, . . . , b′,
1
t

if b = b′, z = b′, for j = 2, . . . , b′, al(t) = xl(t) = al(t− 1)

for l = 1, . . . , j − 1, aj(t) = i, but xj(t) = aj(t− 1) + 1,

for aj−1(t− 1) < i ≤ aj(t− 1), and al(t) = xl(t) =

al(t− 1) + 1, for l = j + 1, . . . , b′,
1
t

if b = b′ + 1, z = b′, al(t) = xl(t) = al(t− 1) for

l = 1, . . . , b′ and ab′+1(t) = i for i > ab′(t− 1),

0 otherwise.

5. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)]) = yt−1 be a regular state in Ωt−1,

Yt = ([ab(t)], [xz(t)]) = yt, and the c(t)-th copy of the integer “k(t)”

is inserted into the i-th gap, such that c(t) > 1, then:

i) Pr(Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′, z = z′, a1(t) = 1, al(t) =

al(t − 1) + 1 for l = 2, 3, . . . , b′, and xr(t) = xr(t − 1) + 1 for

r = 1, 2, . . . , z′.
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ii) Pr(Yt = yt | Yt−1 = yt−1) = 1
t
, b = b′, z = z′, and for j =

2, 3, . . . , b′ let

al(t) =



al(t− 1) for l = 1, 2, . . . , j − 1,

i for l = j and aj−1(t− 1) =

xj−1(t− 1) or xb′−1(t− 1) < i,

al(t− 1) + 1 for l = j, aj−1(t− 1) 6= xj−1(t− 1)

and xb′−1(t− 1) > i or z′ < b′ − 1,

al(t− 1) + 1 for l = j + 1, . . . , b′.

and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

iii) Pr(Yt = yt | Yt−1 = yt−1) =
t−ab′ (t−1)

t
, if b = b′, z = z′, xz′(t −

1) < ab′(t− 1), al(t) = al(t− 1) for l = 1, 2, . . . , b′, and xr(t) =

xr(t− 1) for r = 1, 2, . . . , z′.

iv) Pr(Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′ + 1, z = z′, xz′(t− 1) =

ab′(t − 1), al(t) = al(t − 1) for l = 1, 2, . . . , b′, ab′+1(t) = i for

i > ab′(t− 1), and xr(t) = xr(t− 1) for r = 1, 2, . . . , z′.

v) Pr(Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′ + 1, z = z′, xz′(t− 1) >

ab′(t − 1), al(t) = al(t − 1) for l = 1, 2, . . . , b′, ab′+1(t) = i for
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i > xz′(t− 1) and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

vi) Pr(Yt = yt | Yt−1 = yt−1) =
xz′ (t−1)−ab′ (t−1)

t
, if b = b′, z =

z′, xz′(t − 1) > ab′(t − 1), i ≤ xz′(t − 1), al(t) = al(t − 1) for

l = 1, 2, . . . , b′, and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

Proof: If Yt−1 is a regular state of Ωt−1, then the length of the longest

increasing subsequence either increases by one or stays the same following

the definition of both [ab(t)] and [xz(t)], and the relations specified in

Proposition 4.1 with probability 1
t
, which proves part (4).
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For the critical states, if Yt−1 is a lower critical state of Ωt−1, then Yt−1

will always truncate to ∅ if inserting the c(t)-th copy of the integer “k(t)”

did not create an increasing subsequence of length b′ + 1. Otherwise, Yt−1

will never truncate, which proves part (2).

If Yt−1 is an upper critical state of Ωt−1, then Yt−1 will always truncate

to α if inserting the c(t)-th copy of the integer “k(t)” create an increasing

subsequence of length v. Otherwise, Yt−1 will never truncate, which proves

part (3). �

Theorem 4.1. Given N , 2 ≤ v ≤ N , and ζ1,

Pr(LN([dn], π) < v) = Pr(YN = ∅ | ζ1) = ζ1

(
N∏
t=2

Mt

)
(1 0)T,

and

|{π ∈ Π[dn] : LN([dn], π) < v}| = N !

s1!s2! . . . sn!
ζ1

(
N∏
t=2

Mt

)
(1 0)T,

where |{π ∈ Π[dn] : LN ([dn], π) < v}| is the number of permutations where

the length of the longest increasing subsequences is less than v.

Example 4.1. Let N = 5, n = 3, and v = 3, with D([d3]) = {1, 2, 2, 3, 3}.

Then the state spaces {Ωt}5t=1 associated with the {Yt}5t=1 are as follows:

If t = 1, then B1 = 1, B̄1 = 1, and Ω1 = {∅, ([1], 0), α}.

If t = 2, then B2 = 1, B̄2 = 2, and Ω2 = {∅, ([1], [2]), ([1, 2], [1]), α}.
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If t = 3, then B3 = 1, B̄3 = 2, and

Ω3 = {∅, ([1], [3]), ([1, 2], [1]), ([1, 3], [2]), α}.

If t = 4, then B4 = 2, B̄4 = 2, and

Ω4 ={∅, ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 2], [1, 4]), ([1, 3], [1]),

([1, 3], [2, 3]), ([1, 3], [1, 4]), ([1, 4], [1]), ([1, 4], [2, 4]), α}.

If t = 5, then B5 = 3, B̄5 = 2, and Ω5 = {∅, α}. Then the transition

matrices are given as follows:

M2 =
1

2

2 0 0 0
0 1 1 0
0 0 0 2

 , M3 =
1

3


3 0 0 0 0
0 2 0 1 0
0 0 2 1 0
0 0 0 0 3

 ,

M4 =
1

4


4 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 0 2
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 4

 , M5 =
1

5



5 0
5 0
3 2
4 1
5 0
3 2
4 1
5 0
4 1
0 5


.

Then for ζ1 = (0, 1, 0)

Pr(L5([d3], π) < 3) = ζ1

(
5∏

t=2

Mt

)
(1 0)T = 0.63̄,
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and

|{π ∈ Π[d3] : L5([d3], π) < 3}| = 5!

1!2!2!
ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 30× 0.63̄

= 19.

Example 4.2. Let N = 5, n = 5, and v = 4, with D([d5]) = {1, 2, 3, 4, 5}.

Then the state spaces {Ωt}5t=1 associated with the {Yt}5t=1 are as follows:

If t = 1, then B1 = 1, B̄1 = 1, and Ω1 = {∅, ([1], 0), α}.

If t = 2, then B2 = 1, B̄2 = 2, and Ω2 = {∅, ([1], [2]), ([1, 2], [1]), α}.

If t = 3, then B3 = 2, B̄3 = 3, and

Ω3 ={∅, ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 3], [1]), ([1, 3], [2, 3]),

([1, 2, 3], [1, 2]), α}.

If t = 4, then B4 = 3, B̄4 = 3, and

Ω4 ={∅, ([1, 2, 3], [1, 2]), ([1, 2, 3], [1, 2, 4]), ([1, 2, 4], [1, 2]),

([1, 2, 4], [1, 3, 4]), ([1, 3, 4], [1, 3]), ([1, 3, 4], [2, 3, 4]), α}.

If t = 5, then B5 = 4, B̄5 = 3, and Ω5 = {∅, α}. Then the transition

matrices are given as follows:

M2 =
1

2

2 0 0 0
0 1 1 0
0 0 0 2

 , M3 =
1

3


3 0 0 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 1 0
0 0 0 0 0 0 3

 ,
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M4 =
1

4



4 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0
2 1 0 1 0 0 0 0
3 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 4


, M5 =

1

5



5 0
3 2
3 2
4 1
4 1
4 1
4 1
0 5


.

Then for ζ1 = (0, 1, 0)

Pr(L5([d5], π) < 4) = ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 0.8583̄,

and

|{π ∈ Π[d5] : L5([d5], π) < 4}| = 5!ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 120× 0.8583̄

= 103.

Example 4.3. Let N = 5, n = 3, and v = 3, with D([d3]) = {1, 2, 3, 3, 3}.

Then the state spaces {Ωt}5t=1 associated with the {Yt}5t=1 are as follows:

If t = 1, then B1 = 1, B̄1 = 1, and Ω1 = {∅, ([1], 0), α}.

If t = 2, then B2 = 1, B̄2 = 2, and Ω2 = {∅, ([1], [2]), ([1, 2], [1]), α}.

If t = 3, then B3 = 1, B̄3 = 2, and

Ω3 ={∅, ([1], [2]), ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 3], [1]),

([1, 3], [2, 3]), α}.
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If t = 4, then B4 = 2, B̄4 = 2, and

Ω4 ={∅, ([1, 2], [1]), ([1, 2], [1, 4]), ([1, 3], [1]), ([1, 3], [2]),

([1, 3], [2, 4]), ([1, 4], [2]), ([1, 4], [3, 4]), α}.

If t = 5, then B5 = 3, B̄5 = 2, and Ω5 = {∅, α}. Then the transition

matrices are given as follows:

M2 =
1

2

2 0 0 0
0 1 1 0
0 0 0 2

 , M3 =
1

3


3 0 0 0 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 0 0 3

 ,

M4 =
1

4



4 0 0 0 0 0 0 0 0
2 0 0 0 1 0 1 0 0
0 3 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 1
0 1 0 2 0 0 1 0 0
0 0 0 0 0 1 0 2 1
0 0 0 0 0 0 0 0 4


, M5 =

1

5



5 0
5 0
4 1
5 0
5 0
4 1
5 0
4 1
0 5


.

Then for ζ1 = (0, 1, 0)

Pr(L5([d3], π) < 3) = ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 0.7,

and

|{π ∈ Π[d3] : L5([d3], π) < 3}| = 5!

1!2!2!
ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 20× 0.7

= 14.
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Corollary 4.1. Let [dn] = [1n], then the vector [xz(t)] depends only on

the vector [ab′(t− 1)] and the insertion position i for i = 1, 2, . . . , t.

Proof: See Proposition 4.1 when c(t) = 1. �

For c(t) = 1, the vector [xz(t)] does not depend on [xz′(t − 1)] and

is a function of [ab′(t − 1)] for all t = 1, 2, . . . , N , hence the transitions

probabilities from Ωt−1 → Ωt can be calculated based only on [ab′(t− 1)]

and the insertion position i. Without loss of generality, we require only

the vector [ab(t)] to maintain the smallest state space Ωt, in this case our

results will be identical to Fu and Hsieh (2015) results.

Example 4.4. Let n = 6 and v = 3, with [16]. The state spaces associated

with the induced Markov chain {Yt}6t=1 where Yt = ([ab(t)], [xz(t)]) for t =

1, 2, . . . , 6 are given by Ω={∅, ([1], 0), α}, Ω2 = {∅, ([1], [2]), ([1, 2], [1]), α},

Ω3 ={∅, ([1], [2]), ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 3], [1]), ([1, 3], [2, 3]),

α},

Ω4 ={∅, ([1], [2]), ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 2], [1, 4]), ([1, 3], [1]),

([1, 3], [1, 4]), ([1, 3], [2, 3]), ([1, 4], [1]), ([1, 4], [2, 4]), α},

Ω5 ={∅, ([1, 2], [1]), ([1, 2], [1, 3]), ([1, 2], [1, 4]), ([1, 2], [1, 5]),

([1, 3], [1]), ([1, 3], [1, 4]), ([1, 3], [1, 5]), ([1, 3], [2, 3]),

([1, 4], [1]), ([1, 4], [1, 5]), ([1, 4], [2, 4]), ([1, 5], [1]),

([1, 5], [2, 5]), α},
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and Ω6 = {∅, α}. With transition matrices

M2 =
1

2

2 0 0 0
0 1 1 0
0 0 0 2

 , M3 =
1

3


3 0 0 0 0 0 0
0 1 1 0 1 0 0
0 0 0 0 1 1 1
0 0 0 0 0 0 3

 ,

M4 =
1

4



4 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 2
0 0 0 1 0 0 0 1 0 0 2
0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 4


,

M5 =
1

5



5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 2
0 0 1 0 0 0 0 0 1 0 0 0 0 0 2
0 0 1 0 0 0 0 0 1 0 0 0 0 0 2
0 0 0 1 0 0 1 0 0 0 0 1 0 0 3
0 0 0 1 0 0 1 0 0 0 0 1 0 0 3
0 0 0 1 0 0 1 0 0 0 0 1 0 0 3
0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5


,
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and

M6 =
1

6



6 0
2 4
2 4
2 4
2 4
3 3
3 3
3 3
3 3
4 2
4 2
4 2
5 1
5 1
0 6



.

Since we only need [ab′(t− 1)] to obtain the transition matrices {Mt}6t=1,

these state spaces can be reduced to the state spaces associated with Fu

and Hsieh (2015) induced Markov chain {Yt}6t=1 where Yt = [ab(t)] for

t = 1, 2, . . . , 6. In this case the state spaces are given by

Ω1 = {∅, [1], α},Ω2 = {∅, [1], [1, 2], α},Ω3 = {∅, [1], [1, 2], [1, 3], α},

Ω4 = {∅, [1], [1, 2], [1, 3], [1, 4], α},Ω5 = {∅, [1, 2], [1, 3], [1, 4], [1, 5], α},

and Ω6 = {∅, α}. With transition matrices

M2 =
1

2

2 0 0 0
0 1 1 0
0 0 0 2

 , M3 =
1

3


3 0 0 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 0 3

 ,
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M4 =
1

4


4 0 0 0 0 0
0 1 1 1 1 0
0 0 1 1 0 2
0 0 1 1 1 1
0 0 0 0 0 4

 , M5 =
1

5


5 0 0 0 0 0
1 1 1 1 1 0
0 1 1 0 0 3
0 1 1 1 0 2
0 1 1 1 1 1
0 0 0 0 0 5

 ,

and

M6 =
1

6


6 0
2 4
3 3
4 2
5 1
0 6

 .

In both cases, for ζ1 = (0, 1, 0)

Pr(L6([16], π) < 3) = ζ1

(
6∏

t=2

Mt

)
(1 0)T

= 0.183̄,

and

|{π ∈ Π[16] : L6([16], π) < 3}| = 6!ζ1

(
6∏

t=2

Mt

)
(1 0)T

= 720× 0.183̄

= 132.

And this agrees with Fu and Hsieh (2015).

4.2 The unconditional case

Let LN(
∏

(n)) denote the length of the longest increasing subsequence

in a random sequence of length N generated from {1, 2, . . . , n} with
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equal selection probabilities. The exact distribution of LN(
∏

(n)) can be

calculated as follows:

Pr(LN(
∏

(n)) < v) =
∑
[dn]

Pr(LN([dn], π) < v | [dn])× Pr([dn]) (4.1)

which corresponds to averaging over all possible specifications [dn]. For

the purpose of this section, let the transitions probabilities for a given

specification [dn] be denoted by

P[dn](Yt = yt | Yt−1 = yt−1) for t = 1, 2, . . . , N.

Definition 4.5. For a given permutation π(t), and [dn], let ht ∈ {1, . . . , n}

be the largest integer among all integers in π(t) (i.e. ht = k(t)).

Given [dn], let 〈([ab′(t−1)], [xz′(t−1)], ht−1), (t, i)〉 denote the mapping

induced by inserting the c(t)-th copy of the integer k(t) into the i-th

gap in π(t − 1). During the insertion procedure keeping track of ht

reduces the state space as well as the umber of terms in the summation in

Equation (4.1). The following proposition specifies the relation between

([ab′(t− 1)], [xz′(t− 1)], ht−1) and ([ab(t)], [xz(t)], ht).

Proposition 4.3. For given [dn], and ([ab′(t− 1)], [xz′(t− 1)], ht−1), for

1 ≤ b′ ≤ t− 1, 1 ≤ z′ ≤ b′, and ht−1 ∈ {1, 2, . . . , n}.

(1) If i = 1, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′(t)], [xb′(t)], ht),

where ht = k(t), a1(t) = 1, al(t) = al(t− 1) + 1 for l = 2, . . . , b′, and

xk(t) = ak(t− 1) + 1 for k = 1, . . . , b′.
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(2) If aj−1(t−1) < i ≤ aj(t−1) for some j = 2, . . . , b′, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′(t)], [xb′(t)], ht),

where ht = k(t),

al(t) =


al(t− 1) for l = 1, . . . , j − 1,

i for l = j,

al(t− 1) + 1 for l = j + 1, . . . , b′;

and

xr(t) =

{
ar(t− 1) for r = 1, . . . , j − 1,

ar(t− 1) + 1 for r = j, . . . , b′.

(3) If ab′(t− 1) < i ≤ t, and c(t) = 1, then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′+1(t)], [xb′(t)], ht),

where ht = k(t),

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1;

and

xr(t) = ar(t− 1), for r = 1, . . . , b′.

(4) If i = 1, and c(t) > 1, then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′(t)], [xz′(t)], ht),

where ht = ht−1, a1(t) = 1, al(t) = al(t− 1) + 1 for l = 2, . . . , b′, and

xr(t) = xr(t− 1) + 1 for r = 1, . . . , z′.
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(5) If aj−1(t− 1) < i ≤ aj(t− 1) for j = 2, . . . , b′, c(t) > 1, then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′(t)], [xz′(t)], ht),

where ht = ht−1,

al(t) =



al(t− 1) for l = 1, . . . , j − 1,

i for l = j, and aj−1(t− 1) = xj−1(t− 1)

or aj−1(t− 1) < xj−1(t− 1) < i,

al(t− 1) + 1 for l = j, aj−1(t− 1) < xj−1(t− 1),

xj−1(t− 1) ≥ i,

al(t− 1) + 1 for l = j + 1, . . . , b′;

and, for r = 1, . . . , z′, let

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i

≤ xz′(t− 1),

i for i > xz′(t− 1);

and

xr(t) =

{
xr(t− 1) for 1 ≤ r ≤ m,

xr(t− 1) + 1 for m < r ≤ z′.

(6) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) > xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′(t)], [xz′(t)], ht),

where ht = ht−1,

al(t) = al(t− 1), for l = 1, . . . , b′,

and

xr(t) = xr(t− 1), for r = 1, . . . , z′.

70



(7) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) = xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab′+1(t)], [xz′(t)], ht),

where ht = ht−1,

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1;

and

xr(t) = xr(t− 1), for r = 1, . . . , z′.

(8) If ab′(t− 1) < i ≤ t, c(t) > 1, and ab′(t− 1) < xz′(t− 1), then

〈([ab′(t− 1)], [xz′(t− 1)], ht−1), (t, i)〉 = ([ab(t)], [xz′(t)], ht),

where ht = ht−1, b = b′ if xz′(t− 1) ≥ i or b = b′ + 1 if xz′(t− 1) < i,

and

al(t) =

{
al(t− 1) for l = 1, . . . , b′,

i for l = b′ + 1, and xz′(t− 1) < i;

and, for r = 1, . . . , z′, let

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i

≤ xz′(t− 1),

i for i > xz′(t− 1);

and

xr(t) =

{
xr(t− 1) for 1 ≤ r ≤ m,

xr(t− 1) + 1 for m < r ≤ z′.
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Proof: Identical to Proposition 4.1. �

Definition 4.6. Let Bt, and B̄t be defined as in definition 4.3. Then a

state Yt = ([ab(t)], [xz(t)], ht) ∈ Ωt is defined as a lower critical state if

b = v + t−N (i.e. Bt = max(1, v + t−N) = v + t−N) and is defined

as an upper critical state if b = v − 1 (i.e. B̄t = min(k(t), v − 1) = v − 1),

otherwise it is referred as a regular state.

Recall, that the critical states are the only states that could be absorbed.

Now we are ready to defined the sequence of the state space {Ω}Nt=1 by

Ωt = {([ab(t)], [xz(t)], ht) : b ≥ Bt, b ≤ B̄t, 1 ≤ z ≤ b, and ht = 1, . . . , n}

∪{∅, α},

where {Ωt}Nt=1 is the sequence of the states spaces for a non-homogeneous

Markov chain {Yt}Nt=1, where the state {α} represents an absorbing state

such that if Yt ∈ α then the length of the longest increasing subsequence

is greater or equal to v, and the state {∅} represent an absorbing state

such that if Yt ∈ ∅ then the length of the longest increasing subsequence is

less than v. We always start with Ω1 = {∅, ([1], [0], 1), . . . , ([1], [0], n), α},

and since BN > B̄N , ΩN = {∅, α}

Definition 4.7. For a given ([ab(t)], [xz(t)], ht), let H(t) denote the set

of all specification [sn] = [s1, s2, . . . , sn], such that
∑n

i=1 si = N , and [sn]

satisfies one of the following conditions:

1. If [xz(t)] = 0, then [sn] contains zero copy of any integer less than

integer “ht”, and at least one copy of integer “ht”.
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2. If [xz(t)] 6= 0, and b′ > z′, then [sn] contains at least one copy of

b′ − 1 distinct integers less than integer “ht”, and at least one copy

of integer “ht”.

3. If [xz(t)] 6= 0, and b′ = z′, then [sn] contains at least one copy of

b′ distinct integers less than integer “ht”, and at least one copy of

integer “ht”.

Proposition 4.4. The transition probabilities for Ωt−1 → Ωt for t =

1, . . . , N , are given by

Pr(Yt = yt | Yt−1 = yt−1) =
∑

[sn]∈H(t−1)

P[sn](Yt = yt | Yt−1 = yt−1)

× Pr([dn] = [sn] | [dn] ∈ H(t− 1)),

(4.2)

which corresponds to summing over all specifications [dn] ∈ H(t− 1) in

transitions from state Yt−1 to state Yt, with

Pr([dn] = [sn] | [dn] ∈ H(t− 1)) =

(
N

s1,s2,...,sn

)∑
[dn]∈H(t−1)

(
N

d1,d2,...,dn

) ,
and the transition probabilities P[dn](Yt = yt | Yt−1 = yt−1) are given as

follows:

1. For the absorbing states ∅ and α,

P[dn](Yt = ∅ | Yt−1 = ∅) = P[dn](Yt = α | Yt−1 = α) = 1.
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2. If Yt−1 = ([ab′(t − 1)], [xz′(t − 1)], ht−1) = yt−1 is a lower critical

state of Ωt−1, and the c(t)-th copy of the integer “k(t)” is inserted

into the i-th gap then

P[dn](Yt = ∅ | Yt−1 = yt−1) =

ab′ (t−1)
t

if c(t) = 1, ht > ht−1
ab′ (t−1)

t
if c(t) > 1, ht = ht−1, and xz′(t− 1) = ab′(t− 1),

xz′ (t−1)
t

if c(t) > 1, ht = ht−1, and xz′(t− 1) > ab′(t− 1),

1 if c(t) > 1, ht = ht−1,

and xz′(t− 1) < ab′(t− 1),

0 otherwise.

For Yt = ([ab(t)], [xz(t)], ht) = yt,

P[dn](Yt = yt | Yt−1 = yt−1) =


1
t

if c(t) = 1, ht > ht−1, b = b′ + 1, and z = b′,
1
t

if c(t) > 1, ht = ht−1, b = b′ + 1, z = z′, and

xz′(t− 1) ≥ ab′(t− 1),

0 otherwise.

3. If Yt−1 = ([ab′(t − 1)], [xz′(t− 1)], ht−1) = yt−1 is an upper critical

state of Ωt−1, and the c(t)-th copy of the integer “k(t)” is inserted

into the i-th gap then

P[dn](Yt = α | Yt−1 = yt−1) =


t−ab′ (t−1)

t
if c(t) = 1, ht > ht−1,

t−ab′ (t−1)
t

if c(t) > 1, ht = ht−1, and xz′(t− 1) = ab′(t− 1),
t−xz′ (t−1)

t
if c(t) > 1, ht = ht−1, and xz′(t− 1) > ab′(t− 1),

0 otherwise.
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For Yt = ([ab(t)], [xz(t)], ht) = yt,

P[dn](Yt = y1 | Yt−1 = yt−1) =
1
t

if c(t) = 1, ht > ht−1, b = b′, and z = b′,
1
t

if c(t) > 1, ht = ht−1, b = b′, and z = z′,

0 otherwise.

4. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)], ht−1) = yt−1 be a regular state in

Ωt−1, and the 1st copy of the integer “k(t)” is inserted into the i-th

gap. Then for Yt = ([ab(t)], [xz(t)], ht) = yt with ht > ht−1, we have

P[dn](Yt = yt | Yt−1 = yt−1) =

1
t

if b = b′, z = b′, a1(t) = 1, al(t) = al(t− 1) + 1 for

l = 2, . . . , b′, and xr(t) = ar(t− 1) + 1 for r = 1, . . . , b′,
1
t

if b = b′, z = b′, for j = 2, . . . , b′, al(t) = xl(t) =

al(t− 1) for l = 1, . . . , j − 1, aj(t) = i, but xj(t) =

aj(t− 1) + 1, for aj−1(t− 1) < i ≤ aj(t− 1),

al(t) = xl(t) = al(t− 1) + 1, for l = j + 1, . . . , b′,
1
t

if b = b′ + 1, z = b′, al(t) = xl(t) = al(t− 1), for

l = 1, . . . , b′, and ab′+1(t) = i for i > ab′(t− 1),

0 otherwise.

5. If Yt−1 = ([ab′(t− 1)], [xz′(t− 1)], ht−1) = yt−1 be a regular state in

Ωt−1, and the c(t)-th copy of the integer “k(t)” is inserted into the

i-th gap, such that c(t) > 1. Then for Yt = ([ab(t)], [xz(t)], ht) = yt

with ht = ht−1, we have:

i) P[dn](Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′, z = z′, ht =

ht−1, a1(t) = 1, al(t) = al(t − 1) + 1 for l = 2, 3, . . . , b′, and

xr(t) = xr(t− 1) + 1 for r = 1, 2, . . . , z′.
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ii) P[dn](Yt = yt | Yt−1 = yt−1) = 1
t
, b = b′, z = z′, and for

j = 2, 3, . . . , b′ let

al(t) =



al(t− 1) for l = 1, 2, . . . , j − 1,

i for l = j and aj−1(t− 1) =

xj−1(t− 1) or xb′−1(t− 1) < i,

al(t− 1) + 1 for l = j, aj−1(t− 1) 6= xj−1(t− 1)

and xb′−1(t− 1) > i or z′ < b′ − 1,

al(t− 1) + 1 for l = j + 1, . . . , b′.

and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

iii) P[dn](Yt = yt | Yt−1 = yt−1) =
t−ab′ (t−1)

t
, if b = b′, z = z′, xz′(t−

1) < ab′(t− 1), al(t) = al(t− 1) for l = 1, 2, . . . , b′, and xr(t) =

xr(t− 1) for r = 1, 2, . . . , z′.

iv) P[dn](Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′+ 1, z = z′, xz′(t− 1) =

ab′(t − 1), al(t) = al(t − 1) for l = 1, 2, . . . , b′, ab′+1(t) = i for

i > ab′(t− 1), and xr(t) = xr(t− 1) for r = 1, 2, . . . , z′.

v) P[dn](Yt = yt | Yt−1 = yt−1) = 1
t
, if b = b′+ 1, z = z′, xz′(t− 1) >

ab′(t − 1), al(t) = al(t − 1) for l = 1, 2, . . . , b′, ab′+1(t) = i for
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i > xz′(t− 1) and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

vi) P[dn](Yt = yt | Yt−1 = yt−1) =
xz′ (t−1)−ab′ (t−1)

t
, if b = b′, z =

z′, xz′(t − 1) > ab′(t − 1), i ≤ xz′(t − 1), al(t) = al(t − 1) for

l = 1, 2, . . . , b′, and

xr(t) =

{
xr(t− 1) for r ≤ m,

xr(t− 1) + 1 for r > m;

where

m =


0 for i ≤ x1(t− 1),

max(d : 1 ≤ d ≤ z′, xd(t− 1) < i) for x1(t− 1) < i ≤
xz′(t− 1),

i for i > xz′(t− 1).

Proof: Identical to Proposition 4.2. �

Theorem 4.2. Given N, n, 2 ≤ v ≤ N , and the initial distribution

ζ ′1 =


0

Pr([sn] | s1 ≥ 1)
Pr([sn] | s1 = 0, s2 ≥ 1)

...
Pr([sn] | sn = N)

 ,
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let

Pr(LN(
∏

(n)) < v) = Pr(YN = ∅ | ζ1) = ζ1

(
N∏
t=2

Mt

)
(1 0)T,

where {Mt}Nt=1 is the transition matrices.

Example 4.5. Let N = 4, n = 3, and v = 3. Then the state spaces

{Ωt}4t=1 associated with the {Yt}4t=1 are as follows:

For t = 1, B1 = 1 and B̄1 = 1 and

Ω1 = {∅, ([1], [0], 1), ([1], [0], 2), ([1], [0], 3), α}.

For t = 2, B2 = 1 and B̄2 = 2 and

Ω2 ={∅, ([1], [0], 1), ([1], [0], 2), ([1], [0], 3), ([1], [2], 2), ([1], [2], 3),

([1, 2], [1], 2), ([1, 2], [1], 3), α}.

For t = 3, B3 = 2 and B̄3 = 2 and

Ω3 ={∅, ([1, 2], [1], 2), ([1, 2], [1], 3), ([1, 3], [1], 2), ([1, 3], [1], 3),

([1, 3], [2], 2), ([1, 3], [2], 3), ([1, 2], [1, 3], 3), ([1, 3], [2, 3], 3), α}.

For t = 4, B4 = 3 and B̄4 = 2 and Ω4 = {∅, α}. To illustrate the above

definitions, the following table show how to obtain the transition matrix
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M2.

Y1 [dn] ∈ H(1) Y2 P[dn](Y2 = Y2 | Y1 = y1)

([1], [0], 1) [4, 0, 0] ([1], [0], 1) 1
65

[3, 1, 0] ([1], [0], 1) 4
65

[3, 0, 1] ([1], [0], 1) 4
65

[2, 2, 0] ([1], [0], 1) 6
65

[2, 1, 1] ([1], [0], 1) 12
65

[2, 0, 2] ([1], [0], 1) 6
65

[1, 3, 0] ([1], [2], 2) 4
65

[1, 2, 1] ([1], [2], 2) 12
65

[1, 1, 2] ([1], [2], 2) 12
65

[1, 0, 3] ([1], [2], 3) 4
65

([1], [0], 2) [0, 4, 0] ([1], [0], 2) 1
15

[0, 3, 1] ([1], [0], 2) 4
15

[0, 2, 2] ([1], [0], 2) 6
15

[0, 1, 3] ([1], [0], 3), ([1, 2], [1], 3) 2
15

([1], [0], 3) [0, 0, 3] ([1], [0], 3) 1

From the previous table, M2 is given by

M2 =



1 0 0 0 0 0 0 0 0

0 33
65

0 0 14
65

2
65

14
65

2
65

0

0 0 11
15

0 0 2
15

0 2
15

0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1


.
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Similarly, we can obtain the following transition matrices:

M3 =



1 0 0 0 0 0 0 0 0 0
17
33

6
33

2
33

6
33

2
33

0 0 0 0 0
7
11

0 2
11

0 2
11

0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
11
21

0 3
21

0 3
21

4
21

0 0 0 0
2
3

0 0 0 0 0 1
3

0 0 0

0 8
21

0 0 0 4
21

0 3
21

3
21

3
21

0 0 2
3

0 0 0 1
3

0 0 0

0 0 0 0 0 0 0 0 0 1



,

and

M4 =



1 0
11
17

6
17

1 0
15
18

3
18

1 0
13
16

3
16

1 0
3
4

1
4

3
4

1
4

0 1



.

If

ζ1 = (0,
65

81
,
15

81
,

1

81
, 0),

then

Pr(L4(
∏

(3)) < 3) = ζ1

(
4∏

t=2

Mt

)
(1 0)T

= 0.8̄.
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Example 4.6. Let N = 5, n = 3, and v = 3. Then the state spaces

{Ωt}5t=1 associated with the {Yt}5t=1 are as follows:

For t = 1, B1 = 1 and B̄1 = 1 and

Ω1 = {∅, ([1], [0], 1), ([1], [0], 2), ([1], [0], 3), α}.

For t = 2, B2 = 1 and B̄2 = 2 and

Ω2 ={∅, ([1], [0], 1), ([1], [0], 2), ([1], [0], 3), ([1], [2], 2), ([1], [2], 3),

([1, 2], [1], 2), ([1, 2], [1], 3), α}.

For t = 3, B3 = 1 and B̄3 = 2 and

Ω3 ={∅, ([1], [0], 1), ([1], [0], 2), ([1], [0], 3), ([1], [2], 2), ([1], [2], 3),

([1], [3], 2), ([1], [3], 3), ([1, 2], [1], 2), ([1, 2], [1], 3),

([1, 2], [1], 2), ([1, 2], [1], 3), ([1, 3], [1], 2), ([1, 3], [1], 3),

([1, 3], [2], 2), ([1, 3], [2], 3), ([1, 2], [1, 3], 3), ([1, 3], [2, 3], 3), α}.

For t = 4, B4 = 2 and B̄4 = 2 and

Ω4 ={∅, ([1, 2], [1], 2), ([1, 2], [1], 3), ([1, 3], [1], 2), ([1, 3], [1], 3),

([1, 4], [1], 2), ([1, 4], [1], 3), ([1, 3], [2], 2), ([1, 3], [2], 3),

([1, 4], [2], 2), ([1, 4], [2], 3), ([1, 4], [3], 2), ([1, 4], [3], 3),

([1, 2], [1, 4], 3), ([1, 3], [1, 4], 3), ([1, 2], [1, 3], 3), ([1, 3], [2, 3], 3),

([1, 3], [2, 4], 3), ([1, 4], [2, 4], 3), ([1, 4], [3, 4], 3), α}.
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For t = 5, B5 = 3 and B̄5 = 2 and Ω5 = {∅, α}. We can obtain the

transition matrices following Proposition 4.5., for example

M2 =



1 0 0 0 0 0 0 0 0

0 262
422

0 0 75
422

5
422

75
422

5
422

0

0 0 52
62

0 0 5
62

0 5
62

0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1


, and M5 =



1 0

53
95

42
95

1 0

5
7

2
7

1 0

13
15

2
15

1 0

9
13

4
13

1 0

17
20

3
20

1 0

21
25

4
25

1 0

4
5

1
5

4
5

1
5

3
5

2
5

3
5

2
5

4
5

1
5

4
5

1
5

4
5

1
5

0 1



If

ζ1 = (0,
211

243
,

31

243
,

1

243
, 0)
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then

Pr(L5(
∏

(3)) < 3) = ζ1

(
5∏

t=2

Mt

)
(1 0)T

= 0.79.

Proposition 4.4 can be generalized for non-iid trials. For {1, 2, . . . , n}

with unequal selection probabilities {p1, p2, . . . , pn} the transitions proba-

bilities are given in the following proposition.

Proposition 4.5. The transition probabilities for Ωt−1 → Ωt for t =

1, . . . , N , are given by

Pr(Yt = yt | Yt−1 = yt−1) =
∑

[sn]∈H(t−1)

P[sn](Yt = yt | Yt−1 = yt−1)

× Pr([dn] = [sn] | [dn] ∈ H(t− 1)),

(4.3)

which corresponds to summing over all specifications [dn] ∈ H(t− 1) in

transitions from state Yt−1 to state Yt, with

Pr([dn] = [sn] | [dn] ∈ H(t− 1)) =

(
N

s1,s2,...,sn

)∏n
i=1 p

si
i∑

[dn]∈H(t−1)
(

N
d1,d2,...,dn

)∏n
i=1 p

di
i

.
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Chapter 5

Summary and future work

In this dissertation, we studied the exact distribution for some run-related

statistics using the finite Markov chain imbedding technique. In Chapter

1 we gave an introduction about the distribution theory of runs and

patterns, and discussed some of the proposed methods for calculating

the distribution of run-related statistics. One of these methods is the

finite Markov chain imbedding technique which was proposed by Fu and

Koutras (1994). We introduced some preliminary results regarding the

finite Markov chain imbedding technique in Chapter 2.

In Chapter 3, we studied the exact distribution of the total number

of adjacent and adjacent consecutive increasing subsequences in sequence

using the finite Markov chain imbedding technique. To this end we defined

a state space Ω for the induced Markov chain {Yt}Nt=1. Our approach give

smaller state space than other proposed methods using the finite Markov

chain imbedding technique. We can use results from Chapter 4 to calculate

the exact distribution of the length of the longest increasing subsequence

in sequences.
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In Chapter 4, we focused on random permutations of arbitrary multi-

sets. We proposed a new method to calculate the exact distribution of the

length of the longest increasing subsequence in random permutation of

arbitrary multi-sets using the finite Markov chain imbedding technique.

First, we obtained the exact distribution of the length of the longest

increasing subsequence in random permutation of arbitrary multi-sets

given a specification [dn]. Then, we obtained the exact distribution of the

length of the longest increasing subsequence in the set of all permutations

of length N generated from {1, 2, . . . , n}. Fu and Hsieh (2015) studied the

exact distribution of the length of the longest increasing subsequence in

random permutations but, to the best of our knowledge, little or no work

has been done for the case of random permutation of arbitrary multi-sets.

We believe similar techniques may be used to find the exact distribu-

tion of the total number of adjacent and adjacent consecutive increasing

subsequences in random permutation of arbitrary multi-sets. Another area

of interest may be to study the properties of the distributions presented

in this dissertation.
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