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ABSTRACT

Artificial neulal netwolks ale u¡riversal and highly flexible function approxirnators fir.st

used in the fields of cognitive science ancl engineeling, In receut years, neural networ.k

applications in finance for such tasks as pattet'n recognition, classification, and tirne series

folecasting have dramatically increased. However', the large nurnber of pararneters that lnust be

selectecl to develop a tieural netwolk folecastirrg moclel have rneant that the clesign process still

involves tnuch tlial and enor.

Therefore, the objective of this study is to provicle a plactical inhocluctory guicle i¡ the

design of a neural network for forecasting econornic tirne selies clata. An eight-step pr.oceclur.e

to design a lreural network folecasting Inodel is explainecl. The clesign pr.oceclur.e is then

illustrated by developing backpropagation neulal network rnoclels to forecast lnonthly futures

tlading volurne for balley, canola, flax, oats, rye, ancf wheat traclecl on the winnipeg cormnoclity

Exchange (WCE). Cornpalisons of forccasting accuracy ale rnacle by cormnoclity ancl by forecast

horizon.

The lesults iltdicate that the neulal uetwolks are able to folecast up to nine lnonths ahead

and outperfoltn the naive Inodel fol all cornmodities except balley ancl rye. The neural rretwork

folecasts relative to the naive rnoclel cuuently in place to forecast futurcs tr.acfing volurne cfo ¡ot

deterjolate as the forccast holizon incleases. The rcsults suggest that irnprovements to the neur.al

rletworks could be rnade by matching the rnoving avelage length of the inputs to the nurnber of

lnonths forecastecl aheacl. Twenty ttuee out of the 54 uetwolks usecl ttu.ee hiclclen neurons

indioating that a small netwolk can appr.oxirnate the function quite well.
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CHAPTER I

INTRODUCTION

Neural networks were originally developecl in cognitive science ancl were later.usecl in

engineering fol pattern recognition and classification. In lecent year.s, neural networks have becorne

incleasingly populal in finance. As universal function approxirnators, they arc power.ful lnethocls

fol pattetn lecognition, classification, ancl folecasting. Neural networks are nonparalneflic, less

sensitive to erl'or telm assurnptiolts, and they can tolelate noise, chaotic colnponents, ancl heavy

tails better than most other rnethods (Mastels, 1993). Othel aclvantages often citecl are theil.gr.eatel.

adaptability, Ì'obustness, and fault toleLance.

However, tleural networks have been criticized because of the "black box" nature of their

solutions ancl the lalge nurnbet of pararìleters tlìat lnust be expelirnentally selected to geuerate a

good folecast. Colnlnon patalneters that lnust be cleterrniliecl inclucle the type of clata scaling,

lealning rates, tlaining tolerance, nurnber of tlaining itelations, nuurber of hiclclen lìeur.olìs ancl

layels, arnong tnany othel's.

The objective of this study is to provicle a plactical inflocluctoly guicle in the clesign of a

neural netwol'k for forecastirrg economic tirne selies clata. An eight-step proceclure to clesig¡ a

neural netwotk folecasting rnodel is explained in chaptel two, inclucling a cliscussion of facleoffs

iti patametet selection, solne colnlnolì pitfalls, ancl points of clisagleelnent alnong practitioners. The

design steps ale: (l) variable selection, (2) clata collection, (3) clata pr.epr.ocessing, (4) trai¡ing,

testing, and valiclation sets, (5) neulal networt paradigrns, (6) evaluation criteria, (7) neur.al

net\rvolk trairing, and (8) irnplernentation.



The design procedure is then illustlated in chapter three by cleveloping backpropagation

neural network tnodels to fotecast Inonthly futules trading volurne on the Winnipeg Cornrnoclity

Exchange (WCE). Transaction fees on futurcs trading volurne are an irnportal'ìt souLce of Levenue

fol the Vy'CE and forecasts ate ueeclecì to assist in buclgetirg. Cornnoclities examinecl i¡clucle

barley, canola, flax, oats, rye, and wheat.

The inputs to the neural networks include a three-peliocl rnoving avelage of laggecl tracli¡g

volume, open interest, mean cash prices, futures price variabilìty, ancl proclucer. deliveries to

licensed elevatots ir the praiies. The training set consists of 148 rnonthly observations frorn the

clop yeals 1977/78 to 1990191. Twenty testing observations were lancfornly selectecl fr.o1n the

tlairring set. The out-of-sarnple set consists of 24 observations frorn the crop years l99ll92 and

1992193.

Sepalate neural uetworks were designecl and tlainecl fol'each ofthe nine rnonthly forecasts.

In this way, each ueutal ¡retwolk can specialize in its palticulal step ahead forecast. Three, five,

seven, and nille hidden neulons were ûainecl and evaluatecl on the testiÌtg set using seven sets of

randomly selectecl stalting weights.

The forecasting power of the neural networks are evaluatecl using root rnean squar.ed err.or.

(RMSE) and tnean absolute pelcentage enor (MAPE), ancl are then cornparccl to the uaive lnodel

using the Theil U statistic. Cotnparisons of folecasting accuracy are macle by cornrnodity and by

folecast holizon.

Chaptel foul inclucles a sulnlnaly of chaptels two altcl three. The eight steps of clesigni¡g

a neural network ale listecl and data preprocessing, ovelfitting, ancl neural uetwork trai¡ing ar.e

explained fiotn chapter two. Futures ûading volurne folecasts are surnrnarize¡ frorn chapter tlu.ee

inclucling the out-of-sarnple results.



CHAPTER 2

DESIGNING A NEURAL NETWORK FORECASTING MODEL

Introduction

Neural networks have becolne increasingly popular in finance as filia¡cial services

orgatiizatiolls have been the second largest sponsols of lesearch iu neural networ.k applicatio¡s

(Trippi and Turban, 1993)' Typical applications in finance inclucle rnortgage risk assessrne¡t, risk

Iating of exchange-n'aded fixed incotne iuvestrnelìts, poÍtfolio selection/cìiversification, sirnulation

of lnatket behaviour', iuclex construction, identification of econornic explanator.y var.iables, ancl

econornic forecasting (Trippi and DeSieno, I992).

Neural networks ale univelsal function approxilnatols that can lnap any nonlilear functio¡

(White' 1989). As such flexible functiorr approximatols, thoy are powerful rnethocls for patter.n

tecognition, classification, and forecasting. Neural networks aÌ'e nolìpatamehic, less sensitive to

elror telln assulnptions, ancl they can tolerate noise, chaotic cornponents, ancl heavy tails bette¡ than

lìlost other rnethocls (Masters, 1993). Other advautages inclucle greatel fault toler.ance, l.obusttiess,

ancl aclaptability compaled to expel't systelns due to the large nurnbel of interconnectecl pr.ocessi¡g

elernents that can be 'trained' to learn new patterns (T.ippi and rurban, 1993; Lipprnan, l9g7).

In practice, it appears that although rnany organizations have expressecl interest in applying

neural netwolk technology, few have actually impler¡entecl then.r successfully (Egan, 1993). Those

that have been successful have spent considelable resources expelirnenting and fine tuning neural

lletworks for theit particular applications as evidencecl by the rnany courner.cial neur.al netwol.k

softwarc packages originally developed as in-house propr.ietary pl.ogralì1s.



Neural networks have been cliticizecl and theil wicle-spreacl successful application likely

hinclelecl because of the black box naturc of thei solutions, excessive trainilig tirnes, clifficulty i¡
obtaining and later leplicating a stable solution, the dangel of overfitting, teclious softwale, ancl the

large uumber of palarnetels that Inust be expelirnentally selectecl to genelate a goocl for.ecast. Table

2.1 lists the lnost cotrìlror'ì parametels that a researcher rnust choose when c.lesigning a neural

¡retwotk forecasting model, It excludes the many different proprietaly featul.es offer.ecl by ¡eural

netwofk software vendors ancl ignores some rnore arlvanced topics. The large nurnber. of ways to

orgauize a ueutal lletwork account for its powerful function approxirnation capabilities. The cost

of such flexibility in Inodelling tirne series data is that the researcher lnust select the right

colnbillation of parametets. As a result of the large nurnber of palarnetels allcl the l.elatively l.ecent

illtroduction of ¡reural netwolks to fina¡rce, decicling on the applopriate network par.acligrn still

involves rnuch trial and enol..

The'efore, the objective of this chapte' is to pr.ovicle an overview of a step by step

lnethodology to design a neural uetwork fol folecasting econornic tilne ser.ies data. Fitst, the

alchitectule of a backplopagation (BP) neural network is bliefly cliscussecl. The BP networ.k is usecl

to illusnate the design steps since it is capable of solving a wicle valiety of problerns ancl is the

lnost colnlnon type of neural netwot'k in tilne series forecastiug. This is foltowecl by an explanation

of an eight-step proceclule fol clesigning a neural network including a cliscussion of f,acleoffs in

paÌalnetel' seleotiorr, solne cotntnoll pifalls, and points of clisagreelneut alnong practitioners. While

there ale few harcl ¡ules, the literature does contain uulnerous rules of thurnb ancl practical advice

that can assist beginners in designing a successful neural networ* for.ecasting moclel.



Backpropagation Neul.al Networks

Backpropagation (BP) neural networks consist of a collection of inputs and processirg urrits

known as either neurons, tieut'odes, or nodes (Figure 2.1). The neul'ons in each layer.ar.e fully

intel conl'ìected by connection stlengths callecl weights which, along with the network ar.chitecture,

store the knowledge of a ¡ainecl netwotk. Ll addition to the processing neulons, there is a bias

Ììeuron collllected to each plocessing unit in the hiclclen ancl output layers. The bias neuron has a

value of positive one and setves a sirnilal purpose as the intetcept in regr.ession rnoclels. The

neurons aud bias teltns ate attanged irito layels; an input layer', orie or rnore hiclclen layer.s, ancl an

oulput layer. The nurnber of hidden layers and neulons within each layer cau vary clepe¡cli¡g on

the size and natule of the clata set.

Neulal networks arc sitnilal to linear and non-linear least squares reglession ancf ca¡ be

viewed as an alternative statistical approach to solving the least squares problem (White, 1992).

Both lleural tietworks and conventional leglession analysis attetnpt to rninilnize the surn of squarecl

etrors. The bias tettn is analogous to the ilrtercept telrn iu a leglession equation. The nurnber of

ittput neutons is equal to the nutnber of independent variables while the output neul.on(s) reprcsenr

the dependent variable(s). Linear regression rnoclels rnay be viewecl as a feeclforwar.cl neural

network with no hicldell layels and one output neuron with a linear tlansfer. function. The weights

conlrecting the input neulons to the single output neul'on ale analogous to the coefficients i¡ a

iinear least squares regtession. Netwolks with one hiclclen layel lesernble nonlineal r.egression

rnodels. The weights teplesent legrcssion cutve paratnetets.

BP netwolks are a class of feeclforwarcl neulal netwolks with supelvisecl leaning r.ules.

Feedfolward refers to the direction of infounation flow f¡orn the input to the output layer.. Inputs

at'e passed tlu'ough the systeln once to deteunille the output. Supervisecl learning is the pr.ocess of



colnpadng each of the network's forecasts with the known coruect auswer. ancl ailjusting the

weights based on the resulting forecast e*or to rninimize the e'ol.function.

he BP network is the Inost colnmou rnulti-layel netwolk estilnated to be usecl in B¡q/o of

all applications (Caudill, 1992). Holnik et al. (1989) showecl that the stanclarcl Bp nerwor.k using
:

an arbifary hansfer function can approxirnate auy measurable function in a ver.y pr.ecise a¡ci

satisfactory tnanuer, if a sufficient nurnbel of hidden neulons ale usecl. Hecht-Nielsen (1989) also

detnonstratecl that a three-layer BP network can apploxirnate any continuous rnappi¡g.

, Steps in Designing a Neural Network Folecasting Model

, 
A lnethoc{ of designing a neural network folecasting rnoclel into clistinct steps is usecl hele.

: The eight-step design rnethoclology plesentecl below chaws ou the steps outljned by Deboeck

, (1994), Masters (1993), Blurn (1991), and Nelson ancf lllingwor.th (1991).

:

:

: l. Varjable Selection 5. Neural Networ* paradigrns

2. Data Collection 6. Evaluation Cr.iter.ia

; 3. Data Pleprocessing 7. Neural Network Training
¡

', 4. Tlaining, Testing, ancl Valiclation Sets g. Itnplernentation

: The proceclule is usually not a sirtgle-pass one, but rnay lequile visiting previous steps especially

j between [aining ancl variable selection.



Variable Selection

Success in designing a neulal network depencls on a clear unclerstancli¡g of the problem

(Nelson and Illingworth, l99l). Klowing which input valiables are irnportant i¡ the rnarket bei¡g

forecasted is critical. This is easier said than done because the very reason for relyi-ug on a neur.al

lletwoÌ'k is fol its powelful ability to detect cornplex nonlinear relationships alnong a nurnbel.of

diffelent variables. However, econotnic theory can help in choosing varÌables which are likely

ilnportant predictors. At this point in the clesign plocess, the concenl is about the raw data fi.orìr

which a variety of indicators wil.l be developed. These indicators forrn the actual inputs to the

neural netwot k.

The financial tesearchet iuterested in forecasting rnalket plices rnust clecicle whether to use

both technical and ful'ìdarnental econornic inputs frorn one or ¡noLe rnarkets. Technical iuputs are

defined as lagged values of the clepenclent variable ol inclicators calculated frorn the laggecl values.

Funclalnental inputs aÌe econornic variables which ale believecl to influence the clepencle¡t var.iable.

The sirnplest lleulal network model uses lagged values of the clepenclent variable(s) or.its first

cliffelence as inputs. Such rnoclels have outpel'follnecl tlacìitional Box-Jenkins rnoclels i¡ pr.ice

folecastirrg, although not in all studies. (Kohzacli, 1993; sharcla ancl patil, 1992; Tang et al., 1990).

A trrote popular apploach is to calculate valious technical iltclicatols which are basecl o¡ly ou past

plices (and occasionally volume ancl/ol open intelest) of the rnalket bei¡g forecastecl (Deboeck,

1994). As an additional itnptovetneut, ilìternalket clata cau be usecl since the close liuk betweeu

all kinds of lnarkets, both dornestically and inteurationally, suggests that using technical inputs

fioln a nutnbeL of intenelated Inalkets should irnprove forecasting perfoLrnance. For. exarnple,

intellnarket data such as the Deutsche malk/yen ancl pouncl cross rates aucl interest l.ate dífferentials



coulcl be used as neulal net\4/ork inputs when forccasting the D-rnark. Funclarnental inforrnation

such as the cuÌr'ellt account balance, rnoney supply, ol wholesale price inclex rnay also be helpful.

The frequency of the data depencls on the objectives of the researcher.. A typical off-floor.

tr acler iu the stock or cotnrnodity futures rnarkets woulcl urost likely use claily clata if designing a

neulal lletwork as a cotnponent of an ovelall fiading systeln. An investor with a longer. terrn

hot'izon may use weekly or nìonthly data as inputs to the ueulal network to fol¡ulate the best asset

rnix rathet than using a passive buy and holcl snategy. An ecouornist forecasting the GDp,

unetnployrnent, or other broad econotnic indicators woulcl likely use rnonthly or quarter.ly data.

Data Collection

The lesearcher tnust consider cost and availability when collecting data for the variables

chosen in the previous step. Technical data is readily available florn rnany vendors at a reaso¡able

cost wheteas fu¡rclamental infortnation is lnole difficult to obtail. Tirne spent collecting data caunot

be used for pleplocessing, trairiing, and evaluating net\rr'olk perforrnance. The venclor shoulcl have

a leputation of ploviding high quality data; however, all clata shoulcl stiìl be checkecl for error.s by

exarnining day to day changes, ranges, logical consistency (e.g. high greater than or.equal to close,

open less than ot equal to low) and rnissiug obser.vations.

Missing observations which often exist, can be hancllecl in a uumber of ways. All rnissi¡g

obset'vations can be dropped or a seconcl option is to assulne that the rdssing obser.vatious r.ernain

the salne by interpolatiug ot averaging fiotn nealby values. Declicating a¡ i¡put neurou to the

tnissir.rg observations by coding it as a one if rnissing ancl zelo othelwise is also often clone.



When using futlclatnental data as an input in a neural netwolk four issues lnust be kept in

tnincl. Filst, the rnethocl of calculating the funclarneutal inclicator shoulcl be consistent over.the tirne

selies. Secoud, the data shoulcl not have been reEoactively levisecl aftel initial publication as is

courlnonly clone in databases since the revised nurnbels are not available in actual forecastir1g.

Thild, the data lnust be appropliately lagged as an input fur the neural ¡retwor.k since funclarnental

infonnation is not available as quickly as rnalket quotatious. Fourth, the resear.cher shoulci be

confiderlt that the source will continue to publish the particular funclarnental inforrnation or other

identical soulces are available.

Data Preprocessing

Data preplocessing tefels to aualyzing and tlansfolr¡iltg the input ancl output variables to

tninimize noise, highlight ir¡portar'ìt lelationships, cletect tlends, ancl tighten ancl flatten the

dis¡ibution of the valiable to assist the lieural netwolk in learning the relevalìt pattol.ns. Since

neul'al lletwolks ale pattellì lnatchels, the representation of the data is critical in designing a

successful network. The input and output valiables fol which the clata was collectecl are r.ately fecl

illto the ¡retwork iti taw forIn. At the vely least, the taw clata lnust be scalecì between the upper.

ancl lowet bounds of the hansfel functions (usually between zero ancl one or. negative one ancl

one).

Two of the lnost colÌrnoÍì data f ansfol'rnations ful both ¡aclitional ancl neural network

forecastirrg ale first diffelencing and taking the natural log of a var.iable. Fii.st cfifferencing, or.

using changes in a variable, can be usecl to relnove a linear hencl fi'orn the clata. Logar.ithrnic

uansforrnation is useful for clata which can take on both srnall ancl large values ancl is



characterizecl by an extendecl right hancl tail clis¡ibution. The histoglarns shown in Figute 2.2

illusüate the cotnpressing effect of a logalithl¡ic ûansfolrnation on rnonthly futures h.acling volurne

fol wheat Logalithlnic tlansfortnatious also convelt lnultiplicative or ratio relationships to aclclitive

which is believed to simptify ancl irnprove network n.ainirig (Masters, 1993).

Another popular data transfo nation is to use latios of input var.iables. Ratios highlight

ilnpol tant lelationships (e.g. hog/corn, financial statemel'ìt latios) while at the sarne tilne colìsewing

degrees of freedoln because fewer input neurons are requilecl to cocle the inclepenclent var.iables.

Besides first diffelences, logs, and ratios, technical analysis can pr.ovicle a neul.al network

with a wealth of inciicators including a variety of rnoving aver.ages, oscillators, clir.ectional

lnovelnent, ancl volatility filters. It is a goocl iclea to use rnix of cliffer.ent inclicators to l.ecluce

variable leclundancy and plovide the netwolk with the ability to aclapt to cha¡ging rnar.ket

conditions thlough pelioclic r.etr.aining.

Slnoothing both input ancl output data by using either sirnple or expo¡ential rnovitlg

averages is often ernployed. EInpi'ical work on testing the efficient rnalket hypothesis has found

that prices exhibit tirne dependency or positive autoconelation while price cha¡ges around a heÌrd

are sornewhat randotn (Totnek ancl Querin, 1984). Therefole, attelnpting to preclict price cha¡ges

around the tlend by using either unfilteled pr.ices or. pr.ice changes as inputs lnay prove to be

difficult. Using rnoving averages to slnooth the inclepenclent variables ancl for.ecasting ftencls lnay

be a mole plornising approach.
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Sarnpling or filtering of data lefers to rernoving observations frorn the hai¡ing and testing

sets to create a tnore unifortn dis¡'ibution. The type of filteling ernployed shoulcl be consistent with

the objectives of the tesearcher. For exarnple, a histograrn of plice changes for a cormnoclity woulcl

teveal tnany srnall changes frorn which a speculator cannot profit after cleclucti¡g r.ealistic

execution costs. However, this dense region of the clis¡ibution will gr.eatly impact the training of

the neural netwol'k since stnall plice char.rges account for the majolity of the tl.ahing facts. The

network tninilnizes the surn of squarecl euols (ol othel errol function) over all the ûaining facts,

By letnoving these slnall price changes, overall tlacling perforrnance can be improvecl siuce the

netwoìk specializes o¡r the lalger', potentially profitable price changes. It is possible for nacli¡g

systerns to be unprofitable even if the neulal network pleclicted 85o/o of the tuliillg poiuts, as the

turning poillts rnay be only srnall unirnportar'ìt plice changes (Deboeck, 1994). On the other hancl,

a floor tr ader holcling positions overnight is likely intelestecl in these srnall price cha¡ges. The

reseatchel rnust be cleal ou what exactly the neulal netwolk is supposecl to lear.u. Another.

advantage of filtering is a declease in the nuurber of tlaining facts which allows testing of rnore

irlput variables, raÍìdoln startiug weights, ol hiclclen ueurons rathel than naini¡g lal.ge clata sets.

In practice, data preprocessiug involves rnuch trial ancl error. Olie rnethocl to select

appropt iate input valiables is to test various cornbinations. For example, a 'top 20, list of val.iables

consisting of a valiety of technical indicators coulcl be ptetested ten at a time with each

cotnbination cliffeling by two or thtee valiables. Although cornputationally intensive, this proceclure

recoguizes the likelihoocl that solne variables rnay be excellent predictor.s only whe¡ in

cor¡billation with other variables, Chaos theory ancl statistical tests cannot rnake such a

deteflnination. Also, the top 20 list can be modified over tirne as the researcher gains exper.ience
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on the type of preprocessing that works fol his/hel application. This approach is especially useful

if the training set is slnall relative to the nurnbel of palatneters (weights) which is likely the case

if all 20 input valiables are presentecl to the neur.al lìetwol.k at once.

Training, Testing, and Validation Sets

Conlnon plactice is to divicle the tirne selies into tl ee clistiuct sets callecl the training,

testing, and validation (out-of-sarnple) sets. The tlaining set is the lalgest set ancl is usecl by the

neu¡al uetwotk to lealn the patterns presellt in the clata, The testing set, tarrging iu size fiorn l0øl¿

to 30Vo of the ¡'ahing set, is used to evaluate the generalization ability of a supposeclly traiueci

netwolk. The lesearcher would select the network(s) which pelform best on the testing set. A final

check on the perfottnance of the tlalled network is rnade using the vaijclation set. The size of the

validation set chosen lnust stlike a balance between obtaining a sufficient sarnple size to evaluate

a tlained uetwork and having enough rernaining observations fol both training ancl testi¡g. The

validation set should consist of the nlost recent colìtiguous obselations. Cal.e rnust be taken uot

to use the validation set as a testing set by repeatedly pelforning a selies of tlain-test-valiclation

steps and adjustirig the input valiables based on the netwolk's performance on the validation set.

The testing set cau be either randomly selected frorn the haining set or consist of a set of

obsetvations inlnediately following the b'aining set. The aclvantage of r.andornly selecting testing

facts is that the danger of using a testing set characterizecl by one type of mar.ket is lar.gely

avoided. Fot exarnple, a small testing set rnay only consist of prices iu a stro¡g uptreucl. The

testirrg set will favoul netwolks which specialize on stloug uptrencls at the expense of ¡etwor.ks

which generalize by perforrning well on both uptrencls ancl clowutrencls. The advantage of using
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the observations following the haining set as testing facts is that these are the lnost recent

observatiorrs (excluding the validation set) \¡/hich rnay be rnore important than olcler.data.

The randornly selected testing facts should not be replaced in the training set because this

would bias the ability to evaluate generalization especially if the testing set is large relative to the

naining set (e.g.30q/o). A cletelr¡inistic rnethod, such as selecting every nth obseryation as a testil.ìg

fact, is also not recol nended since it oan lesult in cycles in the sarnplecl clata clue solely to the

sarnpling technique ernployed (Master.s, 1993).

A Inot'e rigorous apploach in evaluating neulal netwolks is to use a walk-for.warcl testing

loutine also kllown as eithel sliding or rnoving window testirlg. Popular.in evaluating corrunoclity

ttading systerns, walk-fotwald testiug involves clividing the data into a series of overlapping trai¡-

test-validation sets. Each set is lnoved forward through the titne series as shown in Figure 2.3.

Walk-forward testing atternpts to simulate real-life uading ancl tests the robustness of the rnoclel

tltlough its fiequent retraining on a lzuge out-of-sarnple data set. h walk-for.war.cl testi¡g, the size

of the validatiotì set dlives the l'etl'ainillg frequency of the neulal netwolk. Frequent r.enaiui¡g is

rnore tirne consurning, but allows the netwolk to adapt rnore quickly to changirg rnarket

conclitions. The consistency ot variation of the results in the out-of-sarnple sets is an irnportant

perfotlnance lneasule. For exatnple, in the case of commoclity tracling systelns, a neur.al uetwol.k

with poor folecasting resulting iu excessive equiry drawclowns in any out-of-sarnple per.iocl woulcl

not be ilnplelnented in ordel to avoid risk of ruill.
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It is recorrunended that the trainiug and testiug sets be scalecl together since the purpose

of the testing set is to detenïtine the ability of the uetwork to generalize. However, by no rneans,

shoulcl the validation set be scaled with eithel the [aining ol testing sets since this biases the

integrity of the validation set as a final ancl indepenclent check on the neural uetwor.k. ln actual

use, the researcher has no way of knowing the exact r.ange of future values, but only has a

reasonable estirnate based on the range of the tr.aining ancl/or.testing sets.

Neural Network Paradigms

Thele are an infinite nurnber of ways to colistluct a neuÍal network. Neur.oclynarnics ancl

architectule are two terl¡s used to c{esclibe the way in which a neur.al netwolk is or.ganizecl. The

con.rbiuation of neulodynatnics and architectule clefine the neural network's paracligrn.

Neulodytlalnics desclibe the propelties of an indiviclual neuLon such as its tr.ansfer function ancl

how the inputs are cornbitled (Nelson and Illingworth, l99l). A neural network's architectur.e

defines its sflucture including the nurnbel of neurous in each layel ancl the number and type of

interconnections.

The nulnber of input lteul olts is one of the easiest pararnetel s to select olìce the inclepenclent

variables have been pteprocessed because each inclepenclent variable is l'epresented by its input

neurou' This section will addless the selectiou of the nurnber of hiclclen layers, hiclclen layer

neulous, and output rìgut'olls, and the hansfer furictions.
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Nutnbel of Hidden Lavers

The hidden layer'(s) plovide the network with its ability to genelalize. In theory, a neural

netwotk with one hidden layer with a sufficient uurnber of hiclclen lieurons is capable of

approxitnating any continuous function. In plactice, neural networks with one and occasionally two

hidclen layers ale wiclely usecl ancl have perfolrned vely well. Increasing the uurnber of hiclclen

layers also increases colnputatioli tirne and the danger of overfitting which leacls to poor out-of-

sarnple forecasting pelfortnauce. Ovelfitting occurs when a forecasting moclel has too few clegrees

of freecloln. In other wolds, it has lelatively few obselvations in relation to its pararneters a¡cl

thelefote it is able to tne¡norize individual points lathel than lealn the gener.al patterns. h the case

of neutal networks, the nutnber of weights, which is inexolably linkecl to the nurnber. of hiclden

layers and neulolls, and the size of the tlaining set (nuÌìrber of obser.vations) cleter.rnine the

likelihood of ovelfitting (Baum and Haussler., I9B9; Master.s, 1993). The gr.eater.rhe nurnber of

weights lelative to the size of the training set, the gleatel the ability of the network to rnelnor.ize

idiosyncrasies of inclividual obselvations. As a lesult, genelalization for. the valiclation set is lost

anc'l the rnoclel is of little use in actual forecasting.

Thelefole, it is lecomnenc{ecl that all neulal netwolks shoulcl star.t with preferably one or

at most two hiclden layers. If a four-layel neur.al network (i.e. two hiclclen layers) pr.oves

unsatisfactoly aftel having tested rnultiple hidden neulons using a leasonable uumber of ra¡clornly

selected starting weights, then the researchel shoulcl modify the input valjables a nurnber. of tirnes

befole adding a thild hitlden layer. Both theoly ancl virtually all ernpirical wol.k to clate suggosts

that netwolks with rnole than four layers will lìot iu.ìpl.ove the results.
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Nurnbel of Hidden Neu¡ons

Despite its ilnpoltance, there is no 'rnagic' folrnula for selectiug the optirnurn nurnbel. of

hidden neurons. Therefore, resealchels fall back on expelirnentation. However, sorne rules of

thulnb have been aclvanced. A lough apploxirnation can be obtaiuecl by the georneÍic pyrarnicl r.ule

ptoposed by Mastels. For a three-layer lletwolk with n input neulons a¡cl lr? output ueul.ons, the

hiclden layel would have sqrt(n )i rl) neulons, The actual nurnber of hiclclen ueur.o¡rs can sti]l

tatige froln one-half to two tirnes the geornetlic pylarnicl rule value cfepencling on the cornplexity

of the problern. Baily and Thornpson (1989) suggest that the nurnbel of hiclclen neurons in a thr.ee-

layer neural network shoulcl be 7 5o/o of the nurnbel of input neurons. Katz (1992) indicates that

an optilnal nutnbel of hiclden neut'ons will generally be founcl between one-half to three tilnes the

nutnber of input neurons. Ersoy (1990) pl'oposes cloubling the nurnbel of hiciclen neul.ons until the

lletwork's petfottnance on the testing set deteriolates. Klirnasauskas (1991) suggests that thel.e

should be at least five tirnes as rnany haining facts as weights, which sets an upper. lirnit on the

nurnbel of input ancl hidclen neur.ons.

It is importarit to note that the lules which calculate the nulnber of hiclclen neuÌolìs as a

rnultiple of the nutnl¡er of input neurons irnplicitly assurne that the haiuiug set is at least twice as

lalge as the nutnber of weights and preferably four or rnore tilnes as la¡ge. If this is not the case,

then these tules of thulnb can quickly lead to overfitted moclels since the nurnber of hiclclen

neurotls is diÌectly dependent on the uutnber of input neulons (which iu tum cleterrnine the uulnber

of weights). The solution is to eithel inclease the size of the tlaining set or, if this is not possible,

to set an uppel lilnit on the nulnbel of input neulons so that the number of weights is at least half

of the liulnber of naining facts. Selection of input variables becornes evelì ûrore critical in such
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small netwolks since the luxury of the plesenting the netwoÌk with a lar.ge nurnber of inputs ancl

having it ignole the illelevant ones has largely ciisappear.ecl.

Selecting the 'best' numbet of hicklen neurons involves experirnentation. Tlu.ee rnethocls

often used are the fixed, coltstructive, and destructive. Lt the fixecl approach, a gr.oup of neural

netwolks with different nutnbers of hidclen neurons aro hainecl ancl each is evaluatecl on the test

set using a leasonable tiutnbel of randornly selectecl startilìg weights. The incrernent iu the uurnbet

of hidden neulons lnay be one, two, or rnorc clepenclilig on the colnputatioual Lesoul.ces available.

Plotting the evaluation crite¡ion (e.g. sum of squalec'l erlols) as a function of the nurnbel. of hiclclen

neurons fot each neural tietwork genelally produces a bowl shapecl enor graph. The ne¡vort with

the least enot'found at the bottorn of the bowl is selectecl. This approach is tirne consurniug, but

genelally wolks vely well.

The consüuctive and destluctive apploach involve changing the nulnber of hiclclen neurons

durirtg training lather tharì creating sepal'ate netwolks each with a clifferent nutnber. of hiclclen

neulolìs, as in the fixed apploach, Many cotntnercial neulal lletwork softwar.e packages clo ¡ot

support the adclition or temoval of hidden neurons during training. The cons¡uctive appr.oach

involves adding hidden neulons until lletwolk perfoLrnance stalts cletel.ioratilrg. The des[uctive

approach is sirnilar except that hidden neul.ons are r.ernovecl cluring haining.

Regarclless of the Inethocl usecl to select the lange of hiclclen neul.ons to be testecl, the rule

is to always select the ¡retwolk that perfolrns best ou the testing set with the least number of

hiclden neurons. \ hen testing a range of hiclclen neurons it is irnpoltant to keep a1l other

paralnetel's colìstallt. Changing any paralneter in effect cl'eates a ¡ew neuLal networ.k with a

potentially different ertol surface which would needlessly cornplicate the selection of the optirnurn
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nulnber of hidden neurons.

Nurnber of Output Neulons

Deciding on the nutnber of ouçut neurons is sornewhat rnore stlaightforwarcl since thel.e

ate colnpelling reasons to always use only one output ueuron. Neulal netwolks with rnultiple

outputs, especially if these outputs are widely spacecl, will procluce ilifetior r.esults as cornpar.ecl

to a network with a single output (Masters, 1993). A neural netwolk nains by choosi¡g weights

such that the average errol ovel all output neurons is rninitnizecl. For exarnple, a neural networ.k

attempting to forecast one lnonth aheacl and six rnonth ahead cattle futules prices will concentr.ate

Inost of its effort on recfucing the folecast with the lalgest erlol which is likely the six rnonth

forecast. As a result, a lelatively lalge irnproverneut ilì the olie rnonth for.ecast will not be macle

if it increases the absolute enot of the six uronth folecasts by an arnount gl.eater than the absolute

ilnpl'ovelnent of the one tnottth folecast. The solution is to have the neural networks specialize by

usiDg separate netwot'ks for each folecast. Specialization also rnakes the trial ancl error. clesig¡

proceclure solnewhat silnpler sitice the ueural netwolk is sr¡allel aucl fewer paratneter.s neecl to be

changed to fine tune the final rnodel.

Transfel Fu¡rctions

Tlansfer functions are tnathernatical forrnulas that detollnine the output of a pr.ocessing

neul'on. They ate also refened to as tl ansfol rnation, squashing, activatiolì, or thl.eshold functions.

The Inajolity of culreltt ueulal network rnodels use the sigmoicl (S-shapecl) function, but othe¡s

such as the hyperbolic tangent, step, r'arnping, arc tan, ancl linear. have also been proposecl. The
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put'pose of the hansfef function is to prevent outputs fi'orn reaching very large values which can

'panlyze' a neulal networks ancl thereby inhibit tr.aining.

Lineal tlansfet functions ate not useful fol nonlinear rnapping and classification. Levich

and Thornas (1993) ancl Kao and Ma (1992) founcl that financial rnalkets ar.e nonlinear. anc.l have

lnenloly suggesting that nonliueal uansfer functions ale Ìnore appropliate. Transfet functions such

as the sigrnoid are comlnonly usecf fol titne series clata because they are nonlinear ancl copti¡uously

clifferentiable which are desi¡able properties for. network lear.ning.

Klirnasauskas (1994) states that if the network is to learn average behaviour. a sigrnoicl

ûansfer function should be used while if lealning involves deviations frorn the average, the

hypelbolic tangellt fullctiotr worts best. The larnping ancl step functions ar.e r.ecormnenclecl for

binary valiables siuce the sigrnoid transfer fuuction apploaches zero ancl olìe asyrnptotically. Ili a

standalcl BP network, the input layel neurons typically use linear Íansfer functiorrs while all other.

neurorls use a sigrnoid function.

Tlansfer functions such as the sigmoid requile all iuputs to be scaletl zer.o ancl oue. Liuear.

and tnean/standard cleviation scaling ale two of the lnost cornrnolt lnethods usecl iu ¡eural

netwolks. In lirlear scaling all obsewations are lineally scalecl between the rn rirnurn ancl rnaxirnurn

values accorcling to the following formula:

(2.1)

where sV is the scalecl value, Tl'¡ ancl rF',,* arc the lespective rninimurn ancl rnaximum values

of the tlansfel function, D is the value of the obsewation, ancl D,,,u, ancl D,,,o" are the l.espective

rninirnum and rnaxirnuln values of all observations.

sv = T{"" * (rF,,,"^ - rF",,. .. (D - D,,'L')

"' ^ Þ;, =-DJ
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Sirnple lineal scaling is susceptible to outliers because it cloes not change the u¡ifor.rnity

of the dis¡ibution, but tnerely scales it into the applopriate range fol the hansfer functio¡. I¡ the

S&P 500 data presented in Figule 2.4, lsneat scaling results itt 98.6q/o of the ûaiui¡g facts bei¡g

contailed within l07o of the neuron's activation range. Ploper training is unlikely to take place

with such a disnibution. Il tnean ancl stalìclard cleviation scaììng all values plus or minus ¡ uumber

of standard cleviations flom the mean are rnappecl to one ancl zero, respectively. All other. values

ate lirlearly rnapped between zeto and one. This type of scaling cleates a rnor.e uniforrn clistribution

and is more appropriate for data which has not been sarnplecl in any way. Most neu¡al network

softwarc progralns will autornatically scale all variables into the appropr.iate range. However, it is

always a goocl idea to look at histoglarns of the scalecl input ancl output variables.

Evaluation Cliteria

The rnost colnlnon errot function rninirnized in neural netwoLks is the surn of squar.ecl

etrots. Other erlor functions offeled by softwale veuclols inclucle least absolute cleviatious, least

fout th powels, asytrunetric least squales, and perceutage clifferences, These er.r.or functions rnay

llot be the firlal evaluatio¡l critel'ia since othel comlnoll folecastiug evaluation lnethods such as the

lneau absolute perceutage erlor'(MAPE) ale typically not rninirnizecl in neural networks.

Ill the case of colnmoclity üadilìg systerns, the neural netwolk forecasts woulc{ be convel.ted

into buy/sell signals accolding to a pledeteunined cliteriou, For exarnple, all for.ecasts gl.eatel.than

0.8 or 0.9 can be consideled buy signals and all folecasts less than 0.2 or 0.1 as sell signals

(Harmn et al., 1993). The buy/sell signals are then fecl irìto a proglarn to calculate solne type of

lisk adjusted letuln and the networks with the best risk adjusted leturn (not the lowest testing set
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enol) would be selected. Low folecast ertors and tlacling profits ale not uecessarily synonyrnous

siuce a single large ûacle forccasted incorrectly by the neural netwolk coulcl have accountecl for

rnost of the trading systern's pr.ofits.

Filtering the tilne selies to rernove lnarly of the srnaller price changes can lar.gely pr.eve¡t

the situation where a neulal network with high turning point forecasting accuïacy rernai¡s

unprofitable. Also, the value of any single trading systern can only be establishecl withi¡ the

context of the user's portfolio of cornrnodity systelns. In this legarcf, neural netwo¡ks rnay be

especially useful if they behave tnore like cou¡rter'üend systerns as opposecl to the lnore cornlnou

trend following systerns used by cornrnoclity funcls.

Neural Netwolk Training

Tlaining a tleutal network to lealn patten'ìs in the clata involves itelatively presenting it with

exarnples of the correct krown answers. The objective of tlaining is to fincl the set of weights

between the neuÌons that cletellnine the global rninirnurn of the ellor function. Unless the rnoclel

is overfittecl, this set of weights shoulcl provicle goocl genelalization. The Bp network uses a

gtadient descent training algorithrn which adjusts the weights to move clown the steepest slope of

the elrol'surface. Finding the global tninimurn is not gualanteecl siuce the error sur.face can inclucle

tnany local rninir¡a fur which the algorithrn can becorne 'stuck'. A lnot'nouturn terrn and five to ten

ralìdoln sets of stal'ting weights can irnplove the chances of reaching a global rninitnurn. This

sectioll will cliscuss whelr to stop haining a neulal network ancl the selection of learning rate ancl

rnornenturn values.
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Nurnber of Tlainilig Iterations

Thele aÌe two schools of thought legalding the point at which naining shoulcl be stoppecl.

The first sûesses the danger of getting ûapped in a local rninirnu¡n ancl the clifficulty of r.eachi¡g

a global tninimutn. The tesearcher shoulcl only stop training until there is no irnproverneut in the

elrot' function based on a reasouable nurnber of randolnly selectecl stal ting weights (Masters, 1993).

The poirlt at which the uetwotk does not irnplove is callecl corìvergence. The seconcl view

advocates a selies of flain-test inte[uptions (Deboeck, 1994; Mendelsohn, 1993). Training is

stopped aftel a prcdetermfured nurnber of itelations and the uetwotk's ability to gener.alize on the

tost set is evaluatecl and n'aining is lesumecl. Genelalization is the iclea that a rnoclel basecl on a

sample of the clata is suitable for folecasting the general population. The network for. which the

testing set en'or bottorns out is chosen since it is assu'recl to gener.alize best,

The criticisrn of the flain-test plocedure is that aclclitional train-test inter.r.uptions coulcl cause

the enor oll the testing set to fall fulthel befole lising again oI it coulcl even fall asyrnptotically

(see Figure 2.5). In othel wolds, the t'esealchel has no way of knowing if aclclitional training coulcl

irnptove the genelalization ability of the netwolk especially siuce starting weights arc ranclornizecl.

Both schools of thought aglee that generalization on the valiclation set is the ultirnate goal

and both use testiug sets to evaluate a large nurnbel of uetwolks, The point at which the two

apploaches depal't celìÍes olt the notion of overtlaining velsus ovelfitti¡g. The conver-ge¡ce

apptoach states that there is no such thing as oveltlaining only ovelfitting. Over.fitti¡g is sirnply

a sylnptoln of a network that has too rnauy weights. The solution is to recluce the riulnbel. of

hiclden neurous (ol hidden layers if there is n.role tharr one) aucl/ol inclease the size of the tr.airìing

set. The tÌain-test approach atternpts to guald against oveúitting by stopping tr.aini¡g basecl on the

22



ability of the network to generalize.

The advantage of the convergence approach is that one can be rnore conficle¡t that the

global lnirrirnurn was reached. Replication is likely mole clifficult fol the hain-test approach given

that stalting weights ale usually ranclomized and the rnean colrelation can fluctuate wilclly as

trainirlg proceeds. Anothel advantage is that the ¡esearcher has two less pararneters to worry about;

natnely the point at which to stop ¡'aining ancl the rnethod to evaluate which of the tr.ain-test

netwolks is optimal. An aclvantage of the fiain-test approach rnay be that networks with few

degrees of fleedotn can be ûnplemented with bettel' generalization than convergence training which

would result in ovelfitting. Howevet, ernpirical wolk has not specifically adclressecf this issue. The

tlain-test apploach also requires less ûaining tirne.

The objective of convergence training is to reach a global tninirnurn. This requires trai¡i¡g

fol a sufficient nulnbet of iterations using a leasonable nurnber of lanclornly selected starting

weights. Even thett thete is no gualantee with a BP network that a global rninirnurn is r.eachecl

since it lnay become trapped in a local rninirnum. In plactice, colnputational Lesour.ces are jjrnitecl

and t1'adeoffs arise. The researchel rìrust juggle the nuurbel of input valiable cornbinatio¡s to be

trained, the interval of hidden neurons ovel which each netwolk is to be testecl, the nurnber of

ranclornly selected stalting weights, ancl the rnaxirnuur uurnbel of luns. For exarnple, 50 i¡put

variable colnbirlations tested ovel three diffelent hiclden neurons with five r.anclornly selectecl

stalting points and a rnaxirnurn nurnbel of luns of 4,000 result in 3,000,000 iterations (epochs). The

salne colnputatiollal time is lequired fol ten input variable cornbiuations testecl over six hiclclen

neurons with ten randomly selected starting weights and 5,000 epochs.
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One method to cletertniue a reasonable value fol the lnaxilnunl nurnber of luns is to plot

the lnean cottelation, suln of squared elrors, or other approptiate ertor Ineasure fol each itelation

ol at predetel ll.ìined illtelvals up to the point whele irnploventent is negligible (usually up to a

tnaxillrutn of 10,000 itelations). Each itelation can be easily plottecl if the neural networ.k softwar.e

creates à statistics file ol', if this is rlot the case, the rneau con'elation can I¡e l'ecor.clecl at iuter.vals

of 100 or'200 fiorn the cornputel tnouitoL. After plotting the mean conelatiou fol.a ¡umber of

Iandornìy selected starting weights, the resealchel can choose the rnaxirnurn nurnber of runs basecl

on the poiut whele the rnean correlation stops incr.easing quickly a¡rcl flattens.

The tnajolity of studies that lllention the nulnbel of training itelations report conveÌgeuce

from 85 to 5,000 itelations (Deboeck and cader', 1994; Klaussen ancl uhfig, 1994; Kohzacli, 1993).

Howevet, the lange is vely wide as 50,000 and 191,400 itelations (Klinrasauskas, 1991; Oclom ancl

Shalda, 1991) ancl tlainfurg tiures of 60 hours have also been repoltecl (Hamm et al., 1993).

Tlaining is affected by rnany paratretet's such as the choice of learning rate aud rnornentuln values,

proprietary ilnplovelneÌìts to the BP algorithni, alnong othels, which cliffer between stuclies ancl so

it is clifficult to cleteltnine a getteral value fol the rnaxirnurn nurnbel of luns. Also, the nurnelical

precisiou of the neutal netwotk softwale can affect Íailring because the slope of the er.l.or.

del'ivative can becolne vety strrall causing sorne neur¿lI ltetwork plogralìts to lnove in the wrong

dil'ectiorl due to round off errols which can quickiy builcl up ili the highly iterative tr.aining

algorithnt. It recomlnended that researchels deterr¡ine the nurnbel of iterations required to achieve

negligible iurptovetneut fol their p ticulal ploblem and test as rnany landonrJy selectecl star.ti¡g

weights as cornputatioltal constlaints allow.

24



Learning Rate and Momentuln

A BP netwolk is trainecl using a gladient descent algorithrn which fotlows the coutours of

the enor surface by always rnoving down the steepest slope. The objective of tr.aini¡g is to

rninirnize the total squarecl enors, definecl as follows (Mcclelland ancl Rumelhar.t, 19g6):

" = :f,", = I Ë f. ç,,, - o,,,)'2a ' 2? ? (2.2)

where E is the total etror of all patterns, ¿r¡ r'epleseuts the elror on pattelt /¿, the iuclex å r.anges

over the set of input patterns, and i lefers to the lth output neurou. The var.iable f,,, is the clesirecl

output fol'the ith output tteuton when the /rth patteln is presentecf, ancl O,,, is the actual output of

the ith output neuLon wheu patteln å is plesented. The learning rule to acljust the weight between

neuron i and j is clefined as:

õ¡¡ = (t¡¡ - Or) Ot,, (l - Or) (2.3)

(2.4)

(2.s)

õn; = On, (l - Or,) ô,,0 n1l

whele ¿ is the plesentation nurnber, õ,,, is the errol signal of neul.on 1 for pattern å, ancl e is the

lealning late. The learning rate is a constant of propoltionality which cleterrnines the size of the

weight changes. The weight chauge of a neulor'ì is proportional to the irnpact of the weight fi.orn

that neuron on the errof. The etrot'signal for ar] output ueuron ancl a hiclclen neurou ¿ìre calculatecl

by Eqs. (2.3) and (2.4), Ìespectively.

E
k

Lu,,,(tt+ I ) = e (õ,,¡ O¡¡)
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As an analogy to the BP training algolithrn, one can consiclel the problem of Eying to

throw a ball frorn poirtt A to point C in Figule 2.6, although in reality the error.surface is

rnulticlirnensional and caunot be represented in a graphical forrnat. The folce on the ball is

analogous to the lean.ring rate. Applying too lnuch force wiÌl cause the ball to ovel.shoot its tar.get

and it Inay never letuln to point A ol it can oscillate between poillts A ancl B. During training, a

learning rate that is too high is tevealecl when the enol function is changi¡g wiìclly without

showiug a continued ilnprovernent. Too little folce on the ball ancl it will be uuable to escape frour

point A which is evident duling training when therc is vely little or no irnprovernent in the error.

function. A vely srnall learning tate also requires u]ole tlaining tirne. hr eithel.case, the resealcher

lnust acljust the lealning late duling training or 'blainwash' the netwolk by ranclornizing all weights

and changilg the learning r.ate for. the new run through the tr.ainfurg set.

One tnethod to illclease the learning rate ancl tlrereby speecl up tlaining tirne without leacli¡g

to oscillation is to inclucle a lnolnenturn ternr in the backpropagation lear.niug l.ule. The lnolnentuln

terln deterlnines how past weight changes affect cuflent weight changes. The moclifiecl Bp naining

rule is clefined as follows:

d,u,,, (rt+l ) - e (ð¡; O,u) + u L ut,, (n) (2.6)

where c is the tnolnentuln tenn, ancl all other.tel.tns as pr.eviously clefi_necl.

The molnentutn terln supplesses side to side oscillations by filter.ing out high-frequeucy

valiations. Each new sealch dhection is a weightec{ surn of the cuuent ancl the previous gr.aclients.

Such a two-periocl rnoving average of graclients filtels out rapicl fluctuatioris ir.r the lear.ning r.ate.

Molnentutn values that ale too great will prevent the algorithrn fi'orn following the twists ancl turns

in weight space. McClelland and Rurnelhart (1986) inclicate that the ¡nornenturn terrn is especially
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useful in e or spaces containing long ravines that ale characte|ized by steep, high walls ancl a

gently sloping floor. Without a Inomelìtuln tenn, a very small leaniing rate would be requ .ecl to

Inove down the floor of the lavine which would lequile excessive ûaining tirne. By cla¡rpeni¡g

the oscillations between the ravine walls, the lnolnentuln tenn can allow a higher. learnilg rate to

be used.

Most neural netwolk software proglarns provicle clefault values for lear¡ing l.ate a¡d

lnolnentuln that typically work well. Initial lealning rates usecl in plevious work vary wiclely frorn

0.1 to 0.9 (Yoon ancl Swales, l99l; Salchenbelger et. al., 1992). cormnon practice is to starr

fiaining with a higher learning rate such as 0.7 and clecrease as training proceecls. Mauy neur.al

netwolk proglalns will autornatically decrease the lealning late ancl increase rnomerìtuln values as

convorgence is rcached.

Ilnplementation

The itnplernentation step is listed as the last one, but in fact requires careful consicler.ation

priol to collecting clata. Data availability, evaluation criteria, aricl haining times ar.e all shapecl by

the environl¡ent in which the neural uetwork will be cleployecl. Most neur.al netwolk softwar.e

venclots provide the lneatìs by which bained netwolks can be irnplernentecl either ili the ueural

lletwork plograln itself ol as an executable file. If not, a ttainecl netwol.k can be easily created in

a spleaclsheet by knowing its architectule, tlansfel functious, and weights. Car.e shoulcl be taken

that all data û ansfortnatious, scaling, ancl otheì' pal alneters lernain the sarne fi.or¡ testing to actual

use.
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An advantage of neutal uetwolk's is theil ability to aclapt to changing rnar*et conclitions

tluough periodic letraining. Once deployed, a ueural network's perforrnance witl clegr.acle over tilne

unless retraining takes place. However', even with pelioclic tetraining, ther.e is no gual.antee that

network perfortnance can be rnaiutained as the indepenclent variables selectecl rnay have becorne

less irnportant.

It is lecolntnended that the fiequency of retlaining for the cleptoyecl network shoulcl be the

satne as used during testing on the final lnodel. However, when testing a large nurnber of networks

to obtain the final rnodel, less frequent reûaiuing is acceptable in or.cler to keep training tilnes

leasorrable. A goocl rnodel should be robust with respect to letlaining frequency ancl will usually

irnprove as letlaining takes place rnor.e often.

Summaly

Neural netwolks are a type of altificial intelligence technology that lnirnic the hulnan

blain's powerful ability to tecognize patterns. The application of neur.al networ.ks in the fielcl of

financial econourics in patteln lecognition, classification, ancl forecasting is r.elatively new (Tr.ippi

and rurban, 1993). Lr theory, neulal netwo¡ks ale capable of approxirnating any continuous

functiou. Such flexibility provicles a potentially powerful folecasting tool, while at the same tirne,

the lalge nutnber of patarnetels that lnust be selectecl cornplicates the clesign process. In pr.actice,

clesigning a neural netwolk for.ecasting rnoclel involves lnuch trial ancl emor.
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Thelefore, the objective of this chapter was to provicle a practical, nou-technical

inh oductiou to c'lesigning a lreut al Íìetwork forecasting rnoclel using econornic tirne sel.ies. The

design plocedule was clivided irito eight steps; (l) valiable selection, (2) clata collection, (3) clata

pleplocessing, (4) uaining, testing and valiclation sets, (5) neural network palacligrns, (6) evaluation

critelia, (7) neural netwotk training, ancl (8) irnplernentation. Iu each step, sorne rules of thurnb,

colnt-rìon rnistakes, paral-neter selection, ancl points of clisagreernent alnong neur.al networ.k

developels wele discussed.

The success of neural netwotk applications fol an inclividual lesealcher clepencls on three

key factols. First, the reseatcher rnust have the tirne, patience ancl l'esources to experime¡t. The

telatively recent application of neulal networks in financial econornics a¡cl the lar.ge nurnber

paralneters tneans that only broad rules of thutnb have been published ancl tnuch experir¡entatiou

arrd irnagiuation is in order. Secoricf, the ueulal network softwale lnust allow autolnated l.outines

such as walk-forward testing, optirnization of hidclen neurons, and testiÌlg of input var.iable

cornbinations; eithel through diect prograrrrning or the use of batch/sclipt files. Ma¡y pr-ogr.arns

available ale inadequate fot serious cleveloprnent wolk ancl will quickly fi'ustl'ate evell the lnost

cleterrnitied reseatchel. Thit'd, the resealcher rnust rnaintain a goocl set of r.ecorcls that list all

pârarìleters fol each lletwork tested since al]y paralìleter listed in Table 2.1 nay tu l out to cause

a significartt change in neural uetwot'k perforrnance. In this way, a librar.y of what is successful

and what is not is built up.
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Table 2.1 cormnon Parameters in Designing a Backp.opagation Neur.al Network

Data Pleplocessing
frequency of data - claily, weekly, rnonthly, quarter.ly
type of clata - technical, funclarnental
niethocl of data sarnpling -
rnethod of data scaling - tnaxirnurn/rninirnur¡, rnean/stanclarcl cleviation

Training
learning rate pel layet
rnornenturn tel m
training tolerance
epoch size
leaniing rate lilnit
rnaxirnum nurnber of luns
nurnbel of tirnes to randornize weights
size of training, testing, and validation sets

Topology
nurnber of input neurons
nurnber of hiclclen layers
numbel of hidden neurons in each layer.
nurnber of output neul ons
üansfel fuuction for each neur-on
error function

30



Figure 2.1 A Feeclforwald Neural Network

Output

Output Layer

woh
Bias

Hidden Layer

whi
Bias

lrput Layer

3t



Figwe 2.2 Logalithlnic Transfortnation of Monthly Wheat Futures Tradi¡g Volurne at the
win'ipeg cormnocrity Excha'ge, Measurecl ir 20 Tonne Job Lots, r97i l7g

1992/93
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Figure 2.3 Walk-forwar d/Slìcling Wincfows Testing Routine
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Figure 2.4 Two cormnon scaling Methods Appliecl to Daily cash s&p 500 closing pr.ices,
1962 - 1993
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Figure 2.5 Possible Neur.al Network Training and Testing Set Errors
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Figure 2.6 sirnplified Graphical Repl esentatior'ì of a Neural Network E.or surface
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CHAPTER 3

FORECASTING FUTURES TRADING VOLUME USING NEURAL NETWORKS

Introduction

Neural networks ale a type of artificial intelligence technology that mirnic the hurnan

blain's powerful ability to lecognize patterns. Typical applications in finance include rnortgage r.isk

assesslnent, risk lating of exchange-traclecl fixed incorne investlnents, por.tfolio

selection/diversification, sirnulation of rnarket behaviour, inc'lex consnucdon, iclentification of

econornic explanatoly variables, and econornic forecasting (Trippi ancl Desieno, 1992). As

univel's¿l function approxirnators, neulal netwolks have the ability to hanclle nonliliear.a¡cl chaotic

tirne selies data better than ¡.aditional forecasting moclels (Master.s, 1993).

This chapter presents a neural network application in time ser.ies forecasting. Specifically,

the objective of this chaptel is to design neulal netwolks for folecasting rnonthly futures tr.acling

volurne at the Winnipeg Cornrnodity Exchange (WCE). Cormnoclities examinecl inclucle barley,

canola, flax, oats, lye, ancl wheat. Sepalate neulal uetwolks are clesignecl for each monthly forecast

up to nine lnonths ahead. The forecasting powel of the Ìreulal Íìetworks are evaluatecf usiug root

tnean squarecl etLor and mean absolute pelcentage enor, ancl ale then colnpal.ecl to the uaive rnoclel

using the Theil U statistic.

There are no fol tnal tnoclels in place to forecast futures tlacling volume at the WCE.

Curteut practice is to base Íading volurne forecasts on leceut levels ancl keep a¡y gr.owth

plojections conservative. Transaction fees on futures tracling volurne accounted for 21o/o of the

WCE's total annual opelatitig buc{get in the fiscal year 1992193. Canola accounte d for 63Vo of all

fiansaction fees over the satne per.iocl.

3'7



The volatility of futules tracling volurne rnakes forecasting ancl hence budgeting difficult.

Monthly rneati absolute percent changes over the past 16 years ale lar.ge r.anging fuotn 20o/o to 35o/a

depending ou the cotnnodity with standald cleviations langiug frorn a low of 2ïo/o fot canola ancl

a high of 557a for lye. This is the first stucly to attelnpt to forecast futures trading volurne on out-

of-sample data.

This chaptel is divicled into four rnain sections. The filst section briefly clescribes the

structule and training of the populal backplopagation neural network which is usecl in this stucly.

This is followed by a discussion of the folecasting evaluatiou rnethods and the riata, The third

section covers the design of the neulal network forecasting moclels in rnore cletail. It is apa¡gecl

illto four palts: valiable selection, data pleplocessing, neulal netwolk topology, ancl the tr.ai¡i¡g

and forecastitig procedure. The last section consists of an evaluation ancl cornpar.ison of the neural

network rnoclels followecl by a brief sulmnal.y.

Backpropagation Neural Networks

Backpropagatiorr (BP) neulal lietworks consist of a collection of iliputs ancl processi¡g u¡its

generally k¡own as either neurons, neurodes, or.nocles (see Figure 3.1), The neurons in each layer

ale fully ilìtelconnectecl by conrrection stlengths callecl weights which, along with the lletwol.k

alchitectule, store the knowleclge of a hailled netwolk. In acldition to tho pl'ocessiug neurous, there

is a bias neuron connected to each processing unit in the hiclclen aucl output layers. The bias ¡eul.on

having a value of positive one is analogous to the intercept tet'ln in a regr.essio¡ equatio¡ ancl

plovicles the network with tnore flexibitity in ctassifying nonlineal ploblerns. The neuro¡s and bias

tertns are alranged into layers; au input layel, one oi'trole hiclden layers, ancl an output layer..
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BP networks are a class of feedfolward neulal networts with supervisecl leanring rules.

Feedforwald refels to the clirection of infonnation flow fiorn the input to the output layer.. Inputs

are passed ttuough the systeln once to deterrnine the output. Supervisecl lear.ning is the process of

cornparing each of the network's fotecasts with the kuown conect auswel aud acljusting the

weights based on the l'esulting forecast e¡ror. The nurnber of input neurons is equal to the nurnbet

of indepenclent variables h the rnodel while the output neul'on(s) r.epresent the clepe¡clent

valiable(s). The nurnbel of hiclden layers and neulous withiu each layer can var.y depencling on the

size aud nature of the tlaining set.

The BP tlaining algorithm consists of a two-step plocess. Filst, inputs ar.e passecl forwar.cl

to the fil'st (ol only) hidden layer'. Fol each hidden layel neulon a weightecl surn of the inputs is

calculated by rnultiplying each input ueuLon's value by its respective weight. The weightecl sum

is modified by a f,'ansfer function which then passes the output forward to the next hiclcfen layer.

ol the output layer'. A weighted surn is calculatecl ancl passed through its ûansfer function for each

hidden layel and ouçut layel tteuton. In the seconcl step, an ellol signal is calculatecl by colnpal.iug

the forecasts at the output layel with the known conect answer. This euor signal is

'backpropagated' to the hidclen layer'(s) and the input layer with the weights being acljustecl

ptoportionally to each neut'on's conhibution to the folecast enor'. Stanclar.cl Bp ernploys an

optimization lnethod callecl glac{ient desceut to minirnize the surn of squar.ecl e¡ors of the ouput

neuron(s).
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Folecasting Evaluation Methods

Thlee critelia ale used to evaluate and cornpare the folecastiug power. of the neul.al

netwolks by comrnodity and by forecast horizon. The filst is the rnean absolute pel.centage e¡.o1.

(MAPE). It is a tneasure of the average absolute enor for each point folecast rnacle by the neural

netwol*s Divicling each absolute error by its actual observation allows cornparisons of forecasti¡g

acculacy to be rnade arnong the six corunodities. MAPE is given by

MApE=l(P,-A,)+A, l

N (3. 1)

t = r+1, t+2,...,N

whele P and A ale the predicted ancl actual values, respectively.

The secorld clitelion is the loot rnean squalecl error' (RMSE) which rneasules the overall

perfortnatice of a Inodel. It is a cormnonly usecl rneasule of folecast eruor ancl gooclness-of-fit. The

formula fol RMSE is

RMSE = (3.2)

The third crite.ion is the naive forecast. The sirnplest naive forecast is p, = 4,-r. ¡¡¡,

folecasting standard is irnplicit in the coefficients of inequality (ur) proposed by Theil (i966),

clefinecl as follows:

ur= (3.3)

E(P,-A,)2
-N-

E A,,

N
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where B = P, - Aut and A, = A, - Au,.The larger the value of u2, the wolse the lnoclel's

forecasting ability. Perfect forecasts ale irnpliecl when U, is equal to zero while U, equal to one is

equivalent to the foÌ'ecasting ability of a naive rnodel which only usecl last periocl's actual value

of the clependent variable. The neulal network's forecasting power is wofse than the uaive moclel

if U, is greater than one.

Data

Total tnonthly üaltsactions for barley, canola, flax, oats, rye, ancl wheat rneasur.ecl in 20

tonne job lots ale used to hah alld evaluate the neural networks.r Each cornmoclity's to¡4l nacling

volutne is the sutn of the hansactions of all the futules delively rnonths tl.adecl dul.ing that nionth.

Data fol the cl'op yearc 1977178 to 1987/88 ar.e obtainecl from var.ious issues of the Winnipeg

Comrnodity Exchange (WCE) Statistical Annual. The internal lecolcls of the WCE pr.ovicfecl total

trading volurne ciata frorn 1988/89 to 1992193 due to rhe change in reporting in lggg/g9. Open

interest is the daily average open interest of all futules clelivery tnonths as reportecl in the WCE

Statistical Annuals. Monthly tnean cash plice in dollars per rnetlic touÍìe is the claily aver.age close

of cash Íansactions at the WCE obtained fl'orn various issues of the Grains Inclustry Hanclbook

published by the Canada Grairrs Council. The glade of the cash cormnoc{ity chosen is basec{ on the

grade deliverable at pal on the lespective futules colìnact. The futures pr.ice ser.ies consists of the

nearby futures closing prÌces obtained from the data veuclor Technical Tools. Total proclucer.

delivelies to licensed elevatots in Albelta, Saskatchewan, ancl Manitoba wer.e obtainecl frorn the

Canadian Grain Cormnission's Visible Supplies ancl Disposition publication.
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Variable Selection

FouI rnonthly technical independent variables wele chosen as likely predictors of futures

üading volurne. These inclucle lagged tlading volurne, open interest, futures pr.ice variability, ancl

lnean cash prices. The fundatnental variable consisted of ploducer cleliveries to licensecl elevators

in the praû ies. Each of these variables is "pleplocessed" into a technical ir¡clicator. before being fecl

into the neural netwolk as an input.

Open interest reflects the average daily outstanding long or sholt positions clur.ing the lnonth

and can be ilìtelpretatecl as a lneasule of the expectecl futule positions of hedgers si¡ce intra-clay

speculators do not affect open interest. Maltell and Wolf (1987) fincl a statistically positive

cotrelation between monthly open intelest and futules tlaclilg volume for.five metals tr.aclecl on the

COMEX. This is not surplising consideling that all other things being equal, volurne will always

increase whenever open intelest changes. Futules tlading volulne ancl ol'ìe-lnonth laggecl open

interest fol all six corrunoclities on the WCE are positively couelatecl ancf together.coulcl be useful

predictols in a neural netwolk forecasting rnodel.

Plice volatility has been shown to be positively relatecl to futules ûacling volurne. Karpoff

(1987) in a sulvey paper finds that l8 out of 19 stuclies investigating the relationship between

absolute price change ancl volume report a positive correlation. Price volatility ancl volume ûaclecf

shoulcl be positively related because of the joint depenclence ou a col.nnlon unclerlyi¡g variabte

which can be intelpretated as the late of informatiou flow to the rnalket (Najancl ancl Yung, l99l).

Plice volatility is tneasurecl using the stanclard deviation of claily nealby futures prices. Heclgers

woulcl likely inclease trading in rcspoÌìse to plice volatility in order to plotect against potentially

latge cash market losses. Speculatols rnay also be attracted to the futur.es rnar.ket as the

oppoltunities for profit are increased with increasing pr.ice volatil.ity.
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Mean cash plices are inclucled as iuputs since sholt herlgers rnay believe that as rnean cash

prices are at histolic lows that there is little ueecl to heclge. Conversely, long heclgers rnay be

leluctaut to hedge as plices ale near their highs.

Producel clelivelies ale likely a good ploxy for heclging clernancl by grain hanclli¡g

cotnpanies and exporters. Hedging detnand is vely irnpoltant at the WCE since it is largely a

cotrunercial tnarket where heclgiug volurne accounts fol the rnajolity of total Íacling volurne.

Data Pleplocessing

The design of a reliable neural netwolk forecasting rnoclel requires considerable

experilnentatioli. The selection of plopel irlputs, as in any folecasting rnoclel, is likely of greatest

impoltance. The ttausfonnatiou of raw clata to rninirnize noise, highlight ilnportant relationships,

detect fiellds, aÌìd tighterì aucl flatten the clis¡ibution of the valiable to assist the neural uetwork

in learning the lelevant pattel.ns is called prepr.ocessing.

Prelirnilaly evaluation of the naining ancl testing sets ilidicated that higher. cor.relations

could be obtained by presenting the neural network with a three-peliocl alithrnetic rnoving average

of the inputs. The Inoving averages slnooth the data to minirnize noise, detect tlellcls, aud lnay

assist in captuling soltle seasonality. Other less successful pleprocessing atternptecl on the flaiuillg

and testiug sets include the use of logalithrnic flansforrnations on all var.iabtes and the use of a

seven-peliod Inoving avet'age. The three-period rnoving average was appliecl to all inputs for.each

of the six corrunoclities.

All valiables wete scaled between zero and one using mean/stanclarcl cleviation scaling.

Obselvatious plus or urinus two stanclald cleviations fiorn the lnean wele mappecl to one arrcl zero,

lespectively. This type of scaling results in a rnore uniforrn dis¡ibution ancl helps to suppr.ess the
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effect of outliers. Givell the srnall satnple size ancl the scaling rnethod usecl, no outliers were

rernoved from the training and testing sets or sarnpling was per.forrnecl.

All inputs, except fol producer deliveries, are laggecl fiorn one to telì rnonths clepencling on

the nutnber of peliods the network is forecasting aheacl, Lagging proclucer cleliveries an aclditioual

nìonth accoullts for the fact that the inforr¡ation is not publicly releasecl until the miclclle or. encl

of the following month.

Neulal Network Topology

The srnall tlailing set of 148 observations lirnitecl the size of the neural network that coulcl

be expected to procluce good out-of-sarnple lesults by avoicling an ovefittecl rnoclel. Overfitting

occuÌs when a lnodel has too few degrees of fi'eeclorn relative to its par.arneter.s. In the case of

ueu¡al netwotks, the number of weights lelative to the size of the tr.aining set detenniue the

likelihood of overfitting. The nurnber of input neurons is fixecl at five for. all neur.al networks

which should balauce the need for a sufficient set of inclepenclerìt vaûables while at the sarne tirne

limiting the nurnbel of weights in the neur.al uetwol.k.

The tiulnber of hiclclen neutons in the single hidden layel ale selectecl experirnentally basecl

on the testing set perfonnance of each neural uetwolk. Thlee, five, seven, ancl nine hiclclen neurons

were evaluated lesulting in a total of 24,36,48, ancl 60 weights, respectively, ilcluding bias terrns

and output neulons. Networks with tnorc than nirie hiclclen neurons were not evaluatecl because

overfitting is vely likely to occul as the nurnber of ü'aining facts lelative to the nurnber. of weights

apploaches two to olle. lncrclnents of two for the hidden neulons allow a reasonable range to be

tested while keeping cornputational tirnes feasible.
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One neutal network was designed fol each of the nine rnorrthly folecasts. The output neur.on

usecl in each lreural netwotk represeutecl the tradilìg volurne fol one to nile rnonths aheacl. For

exarnple, one tleuLal net"volk forccasted next rnonth's tlacling volutne while another one specializecl

in forecasting six tnonths aheacl. In all, nine neural netwolks were tlainecl for each coltx¡oclity with

each cliffering only by the nurnber. of step aheacl forecasts.

A three-layel fully interconr.rectecl backplopagation neulal networ.k is usecl in this stucly.

Ttansfer functions fol the input neulolìs ale liueal while all others ar.e sigrnoicl. Each neur.al

netwolk is rained to minirnize the surn of squared errors of all training facts.

Training and Forecasting Procedure

The multidilnensional enot sulface plesent in rnulti-layer neulal networks often contairrs

tnany local tninirna iti which the naining algolithrn can become "stuck". Local rninirna are believecl

to be especially houblesotne fol'networks with a srnalì nutnbel of hiclclen neurons, as is the case

here. (Mastels, 1993). Training each neural netwolk rnultiple tirnes using r.anclornly selectecl

stalting weights is o¡re commou lnethod to inclease the likelihoocl of not becorning tr.appecl in a

local tnirlilnutn. In this study, each neulal netwolk is tl'ained sevel'ì tilnes for 5,000 iter.ations usi¡g

randorrlly selected startir'ì8 weights which should provide for a leasonable opportunity of reachi¡g

a global rninirnurn.

The lletwork with the highest rnean correlation on the testilìg set out of the seven r.a¡clorn

sets of stalting weights is saved by the neural network. The testilg set was lanclornly selecteci fi.om

the first 168 observations. Once selectecl , the 20 testiug obsewations were rernoved from the

naining set leaving 148 tlaining facts. Randomly selecting testing obseryations is usecl to insure

that the testing set contains both volurne clecrcases ancl increases of varyilg rnagnitucles. In this
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\ ay, betteÌ out-of-sample perforrnance is possible.

The neulal network with the lowest MAPE on the test tg set for each cornrnoclity is usecl

to forecast futules trading volutne on the validation set. The valiclatiou set consists of the 24

obselvations fiorn the clop years l99lÁ)2 arñ 92/93. In situations wher.e the forecasting

petfortnance oll the testillg set is sirnild between two uetworks, the notwork with the sr¡allest

nurnber of hidden neulons will always be selectecl.

The niue sepal'ate fotecasts fol each of the six cornlnodities, testecl over fou¡ clifferent

hidc{eu neurons, with seven sets of lancforn startiug weights resultecl iu a total of 1,512 netwolks

that lequired tlaining. Training tirne fol all six cormnoclities was appr.oximately 110 hours ou a

486-DX2 66 Mhz. colnputer using the neuÌal netwolk software NTRAIN frorn Scientific

Consultant Selices. Extensive use of its batch/scr.ipt file capability was rnacle in or.cler to autornate

the training and testing proceclule.

Evaluation and Comparison

Table 3.1 presents the Theil U, RMSE and MAPE statistics fol the six cornrnoclities

exalninecl ovet a nine tnonth forecast hodzon. Ovelall, the rcsults ar.e rnixecl with forecasting

perforrnance on solne colnmodities lnuch better thau others.

The Theil U statistic colnpares the neural network forecasting power r.elative to a naive

nlodel which ortly uses last peliod's trading volurne as its inclepenclent val.iable. The neul.al

netwolks geneÌally outpetfo necl the naive rnodel, as 36 of the 54 Theil U values in Table 3.1 are

less than one. HoweveL, notable exceptions are barley anc{ rye for which the Theil U statistic is

greater thall one in l7 out of 18 cases. One possible explanation fol the poor perfotrnarrce of both

balley and rye is the lalge variability cluling the training ancl testing peliocl as cornpalecl to very
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little fluctuations fol all 24 out-of-satnple observations. Fol exarnple, barley tr.acìirrg volurne duriug

the üaining periocl regularly tauged frotn 20,000 to ovel 100,000 contlacts per.rnoÍìth (see Figure

3.2). During the validation period, tlading volurne ranged fiorn 9,000 to 25,000 conhacts ancl was

in a general decli¡e. Outliels wele not rernovecl ancl this rnay account for forecasts that are

consistently much too high. The salne argumeut can be rnade for lye.

The folecasting petfot rnance of the neulal netwolks relative to the naive lnoclel remains

stlong throughout the lìine-tnollth forecast horizon and does not appeat to cleter.iorate as the

forecast hoúzon increases. One possible explanation for this phenornenon is that the naive rnoclel

is deteliorating while the neutal network's nealby forecasts ale not as goocl. The uaive rnoclel is

expectecl to pefoltn well for the oue-step aheacl forecast as last peliocl's value is likely a ver.y

good indicatol of rrext peliod's ttadiug volurne. The neural netwolks by using a rnovi¡g average

Inay lose out on the olle-step ahead forccast, but gain acculacy fol the longer ter.p for.ecasts. This

suggests that a possible imptovement fol the neural networks rnay be to inclucle last periocl,s

tlading volume as an input for the one-step aheacl forccast to allow the network to, at least,

emulate the rraive Inodel. Fol the longel teln folecasts, the length of the rnovfurg average can

lnatch the nurnber of periods folecastecl ahead. For exarnple, a seven rnonth aheacl forecast woulcl

use a seve¡ì ol eight-rnonth rnoving aver.age.

The MAPE vary widely by cornmodity and by forecast holizon. Canola ancl wheat exhibit

the lowest MAPE langing fton 13o/o lo 25q/o wltile barley ancl rye show the highest values. The

stlong forecasting petfolrnance for canola and wheat is iikely athibutable to the l.elatively low

Inean absolute pelcentage changes froln month to rnonth ancl the consistency iu volurne var.iability

from the tr aining/testing sets to the validation set. The RMSE follows a sirnilar. patter.n as MApE

although thele are instances in which the two statistics do not rnove in the sarne clirection.
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Ill terlns of the network topology, the number of hiclclen neurons also var.y by cornrnoclity

and by forecast horizon. Out of the 54 netwolks listecl in Table 3.2,23,15, ancl 16 used ttu.ee, five,

and seven hidclen neurons, r'espectively. Nine hidclen ueurous \ryel e rìot able to per.forrn well on the

testing set which is likely indicative of sorne ovelfitting cfuling tr.aining. The süong showing of

netwolks with tlu ee hiclden neurons indicates that a srnall neural networ.k cau appl.oximate the

functiotl quite well. Howevet', a range of hiclde¡r neulons shoulcl still be testecl as the netwol.k

topology variecl considerably by commoclity and by for.ecast horizon.

Ovelall, the tesults are eucouraging fol the WCE in terrns of its financial irnplications for.

two tnain leasons. Filst, the lelatively stlollg folecastiug perfonnauce by the neur.al networks fol.

catrola arrd wheat is goocl news because these two comlnoclities cornbinecl accouutecl for over j 6q/o

of total h'ansaction fees during 1991192 and 9219?. On the other hancl, the poor. forecasting

petfortnance for rye and balley is less of a problem because togethel these two col noclities

accoutitecl fol slightly ovet 99o of total h'ansaction fees cluling the two-year valiclation periocl.

Second, the tesults are eucouragiug because the forecasts clo not appeal to cleter.iorate as the

folecast horizon increases relative to the lìaive rnoclel which is cur.rently in place.

Summaly

This stucly used the populal backplopagation neural network to forecast futures nacli¡g

volutne fot six cornmodities flacled ou the Winnipeg Cornmoclity Exchange. The fol.ecasts can

assist the WCE in budgeting its h'ansaction fees. Sepatate neural folecasting uetwork rnoclels wer.e

created fol barley, canola, flax, oats, rye, and wheat. Tr.acling volume was forecastecl up to ni¡e

lnorìths ahead with a single ueural netwolk specializing in each step aheacl forecast. The five

incleper.rclent variables used as inputs to the ueulal networks inclucle ttu'ee-per.iocl rnoving averages
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of laggecl fiading volurne, open interest, rnean cash prices, futules price variability, a¡cl proclucer.

glain delivelies. Three, five, seven, and ni¡e hiclclen neurons were tl'ainecl ar.rcl evaluated on the

testing set.

The lesults inclicate that the neulal netwolks ale able to folecast up to niue rnorrths aheacl

aud ouþetfortn the naive lnodel for all cornrnoclities except balley ancl rye. The neural network

forecasls lelative to the naive Inodel cunently in place to folecast futures ûacling volume at the

WCE do Ìlot deteriorate as the forecast horizon incleases. The results suggest that impl.ovelnents

to the neural lìetworks could be made by rnatching the rnoviug avelage length of the i¡puts to the

nut¡bel of lnonths folecasted ahead. Fol exarnple, a seven lnonth aheacl forecast woulcl use a seven

ol eight-month rnoving average.

Ill terlns of netwotk topology, neulal netwolks with ttu'ee hiclden neurons were selectecl for

23 out of the 54 networks. Networks with five ancl seven hiclcleu neurons were selectecl almost

equally often while no netwolk with nine hidden neulons pelforrnecl well on the testing set.
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Endnotes

Prior to the 1988/89 c.op year volurne of tracle publishecl in the wi.'ipeg

cornnoclity Exchange statistical Annual incluclecì the following h ansactioÍìs: all

broker allocations to plincipals, give-ups, error correctious ancl exchauges of futures

for physicals. These fiansactioÍìs are uo longer incluclecl in the volurne figur.es. since

transactiorì fees received by the wcE are basecl on total transactions, which inclucle

both long a.d sho.t tracles, it is rnore app'opriate fo. the neural 
'etworks 

to be

folecasting total oansactions for budgeting pulposes rather.than the recently r.evised

h adiug volurne figures.
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Figure 3.1 A Feedforwarcl Neur.al Network
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Table 3.1 Results of Out-of-Sample Futures Trading Volume Forecasts by Neural Network Models
199U92 - 1992/93

Forecast

Horizon Barley

l Mondr 5,891

2 Months 5,879

3 Months 9,188

4 Months 6.796

5 Months 6.728

6 Months 9.213

7 Mon¡hs 13.065

8 Monùs 16.374

9 Montlrs 15-1 I 1

Canola FIax Oars Rye Wheat Barley Canola

RMSE"

23.135 7.947 4.098

31,246 8.324 4;782

24.611 7.190 3.864

32.487 6,455 3.317

27 .47 1 7 .7 12 4.101

31.241 11.328 3.1t9

25.076 9.807 4.146

30.361 7,110 5.213.

27.933 9.248 5.010

2,908 8,107

2.918 8,214

3,896 9,031

2.949 6.603

3.137 ',7.043

3.648 7.553

3.124 9.403

2.5'79 8.255

3.016 9.303

oRoot Mean Squared Enor.
bMean Absolute Petcentage Eûor

3'.7 .4 13.1

36.9 18.9

65.6 15.4

42.8 22.5

43.5 1'7 .2

58.5 20.9

R0 ? r{ 7

113.3 19.3

107.5 19.4

MAPEI'

FlÐ( Oats Rye wlÌeat Barley Canola Fla\ Oats Rye Wheat

34.3 53.3 52.4

33.7 58.0 58.5

30.9 52.5 155.4

29.5 49.1 98.5

35.0 44.3 124.9

51-2 47.2 '70.3

44.9 58.9 91.9

33.5 '70.3 56.1

42.8 67 .1. 119.2

Winnipeg Commodity Excl.range,

19.0

19.3

r8.6

r 8.0

19.0

18.4

25.0

20.3

24-7

1.09

1.18

1.82

1.30

1.46

t.45

2.85

2.8'7

2.39

Theil U

0.82

0.98

0.81

0.88

0.89

0.83

0.64

0.90

0.78

0.89 1.17 1.13 0.85

0.96 0.98 t.r4 0.86

0.88 0.73 1.55 0.94

0-69 0.65 1.02 0.66

1.08 0.94 1.3'7 0.67

r.23 0.69 1.36 0.73

r-t'? 0.89 1.20 1.15

0.85 0.95 0.83 0.89

1.10 0.83 t.t3 0.76
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Figure 3'2 Futures Trading volume ar the winnipeg cormnoclity Excha.ge, 1g7i ng - ßg2lg3
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Figure 3.2 (continued) Futures Trading Volurne at the wi'nipeg corrunoclity Excha'ge,
197'7/78 - 1992193
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Table 3.2 Nurnber of Hidden Neurons Selectecl in Final Neulal Network Forecasting Moclels
Based on Testing Set pe¡forrnance

Folecast Horizon Barley Canola Flax Oats Rye Wheat

I Month

2 Months

3 Months

4 Months

5 Months

6 Months

7 Months

I Months

9 Months

7

-1

5

7

7

3

3

3

3

7

7

3

3

3

3

5

5

3

3

3

3

3

5

3

5

J

5

J

.J

5

J

J

3

3

5

3

7

7

5

5

7

7

5

5

5

7

7

5

7

7

7

5

7

'7
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CHAPTER 4

SUMMARY

The objective of this study was to plovide an introductory guicle to forecasting eco¡ornic

tilne selies data using neural networks. An eight-step proceclure for clesigning a neural network

folecasting model was presentecl including a cliscussion of tlacleoffs iu par.arneter selection, sorne

colnlnon pitfalls, and points of disagreernent arnong plactitioners. The clesign proceclure was then

illustlated by developing ueut'al netwolks to forecast rnonthly futur.es trading volurne o¡ the

Winnipeg Cornmoclity Exchange (WCE). The folecasts are irnportant for the WCE i¡ its buclgeting

as üansactiou fees aLe a significant sour.ce of r.evenue.

Designing a Neural Network Forecasting Model

Chapter two desc¡ibes an eight-step plocedule for clesigning a neulal rietwork forecasti¡g

lnodel. The design steps ale: (1) variable selection, (2) data collection, (3) clata pr.eprocessi¡g, (4)

laining, testing, atid validation sets, (5) neural uetwork paracligrns, (6) evaluation criteria, (7)

neulal network tlairting, and (8) irnplernerìtatiou. Among the rnany topics cliscussed, the rnost

importarrt oues ale data preplocessing, overfitting, ancl neural network üaining.

Data pleprocessing is the transfornatiou of the input anci ouçut varjables to rni¡irnize

noise, highlight irnportant relationships, cletect Eeuds, ancl tighten ancl flatten the clistribution of

the valiable to assist the neural netwolk in learning the lelevant pattenls. There ar.e,r,on, *or, ,o

plesent cfata to a neuLal netwotk such as first differencing, logarithrnic transfor.mations, ancl a

variety of technical i¡rdicatols. As a tesult, pleplocessing usually involves rnuch ¡.ial ancl error on

the tlaining ar.rd testing sets.
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Overfittirg occurs when a forecasting rnoclel has too few degrees of freeclorn. h other

words, it has lelatively few observations in rclation to its palarnetels ancl therefore it is able to

metnotize incliviclual points rathel than lealn the genelal pattelns. In the case of ¡eur.al networ.ks,

the nutnbet of weights, which is inexolably linkecl to the uurnber of hiclclen layers ancl neurous,

and the size of the tlaining set (nurnbel of observations) detelrnine the likelihoocl of overfitting

(Baurn and Haussler, 1989; Mastels, 1993). The solution is to inclease the size of the naining set

and/ol cleclease the nurnber of hidden neur.ons or layers.

Neural tietwolk training involves iteratively presenting the network with exarnples of the

correct knowÌì allswers. The objective of training is to find the set of weights between the neurons

that detetlnilre the global Ininirnurn of the elrol function. Unless the rnoclel is oveúittecl, this set

of weights should provicle good generalization. The backpropagation neural network uses a graclie¡t

descent haining algorithrn which adjusts the weights to move clown the steepest slope of the error

surface. Finding the global tninitnurn is not guaranteecl since the ellol su¡face can inclu¿e rnany

local minir.ua in which the algorithrn can becorne 'stuck'. A rnornelìtuln ter.m ancl five to ten

landorn sets of startiug weights can irnprove the chances of r.eaching a gtobal lninirnuur.

Forecasting Futures Trading Volume Using Neur.al Networks

Chaptel three presellts backpropagation neulal netwolk n.roclels to forecast rnonthly futures

tlaclittg volurne on the Winnipeg Cour-urodity Exchange fl CE). Cornrnoclities exarninecl inclucle

balley, canola, flax, oats, r'ye, and wheat. The inputs to the rreural networks consist of a ttu.ee-

pe|iod rnoving avelage of lagged tlading volume, open intel.est, rnean cash prices, near.by futures

plice variability, ancl ploducer delivelies to licensecl elevatols in the plaides. Sepa¡ate neur.al

netwolks were designed and lainecl for.each of the nine rnonthly forecasts.
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The forecastirlg power of the lleural lietworks were evaluatecl using root rnea¡ squarecl error

(RMSE) and rnean absolute percerltage enor (MAPE) ancl cornparecl to the naive rnoclel usi¡g the

Theil U statistic. Results indicate that the neulal netwotks al'e able to forccast up to nine lnonths

ahead ancl outpeforln the naive Inodel for all colnrnoclities except badey ancl r.ye. The neural

netwol'k folecasts relative to the naive Inodel cuuently in place to folecast futures tr.acling volurne

at the WCE do not cleteriorate as the fotecast horizon incleases. Neutal networks with tlu.ee hiclclen

neurons wele usecl for' 23 out of the 54 networks. Networks with five aucl seven hiclclen neurons

perforrnecl alnost equally well while no network with nine hiclclen neur.ons was selected.

Limitations and Suggestions for Future Research

This study showed that neural netwoLks ale able to forecast futures tracling volurne up to

nirle tnonths ahead fol foul cotnmodities at the Winnipeg Conirnoclity Exchange (WCE). The stucty

could be expandecl to othet' cotntnoclities traded on otheL exchanges. The preprocessiug consistecl

of a sirnple three-peliocl Inoving average. The lesults suggest that ilnprovelnents to the neural

netwolks could be rnade by Inatching the rnoving average length of the inputs to the nurnber. of

lnonths fol'ecasted ahead. In adclition, the backpropagation training algor.ithrn cannot guarantee

convergence. Thelefole, it is possible that sorne of the 54 neural networks tested on the valiclation

set Inay not have tlained sufficiently. Anothel lirnitation of this study is the srnall clata set which

irnpacts the training, testing, and valiclation sets. The srnall training set of 148 obser.vations

plovides few exatnples for the neural netwolk to leani the pattents. The ranclomly selectecl testing

set of only 20 obselvations rnay not have been sufficient to adequately test atl types of possible

patterns. Filally, the validation set of only 24 obselvations presentecl problerns for barley ancl r.ye

as appalently the patterns learned in the training set were diffelent in the valiclation set.
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