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CHAPTER1 Introduction

1.1 Power system stability

A Power system normally remains in a state of equilibrium under normal operating condi-
tions and regains an acceptable state of equilibrium after being subjected to a disturbance.
Small signal stability is the ability of a power system to maintain synchronism when sub-
ject to a small disturbance. The disturbances are considered sufficiently small if the model
used for small signal analysis is a true representation of the nonlinear system. During the
disturbances, power systems exhibit oscillations of various parameters viz. voltage, active
and reactive power flow, frequency etc., and control systems are called upon to damp out
 those oscillations. Also during normal operations, control systems’ objective is to operate

as efficiently as possible by maintaining voltage and frequency close to nominal values.

The equations governing the dynamics of power systems are nonlinear, from which it is
difficult to understand its behavior and to identify the inputs to control them. Hence, it is
necessary to transform and/or make few approximations about the system before analyz-

ing it. In small signal analysis, the traditional way of analyzing power systems and design-
1



Introduction 2

ing controllers, the differential equations governing the dynamics of power systems are
expanded about a Stable Equilibrium Point (SEP) using Taylor series and the system is
linearized using the first term of the series. By doing so it is not possible to model the non-
linearity associated with the dynamics. But now a days power demands and market struc-
ture are causing the system to operate more and more close to the point of steady state
instability, which causes the system to be more and more nonlinear. So, nonlinear analysis

is emerging as an area of increasing importance in the study of stressed power systems.

1.2 Nonlinear analysis

Recently Normal Form (NF) technique has been used for nonlinear analysis of power sys-
tems. The idea behind NF technique is to model the system up to certain degree of nonlin-
earities and to apply a sequence of nonlinear transformations that removes the nonlinear
terms, and then the closed form solution of the original system can be obtained. It has been
shown that NF analysis can be used to study nonlinear interaction among the fundamental
modes [3][7]{8][1 1]. Applications of NF analysis include control systems design
[61[9][15], and to predict inter area separation in power systems [7][8]. More recent work
has been reported as ‘Modal Series’, where a new method for nonlinear analysis has been

suggested and is claimed it to be more robust than NF analysis [12][14].

1.3 Motivation and objective

Nonlinear analysis of power systems is emerging as a new area and motivation behind this

project was to find benefits and limitations of using NF analysis in the study of power sys-
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tems. There are inherent assumptions in the theory of NF analysis, the implications of

which were never explored in the practical use of NF analysis.

The objective of the research work was to explore the implications of these assumptions

on accuracy, and fo investigate the methods of improving the accuracy of NF analysis.

In this thesis it has been demonstrated that when the inherent assumption of NF technique
are violated, it does not provide reliable information about the power system. Three indi-
ces have been proposed to predict violation of these assumptions so that NF analysis can

be applied accurately.

1.4 Outline of thesis

In Chapter 2 the basic theory of linear analysis and NF analysis are presented. Linear par-
ticipation factors using linear analysis, which are being used in traditional small signal
analysis are discussed. Nonlinear participation factors and NF indices that have been sug-

gested to quantify the nonlinearity using NF analysis are also discussed here.

Chapter 3 discusses the two assumptions underlying the NF technique. Three indices are

proposed here, which can predict violation of one of these basic assumptions.

Effect of two assumption underlying the NF technique were investigated using two test

systems: /. a set of four differential equations with 2" order nonlinearity and 2. Two-Ar-

ea, Four-Generator system. These are described in detail in Chapter 4.
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In Chapter 5, using test systems, it is demonstrated that when the assumptions are violat-
ed NF analysis becomes inaccurate and when those are complied with, reliable results can
be produced. 1t is also shown that the suggested indices can quickly identify the violation

of assumptions of NF analysis.

Chapter 6 concludes the thesis with a discussion on accuracy of indices and future direc-

tion for the research.



caAPTER2  Linear analysis and nonlinear
| analysis

A power system is inherently nonlinear as generators introduce nonlinearity because of
the swing equation, excitation limiting and magnetic saturation; and loads introduce non-
linearity due to variation in characteristics with voltage and frequency. For small signal
analysis purposes it is assumed that the generator excitation limit is not reached and that
the magnetic material of generator does not saturate, and the load is modeled as either of
or combination of constant impedance, constant current and constant power. With above
background, the power system is analyzed in small signal stability as discussed in follow-

ing sections.

2.1 Representation of power system for stability analysis

2.1.1  State space representation

A power system can be described by a set of » first order nonlinear ordinary differential

equations as

}»:i :f;'('xhxb "'xn) : i= ]9 23 cee 12 @1)
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by considering that the inputs to the system are derived from the state variables. In a vec-

tor-matrix notation form Equation 2.1 can be written as
X = F(X) 2.2)

where

X = [xp%xssn,] F=1fufo-ufi)"

X is referred to as state vector, and its entries as state variables. For the system, equilib-

rium points are those points where X = 0, and at those points the system is at rest and all
the variables are constant and unvarying with time. These are also called fixed, steady-
state, or singular points of the system. The system is said to be asymptotically stable if,
when subjected to a small perturbation, it returns to the original state. Henceforth we will
refer to the equilibrium points, where the system is asymptotically stable, as stable equi-
librium points (SEP). The equilibrium points by definition satisfy following equation

F(X,,) =0 2.3)

ep

where X, is the numerically evaluated state vector X at the SEP. The equilibrium points

sep
are truly characteristic of the dynamical system and therefore we can draw conclusions
about the stability from their nature. It is difficult to estimate the true nature of the power
system from the set of nonlinear differential equations given by Equation 2.2 and for that

purpose it is common practice to simplify the power system using Taylor series expansion

as discussed in following subsection.
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2.1.2 Taylor series expansion

The general form of Taylor series of a real function in » variables, f{x,, ..., x,), about

x =[x/ .., x,,']T for a small deviation Ax,, ..., Ax, is given by
© ] n P i
" k ' _ !
j=0 k=1 X =x/..,X,7X,

Let’s see how this can be applied to the problem of the power system. Let X, be the ini-

tial state vector corresponding to the SEP, about which the power system is being ana-

lyzed. From Equation 2.1 we have

Xisep = JiXsep) = 0 2.5)
If the state variables are perturbed by a small deviation AX, then the new value of the state
variables is x; = x;.,,+ Ax;. The new state must satisfy Equation 2.2. Hence
X; = Xigept AX; = fi(X,,, + AX) 2.6)
As perturbations are small, the nonlinear function in Equation 2.6 can be expressed in

terms of Taylor’s series expansion using Equation 2.4, with explicit terms forj = 0, ..., 2

and O(JAX]") forj= 3, as
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oy + A1) = i)+ ZD o+ LD e
1 Xsep i X:ep
2 2
18 f(X) 18 f(X)
AL
26%,0%; |, Ax At g, | A%
sep sep
2 2
1 &f(X) 10 J{X)
ul RS
3anx | A1 55 e | AT
sep sep
+0(laxt’)
where
af(X) , : — : : :
o 1s first partial derivative of function f{X) with respect to state variable x;
koix
*¥ evaluated at SEP.
x| o . . .
r. O is double partial derivative of function f;(X) with respect to state variables
OXp 0%z,

7 xy; and x,, evaluated at SEP.

o(axy is homogeneous polynomial of degree three and higher order of state vari-

ables AX, forj = 3, ..., in Equation 2.4.

Ax; can be obtained from Equation 2.5 and 2.6 and 2.7 and in compact form is given by

1

2AXTEAX+ o(lAx®) 2.8)

Ax; = A,AX+

where 4, is i™ tow of nx n sized Jacobian matrix A, also called state or plant matrix,

evaluated at SEP and is given by

o o)
ox, = ox,
A= | @.9)

ACI ey

0x; 0x, iy

b -1 " sep
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and H' is i nxn sized symmetric Hessian matrix evaluated at SEP and is given by

IhHH  FHXD
' Ox,0x; = Ox,;0x,
H=| @ -~
THH TR
0x,0x; " 0x,0%,|x )
(2.10)
As per customary notation replacing AX with X in Equation 2.8, we get
- ] T . 3
x; = AX+ EX HX+o(x) 2.11)

2.1.3 Neighberhood of SEP

A neighborhood of an SEP in n-dimensional real space R” is the set of points inside an n-

sphere with center at the SEP and radius € > 0. In linear and NF analysis the system is

simplified by assuming that it is in a neighborhood of SEP having certain properties as

discussed in Section 2.3 and Section 2.4 respectively. Before that eigen analysis of a

matrix is discussed in the following section, which forms the basis of linear analysis and

NF analysis.

2.2 Eigen properties of a matrix

Let 4 be an n x n square matrix, then there are special set of scalars associated with it

known as eigenvalues and each eigenvalue is paired with a corresponding right and left

eigenvectors. This concept is further discussed in following section.
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2.2.1 Eigenvalue of a matrix
For a given n X n square matrix 4, if there isa n x I vector U € R” # 0 such that
AU = AU (2.12)

for some scalar A, then A is called eigenvalue of A4 with corresponding right eigenvector
U. Equation 2.12 can be written as

A-r2DHU =0 (2.13)
where [ is identity matrix. Above equation has nontrivial solution if and only if

det(4-2I) = 0 (2.19)
This equation is known as the characteristic equation of 4, and the left-hand side known as
the characteristic polynomial. The n solutions of A = A, A,, ..., A, are called eigenval-

ues of A. If A is real (which in fact is the case with the power system), eigenvalues may be

real and/or complex conjugate pairs.

2.2.2 Eigenvectors associated with eigenvalues

For any eigenvalue A;, the n-column vector U, which satisfies Equation 2.12 is called the

right eigenvector of 4 associated with eigenvalue A,. Therefor we have

AU, = LU, i=12,..n (2.15)
Similarly, / x r vector V; € R*# (0 which satisfies

VA =NV, i=12,..,n (2.16)

is called left eigenvector of A associated with eigenvalue A;. The left and right eigenvec-

tors corresponding to different eigenvalues are orthogonal
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VU, =0 217
and the product of eigenvectors corresponding to the same eigenvalues are constant

iU, =G (2.18)
Where C; is a non-zero constant. It is common practice to normalize these vectors so that

V.U =1 (2.19)

2.2.3 The modal matrices

From above definitions of eigenvalues and associated right eigenvectors and left eigen-

vectors, modal matrices are defined as

v=luu,.. U] @20

V= [Vf 123 V,ﬂ @2y
%, 0 ... 0

A= 0 k_? " 0 (2:22)
00 .. %,

Each of above matrices are of size n x n. In terms of these matrices, Equation 2.15, 2.16
and 2.19 can be expanded as

AU = UA 2.23)
¥4 = VA (2.24)

ViU =1 and hence T =y (2.25)
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and from above it follows that

I _ r 7! _
U'AU = A and VAV = A (2.26)

2.3 Linear analysis

2.3.1 Basic theory

The Taylor series expansion of the system, given by Equation 2.11, is still nonlinear and

difficult to analyze, hence in small signal stability analysis it is assumed that the system is
in a certain neighborhood of SEP where O(|X]?) is negligible and Equation 2.11 can be

approximated to be

X = AX .27

The set of differential equations of above form gives rate of change of each state variable,
which is a linear combination of all the state variables. Due to the assumption that the sys-
tem is linear it is not possible to obtain the nonlinear characteristic of the power system,

which in some case may not be small enough to ignore.

Let U and P7T be the right and left eigenvector matrix associated with A, the diagonal

matrix of n distinct eigenvalues A, i = I, 2, ..., n for state matrix 4. Then using transfor-

mation

X=UYy 2.28)

Equation 2.27 is transforms into

ble
I

AY 2.29)
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where Y is a new state vector. Equation 2.29 represents » uncoupled first order differential

equations
Yi = Ay 2.30)
The time domain solution of above in terms of initial condition of state vector Y, (Y,), is
given by
y{#) = yipe! (2.31)
From Equation 2.28, the time domain solution of the original state vector X is given by
n
X0 = 2, U,y ee’ (2.32)
j=1
Thus, the response of the system is given by a linear combination of r-dynamic modes

corresponding to the n-eigenvalues of the state matrix. The scalar y;, represents the mag-

nitude of the excitation of the i mode resulting from the initial condition.

2.3.2 Participation factor

If only k" state variable is excited by magnitude of unity, X, = [0, ..., 0, 1,0, ...0], then
0

from Equation 2.25 and 2.28, y,, = Vﬂc, and time domain solution of state variable from

I

Equation 2.32 is given by

x(t) = Z U, Ve (2.33)
j=1
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The elements U}; V;f; are termed as participation factors p;; and are measures of the rela-

tive participation of the k™ state variable in the /™ mode and vice versa [13]. In terms of

participation factors Equation 2.33 can be written as

x{t) = Zpk,-e;‘f’ (2.34)

j=1
Participation matrix is given by

U]]VTJ] e UJHVTHJ'

P= S (2:35)
U, Vi oo Uy Vo

2.3.3 Initial condition in linear analysis

Though linear analysis is initial condition independent (Section 2.5), to verify the plant
matrix A4, of the power system, closed form time domain solution of the state variables
given by Equation 2.32 is compared with that of nonlinear model obtained by numerical
integration method. For that purpose it may be necessary to obtained the initial conditions

of the modal variables, which can be derived using first four steps, described in Subsec-

tion 2.4.4.

2.4 Normal Form (NF) analysis

24.1 Basic theory

To understand the physical phenomena of a nonlinear system it is necessary to model it
with nonlinearity. In NF analysis the system is modeled with nonlinearities up to a certain

degrees, then using a sequence of transformations these nonlinear terms are removed suc-
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cessively and finally reducing the system to the linear one. Here we will restrict discussion

to models with 2 order nonlinearity and the transformations of up to 2@ order.

By assuming that the system is in a certain neighborhood of SEP where O(|X]7) is negli-

gible, Equation 2.11 can be approximated to be
. ].T .
x; = A X+ §X HX (2.36)

This is a set of differential equations with homogeneous polynomial of the state variables
of degree 1 and 2, and gives rate of change of the state variables as a quadratic function of
the‘state variables. Using different notation Equation 2.36 can be written as
X, = ZA,-J-xj + gz D Hy xx @37
j=1 j=lk=1
By using the transformation given by Equation 2.28, the same transformation that was

used for linear analysis, Equation 2.36 in terms of new state vector ¥ becomes

) 7 I S
Yi = ?L,yﬁgz Z G YV (2.38)
j=lk=1
where
; ] non _n
Cjk - EZ Z Z V?;HJmoUijok (2.39)
I=1 m=1 o=1

In Equation 2.38 the first term is linearly uncoupled, however the second term is still non-
linearly coupled. According to Poincaré’s theorem a power series given by Equation 2.38
can be reduced to its linear form at an SEP by applying series of nonlinear transformation

if the eigenvalues are nonresonant ([2], §22 and 23). However, here we will not apply
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series of transformation, instead we will limit to one nonlinear transformation. In the
absence of second order resonance, i.e. A;#A;+ A, for all #-tuple of eigenvalues, the

transformation given by

yp =1zt Z Zh?.i,zkz, (2.40)
k=11=1
where
. c!
= ik
h2,, TR T (2.41)

eliminates the 2@ order term in Equation 2.38 and in terms of new variable Z it becomes
z; = Az + 0(12)) 2.42)

Please note that due to nonlinear transformation, the 2™ term has been eliminated, how-

ever the 3™ and higher order terms have been introduced, which were originally absent in

differential equations in state space and modal space. By assuming that the system is in the

neighborhood of SEP of Z space where O(|21) is negligible then the system is linearly

uncoupled and is given by
z. = Az, (2.43)
The time domain solution of Z variable (Z(#}) is given by
z; = zjoe?‘f' (2.44)
Time domain solution for ¥ variables, (¥(#)), and state variables, (X(#)), can be constructed

from above and from the transformation definitions, and are given by
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" n
; i o+ A
VAE) = zge D D 2l gz et R (2.45)
k=1 ]=1]

I i3 7 n
x(f) = Z Uyz;pe™ + Z Uy[z Z h2ljdzkozme(l"+l’)i] (2.46)
j=1

j=1 k=11=1

2.4.2 Nonlinearity indices

Several measures of the nonlinearity in ¥ coordinates were proposed in [7] based on the 42

coefficients and the initial condition of a transient.

An interaction coefficient is defined as
h2,2:074 (2.47)

to quantify the effects of second order terms on the transient solution.

The nonlinear interaction index /7 for mode j is defined as
11(j) = l Yio—=Zjot mka;c(h2,i;zkozm) [ (2.48)

It gives the measure of the effect of the nonlinear terms in the solution by comparing the
linear solution to the second order solution of modal Y coordinates.

Nonlinear interaction index 12 for mode j is defined as

max(h2 J{!zkﬂzlo)

12(j) = 2!

%o (2.49)
It determines whether the nonlinear effects arises from the second order terms indicating a
strong modal interaction, or whether the second order terms affect the initial solution in

the Z coordinates indicating a dominant fundamental mode [16].
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Large value of interaction coefficient or indices /1 and 2 correctly reflect the high nonlin-
earity of the system in modal coordinates, but do not necessarily imply that the system has

significant nonlinearity in the original X coordinates [10].

2.43 Nonlinear participation factor

Nonlinear participation factor is defined by extending the idea of linear participation fac-

tor [8]. If only K" state variable is excited by magnitude of 1, X, = [0, ...,0,1,0,...0],

then from Equation 2.25 and 2.28, y;;, = V,-?;C = V.

Since ¥ = O(]Z]) , the inverse of Equation 2.40 takes the form ({1], 2.3)

z; = y;—h2(Y) + O(|1%) (2.50)

By neglecting O(|Y]?) approximate solution of Z variables is given by
Zig™ Vi — Z Z hZ;,'qvpkvqk : (2.51)
p=149=1

and from Equation 2.46, the time domain solution of state variables is given by

n l‘_f n n l l
5ty Dup2e + D1 D p2i,ets 2:52)
i=1 p=i =1

where,

P2 = uki(vik_ 22 h2§qvpkvqkj 2.53)

p=14a=1
There are two types of second-order participation factors. The first participation factor
p2,; represents the second order participation of k" state in the i mode. It can be seen

that the linear participation factor p,; = u,v;;, 1s the first term in above and the second
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term can be thought of as providing second order corrections to it. The second type of sec-
ond order participation factor p2;,, represents the participation of the K* state in a new

mode A, + 2, formed by combination of the original mode p and g.

Please note that above definition of nonlinear participation factor is approximate due to

the fact that solution of Z variable, the inverse of nonlinear transformation, is approximate.

2.4.4 Initial conditions in NF analysis

The closed form time domain solution of modal variables Y, and state variables X in NF
analysis can be obtained as shown above. In order to obtain these solutions, the initial con-

dition in Z space is required, which can be obtained as follow [7].

1. Values of state variables immediately after clearing a disturbance or from the tra-

jectories of state variables after clearing a disturbance is obtained as X,
2. Values of state variables at post disturbance SEP is obtained as X,

3. The initial condition for state variables with respect to SEP is obtained as
Xy = Xy —Xsep .

4. Using Equation 2.28, the initial condition of modal variable can be obtained as
Y, = UX,.

5. Then simultaneous solution of following n-nonlinear equations, using known

value of Yy, gives initial condition Z,;.

2+ h2Z) =y = 0 (2.54)

No explicit solution exists for above equations and one has to resort to a numerical
technique to solve it, which needs an initial guess value, Z0guess . There exist multiple

solutions to Equation 2.54 and the converged value depends on Z0guess. However,
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the most sought after Z is the value which gives minimum O(|Z}°) in Equation 2.42,

hence selection of initial guess is one of the key steps in NF analysis. Any random

value can be used as a guess value, however it is unlikely that it can produce converged
value of Z; which can be useful in NF analysis. Following are suggested Z0guess val-
ues that can lead to a correct solution.

1. From Equation 2.50 it can be said that best guess value can be

z0guess; = y;o— h2(Y,) 2.55)
2.  Second suggested guess value is

zlguess; = yj
3. Third suggested guess value is
zlguess; = 0
4. Fourth suggested guess value is the converged value of Z, in a different case or

any random guess.

2.5 Initial condition independent linear analysis

The Taylor expansion of the nonlinear system around an SEP is again nonlinear. In linear
analysis, for analysis purpose, it is assumed that the system is in the neighborhood of SEP
where O(|X]?) is negligible and the system is linear. If the system is free and not at SEP
then the system will move from its initial condition, defined as state of the system with
respect to a fixed point, towards an SEP with time. If the initial condition of the system is
'not in the neighborhood of the SEP, where the system can be assumed to be linear, then
while moving towards the SEP at a particular instant it will enter that neighborhood and
will remain inside of it and settle to an SEP. As the system is assumed to be linear, the
properties of the system predicted by linear analysis are unique, irrespective of the state of

the system when it enters the neighborhood. Hence linear analysis is initial condition inde-
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pendent, when analyzing the system in the neighborhood of SEP where O(|X]?) is negli-
gible. Because of its initial condition independent nature, linear analysis is a widely used
tool to study small signal stability analysis of power systems, which can be used to iden-
tify local area modes, inter area modes and to select location and input of controller and

design controller to improve the system performance.

2.6 Initial condition dependent NF analysis

In NF analysis it is assumed that the system is in the neighborhood of SEP where O(|X]%)
is negligible and the system can be assumed to be quadratic. As described in Section 2.5 if
the system is not in that neighborhood of SEP then, while moving from an initial condi-
tion, it will enter that neighborhood at a particular instant and will remain inside of that
neighborhood and settle to an SEP. However, the system is assumed to be quadratic in that
neighborhood hence the properties of the system predicted by NF analysis will depend on
the state of the system when it enter into that neighborhood. Hence, NF analysis an initial

condition dependent analysis, when analyzing the system in the neighborhood of SEP

where O(1X]°) is negligible. In the reported studies to date, the NF analysis has been

applied to the power system by considering a disturbance and using the state of the system

immediately after clearing a disturbance to calculate initial condition.

Next we will investigate NF analysis by using initial condition obtained by applying a dis-
turbance and vsing the value of state variables from their trajectories, in addition to that

obtained using the values of the state variables immediately after clearing a disturbance.
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analysis

As mentioned in Subsection 2.4.1 there are two basic assumptions underlying the NF anal-
ysis and as discussed in Section 2.6 NF analysis is initial condition dependent. It is neces-
sary for initial condition to be used for NF analysis to comply with the assumptions,
otherwise NF analysis will not be accurate. The assumptions are discussed in detail here

and three indices have been proposed that can identify failure of one of the assumptions.

3.1 Assumption A

3.1.1 In state space O(|X]?) is negligible

- Consider a power system in which a disturbance occurs, and upon clearing the distur-
bance, the system settles to an SEP. Let the value of state variables at SEP be X, which
is used to derive A and H matrices for second order small signal model given by Equation
2.36. Then let X be the state of the system at a given instant on the post disturbance trajec-

tories of the state variables. Then initial condition for the model is given by

22
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X, = X-X

sep*

One of the possible choice for X is the state of the system immediately

after clearing a disturbance, X, which has been used in reported studies to date.

In NF analysis Equation 2.36 is assumed to be an approximation of Equation 2.11. In other

words the system should be in the neighborhood of SEP where O(|X]%) is negligible.
From Equation 2.4 and 2.7 it can be seen that two parameters decide the size of O(|X]%) .

The first parameter is K partial derivative of F(X) evaluated at X, ,, which is system

ep?

dependent, and second parameter is its corresponding multiplier, (Ax,) . For a given oper-
ating point only choice left to user is to select initial condition X;; (= AX) appropriately,

i.e. sufficiently close to the SEP, such that O(|X]7) becomes negligible. Hence it is nec-

essary to validate X)) for Assumption A

3.1.2 Strategy to validate Assumption A

The time domain solution of Equation 2.2, which represents the true nonlinear dynamics
of the states, and Equation 2.36, which is an approximate representation of the nonlinear
system for NF analysis, can be compared. The time domain solution of these equations
can be obtained using numerical integration technique and initial condition X,. Equation

2.2 has SEP at X=X, while Equation 2.36 has SEP at X=/0], hence care needs to be

exercised while comparing the time domain solution. If the time domain solutions of the

state variables obtained by the above two methods are not in good agreement then it can

be said that the chosen initial condition is not sufficiently close to the SEP so that O(1X]°)
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becomes negligible. Or in other words, the system is not in the neighborhood of SEP

where O(1X]?) is negligible.

As a theoretical approach Assumption A shall be validated using the time responses of all
the state variables, which can be a formidable task in the practice. Hence, from the practi-
cal application point of view we suggest to compare the time responses of few most non-

linear state variables, e.g. speed or angle variation of generators in the system.

The time domain solution obtained for above two equations will be compared using prony
analysis method. Practical issues in use of prony analysis, and the strategy to be used are

discussed in Subsection 3.1.3.

In the reported results so far, the values of the state variables immediately after clearing a
disturbance have been selected to calculate initial condition Xj. If X, derived at the instant
of clearing a disturbance does not meet the Assumption A, then we propose to select the
initial condition from the trajectories of the state variables at a subsequent instant that can
meet these assumptions. Because, as discussed in Section 2.6, even if initial condition is
not in a certain neighborhood of SEP, with time the system will move closer to an SEP and

at a particular instant it will enter that neighborhood.

3.1.3 Using Prony analysis to compare time domain responses

Prony analysis is a methodology that extends Fourier analysis by estimating frequency,

damping, strength and relative phase of that component present in a given signal. And
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here prony analysis will be used to comipare the two time responses as mentioned in earlier
subsection. However, the following important practical issues need to be considered for

the sensible use of the method [17]:

1. Sampling time selection, i.e. time interval between two consecutive sample of the
signal

2. Data window selection, i.e. the time duration of the signal

3. Data de-trending, i.e. removal of steady state values from the signal

4.  Model order selection, i.e. estimating of number of modes present in the signal

Prony analysis will produce most accurate result when sampling time is in the order of
10.01 s (issue 1) and that is what we will use in our analysis. Results using prony analysis
will be inaccurate for very small or very large sample data length (issue 2). And also the
result is inconsistent for two different data length of minor difference, e.g. prony of time
length 20.0s and 21.0s will be different. To perform prony analysis, the signal will be gen-
erated using numerical integration technique, and data will not have any white noise
present in the signal. Hence, issue 3 does not pose any problem in the application consid-
ered. In the commercially available software that is used here to perform prony analysis,
the users do not have the choice of model order selection. Hence, we do not have control

over issue 4.

Though issue 1 has been taken care of, and issue 3 does not pose a problem, because of
other limitations prony analysis of a given signal for two different time window of minor
difference will generate inconsistent results and care needs to be exercised in interpreting

those results. However, prony analysis predicts the low frequency and low damped modes
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with good accuracy. Hence, we recommend to perform prony analysis of the signals for a

given time length and compare the lightly damped low frequencies.

3.2 Assumption B

3.2.1 In Zspace O(|Z]%) is negligible

From state space, the system is transformed to the modal space using linear transformation
and from modal space, it is transformed to Z space using a nonlinear transformation. After

these two successive transformations the system takes the form of

z; = Mz, + O(|Z) 3.
where the 2™ order terms are absent and the 3¢ and higher order terms appear. To obtain
time domain solution of Z variables it is assumed that O(|Z]’) is negligible and Equation
3.1 canbe aﬁproximated to be
(G.2)
Or, in other words, it is assumed that in Z space the system is in the neighborhood of SEP

where 0(]Z]") is negligible. For this to be true Z, should be sufficiently small or should

be sufficiently closer to an SEP of Z space. And for that reason it is necessary to validate

converged value of Z, for Assumption B.

3.2.2 Criteria to validate Assumption B

Following subsections suggest indices and corresponding criteria that can be used to vali-

date Z, for Assumption B.
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3.2.2.1 Criterion 1: Relative value of O(|Z|’) should be small
Numerical value of O(}Z] 7) at t=t; (at the instant when X} is being calculated) in Equation

3.1 can be calculated by computing (a) the exact value of time derivative of Z variables at

t=tp, Z o1uat » Which takes into account both the terms in Equation 3.1, and (b) the approxi-

mate value of time derivative of Z variables at t=¢, Zappx, which takes into account only

the first term.

The numerical value of Z,....1, can be calculated using the exact value of time derivative

of X variables at 1=, X aeruar» computed using the known values of X)), and using X'to ¥

‘and Y to Z variables transformation definition and using converged value of Z; as follows.

Substituting value of X, in Equation 2.37 gives X nar @S

n n__n .
Racat, = DA%+ éz D Hy x%, (.3)

j=1 j=lk=1
Usih_g definition of X to ¥ transformation ¥,..,.; can be calculated as

) T .
Yac:ual = VXactual (3-4)

Taking time derivative of ¥ to Z transformation defined by

yi =zt Z thl{lzkzl (3.5)
k=1 1=1

and substituting converged value of Z, gives following relation between Yoeruar and

Zactual as
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n n non
. _ . ; 1] j -
yacrua{f - zactualj + Z Z kz,:'c[zactua!kzm + Z Z hzklzkazacrual,

k=1 1=1 k=11=]

Rearranging above yields

n n n n
. o . I
Yactual, = Zactual, + Z thlzkzacmalrzka + Z thk,vzkozac:ual,

k=11=1 k=1 1=]

n n
yacrualj = Zactualj + Z (Z (hsz + hzil)zkﬂj zac!ualf

I=1 “k=1

(3.6)

X))

3.8)

By using following definition of M matrix elements, m, which is first partial derivative of

h2(Z) in Equation 3.5, evaluated at Z=Z, Dh2(Zy),

n

my = 2L (h2h+h2lzig.
k=1
Equation 3.7 can be written as

n
yacrualj = zactuaij + Zmﬂzacruai,
=1

Above can be written in the matrix form as

n
. . Z MyZactual,
Yactual, Zactual, =1
Yactuai, Zactual i .
mn[zacmalf

Upon rearranging

(3.9)

(3.10)

(3.11)
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Yactual Zactual M ... m Zuactual
i 1 I In 1

My .. M

yacrua!" Zactualn nn zactua!,,

In more compact form above can be written as
Yaetuar = 1+ M)Zoctual (3.13)
Using Equation 3.4 and 3.13, exact numerical value of time derivative of Z variables,
Z el » €aN1 be calculated as follows
Zaotuar = U+ MT Yactuar (314)

The values calculated using above formulae gives true numerical value of time derivative

of all Z variables at £=t; and takes into account both the terms in Equation 3.1.

The numerical value of approximated time derivative value of Z variables, Zappx , can be

computed by substituting the value of Z, in Equation 3.2 as
Zappx, = NZjo (3.15)

Therefore, the relative value of O(|Z]%) in Equation 3.1 at t=¢), as a % of Zernar a0 be

calculated as

0Z3 = |Z“‘“"’*Z“Pp"|100 % (3.16)

IZacruali

The above value gives the size of O(|Z]?) that is being neglected and gives an estimate on

how farther the system is in the Z space from the neighborhood of SEP where O(|Z}%) is
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negligible. Larger the value farther the system is from this neighborhood and Assumption

B is more likely to be inaccurate. Hence, we propose index EI7 as
EIl = max(0OZ3) 3.17

which is the maximum value in n-row vector OZ3.

While validating Z, for Assumption B, this criterion is said to be met if EIJ < ] , where

el is a system dependent pre-specified value, which can be in the range of 500-1500 from

the many simulations performed on the small test system used in this thesis,

3.2.2.2 Criterion 2: The effect of neglected O(}Z]’) should be small in state space

By neglecting O()Z]”) the time response of Z variables can be obtained and using the def-
inition of the transformations, the time response of state variables in terms of Z variables
éan be obtained. The approximate value of X at t=t;, X,,x, by neglecting O(|2]") can be

calculated as follows

Yapps = [T+ M1 Zgppx 3.18)
Xappx = U pps (3.19)

Relative error introduced in time derivative of states in state space is given by

0X3

—_ IXactua] - Xappxl

IXactuaIl

100 % (3.20)

The above value gives the size of the error introduced in state space by neglecting O(}Z]%)
in Z space. Large value is an indicator of significant error introduced in state space by

making an approximation in Z space. Hence, we propose index FI2 as
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EI2 = max(0X3) (3.21)
which is the maximum value in n-row vector OX3. While validating Z;, for Assumption B,

this criterion is said to be met if E/2 < g2, where €2 is a system dependent pre-specified

value, which can be in the range of 500-1500 from the many simulations performed.

3.2.2.3 Criterion 3: Eigenvalue of Dh2(Z,) should be sufficiently small

Differential equation of modal variables is given by Equation 2.38 and in general form it

can be written as
¥ = AY+g2(Y) (3.22)
where g2(Y) is second order function of modal variables. Then by using transformation
Y=2+h2(2) (3.23)
Equation 3.22 can be transformed to
Z=AZ+ o(Z]% 329

where 2™ order terms are absent. Following describes how using a suitable choice of

h2(Z) above can be achieved (section 2.3 of [1]).

Taking time derivative of Equation 3.23 and expressing in terms of Z yields
Z = (I+Dh2(2)) 'Y (3.25)
where Dh2(Z) is first partial derivative of h2(Z} with respect to all the Z variables, which is

a first order function. In above, substituting expression of ¥ from Equation 3.22, and

expression of Y from Equation 3.23, yields



Validating initial conditions in NF analysis 32

Z = (I+Dh2Z)Y 1 (A(Z+ h2(Z)) + g2(Z + h2(Z))) (3.26)
Using Binomial series if we can assume
(I+Dh2(Z))! = (I-Dh2(Z)+ 0(|Z]%)) (3.27)
then Equation 3.26 can be written as
Z = (I-Dh2(Z) + O(ZDYWA(Z+ h2(2)) + g2(Z + h2(2))) (3.28)
Expansion of above yields
Z = (I-Dh2(Z) + O(ZIDNAZ+ AR2(Z) + g2(Z) + O(|Z]%)) (3.29)
Z = AZ—(Dh2(Z)AZ - Ah2(Z)) + g2 Z) + 0(|2%) (3.30)
The transformation matrix 22(Z) is chosen such that
Dh2(Z)NZ-Ah2(Z) = g2(2) (3.31)

This is known as the homological equation associated with linear vector field AZ ([1],

2.3). When Equation 3.31 is satisfied, Equation 3.30 essentially becomes Equation 3.24.

So, in the NF theory it is assumed that (I + Dh2(Z))~! = I-Dh2(Z)+ 0(|Z]?) using
Binomial series. The O(]Z|°) is minimum when maximum of absolute eigenvalues of
Dhn2(Z) at t=t), Dh2(Z,) (=M, given by Equation 3.9), very close to zero. Hence we pro-
pose index EI3 as

EI3 = max(abs(eigenvalue(M))) (3.32)

which is the maximum absolute value in n#-eigenvalues of matrix M. While validating Z,

for Assumption B, this criterion is said to be met if E/3 < &3, where €3 is a system depen-
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dent pre-specified value, which can be in the range of 0.6 to 0.85 from the many simula-

tions performed.
3.2.3 Strategy to validating Assumption B

Y,=VIX,

A4

¥ Select Z0guess

Select X,ata
subsequent instant Calculate Z; by
solving Equation 2.54
All the possible

Z0guess have
been tried?

Yes

El2<g2?
Criterion 2 met?

Ef3<g37
Criterion 3 met?

No

Yes
£y meets
Assumption?

Figure 3.1 Flowchart to validate Assumption B

The value of Z, can be computed as described in Subsection 2.4.4, which has multiple

solution for a given value of ;. Once the X}, is validated for Assumption 4, the converged
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value of Z, can be validated for Assumption B using above three criteria as shown in fol-

lowing flow chart.

3.3 Validating initial conditions

As discussed in above sections, there are two assumptions, one in state space and another
in Z space, and it is necessary for initial condition in the respective space to comply with

the assumptions.

To completely validate initial conditions for NF analysis, first state space initial condition,

Xp, should be validated for Assumption A as described in Subsection 3.1.2. If X, complies
with this assumption at a given instant, then X}, derived at a subsequent instant will also
comply with the Assumption A, and without validating new X, it can be assumed that X,

derived after that instant is an appropriate initial condition in state space. This is because
of the fact that once the system enters into a certain neighborhood of SEP, then the system
will remain in that neighborhood forever if the system is free and asymptotically stable

(Section 2.5).

Then Z space initial condition, Z;, should be validated for Assumption B as described in
Subsection 3.2.3. As nonlinear transformation is used to map the state space into Z space,

the system being in the neighborhood of the SEP of state space where O(|X]°) is negligible

(or Assumption A complied with) does not necessarily mean that the system is also in the

neighborhood of Z space SEP where Of|Z|’) is negligible (or Assumption B also complied
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with). Hence, this is a necessary step in the process of complete validation of the initial

conditions. If Z,, complies with this assumption at a given instant, then Z, derived using Xj

of a subsequent instant will not necessarily comply with the Assumption B and it is neces-
sary to follow all the steps described in Subsection 3.2.3. This is because of the fact that

there exists multiple solution for Z, for a given Y. And depending on Z0guess, new con-
verged value of Z; may not fall on the trajectories of Z variables, given by the solution of

the set of differential equations using the previous appropriate Z.




CHAPTER4  Test Systems

The application of NF analysis will be investigated using two test systems. The criteria
developed so far will be tested on the set of four nonlinear differential equations having
four state variables, which will be easier to analyze and understand. Then, developed crite-
ria will be further tested using 2-Area, 4-Generator system. These systems are described in

the following sections.

4.1  Test System 1: Nonlinear differential equations

Following is the set of four nonlinear differential equations, which has 2" order nonlin-

earity [10].
31 N I A A I ]0
Xof =t =1 0 I}ixa Eexf @1
ST R AU B 1 E3 R
% 0—-]u—1_x4_ 0
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where p and ¢ are small real constants. € decides nonlinearity in the system and the non-

linearity increases with increasing value of |¢]. For &€ = 0 the system is linear. The 4

matrix of the system has two pairs of complex conjugate pair of eigenvalues
Aphy = —1+Juti Mgy = —1—Auti @.2)
Hence, p decides proximity to first order resonance, defined as A; =4, i#/. When

lu| — 0, the two pairs of eigenvalues moves closer and when pu = 0, the two pairs of
eigenvalues coincide with strong resonance at — / + i . In this study, we will select the case

with p = 0. For the system, right and left eigenvector matrices, Hessian matrix and non-

linear transformation matrix h2(Z) are

1 1 1 1

U= N Ju —dp u - 4.3)
J2(0+w i i - i

i/ i i i

-Iimi;l_—
[T/
1L L
L L [N [TR /Y @.4)
22 L L
NTa—
-1 ~i
l—= i -—=
NIRRT
ey = € ii=2 j=k=1 (4.5)
=0 ; Otherwise
; ___IH-I
Cﬂ{:_i_)___ @.6)

S2u(p+1)



Test Systems 38

; g(~1)i*!

h2y = @.7)
® 80y + b= MR+ D)

4.2 Test system 2: Power system

2-Area, 4-Generator power system, shown in following figure, is used for analysis pur-

- poses.
Bus-1 Bus-2 Bus-5 S00MW
0.0025+j0.025 ) 256MVAR
- -2 «
Gen,-1 Gen. : Area-1
=
-~y
2 Area-2
Gen.-3 Gen.-4 =
() ( ) ' 1400MW
0.001+0.010 250MVAR
0.0025+j0.025 ——> -254MVAR
Bus-3 Bus-4 Bus-6

Figure 4.1  Single line diagram of 2-Area, 4-Generator power system

Area-1 is sending area and Area-2 is receiving area. Bus-1 is slack bus for the Area-1, and
Bus-3 is slack bus for the system and for the Area-2 as well. The two areas are connected
through a weak transmission line having high impedance, because of which the system has
low damped inter-area mode. Here generators are represented by a two-axis model with
exciter and load is modeled as constant impedance. More details about the power system
can be found in Appendix A. NF analysis will be studied for the power system at various

operating points and with different contingency. It is further discussed in Chapter 5.
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4.3 Performing NF analysis

4.3.1 Software and executable files

To perform NF analysis following software packages are being used:

1. Power World Simulator (PWS):

To generate converged load flow data in raw data and IEEE format.

2. Dynamic Security Assessment (DSA) software:

Transient Security Assessment Tool (TSAT) and Small Signal Analysis Tool
(SSAT) are part of DSA software. TSAT is used to simulate fault on the sys-
tem, to generate time response of various variables, and to perform prony anal-
ysis of time response of a variable. SSAT is used to calculate the eigenvalues

of the system, which can be compared with that obtained during NF analysis.

3. MATLAB:

To plot time response of state variables, calculate eigenvalue of M matrix.

4. NF analysis software:

This is set of executable programs written in Fortran, originally developed at
Towa State University, and we greatly acknowledge the support provided by
Dr. V.V. Vittal by supplying Fortran code of this software.

Parts of this software are executable files qybus.exe and gybus.exe to generate
Y-bus data of the system, and main.exe to perform NF analysis on the system

and generate all the necessary data for analysis purpose.
5. Auxiliary software:
Executable program makegstate.exe, developed in Fortran, 1s used to generate

initial condition data.
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4.3.2 Performing NF analysis for power system

Following describes the set of sequences and input data file need for complete NF analysis

of the power system described above.

I. Solve load flow case in PWS.
User Input: Generator bus voltages, load and inter-area power flow
Output files: Saved cases of the load flow in raw data and IEEE format.

2. Run TSAT case to simulate a disturbance. Disturbance will be applied such that
after removal of the disturbance the system will settle to the same operating point

that before disturbance.

Input files: Case file, load flow data file generated during Step 1, dynamic data

file, contingency file, and output specification file.

Output files: Time response of generator variables voltages, active power,
reactive power, and state variables speed deviation, rotor angle, and exciter

state variables xel, state 2, and Efd.

3. In MATLAB simulate exciter models using simulink toolbox.

Input files: Time response of exciters state xel generated in Step 2.
Output files: Time response of exciters state xe2.

4. Run Gstate.exe to generate the system data at a given time.

Input files: Generators variables created in Step 2 and Step 3.
User input; Time ¢ at which to produce the system data.
Output files: Data file of state of the system at «.

5.  Run gybus.exe.

Input file: Load flow data from Step 1, and data file indicating internal reac-

tance of the machine and list of buses that are to be retained.

Qutput file: Temporary Y-bus
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6. Runmgqy.exe.
Input files: Temporary Y-bus from Step 5, and inter reactance of the machine
but with -ve sign for each bus.

Output file: Y-bus of the reduced system.

7.  Run main.exe
Input files: Load flow data from Step 1, dynamic data, Y-bus data from Step 6,
state of the system at SEP and at t=¢, from Step 4.
User input: Initial guess for Z, state variable number, time step and time

length to generate time response of state variable using numerical integration

and other closed form solution expressions.
Output files: X, ¥y, Z,, interaction indices // and 12, time response of state

variable, data of M matrix elements and other auxiliary data.

8. Execute MATLAB program files.

Input files: Time response of state variable from Step 2 and Step 7, data file
containing M matrix data.

Output files: Graph of state variable time response given by various methods

and expressions, eigenvalue of M matrix.

To perform a particular analysis it may not be necessary to use complete procedure men-

tioned above, however it describes general flow of various data files.



CHAPTER S5  lestresults

So far two assumptions underlying the NF analysis have been identified. One test strategy

has been proposed to validate X, for Assumption A, and three test criteria have been pro-
posed to validate the converged value of Z, for Assumption B. Test systems described in

Chapter 4 will be used to verify that the violation of these assumptions can produce inac-
curate information about the system and test strategy and criteria proposed can easily and

quickly identify this failure.

5.1 Case with nonlinear equations

The test system described in Section 4.1 is quadratic by itself and does not have any higher
order nonlinearity, hence only Assumption B applies to this system. Let p = 0.65,

g€=25and X, = [0.9,0.9,0.9, 0.9]7 for this system.

42
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5.1.1 NF analysis may fail if Assumption B is violated

Using initial guess Z0guess=Y,-h2(Yp), converged value of Z,, and values of indices are

Zy=1-482+3.77i,623-31.57i,—4.82—-3.77i,6.23 + 31.57i]T
Ell = 3927 Er2 = 12399 EI3 = 270

Figure 5.1 shows time domain solution of all the state variables obtained using numerical
integration method fourth-order Runge-Kutta (RK4), shown as Numerical, and that given
by NF closed form expression given by Equation 2.46, shown as NF. It can be seen that
time domain solution given by two method are not in agreement at all for all the states.
Hence, it can be said that NF analysis failed and cannot produce accurate results with this

initial condition of Z,,. That is because of the fact that in Z space the system is not in the

neighborhood of SEP where O([Z[3 ) is negligible or, in other words, converged value of Z;

failed to meet Assumption B,

Time solution of X (t0=0.00 8)

Time solution of %, (t,=0.00 s)

6l — Numerical ot — Numerical
~- = NF i ~ |= - NF
R I\
4r 4}
" Iy o
A ol o
Vﬁ\ ~ Wt —-
- \\rf/\/ ’ ~—-" o R / s
-2 \ LY / -2t v \J
\s \ ,I
._.4 - _4..
_6 - _.6.
0 5 10 0 S 10 15
Time (s) Time (s)

EI1=39.27; EI2=123.99; EI3=2.70

E11=39.27; EI2=123.99; EI3=2.70
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Time solution of Xy (t0=0.00 s}

Time solution of x # (t0=0.00 5)

6t — Numerical 6 —— Numerical
- = NF — - NF
4 4
2 2
N 0 \\ / i P - xﬂ- 0, 1 / — —
-k v 2t Y\ L /
4 / \\."‘r \\ 2N
4k \ -4 AY r/
- < NS
_6 o ""‘6 L
0 5 10 15 0 5 10 15
Time (s) Time (s)
Ei1=39.27; E12=123 99; EI3=2.70 EI1=39.27; E12=123.99; EI3=2.70
Figure 5.1 Case 1: Numerical and NF response with X, at £y=0.0 .

5.1.2 Selecting initial condition at a subsequent instant

Figure 5.2 shows time domain solution of state x; with initial condition selected from the
trajectories of the state variables at a different time instant. Using initial condition at time
0.5s till 4.5s (Figure 5.2, a to £), NF failed to produce correct time domain solution of the
states (only shown are time response of state x;, however this is the case with the other
states as well). While using the initial condition from the state of the system at £=5.0 the
NF analysis can produce correct time domain response (Figure 5.2, j). So, if the initial
‘condition at any given instant is not proper, then initial condition at a subsequent instant
can be used for NF analysis if it is found to be appropriate. This is because of the fact that
with time the system moves towards an SEP (if the system is free and asymptotically sta-
ble) and if at a given instant initial condition is not in a certain neighborhood of SEP then

the system will also moves towards that neighborhood and eventually enters into it.
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Figure 5.2 Case 1: Numerical and NF response with X, at 7,=0.9, 0.5,...,5.0 s

5.1.3 Using suggested criteria to identify failure of Assumption B

Three criteria are suggested in Subsection 3.2.2.3 to identify failure of initial condition Z

to meet Assumption B. Based on many simulations performed we select €/ = 500.0,

g2 = 500.0 and €3 = 0.85.
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51.3.1 Casel

For above case, Table 5.1 shows the values of EIl, EI2 and EI3, whether these criteria are
met or not, and whether time domain solution is a match or not. It can be seen that when
all the three of the criteria are met, the time domain solution 1s a close match. Hence, sug-
gested criteria can successfully predict whether Assumption B has been complied with or

net.

Table 5.1 Case 1: Z; Validation result

to Ell EI2 EB | Ei<el | E2sez | Ei3ses |Timeresponse
match?
0.5 108.96 868.5 3.20 Yes No No No
1.0 4327 491.00 1.59 Yes Yes No No
1.5 116.79 800.04 137 Yes No No No
2.0 434 8.65 345 Yes Yes No No
2.5 5.87 10.13 3.52 Yes Yes No No
3.0 140.28 69.16 1.53 Yes Yes No No
35 172.27 187.77 1.37 Yes Yes No No
4.0 138.40 408.30 1.12 Yes Yes No No
4.5 23.166 128.82 1.51 Yes Yes No . No
5.0 2495 39.67 0.59 Yes Yes Yes Yes

5.1.3.2 Case2

In previous cases while using initial condition at #;,=5.0s, converged value of Z; found to

be appropriate using initial guess

Z0guess = Y,—h2(Y,)
= [~ 0.180— 0.269i, - 0.364 — 0.2903i,— 0.180 + 0.269i, — 0.364 + 0.29031]7

- Using two other different initial guess values
Z0guessl = [0.612+ 0.776i, 0.651 + 0.0431, 0.612 - 0.776i, 0.651 ~ 0.043{]T
and

Z0guess2 = [0.305 + 0.369i, 1.068 + 0.8831, 0.3053 — 0.3691, 1.068 — 0.8837]7
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solution converged to different values of Z;,. Figure 5.3 shows time response of X7 with

these guess values. Again using proposed indices, it is possible to predict failure of initial

condition Z, to comply with Assumption B.

This shows using suggested criteria proper Z, can be selected from multiple solutions.

This is a useful property of the criteria, as while applying NF analysis to the problem of

power systems, initial guess may not converge to a proper Z, though there exist a proper

Z,, and these criteria can identify and eliminate those values.

Time solution of X, (tD=5.00 5)
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'Figure 5.3 Case 1: Numerical and NF response with X, at #,=5.0 s and various

Z0guess
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51.4 One set of indices is sufficient for different initial condition

Let’s select initial condition X, = [0.4, 0.25, 0.25, 0.25]7, different from that used in
previous subsection. Figure 5.4 shows time response of state x; with initial condition at

t;=0.0 5. In this case Z is valid initial condition and that can be seen from time response

and indices EIl (<&l), EI2? (<&2) and EI3 (<&3).

From above, it can be said that the above criteria set, {€1, €2, €3], for a given system can

be used to validate initial condition Z, for various state space initial conditions, Xj.

Time solution of X (t0=0.00 s}

~— Numerical
- - NF
/ "\
/\ ———
\\\.::/
7
\ !
~0.4 \/
-{.6
O 5 10 15
Time (s}

EI1=73.08; E2=72.54; B13=0.84
Figure 5.4 Case 2: Numerical and NF response with X, at £=0.0 s

5.2 Case with Power system

The power system are described in Section 4.2, while considering the cases with the sce-
nario 2 described in Table 5.5. Here both the assumptions are applied and are investigated

in following subsections.
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5.2.1 Validating Assumption A

Assumption A can be validated by comparing original nonlinear differential equations

X = F(X) and its approximate system given by first two terms of the Taylor series as

. 1.7, . .
x; = AX+ EX H'X shown as ‘Nonlinear system’ and ‘Approx. system’ respectively.
Here time domain solution is obtained using numerical integration method RK4.

Figure 5.5 a. and b. shows the time domain solution of Gen-4 speed deviation given by

above two methods with initial condition at a. £)=0.0 s (i.e. immediately after clearing a
disturbance) and b. £,=0.5 s respectively. It can be seen that the two solutions are not exact

match.

Table 5.2 and Table 5.3 shows low frequency and low damped modes present in above
two time responses given by prony analysis for case a. and case b. respectively.

Gen 4 speed deviation (t0=0 s} Gen 4 speed deviation (t0=0.5 s)

— Nonlinear system
2l ~ — - Appx. system

— Nonlinear system
— - AppX. system

[\ /\ A A A
RATRTAA

0 5 10 0 5 10 15

.

Speed deviation, @ (rad/s)
=
)
]
Speed deviation,  (rad/s)

Time (5)
a. ty=0.0s

Time (s)
b.t5=0.5 s

Figure 5.5 Nonlinear and approximate response of o, with X, at #=0.5 and 5.0s.
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Table 5.2 Prony analysis of Gen-4 speed for £,7=0.0 s (case a.)

Nonlinear system

Approximate system

No. Mag FI;ezq Dalzx/fiug
1 1.85 0.304 9.11
2 0.20 0.606 9.07
3 0.02 0.894 10.53

Table 5.3  Prony analysis of Gen-4 speed for 7,=0.5 s (case b.)

Nonlinear system

Fre Dampin
No. Mag qu %‘: g
1 1.7 0.304 9.12
2 0.17 0.606 9.10
3 0.015 0.851 10.77

With initial condition at #,=0.0 s (Figure 5.5 a. and Table 5.2) it can be seen that the mag-

nitude of similar damped frequencies differ significantly. For initial condition at #p=0.5 s

Freq | Damping
No. Mag Hz %
1 4.34 0.306 897
2 0.48 0.607 7.58
3 0.30 0.823 11.47
Approximate system
Freq | Damping
No. Mag Hz o
1 1.41 0.304 9.241
2 0.11 0.608 9.20
3 0.0063 | 0.910 9.054

(Figure 5.5 b. and Table 5.3) the magnitudes of similar damped frequencies are still differ-

ent (magnitude difference of 17.64 % for damped frequency 1)

For 0.5 s from the instant of removal of the disturbance, the original nonlinear system can-

not be represented by first two terms of the Taylor series. That is because of the fact that

even after 0.5 s the system has not entered into the neighborhood of SEP where O(|X]?) is

negligible. It can be said that initial condition, X, selected from the trajectories of the

state even within (.5 s from the instant of removal of disturbance does not comply with

Assumption 4.
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Now, let’s select initial condition at an instant later at ¢,=0.75 s. Figure 5.6 shows the time
responses of Gen-4 speed deviation and Table 5.4 shows prony results in this case. The
time response given by two systems are in good agreement and prony analysis shows pres-
ence of very similar damped frequencies and their magnitude (magnitude difference of

7.10% for damped frequency 1). Hence we can say that now the system is in the neighbor-

hood of SEP where O(|X]°) is negligible and X, complies with Assumption A.

Gen 4 speed deviation (tOmO.'IS 8)
15¢

— Nonlinear system
— - AppX. system

Wik /\ AN
BVATATA:

5 10 15
Time (s}

Speed deviation, © (rad/s)

Figure 5.6 Approximate and NF response of o, with X at £,=0.75 s.

Table 5.4 Prony analysis of Gen-4 speed for £)=0.75 s

Nonlinear system Approximate system
Freq | Damping Freq | Damping
No. Mag Hz % No. Mag Hz o
1.633 0.304 9.136 1 1.517 0.305 9.201
2 0.1511 | 0.606 9.073 2 0.1262 | 0.608 9.117
0.0121 | 0.892 10.492 3 0.0083 | 0.910 9.101

Once it is assured that the approximate system is a good representation of the original non-

linear system then we can carry forward the NF analysis by solving for Z, and validating it

for Assumption B.
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5.2.2 Validating Assumption B

Figure 5.7 shows time domain response of Gen-4 speed deviation given by RK4 numeri-
cal integration of the approximate system, shown as ‘Appx. system’, and time response
given by close form solution of NF analysis, shown as ‘NF’. For case a. it can be seen that

both time responses are not in agreement with each other. Hence, in Z space the system is
not in the neighborhood of SEP where O(]Z]%) is negligible. For this system we select
el = 1100.0, €2 = 1100.0 and €3 = (.85 based on many simulation performed. Then
failure of Assumption B can be appropriately predicted using indices E11, EI2 and EI3.

Gen 4 speed deviation (t0=0.75 )] Gen 4 speed deviation (t0=1.'75 8)

1.5¢ Ls:
—— AppX. system —— Appx. system

Speed deviation,  (rad/s)
Speed deviation, @ (rad/s)

5 10

0 5 10 15 Time (s)

Time (s)

EI1=5509.08: E12=15088 43:ET3=1.40 E11=1285.17; EI2=89878.68;EI3=1.00

a ty=0.75s b. tg=1.75s
Figure 5.7 Approximate and NF response of ©, with X, at #,/=0.75 s and 1.75 s.

As the system is not in the neighborhood of SEP of Z space, we have to select Xj at a sub-
sequent instant to perform NF analysis accurately. So, let’s select X, at an instant of
tp=1.75 s. Figure 5.7 b. shows the time response in this case and it can be seen that both
time responses are not in agreement with each other here as well. Failure of Z; to meet 4s-

sumption B can again be predicted using all the three indices. So, let’s select initial condi-
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tion Xj at a still further instant of #,=2.25 s and Figure 5.8 a. shows time response in this
case. Close time response given by closed form solution of NF analysis and the approxi-

mate system, and EII < 1100.0, EI2 <1100.0 and EJ3 < 0.85 suggests, in Z space the

system is in the neighborhood of SEP where O(|Z)?) can be neglected. NF analysis per-

formed using these values of X, and Z, will be most accurate. Figure 5.8 b. shows time re-

sponse given by the nonlinear system, the approximate system and the closed form
solution given by NF analysis.

Gen 4 speed deviation (t0=2.25 s) Gen 4 speed deviation (t0=2.25 5)
1L.5¢

—
th

— Appx. system — Nonlinear system
— - Appx. system
NF

/\f\./\‘f\,
\/\/

—

Speed deviation, ® (rad/s)
=}
o o

N

Speed deviation, ® (rad/s)

-1.5 . ; -1.5 . . .
0 5 . 10 0 5 10 15
Time (s} Time (s)
EI1=1050.62; EI2=450.44;F13=0.82 Ef1=1050.62; E12=450.44;E13=:0.82
a. b

Figure 5.8 Nonlinear, approximate and NF response of o, with X, at #,=2.25 s.

5.3 Comprehensive test using the power system

Table 5.5 shows details of various Scenarios using which NF analysis and suggested crite-
ria were investigated. In Table 5.6 to 5.11, the results with initial conditions at various in-

stant, ¢, after clearing a disturbance for each scenario are tabulated. In the ‘Case#’, the

first column of the tables, the first digit refers to scenario and last two digits refers to the

case with that scenario, values in second column are the time, #,, at which initial condition
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was selected from the instant of removal of disturbance. Column 3 lists whether 4ssump-
tiqn A is valid or not by comparing the time response of nonlinear system and its approxi-
mate system. Column 5-7 lists whether three suggested criteria are met or not. Using these
criteria whether Assumption B is valid or not is predicted in column 8, while column 9 lists
whether that assumption is valid or not by comparing the time responses of approximate

system and that given by NF analysis.

Table 5.5 Power system scenario details

Inter- Bus2 | Bus4 Genl | Gen2 | Gen3 BusS

Scen-
n-| area genme- | gene- | gene- |, iad Contingency | &/ &2 &3

Volt | Volt
MW)

ario® | power rafion | ration | ration
u u
[oawy | @9 | @ | iy | ow) | uw)
1 400.0 | 1.01 | 1.01 | 665.0 | 664.0 | 566.8 | 900.0 | Bus-2, 3-ph |1100.0{1100.0{ 0.85
fault, 10ms.

2 400.0 | 1.01 § 1.01 | 665.0 | 664.0 | 566.8 | 900.0 | Bus-2, 3-ph |1100.0{1100.0{ 0.85
fault, 20ms.
3 400.0 | 1.01 | 1.01 | 665.0 | 664.0 | 566.8 | 900.0 | Bus-6,3-ph [1100.0|1100.6} 0.85
fault, 20ms.
4 4000 | 1.01 | 1.01 | 665.0 { 664.0 | 566.8 | 900.0 | Bus-5, 3-ph [1100.0{1100.0} ©.85
fault, 20ms.
5 4150 1 1.01 | 1.01 | 681.3 | 664.0 | 557.8 | 900.0 | Bus-4,3-ph [1100.0{1100.0} 0.82
_ fault, 10ms.
6 415.0 { 1.02 | 1.02 | 680.7 | 664.0 | 554.6 | 900.0 | Bus-5, 3-ph |1500.011500.0} 0.85
fault, 40ms.

*For all the scenarios Busl Volt=1.02 pu, Bus3 Volt=1.02 pu, Gen4 generation=500.0

MW, Bus6 Load=1400.0 MW. (refer Figure 4.1 on page 38 for single line diagram)
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Table 5.6 Cases with scenario 1

Assumption A Assumption B
caset | 10 Nonlinear and § Eri<e] | El2<e2 | EI3<e3 |Cl.&.|NF and Appx.
Appx time C2.&. | time response
response match? Cl C2 3 C3 match?
1 2 3 4 5 [ 7 8
101 0.00 No Yes No No No No
102 0.25 No Yes Yes Yes Yes Yes
103 0.50 No Yes Yes Yes Yes Yes
104 0.75 Yes Yes Yes Yes Yes Yes
105 1.00 Yes Yes Yes Yes Yes Yes
106 1.25 Yes Yes Yes Yes Yes Yes
Table 5.7 Cases with scenario 2
Assumption A Assumption B
Case#t 10 Nonlinear and | Err<er | Ero<e2 | El3sgz | Cl.&. |NF and Appx.
Appx time C2.&. | time response
response match? Cl c2 3 C3 match?
1 2 3 4 5 ] 7 8
201 0.00 No Yes No No No No
202 0.25 Yes Yes Yes No No No
203 0.50 Yes Yes No No No No
204 0.75 Yes No No No No No
205 1.00 Yes No No No No No
206 1.25 Yes No No No No No
207 1.50 Yes No No Yes No No
208 1.75 Yes No No No No No
209 2.00 Yes No No No No No
210 2.25 Yes Yes Yes Yes Yes Yes
211 2.50 Yes No Yes Yes No Yes
212 2.75 Yes Yes Yes Yes Yes Yes
213 3.00 Yes No Yes Yes No Yes
214 3.25 Yes Yes Yes Yes Yes Yes
215 3.50 Yes Yes Yes Yes Yes Yes
216 3.75 Yes No No Yes No Yes
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Table 5.8 Cases with scenario 3

Assumption A Assumption B
Case | 0 Nonlinear and | Erz<es | Ei2<e2 | Ef3<e3 {Cl.&. |NF and Appx.
Appx time C2.&. | time response
response match? Cl C2 c3 C3 match?
1 2 3 4 5 & 7 8
301 0.00 No No Yes No No No
302 0.25 No Yes Yes Yes Yes Yes
303 0.50 Yes Yes Yes Yes Yes Yes
304 0.75 Yes Yes Yes Yes Yes Yes
Table 5.9 Cases with scenario 4
Assumption A Assumption B
Casett | 10 Nontinear and | Ef/sgl | Elz<e2 | El3<e3 |Cl.&.|NF and Appx.
Appx time C2.&. | time response
response match? Cl C2 C3 C3 match?
i 2 3 4 5 6 7 8
401 0.25 No Yes Yes No No No
402 0.50 No Yes No Yes No No
403 0.75 Yes Yes Yes No No No
404 1.00 Yes Yes Yes No No No
405 1.25 Yes No No Yes No No
406 1.50 Yes Yes No Yes No No
407 1.75 Yes Yes No Yes No Yes
408 2.00 Yes Yes Yes Yes Yes Yes
409 2.25 Yes Yes Yes Yes Yes Yes
410 2.50 Yes No Yes Yes No Yes
411 2.75 Yes Yes Yes Yes Yes Yes
412 3.00 Yes Yes Yes Yes Yes Yes
413 3.25 Yes No Yes Yes No Yes
414 3.50 Yes Yes Yes Yes Yes Yes
415 3.75 Yes Yes No Yes No Yes
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Table 5.10 Cases with scenario 5

Assumption 4 Assumption B
Caset | 10 Nonlinear and | £/7<el | El2<e? | El3se3 |Cl.&. |NF and Appx.
Appx time C2.&. | time response
response match? C1 C2 c3 C3 match?
1 2 3 4 5 6 7 8
501 0.00 No No No No No No
502 0.25 No Yes Yes Yes Yes Yes
503 0.50 No Yes Yes Yes Yes Yes
504 0.75 Yes Yes Yes Yes Yes Yes
505 1.00 Yes Yes Yes Yes Yes Yes
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Table 5.11  Cases with scenario 6
Assumption 4 Assumption B
Caseit | 10 Nonlinear and | Efrsel | Elz<e2 | El3<e3 |C1.&.| NF and Appx.
Appx time C2.&.] time response
response match? Cl C2 C3 C3 match?
1 2 3 4 5 6 7 8
601 0.00 No Yes No No No No
602 1.50 No No Yes Yes No No
603 2.00 No Yes Yes No Ne No
604 3.00 No Yes Yes No No No
605 3.50 No Yes Yes Yes Yes No
606 4.00 No Yes No No No No
607 | 4.50 No Yes Yes No No No
608 5.00 No No Yes No No No
609 5.50 No No Yes No No No
610 7.00 Yes Yes Yes No No No
611 7.50 Yes Yes No Yes No No
612 8.00 Yes Yes No No No No
613 8.50 Yes No Yes No No No
614 9.00 Yes No Yes Yes No No
615 9.50 Yes No Yes Yes No No
616 10.00 Yes No Yes No No No
617 10.50 Yes Yes Yes No No No
618 11.00 Yes Yes No No No No
619 11.50 Yes Yes Yes Yes Yes Yes
620 12.00 Yes Yes No Yes No Yes
621 12.50 Yes Yes No No No Yes
622 1 13.00 Yes No Yes No No Yes
623 | 13.50 Yes Yes Yes Yes Yes Yes
624 14.00 Yes Yes Yes No No Yes
625 14.50 Yes Yes Yes No No Yes
626 | 15.00 Yes No Yes No No Yes
627 15.50 Yes Yes Yes Yes Yes Yes
628 16.00 Yes Yes Yes Yes Yes Yes
629 § 16.50 Yes Yes Yes No No Yes
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5.4 Discussion

5.4.1 Validating Assumption A

From Subsection 5.2.1 it can be seen that if the system is not in the neighborhood of SEP
where O(|X] 3 ) is negligible, or in other words initial condition X, at a given instant (e.g. at
" t5=0.0 s and #p=0.5 s in this particular case) violates Assumption A, then the original non-
linear system cannot be approximated using the first two terms of the Taylor series, which
is an approximate representation of the system for NF analysis. Hence, NF analysis cannot
provide accurate information about the system using an inaccurate approximate system.
With time the system will move towards an SEP and hence we can select the initial condi-
tion at a subsequent instant when the system is in the neighborhood of SEP where O(]X] 3)
is negligible, or in other words initial condition X, at a given instant complies with
Assumption A (e.g. at t5=0.75 s in this particular case). In that case the approximate sys-
tem is an accurate representation of the system, using which NF analysis can provide

accurate information about structural property of the system. Prony analysis has been suc-

cessfully used to validate this assumption.

While using NF analysis for the power system, it has been observed that initial condition
selected immediately after clearing a disturbance usually does not meet this assumption

(case 101,...,601 in Section 5.3).
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5.4.2 Validating Assumption B

For NF analysis to produce accurate information about the system an another approxima-
tion has to be validated, that in Z space the system is in the neighborhood of SEP where
O([Z!s '} is negligible or in other words Z, should be sufficiently small so that O(Z) can
be neglected. Using cases with the nonlinear system (Subsection 5.1.1, 5.1.2 (case a. to i.)
and 5.1.4 (case «.)) and the power system (Subsection 5.2.2) it has been shown that if this
assumption is violated, or in other words if Z, does not comply with Assumption B, then
time response of states given by NF analysis closed form solution cannot produce close

match to that given by the approximate system. Again using the same argument that was

used to validate Assumption A, the initial condition X; at a subsequent instant shall be used
such that in Z space the system is in the neighborhood of SEP where O(|Z %) becomes neg-
ligible, or in other words Z,; complies with Assumption B (Subsection 5.1.2 (case j.) and

5.1.4 using the nonlinear equations and Subsection 5.2.2 using the power system)

While using initial condition immediately after clearing a disturbance, if we neglect
Assumption A and assume that 2nd order approximation is a valid assumption, then con-

verged value of Z; usually fails to comply with Assumption B (case 101,...,601 in Section

5.3).

5.4.3 Indices and their accuracy

In Subsection 3.2.2 three indices, EII, EI2 and EI3, have been proposed to validate 4s-

sumption B. It has been shown that indices can be used to validate Assumption B (Subsec-
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tion 5.1.3 and 5.2.2), and were further tested using all together 75 cases with different load
flow and contingencies (Section 5.3). Following can be verified from the test results

1. In the cases with power system, when Assumption B is invalid (36 cases), indices

correctly predicted failure except once (case 605).

2. Inthe cases with power system, for 39 cases the Assumption B is valid, i.e. the time
response given by NF analysis is close match to that obtained by numerical inte-
gration of approximate system. Out of 39 cases, for 25 cases the proposed indices
could correctly predicted that Assumption B is valid. While for 14 cases it incor-

rectly predicted that Assumption B is invahd.

3. One set of criteria is sufficient for a given operating point e.g. in Scenario 1-4 with
power system (Table 5.5) and in Subsection 5.1.4 with the set of nonlinear qua-

dratic equations only one set of criteria are used.

From the above it can be said that indices can predict failure of Assumption B accurately.
However, sometime it may predict failure of Assumption B while it is not. Following

explains the limitations of the indices in validating Assumption B.

Index EIl is based on relative numerical value of O(]Z}’} in z}- = ;z;+ O(1Z]%) . 1t is pos-

sible that minor error may appear large for smaller value of A;z;. The appreciable error in

highly damped modes may not be reflected in time response of states as those may disap-

pear and / or may reduce quickly with time.
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Similarly for index EI2, minor error in small magnitude of x; may appear very large. Also

large error in x; may be due to highly damped modes which may disappear and / or reduce

quickly with time and may not appear as appreciable error in time response of state,

Index EI3 decides whether (/- Dh2(Z,) + O(|Z]3)) is an appropriate approximation of

(I+Dh2(Z;))~ or not based on eigenvalue of Dh2(Z,). Even if largest eigenvalue is

greater than unity may not appear as error in time response of state variables, as it may

have introduced an error into particular time derivative of z;5, which may be of smaller in

magnitude and/or corresponds to highly damped mode.

Because of the these characteristic, indices may predict that Assumption B is invalid while

it may not be the case.




cHaPTER 6  Conclusions and future work

6.1 Conclusions

Recently NF analysis has been reported as a tool for nonlinear analysis of the power sys-
tem. As analysis is nonlinear, an initial condition of the system has to be used for analysis
purpose, and the reported studies to date it has been derived using the state of the system

immediately after clearing a disturbance.

In this thesis two basic assumptions underlying NF analysis have been identified: a. in
state space O(lX|3 ) is negligible and b. in Z space 0(|Z|3 ) is negligible. It has been shown
that initial conditions, X, and Z, to be used for NF analysis do not meet these assumptions
then NF analysis becomes inaccurate. Usually this is the case when initial condition X is

derived using state of the system immediately after clearing the disturbance. If we let go
the asymptotically stable system then it will move closer to an SEP with time and eventu-
ally enters the neighborhood of SEP where these assumptions are valid. Hence, we can

derive the initial condition using the state of the system from the trajectories of the states

64
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at a subsequent instant so that these assumptions are met, using which NF analysis can

produce accurate results.

To validate the first assumption, that the system is in the neighborhood of SEP where

O(]X|3 '} is negligible, the time response of nonlinear system and its quadratic approxima-
tion can be compared using any frequency domain analysis. Prony analysis has been suc-

cessfully used here.

To validate the second assumption, that the system is in the neighborhood of SEP where
O(|Z|3 ') is negligible, three indices have been proposed. EII gives relative measure of the
O(|Z°) that is being neglected in Z space. EL2 gives relative measure of the effect in state
space when O(|Z]°) is neglected in Z space. EI3 gives measure how accurately the equa-
tion (I+Dh2(Z,))" can be represented using binomial series, by calculating largest

eigen value of Dh2(Z,). It has been shown that these indices can be used to predict fail-

ure of assumption that OﬂZ|3 '} 1s negligible in Z space.

6.2 Future work

It has been shown in Subsection 5.4.3 that the proposed indices may occasionally fail to
predict that Assumption B is valid. As a future work, accuracy of indices £// and EI2 can
be improved by considering the magnitude of variables Z, and frequency and damping of
the modes associated with it. Similarly accuracy of index £I3 can be improved by consid-

ering the magnitude of variable Z and frequency and damping associated with it, while
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estimating the error introduced when largest eigen value of Dh2(Z,} is greater than pre-

specified value.

When NF analysis predicts the time response of the state variable same as that given by

approximate system, the effect of neglected O(]Z}®) on magnitude of different modes that
predicted by NF analysis can further be investigated. Because different components of a
given set of frequencies is not uniquely defined to produce given time responses. Various

characteristic of nonlinear transformation can further be analyzed for this purpose.

6.3 Contributions

6.3.1 Programs developed

In the research work, the programs developed at Iowa State University were used to per-
form NF analysis of the power system. In addition to that following programs were devel-

oped as a further research work

1. To compute time response of state variable by numerical integration of quadratic

equations, an approximate representation of the nonlinear system.
2. To compute time response of state variable given by NF analysis.

3. To compute the magnitude of the modes present in a state variable predicted by NF
analysis.
4. To simulate the exciter to produce time response of exciter states.

5. To produce numerical values of the variables of the system to be used as initial

condition in NF analysis.

6. To compute indices EII, EI2 and EI3.
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Appendix A  Power System Data

Following describes completely describes the 2-area and 4-generator system that is used

for analysis purpose here.

A.1  Generator Data
In the power system used for analysis, generators are modelled with two-axis model. Var-

ious generator constants are:
Table A.1: Generator Data for MVAbase=100

Parameter Value
Ra 0.000277
Xd 0.2000
Xq (.1888
X& 0.0333
Xq' 0.06111
Tdo’ 8.0000
Tqo’ 0.4000
H 58.500
Di,...,.D4 81,9,99,10.8

A.2 Exciter data

'Each generator is modeled with exciter as shown in following figure.

i Xel 1+sTc | Xe2 Ka Efd
Vt —b —@—» e —
1+sTr T 1+sTh i+sTa

Vref

Fig. A. 1 Exciter model
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Following table lists various exciter constants, which are same for all the exciters.

Table A.2: Exciter Data

Parameter Value
Ka 100
Ta 0.01
Th 10.0
Tc 1.0
Tr 0.01
Vrmax 5.0
Vrmin -5.0

A.3 State variables for power system

Following lists the states used to describe the power system and their location in state vec-

tor using above models of generators and exciters.

X = [Eq),...Eq) Ed}, ...Ed}, ®,, ..., 0, 8, ..., 54,
Xe.lj, ey Xe]4, XeZI, ...,X€24, Efd}, veuy Efd4]

where:
Eq;’ = g-axis component of voltage behind the transient impedence, Ei’, for it generator

(States 1 to 4).

~ Ed;’ = d-axis component of £i’ (States 5 to 8).

®; = Speed deviation for i'® generator (States 9 to 12).

8;; = Relative rotor angle of i® generator w.r.t. Generator 1, 8,~ 8, (States 13 to 15).
Efd; = Field voltage, an exciter output, for i generator (States 16 to 19).

Xel; = Output of Tr transfer function of exciter for i” generator (States 20 to 23).

Xe2; = Output of lead-lag transfer function of exciter for i generator (States 24 to 27).




il
A4 Load flow data

Power system load flow is simulated using Power World Simulator (PWS). One of the
load flow data in raw data format, generated using PWS, is listed below. For transient sim-
ulation using TSAT requires load flow in raw data format while NF analysis program

accepts load flow data in IEEE format, which again can be generated using PWS.

0 100.00
1,ArealG1",230.0000,2, 0.000, 0.000, I, 1,1.02000, 68.8723, 0
2,Areal G2 ', 230.0000,2, 0.000, 0000, 1, 1,1.02000, 59.4416, 0
3Area2G1°,230.0000,3, 0.000, 0.000, 2, 2,1,02000, 0.0000, 0
4A1ea2G2,230.0000,2, 0.000, 0.000, 2, 2,1.02000, -7.6842, 0
5LoadBusl|, 230.0000,1, 0.000, 0.000, 1, 1,0.97667, 51.9766, 0
6.LoadBus2, 230.0000,1, 0.000, 0.000, 2, 2,0.97496,-13.4941, 0
0/END OF BUS DATA, BEGIN LOAD DATA
5141, 1, 1, 900.000, 250.000, 0.000, 0.000, 0.000, -0.000, 0
50205, 1, 1, 0000, -255.100, 0.000, 0.000, 0.000, -0.000, 0
6,171, 2, 2, 1400.000, 250.000, 0000, 0.000, 0000, -0.000, 0
6,2%1, 2, 2, 0.000, -254.300, 0000, 0000, 0.000, -0.000, 0
0/END OF LOAD DATA, BEGIN GENERATOR DATA

1,'1Y, 680.715, -11.825, 9900.000, -9900.000,1.02000,
10000.000, 0.600, 0,1.6000

2,1, 664.000, 516.283, 9500.000, -5900.000,1.02000,
10000,000, 0.000, 0,1.0000

3,1, 554.652, -18.094, 9900.000,-9900.000,1.02000, 0, 900.000, 0.00000, 9.00000, 0.00000, 0.00000,1.00000,1, 100.0,
T 10000.000, 0.600, 0,1.0000

4,'1", 500.000, 497.901, 9900.000, -9900.000,1.02000,
16000.000, 0.600, 0,1.6000

0/END OF GENERATOR DATA, BEGIN BRANCH DATA
1, 2,17 0.00250, 0.02500,0.00000,10000.00, 0.00, 0.00,, 0.60000, 0.00000, 0.00000, 0.00000,1, 0.0, 0,1.060¢
2, 517 0.00100, 0,01000,0.00000,10000.00, 0.00, 0.00,, 0.60000, 0.00000, 0.00000, 0.00000,1, 0.0, 0,1.0000
3,  4,1',0.00250, 0.02500,0.00000,10000.00, 0.00, 0.00,, 0.00000, 0.00000, 0.00000, 0.00000,1, 0.0, 0,1.0000
4, 61" 0.00100, 0.01000,0.00000,10000.00, 0.00, 0.00,, 0.00000, 0.00000, 0.00000, 0.00000,1, 0.0, 0,1.0000
5, 61", 0.02200, 0.22000,0.00000,10000.00, 0.00, 0.00,, 0.00000, 0.00000, 0.06000, 0.00000,1, 0.0, 0,1.0000

0/ END OF BRANCH DATA, BEGIN TRANSFORMER ADJUSTMENT DATA

0/END OF TRANSFORMER ADJUSTMENT DATA, BEGIN AREA DATA
I, 1, 415000, 0.010/1 '
2, 3, -415.000, 0.100,2 '

0/END OF AREA DATA, BEGIN TWO-TERMINAL DC DATA

€ /END OF TWO-TERMINAL DC DATA, BEGIN SWITCHED SHUNT DATA

0/END OF SWITCHED SHUNT DATA, BEGIN IMPEDANCE CORRECTION DATA

0/ END OF IMPEDANCE CORRECTION DATA, BEGIN MULTI-TERMINAL DC DATA

0/ END OF MULTE-TERMINAL DC DATA, BEGIN MULTI-SECTION LINE DATA

0/END OF MULTI-SECTION LINE DATA, BEGIN ZONE DATA

o

, 900.000, 0.00000, 9.06000, 0.00000, 0.00000,1.00000,1, 100.0,

o

, 900.000, 0.00000, 9.00000, 0.00000, 0.06000,1.00000,1, 100.0,

o

, 900.000, 0.00000, 9.00000, 0.00000, 0.00000,1.00000,1, 100.0,



L1

22
0/END OF ZONE DATA, BEGIN INTER-AREA TRANSFER DATA

i, 2,1 415.00
0/ END OF INTER-AREA TRANSFER DATA, BEGIN OWNER DATA
0/END OF OWNER DATA, BEGIN FACTS CONTROL DEVICE DATA
0/END OF FACTS CONTROL DEVICE DATA

iv



Appendix B Power system test results

Table B.1 Cases with scenario 1

Caseff | t0 | EIl | EI2 | EI3
1 2 3 4 5
101 [0.00(468.261890.37[24.75
102 [0.25(125.45) 31.92 | (.52
103 [0.50( 48.70 [481.39} 0.45
104 10.75(103.14|183.26} 0.42
105 [1.00f 83.74 | 133.79} 0.46
106 §1.25;240.41{310.00] 0.43

Table B.2 Cases with scenario 2

Case# | t0 El E2 Ef3
1 2 3 4 5
201 0 168.08 | 3290.44 |52.43
202 }0.25] 230.07 | 121.69 | 1.55
203 § 0.5 251.57 | 2905.37 ] 1.44
204 {0.75} 5509.08 | 15088.43] 1.40
205 1 | 4181.91 | 2912.57 { 1.29
206 {1.25) 1921.59 | 1701.40 { 1.01
207 { 1.5 | 1840.42 114227.11] 0.71
208 | 1.75] 1285.17 | 89878.68] 1.00
209 2 | 677637 | 2575.17 | 1.06
210 |2.25] 1050.62 | 450.44 | 0.82
211 | 2.5 1 1611.67 | 177.14 | 0.49
212 | 2.75] 166.93 97.50 | 0.48
213 3 |10264.30 198.4% | 0.50
214 1325 667.90 | 232.11 | .62
215 § 3.5 1104441 | 81454 | 0.79
216 {3.75]14645.99] 5974.21 | 0.77




Table B.3 Cases with scenario 3

Case#

t0

£l

EI2 \ED3

1

2

3

4

5

301

0.00

3096.44

129.45{6.92

302

0.25

32.92

57.29 10.41

303

0.50

155.98

57.81 10.34

304

0.75

119.85

24.69 10.24

Table B.4 Cases with scenario 4

Case#

0

Ell

EIZ |EDB

I

2

3

4

5

401

0.25

361.86

112.16 | 0.90

402

0.50

227.22

2645.0510.72

403

0.75

397.05

885.48 | 0.83

404

1.00

570.71

904.80 | 0.86

405

1.25

1411.98

2060.8010.78

406

1.50

507.56

4361.5110.57

407

1.75

35945

7553.8910.77

408

2.00

338.61

57227 10.82

409

2.25

834.39

669.88 {0.71

410

2.50

4612.72

597.40 10.48

411

275

210.33

94.88 |0.35

412

3.060

457.49

98.81 (042

413

3.25

3220.20

743.88 | 0.44

414

3.50

305.51

208.31 [ 0.60

415

3.75

205.71

6740.4210.61

Table B.5 Cases with scenario 5

Case#f | t0 Efl EI2 | EB3
1 2 3 4 5
501 {0.00§1690.71103578.88] 10.69
502 {0.25] 82.53 8.82 0.21
503 |0.50] 5296 | 342.04 | 044
504 (0.75] 27.57 | 28537 {045
505 {1.00F 98.73 11.67 1034

vi



Table B.6 Cases with scenario 6

Caseff | t0 Ell E2 EI3
I 2 3 4 5

601 | 0.00 | 158.16 | 7922.97 {36.60
602 | 1.50 | 3450.24 | 141.13 { 0.72
603 1200 373.66 | 113392 | 1.44
604 | 3.00] 292.69 | 208.90 | 1.15
605 | 3.50 | 694.65 { 143.69 | 0.60
606 | 4.00 | 1250.09 | 1654.86 | 1.31
607 | 450 | 589.17 | 242.84 | 2.01
608 | 5.00 | 5755.89 | 336.77 | 2.31
609 | 5.50 | 2582.90{ 960.09 { 2.32
610 | 7.00 | 683.84 | 550.45 | 0.89
611 | 7.50 | 1091.50 | 5875.24 | 0.78
612 | 8.00| 772.40 {10686.25{ 1.96
613 | 8.50 | 677517 ] 55891 | 1.92
614 | 9.00 | 345642 ] 15432 {1 0.49
615 | 9.50 | 7497.59{ 126.44 1 0.73
616 |10.00] 2133.83 ] 275.03 | 1.57
617 (10.50{ 1314.04 | 377.34 | 1.93
618 |11.00] 584.76 | 3812.24 } 1.62
619 {11.50{ 206.09 | 206.16 | 0.59
620 ]12.00} 806.34 | 337092 } 0.76
621 112.50| 412.62 | 4390.10 ]} 1.55
622 |13.00]| 1878.54 | 289.03 | 1.27
623 [13.50] 891.09 | 67.29 | 048
624 }14.00| 52058 | 126.30 | 0.87
625 114.50] 655.72 | 394.69 | 1.35
626 }15.00120850.68] 426.85 | 1.14
627 15501 20892 | 76.22 | 0.45
628 116.00| 485.09 | 726.52 | 0.73
629 |16.501 10036 | 914.25 | 1.13

vii



