Comparative study of catalase-peroxidases (KatGs)

by

Rahul Singh

A thesis
submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Microbiology
University of Manitoba
Winnipeg, Manitoba

© Rahul Singh, August 2006
Comparative study of catalase-peroxidases (KatGs)

BY

Rahul Singh

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree

OF

DOCTOR OF PHILOSOPHY

Rahul Singh © 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner.
Dedicated to my mother

Banmala Singh (1951-2005)
ABSTRACT

Catalase-peroxidases (KatGs) act as a protective enzyme against oxidative stress during the exponential phase of growth. KatG from *M. tuberculosis* is better known for its role in the activation of isoniazid (INH), a front line anti-tuberculosis prodrug, through its conversion to isonicotinoyl-NAD adduct, which inhibits the mycolic acid synthesis. Biochemical characterization of KatGs from *Burkholderia pseudomallei*, *Mycobacterium tuberculosis*, *Escherichia coli*, *Bacillus stearothermophilus*, *Archaeoglobus fulgidus*, *Synechosystis* PCC 6803, and *Rhodobacter capsulatus*, was carried out to compare their enzyme kinetics in view of the recent success in crystallization of the KatGs. Catalase-peroxidases show substantial catalase specific activity with significant variation among the seven KatGs studied. A large variation was also evident in the peroxidase activity of the seven KatGs. Differences in the K_m values for both catalase and peroxidase reactions are indicative of the subtle differences in the protein structure, particularly in the vicinity of active site heme and the access channel for the substrate. The role of catalase-peroxidases in the activation of INH was also characterized and compared using NADH and some other pyridine derivatives as substrate. KatGs catalyze the oxidation of NADH to form NAD$^+$ and either H$_2$O$_2$ or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. *B. pseudomallei* KatG has a relatively high affinity for NADH ($K_m=12$ μM), but the oxidase reaction is slow ($k_{cat}=0.54$ min$^{-1}$) compared with the peroxidase and
catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H$_2$O$_2$-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by HPLC fractionation and mass spectrometry, are NAD$^+$ and isonicotinoyl-NAD. Isonicotinoyl-NAD synthesis from a mixture of NAD$^+$ and INH is KatG-dependent and is activated by manganese ion. *M. tuberculosis* KatG catalyzes isonicotinoyl-NAD formation from NAD$^+$ and INH more efficiently than *B. pseudomallei* KatG. A similar comparison of Ser315Thr and Ser315Asn variants of MtKatG, the two most common mutations occurring in the katG gene among drug resistant strains of *M. tuberculosis*, demonstrates that variants have lower rates of hydrazinolysis and isonicotinoyl-NAD synthase activity and undetectable NADH oxidase activity while maintaining substantial catalase and peroxidase activities. These properties are consistent with the enzyme being required for the maintenance of virulence while developing resistance against INH.
ACKNOWLEDGEMENTS

I am deeply indebted to my advisor, Dr. Peter Loewen, for his expert guidance and faith in my abilities throughout this project. His financial and personal support during my studies is very much appreciated. His thoughtfulness and dedication towards his research always remained a source of inspiration. I am also thankful for the guidance and encouragement I received from my advisory committee members, Dr. E. Worobec, Dr. J. O’Neil and especially Dr. I. J. Oresnik for his critical analysis of my progress. I am also very grateful to Mr. Jacek Switala for his help and cooperation with his excellent technical expertise. I would also like to thank Dr. Lynda Donald, Dr. Maureen Spearman, Dr. Linda Cameron, and Mr. Norm Huzel for their assistance. I greatly appreciate Ms. Sharon Berg for the unreserved support I have received countless time from her. Our collaborators in Spain (Prof Ignacio Fita’s lab) and France (Dr. Anabella Ivancich’s Lab) are greatly appreciated. A special thank goes to the Loewen lab members; Taweewat, Ben, Amarbeer and Vikas and the past members Prashen and Sherif. I would also thank to the faculty members and support staff in the department of microbiology for their cooperation and support. My fellow graduate students are greatly appreciated for their friendship and encouragement with special mention of Ayush, Patrick, Matt, Taylor, and many more. Finally I owe a great deal to my father, my sister Priyanka, her husband Avnish, my friends, Gurusharan and Ajay, for always been there for me, and my wife Tejomayee who deserves a very special appreciation for the patience, understanding and tremendous support she has continually provided while I was writing this thesis.
TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENT ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

LIST OF ABBREVIATIONS .. xviii

1. GENERAL INTRODUCTION ... 1

1.1. Oxygen: Elixir of life — and death .. 1

1.2. The oxygen molecule .. 4

1.2. The oxygen molecule .. 8

1.3. Antioxidant Systems .. 6

1.3.1. Non-Enzymatic Defenses ... 7

1.3.2. Enzymatic Defenses ... 8

1.4. The nonfunctional, heme containing catalases ... 11

1.4.1. Introduction ... 11

1.4.2. Structural properties of catalases ... 13

1.4.3. An electrical potential field in the channel of mono-functional catalases 15

1.5. Non-heme or manganese containing catalases ... 16

1.6. Monofunctional peroxidases ... 16

1.7. Catalase-peroxidases .. 19

1.7.1. Phylogeny of catalase-peroxidases ... 19

1.7.2. Regulation of catalase-peroxidase gene (katG) expression .. 21

1.7.3. Structure and mechanism of catalase-peroxidases .. 23

1.7.3.1. The unusual covalent modifications .. 29

1.7.3.1.1. A covalent adduct structure linked Trp111-Tyr238-Met264 31

1.7.3.1.2. Perhydroxy modification of Heme .. 35

1.7.3.1.3. Perhydroxy modification on the Indole of Trp111 .. 35

1.7.3.2. Three large loops in the catalytic part of KatGs ... 36

1.7.3.3. Substrate access channel ... 37

1.7.3.4. pH induced changes in catalase-peroxidases ... 41

1.7.4. Protein radicals in catalase-peroxidases .. 43

1.7.5. Catalase-peroxidase from different organisms .. 45

1.7.5.1. Catalase-peroxidase of Burkholderia pseudomallei (BpKatG) 45
1.7.5.2. Catalase-peroxidase of *Mycobacterium tuberculosis* (MtKatG) .. 47
1.7.5.3. Catalase-peroxidase of *Escherichia coli* (EcKatG) ... 48
1.7.5.4. Catalase-peroxidase of *Synechocystis* PCC 6803 (SyKatG) ... 49
1.7.5.5. Catalase-peroxidase of *Archeoglobus fulgidus* (AfKatG) ... 50
1.7.5.6. Catalase-peroxidase of *Bacillus stearothermophilus* (BsKatG) 50
1.7.5.7. Catalase-peroxidase of *Rhodobacter capsulatus* (RcKatG) .. 51
1.7.6. Catalase-peroxidase and isoniazid activation .. 51
1.7.6.1. KatG mutations involve in isoniazid resistance ... 53
1.7.6.2. Analysis of potential isoniazid binding site ... 57
1.8. Objective of the thesis ... 58

2. MATERIALS AND METHODS .. 59

2.1. *Escherichia coli* strains, plasmids and bacteriophage ... 59
2.2. Biochemical and reagents ... 62
2.3. Media, growth conditions and storage of cultures ... 62
2.4. DNA manipulation .. 63
2.4.1. Preparation of synthetic oligonucleotides .. 63
2.4.2. Site-directed mutagenesis strategy ... 64
2.4.3. Reconstruction of *M. tuberculosis* katG subclones with desired mutation 80
2.4.4. Reconstruction of *B. pseudomallei* katG subclones with desired mutation 80
2.4.5. DNA isolation and purification ... 81
2.4.6. Restriction endonuclease digestion of DNA ... 82
2.4.7. Agarose gel electrophoresis ... 82
2.4.8. Ligation ... 83
2.4.9. Transformation ... 83
2.4.10. DNA sequencing ... 84
2.5. Purification of catalase-peroxidases ... 85
2.6. Polyacrylamide gel electrophoresis (PAGE) of proteins and staining 87
2.7. Enzyme assay and protein quantitation .. 89
2.7.1. Catalase activity .. 89
2.7.2. Peroxidase activity .. 90
2.7.3. INH hydrazine lyase activity ... 91
2.7.4. NADH oxidation ... 92
2.7.5. Isonicotinoyl NAD synthase activity .. 92
2.7.6. Protein Concentration ... 93
2.8. Absorption spectrophotometry of KatGs .. 93
2.9. Effects of inhibitors ... 93
2.10. High Performance Liquid Chromatography characterization of reaction products 94
2.11. Mass Spectrometry .. 95
3. RESULTS

3.1 Introduction .. 97
3.2.1 Purification of KatGs.. 98
3.2.2 Polyacrylamide gel electrophoresis (PAGE) of the catalase-peroxidases ... 102
3.2.3. UV-visible absorption spectroscopy of catalase-peroxidases.. 109
3.2.4. pH profile for the catalase and peroxidase activities... 109
3.2.5. Specific catalase and peroxidase activities of KatGs.. 116
3.2.6. Kinetic characterization of KatGs... 116
3.2.7. Effect of heme inhibitor on catalase activity of KatGs ... 130
3.3. KatGs and isoniazid activation .. 134
3.3.1. Catalase-peroxidases (KatG) exhibit NADH oxidase activity .. 135
3.3.1.1. NADH oxidation by KatG .. 136
3.3.1.2. Visualization of NADH oxidase activity by PAGE under non-denaturating conditions.................. 143
3.3.1.3. Kinetic characterization of NADH oxidase activity ... 147
3.3.1.4. Comparison of NADH oxidase activity with NADH peroxidase-oxidase reaction by HRP 147
3.3.1.5. Effect of NADH on the peroxidase activity of KatGs .. 153
3.3.2. INH hydrazine lyase activity by KatGs .. 153
3.3.3. Interaction of KatG with a mixture of INH and NADH.. 158
3.3.3.1. NAD+ as Precursor for Isonicotinoyl-NAD .. 168
3.3.3.2. Comparison of the rate of isonicotinoyl-NAD synthase activity by KatGs .. 168
3.3.5. NADH oxidation can be uncoupled from superoxide Formation .. 173
3.4. Resistance against isoniazid in Mycobacterium tuberculosis .. 175
3.4.1. Introduction .. 175
3.4.2. Purification and characterization of Ser315Thr, Ser315Asn variants of M. tuberculosis catalase-peroxidase .. 176
3.4.3. Catalase and peroxidase specific activities of MtKatG and variants .. 177
3.4.4. Kinetic characterization of Ser315Thr and Ser315Asn variants .. 177
3.4.5. Comparasion of heme inhibition by cyanide and azide ... 182
3.4.6. Effect of Ser315 mutation on oxidase activity and isoniazid activation ... 182

4. DISCUSSION .. 198
4.1. Location of conserved residues in catalase-peroxidases .. 198
4.2. Overview and comparison of catalase and peroxidase activities .. 201
4.3. The oxidase, lyase and synthase activities of KatGs .. 203
4.4. Modulation of isoniazid activation by Ser315 variants in MtKatG .. 215
4.5. Future directions .. 216

5. REFERENCES .. 218
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Schematic representation of intermediates between water and oxygen</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Molecular orbital diagrams of molecular oxygen, superoxide, hydrogen peroxide, and singlet oxygen</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Structures of BpKatG, MtKatG, HmkatG and SyKatG</td>
<td>24</td>
</tr>
<tr>
<td>1.4. Structures of N-terminal of BpKatG, cytochrome c Peroxidase, single subunit of horseradish peroxidase, and single subunit of ascorbate peroxidase</td>
<td>25</td>
</tr>
<tr>
<td>1.5. The active site residues in the proximal and distal side of BpKatG and overlay of cytochrome c peroxidase with N-terminal of BpKatG</td>
<td>28</td>
</tr>
<tr>
<td>1.6. Structural representation of covalent modifications in BpKatG</td>
<td>30</td>
</tr>
<tr>
<td>1.7. Structures of INH, NADH, isonicotinoyl-NAD adduct and isonicotinoyl-NAD adduct in bound form with InhA protein of M. tuberculosis</td>
<td>54</td>
</tr>
<tr>
<td>2.1. Simplified restriction map of the chromosomal insert containing the M. tuberculosis katG gene in plasmids pAH1, pMt-EC and pMtG-CX</td>
<td>65</td>
</tr>
<tr>
<td>2.2. General reconstruction protocol used for the generation of variant MtKatG's from mutagenized subclone I for protein expression</td>
<td>66</td>
</tr>
<tr>
<td>2.3. The DNA sequence and corresponding amino acid sequence of M. tuberculosis showing the restriction sites and the target codones selected for mutagenesis in this study</td>
<td>67</td>
</tr>
<tr>
<td>2.4. Simplified restriction map of the chromosomal insert containing the B. pseudomallei katG gene in plasmids pBpG and pBpG-CH</td>
<td>73</td>
</tr>
<tr>
<td>2.5. General reconstruction protocol used for the generation of variant BpKatG's from mutagenized subclone I for protein expression</td>
<td>74</td>
</tr>
<tr>
<td>2.6. The DNA sequence and corresponding amino acid sequence of B. pseudomallei showing the restriction sites and the target codones selected for mutagenesis in this study</td>
<td>75</td>
</tr>
<tr>
<td>3.2.1. SDS-polyacrylamide analysis of purified KatGs</td>
<td>103</td>
</tr>
<tr>
<td>3.2.2. Absorption spectra of KatGs</td>
<td>105</td>
</tr>
<tr>
<td>3.2.3. pH profile for catalase and peroxidase activities of KatGs</td>
<td>111</td>
</tr>
<tr>
<td>3.2.4. Effect of H$_2$O$_2$ concentration on the initial catalatic velocities of KatGs</td>
<td>118</td>
</tr>
<tr>
<td>3.2.5. Effect of ABTS concentration on the initial peroxidatic velocities of KatGs</td>
<td>122</td>
</tr>
<tr>
<td>3.2.6. Effect of H$_2$O$_2$ concentration on the initial peroxidatic velocities of KatGs</td>
<td>126</td>
</tr>
<tr>
<td>3.2.7. Comparison of sensitivity of KatGs to cyanide (KCN) or azide (NaN$_3$)</td>
<td>131</td>
</tr>
<tr>
<td>3.3.1. NADH oxidation by catalase-peroxidases</td>
<td>138</td>
</tr>
<tr>
<td>3.3.2. Migration of purified BpKatG on a 8% SDS-polyacrylamide gel and a nondenaturing 8% polyacrylamide gel</td>
<td>141</td>
</tr>
<tr>
<td>3.3.3. pH dependence of NADH oxidation by BpKatG determined by radical formation at 560 nm</td>
<td>144</td>
</tr>
<tr>
<td>3.3.4. Elution profiles from reverse phase HPLC of reaction products from mixtures containing NADH and KatG</td>
<td>145</td>
</tr>
</tbody>
</table>
3.3.5. Effect of NADH concentration on the initial NADH oxidase velocities of BpKatG at 560 and 340 nm ... 148
3.3.6. Effects of NAD⁺ and Pyridoxine on NADH oxidase activity ... 149
3.3.7. Removal of hydrazine form isoniazid ... 154
3.3.8. Effect of manganese on the removal of hydrazine form isoniazid ... 155
3.3.9. Synergistic effect of INH and NADH on radical generation in a solution containing INH, NADH and KatG ... 159
3.3.10. Elution profiles from reverse phase HPLC of reaction products from mixtures containing INH, NADH and KatGs ... 161
3.3.11. Elution profiles from reverse phase HPLC of reaction products from mixtures containing INH, NADH, Mn²⁺ and KatGs ... 163
3.3.12. Part of a matrix-assisted laser desorption ionization mass spectrum of a reaction mixture after 18 h of incubation showing the isonicotinoyl-NAD product ion ... 165
3.3.13. Elution profiles from reverse phase HPLC of reaction products from mixtures containing INH, NAD⁺, Mn²⁺ and KatGs ... 169
3.3.14. Rate of synthesis of the isonicotinoyl-NAD adduct ... 171
3.4.1. SDS-polyacrylamide analysis of purified MtKatG and variants Ser315Thr and Ser315Asn ... 178
3.4.2. Absorption spectra of MtKatG and variants Ser315Thr and Ser315Asn ... 179
3.4.3. Effect of H₂O₂ concentration on the initial catalatic velocities of Ser315Thr and Ser315Asn variants of MtKatG ... 183
3.4.4. Effect of ABTS concentration on the initial catalatic velocities of the Ser315Thr and Ser315Asn variants of MtKatG ... 185
3.4.5. Effect of H₂O₂ concentration on the initial peroxidatic velocities of Ser315Thr and Ser315Asn variants of MtKatG ... 186
3.4.6. Comparison of the sensitivity of MtKatG and its variants to cyanide (KCN) and azide (NaN₃) ... 188
3.4.7. NADH oxidation by MtKatG and variants Ser315Thr and Ser315Asn ... 190
3.4.8. Removal of hydrazine form isoniazid by MtKatG and variants ... 192
3.4.9. Effect of NADH on the hydrazine lyase activity by MtKatG and variants a, Isonicotinoyl-NAD synthase activity by MtKatG and variants b ... 194
4.1. Location of residues in BpKatG that are identical in more than 95% of the 53 catalase-peroxidase sequences available ... 199
4.3. Scheme showing the relationship of the five activities of KatG ... 211
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Genotypes and sources of E. coli strains, plasmids and bacteriophage used in this study</td>
<td>60</td>
</tr>
<tr>
<td>2.2a. Sequence of oligonucleotides and restriction fragments used for the site directed mutagenesis of M. tuberculosis katG</td>
<td>61</td>
</tr>
<tr>
<td>2.2b. Sequence of oligonucleotides and restriction fragments used for the site directed mutagenesis of B. pseudomallei katG</td>
<td>61</td>
</tr>
<tr>
<td>2.2c. Primers used for the polymerase chain reaction for the cloning of katG from M. tuberculosis into pET28b+ vector</td>
<td>61</td>
</tr>
<tr>
<td>3.2.1. Comparison of the effect of supplementing growth medium with FeCl₃, δ-aminolevulinic acid (ALA) and hemen on the expression of catalase activity of MtKatG</td>
<td>99</td>
</tr>
<tr>
<td>3.2.2a. Purification of wild type BpKatG and MtKatG from E. coli strain UM262 harboring plasmid encoded katG of B. pseudomallei and M. tuberculosis</td>
<td>100</td>
</tr>
<tr>
<td>3.2.2b. Purification of wild type EcKatG and AfKatG from E. coli strain UM262 harboring plasmid encoded katG of E. coli and A. fulgidus</td>
<td>101</td>
</tr>
<tr>
<td>3.2.3. Comparison of observed optical absorbance maxima, A₄₀₇/₂₈₀ ratio and heme/subunit ratio for purified KatGs</td>
<td>104</td>
</tr>
<tr>
<td>3.2.4. pH optima for catalatic and peroxidatic activities of KatG</td>
<td>110</td>
</tr>
<tr>
<td>3.2.5. Comparison of catalase and peroxidase activities of KatGs</td>
<td>117</td>
</tr>
<tr>
<td>3.2.6. Comparison of the observed catalatic kinetic parameters of purified KatGs, using H₂O₂ as substrate</td>
<td>121</td>
</tr>
<tr>
<td>3.2.7. Comparison of the observed peroxidatic kinetic parameters of purified KatGs, using ABTS as substrate</td>
<td>125</td>
</tr>
<tr>
<td>3.2.8. Comparison of the observed peroxidatic kinetic parameters of purified KatGs, using H₂O₂ as substrate for the compound I formation</td>
<td>129</td>
</tr>
<tr>
<td>3.2.9. Comparison of sensitivity of KatGs to cyanide (KCN) or azide (NaN₃)</td>
<td>132</td>
</tr>
<tr>
<td>3.3.1. Comparison of NADH oxidase activity of KatGs</td>
<td>137</td>
</tr>
<tr>
<td>3.3.2. KatG-mediated radical production in the presence of different substrates</td>
<td>142</td>
</tr>
<tr>
<td>3.3.3. Comparison of kinetic constants for NADH oxidase, catalase and, peroxidase activities of BpKatG</td>
<td>150</td>
</tr>
<tr>
<td>3.3.4. Comparison of NADH oxidation by HRP, BpKatG, and the W111F</td>
<td>151</td>
</tr>
<tr>
<td>3.3.5. Effect of NADH or NAD⁺ on the peroxidase activity of BpKatG, MtKatG and EckatG using ABTS or o-dianisidine</td>
<td>152</td>
</tr>
<tr>
<td>3.3.6. Comparison of effect of MnCl₂ and NADH on the hydrazine lyase activity of catalase-peroxidases</td>
<td>157</td>
</tr>
<tr>
<td>3.3.7. Comparison of expected and observed m/z values of ions in the MS/MS spectra of NADH and the product of the reaction of KatG with INH and NADH identified as isonicotinoyl-NAD</td>
<td>166</td>
</tr>
<tr>
<td>3.3.8. Comparison of catalase, peroxidase, and oxidase activities of BpKatG and its variants</td>
<td>174</td>
</tr>
</tbody>
</table>
3.4.1. Comparison of observed optical absorbance maxima, A407/280 ratio and heme/subunit ratio for purified KatGs ... 180
3.4.2. Comparison of catalase and peroxidase activities of MtKatGs and the Ser315Thr and Ser315Asn variants ... 181
3.4.3. Comparison of the observed catalatic kinetic parameters of purified MtKatG and the Ser315Thr and Ser315Asn variants using H2O2 as substrate 184
3.4.4. Comparison of the observed peroxidatic kinetic parameters of purified MtKatG and the Ser315Thr and Ser315Asn variants using ABTS as substrate ... 187
3.4.5. Comparison of the sensitivity of MtKatG and its variants to cyanide (KCN) and azide (NaN3) .. 189
3.4.6. Comparison of NADH oxidase activity, hydrazine lyase, and synthase activity by MtKatG and variants ... 196
4.1. Comparison of the percentage of highly conserved residues (>95% identical) in KatGs compared to other families of proteins .. 200
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-azinobis(3-ethylbenzothiazolesulfonic acid)</td>
</tr>
<tr>
<td>Amp<sup>R</sup></td>
<td>Ampicillin resistance</td>
</tr>
<tr>
<td>APX</td>
<td>Ascorbate peroxidase</td>
</tr>
<tr>
<td>AfKatG</td>
<td>KatG from Archeoglobus fulgidus</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs (s)</td>
</tr>
<tr>
<td>BpKatG</td>
<td>KatG from Burkholderia pseudomallei</td>
</tr>
<tr>
<td>BLC</td>
<td>Bovine liver catalase</td>
</tr>
<tr>
<td>BsKatG</td>
<td>KatG from Bacillus stearothermophilus</td>
</tr>
<tr>
<td>CcP</td>
<td>Cytochrome c peroxidase</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CIP</td>
<td>Calf intestinal alkaline phosphatase</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons(s)</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleoside triphosphate</td>
</tr>
<tr>
<td>e<sup>-</sup></td>
<td>Electron</td>
</tr>
<tr>
<td>EcKatG</td>
<td>KatG from Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>H<sup>+</sup></td>
<td>Proton</td>
</tr>
<tr>
<td>HmKatG</td>
<td>KatG from Haloarcula marismortui</td>
</tr>
<tr>
<td>H<sub>2</sub>O</td>
<td>Water</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HPI</td>
<td>Hydroperoxidase I from Escherichia coli</td>
</tr>
<tr>
<td>HPⅡ</td>
<td>Hydroperoxidases II from Escherichia coli</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>INH</td>
<td>Isonicotinic acid hydrazide (isoniazid)</td>
</tr>
<tr>
<td>KatG</td>
<td>Catalase-peroxidase</td>
</tr>
<tr>
<td>Kbp</td>
<td>Kilo base pairs(s)</td>
</tr>
<tr>
<td>k<sub>cat</sub></td>
<td>Turnover number</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Daltons</td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td>Michealis-Menten constant</td>
</tr>
<tr>
<td>LB</td>
<td>Lauria-Bertani</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>M</td>
<td>Molarity/molar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MtKatG</td>
<td>KatG from Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide (reduced)</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NAD<sup>+</sup></td>
<td>Nicotinamide adenine dinucleotide (oxidized)</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblue Tetrazolium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers(s)</td>
</tr>
<tr>
<td>RecKatG</td>
<td>KatG from Rhodobacter capsulatis</td>
</tr>
<tr>
<td>SyKatG</td>
<td>KatG from Synechocystis</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>RNAse</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum velocity</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight per weight</td>
</tr>
</tbody>
</table>
1. General Introduction

1.1. Oxygen: Elixir of life — and death

Although the story of oxygen (O₂) began with the discoveries of the British theologian J. B. Priestley, the French chemist A. L. Lavoisier, and the Swedish pharmacist C.W. Scheele in the eighteenth century, the concept of O₂ as a requirement for aerobic life existed even in ancient civilization and history is full of such examples referring to the significance of oxygen; for example, the Sanskrit word “prana vayu” which means “the gas of life” appears frequently in the Vedas, the sacred writings of ancient Indian civilization. Another example came from 1604, when the Polish alchemist Michael Sendivogius wrote that “Man was created of the earth, and lives by virtue of the air; for there is in the air a secret food of life...whose invisible congealed spirit is better than the whole Earth” and proposes that this ‘aerial food of life’ circulated between the air and earth by way of an unusual salt — nitre, or saltpeter. He evidently believed that he had discovered the Elixir of life, “without which no mortal can live, and without which nothing grows or is generated in the world” (Lane, 2002). Thus, for centuries considered critical to life itself, O₂ remains, and will always remain one of our essential elements. However, by the end of twentieth century, O₂ had become the focus of controversy, resulting from observations that it can be dangerous, toxic and deleterious to biological systems (Doroshow, 1989).

During the past 30 years, the fields of free radical chemistry and biology have risen from relative obscurity to become mainstream elements of biomedical investigation
Figure 1.1. Schematic representation of intermediates between water and oxygen. Only changes in number of electron (e\(^-\)) is shown in each direction.
and pharmaceutical development. There is increasing evidence that oxidative stress, defined as an imbalance between oxidants and antioxidants in favor of the former, leads to detrimental biochemical reactions between \(\text{O}_2 \) and other molecules within both the human body and the environment, which generate reactive species of oxygen better known as reactive oxygen species (ROS). During evolution nature selected \(\text{O}_2 \) as the primary electron acceptor in the most efficient mechanisms for producing usable biological energy. With the use of \(\text{O}_2 \) as a terminal oxidant came the formation of the partially reduced oxygen species: the superoxide anion, hydrogen peroxide, and the hydroxyl radical which are too reactive to be tolerated within living systems. These reactive oxygen species are an important contributing factor in several chronic human diseases, including atherosclerosis and related vascular diseases, mutagenesis and cancer, neurodegeneration, immunologic disorders, and the aging process (Doroshow, 1989, Harman, 1986, Rice-Evans, 1988). The first direct proof in our understanding that oxygen free radicals mediated oxygen toxicity appeared in 1954, when Rebeca Gerschman, Daniel Gilbert, and colleagues noted that the pattern of X-radiation damage to lung tissue was similar to that induced by high oxygen concentrations (Greshman et al., 1954). Apart from showing the cumulative effects of hyperoxia and x-irradiation, they also reported that many chemical agents affording protection against the toxic effect of radiation also protected against oxygen poisoning. The essential feature of their theory was that both oxygen poisoning and the biological effects of x-irradiation share a common mechanism of action, specifically the reactions of free radicals, which is mediated by exactly the same fleeting intermediates which can be produced either from oxygen or water (Figure 1.1). In radiation poisoning they are produced from water, and in oxygen poisoning from
oxygen. As stated by Irwin Fridovich, a Professor of Biochemistry at Duke University: "This was a remarkably prescient theory, considering the paucity of information concerning the generation and scavenging of specific free radicals available at that time" (Fridovich, 1975). In 1969, Joe McCord and Irwin Fridovich went on to solidify the concept of free radical mediation of oxygen toxicity by identifying a catalytic function for the enzyme superoxide dismutase (SOD) (Fredovich and McCord, 1969) providing direct analytical evidence of the in vivo generation of the superoxide radical. Thus, aerobic life is a high wire act supported by O₂ chemistry and balanced precariously between the biosynthetic powers provided by the rich energy supplies of respiration and the destructive effects of O₂ radicals formed during O₂ metabolism.

Microorganisms have a limited tolerance for oxygen. This property is most evident in the cases of obligate anaerobes and microaerophiles, which cannot grow in air saturated media, but it applies as well to committed aerobes, which grow poorly, or even die, when they are exposed to hyperoxia. Yet the basis of this universal phenomenon is not intuitive; after all, the structural molecules from which cells are made, amino acids, lipids, and nucleic acids, are reasonably stable in aerobic buffers (Imlay, 2003).

The chemistry of oxygen plays a major role in its unique behavior. It explains not only why oxygen free radicals are formed, but also why we do not spontaneously combust (despite a favorable energetics).

1.2. The oxygen molecule

Oxygen is a paradox. The secret of the behavior of molecular oxygen and its partially reduced species lies in their reduction potentials and molecular orbital structures.
<table>
<thead>
<tr>
<th></th>
<th>σ_x^*</th>
<th>$\pi_y^, \pi_x^$</th>
<th>π_y, π_x</th>
<th>σ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td></td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
<td></td>
</tr>
<tr>
<td>O_2^-</td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
<td></td>
</tr>
<tr>
<td>H_2O_2</td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
<td>$\uparrow\downarrow$</td>
</tr>
<tr>
<td>1O_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.2. Molecular orbital diagrams of molecular oxygen (O_2), superoxide (O_2^-), hydrogen peroxide (H_2O_2), and singlet oxygen (1O_2).
Molecular oxygen itself is a rarity, a stable diradical, with two spin-aligned, unpaired electrons in its π antibonding orbital (Figure 1.2).

An important consequence of this structure is that organic molecules with spin paired electrons cannot transfer more than one electron at a time to oxygen. Because oxygen is a weak electron acceptor (and most organic molecules are poor electron donors), this restriction ensures that oxygen cannot efficiently oxidize amino acids and nucleic acids. However, the unpaired electrons of dioxygen readily interact with the unpaired electrons of transition metals and organic radicals.

In contrast, the reduction potentials of $\text{O}_2^{\circ-}$, H_2O_2 and the hydroxyl radical dictate that in thermodynamic terms they are much stronger univalent oxidants than dioxygen. However, the anionic charge of $\text{O}_2^{\circ-}$ inhibits its effectiveness as an oxidant of electron rich molecules, while the reactivity of H_2O_2 is diminished by the stability of its oxygen-oxygen bond. Neither of these features applies to the hydroxyl radical, and indeed HO° reacts at virtually diffusion rates with most biomolecules.

\[
\begin{align*}
\text{O}_2 & \rightarrow \text{O}_2^{\circ-} & -0.16 \text{ V} & \quad \text{e}^{-} + 2\text{H}^+ & \rightarrow \text{H}_2\text{O}_2 & +0.94 \text{ V} & \quad \text{e}^{-} + \text{H}^+ & \rightarrow \text{H}_2\text{O} & +0.38 \text{ V} \\
& & & \quad \text{HO}^\circ & \rightarrow \text{H}_2\text{O} & +2.33 \text{ V}
\end{align*}
\]

1.3. Antioxidant Systems

During the course of evolution, while life adapted to an aerobic atmosphere, all living organisms, both aerobes and anaerobes, evolved mechanisms to protect themselves specifically from oxidative stress and its toxic effects (Sies, 1993; Gutteridge et al.,
During the last 30 years, biochemists and biologists working in this field have thus focused their attention mainly on the following three objects. The first is the identification of the toxic species, the biological targets and the molecular mechanism by which an oxidative stress is expressed within an organism. The second is the role played by oxidative stress in ageing and a number of diseases (neurological disorders, some types of cancers and inflammations, etc.) with the object of developing suitable therapeutic strategies. The third is an understanding of the nature and mechanism of the complex antioxidant machinery which control the balance between the generation and the scavenging of reactive oxygen species, continuously (aerobes) or transiently (anaerobes). These antioxidants include both non-enzymatic and enzymatic species. Historically, the term antioxidants referred to any substance that hindered the reaction of a substance with oxygen. Since every such reaction usually involves radicals, the term “antioxidants” has taken a more mechanistic flavor and now generally refers to any substance which inhibits a free radical reaction (Feldman et al., 1997).

1.3.1. Non-Enzymatic Defenses

The non-enzymatic antioxidants include various low molecular weight scavengers such as L-ascorbic acid (Vitamin C), β-carotene, α-tocopherol (Vitamin E), glutathione, phenolic compounds and ubiquinones (coenzyme Q). There are also certain reductants and some iron binding proteins.
1.3.2. Enzymatic Defenses

Enzymatic antioxidants, comprising the primary tier of defense include superoxide dismutases (SODs), catalases, peroxidases, catalase-peroxidases (KatG), and in mammalian cells, glutathione peroxidases (GPx). In addition there is a second tier of defense that includes methionine sulfoxide reductase, proteases, endonucleases and phospholipases (Fridovich, 1999). The major advantage of having specific antioxidant enzymes is that the steady-state concentrations of peroxide or superoxide can be adapted to cellular requirements. Several of these enzymes can be induced, activated or inhibited. The best example of a well studied protein induced in E.coli when grown at high levels of oxygen or exposed to redox-cycling agents is superoxide dismutase (Fridovich, 1995). These agents also induce glucose-6-phosphate dehydrogenase to replenish the NADPH consumed in the antioxidant reactions (such as GSH reductase) (Kao and Hassan, 1985). GSH levels have been known to increase upon exposure to H₂O₂ in E. coli and S. typhimurum (Christman et al., 1985).

SODs and catalases form a defensive team that prevents the less reactive species O₂⁻ and H₂O₂ from being converted into the highly reactive hydroxyl radical (OH⁻) (Liochev & Fridovich, 1992). Superoxide dismutase, first discovered in 1969 (McCord et al., 1969) catalyzes the dismutation of O₂⁻ to H₂O₂ and O₂ at diffusion limiting rates:

\[
O_2^{-} + O_2^{-} + 2H^+ \rightarrow H_2O_2 + O_2
\]

These supremely efficient catalysts are abundant in aerobic cells and keep the steady state level of O₂⁻ in the 10⁻¹⁰ mol l⁻¹ range (Imlay and Fridovich, 1991). In E. coli, SODs provide approximately 95% protection to all targets susceptible to O₂⁻ attack (Linochev and Fridovich, 1997).
There are three classes of SODs that differ in utilizing Cu and Zn, Mn, or Fe and Ni. SODs can be cytosolic, localized to specific sub-cellular organelles or secreted (Fridovich, 1997). The presence of SOD enzymes in strictly anaerobic bacteria further supported the notion that O_2^- is a key and general component of oxidative stress (Hatchikian et al., 1977; Dos Santos et al., 2000). These organisms may be transiently exposed to oxygen and the availability of the antioxidant mechanism may be an advantage (Cypionka, 2000). Some microaerophilic and anaerobic bacteria use not only SOD but also a relatively new class of superoxide-scavenging enzymes, the superoxide reductase (SOR) (Jenney et al., 1999; Lombard et al., 2000; Lombard et al., 2000b, Jovanovic et al., 2000), that catalyze the reduction of superoxide radical anion to H_2O_2:

$$O_2^- + e^- + 2H^+ \rightarrow H_2O_2$$

SOD dismutates toxic superoxide anion radical but, in so doing produces hydrogen peroxide, another toxic product, which is degraded by catalases and peroxidases, the latter using organic electron donors (Fridovich, 1978):

$$H_2O_2 + H_2O_2 \rightarrow 2H_2O + O_2 \quad \text{(Catalases)}$$

$$H_2O_2 + 2RH \rightarrow 2H_2O + 2R^\circ \quad \text{(Peroxidases)}$$

Catalases, or more correctly hydroperoxidases, are one of the most studied enzymes. The name catalase was first used in 1900 (Loew O, 1900) and the protein has been the object of study in many organisms ever since. Three classes of catalase, unrelated on the basis of sequence and structure exhibit significant catalase activity. The class that is most widespread in nature and which has been most extensively characterized is composed of mono-functional, heme-containing enzymes subdivided based on having large (> 75 kDa) or small (< 60 kDa) subunits. Phylogenetic analysis has
demonstrated the existence of two clades of small subunit enzymes and one clade of large subunit enzymes among monofunctional catalases (Klotz et al., 1997). The second less widespread class of catalase is composed of bifunctional, heme containing catalase-peroxidases that are closely related in sequence and structure to plant peroxidases. The third class includes the nonheme or Mn-containing catalases. In addition, a diverse group of proteins, all heme-containing such as chloroperoxidases, plant peroxidases and myoglobins, exhibit very low levels of catalase activity, attributable to the heme, which alone exhibits catalase activity (Nicholls et al., 2001).

Most bacteria produce one or more catalases that usually respond to oxidative stress, either directly to H_2O_2 levels or to the presence of other active oxygen species. In *E. coli*, the catalase-peroxidase HPI (Hydroperoxidase I), or EcKatG, is controlled as part of the OxyR regulon, which senses active oxygen species, and the monofunctional catalase HPII is controlled as part of the σ^5 regulon in the stationary phase. Recently, polyamines, including putrescine, spermidine and spermine, were reported to upregulate both the oxyR and rpoS regulons in *E. coli* (Jung et al., 2003), but the mechanism remains unclear. There is a commonality of a reactive oxygen sensor or growth phase or σ-transcription factor control mechanism in controlling catalase gene expression, although there is no consistency in the pairing of the type of catalase and the type of regulator.

Like the catalases, peroxidases are predominantly heme-containing enzymes which catalyze the dismutation of hydrogen peroxide using an electron donor other than H_2O_2 (AH):

$$\text{H}_2\text{O}_2 + 2 \text{AH (reduced)} \rightarrow 2\text{H}_2\text{O} + 2\text{A (oxidized)}$$
There is a significant variability in peroxidases compared to catalases in regard to their structural properties. This is probably a consequence of the many different roles that individual peroxidases play. While the majority of known peroxidases are hemoproteins, such as horseradish peroxidase (HRP), cytochrome c peroxidase (CCP), and other mammalian, plant and fungal peroxidases, there are also non-heme peroxidases, such as the vanadium containing chloroperoxidase enzyme from the fungus *Cuvularia inaequalis* (Messerschmidt and Wever, 1996), the FAD cysteine redox center NADH peroxidase from *Streptococcus faecalis* (Stehle et al., 1991), and the human peroxiredoxin peroxidase (Choi et al., 1998). Peroxidases are discussed in detail in the later sections.

Glutathione peroxidases (GPx) or ascorbate peroxidases are reductases which receive reducing equivalents or are regenerated by electrons from NADPH in metabolic pathways. GPxs are absent in *E.coli*, but in animal cells these are selenoenzymes, which catalyze the reduction of hydroperoxides at the expense of GSH (Flohe, 1988; Ursini et al., 1995). The GPx active site contains selenium in the form of the selenocysteine residue (Flohe et al., 1973; Stadtman, 1991). There has been no report of a selenium dependent glutathione peroxidase activity in plants and H₂O₂ is degraded by ascorbate peroxidase (Bunkelmann and Trelease, 1996; Smirnoff, 1996).

1.4. The monofunctional, heme containing catalases

1.4.1. Introduction

All heme-containing catalases have a common two stage mechanism for the degradation of H₂O₂. In the first step, one hydrogen peroxide molecule oxidizes the heme
to an oxyferryl species, the so called compound I, in which one oxidation equivalent is removed from the iron and one from the porphyrin ring to generate a porphyrin cation radical [reaction 1]:

\[
\text{Enz (Por-Fe}^{\text{III}}\text{) + H}_2\text{O}_2 \quad \longrightarrow \quad \text{CpdI (Por}^*\text{-Fe}^{\text{IV}=\text{O}) + H}_2\text{O} \quad (1)
\]

Compound I is a short lived catalytic intermediate with a distinct absorption spectrum characterized by a reduction of absorption intensity of the Sorèt band (at approximately 406 nm; a band diagnostic of hemoprotein). Compound I formation is believed to be initiated by a histidine side-chain in the active site above the plane of the heme. The distal histidine act as a general acid-base catalyst forming a hydrogen bond with the hydrogen peroxide also coordinated to the heme iron. This facilitates the formation of the transition state, which is stabilized by an additional hydrogen bond with an asparagine, leading to scission of the peroxide O-O bond with one oxygen transferred to the iron forming compound I and the second oxygen being connected to water (Fita and Rossman, 1985). A second molecule of hydrogen peroxide is utilized as a reductant of compound I to regenerate the resting enzyme, water and oxygen [reaction 2]:

\[
\text{CpdI (Por}^*\text{-Fe}^{\text{IV}=\text{O}) + H}_2\text{O}_2 \quad \longrightarrow \quad \text{Enz (Por-Fe}^{\text{III}}\text{) + H}_2\text{O + O}_2 \quad (2)
\]

Despite this common reaction, there are significant differences in reactive capability among the members of this very large family of enzymes (Switala and Loewen, 2002).

Approximately 256 sequences of mono-functional catalase have been divided into three clades arising from a minimum of two gene duplication events (Klotz and Loewen, 2003). Recent induction of catalase-peroxidase and non-heme catalases into the universal tree of life created a larger picture. Clade 1 catalases are predominantly of plant origin, but with one algal representative and a sub group of bacterial origin. Clade 2 enzymes are
all large subunit enzymes of bacterial and fungal origin. The one archaeabacterial clade 2 enzyme is postulated to have arisen in a horizontal transfer event from a bacillus species. The clad 3 enzymes are all small subunit enzymes from bacteria, archaebacteria, fungi and other eukaryotes (Koltz and Loewen, 2003).

Catalases do not follow Michaelis-Menton kinetics except at low substrate concentration; rather, they show pseudo first order saturation kinetics. A comparative study of 16 catalases has shown the great divergence in properties within the catalase family (Switala and Loewen, 2002). Different enzymes are affected differently at higher substrate concentration. Most small subunit enzymes suffer inactivation by H₂O₂ at concentrations above 300-500 mM and never reach the Michaelis-Menten V_{max} predicted by extrapolation from rates at lower substrate concentrations. Large subunit enzymes show inhibition to H₂O₂ only at concentrations above 3 M, if at all, and exceed the predicted Michaelis-Menten V_{max}. Consequently the presentation of observed data in terms of the typical constants K_m and V_{max} is misleading because true Michaelis-Menten kinetics are not applicable. Sequence differences among catalases are considered to be responsible for the widely differing reactions rates and substrate affinities, but a rationale for how has not been proposed (Chelikani et al., 2004).

1.4.2. Structural properties of catalases

All monofunctional catalases so far characterized are tetrameric, but there are reports of hexamers and an unusual heterotrimer from Pseudomonas aeruginosa which have not yet been substantiated by structural analysis. To date the crystal structures of eleven monofunctional catalases have been reported. These include catalases from:
bovine liver (BLC) (Murthy et al., 1981, Melik-Adamyan et al., 1986), *Penicillium vitale* (PVC) (Vanishtein et al., 1981 and 1986), *Micrococcus lysodeikticus* (MLC) (Murshudov et al., 1982), *Proteus mirabilis* (PMC) (Gouet et al., 1995), *Escherichia coli* (HPII) (Bravo et al., 1995 and 1999), human erythrocytes (HEC) (Ko et al., 1999; Puntam et al., 1999), *Pseudomonas syringae* (CatF) (Carpena et al., 2001 and 2003), *Helicobactor pylori* (HPC) (Loewen et al., 2004), *Neurospora crassa* (Cat1) (Diaz et al., 2004) and *Enterococcus faecalis* (Håkansson et al., 2004). The characteristic feature of a catalase structure is a core beta barrel inside which is the deeply buried heme active site accessed by two or three channels (Loewen et al., 2004). In BLC, CATA, HEC, PMC and MLC, there is a common orientation of the active site His imidazole ring over ring III of the heme (His-III orientation) which was concluded to be the normal heme orientation in catalase. In PVC and HPII, the heme orientation is flipped with the active site His located above ring IV of the heme (His-IV) (Murshudov et al., 1996; Chelikani et al., 2004). This flipped orientation in large subunit enzymes is accompanied by oxidation of the heme to heme d to form a cis-hydroxyspirolactone group on ring III (Murshudov et al., 1996) and suggested that large subunit enzymes are unique. Demonstration of the His-IV orientation in CatF, a clade I catalase, suggested a more general distribution. Recent structure-function studies on variants of HPII (Chelikani et al., 2003) and CatF (Carpena et al., 2003) have revealed significant information about the channel architecture in catalases. The deeply buried heme is connected to the surface by three channels. The main channel gives the most obvious access route to the heme as it approaches the heme perpendicular to its plane and has long been considered the primary access route for substrate H$_2$O$_2$ (Mate et al., 1999; Sevenic et al., 1999; Melic-Adamayan et al., 2001; Chelikani et al.,
The second channel approaches the heme laterally, almost in the plane of the heme, and has been referred as the minor or lateral channel. The third channel has been proposed to connect the heme to the central cavity but the role of this channel has not been proposed (Chelikani et al., 2003).

1.4.3. An electrical potential field in the channel of mono-functional catalases

In 2003, Chelikani et al, demonstrated the striking influence of the negatively charged side chain of a conserved Asp (181 in HPII) on catalase activity. When replaced with any uncharged residue, polar or non-polar, including Asn, Ala, Ser, and Ile, enzymatic activity was lost accompanied by a reduction in solvent occupancy in the channel including the sixth ligand water in all subunits of Asp181Ala, Asp181Ser, and Asp181Gln. However, variant Asp181Glu exhibited normal levels of activity and contained the sixth ligand water in all subunits as part of an unbroken water matrix extending the full length of the channel. The existence of an electrical potential field in the hydrophobic portion of the channel between the negatively charged carboxylate and positively charged heme iron was proposed as an explanation for the phenomenon. The potential field influences the orientation of any molecule with an electrical dipole including both H₂O and H₂O₂. In both cases, the preferred orientation will be with oxygen atoms pointed toward the positively charged heme iron and the hydrogens toward the negatively charged side chain of Asp or Glu. The uniform orientation of waters favours hydrogen bond formation and explains the high water occupancy with both Asp181 and the variant Asp181Gln. A second result of the induced orientation of hydrogen peroxide is that it will enter the active site with the a-oxygen oriented toward
the heme iron and the a-hydrogen on this oxygen located within the hydrogen bonding distance of the NH$_2$ of the active-site Asn, thereby explaining conclusion from molecular dynamic studies that the substrate hydrogen peroxide enters the active site in a preferred orientation (Kalko et al., 2001).

1.5. Non-heme or manganese containing catalases

There is another group of catalases that, instead of heme, contains a manganese complex at the reaction center. This group was initially referred to as pseudo-catalases because the enzyme lacked a heme prosthetic group (Kono and Fridovich, 1983), but now are more commonly called Mn-containing catalases (Allgood and Perry, 1986), with the terms non-heme (Nicholls, 2001) and dimanganase catalase (Antonyuk et al., 2000) also being used. These are not as widespread as the heme-containing catalases, being found only in eubacteria with the exception of *Pyrobaculum calidifontis* (a facultative aerobic respiratory, hypertherophylic Chrenarcheabacterium). They show lower enzymatic activity than heme-containing catalases with the exception of *P. calidifontis* catalase (Koltz et al., 1997).

1.6. Monofunctional peroxidases

Peroxidases are predominantly heme containing and catalyze the hydrogen peroxide mediated oxidation of various organic and inorganic substrates generating in some cases, free radical species (Hillar et al., 1999). The overall reaction can be summarized as:

\[
\text{H}_2\text{O}_2 + 2\text{AH (reduced)} \rightarrow 2\text{H}_2\text{O} + 2\text{A (oxidized)}
\] (1)
Typical reducing substrates include aromatic phenols, phenolic acids, indoles, amines and sulfonates although inorganic ions are used by a few enzymes (Preston et al., 1987). The reaction proceeds in three steps, with the first step involving formation of Compound I, a high oxidation state intermediate comprising an Fe(IV) oxoferryl centre and a porphyrin-based cation radical [reaction 2], common to both catalases and pereoxidases:

\[
\text{Enz (Por-Fe}^{III}\text{)} + \text{H}_2\text{O}_2 \rightarrow \text{CpdI (Por}^{\text{IV}}\text{-Fe}^{\text{IV}}\text{=O) + H}_2\text{O} \quad (2)
\]

\[
\text{CpdI (Por}^{\text{IV}}\text{-Fe}^{\text{IV}}\text{=O) + AH}_{\text{red}} \rightarrow \text{CpdII (Por-Fe}^{\text{IV}}\text{-OH) + A}_{\text{ox}} \quad (3)
\]

\[
\text{CpdII (Por-Fe}^{\text{IV}}\text{-OH) + AH}_{\text{red}} \rightarrow \text{Enz (Por-Fe}^{\text{III}}\text{)} + \text{A}_{\text{ox}} \quad (4)
\]

A transient intermediate (compound 0) formed prior to compound I has been detected in reactions between HRP C and H₂O₂ at low temperatures and described as an Fe(III)-hydroperoxy complex (Filizola and Loew, 2000). In formal terms, compound I is two oxidizing equivalents above the resting state. The first one-electron reduction step requires the participation of a reducing substrate and leads to the generation of compound II, an Fe(IV) hydroxoferroly species that is one-oxidising equivalent above the resting state [reaction 3]. Both compound I and compound II are powerful oxidants, with redox potentials estimated to be close to +1 V. The second one-electron reduction step returns compound II to the resting state of the enzyme. Reaction of excess hydrogen peroxide with the resting state enzyme gives compound III, which can also be prepared by several other routes (Dunford, 1991). This intermediate is best described as a resonance hybrid of iron (III)-superoxide and iron (II)-dioxygen complexes. A high-resolution crystal structure of 95% compound III shows dioxygen bound to heme iron in a bent conformation (Berglund et al., 2002). A similar but irreversibly inactivated compound
IV formation has also been reported (Baynton et al., 1994). A covalently modified heme iron, possibly with a perhydroxy or dioxygen group in a compound III like structure, has been reported in the crystal structure of *Helicobacter pylori* catalase (HPC), with and without formic acid bound, (Loewen et al., 2004). In the HPC structure, the elongated electron density associated with the iron in subunit B resembles the maps of oxymyoglobin (Vojtechovsky et al., 1999) and compound III of horseradish peroxidase (Berglund et al., 2002). High resolution crystal structures of the oxidised intermediates of HRP C has shown that distal heme pocket residues Arg38 and His42 (conserved in all members of the plant peroxidase superfamily) play a significant role in the formation of compound I (Berglund et al., 2002).

In 1992, Welinder performed multiple sequence alignment of number of peroxidases and classified them into three distinct structural families or classes. Class I enzymes are identified as bacterial peroxidases, and include the sequence of *E. coli* catalase-peroxidase and yeast cytochrome *c* peroxidase. Class II enzymes include the plant peroxidases such as horseradish peroxidase isoenzyme C while class III contains the classical secretory plant peroxidases for example horseradish peroxidase. It should be noted that the structural classes identified do not imply degrees of evolutionary relatedness, simply structural variation (Hillar, 2000). Among class I enzymes, for example, the yeast cytochrome *c* peroxidase has been shown to be evolutionarily distinct from bacterial peroxidases (KatGs) by phylogenetic analysis (Klotz, 1997).
1.7. Catalase-peroxidases

Catalase-peroxidases, also called KatGs after the encoding gene katG (Loewen et al., 1985), are found in bacteria, archaebacteria and a few fungi. In 1992, catalase-peroxidases gained significant notoriety with the reports confirming that mutations in the katG gene encoding the Mycobacterium tuberculosis catalase-peroxidase (MtKatG) were responsible for resistance against isoniazid (Zhang et al., 1992), the front line anti-tuberculosis drug, and were the leading cause of the world-wide resurgence of tuberculosis (Deretic et al., 1996). This gave rise to significant interest among researchers, worldwide. These fascinatingly complex enzymes show strong catalatic activity, although with turnover rates only 1-20% of mono-functional catalases and a broad spectrum peroxidatic activity. They have recently been associated with a slow NADH oxidase, hydrazinolysis and isonicotinyl NAD synthase activities (Singh et al., 2004). The catalase-peroxidase HPI of E. coli was first purified and characterized in 1979 (Claiborn and Fridovich, 1979), and its encoding gene katG, was sequenced in 1988 (Triggs-Raine et al., 1988), providing the first catalase-peroxidase sequence and demonstrating the sequence similarity to plant peroxidases. Since then a wide variety of KatGs have been purified, characterized and sequenced.

1.7.1. Phylogeney of catalase-peroxidases

Catalase-peroxidases bear significant sequence similarity to eukaryotic class I heme peroxidases of the plant, fungal and bacterial peroxidase superfamily (Welinder et al., 1992). This superfamily includes three independent evolutionary lineages depending upon the cellular location and function of the enzyme. Class I (peroxidases of prokaryotic
origin) contains the large family of ascorbate peroxidases from higher plants and green algae, cytochrome c peroxidase (CcP) from *Saccharomyces cerevisiae*, and catalase-peroxidases. Class II comprises extracellular fungal peroxidases (e.g. lignin peroxidase, manganese peroxidase), while class III contains the classical secretory plant peroxidases (e.g. horseradish peroxidase) (Zàmocký *et al.*, 2000). All representatives possess the same heme prosthetic group containing high spin ferric heme. Catalase peroxidases are the only member of this superfamily that possesses notable catalase activity (i.e. they can reduce and oxidize hydrogen peroxide). All other members of the superfamily are restricted to reducing hydrogen peroxide with subsequent oxidation of a secondary substrate. These 'noncatalase' members of class I exhibit strong specificity for electron donors: the preferred substrate is ascorbate in the case of ascorbate peroxidase and cytochrome c in case of cytochrome c peroxidase. The *in vivo* substrate for the peroxidatic reaction of catalase-peroxidases remains unidentified. Sequence analysis has revealed that catalase-peroxidases have evolved from a common ancestor, shared with class I, II and III peroxidases (Zàmocký *et al.*, 2000). The core of the enzyme is a non-bundled α-helical fold consisting of ten helices with bound ferric protoporphyrin IX (Zàmocký *et al.*, 2000), but KatGs arose from a gene duplication event, giving rise to a two domain structure in which the N-terminal domain is active and the C-terminal domain is inactive (Welinder, 1992). The first review on KatG phylogeny included 19 sequences (Faguy *et al.*, 2000) while the most recent has 60 sequences (Zàmocký *et al.*, 2004). With the large number of sequences in the data set, the tree is less robust than previous trees that were based on a much smaller set of selected sequences (Klotz *et al.*, 1997; Faguy and Doolittle, 2000; Loewen *et al.*, 2000) leading to several possible
interpretations of relationships. Upon integration into a conceptual tree of life, it is apparent that KatGs evolved much later than the heme-containing mono-functional catalases, and a significant frequency of lateral gene transfer is evident (Klotz and Loewen, 2003). A recent report has also supported this by analyzing sixty representative sequences covering all known subgroups of class I of the super-family of bacteria, fungal and plant heme peroxidases, showing that the duplication event in \textit{katG} occurred at a later phase of evolution (Zàmocký \textit{et al.}, 2004).

\subsection*{1.7.2. Regulation of catalase-peroxidase gene (\textit{katG}) expression.}

Regulation of KatG normally occurs through the OxyR regulator belonging to the LysR family. OxyR is an H_2O_2 sensing transcriptional regulator and transducer of oxygen stress. It is activated by disulfide bond formation between two cysteine residues and induces the expression of \textit{oxyS} (which encodes a small, nontranslated regulatory RNA), \textit{katG} (which encodes hydrogen peroxidase I), \textit{ahpC} (which encodes alkyl hydroperoxide reductase), \textit{gorA} (which encodes glutathione reductase), \textit{dps} (which encodes DNA binding protein), and \textit{grxA} (which encodes glutaredoxin 1). Glutaredoxin 1 deactivates OxyR by reducing the disulfide bond, forming an autoregulatory feedback loop (Zheng \textit{et al.}, 1998). Only the oxidized form of the protein is able to activate the expression of downstream genes and negatively autoregulate its expression by binding to specific regions in promoters (Christman \textit{et al.}, 1989). Irrespective of its redox state, OxyR also acts as a repressor of its own expression like other LysR transcriptional regulators. Several \textit{oxyR} genes have been identified in other organisms, such as \textit{Burkholderia pseudomallei} (Loprasert \textit{et al.}, 2002), \textit{Haemophilus influenzae} (Maciver and Hensen,
1998), various *Mycobacterium* species (Dertci et al., 1995, Dhandayuthapani et al., 1997), *Xanthomonas* species (Loprasert et al., 1997), and even the anaerobic bacterium *Bacteroides fragilis* (Rocha et al., 2000). In *E. coli*, *katG* is transcriptionally induced during the logarithmic phase in response to low concentrations of H$_2$O$_2$, and requires the transcriptional regulator, OxyR (Visick et al., 1997). Conversely, monofunctional HPII is induced during the transition from the exponential phase to stationary phase by RpoS, an alternative sigma factor, which is neither regulated by OxyR nor induced by H$_2$O$_2$ (Loewen et al., 1985; Mukhopadhyay et al., 1994; Mulvey et al., 1990; Schellhorn et al., 1992). *M. tuberculosis* has a non-functional OxyR gene with several mutations making it a natural mutant of OxyR (Deretic et al., 1995; Sherman et al., 1995). In all the mycobacterial species studied, the DNA region immediately upstream of the *katG* genes is highly conserved and encodes the *furA* gene, suggesting a putative involvement of the FurA protein in *katG* regulation (Anna et al., 2001). In *M. smegmatis*, a knockout *furA* mutant overexpressed the catalase-peroxidase KatG and was complemented by expression of FurA suggesting that FurA is a negative regulator of *katG*. Fur-like proteins are transcriptional repressors that exhibit a Fe$^{2+}$-dependent DNA binding activity and regulate several genes involved in iron metabolism (Escolar et al., 1999). There is an intimate relationship between iron metabolism and oxidative stress as the cytotoxic effects of reactive oxygen species are largely mediated by iron, and regulators of *E. coli* involved in oxidative stress response, OxyR and SoxRS, activate the expression of Fur (Zheng and Storz, 2000). *E. coli Δfur* mutants are more sensitive to hydrogen peroxide than are Fur-proficient strains (Touati et al., 1995). In *M. smegmatis*, hydrogen peroxide sensitivity is increased by iron starvation (Lundrigan et al., 1997); in *Staphylococcus*
Fur is necessary for oxidative stress resistance (Horsburgh et al., 2001); and in *Streptomyces* spp., Fur-like proteins regulate catalase-peroxidase genes in an iron-dependent manner (Zou et al., 1999).

1.7.3. Structure and Mechanism of catalase-peroxidases

Catalase-peroxidases are unique in modulating substantial catalase and peroxidase activity from a single enzyme. Despite the lack of similarity in the sequence and structure between catalase-peroxidases and mono-functional catalases, they share a common catalatic reaction for the compound I formation [reaction 1]. Biochemical and structural characterization of KatGs suggested this common reaction could be attributed to the active sites of both enzymes, which contain heme and have similar roles for the active site residues, though in catalase-peroxidases asparagine is replaced by the arginine or tyrosine (Carpena et al., 2003; Jakopitsch et al., 2003). In catalases, the compound I is reduced to the ground state in a single two-electron reduction step using a second molecule of hydrogen peroxide while the peroxidatic reaction requires an electron doner to reduce the compound I to the ground state in two one-electron reduction steps [reactions 2 and 3]. A variety of organic substances, such as *o*-dianisidine, ABTS and pyragallol, act as the electron donating substrate, *in vitro*, for the peroxidatic reaction, but *in vivo*, the peroxidatic substrate remains unknown.

Attempts to crystallize KatGs were unsuccessful until 2001 when the first report describing the crystal structure of the halophilic archaebacterium *Haloarcula marismortui* (HmKatG; Yamada et al., 2001, 2001) appeared. This was followed by the
Figure 1.3. Structures of catalase-peroxidase (KatG) from *Burkholderia pseudomallei* (A), *Mycobacterium tuberculosis* (B), *Haloarcula marismortui* (C), and *Synechocystis* PCC 7942 (D). Each subunit is shown with different colour and the heme is shown in green. Ribbon representations are prepared using Pymol (Deleno, 2002)) and the coordinates submitted to the protein data bank.
Figure 1.4. Structures of the N-terminal of BpKatG (A), cytochrome c Peroxidase (B), Horseradish peroxidase (C), and ascorbate peroxidase (D). The heme is shown in green. Ribbon representations are prepared using Pymol (Deleno, 2002) and the coordinates submitted to the protein data bank.
crystal structure reports of KatGs from *Burkholderia pseudomallei* (BpKatG; Carpena *et al.*, 2002, 2003), *Synechococcus* (SyKatG; Wada *et al.*, 2002) and *Mycobacterium tuberculosis* [Figure 1.3] (Bertrand *et al.*, 2004). In addition, the crystal structure of the C-terminal domain of *E. coli* HPI has been reported (Carpena *et al.*, 2004).

Crystal structure analysis confirms that KatGs are normally active as homodimers, although homotetrameric associations do occur, as in EcKatG or HPI. The individual subunits are relatively large at approximately 80,000 Da and have two distinct but sequence related domains, possibly fused during a gene duplication event (Welinder, 1991). During subsequent evolution, the N-terminal domain retained (or acquired) the ability to bind heme and the C-terminal domain lost (or never acquired) this ability. Despite this functional divergence, considerable structural homology has been conserved, with a root mean square deviation (r.m.s.d) of 2.19 Å for the Cα atoms of 133 residues in the ten α helical sections that are topologically equivalent in the two domains of BpKatG. The two subunits in the molecule are associated mainly through interactions between the N- and C-terminal domains, with few N-terminal to N-terminal and no C-terminal to C-terminal domain interactions.

A role for the C-terminal domain, other than as an agent for dimer formation and stabilization, has not been determined (Carpena *et al.*, 2004). The heme is located in the N-terminal region (Figure 1.3) and the heme environment in KatG has been shown to be similar to that of plant peroxidases [Figure 1.4] (Yamada *et al.*, 2002; Carpena *et al.*, 2003; Wada *et al.*, 2002; Bertrand *et al.*, 2004). On the distal side of heme, the active site triad of Arg108, Trp111, and His112 (BpKatG numbering) is typical of all
catalase-peroxidases and of class I peroxidases. On the proximal side, His279 is the fifth ligand to the heme iron atom also as in the peroxidases, and it is in close association with the fully conserved Asp389, which interacts with the indole N atom from the proximal Trp330 (Carpena et al., 2003) as shown in Figure 1.5.

Crystal structures from four KatGs and one variant from BpKatG (Ser324Thr, Deemagaran et al., 2005) and MtKatG (Ser315Thr Zhao et al., 2006) has provided better insight into the structural properties but there is no consensus on the structural basis for the high catalase activity of KatGs. It is not clear whether the role of KatG compound I is the same as in monofunctional catalases or it follows a different path. KatG’s thermodynamics present no barrier to the two electron oxidation of hydrogen peroxide to dioxygen. The standard reduction potential of the redox couple $E^{\circ} (O_2/H_2O_2)$ is 280 mV (Wood, 1988), and normally the oxidizing intermediates of heme peroxidases are strong oxidants (Dunford, 1999).

It has previously been shown that KatG compound I, like that of monofunctional catalases, does not accumulate during H_2O_2 degradation but can be trapped by using organic peroxides (Jakopitsch et al., 1999). However, this intermediate shows a low reactivity towards H_2O_2 (Jakopitsch et al., 1999). Also, both in the absence and in the presence of one electron donors, accumulation of a hydroxo ferryl like compound II was never observed in wild type KatGs, suggesting that the spectral signature of KatG compound II could be similar to that of the ferric protein (Jakopitsch et al., 1999; Reglesberger et al., 2000). Unlike plant peroxidases, in KatGs the formation of compound III has not be confirmed even at higher concentration of H_2O_2 (Chauchane et al., 2000). Besides these mechanistic peculiarities, KatG’s structural analysis has
Figure 1.5. Panel A shows the active site residues in the proximal and distal side of BpKatG. In the panel B, an overlay of cytochrome c peroxidase with the N-terminal of BpKatG has been shown. KatG’s subunits are shown with different colours and CcP is shown in yellow and parenthesis indicates residues numbering in CcP. Figures are prepared using Pymol (Deleno, 2002) and the coordinates submitted to the protein data.
revealed some striking difference from heme peroxidases as discussed in the following sections.

1.7.3.1. The unusual covalent modifications

In a wide range of metalloenzymes, active site residues undergo covalent modification such as in cytochrome c oxidase (His240-Tyr244; heme$_{a3}$-Cu$_{b}$) (Ostermeier et al., 1997; Yoshikawa et al., 1998; Buse et al., 1999), catalase HPII (His392-Tyr415; heme) (Bravo et al., 1997), galactose oxidase (Tyr272-Cys228; copper) (Ito, et al., 1994; Ito, et al., 1994), catalase 1 (Cys-356-Tyr379; heme) (Diaz et al., 2004), and amine oxidases (2,4,5 trihydroxyphenylalanine quinine; copper) (Parsons et al., 1995). In KatGs three unusual covalent modifications has been reported. The most prominent modification is the cross linking of three amino acid side chains, Trp111, Tyr238 and Met264 (BpKatG numbering) located on the distal side of the heme [Figure 1.6a] and has been reported in the crystal structure reports of all four KatGs and the variant Ser324Thr of BpKatG (Yamada et al., 2002; Carpena et al., 2003; Wada et al., 2002; Bertrand et al., 2004; Deemagaran et al., 2005).

This modification has also been confirmed by mass spectrometric analysis of BpKatG (Donald et al., 2003) and MtKatG (Ghiladi et al., 2005; Ghiladi et al., 2005a). Met–Tyr–Trp crosslink appears to be a characteristic common to all KatGs and has been shown to be essential for catalase activity (Donald et al., 2003; Jakopitsch et al., 2003; Ghiladi et al., 2005; Santoni et al., 2004; Jakopitsch et al., 2003a; Jakopitsch et al., 2004; Ghiladi et al., 2005a). Similar cross-link has not been reported in heme peroxidases and these distal tyrosine and methionine are not conserved. Other modifications include a perhydroxy group added to the vinyl group on the ring I of the heme of BpKatG [Figure
Figure 1.6. Structural representation of covalent modifications in BpKatG: Trp111-Tyr238-Met264 cross link has been shown in two views; A is rotated almost 90° to B. Panel C shows the peroxo modification (shown in red) on heme. Figures are prepared using Pymol (DElono, 2002) the coordinates submitted to the protein data bank.
1.6b] (Carpena et al., 2003) and a perhydroxy group on the indole N of Trp111 of BpKatG (Deemagarn et al., 2005; Carpena et al., 2006).

1.7.3.1.1. The covalent Trp111-Tyr238-Met264 cross link

The crossed linked peptide (Trp-Tyr-Met) in KatGs has been subjected to extensive study using structural, mass spectrometric and HPLC analysis. Studies on BpKatG demonstrated that the covalent adduct involves the indole ring of the active site Trp111 and the sulfur of Met264 joined to the two ortho positions of Tyr238, and is found in close proximity to the heme [Figure 1.6a] (Donald et al., 2003). Trp111 is a catalytic residue required for compound I reduction in the catalatic reaction (Hillar et al., 2000 and Jakopitsch et al., 2003). Possible roles suggested for the covalent adduct include stabilizing the indole ring in the active site and providing a route for electron transfer. Mass spectrometric analysis of BpKatG, EcKatG (Donald et al., 2003), Synechocystis KatG (Jakopitsch et al., 2003) and MtKatG (Ghiladi et al., 2005; Ghiladi et al., 2005a) have confirmed the presence of the Trp-Tyr-Met adduct in the five catalase-peroxidases and supports the conjecture that the structure may be common to all catalase-peroxidases (Smulevich et al., 2006).

Recently, De Montellano demonstrated that formation of the Met-Tyr-Trp crosslink is autocatalytic and requires compound I as the two electron oxidizing species rather than compound II (Ghiladi et al., 2005). A comparison of apoMtKatG with holoMtKatG demonstrated the lack of cross link in holoenzyme and its reconstitution with heme alone did not generate the cross link rather a 33% cross link formation was
observed after incubating the reconstituted enzyme with PAA (peroxy acetic acid) (thus generating compound I) but generation of compound II by incubating the enzyme with even an higher concentration of MMMP (2-methyl-1-phenyl-2-propyl hydroperoxide), leads to a negligible increase in the cross link present. Author attributed higher efficiency (as compared to 33%) in vivo to the presence of bound substrate.

The cross link formation has been proposed to be a sequential process with both Trp107 and Tyr229 (MtKatG numbering) necessary for complete Met–Tyr–Trp crosslink. Variants of Met255 still produced a Tyr–Trp linkage despite the lack of a Met–Tyr linkage, suggesting that the cross link forms first between the Cη2 of Trp107 and Cε1 of Tyr229, followed by bond formation between the Cε2 of Tyr229 and Sδ of Met264 (Jakopitsch et al., 2003; Ghiladi et al., 2005). Thus, the over all reaction starts with compound I formation either by a peracid (in vitro) or hydrogen peroxide (in vivo) leading to oxidation of both Tyr229 and Trp107 which, being in close proximity to the heme periphery (~3.7 Å and 5.9 Å), remains within the threshold for long range electron transfer (Gray and Winkler, 1996; Gray and Winkler, 2003) and are capable of being oxidized by compound I with concomitant formation of Trp107°+ and Tyr229°+ radicals. Simultaneous formation of these protein radicals from a single turnover event makes possible their coupling to the Tyr-Trp bond. Formation of a second compound I intermediate results in further oxidation of the Tyr-Trp cross link leading to nucleophilic attack of the sulfur atom of Met255 on the quinine-like intermediate, ultimately forming the Met-Tyr-Trp cross link (Ghiladi et al., 2005). A similar process for Tyr-Trp cross link formation has been proposed for Met255 variant of MtKatG but in this variant further reaction with oxidized Tyr-Trp was not possible (Ghiladi et al., 2005a). Mutating
equivalent Trp to Ala in SyKatG did not yield any Met-Tyr-Trp cross link (Jakotipsch et al., 2003) which supported a sequential formation of bond between Tyr229 and Trp108, followed by Tyr229 and Met255.

The studies of Obinger and coworkers on the ferric, ferrous and fluoride complexes of Tyr249Phe, Met275Ile and Trp122Ala and Trp122Phe (SyKatG numbering) variants of SyKatG showed no significant effect on the protein structure on the proximal side of heme and attributed this to no change in frequency for the Fe-imidazole stretching modes as compared to the wild type SyKatG (Heering et al., 2002; Santoni et al., 2004; Santoni et al., 2004a). Tyr249Phe and Met275Ile variants showed similar ferric spectra as that of wild type with a tendency to loose heme which was attributed to the presence of a shoulder at 368 nm in conjugation with an increase of a 6-coordinated (c) low spin (LS) heme at the expense of a native 5-coordinated high spin (HS) heme (Heering et al., 2002). The Trp122Phe and Trp122Ala variants exhibit increased pKa of the alkaline transition and showed the presence of aquo 6-coordinated HS heme and hydroxyl 6-coordinated HS heme (Santoni et al., 2004a). These authors demonstrated weakened heme binding with a destabilized protein when the crosslink was only partially formed, but the absence of the cross-link did not alter the disposition of the distal the Trp because the binding of fluoride was unaffected compared to native protein. On the other hand the variants Trp122Phe and Trp122Ala affected the protein to bind fluoride (Smulevich et al., 2006).

A similar characterization of the equivalent variants (Tyr229Phe and Met255Ile) of MtKatG by Magliozzo and coworkers demonstrated spectroscopic features slightly different from those reported for SyKatG. The Met255Ile variant of MtKatG showed
greater relative population of 6-coordinated HS heme than either native KatG or Tyr229Phe variant and all three (native MtKatG and the variants Tyr229Phe and Met255Ile) lacking a detectable LS heme component (Chouchane et al., 2003).

Jakopitsch et al demonstrated that KatGs can be converted into monofunctional peroxidases by mutating Tyr249Phe (in case of SyKatG). The variant Tyr249Phe also demonstrated the formation of an oxoferryl-porphyrin radical compound I upon addition of equimolar H₂O₂ to the ferric enzyme (a phenomenon difficult to observe in native enzyme due to its high catalase activity), followed by rapid formation of an intermediate with a oxoferryl type compound II spectrum similar to HRP (Jakopitsch et al., 2003). Author attributed this spectrum to the result of an endogenous electron transfer similar to a kinetic coupling demonstrated between the generation of a tyrosyl radical and the formation of the intermediate with the compound II like spectrum in Tyr229Phe variant of MtKatG (Yu et al., 2003). This was also confirmed by sequential mixing-stopped flow analysis which directly produced oxoferryl type compound II by one electron reduction of the ferryl-porphyrin radical compound I (Jakopitsch et al., 2003). In the presence of micromolar concentration of H₂O₂ and in the absence of one-electron donors, a compound III like spectrum has also been reported in Tyr249Phe variant of SyKatG (Regelsberger et al., 2001; Jakopitsch et al., 2003). These reports support the conjecture that covalent cross linking of distal Met-Tyr-Trp plays a significant role in maintaining the catalase and peroxidase activities of KatGs.
1.7.3.1.2. Perhydroxy modification of Heme

The second unusual modification is evident only in the BpKatG but not in the other three KatG structures. This is a perhydroxy modification on the ring I vinyl group of the heme (Carpena et al., 2003). A simple hydration like addition of hydrogen peroxide across the double bond of the vinyl group has been suggested as the reason for this modified heme (Carpena et al., 2003) [Figure 1.6b]. This modification on heme is shown to be removed easily by treatment of the enzyme with INH (X. Carpena, personal communication). The function of the perhydroxy group could be to serve as a reservoir of \(\text{H}_2\text{O}_2 \) in the active site, available for the immediate reaction when a peroxidatic substrate is contacted (Carpena et al., 2003).

1.7.3.1.3. Perhydroxy modification on the Indole of Trp111

A perhydroxy modification on the indole nitrogen atom of Trp111 was reported in the crystal structure of the Ser324Thr variant of BpKatG (Carpena et al., 2005). Interestingly, the modified Trp111 was not observed in the first crystal structure report of the wild-type BpKatG (Carpena et al., 2003) but was present in a recent report and has been shown to be associated with the change in pH (Carpena et al., 2006). The crystals of BpKatG soaked at different pH values showed almost no extraneous electron density in the vicinity of the indole nitrogen at pH 4.5 and almost 100% occupancy when pH was raised to 8.5, suggesting the gradual appearance of modification from 0% occupancy to almost 100% occupancy (Carpena et al., 2006). EPR spectra were also correlated with the presence of the Trp 111 modification at pH above 7. The rapidity of perhydroxy-indole formation, 100% yield after just 1 min soaking of the crystal at pH 8.5, suggests a very
facile reaction with molecular oxygen in the buffer at higher pH, which correlates with
the higher pH of NADH oxidase reaction (Singh et al., 2004). The explanation for the
presence of perhydroxy modification in the Ser324Thr variant at pH 5.7 has been
attributed to an inductive effect of the extra methyl group of Thr324 facilitating indole
oxidation (Carpena et al., 2006).

1.7.3.2. Presence of three large loops in the catalytic region of KatGs

Apart from having a deeply buried heme, a longer and more constricted proposed
access route for H₂O₂ and an unusual Met-Tyr-Trp covalent adduct, KatGs also have a
short stretch and three large loop (LL) insertions (LL1-LL3) which differs them from
peroxidases (Yamada et al., 2002). The short stretch occurs at position 102–113 with the
sequence pattern ‘SQXWWPADXGXY’ on the distal side of the heme, and is highly
conserved (>95%) among all known KatGs (Zámicky et al., 2001). It is positioned in the
region homologous to the connection between helices A and B. The first large insertion,
which is of variable length among KatGs, occurs between positions 210 and 251 with a
length of 36–43 residues between helices D and E situated between the distal and
proximal catalytic domains. There is a conserved sequence on the C-terminus of this loop
comprising residues ‘AXXMGLIYVN’. The second large insertion at positions 300–334
between helices F and G has the same length for all known KatGs (35 or 36 residues) and
is, relatively conserved among all KatGs with a signature sequence
‘GXXPXXAXXEXQGLGW’. The third large insertion between residues 357 and 392
(between helices G and H) seems not to be highly conserved among KatGs on the other
hand there exist a similar although shorter insertion in cytochrome c peroxidase. The
conservation evident in the inserts suggests that the first and the second insertions as well as the short distal stretch are of functional importance for KatGs (Zàmocký et al., 2001). Recent crystal structure analysis of KatGs supports this hypothesis. Constriction of the access channel has been attributed to the LL1 and LL2 insertions, as LL2 is positioned at one edge of the heme between helices D and E connecting the distal and proximal catalytic domains. The LL1 insertion contains a number of residues neighboring the covalently linked Tyr249 that are highly conserved in KatGs viz Ile248, Asn 152, Pro252 and Glu253 (Jakopitsch et al., 2005). Asp152 has been reported to be hydrogen-bonded to the LL1 residue Ile248 providing stability to the heme architecture and its substitution markedly changes the proximal His291-Asp402 hydrogen bond interaction (Santoni et al., 2004), underlining the role of the LL1 insertion in linking the distal and proximal heme sites.

1.7.3.3. Substrate access channel

The crystal structure analysis of HmKatG (Yamada et al., 2002) BpKatG (Carpena et al., 2003), SyKatG (Wada et al., 2002), MtKatG (Bertrand et al., 2004), and the BpKatG Ser324Thr variant (Deemagaran et al., 2005) has revealed several KatG specific peculiarities distinguishing these enzymes from other heme peroxidases. These peculiarities have also been shown to play an important role in the substrate access to the active site. An access route, for the substrate hydrogen peroxide, to the distal side of the heme through a pronounced funnel shaped channel positioned similarly to, but longer and more constricted than the access route of monofunctional peroxidases, has been proposed (Carpena et al., 2003). This channel is narrowest near the residues Ser324 and Asp141,
about 14 Å from the heme iron atom. The constriction of the access channel results from the LL1 and LL2 insertions which are lacking in both ascorbate peroxidase and cytochrome c peroxidase. Hydrogen peroxide entering the distal side cavity of BpKatG through the constricted portion of the channel will immediately come into contact with the active-site residues Arg109, Trp111 and His112 leading to generation of compound I in both the catalatic and peroxidatic modes of reaction, or for reduction of compound I in the catalatic reaction (Carpena et al., 2003). Most peroxidases have a second access route, approximately in the plane of the heme, leading to the distal heme cavity, but the equivalent route in KatGs is blocked by loops in this larger protein.

However, there is another funnel-shaped access channel that approaches a small central cavity containing a single metal ion, which, in BpKatG, was tentatively identified as sodium (Carpena et al., 2003). This second channel provides direct access to the core of the protein and to a region that encompasses two other structural features with possible functional significance. The first is a large cleft between the two domains and could be a potential substrate binding site with a clear intra subunit pathway for electron transfer to the heme through the Met-Tyr-Trp adduct. A second feature is that the side chain of Arg426, which can exist in two orientations and the predominant conformation (>70%) differs from that in HmKatG.

Contributing to the complexity of this region are two conformations of the side chain of Thr119, of which the minor (<30%) is similar to the conformation in HmKatG. A co-ordination between the conformations of the Arg426 and Thr1119 side chains has been suggested (Carpena et al., 2003). Changes in the structure of BpKatG relative to HmKatG (the single ion, rotated Asp427 carbonyl group, and the displaced Thr119 and
Arg 426 side-chains) are in close proximity to one another, are associated directly or indirectly through hydrogen bonds or ionic interactions, and represent the only changes in structure relative to HmKatG in this region of the protein. This correlation suggests that the changes may be functionally related, and that the region of the protein may have an, as yet undefined function. This possibility is reinforced by the fact that there is a region of undefined electron density located in the cavity vacated by the Arg426 side chain in direct contact with the oxygen atom of the side chain from Tyr238, the central residue of the covalent cross link (Carpena et al., 2003).

Although, the main access channel in KatGs is more restricted compared to the monofunctional peroxidases, it is not as pronounced as in monofunctional catalases. Similar to monofunctional catalases, there are conserved acidic amino acids in the main access channel: Glu242 at the entrance of the channel and Asp141 at the 3–4 Å wide constriction in the access channel. Exchange of both residues significantly reduced the catalase, but did not alter the peroxidase activity, suggesting that they are critical for stabilizing the solute matrix in the channel and possibly for orienting the water dipoles. In addition, Asp141 controls the access to the distal residues Arg108, His112 and Trp111, an indication that it may also participate in actual oxidation of H$_2$O$_2$ to molecular oxygen (Jakopitsch et al., 2004).

Recently Jakopitsch et al. (2005) have reported the involvement of LL1 specific residues (Ile248, Asn251, Pro252, and Glu253) in the catalysis of SyKatG based upon their exposure to the solute matrix of the access channel. These authors proposed the existence of a very rigid and ordered structure built up by interactions of LL1 residues with both distal and proximal residues and the heme itself. Mutation Ile248Phe
significantly altered the heme pocket similar to one involving Asp152Ser leading to the alteration of the hydrogen bonding between Ile248 and Asp152 and subsequent reduced catalase activity by 87%, similar to Asp152Ser variant [97%] (Jakopitsch et al., 2003). They also reported that mutation at Ile248 brings changes in the proximal heme site mediated by LL1 and its connection with helices E and F, with helix F accommodating the proximal histidine. Mutations at Asn251 and Pro252 affected the coordination of the iron atom, although the variations were less pronounced and RR spectra were very similar to those of native SyKatG in both ferric and ferrous state. Mutations at Glu253, which is located at the entrance of the funnel shaped access channel ~9 Å from the constriction formed by Asp152 and Ser335, did not alter the spin and coordination state of the enzyme but altered the bifunctionality of the enzyme by significantly reducing the catalase activity. From the crystal structures of BpKatG and MtKatG, it is known that both Asn251 and Glu253 are connected by a hydrogen bond between the amide oxygen of Asn251 and the main chain nitrogen of Glu253 as well as via at least two water molecules in their vicinity and mutations at these residues changes and disrupts this hydrogen bonding network proposed to be essential for the catalase activity of KatGs (Jakopitsch et al., 2005). These reports suggest that in KatGs, compound I reduction (not formation) depends strongly on a defined and oriented water matrix maintained by the channel architecture and highly conserved residues at the KatG specific loop LL1 (Jakopitsch et al., 2005).
1.7.3.4. pH induced changes in catalase-peroxidases

BpKatG exhibits different pH optima for three different activities, pH 5.5 for peroxidase activity, pH 6.5 for catalase activity and pH 8.75 for oxidase activity (Singh et al., 2004 and see below). Loewen and coworkers have recently demonstrated pH induced changes in the structure of BpKatG which might be playing a key role in modulating different activities in KatGs (Carpena et al., 2005; Carpena et al., 2006). A conserved arginine at position 426 in BpKatG, situated about ± 20 Å from the active-site heme, has been shown to act as a molecular switch moving between two conformations, the relative proportions of which vary among the different crystal structures. In one position, the guanidinium group forms an ionic association with Tyr238 in the Trp-Tyr-Met adduct [conformation Y], and in the second position, it is shifted to a region containing two other arginine residues [conformation R] (Carpena et al., 2005). The proportion of conformation Y varies form about 0% in MtKatG (Berthand et al., 2004), to 30% in BpKatG (Carpena et al., 2003), to 80% in SyKatG (Wada et al., 2002) and 100% in HmKatG (Yamada et al., 2002), presenting the striking correlation with the pH values of crystallization, pH 4.5 for MtKatG, pH 5.6 for BpKatG, pH 6.3 for SyKatG and pH 8.1 for HmKatG. The apparent correlation between the conformation of Arg426 and the pH of crystallization was tentatively confirmed by increasing the pH for a crystal of BpKatG to 8.0 causing an increase in the amount of conformation Y to about 100% (Carpena et al., 2005). This apparently facile movement of the side chain of Arg426 coupled with its key role in catalase activity suggested that it can act as a molecular switch reversibly interacting with the Trp-Tyr-Met adduct to inductively alter heme reactivity. Another pH induced change observed in BpKatG was a perhydroxy modification on the indole
nitrogen of Trp111, situated on the distal side of the heme which increases from 0% at pH 4.5 to 100% at pH 8.5, correlating with the NADH oxidase activity (Singh et al., 2004). The covalent attachment of oxygen to the indole creates a very different molecular species compared to its noncovalent bonding to heme iron in other oxygen binding proteins. The fact that NADH is too large to fit into the heme cavity necessitates electron transfer from a remotely bound NADH to the oxygen most likely through protein, and covalent linkage of the oxygen to the indole makes possible direct electron transfer from the protein. The perhydroxy modification was detected by both X-ray crystallography and EPR spectroscopy (Carpena et al., 2006).

The pH induced shift from conformation R to Y of Arg426 can be correlated with and explains at least in part, the pH optima for the peroxidase, catalase, and NADH oxidase reactions of 4.5, 6.5, and 8.75, respectively (Singh et al., 2004). At pH 4.5, Arg is predominantly in R conformation, remote from Tyr238, allowing the tyrosinate charge to delocalize onto the heme, enhancing oxyferryl formation and peroxidase reaction (Carpena et al., 2005). The equal proportions of Y and R at pH 6.5 suggests a facile equilibrium providing optimum conditions for both oxyferryl formation (conformation R) and oxyferryl reduction (conformation Y) by H₂O₂ required for the catalase reaction. At pH 8.5, Arg426 occupies predominantly conformation Y, associated with Tyr238, which inductively lowers electron density on the heme and adduct favoring perhydroxy-indole reduction in the oxidase reaction (Carpena et al., 2006)
1.7.4. Protein radicals in catalase-peroxidases

Electron transfer reactions between metalloproteins play critical roles in many important biological processes. However, these reactions are poorly understood due to their dependence on so many factors, including the kinetics of complex formation and dissociation, the electronic properties of the redox centers, the distance and the pathway for electron transfer, and the driving force and the reorganization energy (Millett et al., 1995). One such widely studied reactions is that of cytochrome c peroxidase with cytochrome c, in which the electron transfer pathway extends from the heme methyl group on cytochrome c through Ccp residues Ala194, Ala193, and Gly192 to the indolyl radical on Trp191, which is in van der Waals contact with the heme (Pelletier and Kraut, 1992). This tryptophanyl radical, exchange-coupled with the oxyferryl heme iron [Fe(IV)=O Trp°+] is necessary for the electron transfer from cytochrome c to the heme, because cytochrome c can not directly access the Ccp heme active site (Pelletier and Kraut, 1992). This was identified as the relevant intermediate acting as an electron sink for the substrate (cytochrome c) oxidation in Ccp (Sivaraja et al., 1889).

In lignin peroxidase, a tryptophanyl radical located close to the enzyme surface has been identified as the oxidation site for veratryl alcohol (Smith and Veitch, 1998; Sollewijn et al., 2002). The formation of an oxyferryl-tyrosyl radical intermediate [Fe(IV)=O Tyr°] by means of intramolecular electron transfer between the heme and a tyrosine residue has been observed in catalases (Ivanicich et al., 1997), peroxidases (Ivanicich et al., 2001; Ivanicich et al., 2001a) and prosthaglandin H synthase (Tsai et al., 1999; Shi et al., 2000).
Formation of such radicals on specific Tyr and/or Trp strongly favors their role as an alternate oxidation site, other than heme, in both catalases and peroxidases. In catalase-peroxidases, the exact nature and positions of such protein-based radicals is poorly understood. Different groups are investigating the catalatic intermediates of KatGs. Hillar et al., 2000, attributed the observed 9-GHz EPR signal of the Compound I intermediate in EcKatG to an oxoferryl-porphyrin radical [Fe(IV)=O Por^o^]. Magliozzo and coworkers in their study on MtKatG assigned an EPR signal to a tyrosyl radical (Chouchane et al., 2002) and later, using nitric oxide as a radical scavenging reagent, identified Tyr353 to be the radical site (Zhao et al., 2004). Interestingly, the residue at this position is conserved as Trp in all other KatGs used in the current study (Figure 4.2). The side chain of Tyr353 lies in the interior of MtKatG on the proximal side and close to the heme suggesting that Tyr 353 could be a site for radical formation, although proximity alone can not be the sole criterion for an electron transfer reaction pathway between Compound I and a Tyr residue (Zhao et al., 2004). The authors did not rule out formation of radicals at other residues and this remains the subject of debate (Ivanicich et al., 2003). The atypical formation of compound I intermediate [Fe(IV)=O Por^o^] as well as two subsequent protein-based radical intermediates identified as Tyr^o^ and Trp^o+^ were identified in Synechocystis PCC6803 catalase-peroxidase of catalase and peroxidases, using a combination of multifrequency EPR spectroscopy, isotope labeling and site directed mutagenesis. The position of the Trp^o^ was assigned to Trp106 (SyKatG numbering) located on the distal side of the heme belonging to the highly conserved short stretch of KatGs. Existence of an extensive hydrogen bonding network on the distal side of the heme, involving Trp122, His123, Arg119, seven structural waters, and the heme 6-
propionate group has been identified as a possible path for electron transfer from the tryptophanyl radical (Ivanicich et al., 2003). This notion was further supported (Jakopitsch et al., 2006) in a demonstration that the variant Trp122His (thus maintaining the hydrogen bond network) allowed the radical formation but the Trp122Phe mutation did not.

1.7.5. Catalase-peroxidase from different organisms

The complete sequences are known for catalase-peroxidases from various prokaryotes, both eubacteria and archaea. The systematic analysis of KatGs reveals that these enzymes are distributed unequally among closely related genomes whereas in some complete genomes, no KatG is present (such as Bacillus subtilis). Some bacteria even contain two different ones (e.g. Mycobacterium fortuitum) (Zámocký, 2004). In my study I studied catalase-peroxidase from: Burkholderia pseudomallei, Mycobacterium tuberculosis, Escherichia coli, Synechocystis PCC6803, Archaeoglobus fulgidus, Bacillus stearothermophilus and Rhodobacter capsulatus.

1.7.5.1. Catalase-peroxidase of Burkholderia pseudomallei (BpKatG)

B. pseudomallei (formerly known as Pseudomonas pseudomallei), the causative agent of melioidosis, is a gram-negative soil bacillus endemic mainly in Southeast Asia and northern Australia, although cases have been reported in India, China, Taiwan, and Laos (Cheng and Currie., 2005). The disease may manifest itself in an acute, subacute, or chronic form; and the acute form of melioidosis is often fatal despite aggressive antibiotic treatment (Chen et al., 2004). In this era of biological weapons, B. pseudomallei is being
increasingly recognized as a potential biological weapon (Leelarasamee, 2004). At a cellular level, this gram-negative bacterium can survive and multiply in both phagocytic and non-phagocytic cells and after internalisation, it can readily escape from the membrane-bound phagosome into the cytoplasm (Jone et al., 1996). The internalised \textit{B. pseudomallei} can also induce a cell-to-cell fusion, resulting in multinucleated giant cell (MNGC) formation and cell death (Kespichayawattana et al., 2000). The \textit{rpoS} null mutants of \textit{B. pseudomallei} exhibits an increased sensitivity to oxidative stress (Subsin et al., 2003) and also demonstrate abnormal modulation of the host cell response, particularly with regard to the macrophage antimicrobial capacity to control the intracellular fate of \textit{B. pseudomallei} (Utaisincharoen et al., 2006). There is also mention of a nonspecific DNA-binding protein (DpsA) whose expression increases in response to oxidative stress through increased transcription from the upstream \textit{katG} (catalase-peroxidase) promoter, which is OxyR dependent (Loprasert et al., 2004).

Catalase-peroxidase of \textit{B. pseudomallei} (BpKatG) is one of the antioxidant enzymes that are part of the oxidative stress response (Loprasert et al., 2003). The nucleotide sequence of \textit{katG} gene appeared in 2002 (Loprasert et al., 2002), and this was followed by the purification and crystallization of the enzyme (Carpena et al., 2002). BpKatG shows high sequence similarity to other catalase-peroxidases of bacterial, archaebacterial and fungal origin including 65% similarity to KatG from \textit{M. tuberculosis} and lesser sequence similarity to members of plant peroxidase family (Carpena et al., 2002). In 2003, the 1.7 Å crystal structure of BpKatG was reported (Carpena et al., 2003), demonstrating that BpKatG is a homodimer of 79 kDa subunits with one modified
heme group and one metal ion, likely sodium, per subunit. Each subunit has distinct N- and C- terminal domains that are structurally related and are similar to plant peroxidases.

1.7.5.2. Catalase-peroxidase of *Mycobacterium tuberculosis* (MtKatG)

First purified and described by Diaz and Wayne (1974), this enzyme attracted the attention of researchers because of the correlation of isoniazid resistance in *Mycobacterium tuberculosis* strains with loss of catalase and peroxidase activity in the cells (Winder, 1982). Following the characterization and cloning of the structural gene for the *M. tuberculosis* KatG (MtKatG) (Zhang et al., 1992), purification of the recombinant form of the catalase-peroxidase has been reported by a number of groups (Nagy et al., 1995; Johnsson et al., 1997; Nagy et al., 1997a; Saint-Joanis et al., 1999; Young et al., 2003), and purification of KatG from *M. intracellulare* (Morris et al., 1992), *M. smegmatis* (Marcinkeviciene et al., 1995), *M. fortuitum* (Menendez et al., 1997), *M. leprae* (Eiglmeier et al., 1997), *M. avium* (Li et al., 2005), *M. bovis* (Garnier et al., 2003), *M. canettii* (Gutierrez et al., 2005) has also been carried out. Recent success in solving the crystal structure of catalase-peroxidases from *Haloarcula marismortui* (Yamada et al., 2002), *B. pseudomallei* (Carpena et al., 2003) and *Synechococcus Pcc 7942* (Wada and Tada, 2003) was followed by the structure of *M. tuberculosis* KatG, MtKatG (Bertrand et al., 2004) and its Ser315Thr variant (Yu and Sacchettini, 2006), one of the key variants thought to be involved in INH resistance.
1.7.5.3. Catalase-peroxidase of *Escherichia coli* (EcKatG)

E. coli has three different enzymes with catalase activity and the monofunctional catalase HPI of *E. coli* has already been discussed in Section 1.4. The bifunctional catalase-peroxidase "hydroperoxidase I [HPI or EcKatG]" (Claiborne and Fridovich, 1979) and monofunctional catalase "hydroperoxidase II (HPII)" (Claiborne *et al*., 1979) are chromosomally encoded enzymes, both of which has been extensively studied (Chelikani *et al*., 2004). In 1996, a third enzyme from enterohemorrhagic *E. coli* O157:H7 was characterized as a periplasmic catalase–peroxidase called KatP (Brunder *et al*., 1996). KatP has a molecular mass of 81.8 kDa and the presence of an N-terminal signal sequence suggests that KatP is exported to and functions in the periplasm. Production of KatP by highly virulent bacterial pathogens but not by their less pathogenic or non-pathogenic relatives, suggests that these enzymes may be used as virulence factors (Cornelius *et al*., 2003).

HPI or EcKatG is encoded by the *katG* gene located at 89.2 min on the *E. coli* chromosome (Loewen *et al*., 1985b). Originally it was described as a tetrameric enzyme made up of identical 80 kDa subunits containing two heme b prosthetic groups per tetramer (Claiborne and Fridovich, 1979). Later partial heme occupation of HPI like some other catalase-peroxidases was shown with an average of 0.5 heme per subunit in a heterogenous mixture of dimers and tetramers with 0, 1, 2 and 3 hemes respectively (Hillar *et al*., 2000). EcKatG has a specific catalase activity of about 2000 U/mg (Loewen *et al*., 1990; Hillar *et al*., 2000) which is only about one seventh of that reported for the large subunit catalase HPII also from *E. coli* (Loewen and Switala, 1986). To date,
success in crystallizing EcKatG remains elusive although the crystal structure of its C-terminal domain has been published (Carpena et al., 2004).

1.7.5.4. Catalase-peroxidase of *Synechocystis* PCC 6803 (SyKatG)

Cyanobacteria represent one of the major phylogenetic lines of bacteria, comprising a large and heterogeneous group of phototrophic prokaryotes. It is widely accepted that they were the first oxygen-evolving organisms and were responsible for the conversion of the atmosphere of the earth from an anoxic to an oxic one. Microfossil evidence of cyanobacteria-like cells is well documented for the Precambrian era i.e. more than three billion years ago (Schopf, 1993), and there is evidence that cyanobacteria occupied large areas of the earth in those ancient times. The evolution of oxygenic photosynthesis had enormous consequences for the environment and survival was dependent on either occupying an anaerobic habitat or developing defense strategies against the reactive oxygen species, such as superoxide anion, hydrogen peroxide, and hydroxyl radical.

Cyanobacterial catalase-peroxidases have been subjected to extensive characterization. Mutsuda *et al* (1996) reported the purification and nucleotide sequence analysis of a catalase-peroxidase from *Synechococcus* PCC 7942, and Obinger *et al* (1997) described the characterization of a catalase-peroxidase from *Anacystis nidulans* (*Synechococcus* PCC 6301). The enzymes from both cyanobacteria showed peroxidase activity with o-dianisidine and pyrogallol, but no reaction was detected with guaiacol, ascorbate, NADH or NADPH. They are homodimeric enzymes with a molecular mass of
approximately 80 kDa per subunit. Both are very efficient catalases with a \(K_m \) for \(\text{H}_2\text{O}_2 \) in the millimolar range.

1.7.5.5. Catalase-peroxidase of *Archaeoglobus fulgidus* (AfKatG)

Archaeoglobus fulgidus is a strict anaerobic hyperthermophilic archaeon that has been isolated from marine hydrothermal environments as well as subsurface oil fields. This sulfate reducer can grow organoheterotrophically with a variety of carbon sources, or lithoautotrophically on hydrogen, thiosulfate, and \(\text{CO}_2 \) (Stetter, 1988). Besides its ability to grow at extremely high temperatures, this organism is unusual in that it is unrelated to other sulfate reducers. The sequencing of the entire genome of *A. fulgidus* was completed in 1997 (Klenk *et al.* 1997), which revealed the presence of an open reading frame that was putatively identified as a catalase-peroxidase on the basis of its high similarity (62.9% nucleotide identity; 49.5% amino acid similarity) to the *perA* gene of *Bacillus stearothermophilus* (Klenk *et al.*, 1997; Loprasert *et al.*, 1989). The purified AfKatG is a homodimer with a subunit molecular mass of 85 kDa.

1.7.5.6. Catalase-peroxidase of *Bacillus stearothermophilus* (BsKatG)

B. stearothermophilus is Gram-positive bacteria found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products. BsKatG is a dimeric enzyme with 731 amino acids per subunit and has 48% homology with EcKatG. It has an optimum temperature of 70°C and is stable for a month at 30°C (Loprasert *et al.*, 1997).
1.7.5.7. Catalase-peroxidase of *Rhodobacter capsulatus* (RcKatG)

R. capsulatus is a photosynthetic, facultatively anaerobic bacterium that is capable of fixing molecular nitrogen. It has two hydroperoxidases: a peroxidase and a catalase-peroxidase which make it suitable as a test organism for studying oxidative damage and protection mechanisms (Hochman et al., 1991). *R. capsulatus katG* (cpeA) was initially sequenced incorrectly in 1993 (Forkl et al., 1991) and later corrected (Nestor Cortez personal communication).

1.7.6. Catalase-peroxidase and isoniazid activation

M. tuberculosis, the causative agent of tuberculosis (TB), is a tenacious and remarkably successful pathogen that has latently infected a third of the world’s population. Each year there are eight million new TB cases and two million deaths (Zhang et al., 2006). The increasing emergence of drug resistant TB, and HIV infection, which compromises host defense and allows latent infection to reactivate or render individuals more susceptible to TB, pose further challenges for effective control of the disease (Corbett et al., 2003).

Isonicotinic acid hydrazide (isoniazid or INH) [Figure 1.7 A] is one of the front line drugs used in the treatment of tuberculosis, but the mode of action of this 55 year old drug is still poorly understood (Kapetanaki et al., 2005). INH is a prodrug that requires *in vivo* activation by KatG upon entering *M. tuberculosis* (Zhang et al., 1992). The need for KatG activation was deduced soon after the introduction of INH therapy when INH-resistant strains were correlated with the loss of catalase-peroxidase activity (Middlebrook, 1952 and 1954). This observation was confirmed by the molecular and
genetic studies of Zhang and colleagues which demonstrated that INH-sensitivity could be restored by the introduction of a functional katG gene into an INH-resistant, catalase-deficient strain of *M. tuberculosis* and in *Mycobacterium smegmatis* (Zhang *et al.*, 1992 and 1993). This was followed by numerous reports demonstrating that mutation in, or deletion of, the katG gene results in the acquisition of isoniazid resistance (Heym *et al.*, 1995; Morris *et al.*, 1995; Rouse *et al.*, 1996; Saint-Joanis *et al.*, 1999).

The second gene found in *M. tuberculosis* to be associated with INH resistance is inhA (Banerjee *et al.*, 1994). InhA, the product of *inhA*, is an NADH-dependent enoyl-acyl carrier protein reductase. Mutations within the *inhA* structural gene (Ristow *et al.*, 1995) or promoter (Kapur *et al.*, 1995) have been identified and shown to be associated with both INH and ethionamide (ETH), a structural analog of the isoniazid, resistance (Larsen *et al.*, 2002). Missense mutations within the *inhA* structural gene cause INH resistance by reducing the NADH [Figure 1.7B] binding affinity of InhA and thus protecting the enzyme from INH inactivation (Rozwarski *et al.*, 1998). Formation of isonicotinoyl-NAD [Figure 1.7C], the active form of the drug, involves loss of hydrazine (N₂H₂) from INH promoted by KatG (Zhang *et al.*, 1992) and binding of the isonicotinoyl group to NAD⁺ (Johnsson *et al.*, 1995). Isonicotinoyl-NAD mimics the NADH and binds to InhA [Figure 1.7D] (Rozwarski *et al.*, 1998), and possibly to KasA, a β-ketoacyl acyl carrier protein synthase (Mdluli *et al.*, 1998), blocking their NADH-binding sites and interfering with the cell wall synthesis.

The central role of KatG in INH activation is evident from the significant number of INH-resistant cases of tuberculosis attributable to mutations in katG and from biochemical studies that have demonstrated a direct role for KatG in the generation of
various isonicotinoyl derivatives (Johnsson and Schultz, 1994). Much of the literature related to the activation of INH by KatG has focused on the fate of INH and possible intermediates involved in the process (Johnsson and Schultz, 1995; Wilming and Johnsson, 1999; Magliozzo and Marcinkeviciene, 1996). With NAD\(^+\) included in the mix, the generation of the isonicotinoyl-NAD adduct was observed both with and without KatG present (Wilming and Johnsson, 1999; Magliozzo and Marcinkeviciene, 1996; Lei et al., 2000), leading to the suggestions that the role of KatG is limited to the hydrazine lyase of INH and that the subsequent reaction of the isonicotinoyl radical with NAD\(^+\) is a nonenzymatic event involving a homolytic aromatic substitution (Wilming and Johnsson, 1999; Minisci et al., 1989). Reactive oxygen species have also been implicated in INH activation both in vivo (Mitchison et al., 1989; Youatt 1969) and in vitro (Johnsson and Schultz, 1995), and an elevated level of intracellular superoxide (Wang et al., 1998) have also been associated with the high sensitivity of *M. tuberculosis* to INH (Deretic et al., 1996). However, the absence of H\(_2\)O\(_2\) involvement in INH activation implies that a reaction different from either the peroxidase or the catalase reactions may be involved, and some reports have suggested that the active participation of KatG in INH activation involves more than just hydrazinolysis (Lei et al., 2000).

1.7.6.1. KatG mutations involved in isoniazid resistance

Analysis of patient isolates resistant to INH has led to the conclusion that a relatively minor subset entirely lacks catalase-peroxidase activity. Typically this subset of strains has deletions or frame-shifts in *katG* and are resistant to high levels of INH (Payton et al., 1999). Small insertions, partial deletions, and missense mutations are
Figure 1.7. Structures of isoniazid (INH) (A), NADH (B), isonicotinoyl-NAD adduct (C) and isonicotinoyl-NAD adduct in bound form with InhA protein of *M. tuberculosis* (D). The structures were created using Chem Draw software and using Pymol (Deleno, 2003) and using the coordinates submitted to the protein data bank.
observed at a low frequency in INH-resistant clinical isolates. In contrast to these complete loss of function events, \textit{in vivo} mutations in \textit{katG} that result in diminished or altered catalase-peroxidase activity are much more frequently observed amongst patient isolates (Victor \textit{et al.}, 1996; Heym \textit{et al.}, 1995; Kelley \textit{et al.}, 1997; Stoeckle \textit{et al.}, 1993; Altamirano \textit{et al.}, 1994).

Although, the real occurrence of these events \textit{in vivo} is unknown, presumably these are more on the order of typical point mutation rates, occurring in perhaps one in \(10^8-9\) organisms. The most commonly observed mutation is a point mutation replacing serine at location 315 with threonine (S315T). Estimates are that this mutation occurs in between 30 and 60\% of all INH resistant isolates (Musser \textit{et al.}, 1996; Marttila \textit{et al.}, 1996; Marttila \textit{et al.}, 1998). Studies on recombinant wild type MtKatG and the variant Ser315Thr demonstrated that the mutation results in somewhat reduced enzyme activity (Wengenack \textit{et al.}, 1997; Saint-Joanis \textit{et al.}, 1999; Rouse \textit{et al.}, 1996) but more recent studies on the Ser315Thr variant and its equivalent Ser324Thr in \textit{B. pseudomallei} have shown that this mutation maintains catalase and peroxidase-specific activities similar to the native enzyme with only subtle differences among the kinetic parameters (Deemagarn \textit{et al.}, 2005).

The basis of the resistance of isoniazid became evident with the determination of crystal structures of different KatGs (Yamada \textit{et al.}, 2002; Carpena \textit{et al.}, 2003; Wada \textit{et al.}, 2002; Bertrand \textit{et al.}, 2004) and the crystal structure report of BpKatG variant Ser324Thr (equivalent of Ser315Thr) (Deemagaran \textit{et al.}, 2005). A calculated surface diagram reveals that the channel in native BpKatG adjacent to Ser324 is significantly wider than the channel in its variant Ser324Thr to the extent that a number of water
molecules present in the native enzyme are absent from the variant. Consequently, it is interference with INH accessibility to the heme cavity that best explains the reduced affinity and reactivity of KatG towards INH, although the possibility of INH binding in the channel cannot be excluded, in which case the methyl group of Thr324 would interfere with INH binding. Other mutations of Ser324 might cause a similar blockage of the channel, but the situation may be more complex because the hydrogen bond between the hydroxyl group of Ser (and Thr) and the propionate carbonyl group would disappear. The effect that this would have on the structural integrity of the enzyme, particularly in the channel region, and the electronic environment of the heme is not clear. For example, the complete lack of isonicotinoyl-NAD synthase activity and INH hydrazinolysis activity in the Ser315Asn variant of MtKatG may be a result of the larger Asn side-chain situated in the channel or of some other distortion in the subunit arising from the lack of interaction with the heme propionate group (Deemagarn et al., 2005).

Although katG mutations resulting in Ser315Thr are the most common mechanism of INH resistance as determined by sequencing, additional mutations also occur in functionally important residues such as Ser315Asn, Asp63Glu, His108Gln, Thr262Arg, Ala350Ser and Gly629Ser. Biochemical characterization of some of these variant proteins has confirmed their importance to protein stability and catalytic properties. An amino acid polymorphism involving the change of Arg463 to Leu, was initially thought to be associated with INH resistance but couldn’t be associated with the INH resistance by biochemically or epidemiologically (Johnsson et al., 1997; Heym et al., 1995; Musser et al., 1996; Rouse et al., 1995; Pretorius et al., 1995; Lee et al., 1997; Nagy et al., 1998).
1.7.6.2. Analysis of the potential isoniazid binding site

An area of wide dispute centers on the location of isoniazid binding to KatG although the recent success with the crystallization of KatG has provided some insight into this. The crystal structure report of BpKatG shows a region of undefined electron density located just before the constricted region in the main channel leading to the distal heme cavity of BpKatG over 10 Å further away from the heme in close proximity to Ser324. This unidentified electron density was evident both in the structure obtained after a short soaking with INH and in the structure obtained without soaking and is thought to be the result of a metabolic constituent of E. coli, which may closely resemble INH such as pyridoxol or vitamin B6.

The location of this undefined electron density is the same in the crystal structures of native BpKatG and its variants (Deemagaran et al., 2005; unpublished data) and is consistence with the observation of a small peak of electron density in the same site in MtKatG (Bertrand et al., 2004). Bertrand et al argued this region to be too small to accommodate a pyridine-like metabolite and suggested it as solvent or a small hydrophobic molecule. Bertrand et al (2004) concluded that the binding site for aromatic compounds is near the δ-meso edge of the heme based on a comparison with the crystal structures of monofunctional peroxidases from all three classes (APX with salicylhydroxamic acid (Sharp et al., 2004); Arthromyces ramosus peroxidase with salicylhydroxamic acid (Tsukamoto et al., 1999); HRPC with benzhydroxamic acid (Henriksen et al., 1998).
1.8. Objectives of the thesis

Since the first report characterizing the purified catalase peroxidase HPI [EcKatG] of *E. coli* (Claiborn and Fridovich, 1979), KatGs have been purified and characterized from a large number of organisms. Even after almost three decades, there is still more to know about this fascinating enzyme. Two important issues that need to be addressed include the role of KatG in isoniazid activation against *M. tuberculosis* with specific interest in the drug protein interaction at the molecular level and the location of the binding site of INH. Another key area is the reaction mechanism by which this enzyme maintains its bifunctionality, particularly the fate and role of the intermediates formed during the catalase and peroxidase reactions. The *in vivo* peroxidatic substrate(s) for KatGs need(s) to be identified so as to determine the physiological role for the peroxidatic activity of KatGs. The recent success in crystallization of KatGs is promising in understanding their structure function.

This study reports the comparison of catalase-peroxidases from seven different organisms, *M. tuberculosis*, *B. pseudomallei*, *E. coli*, *B. stearothermophilus*, *A. fulgidus*, *Synechocystis* PCC 6803, and *R. capsulatus*. The KatG gene product from these organisms was over expressed from the katG gene cloned in a suitable vector. The over expressed protein was purified and characterized for its biochemical and biophysical properties such as pH profile and enzyme kinetics. The major focus was on KatG mediated isoniazid activation, the formation of intermediates and subsequently the formation of isonicotinoyl-NAD adduct the active form of isoniazid. Two key mutations involved in isoniazid resistance, Ser315Thr and Ser315Asn, were also constructed, purified, characterized and compared with the native MtKatG for drug activation.
2. MATERIALS AND METHODS

2.1. *Escherichia coli* strains, plasmids and bacteriophage

E. coli strains, plasmids and bacteriophage used in this study are listed in Table 2.1. Phagemid pKS+-/ from Stratagene cloning system were used as a vector for mutagenesis, sequencing and cloning. The *M. tuberculosis* katG gene encoding MtKatG, originally in pYZ55 (Zhang et al., 1992) was recloned as an EcoRV-KpnI fragment into pKS+ as pAH1 (Hiller, 1999). Two different sub-clones were constructed for the site-directed mutagenesis in *M. tuberculosis* katG. A 600bp EcoRV-ClaI fragment from pAH1 was sub-cloned into pKS+ to generate pMt-EC (Fragment I, Figure 2.1) and a 470bp XhoI-ClaI fragment from pAH1 was sub-cloned into pKS+ to generate pMt-XC (Fragment II, Figure 2.1). The *B. pseudomallei* katG gene, encoding catalase-peroxidase BpKatG, was inserted into plasmid pKS- to generate the plasmid pBpG (Deemaganan, 2004). For site-directed mutagenesis purposes, pBpG was subcloned as pBpG-KH and further sub-cloned as pBpG-CH, containing fragment II and I respectively of *B. pseudomallei* katG (Figure 2.2). Strain CJ236 was used to generate single stranded uracil containing DNA templates from pMt-EC, pMt-CX and pBpG-CH. The *E. coli* katG gene encoding HPI (EcKatG) was cloned into a pBR322 derived plasmid to generate pBT22 (Triggs-rain and Loewen, 1987). The *A. fulgidus* katG was cloned into a pET-28b+ vector as pLUW640 (Kengen et al., 2001). The *B. stearothermophilus* katG was cloned as pBR322 (Loprasert et al., 1989) to over express BsKatG. The *Synechocystis* katG encoding SyKatG was cloned into pET-3a vector and over expressed in *E. coli* BL21- (DE3) pLysS (Jakopitsch et al., 1999).
Table 2.1. Genotypes and sources of *Escherichia coli* strains, plasmids and bacteriophage used in this study.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strains</td>
<td></td>
</tr>
<tr>
<td>CJ236</td>
<td>dut1 ung1 thi-1 relA1/pCJ105/cam’F’</td>
</tr>
<tr>
<td>NM522</td>
<td>supE Δ(lac-proAB) hsd-5 [F’ proAB lac’ lacZΔ15]</td>
</tr>
<tr>
<td>JM109</td>
<td>recA1 supE44 endA1 hsdA1 hadR17 gyrA96 relA1 thi Δ(lac-proAB)</td>
</tr>
<tr>
<td>UM262</td>
<td>recA katG::Tn10 pro leu rpsL hsdM hsdR endI lacY</td>
</tr>
<tr>
<td>BL21trxB(DE3) pLYsS</td>
<td>F’ ompT hsdS6(r6 m6) gal dem trxB15::kan (DE3) pLys(CmR)</td>
</tr>
</tbody>
</table>

Plasmids

- pKS-
- pAH1(pSK+, *M. tuberculosis* katG clone) | Ampr^R | Stratagene Cloning System |
- pBpG (pKS-, *B. pseudomallei* katG clone) | Ampr^R | Hillar et al., 1999 |
- pBT22 (pBR322, *E. coli* katG clone) | Ampr^R | Deemagarn M.Sc. thesis, 2004 |
- pOD10 (pBR322, *B. stearothermophilus* katG clone) | Ampr^R | Triggs and Loewen 1987 |
- pLUW640 (pET9d *A. fulgidus* katG clone) | Kan^R | Kengen et al., 2001 |
- pET3a (*Synechosystis* PCC 6803 katG clone) | Ampr^R | Jakopitsch et al., 1999 |
- pHF100 (*R. capsulatus* katG clone) | Ampr^R | Hochman et al., 1986 |
- pMt-CX (pSK+, *M. tuberculosis* katG subclone I) | Ampr^R | This study |
- pMt-EC(pSK+, *M. tuberculosis* katG subclone I) | Ampr^R | This study |
- pBpG-KH (subclone I) | Ampr^R | This study |
- pBpG-CH (subclone II) | Ampr^R | This study |
- pEM1 (pET28b+, *M. tuberculosis* katG clone) | Kan^R | This study |

Bacteriophage

- R408 (helper phage) | Stratagene Cloning System |
Table 2.2a Sequence of oligonucleotides and restriction fragments used for the site directed mutagenesis of *M. tuberculosis* katG

<table>
<thead>
<tr>
<th>Primer</th>
<th>Bases changed</th>
<th>Oligonucleotide sequence<sup>a</sup></th>
<th>Restriction fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser315Thr</td>
<td>AGC-ACC</td>
<td>GCGATCACCACCAGGCATCG</td>
<td>ClaI-XhoI (590-1064)</td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>AGC-AAC</td>
<td>GCGATCACCAGGCATCG</td>
<td>ClaI-XhoI (590-1064)</td>
</tr>
<tr>
<td>Trp31Phe<sup>b</sup></td>
<td>TGG-TTC</td>
<td>GAGGTCGTAATTCACGAACACC</td>
<td>ClaI-XhoI (590-1064)</td>
</tr>
<tr>
<td>Trp91Phe<sup>b</sup></td>
<td>TGG-TTC</td>
<td>CAGCCGTGGGTCCCGCCGAC</td>
<td>EcorV-ClaI (1-490)</td>
</tr>
</tbody>
</table>

Table 2.2b Sequence of oligonucleotides and restriction fragments used for the site directed mutagenesis of *B. pseudomallei* katG

<table>
<thead>
<tr>
<th>Primer</th>
<th>Bases changed</th>
<th>Oligonucleotide sequence<sup>a</sup></th>
<th>Restriction fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>His279Asn<sup>b</sup></td>
<td>CAC-AAC</td>
<td>CGCGGCCGGCAACACGTTCGGC</td>
<td>ClaI-HindIII (990-1710)</td>
</tr>
<tr>
<td>His279Tyr<sup>b</sup></td>
<td>CAC-TAC</td>
<td>CGCGGCCGGCTACACGTTCGGC</td>
<td>ClaI-HindIII (990-1710)</td>
</tr>
</tbody>
</table>

Table 2.2c Primers used for the polymerase chain reaction for the cloning of katG from *M. tuberculosis* into pET28b+ vector.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Oligonucleotide sequence</th>
<th>Restriction site generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>I8NT9S<sup>b</sup></td>
<td>AACACCCACCAGAATTCAGAACACCAC</td>
<td>EcoRI</td>
</tr>
<tr>
<td>MtKatG-2<sup>b</sup></td>
<td>CGACTAATTTCGAACTAGCC</td>
<td>HindIII</td>
</tr>
</tbody>
</table>

^a The sequences in bold are the codons that have been modified.

^b Results from the variants His279Asn, His279Tyr, Trp31Phe, Trp91Phe and *M. tuberculosis* katG gene cloned in the vector pET28b+ have not been reported in the thesis.
express cyanobacterium catalase-peroxidase in *E. coli* (Jakopitsch *et al.*, 1999). *Rhodobacter capsulatus* catalase-peroxidase was cloned as pHF100 in pBluescript (Forkl *et al.*, 1992). Helper Phage R408 was used for the infection of the strain CJ236 to generate single-stranded DNA. Strain NM522 was used for cloning and plasmid propagation. Strain JM109 was used for the production of plasmid DNA for double stranded DNA sequencing. Strain UM262, an *E. coli* strain with a *katG* gene interruption, was used for routine expression of KatG from various plasmids. Genes cloned on pET expression vectors were expressed in *E. coli* strain BL21(DE3) pLysS.

2.2. Biochemical and reagents

All biochemicals and reagents, as well as antibiotics used in the course of these studies were purchased from either Sigma Chemical Company (St. Louis, Missouri), or from Fischer Scientific Limited (Mississauga, Ontario). Restriction endonucleases, polynucleotide kinase, T4 DNA ligase and most of other enzymes used in these studies were purchased from Invitrogen Canada Inc. (Burlington, Ontario). The T7 sequencing kit was purchased from USB Corporation (Cleveland, Ohio). Components of the media used for growth of bacterial cell cultures were purchased from DIFCO, U.S.A. Reverse osmosis distilled water was used in preparing all solutions.

2.3. Media, growth conditions and storage of cultures

E. coli cultures were routinely grown in LB (Luria-Bertani) medium containing 10 g/L Tryptone, 5 g/L Yeast Extract and 5 g/L NaCl. Solid LB medium contained 15 g/L agar. For strains harboring plasmids bearing the ampicillin resistance gene, ampicillin was added to a concentration of 100 µg/mL for maintenance of selection pressure while
growing in both liquid and solid LB medium. For induction of expression, cells were grown for 2-3 h until the absorbance at 600 nm reached ~ 0.6 and then 1 mM IPTG was added for induction. In addition, chloramphenicol was added to a concentration of 40 µg/mL, in order to maintain the presence of F' episome for the growth of the strain CJ236.

E. coli strains in general were grown in solid media at 37°C. However, cell cultures in liquid media for expression of wild type and variant proteins were grown at either 28°C or at 37°C in shake flasks with good aeration depending what was optimum for a particular variant. Bacterial strains were stored at -60°C in 24% dimethylsulfoxide (DMSO). Bacteriophage R408 was stored at 4°C in LB culture supernatant.

2.4. DNA manipulation

2.4.1. Preparation of synthetic oligonucleotides

Oligonucleotides used for mutagenesis were purchased from Invitrogen (Burlington, Ontario) in non-phosphorylated form. The concentration of oligonucleotide DNA was determined spectrophotometrically at 260 nm, where 1 absorbance unit = 40 µg/mL single strand DNA (Sambrook *et al.*, 1998). Oligonucleotides used for the site-directed mutagenesis were phosphorylated at the 5' end using T₄ kinase (Invitrogen) according to Ausubel *et al.* (1989). Approximately 100 ng of oligonucleotide DNA in a volume of 25 mL containing 1mM ATP and 10 units of kinase were incubated at 37°C for 30 min in appropriately diluted buffer supplied by the manufacturers. The reaction was terminated by heat inactivation at 65°C for 5 min.
2.4.2. Site-directed mutagenesis strategy

Targeted base changes on phagemid-borne *M. tuberculosis* *katG* and *B. pseudomallei* *katG* were generated according to the in-vitro mutagenesis protocol described by Kunkel *et al.* (1987). Sub-clones were constructed from parts of the chromosomal insert containing the *katG* gene on KS (+/-) vector. Simplified restriction maps of *Mt*katG gene and *Bp*katG gene indicating the location of individual sub-clones are shown in Figures 2.1 and 2.4, respectively. The sub-clone rather than the whole gene was mutagenized in order to limit the amount of subsequent sequencing required to confirm the mutation in the subclone both after mutagenesis and after reinsertion into *Mt*katG and *Bp*katG gene for protein expression. Target codons for mutagenesis were selected from the DNA sequence of *Mt*katG and *Bp*katG gene shown in the Figures 2.3 and 2.6, respectively. DNA sequences for oligonucleotides used in the mutagenesis procedure are listed in Table 2.2. Mutagenesis was performed by annealing the phosphorylated oligonucleotides encoding the desired base modifications to uracil containing single strand DNA templates obtained from the appropriate Bluescript phagemid sub-clone. The complementary DNA strand was then synthesized *in vitro* by unmodified T7 DNA polymerase (New England Biolabs) using the annealed oligonucleotide as a primer. The 3' and 5' ends of the completed complementary strand were ligated by adding T4 DNA ligase (Invitrogen Canada Inc) to the reaction mixture. Subsequently, the DNA was transformed into NM522 cells where the uracil-containing templates were degraded. Plasmid DNA recovered from the transformants was further transformed into JM109, recovered from this strain and used to screen for the desired mutation in the plasmid sub-clone by DNA sequencing.
Figure 2.1. Simplified restriction map of the chromosomal insert containing the *M. tuberculosis* *katG* gene in plasmids pAH1 and pMt-EC (Fragment I) and pMtG-CX (Fragment II). The 2222 bp long *katG* open reading frame [-----] is indicated as the part of the chromosomal insert as is the insert [-----] as are the two insert fragments I and II used to construct the subclone vectors employed in site directed mutagenesis of *M. tuberculosis* *katG*.
Figure 2.2 General reconstruction protocol used for the generation of variant MtKatG's from mutagenized subclone I for protein expression. (E:EcoRV, K:KpnI, C:Clal, X:XhoI,)
Figure 2.3. The DNA sequence and corresponding amino acid sequence of *M. tuberculosis* showing the restriction sites and the target codones selected for mutagenesis in this study. The sequencing primers are also shown.

M. tuberculosis katG (MtKatG)

```
GATATCCGACACTTCGCGATACATCCGCTGATACACGACGCTACACGCCGATAACACCAACTCTTGAA
CTATAGGCTGTGAAGCTGGGTAGGCTAGCTAGTGGCGTATGTGTTGAGGACCTT
EcoRV

VEQHPITETTGAAS
GGAATGCTGTGCCCGAGCAACCCACCTACAGGAAATACCCCGTGAGGCAGCGCGGAAACCGGACT
BclI

--------GAATTCTTTTGTCTGA
EcoRI

NGCPYVEGGGNQDG
ACGGGTGTCGCTGAGTCATATGAATAACCCCGTGAGGCAGCGCGGAAACCGGACT
NheI

---------GAATTCTTTTGTCTGA

WGPNKLVPNQLKVLPNQ
GGTGCCCAACCGGCTCACTGAAAGTACTGCCACAAAAACCCCGCGTCGCTGACCCGA
BglII

---------GAATTCTTTTGTCTGA

MGAFYAAEVAITIDVDALT
TGGGTGCGCGCTTCACTATGAGGCAGCACCAGATCGTGTAGCCCTGAGCGACG
PstI

---------GAATTCTTTTGTCTGA

RDIEMTSPWPADYGH
GGGACATCGAGAAGTGATCAGACACCTCAGCCGCTGAGGCGCCGAGTACGGCCACCT
SphI

---------GAATTCTTTTGTCTGA

YGPLFIIRMAMWHAAAGTYRIHD
ACGGGGCGCGTGTATACCCGATGCGCTGCGCCGACCTACCAGCCTACCGGACG
PvuII

---------GAATTCTTTTGTCTGA

GRGAGGRMQFAPLNSWPDM
GGCGCGCGCAGCCGGCGGCGGCGGCGGATCGAGCGCTGCTGCGCCGCTTACCGCAACGCGCGAATGGTGCTGCTG
SphI

---------GAATTCTTTTGTCTGA

```

|
| 60 |
| 120 |
| 180 |
| 240 |
| 300 |
| 360 |
| 420 |
| 480 |
NASLD KARRLLWPVKKYGK
ACCCGCAAGCTTGGAACAGGCCGGCGGCTGTCTGTTGGCGCTCAAGAAGAATACGACAGA
TGCGGTGAACCTGTGCTCCGCCTGGCCGACAGACCCGGATTTCAACTTCTAGCTGGCCT

KLSDWADLIIFAGNCALES MG
AGCTCTCATGGCCGCACTGATTTGTTTGCCCCTGGCACTGCTGACGATGGATGCTGGCT
TCGAGAGTACCCGTGCTGAACTAAGAGAGCGGGCTGACTGCTACCTCCGATGAC

Clal

F KTFGGFGGRVRDQWPEDEVY
TCAGACGTGGGCTTGCTGGCCGGGCTGACACGTGGAGCCGAGTGGGACGC TTCATT
AGTTCTGCAAGCCCAAAGCCGAGGGGGCCAGTGTGACCTTGCCGCTACTCCGAT

MtK5--------------------->

WGKEATWLGDERYSGBKRDLE
GGGGCAAGAGAAAGCTCAGGCTGGCGTTAGCGTTACGAGGTAAAGGGGATCTGAGA
CCCGGTTCTCGGTGAGAACGAGGAGCCTATCAGCAATGTGCGCATCTCCGGGGCGGCT

Sali <MtK-4

NP LAAVQMGGLIYVNPENG
ACCCGCCTGGCCGGCTGAGATGGGTACTGTACGTGAACCCGGAAGGGGGCAGCCGA
TGCGGACGGCAGCGCCAGTTACTACCCGACATAGATCGACTTGGCGGCTCCGGGCTG

NPDPMAAAVDIRETFRRMAM
ACCCGCACCCCATG6GCCGGGCGGTCAGACATCTGGCGGCACTGCTGGCATGCCATGA
TGCGGCTTGCGGTACCCGAGGTAGCTGAAGGCTCTGGCAAGAGCGGTACCNGTACT

NcoI Sali

NDVETAAALIVGGHTFGKTHG
ACGACGGCATTAACACAGCGGCGTGATCTGGCGGCTACACTCTGGTGAAAGCAGATGGC
TGCTTGAGGTTCTGGCGCAGACAGGCGCCAGATGGTAAAGCCATCTGGGATCCGC

NcoI

AGPADLVGPEPAAAPLEQMGG
CCGGCCCGCGATCTGGTGCGCCCGCCAGAACCCGAGACTGCTCCGCTGGAGCAGATGGGC
GGCCGGGCGCTGACGACGCGGCTGCGGCTCCGACAGGGGACCTGCTGCTCCCGCA

SAI

L GWKSSYGTGKGDAITSGI
TGGCGTGAAGAGCCTGTATGGCACCCGGAAGCCGGAATGGCACTCCGCAACCGGATCG
ACCGCGACTCTCCGAGCATACCTGCTGGGATTCCCTGCTGCTAGGCTGCGCAGC

SstI PinAI

--------------- ACC --------------
--------------- AAC --------------
CTCCTACCTGCTCTTTACCCTGTGTTGTCAGTTAGACATGC
XhoI

--->-S315T
--->-S315N
----->TAT---------->W321F

AGGTCGTATGGACGAACACCCCGACGAAATGGGACAACAGTTTCCTCGAGATCCTGTACG

CTCTAGGACATG

CTCTGTACCCAGGGCAACGCTCTATGGAACCCGGCGACCAGGGGTTCGTCTGGGACGACA
---GAATTC

---pMtkatG1

EcoRI

GGGCCGTCAGACGATACCT> pMtkatG4

SaI

MtyG7< GCAACGCTTCAAGAACC

HindIII

GGCAGGATCCTCGCAAGCAGACATCTGTCCCTCAAGAAGCGACGATCCTCGCAAGCAGACG

CCGTCTACTGCCCAAGCGACGCTTGCTGGACGACGCTTGCTCAACGGCTGCG

BamHI

E V V W T N T P T K W D N S F L E I L Y (337)

AGGTCGTAAGCCAGCAACCCCGACGAAATGGGACAACAGTTTCCTCGAGATCCTGTACG

1080

GAGTCGTATGGACGAACACCCCGACGAAATGGGACAACAGTTTCCTCTCGAGATCCTGTACG

XhoI

--->-S315T
--->-S315N
----->TAT---------->W321F

G Y E W E L T K S P A G A W Q Y T A K D (357)

GCTACGAGTGGAGCTGACGAAGCCTTGCTGCCCCTCTGAAATACACCCCGCCAGAGACG

CGATGCTACCCCTCGACTGCTTCTCGGGACGACCGCGAACCGTTATGTGGCGTGTTCTTCG

1140

CGCGCCGCCACCGCCGTGGTAGGGCCTGGGCAAGCCGCCCGGTCCCGCGAGGGGCTGCTACG

1200

L A T D L S L R V D P I Y E R I T R R W (397)

TG66ACACTCTCCTGGCTGGCTGGAATCCATGACAGCTGAGCTGCAAGCCACCGCTTGGAAC

ACCAGTTGAACCCGGCGACCAGGGGTTCGTCTGGGACGACA

1260

---GAATTC

---pMtkatG1

EcoRI

GGGCCGTCAGACGATACCT> pMtkatG4

SaI

MtyG7< GCAACGCTTCAAGAACC

HindIII

W Q D P V P A V S H D L V G E A E I A S (457)

CCGTCTACTGCCCAAGCGACGCTTGCTGGACGACGCTTGCTCAACGGCTGCG

1440

---GAATTC

---pMtkatG1

EcoRI

GGGCCGTCAGACGATACCT> pMtkatG4

SaI

MtyG7< GCAACGCTTCAAGAACC

HindIII

W Q D P V P A V S H D L V G E A E I A S (457)

CCGTCTACTGCCCAAGCGACGCTTGCTGGACGACGCTTGCTCAACGGCTGCG

1440

---GAATTC

---pMtkatG1

EcoRI

GGGCCGTCAGACGATACCT> pMtkatG4

SaI

MtyG7< GCAACGCTTCAAGAACC

HindIII

W Q D P V P A V S H D L V G E A E I A S (457)

CCGTCTACTGCCCAAGCGACGCTTGCTGGACGACGCTTGCTCAACGGCTGCG

1440

---GAATTC

---pMtkatG1

EcoRI

GGGCCGTCAGACGATACCT> pMtkatG4

SaI

MtyG7< GCAACGCTTCAAGAACC

HindIII

W Q D P V P A V S H D L V G E A E I A S (457)

CCGTCTACTGCCCAAGCGACGCTTGCTGGACGACGCTTGCTCAACGGCTGCG

1440
L K S Q I R A S G L T V S Q L V S T A W
TTAAGAGCCAGATCCGGGACATGGGATTGACTGTCATCGTCTAGGCCGATG
AATTTCGCTCTAGGCCCCTAGCCCTAATCTAGACAGAGTAAGGCTGATCAAAGCTGGCCTACC
Af7II

A A A S S F R G S D K R G G A N G G R I
CGGGCGCGCTCGCTGTCCCTCGTGTAAGCAAGAAGCCGCACGCGCGGCCAACGGGTGCTGACATCC
GCCGCCGCACGAGAACACCCTAGCTGCTGCTGCCGCCGCGCTGTGCAACCAGGCGGTTAGG
------------------- MtK7

R L Q P Q V G W E V N D P D G D L R K V
GCTGCAAGCAAAAGTGCCCTGAAGAGTCAGACCACCGCGACGGAGTCTGCAAGAGTCAG
CGGACGCTGCTGTTCAAGCCACCTCCTAGAGCTGCGGCTGCCCCTAGACGCTGGTTCCAGT

I R T L E E I Q E S F N S A A P G N I K
TTGCCACCTGGAAGAGATCCAGGATCTTCAACTCCCGCGCGCCCGGGAAACATCAAAG
AAGCGTGGGAGCCTTCTCTAGGTCTCAGTAAGTTGAGGCACCGCGCGGGCCCTTGTAGTTTC

V S F A D L V V L G G C A A I E K A A K
TGTCCCTTCGCGCCACCTCGTCCCTCGTGCTCGTGCTCGCCCATAGGAAAGGACAGCAGAAAGG
ACAGGAAGCGGCGTGGACGACGCCGACCGGCGGCGGTATCTCTTTCTGCCTGGTTTCC

A A G H N I T V P F T P G R T D A S Q E
CGGCTGCGCCACACACATCGGCTGCCCTCTCCCGGCCCGCAGATCGTCGCAAGAAC
GCCGACCGGTGTTGAGTGCCAGGAGAAAGTGGGCGGCGCGCGTGCTCTACGCAAGCGGTCTCTTG
SmaI

Q T D V E S F A V L E P K A D G F R N Y
AAACCGACGTGGAATGCTTGCAGCCCAAGCCAAGGAGATGGGCTTCCGAAACTACC
TTTGCGCTGCACTTTAGGAACCGCAGCCTCGGCTGTCCGTCTACGGAAGGCTTTGATGG

L G K G N P L P A E Y M L L D K A N L L
TCGAAAGGGCAACCGCTTGCAGCGCGCGAGTACATGCTGCTCGAAGGCCAACCTGCTTTA
AGCCTTTCCGGTGAAACCCGCGGCTCATGTACGACGAGCTGTTCCGCTTGGACGAAT

1500
1620
1740
1800
1860
1920
GACGAGGTGTACGGGATAATGCTCATGCTGGCCTGACGACGTGGAGTGCAGAG
CTGCTCCACATGCCCCTATATTACGAGTACGTACCCGACCCCATGTCGTGCACCTCACGCTC NsiI
2580

CGACGGCCATTGCTCATAACCCGGCGCGCGCTTGGCCCGAACTGGTGTTGG
GCTGCGGTAACGGGATGGCTCCCAAACCAGATTGGGCCGCGCGAACGGGCTTGGACCACAC
2640

ACTGGGCTCTGCCACGAGCTGGGCCAGGTTTGATTGACATGCCGTGAGGGCTCTGGTC
TGACGGGAGACGGGTGCTGCACCCGGCAACAAACTTTGATCGGCAGCCGCTCCGGAGACCAG
2700

GGTGACTTTGGCTGACTCCGGATATGTAGGACACCCTTAAAGCCGGGCCCTTCTTGCAGAAGG
CCACTGAAACGACTGAGGCCTTGGCCGGGAGAACAGCCTTGCAAAAGGAGGAACAGGCTTTGC
2760

GTCCAGGCTCATACATCCCGACGCGCATTTGTATTGATTCGTACCCTCAGCAGAGG
GAGGCTCATACATCCCGACGCGCATTTGTATTGATTCGTACCCTCAGCAGAGG
2820

GTGACGGCCTGAGTTGCTGCTGCGGCGACCCGTGGCCTGCGGCGGCGGACTGC
CAGTGGGAACGTCAACCACACCCGGCTGCGACACGACCGGACCCGCCGCCCGCTGA
2880

TCGACGAAGGTCGCGGTACCAGCTGCTTCACCACGGGCATGG KpnI
2900
Figure 2.4. Simplified restriction map of the chromosomal insert containing the *B. pseudomallei* *katG* gene in plasmids pBpG and pBpG-KH (Fragment I) and pBpG-CH (Fragment II). The 1134 bp long *katG* open reading frame is indicated as the part of the chromosomal insert as is the insert fragment I used to construct the subclone vectors employed in site directed mutagenesis of *B. pseudomallei* *katG*.
Figure 2.5 General reconstruction protocol used for the generation of variant BpKatG’s from mutagenized subclone I for protein expression. (K:KpnI, C:Clal, HindIII, E: EcoRI)
Figure 2.6. The DNA sequence and corresponding amino acid sequence of *B. pseudomallei* showing the restriction sites and the target codons selected for mutagenesis in this study. The sequencing primers are also shown.

Burkholderia pseudomallei KatG (BpKatG)

CGGGGTGACGCAAGCTGATATCCCGGCGACGGTGAATTGAGCGCGGCGAGCGCAGCTG
GCCCACTGTTCTGAGCTATAGGGGCGTGCCACTTAATCAGCGCTCGGACGCAGAC 60

CGGGCCGCGCGCGCCATGATCGAAGCGGAGGTTCGGGGGCCCCTTTTTTGGCTACTG
GCCCGCGCGCGCGCTACTGCTGCCCGGGCAAGCAGCCCGGGGCAATAAACCGGATAGC 120

GATAAATATAATTTATATTAAATTATACATATATCAATAGCAATATAAGATGCTTCGATGATG
CTATTATTTTATTTATATAATATATATATATGTTTTATTATTACGAACTCGTACCC 180

ATCGGGCAAGCGGCGCGCGACGGTAACTGCAAGCGCAGCGGATGCTATGATGCAAC
TAGCCGTCGGGGCGGGCTCCATTACGCTTCGAGTTACGTTACGATACGTACC 240

CGGCATTTGCTGCAGCGCGCGCGCGAGGTTGTTACGCTGCTTATCTTGGGAAAGCGCAGCGCCAG
GCCGTAACAGCGCGCGCGCTTTTAACGCGGGCGCCGCGCCGAGTAACGACCTCG 300

AGGGCTCCATGCCAGGCTGTCGCTGAGCTTATCTTGGGAAAGCGCAGCGCCAGCGCCAG
TCGCAGGTCGAGCGCGCGCGCTTTTAACGCGGGCGCCGCGCCGAGTAACGACCTCG 360

GCGGCTAGGCGGCGCGCGCCGTGCGGCGGCGCTTTTTCGCGCGCGCGCGCGCGCAGCGC
CGCCGACTCGGCGCGGCGCAGCGGCGGGGCAAGGCGCGCGCGCGCGCGCAGCGGCGGCG 420

-----M P G S-----
AGGAGGCGTCACCTGTTTTTGTCCCGCAGAGCTCGCCCGCCGGAGCGCTCCGG
TGATACCAGTGAGCAAAACACAGGGGGGTTTGCTACGCGGGCGAGGC 480

-----BpG5-----

G A G P R R R R G V H E Q R R N R M S N E-----
ATGGCCGGCGAGGGCCAGGGGCGTGACGAAACACAGGGGAATACGGGATTACGAG
TACGGCCGGCCGCGCGCGCGCATGCTGCTGCTTTCTCTCTTACGCTACAGCGTTACTCC 540

A K C P F H Q A A G N G T S N R D W W P-----
CGAAGTGCCGGTTTCCATCAAGCCGCAAGGCAACGCGACGTGGAGGACTGGTGGGCCC
GCTTACGGGCAAGGATAGTTGGCGTCGTTGCCGTGCAGCTTGGGCCCTGACACCACGCGGT 600
NQLDLSI LHRHSSLSDDPMGK
ATCAGCTGAGCTGAGCTGACCTGCGCTGTCCGATCCGATGGGCAAGG
TAGTCGACCTGGACTCTGAGAGCTAGGGCTGAGCAGCGACAGGCTAGGCTACCGGTTCC
DFNYAQAFEKLDLAAVKRDL
ATTTCACACTACGCCAGGCTTGGAGAACGCTACCTCGGCCGCTGGTGAGCGAGCGACCTCC
TAAAGTTTAGCAGCTGCTCCGAAGCTCTCTTGAGCTGGAGCGAGCGCCACTCTGCGCTGGAGG

HALMTTSQDWWPADFGHYGG
ACGCAGTATGCAGCTGAGGTGGCCGACCTACCGGCGCCGAGTTTCCGACTACCGGCGG
TGCGACACTACTGCTGACGCTCTGACCACCCGCGGCTAAAGCGGTATCGGGCGCGG
---------------BpG6-

LFIRMAWHSAAGTYR冷却
TGTTTACCCGATGCGATGCGACAGCGGCGAGCGGTACCTGCCAGCGAGCGGCGGCGG
ACAAATGACGGTCTCCGCTGCAACCCTGGCATGGGCTGGGCTCGGGGCTCGG

GAGEQQRNPDSNPW
GCCGCGCGAACGAGCGCTTCCGCGCTGCAAGCAGCTGCGCCGACACGCGGACAGCGGCGGCGG
CGCAGCCCGGCTTCCGCTGAGCGCGGAGTGGCTGACCGGGCTGTTGCGCTGGG

LDKARRLWPQGRGGRAIS
TCGACAAGCGCGCCCGCTGCTGTGCGGATCAAGCAAGATACGGCCGACACGCGGACGG
AGCTGTTCCGCGCGCGACACGGCAAGCTTCTGTCTCTCGATCGGGCTGGGCTTGGG

WADLILILTGNVALSMGFKT
GGGCGGACCTCGCTGATCTCGACGGGCAAGCGGCTCGGTCGATACGGCCGACGCG
TCGCGACTCTAGGACTGCCGTTGCGAGCGAGCTTACTCCCGAAGGCTCTGGA

FAGGRADTWEPDEYVGSG
TCGCTTGCCGCGGCAGCCGAGCCGACGCTGCTGGCGGTCTGCG
AGCGCGAAGCGGCGCCGCGGCTTGTAGCCACCTTGGGCTCTCCTGCAAGATACCCCGAGC

EKIWLELSGGPNRSRYSGDRO
AAAAGATCTG6CTGGAACGCTGAGCGCGCCGCCACAGCCGCTATCCGCGCGACGCGC
CTTTTCTAGAAGCCAGCTCTGATCTCACCCTGGCGTGTGCGAATAAGCCGCCTGGCGGTGCG

LENNPLAAVQMGILYVNPEGP
TCGAGAAGCCCGCTGCGGCAGCTGAGCTGACCTACGTAATCGGAGACAGGGCCCGG
AGCTTCGTGGGCAAGCAGCGCGACGTCTACCCCGAGTAGATGACCTTACGGCTTCCGGGCC

DGNPDVPAAARDIRDFTFARM

(64) 660
(84) 720
(104) 780
(124) 840
(144) 900
(164) 960
(184) 1020
(204) 1080
(224) 1140
(244) 1200
(264)
ACGGCAATCCCGATCCGGTCGCCGCGGCGCGACATTCGTGACACCTTCGCGCGCATGG

TGCCGTTAGGGCTAGGCGCCAGCGCGCGCCGCGCTGTAAGCATGTG6AAGCGCGGCTACC

AMNDDEETVALIAGGHTFGKT

CGATGAACGACGAAGAGACGGTCGCGCTGATCGCGGGCGGCCACACGTTCGGCAAGACGC

I32O

GCTACTTGCTGCTTCTCTGCAGCGCGACTAGCGCCCGGCTGTG

CAAGCCGTICIG

HGAGPASNVGAEPEAAGIEA

ACGGCGCGGGGCGTCGAACGTCGGCGCCGAGCCGGAGGCCGCGGGCATCGAAGCGC

13BO

TGCCGCGCCCCGGGCGCAGCTTGCAGCCGCGGCTCGGCCTCCGGCGCCCGTAGCTTCGCG

QGLGWKSAYRTGKGAADATS

AGGGCCCTCGGCTGGAAGAGCCGCTACCACACGGGCAAGGCCGAGCGCAGCAGTACCGAAGCG

TCCCCGAGGCCACCTTCTCGCGCATGGCGTGCCCGCTCCTCGCGCCGCGGTAGCTTCGCG

GLEVTWTTTPTQWSHNFEN

GGCTCGAAGTCACGIGGACGACGAGCCGACGCAGTGGAGCCACAACTTTCTCGAGAACC

CGGAGCTTCAGTCGTACCTCTGCGCTGCGTCACCTCGGTGTGTTGAAAAAGCTCTTTGG

LFYGELTKSPAGAHQWVA

TGGTCCGCTACGGATGGGAGCTGAGAGCGCCGCGCGCCGAAGCGTAGGGTGGGCTGCGA

ACAAGCGATGCTCACCCTCGACTGCTTCTCGGCGCCCGCCGCCGCGGTGCTACCCAGCGCT

KGADAVIPDFDSKKKRPT

AGGGCCGCCACGGGCTGATTTCCCGACGGCTGTGATCCGAGAAAGACTCTGGGCTGACGA

TCCCCGGCTGCGCCACAATAGGCGCTGCAAGCTAGGGAGCTCTCTCTCAGCGGCTGCT

MLTTTLSSLRFDPAYEKIISRR

TGCTACGAGCCGACCTGTGCTGCTGCTGACAGAAGATCTGCGCCGCT

ACGAGTGGCTGCTGCTAGCAGCGAGCGGAGCTGCTCTTTCTAGAGCGGCGGCA

FHENPEQFADAFARAWFKL*T

TCCACGAGAACCCGAGCAGTCTCCCGACGGCTGTTCCCGCGGCGCTGTTTCAAGCTTTAGC

AGGTGCTCTTTGCGCTCTGCAAGCGGCTGCAAGCGGCGCGGGCAAGAGTCTGGGCTGCG

HRDMGPRAARYLGPPEVPAEVL

ACCGCGACATGGGCCGCGCGGCGCGTATCTCGGGCGCGTACAGTGGCGCGGCGGCAGGTGTGCTGC

TGCGGCTGTACCCGGGCGCGGCGCGGCGATAGGCGCGGCGCCCTACGGCGCCGCATTCCGAC8GCG

-->BpG1
Once the correct mutation was identified, the complete sub-clone sequence was determined to ensure that no base changes apart from those desired had been introduced. The mutated sub-clone was used to reconstruct the complete \textit{MtkatG} or \textit{BpkatG} gene. The complete gene was sequenced over the region containing the mutation for final confirmation. Reconstructed mutant \textit{MtkatG} and \textit{BpkatG} clones were transformed into UM262 for determination of enzyme activities and visualization of protein from crude extracts or whole cells by SDS-PAGE. Clones over expressing significant levels of variant MtKatG and BpKatG enzyme were grown on a large scale (4-6 liters) for purification and characterization of the enzymes.

\textbf{2.4.3. Reconstruction of \textit{M. tuberculosis} katG subclones with desired mutation}

An outline of the reconstruction protocol is illustrated in Figure 2.2a. The plasmids was drawn in a linearized form for reasons of simplicity. Reconstruction of mutant \textit{katG} genes was done in a single step. Plasmid pMt-CX (subclone I) with the desired mutation was cut with \textit{XhoI} and \textit{ClaI}. The 474 bp \textit{XhoI-ClaI} fragment from pMt-CX was then ligated into pAH1 that was also cut with \textit{XhoI} and \textit{ClaI} to generate the plasmid containing the mutant \textit{katG} gene. All the variant constructs were verified for correct restriction sites using various restriction digestion studies at each step in the construction process.

\textbf{2.4.4. Reconstruction of \textit{B. pseudomallei} katG subclones with desired mutation}

An outline of the reconstruction protocol is illustrated in Figure 2.2b. The plasmids have been drawn in a linearized form for reasons of simplicity. Reconstruction
of mutant katG genes was done in two stages. In the first stage, plasmid pBpG-CH (subclone I) with the desired mutation was cut with ClaI and HindIII. The 730 bp ClaI-HindIII fragment from pBpG-CH was then ligated into pBpG-KH (subclone II) that was also cut with ClaI and HindIII. In the second stage, plasmid pBpG-KH (subclone II) with the desired mutation was cut with KpnI and HindIII. The 1731 bp KpnI-HindIII fragment from pBpG-KH (subclone II) was then ligated into pBpG that was also cut with KpnI and HindIII to generate the plasmid containing mutant katG gene. All the variant constructs were verified for correct restriction sites using various restriction digestion studies at each step in the construction process.

2.4.5. DNA isolation and purification

Isolation of plasmid DNA was according to Sambrook et al. (1989). Plasmid harboring cells were grown in tubes containing 5 mL LB medium to stationary phase and were pelleted by centrifugation and resuspended in 200 μL Tris-glucose-EDTA buffer (25 mM Tris-HCL, pH 8.0, 1% glucose, 10 mM Na-EDTA). Resuspended cells were lysed by addition of 400 μL 1% SDS (w/v), 0.2 M NaOH solution and gentle mixing. This was then neutralized by addition of 300 μL 6.2 M ammonium acetate, pH 6.2. After 10 min incubation, the mixture was centrifuged twice to remove the precipitate. Plasmid were pelleted by centrifugation and resuspended in 200 μL Tris-glucose-EDTA buffer (25 mM Tris-HCL, pH 8.0, 1% glucose, 10 mM Na-EDTA). Resuspended cells were lysed by addition of 400 μL 1% SDS (w/v), 0.2 M NaOH solution and gentle mixing. This was then neutralized by addition of 300 μL 6.2 M ammonium acetate, pH 6.2. After 10 min incubation, the mixture was centrifuged twice to remove the precipitate. Plasmid
DNA was then precipitated by the addition of 550 μL isopropanol to the remaining supernatant followed by 15 min incubation at room temperature. Plasmid DNA was pelleted by centrifugation, washed twice with 1 mL of 70% (v/v) ice cold ethanol, and then dried under vacuum. The DNA pellet was either stored under these conditions at -20°C or was resuspended in HPLC grade distilled water or TE buffer (10 mM Tris, pH 8.0, 1 mM Na-EDTA) prior to being stored at -20°C until further use.

2.4.6. Restriction endonuclease digestion of DNA

Restriction digestions were performed at 37°C for 2-5 h in a total volume of 10 μL containing 1 μL RNase, 1 μL of 10X appropriate buffer provided by the supplier, ~1-5 μg DNA, and 0.5-1 μl (50-2500 Units) of endonuclease.

2.4.7. Agarose gel electrophoresis

Electrophoresis of the restriction endonuclease digested DNA were performed according to Sambrook et al., (1989). Agarose gels containing 1% (w/v) agarose and 0.9 μg/mL ethidium bromide were prepared in TAE buffer (40 mM Tris-Acetate and 1 mM EDTA, pH 8.0) and cast in Bio-Rad Mini Sub cell plexiglass horizontal electrophoresis trays (6.5 cm x 10 cm). Samples of 10 μl volumes were mixed with 2 μl stop buffer (40% [v/v] glycerol, 10 mM EDTA pH 8.0, 0.25% [w/v] bromophenol blue). 1kb or 1 kb plus DNA ladders (Invitrogen Canada Inc) were used as molecular weight size standards. Electrophoresis was carried out at 40-60 mA constant current in TAE buffer until the bromophenol blue marker dye front had migrated approximately two thirds of the length of the gel. Following electrophoresis, the DNA bands were visualized with ultraviolet
light and recorded in a digitized form using a Gel Doc 1000 image capture system (Bio-Rad) or FluorChem™8900 image capture system (Alpha Innotech).

2.4.8. Ligation

DNA fragments to be ligated were excised from agarose gels and purified using the Ultraclean™ 15 DNA purification kit (Bio/Can Scientific Inc.) according to the instructions supplied by the manufacturer. Ligation of insert DNA into vectors was carried out according to the procedure of Sambrook et al (1989). Purified DNA was mixed in a ratio of 2-3 of insert to vector in 10 µl volumes containing 1 unit of T4 DNA ligase (Invitrogen Canada Inc.), and the manufacturer’s supplied buffer at the appropriate concentration. Ligation mixtures were incubated overnight at 15°C. A mixture without added insert DNA was used as control.

2.4.9. Transformation

Transformation of *E. coli* cells with the various plasmids was achieved according to Chung *et al* (1989). 5 mL LB cultures of cells grown to exponential phase (2-4 h) were harvested by centrifugation and made competent by resuspension in 500 µL ice-cold 0.1 M CaCl₂ for at least 30 min on ice. 2-10 mg DNA was added to 100 µL of this cell suspension, followed by additional 30 min incubation on ice, and a 90 second heat shock at 42°C. 0.9 mL LB was added to the cell suspension and incubated at 37°C for one hour without aeration. The mixture was either spread, or (in the case of ligation mixtures transformations) mixed with 3 mL of molten (50°C) R-Top agar (0.125 g of yeast extract, 1.25 g of tryptone, 1 g of NaCl, 1 g of agar per 125 mL volume with 0.25 mL of 1 M
CaCl$_2$ and 0.42 mL of 30% glucose sterile solutions added after autoclaving) and poured onto ampicillin-containing LB plates.

2.4.10. DNA sequencing

Sequencing of DNA was performed according to the method of Sanger et al. (1977). Sequencing was carried out manually with double stranded DNA templates using the primers shown in Table 2.2. For preparation of double stranded DNA template, 5 μg plasmid DNA was resuspended and denatured in a 40 μL volume of freshly prepared 2 M NaOH. This mixture was incubated for 10 min at 37°C, reprecipitated by addition of 10 μL of 3 M sodium acetate (pH 4.8) and 140 μL of ice-cold 95% ethanol. Following incubation at -20°C for 30 min, the DNA pellet was recovered by centrifugation, washed once with 1 mL of 95% ice-cold ethanol, and once with 200 μL of 70% ice-cold ethanol, and then evaporated to dryness under vacuum in a desiccator. Annealing and sequencing reactions were carried out using a 10 μCi [α-35S] dATP (Amersham biosciences). Reaction mixtures were separated and resolved on 8% (w/v) polyacrylamide vertical slab gels containing 7 M urea, 0.13 M Tris, 0.13 M boric acid, and 10 mM EDTA. Electrophoresis was carried out using 18-24 mA constant current in TBE buffer (90mM Tris, 89 mM borate, 2.2 mM EDTA) for 1.5-4 h as required. Gels were mounted on 3 mm paper (Whatman), covered with clear plastic film, and dried at 80°C for about 1 hour on a slab gel drier vacuum (Savant). Dried gels were exposed to X-ray film (Kodak X-OMAT AR) in order to visualize and record the DNA bands.
2.5. Purification of catalase-peroxidases

For small scale crude extracts used to determine relative levels of protein expression and catalase activity, plasmid-containing cells were grown in either 5 mL of LB medium in test tubes, or in 30 mL of LB medium in shaking flasks at 28°C and 37°C for 16-20 h. The cells were pelleted and resuspended in 1-2 mL of 50 mM potassium phosphate buffer, pH 7.0 (buffer A), sonically disrupted, and centrifuged to remove unbroken cells and debris. This was followed by an assay for catalase activity and a protein expression profile by electrophoresis on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). If only protein visualization was to be carried out (in the case of mutations that had low or no catalase activity), 10-15 μl aliquots of the cell suspensions were pelleted by centrifugation, directly resuspended in SDS protein sample buffer, and analyzed via SDS-PAGE.

For large scale preparations of KatG and their variant proteins, UM262 cells over expressing the desired protein from the appropriate plasmid borne genes were grown in 4-6 liters of LB media, in 2 L shake flasks (500 mL LB per flask) supplemented with 100 μg/mL of ampicillin and 40 μg/mL hemin (Sigma), for 16-20 h, at either 28°C or 37°C with good aeration. Isolation and purification of KatGs were done according to the procedure of Loewen and Switala (1986) with modifications. All isolation and purification steps were carried out at 4°C. Cells were harvested from the growth medium by centrifugation at 7000 rpm. The cell pellet (approximately 30 g wet weight from 6 l culture) was either stored at -60°C or resuspended in about 150-250 mL of buffer A containing 5 mM EDTA. The cells were disrupted by a single pass through a French pressure cell press at 20,000 psi. Unbroken cells and debris were removed by
centrifugation, yielding the crude extract, which was treated with streptomycin sulfate to a final concentration of 2.5% (w/v). In case of protein preparations from *A. fulgiduis* KatG and *B. stereothermopilus* KatG, the crude extract was heat treated at 80°C in a water bath for 45 min followed by centrifugation prior to streptomycin sulfate treatment. The resulting precipitants were removed by centrifugation and discarded. Solid (NH₄)₂SO₄ was added in appropriate amounts with gentle stirring, to precipitate the desired protein. Most of the KatG proteins were found to precipitate in (NH₄)₂SO₄ at 40-50% saturation. Pellets from the (NH₄)₂SO₄ precipitations were resuspended in 10-20 mL of buffer A. The presence of the desired protein in the pellets was confirmed by assays for catalytic activity and visualization on SDS gels. Resuspensions were centrifuged to remove any remaining precipitate, and dialyzed overnight against 2 liters of buffer A using a 12,000-14,000 molecular weight cutoff membrane.

The dialyzed resuspensions were centrifuged and loaded onto a 2.5 cm x 23 cm column of DEAE-cellulose A-500 (Cellufine, Amicon) equilibrated with buffer A. The column was washed with buffer A until the A₂₈₀ of the eluting solution was below 0.04. The protein was then eluted with a 0-0.4 M NaCl linear gradient in buffer A, usually to a volume of 1 L. Eighty drops (5 mL) fractions of the eluted proteins from the column were collected throughout. The purity of the recovered column fractions was determined using A₂₈₀, A₄₀₇ and catalase activity and the fractions with higher A₂₈₀, A₄₀₇ and higher catalase activity were selected. Selected fractions were pooled and concentrated under nitrogen in a stirred pressure cell (Model 8050, Amicon) using a YM-30 (Amicon) membrane, to volumes between 5-10 mL. The concentrated protein sample was dialyzed against approximately 1 L of buffer A. The concentrated, dialyzed proteins were checked
for purity using catalase activity, the Rz (Reinheitszahl) values as determined by A407/280 ratios and visualization using SDS-PAGE. The protein was loaded on to a 2.5 x 15 cm hydroxyapatite column (Bio-Rad) equilibrated with potassium phosphate 5 mM (pH 7.0). The protein was eluted with potassium phosphate 5-200 mM, pH 7.0 usually in a final volume of 500 mL. Fifty drop fractions of the eluted proteins from the column were collected throughout. Selected fractions were pooled and concentrated as previously. The purified samples were aliquoted into centrifuge tubes in 0.5 mL volumes and stored frozen at -60°C until use.

2.6. Polyacrylamide gel electrophoresis (PAGE) of proteins and staining

Denaturing SDS-PAGE was carried out according to Weber et al (1972). Discontinuous 4% stacking and 8% separating polyacrylamide gels were cast as vertical slabs of dimensions 10 x 10 cm and 0.5 mm thickness (mini gels). Samples loaded onto the mini gels usually contained about 10-20 µg protein for crude extracts or 2-5 µg protein for purified protein. Protein samples were mixed with equal volumes of reducing and denaturing sample buffer (3.4 mg/mL NaH2PO4, 10.2 mg/mL Na2HPO4, 10 mg/mL SDS, 0.13 mM 2-mercaptoethanol, 0.36 g/mL urea and 0.15% bromophenol blue) and boiled for 3 min before loading on the gels. Samples were run with 150 V constant voltage in a vertical BIO-RAD Mini Protean II electrophoresis system, using a running buffer containing 14 g glycine, 3 g Tris base and 1 g SDS per L. Gels were stained in a solution containing 0.5 g/l Coomassie Brilliant Blue R-250, 30% ethanol and 10% acetic acid for one hour and destained with repeated changes of destaining solution containing 15% methanol and 7% acetic acid and 1% glycerol for 30 min. Gels were then mounted
on 3 mm (Whatman) paper, covered with a clear plastic film, and dried at 80°C for 1 hour on a slab gel drier under vacuum (Savant).

Non-denaturing PAGE was carried out according to Davis (1964). 8% acrylamide continuous gels were cast as vertical slabs as described for SDS-PAGE. When protein was to be visualized on the gels, sample amounts loaded were as described for SDS-PAGE. When enzymatic activity was to be visualized on the gels, samples were loaded in amounts corresponding to 1 unit of catalase activity, or 40 units of peroxidase activity. Samples were mixed with equal volumes of 2X sample buffer containing 0.125 M Tris, pH 6.8, 10% (w/v) glycerol, and 0.2% bromophenol blue (modified from Bio-Rad Mini-Protean II instruction manual). Electrophoresis was performed as described for SDS-PAGE, but using a running buffer containing 4.8 g Tris base, 20.8 g glycine per 4 L.

Gels were stained for peroxidase activity according to the method of Gregory and Fridovich (1974) using 3,3'-diaminobenzidine (DAB) as the electron donor species. Gels were soaked in a solution containing 20 mg DAB in 80 mL of 50 mM potassium phosphate buffer, pH 7.0 for 45 min, followed by a brief wash with water and then a second soak in the same buffer containing 20 mM H₂O₂. Peroxidase activity was visualized as brown band on the gels. Colour development was usually complete within 30 min.

Gels were stained for catalase activity according to the method of Clare et al. (1984) with minor modifications. Gels were soaked in a solution containing 50 μg/mL horseradish peroxidase (Sigma) in 50 mM potassium phosphate, pH 7.0 for 45 min, then briefly washed with water, incubated in 20 mM H₂O₂ for 10 min, and lastly, soaked in a solution of 50 mg/mL DAB in 80 mL water containing 1 mL glycerol. Catalase activity
was visualized as zones of clearing on brown background. Color development was usually complete within 30-60 min.

Staining for KatG-mediated oxidation of isoniazid (INH) was performed by soaking the gels in 200 mL Tris-HCl, pH 8.0 containing 10 mM INH (Sigma), and 0.2 mM Nitro Blue tetrazolium (NBT). INH oxidation was visualized as purple bands on the gels. Color development was usually complete between 30-60 min. When staining of gels was judged to be complete, they were rinsed with water, and soaked in 7% acetic acid, 1% glycerol for several h or overnight prior to mounting.

Staining for KatG mediated NADH oxidation was performed by soaking the gels in 200 mL 50 mM Tris-HCl, pH 8.75 containing 200 µM NADH and 0.2 mM NBT. NADH oxidation was visualized as purple bands on the gels. Color development was complete in 1-2 h. When staining of gels was judged to be complete, they were rinsed with water, and soaked in 7% acetic acid, 1% glycerol for several h or overnight prior to mounting.

2.7. Enzyme assay and protein quantitation

2.7.1. Catalase activity

Catalase activity was determined by the method of Rorth and Jensen (1967) in a Gilson oxygraph equipped with a Clark electrode. One unit of catalase is defined as the amount of enzyme that decomposes 1 µM H₂O₂ in 1 min in 60 mM H₂O₂ at 37°C, pH 7.0. Appropriately diluted samples of enzyme or cell cultures aliquots were incubated in 1.8 mL 50 mM phosphate buffer, pH 7.0 for 0.5-1.0 min at 37°C followed by the addition of H₂O₂ to a final concentration of 60 mM. Catalase activity as units/mL was determined
from the slope of the plot representing oxygen evolution. Specific catalase activity was expressed as units/mL per mg purified protein or units per mg dry cell weight. Specific activities were always determined as the average of a minimum of three or more individual determinations. The data was fitted to Michaelis-Menten equation using Sigma Plot to determine the \(V_{\text{max}} \) and \(K_m \) values.

2.7.2. Peroxidase activity

Peroxidase activity was determined spectrophotometrically by the \(\sigma \)-dianisidine method described in the Worthington Enzyme Catalogue (Worthington Chemicals Co., 1969). Assays were carried out at room temperature in 1 mL final assay volumes containing 1 mM \(\text{H}_2\text{O}_2 \), 0.34 mM \(\sigma \)-dianisidine in 50 mM sodium acetate buffer pH 4.5. Aliquots (1-5 \(\mu \)l) of the appropriately diluted enzymes were added to initiate the reaction. Peroxidase activity was determined by the \(\Delta A_{560}/\text{min} \) over periods of 2 min and expressed as units•mg\(^{-1}\)•mL\(^{-1}\) purified protein calculated as: \((\Delta A_{460}/\text{min})/11.3 \times \text{mg enzyme/mL reaction mixture}\), using a molar extinction coefficient at \(A_{460} \) nm for \(\sigma \)-dianisidine product of 11,300 M\(^{-1}\)cm\(^{-1}\). Peroxidase activity was also determined spectrophotometrically by the \(2,2'-\text{azinobis}\{3\text{-ethylbenzoathiazolinesulfonic acid}\} \) (ABTS) method (Smith et al., 1990) with minor modifications. Assays were carried out at room temperature in 1 mL final assay volumes containing 2.5 mM \(\text{H}_2\text{O}_2 \), 0.4 mM ABTS in 50 mM sodium acetate buffer pH 4.5. Aliquots (1-5 \(\mu \)l) of the appropriately diluted enzymes were added to initiate reaction. Peroxidase activity was determined by the \(\Delta A_{405}/\text{min} \) average over a period of 2 min and expressed as units•mg\(^{-1}\)•mL\(^{-1}\) purified protein calculated as: \((\Delta A_{405}/\text{min})/36.8 \times \text{mg enzyme/mL reaction mixture}\), using a
molar extinction coefficient of ABTS product at A_{405} nm of 36,800 M$^{-1}$cm$^{-1}$. One unit of peroxydase activity is defined as the amount that decomposes 1 µmole of electron donor (ABTS or o-dianisidine) in 1 minute at pH 4.5 and room temperature.

2.7.3. INH hydrazine lyase activity

INH hydrazine lyase activity has been referred to the formation of radical species from a reaction mixture containing INH, KatG and NBT under the conditions described below. The reaction involves removal of the hydrazine moiety from INH (Figure 4.3) resulting in the formation of isonicotinoyl radical which could subsequently form amide, acid and aldehyde derivatives of INH (Nguyen et al., 2001).

Isoniazid (INH) hydrazine lyase by KatG was determined spectrophotometrically at 560 nm by monitoring the reduction of NBT to a monoformazan dye ($\epsilon = 15,000$ M$^{-1}$cm$^{-1}$) (Auclair and Voicin, 1985) through an enzymatically oxidized radical species of isoniazid. Assays were carried out in 1 mL final volumes containing 10 mM INH and 200 µM NBT in 50 mM Tris buffer, pH 8.0, at room temperature. Aliquots of 1.2 µM enzymes were added to initiate the reaction. Effect of manganese on INH hydrazine lyase activity was assayed both in the presence and absence of KatG by the addition of 2 µM MnCl$_2$ to the reaction mixture carrying 10 mM INH in 50 mM Tris pH 8.0. The synergistic effect of INH and NADH on NBT reduction was also followed by monoformazan formation (Auclair and Voicin, 1985) by oxidized radical species of INH and NADH. Assays were carried out in 1 mL final volumes containing 10 mM INH, 250 µg NADH and 200 µM NBT in 50 mM Tris buffer, pH 8.0 at room temperature. Aliquots of 1.2 µM enzymes were added to initiate the reaction.
2.7.4. NADH oxidation

NADH oxidase activity was determined spectrophotometrically at 560 nm by monitoring the reduction of NBT to a monoformazan dye by enzymatically oxidized radical species of NADH. Assays were carried out in 1 mL final volumes containing 250 μg NADH and 200 μM NBT in 50 mM Tris buffer, pH 8.75 at room temperature. Aliquots of 1.2 μM enzymes were added to initiate the reaction.

NADH oxidation was directly observed spectrophotometrically at 340 nm to monitor the rate of NADH disappearance. Assays were carried out in 1 mL final volumes containing 100 μM NADH in 50 mM Tris buffer, pH 8.75 at room temperature. Aliquots of 1.2 μM enzymes were added to initiate the reaction. NADH oxidase activity was determined by the Δ340/min average over periods of 15 min. NADH oxidase activities were expressed as units.mL⁻¹.mg⁻¹ purified protein, using a molar extinction coefficient of 6,300 M⁻¹.cm⁻¹ for NADH (DeChatelet et al., 1975). One unit of NADH activity is defined as the amount that decomposes 1 nmol of NADH in 1 minute in a solution of 100 μM NADH at pH 8.75 and room temperature. NADH oxidation was also assayed under anaerobic conditions by flushing the reaction mixture, sealed in a glass tube with rubber cork, with nitrogen before initiating the reaction by the addition of the enzyme.

2.7.5. Isonicotinoyl NAD synthase activity

Isonicotinoyl NAD synthase activity was measured from a reaction mixture carrying 200 μM INH, 100 μM NAD⁺, 2 μM MnCl₂ and 1.2 μM KatG in 50 mM Tris pH 8.0. The adduct formation was monitored at 326 nm for a period of 30 min and rates were calculated using the extinction coefficient ε = 6.9 mM⁻¹.cm⁻¹ (Rawat et al., 2004).
2.7.6. Protein Concentration

Protein concentration (mg/mL) was estimated spectrophotometrically based on
A_{280} calculated as $(A_{280} \times MW/\varepsilon)$ where MW is the molecular weight of KatG and ε is the molar extinction coefficient (Lyane, 1957).

2.8. Absorption spectrophotometry pf KatGs

Absorption spectra, time courses, and enzyme assays were performed using a Pharmacia Ultrospec 4000 Spectrophotometer, a Milton Roy MR300 Spectrophotometer, Ultrospec 3100 pro or Biochrom Novaspec II visible spectrophotometer (for assaying samples under anaerobic conditions). All experiments were performed at ambient temperature in 1 mL quartz, semi micro cuvettes. Proteins were diluted in 50 mM potassium phosphate buffer, pH 7.0, unless otherwise stated, and the same buffer was used as reference. For the peroxidase assays using ABTS and o-dianisidine, proteins were diluted in 50 mM sodium acetate buffer, pH 4.5 and the same buffer was used as reference. For NADH oxidation and INH hydrazine lyase activity assays, 50 mM Tris buffer, pH 8.75 and 8.0 respectively were used and the same buffers were used as reference. For preparation of spectral and time course plots, data collected were transferred to Sigma Plot software.

2.9. Effects of inhibitors

The effects of classical heme inhibitors, KCN and NaN$_3$ on catalase, peroxidase and oxidase activities of KatG and variants were studied. The enzyme was incubated with
different concentrations of KCN and NaN₃ for 1 min in the reaction mixture prior to initiation of the reaction by addition of the substrate.

The effect of superoxide dismutase (SOD) on NADH oxidase activity was assayed by adding 200 μg of SOD in the 1 mL reaction mixture carrying 250 μM NADH, 200 μM NBT and appropriately diluted enzyme. The assay was performed as described for NADH oxidation.

The effect of pyridoxine and pyridoxal-5-phosphate on NADH oxidase activity was determined by incubating the appropriately diluted enzyme with different concentrations of pyridoxine and pyridoxal-5-phosphate and initiating the reaction by addition of the substrate.

2.10. High Performance Liquid Chromatography (HPLC) characterization of reaction products.

Reaction products of INH hydrazine lyase activity and isonicotinoyl-NAD adduct formation were characterized using HPLC. For INH hydrazine lyase activity, reaction mixtures carrying 1 mM INH and 1.2 μM KatG in 50 mM Tris pH 8 were incubated for 3-4 h. Aliquots were kept frozen after the incubation until ready to use.

For NADH oxidation, reaction mixture containing 200 μM NADH and 1.2 μM KatG in 50 mM Tris pH 8.75 were incubated for 3-4 h and aliquots were kept frozen at -20°C until ready to use.

Isonicotinoyl-NAD synthase activity was characterized using different permutations and combinations of reactants. Adduct formation was analyzed in the presence and absence of KatG and in the presence and absence of MnCl₂ using INH and
NADH/NAD\(^+\) as substrates. In all the reactions, 100 \(\mu\)M NADH/NAD\(^+\), 200 \(\mu\)M INH, 1.2 \(\mu\)M KatG and 2 \(\mu\)M MnCl\(_2\) were used in 50 mM Tris pH 8.0. Samples were incubated for 3-4 h and aliquots were kept frozen at -20\(^\circ\)C until ready to use.

For HPLC analysis samples were centrifuged and transferred into the tubes made for automated sample injection (Waters Corporation, MA, USA). Samples were loaded on a 4.6 x 250 mm column equilibrated with buffer A (11.7 g KH\(_2\)PO\(_4\), 2.4 g K\(_2\)HPO\(_4\) and 2.72 g tert-butyl ammonium hydrogen sulfate in 1 L HPLC grade water) packed with Whatman 5 \(\mu\)M ODS-3 (C18 coated, Altech HPLC column) and eluted with a gradient of 0-100% buffer B (buffer A + Methanol to a final concentration of 30%) over a period of 52 min and the 100-0% buffer B from 53-78 min in a Waters HPLC system with detection at 260 nm. Fractions showing peaks were collected to determine the mass of the reaction products. For preparation of elution profiles, data collected were transferred to Sigma Plot computer software.

2.11. Mass Spectrometry

Mass spectrometric analysis was kindly carried out by Dr. LG Donald. KatG was dialyzed into 5 mM ammonium acetate, and NADH was dialyzed against three changes of 1 L 0.1 M ammonium bicarbonate, after which the concentration was determined by \(A_{340}\). The matrix solution was freshly prepared each day at 160 mg/mL 2,5-dihydroxybenzoic acid in a 3:1 water:acetonitrile, 2% formic acid solution. A 20-\(\mu\)l reaction mixture contained 200 \(\mu\)g KatG, 128 \(\mu\)M NADH, and 10 mM INH in 0.1 M NH\(_4\)HCO\(_3\) at room temperature. 0.5 \(\mu\)l aliquots were removed at 1 min, 2 h, 4 h, and 18 h and immediately mixed with 0.5 \(\mu\)l of matrix solution on a metal target. Different
fractions collected from HPLC column were also analyzed in a similar fashion to characterize the reaction products. All samples were analyzed on a quadrupole time of flight (QqTOF) mass spectrometer (Clare et al., 1984).
3. RESULTS

3.1. Introduction

The appearance of three crystal structure reports of catalase-peroxidases (KatGs) from *Haloarcula marismortui*, *Burkholderia pseudomallei* and *Synechococcus* PCC 7942 just prior to the beginning of this study, revived interest in these bi-functional heme proteins. The objective of this study was to gain a better understanding of how catalase and peroxidase activities are modulated by the same enzyme, and more importantly their role in the activation of isoniazid (INH). KatGs from seven different organisms including *B. pseudomallei* (BpKatG), *M. tuberculosis* (MtKatG), *E. coli* (EcKatG), *Synechocystis* PCC6803 (SyKatG), *A. fulgidus* (AfKatG), *B. stereothermophilus* (BsKatG), and *R. capsulatus* (RcKatG), each belonging to a different environmental niche, were selected. Plasmid borne *katG* gene from each organism was over expressed in *E. coli* host cells and purified enzyme was compared for various biochemical and biophysical properties such as pH optimum and enzyme kinetics for catalase and peroxidase activities. Spectral properties and sensitivity to various heme inhibitors, such as cyanide and azide, were also compared for seven KatGs.

Another focus of this study was the role of KatGs in the activation of isoniazid and subsequent formation of isonicotinoyl-NAD adduct. Much of the literature related to the activation of INH by KatG has focused on the fate of INH and possible intermediates involved in the process (Johnsson and Schultz, 1994; Wilming and Johnsson, 1999; Magliozzo and Marcinkeviciene, 1996; Lei et al., 2000). With NAD⁺ included in the mix, the generation of the isonicotinoyl-NAD adduct was observed both with and without KatG present (Wilming and Johnsson, 1999; Magliozzo and Marcinkeviciene, 1996; Lei
et al., 2000), leading to the suggestions that the role of KatG is limited to the hydrazinolysis of INH and that the subsequent reaction of the isonicotinoyl radical with NAD$^+$ is a nonenzymatic event and subsequent formation of isonicotinoyl-NAD adduct is considered as a non-enzymatic event. During this study, pyridine derivatives such as INH, NADH, NADPH, pyridoxine etc were used to analyze their interaction with KatGs and their possible involvement in the formation of isonicotinoyl-NAD.

3.2. Purification and characterization of BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG and ReKatG.

3.2.1. Purification of KatGs

For the over expression of catalase-peroxidase, the katG genes from the seven organisms used in this study were first cloned into high expression plasmid vectors and subsequently over-expressed in E.coli host cells (UM262 or BL21). The plasmids used are listed in the Table 2.1. Heme incorporation in the apoprotein has always been a cause of concern in the over expressed KatG as heme production by the cellular machinery appears insufficient. Over expressed protein often results in lower heme-to-protein ratios, which is also called “reinheitzahl” (Rz) (Dunnford, 1999). To solve this problem, exogenous heme was added to the growth medium to support heme formation and hence incorporation. Table 3.2.1 describes the effect of δ-aminolevulinic acid (ALA), FeCl$_3$ and hemin chloride and temperature on the catalase specific activity of MtKatG. Iron and ALA are precursors in the biosynthesis of heme whereas hemin is a direct source of ferric heme for the apoprotein. Addition of both ALA and FeCl$_3$ to the growth medium or the
Table 3.2.1. Effect of FeCl₃, δ-aminolevulinic acid (ALA) and hemin chloride on the catalase activity of MtKatG. *E. coli* strain UM262 containing plasmids pAH1 (MtKatG) were grown for 16-18 h at 37°C or 28°C in 30 mL LB medium supplemented with ampicillin. Activity assays were performed on whole cells and the activity at 37°C was considered 100%.

<table>
<thead>
<tr>
<th>Growth temperature (°C)</th>
<th>Supplement added</th>
<th>% Catalase activity (units/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALA (mM)</td>
<td>FeCl₃ (μM)</td>
</tr>
<tr>
<td>28</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>37</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 3.2.2.a Purification of wild type BpKatG and MtKatG from *E. coli* strain UM262 harboring plasmid encoded *katG* of *B. pseudomallei* and *M. tuberculosis*.

<table>
<thead>
<tr>
<th>Purification Step</th>
<th>Total protein (mg)</th>
<th>Total catalase activity (units x 10^3)</th>
<th>Specific catalase activity (units/mg)</th>
<th>Recovery (%)</th>
<th>Purification (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude extract</td>
<td>5380</td>
<td>2200</td>
<td>290</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ Precipitation</td>
<td>600</td>
<td>700</td>
<td>980</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Anion exchange (DEAE-A-500)</td>
<td>95</td>
<td>360</td>
<td>3000</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Hydroxyapatite column</td>
<td>60</td>
<td>200</td>
<td>3800</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>MtKatG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude extract</td>
<td>12300</td>
<td>3050</td>
<td>250</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ Precipitation</td>
<td>600</td>
<td>830</td>
<td>1360</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Anion exchange (DEAE-A-500)</td>
<td>200</td>
<td>630</td>
<td>3240</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Hydroxyapatite column</td>
<td>130</td>
<td>460</td>
<td>4450</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 3.2.2b Purification of wild type EcKatG and AfKatG from *E. coli* strain UM262 harboring plasmid encoded *katG* of *E. coli* and *A. fulgidus.*

<table>
<thead>
<tr>
<th>Purification Step</th>
<th>Total protein (mg)</th>
<th>Total catalase activity (units x 10^3)</th>
<th>Specific catalase activity (units/mg)</th>
<th>Recovery (%)</th>
<th>Purification (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcKatG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude extract</td>
<td>4265</td>
<td>6410</td>
<td>1500</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ Precipitation</td>
<td>196</td>
<td>420</td>
<td>2140</td>
<td>7</td>
<td>1.4</td>
</tr>
<tr>
<td>Anion exchange</td>
<td>73</td>
<td>200</td>
<td>5050</td>
<td>3</td>
<td>3.4</td>
</tr>
<tr>
<td>(DEAE-A-500) Hydroxyapatite column</td>
<td>27</td>
<td>170</td>
<td>6150</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>AfKatG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude extract a</td>
<td>3100</td>
<td>2850</td>
<td>260</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ Precipitation</td>
<td>220</td>
<td>460</td>
<td>2100</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Anion exchange</td>
<td>70</td>
<td>400</td>
<td>3500</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>(DEAE-A-500) Hydroxyapatite column</td>
<td>30</td>
<td>380</td>
<td>5300</td>
<td>13</td>
<td>20</td>
</tr>
</tbody>
</table>

a crude extract was heated at 55°C for 30 min after determining catalase activity
addition of hemin alone increased the catalase specific activity in the whole cells by ~30%. Following these results, hemin chloride was added regularly to the growth medium assuming that its addition allows more efficient incorporation of heme into the overexpressed KatGs. Table 3.2.2a & b describe the typical purification procedure of BpKatG, MtKatG, EcKatG and AfKatG. The purification procedure is essentially the same for all the KatGs with the exception of the KatG from the thermophile A. fulgidus. In this case the crude extract was heated at 55°C for 30 min in order to precipitate contaminating protein without loss of catalase activity. The difference in the total protein obtained from each enzyme is proportional to the volume of medium used to grow the cells, for example total protein in the crude extract of MtkatG, which was obtained from cells grown in 6 L of LB was almost four times higher than the total protein in the crude extract of AfkatG which was obtained from cells grown in 2 L of LB. Passing the protein through hydroxyapatite column also helped in achieving the higher Rz ratio and yield. SyKatG and BsKatG were purified by Mr. Jack Switala, while purified RcKatG was a gift from Dr. Anabella Ivancich from CEA, Saclay, France.

3.2.2. Polyacrylamide gel electrophoresis (PAGE) of the catalase-peroxidases

PAGE of purified KatGs under denaturing conditions is shown in Figure 3.1. All the KatGs migrate as a predominantly single bands with an apparent molecular mass ~78 kDa. A band at approximately 160 kDa appeared in all the lanes and could be attributed to a small amount of slower migrating crosslink dimer which is not reduced by either β-mercaptoethanol or dithiothreitol added to the sample buffer. In case of EckatG this 160 kDa band is more prominent presumably because homotetrameric EcKatG resulted in
Figure 3.2.1. SDS-polyacrylamide analysis of purified KatGs. Approximately 5 µg of sample were run on an 8% polyacrylamide gel and stained with Coomassie blue. Lanes A-I contains protein MW ladder, BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG, RcKatG, and protein MW ladder, respectively.
Table 3.2.3. Comparison of observed optical absorbance maxima, $A_{407/280}$ ratio and heme/subunit ratio for purified KatGs.

<table>
<thead>
<tr>
<th>KatG</th>
<th>Sorêt maximum (nm)</th>
<th>$A_{407/280}$ ratio</th>
<th>Theoretical $A_{407/280}$ ratiosa</th>
<th>Heme/subunit ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>408</td>
<td>0.58</td>
<td>0.72</td>
<td>0.81</td>
</tr>
<tr>
<td>MtKatG</td>
<td>408</td>
<td>0.60</td>
<td>0.61</td>
<td>0.98</td>
</tr>
<tr>
<td>EcKatG</td>
<td>407</td>
<td>0.60</td>
<td>0.68</td>
<td>0.88</td>
</tr>
<tr>
<td>SyKatG</td>
<td>407</td>
<td>0.47</td>
<td>0.56</td>
<td>0.84</td>
</tr>
<tr>
<td>BsKatG</td>
<td>406</td>
<td>0.47</td>
<td>0.58</td>
<td>0.81</td>
</tr>
<tr>
<td>AfkatG</td>
<td>404</td>
<td>0.54</td>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>RcKatG</td>
<td>406</td>
<td>0.52</td>
<td>0.66</td>
<td>0.79</td>
</tr>
</tbody>
</table>

a ε at 280 nm calculated based on $\varepsilon_{\text{TRP}} = 5500$ and $\varepsilon_{\text{TYR}} = 1490$, ε at 407 nm for heme estimated to be 100,000 M$^{-1}$ cm$^{-1}$.
Figure 3.2.2. Absorption spectra of KatGs. The left axis is for the range from 350 to 500 nm while the right axis is for the range from 500 to 700 nm.
RcKatG

Absorbance

Wavelength (nm)

Absorbance

RcKatG
higher dimer formation as compared to the rest of the homodimeric KatGs. In case of RcKatG, a single band at ~ 46 kDa is also visible without any explanation.

3.2.3. UV-visible absorption spectroscopy of catalase-peroxidases

Absorbance spectra of the purified KatGs in the Sorêt and visible regions of the spectrum are shown in Figure 3.2.2 while the positions of absorption maxima, heme/protein ratio (A\textsubscript{Soret/280}) and heme/subunit ratio has been summarized in Table 3.2.3. There is a variation of 4 nm between the seven KatGs in the Sorêt band with BpKatG and MtKatG showing Sorêt band at 408 nm whereas AfKatG having the same at 404 nm. EckatG and SyKatG have a Sorêt band at 407 nm and RckatG and BsKatG show Sorêt band at 406 nm. The spectra in 500-700 nm region show the charge transfer (CT) bands at ~500 (CT 1) and ~630 nm (CT 2). These charge transfer bands generally indicate the changes in the hydrogen bonding network in the vicinity of the heme.

Purified KatGs showed a heme/protein (A\textsubscript{407/280}) ratio or the Rz value of 0.5 or higher with heme/subunit occupancy > 0.8, maximum being 1.0 for MtKatG, suggesting better heme incorporation.

3.2.4. pH profile for the catalase and peroxidase activities

The pH profiles for the catalase and peroxidase activities of the KatGs are shown in Figure 3.3. All KatGs show different pH optimum for catalase and peroxidase activities. The pH optima for peroxidase activity are between pH 4 and 5 for all seven KatGs using ABTS as peroxidoic substrate whereas catalatic pH optimum is between 6.25 and 6.5 as shown in Table 3.2.4.
Table 3.2.4. pH optima for catalatic and peroxidatic activities of KatGs

<table>
<thead>
<tr>
<th>KatG</th>
<th>pH Optimum</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peroxidase activity (ABTS)</td>
<td>Catalase activity</td>
<td></td>
</tr>
<tr>
<td>BpKatG</td>
<td>4.5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>MtKatG</td>
<td>4.75</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>EcKatG</td>
<td>4.25</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>SyKatG</td>
<td>4.25</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>BsKatG</td>
<td>4</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>AfkatG</td>
<td>4.5</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>ReKatG</td>
<td>5</td>
<td>6.5</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.2.3. pH profile for catalase and peroxidase activities of KatGs
3.2.5. Specific catalase and peroxidase activities of KatGs

Table 3.2.5 summarizes the specific enzymatic activities of KatGs. All the KatGs show substantial catalase activity ranging from 3634 U/mg by BpKatG to 5985 U/mg by EcKatG. The latter shows significantly higher activity from the previous reports where the activity was reported from EcKatG produced without exogenous addition of hemin in the growth medium. Peroxidase activity was determined using two different organic electron donors (ABTS and o-dianisidine) as peroxidatic substrate. All the KatGs show a broad specificity in peroxidase activity ranging from 2 U/mg for RcKatG to 11.7 U/mg for AfkatG using ABTS as substrate and for o-dianisidine ranging from 1 U/mg for RcKatG to 8.8 U/mg for MtKatG.

3.2.6. Kinetic Characterization of KatGs

Kinetic constants for the catalase and peroxidase reactions of seven KatGs were determined by titrating enzyme with different concentrations of substrate. Figure 3.4 shows the effect of various concentrations of H₂O₂ on the rate of catalase reaction of KatGs. The initial velocities shown are expressed as μmoles of H₂O₂ decomposed per min per μmole of heme. The kinetic constants for catalase activity are shown in Table 3.2.6. Kinetic constants for peroxidase activity, using ABTS as an electron donor, were determined by titrating KatGs against concentrations of ABTS and results are expressed as μmole of ABTS oxidized per min per μmole of heme as shown in Figure 3.5 and the kinetic constants are shown in Table 3.2.7.

Both catalase and peroxidase reactions require H₂O₂ for compound I formation. In order to determine the kinetic constants for compound I formation during peroxidase
Table 3.2.5. Comparison of catalase and peroxidase activities of KatGs

<table>
<thead>
<tr>
<th>KatG</th>
<th>Catalase (units/mg)</th>
<th>Peroxidase ABTS (units/mg)</th>
<th>Peroxidase o-dianisidine (units/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>3630 ± 150</td>
<td>4.8 ± 0.9</td>
<td>5.3 ± 0.9</td>
</tr>
<tr>
<td>MtKatG</td>
<td>4450 ± 150</td>
<td>10 ± 2.5</td>
<td>8.8 ± 1.5</td>
</tr>
<tr>
<td>EcKatG</td>
<td>5990 ± 180</td>
<td>11 ± 1.3</td>
<td>8.3 ± 2.1</td>
</tr>
<tr>
<td>SyKatG</td>
<td>5150 ± 500</td>
<td>6.4 ± 2.1</td>
<td>5.5 ± 2.1</td>
</tr>
<tr>
<td>BsKatG</td>
<td>3690 ± 380</td>
<td>5.9 ± 1.6</td>
<td>5.3 ± 2.0</td>
</tr>
<tr>
<td>AfkatG</td>
<td>5280 ± 250</td>
<td>12 ± 3.3</td>
<td>3.2 ± 0.6</td>
</tr>
<tr>
<td>ReKatG</td>
<td>5520 ± 226</td>
<td>2.0 ± 0.3</td>
<td>1.0 ± 0.2</td>
</tr>
</tbody>
</table>

(1 unit = 1 μmol/min)
Figure 3.2.4. Effect of H$_2$O$_2$ concentration on the initial catalatic velocities of KatGs
Table 3.2.6. Comparison of the observed catalytic kinetic parameters of purified KatGs, using H₂O₂ as substrate.

<table>
<thead>
<tr>
<th>KatG</th>
<th>V_{max}(^a) (x 10(^3))</th>
<th>K_m (mM)</th>
<th>k_{cat} (s(^{-1}))</th>
<th>k_{cat}/K_m (M(^{-1})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>525 ± 29</td>
<td>4.3 ± 0.9</td>
<td>8750 ± 483</td>
<td>2.0 x 10(^6)</td>
</tr>
<tr>
<td>MtKatG</td>
<td>455 ± 22</td>
<td>2.4 ± 0.5</td>
<td>7600 ± 367</td>
<td>3.2 x 10(^6)</td>
</tr>
<tr>
<td>EcKatG</td>
<td>800 ± 32</td>
<td>4.2 ± 0.8</td>
<td>13400 ± 543</td>
<td>3.2 x 10(^6)</td>
</tr>
<tr>
<td>SyKatG</td>
<td>1010 ± 50</td>
<td>3.1 ± 0.7</td>
<td>17300 ± 837</td>
<td>5.6 x 10(^6)</td>
</tr>
<tr>
<td>BsKatG</td>
<td>540 ± 19</td>
<td>3.7 ± 0.7</td>
<td>9050 ± 317</td>
<td>2.5 x 10(^6)</td>
</tr>
<tr>
<td>AfKatG</td>
<td>900 ± 19</td>
<td>3.8 ± 0.3</td>
<td>14960 ± 317</td>
<td>3.9 x 10(^6)</td>
</tr>
<tr>
<td>RcKatG</td>
<td>820 ± 22</td>
<td>3.7 ± 0.9</td>
<td>13600 ± 367</td>
<td>3.7 x 10(^6)</td>
</tr>
</tbody>
</table>

\(^a\) V_{max} is expressed as μmoles of H₂O₂ decomposed min\(^{-1}\) μmole heme\(^{-1}\)
Figure 3.2.5. Effect of ABTS concentration on the initial peroxidatic velocities of KatGs.
Table 3.2.7 Comparison of the observed peroxidatic kinetic parameters of purified KatGs, using ABTS as substrate.

<table>
<thead>
<tr>
<th>KatG</th>
<th>V_{max}^a (μM)</th>
<th>K_m (μM)</th>
<th>k_{cat} (s^{-1})</th>
<th>k_{cat}/K_m (M$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>810 ± 14</td>
<td>300 ± 21</td>
<td>14 ± 0.2</td>
<td>0.5 x 105</td>
</tr>
<tr>
<td>MtKatG</td>
<td>1870 ± 53</td>
<td>67 ± 7</td>
<td>31 ± 0.9</td>
<td>4.5 x 105</td>
</tr>
<tr>
<td>EcKatG</td>
<td>2450 ± 107</td>
<td>24 ± 5</td>
<td>41 ± 1.8</td>
<td>17 x 105</td>
</tr>
<tr>
<td>SyKatG</td>
<td>1680 ± 72</td>
<td>7 ± 1</td>
<td>28 ± 1.2</td>
<td>40 x 105</td>
</tr>
<tr>
<td>BsKatG</td>
<td>1420 ± 105</td>
<td>31 ± 8</td>
<td>24 ± 1.8</td>
<td>7.6 x 105</td>
</tr>
<tr>
<td>AfKatG</td>
<td>1870 ± 94</td>
<td>16 ± 4</td>
<td>31 ± 1.6</td>
<td>19 x 105</td>
</tr>
<tr>
<td>RcKatG</td>
<td>890 ± 30</td>
<td>16 ± 1</td>
<td>15 ± 0.5</td>
<td>9.3 x 105</td>
</tr>
</tbody>
</table>

$^aV_{\text{max}}$ is expressed as μmoles of ABTS oxidized min$^{-1}$ μmole heme$^{-1}$
Figure 3.2.6. Effect of H$_2$O$_2$ concentration on the initial peroxidatic velocities of KatGs.
Table 3.2.8 Comparison of the observed peroxidatic kinetic parameters of purified KatGs, using H$_2$O$_2$ as substrate for the compound I formation.

<table>
<thead>
<tr>
<th>KatG</th>
<th>V_{max}^a</th>
<th>K_m^b (μM)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>k_{cat}/K_m (M$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>1070 ± 110</td>
<td>700 ± 220</td>
<td>18 ± 1.8</td>
<td>0.3 x 105</td>
</tr>
<tr>
<td>MtKatG</td>
<td>1570 ± 120</td>
<td>360 ± 100</td>
<td>26 ± 1.7</td>
<td>0.7 x 105</td>
</tr>
<tr>
<td>EcKatG</td>
<td>2080 ± 160</td>
<td>60 ± 20</td>
<td>35 ± 2.7</td>
<td>6.0 x 105</td>
</tr>
<tr>
<td>SyKatG</td>
<td>1440 ± 54</td>
<td>1000 ± 60</td>
<td>24 ± 1</td>
<td>0.2 x 105</td>
</tr>
<tr>
<td>BsKatG</td>
<td>1740 ± 53</td>
<td>210 ± 27</td>
<td>29 ± 1</td>
<td>1.4 x 105</td>
</tr>
<tr>
<td>AfKatG</td>
<td>1210 ± 9</td>
<td>95 ± 6</td>
<td>20 ± 0.2</td>
<td>2.1 x 105</td>
</tr>
<tr>
<td>RcKatG</td>
<td>470 ± 60</td>
<td>830 ± 80</td>
<td>8 ± 1</td>
<td>0.1 x 105</td>
</tr>
</tbody>
</table>

a V_{max} is expressed as μmoles of ABTS oxidized min$^{-1}$ μmole heme$^{-1}$

b K_m is shown for H$_2$O$_2$
activity of KatGs, initial velocities for peroxidase activity were determined at various concentrations of H₂O₂ as shown in Figure 3.2.6, the kinetic constants are summarized in the table 3.2.8. At lower substrate concentrations (100 to 200 mM), KatGs follow Michaelis-Menten kinetics for catalase reaction while higher concentrations tend to inhibit the enzyme activity as shown in Figure 3.2.4. The K_m value for all seven KatGs studied was found to be in millimolar range, between 2.4 and 4.8, with a very high turnover rate (k_{cat}).

Figure 3.2.5 shows that KatGs follow Michaelis-Menten kinetics for peroxidase activity even at higher concentration of substrate (ABTS). The exceptions to this were SyKatG and RcKatG which showed significant inhibition in the activity at higher substrate (ABTS) concentration. The K_m values for ABTS (Figure 3.2.7.) were determined in µmolar range for all seven KatGs but the variation among enzymes was prominent ranging from 300 µM (BpKatG) to 7µM (SyKatG). The turnover rate or k_{cat} values also were much lower for peroxidase reaction as compared to catalase reaction.

Figure 3.2.6 shows that KatGs follow Michaelis-Menten kinetics for compound I formation with an exception of SyKatG and RcKatG both of which show significant increase in the initial velocity at H₂O₂ concentration higher that 1 mM. The K_m values for H₂O₂ are found in µmolar range except for SyKatG which showed a high K_m of ~1 mM.

3.2.7. Effect of heme inhibitor on catalase activity of KatGs

Cyanide and azide are classical heme protein inhibitors that bind to the active-site heme iron reversibly to form stable complexes. Figure 3.2.7 compares the effect of KCN
Figure 3.2.7. Comparison of the sensitivity of KatGs to cyanide (KCN) or azide (NaN₃).
<table>
<thead>
<tr>
<th>KatG</th>
<th>[KCN] causing 50% inhibition (μM)</th>
<th>[NaN₃] causing 50% inhibition (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>MtKatG</td>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>EcKatG</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>SyKatG</td>
<td>170</td>
<td>13</td>
</tr>
<tr>
<td>BsKatG</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>AfKatG</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>ReKatG</td>
<td>80</td>
<td>8</td>
</tr>
</tbody>
</table>
reversibly to form stable complexes. Figure 3.7 compares the effect of KCN and NaN₃ on the catalase activity of KatGs and the IC₅₀ for both KCN and NaN₃ are summarized in Table 3.9. Both KCN and NaN₃ show similar inhibition patterns for catalase activity but the IC₅₀ for KCN is higher than that of NaN₃ though, it remains in the µmolar region.
3.3. KatGs and isoniazid activation

Isonicotinic acid hydrazide (isoniazid or INH) is a widely used pro-drug effective against *Mycobacterium tuberculosis* (Deretic *et al.*, 1996). Formation of isonicotinoyl-NAD, the active form of the drug, involves removal of hydrazine from INH by KatG (Zhang *et al.*, 1992) and ligation of the isonicotinoyl group with NAD⁺ (Johnsson *et al.*, 1995). Isonicotinoyl-NAD interferes with the synthesis of mycolic acid and therefore cell wall synthesis by binding to InhA, an enoyl-acyl carrier protein reductase (Rozwarski *et al.*, 1998), and possibly to KasA, a β-ketoacyl acyl carrier protein synthase (Mdluli *et al.*, 1998), blocking their NADH-binding sites. The central role of KatG in INH activation is evident in the significant fraction of INH-resistant cases of tuberculosis attributable to mutations in *katG* and in biochemical studies that have demonstrated a direct role for KatG in the generation of various isonicotinoyl derivatives (Johnsson and Schultz, 1994).

Much of the literature related to the activation of INH by KatG has focused on the fate of INH and possible intermediates involved in the process (Johnsson and Schultz, 1994; Wilming and Johnsson, 1995; Magliozzo and Marcinkeviciene, 1996). With NAD⁺ included in the mix, the generation of the isonicotinoyl-NAD adduct was observed both with and without KatG present (Wilming and Johnsson, 1995; Magliozzo and Marcinkeviciene, 1996; Lie *et al.*, 2000), leading to the suggestions that the role of KatG is limited to the hydrazine lyase of INH and that the subsequent reaction of the isonicotinoyl radical with NAD⁺ is a nonenzymatic event involving a homolytic aromatic substitution (Wilming and Johnsson, 1995; Minisci, *et al.*, 1989). Reactive oxygen species have been implicated in INH activation both *in vivo* (Mitchison and Selkon, 1956; Youatt, 1959) and *in vitro* (Johnsson and Schultz, 1994), and an elevated level of
superoxide (Wang, et al., 1998) was identified as a possible reason for the high sensitivity of M. tuberculosis to INH (Deretci et al., 1996). However, the absence of H₂O₂ involvement in INH activation implies that a reaction different from either the peroxidase or the catalase reactions is involved, and some reports have suggested that the active participation of KatG in INH activation involves more than just hydrazine lyase (Lei et al., 2000). During this study a comparative analysis of their interaction with INH and some other pyridine derivatives such as NADH, NADPH and pyridoxine revealed striking peculiarities of KatGs.

3.3.1. Catalase-peroxidases (KatG) exhibit NADH oxidase activity

NADH oxidases are widely distributed in nature, being found in species ranging from bacteria (Ashrafuddin and Claiborne, 1989; Zoldak et al., 2003) and archaebacteria (Kengen et al., 2003) to mammals (Xia et al., 2003). The enzymes can be both soluble and membrane-bound, and although NADH is the common electron donor, water, hydrogen peroxide, or superoxide may be formed as products depending on the enzyme. The physiological role of NADH oxidases in many instances is unknown, but the reaction has been described as a detoxifier of oxygen in nitrogen fixing organisms and archaebacteria (Kengen et al., 2003) and as a possible sensor of oxygen levels in the regulation of muscle contractility (Xia et al., 2003). A variation of the NADH oxidase reaction, a "peroxidase-oxidase" reaction has been well characterized in horseradish peroxidase (HRP) to require a catalytic amount of H₂O₂ that is alternately used and regenerated during the reaction of NAD radicals with molecular oxygen (Akazawa and Conn, 1958; Yokota and Yamazaki, 1965; Yokota and Yamazaki, 1977; Dunford, 1999).
Plant peroxidases, including HRP, have about 20% sequence similarity and remarkable structural similarity to the N-terminal domain of KatG proteins, particularly in the vicinity of the heme active site, raising the possibility that KatG proteins may also exhibit an NADH peroxidase-oxidase activity. Indeed, there are reports of NADH being oxidized to NAD$^+$ by KatG in both peroxidase (Ro et al., 2003) and an oxidase-like (Wilming and Johnsson, 1999) reactions, but the reaction of KatG with NADH has not been characterized. Keeping in mind the potential importance of any reaction involving NADH in isonicotinoyl-NAD formation, the interactions of KatG with NADH was investigated and an oxygen-dependent NADH oxidase activity was demonstrated along with a direct role for KatG in the formation of isonicotinoyl-NAD.

3.3.1.1. NADH Oxidation by KatG

NAD$^+$ replaces the hydrazine moiety of the anti-tubercular pro-drug INH to generate the active form of the drug, isonicotinoyl-NAD. In an attempt to define the role of KatG in the formation of isonicotinoyl-NAD, the potential utilization of NADH and NAD$^+$ as substrates was investigated, revealing that NADH supports BpKatG-mediated radical generation (Figure 3.3.1a) in the absence of H$_2$O$_2$ using NBT as radical sensor at a rate approximately equal to the rate of NADH disappearance (Figure 3.3.1b). A similar comparison of other KatGs used in this study demonstrated a similar fate of NADH but at a much slower rate as compared to BpKatG (Table 3.3.1 & Figure 3.3.1). In all cases the radical formation, using NBT as radical sensor, can be clearly differentiated from the background activity of the control lacking KatG. Among KatGs, RcKatG, MtKatG and SyKatG show substantial rates of radical production from a reaction mixture containing...
<table>
<thead>
<tr>
<th>KatG</th>
<th>NADH oxidase @ Δ340nm pmole NADH·min⁻¹·nmol⁻¹</th>
<th>NADH oxidase @ 560nm pmole NBT·min⁻¹·nmol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>510 ± 85</td>
<td>640 ± 96</td>
</tr>
<tr>
<td>MtKatG</td>
<td>30 ± 3</td>
<td>100 ± 15</td>
</tr>
<tr>
<td>EcKatG</td>
<td>15 ± 6</td>
<td>13 ± 4</td>
</tr>
<tr>
<td>SyKatG</td>
<td>10 ± 3</td>
<td>80 ± 6</td>
</tr>
<tr>
<td>BsKatG</td>
<td>6 ± 6</td>
<td>60 ± 6</td>
</tr>
<tr>
<td>AfKatG</td>
<td>38 ± 6</td>
<td>65 ± 4</td>
</tr>
<tr>
<td>ReKatG</td>
<td>30 ± 9</td>
<td>240 ± 20</td>
</tr>
</tbody>
</table>
Figure 3.3.1. NADH oxidation by catalase-peroxidases.

- The rates of radical production in a reaction mixture containing 100 µM NADH, 1.2 µM KatG, 200 µM NBT and 50 mM Tris, pH 8.75, were followed by formazan appearance measured at 560 nm. Separate assays contain no enzyme (control), BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG, & RcKatG.

- The rates of NADH oxidation in a solution containing 100 µM NADH, 1.2 µM KatG, and 50 mM Tris, pH 8.75 were followed by NADH disappearance measured at 340 nm. Separate assays contain no enzyme (control), BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG, & RcKatG.
140

$RcKatG$
$SyKatG$
$AfKatG$
$BsKatG$
$No KatG$

$BpKatG$

n mole NBT, nmole2 subunit

n mole NADH, nmole$^-1$ subunit

Time (sec)
Figure 3.3.2. Migration of purified BpKatG on a 8% SDS-polyacrylamide gel (lane a and b) and a nondenaturing 8% polyacrylamide gel (lanes c–h). Lane b (SDS-polyacrylamide gel) was stained with Coomassie Brilliant Blue dye. A single 200 μg amount of BpKatG was loaded in one large lane for lanes c–h, and after electrophoresis, the gel was cut into six strips for separate staining. Lane c was stained for catalase activity (a clear band on a brown background). Lane d was stained for peroxidase activity (brown bands on a clear background). Lane e was stained with Coomassie Brilliant Blue. Lane f was stained for oxidase activity in a mixture of 200 μM NADH and 200 μM NBT. Lane g was stained for INH hydrazine lyase activity in a mixture of 10 mM INH and 200 μM NBT. Lane h was stained for combined INH hydrazine lyase and NADH oxidase activity in a mixture of 10 mM INH, 200 μM NADH, and 200 μM NBT.
Table 3.3.2. KatG-mediated radical production in the presence of different substrates

<table>
<thead>
<tr>
<th></th>
<th>No enzyme<sup>a</sup></th>
<th>BpKatG<sup>b</sup></th>
<th>MtKatG<sup>b</sup></th>
<th>EcKatG<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pmol. min<sup>−1</sup></td>
<td>pmole. min<sup>−1</sup>. nmole<sup>−1</sup> subunit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADH</td>
<td>3.0 ± 0.2</td>
<td>640 ± 96</td>
<td>100 ± 15</td>
<td>13 ± 4</td>
</tr>
<tr>
<td>NADH + Mn<sup>2+</sup></td>
<td>2.0 ± 0.1</td>
<td>540 ± 23</td>
<td>99 ± 4</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>NADH – O<sub>2</sub><sup>c</sup></td>
<td>1.0 ± 0.2</td>
<td>320 ± 15</td>
<td>9 ± 2</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>NADH + SOD</td>
<td>1.0 ± 0.1</td>
<td>350 ± 8</td>
<td>58 ± 6</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>NADPH</td>
<td>1.0 ± 0.1</td>
<td>260 ± 2</td>
<td>1.0 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>NAD<sup>+</sup></td>
<td>3.0 ± 0.6</td>
<td>ND<sup>d</sup></td>
<td>ND<sup>d</sup></td>
<td>ND<sup>d</sup></td>
</tr>
<tr>
<td>NADH + INH</td>
<td>8.0 ± 2</td>
<td>1140 ± 76</td>
<td>260 ± 21</td>
<td>100 ± 6</td>
</tr>
<tr>
<td>NADH + INH + Mn<sup>2+</sup></td>
<td>290 ± 16</td>
<td>2940 ± 29</td>
<td>830 ± 17</td>
<td>930 ± 91</td>
</tr>
<tr>
<td>NAD<sup>+</sup> + INH</td>
<td>4.0 ± 0.3</td>
<td>82 ± 1</td>
<td>79 ± 8</td>
<td>74 ± 19</td>
</tr>
<tr>
<td>NADH + INH + Mn<sup>2+</sup></td>
<td>140 ± 4</td>
<td>230 ± 12</td>
<td>340 ± 5</td>
<td>220 ± 9</td>
</tr>
<tr>
<td>INH</td>
<td>5 ± 0.2</td>
<td>76 ± 2</td>
<td>78 ± 9</td>
<td>38 ± 2</td>
</tr>
<tr>
<td>INH + Mn<sup>2+</sup></td>
<td>190 ± 18</td>
<td>410 ± 3</td>
<td>460 ± 5</td>
<td>450 ± 2</td>
</tr>
<tr>
<td>INH – O<sub>2</sub><sup>c</sup></td>
<td>6 ± 2</td>
<td>75 ± 5</td>
<td>78 ± 5</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>INH + SOD</td>
<td>5.2 ± 1</td>
<td>90 ± 2</td>
<td>65 ± 5</td>
<td>38 ± 3</td>
</tr>
<tr>
<td>INH + pyridoxine</td>
<td>4.0 ± 1</td>
<td>9.0 ± 2</td>
<td>20 ± 5</td>
<td>18 ± 3</td>
</tr>
</tbody>
</table>

^a All the reactions contained 200 μM NBT in 50 mM Tris pH 8.75 or pH 8.0 (for reactions involving INH), supplemented with 10 mM INH, 250 μM NADH, 250 μM NADPH, and 250 μM NAD⁺, and 200 μM of superoxide dismutase as indicated. O₂ was reduced by flushing the reaction mixture with N₂ gas.

^b KatG was added 1.2 μM.

^c For anaerobic reactions, the reaction mixtures were flushed with nitrogen to remove dissolve oxygen.

^d ND, not detected.
NADH, NBT and KatG as well as upon direct observation of NADH disappearance at 340 nm (Figure 3.3.1a and b) and BsKatG shows the lowest level of NADH oxidase activity at both 560 and 340 nm. NADPH supports a slower rate of radical generation, and NAD$^+$ does not support any radical production (Table 3.3.2). NAD$^+$ was confirmed as the product of the reaction with NADH by HPLC analysis (Figure 3.3.4). Both superoxide dismutase and a lower molecular oxygen concentration reduce radical generation (Table 3.3.2) from NADH. The pH optima for both radical production and NADH disappearance are 8.75, but the curves are not perfectly superimposable (Figure 3.3.3), suggesting two different, pH-dependent, fates for the reduced oxygen, most likely H$_2$O$_2$ at lower pH and superoxide radical at higher pH. Unfortunately, the rapid degradation of H$_2$O$_2$ by both the catalase and peroxidase activities of BpKatG precluded its identification or even the observation of any spectral changes in the enzyme during the reaction. The optimum pH for the oxidase reaction is significantly different from the optimum pH levels for the peroxidase (pH 4.5) and catalase (pH 6.5) reactions (Figure 3.3.3). These results are consistent with BpKatG having an NADH oxidase activity producing NAD$^+$ and either superoxide ion or H$_2$O$_2$ and with a similar activity existing in MtKatG, EcKatG, SyKatG, BsKatG, AfKatG and RcKatG, but at a much lower level.

3.3.1.2 Visualization of NADH oxidase activity by PAGE under non-denaturating conditions.

Purified BpKatG migrates as a single band (apparent mass of 78 kDa) on denaturing gels (Figure 3.3.2, lane a) with only a small amount of slower migrating dimer. On a non-denaturing gel (Figure 3.3.1, lanes b–g), catalase, peroxidase, and
Figure 3.3.3. pH dependence of NADH oxidation by BpKatG determined by radical formation at 560 nm (▼) and NADH disappearance at 340 nm (▽) compared with the pH dependence of the catalase (○) and peroxidase (●) reactions. Buffered solutions contained 50 mM each of sodium acetate, pH 3, 4, 5; potassium phosphate, pH 6 and 7; Tris-HCL, pH 8 and 9; and CHES, pH 10.
Figure 3.3.4. Elution profiles from reverse phase HPLC of reaction products from mixtures containing 100 μM NADH and no enzyme (a); 1.2 μM BpKatG (b); 1.2 μM MtKatG (c); 1.2 μM EcKatG (d). N-H, NADH; N-D, NAD⁺.
oxidase activities all co-migrate with the main bands of protein (lanes b–e). The presence of two bands of catalase-peroxidase with the same mass on nondenaturing gels has been noted previously but not explained.

3.3.1.3. Kinetic characterization of NADH oxidase activity

Titration of BpKatG with different concentrations of NADH demonstrates that BpKatG follows Michaelis-Menten kinetics for the NADH oxidase reaction (Figure 3.3.5). The kinetic parameters (Table 3.3.3) reveal a relatively high affinity (K_m) for NADH but a very slow turnover rate (k_{cat}) in comparison with the catalase and peroxidase reactions. NAD$^+$ and pyridoxine act as competitive inhibitors of the NADH oxidase reaction (Table 3.3.2 & Figure 3.3.6).

3.3.1.4. Comparison of NADH oxidase activity with NADH peroxidase-oxidase reaction by HRP

HRP catalyzes an NADH peroxidase-oxidase reaction in which H$_2$O$_2$ is required to initiate the reaction, after which there is a cycling of O$_2^{•-}$, H$_2$O$_2$, and compound III (Dunford, 1999). Given the sequence similarity between plant peroxidases and catalase-peroxidases, particularly in the active site, the possibility that the NADH oxidase activity of KatG is similar to the peroxidase-oxidase reaction was investigated (Table 3.3.4). The HRP peroxidase-oxidase reaction is characterized by a need for a catalytic amount of H$_2$O$_2$, by inhibition by SOD or catalase, and by long lag periods in the presence of low NADH concentrations and high HRP concentrations. NADH oxidation by BpKatG does not exhibit any of these characteristics (Table 3.3.4). For
Figure 3.3.5. Effect of NADH concentration on the initial NADH oxidase velocities of BpKatG at 560 nm (top panel) and 340 nm (bottom panel).
Figure 3.3.6. Effects of NAD\(^+\) and pyridoxine on NADH oxidase activity. 1.2 \(\mu\)M BpKatG was equilibrated with 5 mM NAD\(^+\) or pyridoxine before titrating with different concentrations of NADH at pH 8.75. Lineweaver-Burk plots (double reciprocal) are shown.
Table 3.3.3. Comparison of kinetic constants for NADH oxidase, catalase and, peroxidase activities of BpKatG

<table>
<thead>
<tr>
<th></th>
<th>V_{max}</th>
<th>K_m</th>
<th>k_{cat}</th>
<th>k_{cat}/K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidase (ΔA_{340})</td>
<td>540 ± 96 x 10^{-3}</td>
<td>12.5 ± 2.0</td>
<td>9.0 ± 0.4 x 10^{-3}</td>
<td>7.2 x 10^2</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>1083 ± 29</td>
<td>330 ± 30</td>
<td>10.1 ± 0.27</td>
<td>3.1 x 10^4</td>
</tr>
<tr>
<td>Catalase</td>
<td>902 ± 20 x 10^{-3}</td>
<td>7700 ± 400</td>
<td>8.4 ± 0.2 x 10^3</td>
<td>1.1 x 10^6</td>
</tr>
</tbody>
</table>

a[NADH] for the oxidase reaction, [ABTS] for the peroxidase reaction, and [H$_2$O$_2$] for the catalase reaction.
Table 3.3.4. Comparison of NADH oxidation by HRP, BpKatG, and the Trp111Phe variant. Reactions mixtures contained 100 μM NADH, and 1.2 μM either of HRP, BpKatG or Trp111Phe in 50 mM Tris, pH 8.75. 10 μM H₂O₂, 300 nM HPII or 6 μM SOD was added as indicated. NADH oxidation was followed by decrease in absorbance at 340 nm.

<table>
<thead>
<tr>
<th></th>
<th>HRP</th>
<th>BpKatG</th>
<th>Trp111Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>110 ± 18a</td>
<td>490 ± 16</td>
<td>500 ± 41</td>
</tr>
<tr>
<td>NADH + H₂O₂</td>
<td>360 ± 22</td>
<td>490 ± 24</td>
<td>2160 ± 180</td>
</tr>
<tr>
<td>NADH + HPIIb</td>
<td>30 ± 4</td>
<td>480 ± 16</td>
<td>392 ± 16</td>
</tr>
<tr>
<td>NADH + HPII + H₂O₂</td>
<td>54 ± 4</td>
<td>480 ± 16</td>
<td>290 ± 16</td>
</tr>
<tr>
<td>NADH + SODc</td>
<td>86 ± 16</td>
<td>400 ± 24</td>
<td>460 ± 16</td>
</tr>
<tr>
<td>NADH + SOD + H₂O₂</td>
<td>540 ± 29</td>
<td>400 ± 16</td>
<td>2200 ± 190</td>
</tr>
</tbody>
</table>

a The data expressed as pmol NADH min⁻¹ nmole⁻¹ heme

b Monofunctional catalase of *E. coli*

c Superoxide dismutase
Figure 3.3.5. Effect of NADH or NAD$^+$ on the peroxidase activity of BpKatG, MtKatG and EckatG using ABTS or o-dianisidine as peroxidatic substrate.

<table>
<thead>
<tr>
<th></th>
<th>Activity after 1min (U/mg)</th>
<th>Activity after 15 min (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BpKatG</td>
<td>MtKatG</td>
</tr>
<tr>
<td>NO NADH/NAD$^+$</td>
<td>3.8 ± 0.1</td>
<td>15 ± 0.2</td>
</tr>
<tr>
<td>NADH</td>
<td>3.3 ± 0.1</td>
<td>15 ± 0.2</td>
</tr>
<tr>
<td>NAD$^+$</td>
<td>4.9 ± 0.1</td>
<td>12 ± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Activity after 1min (U/mg)</th>
<th>Activity after 15 min (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BpKatG</td>
<td>MtKatG</td>
</tr>
<tr>
<td>NO NADH/NAD$^+$</td>
<td>5.3 ± 0.1</td>
<td>10 ± 0.2</td>
</tr>
<tr>
<td>NADH</td>
<td>5.4 ± 0.1</td>
<td>10 ± 0.2</td>
</tr>
<tr>
<td>NAD$^+$</td>
<td>6.9 ± 0.2</td>
<td>11 ± 0.4</td>
</tr>
</tbody>
</table>
comparison, NADH oxidation by the Trp111Phe variant, which lacks catalase activity, is reduced slightly by catalase, but not SOD, and is significantly enhanced by added H$_2$O$_2$, attributable to NADH serving as a peroxidatic substrate. No lag in the initiation of NADH oxidation was evident over a broad range of NADH concentrations or enzyme concentrations for either BpKatG or the Trp111Phe variant.

3.3.1.5 Effect of NADH on the peroxidase activity of KatGs

Effect of NADH and NAD$^+$ on the peroxidase activity of BpKatG, MtKatG and EckatG was observed in order to determine the probability of NADH or NAD$^+$ having the similar binding site as that for the peroxidatic substrate such as ABTS or α-dianisidine in KatGs. A mixture of KatG equilibrated with NADH or NAD$^+$ was assayed at different time intervals for peroxidase activity using either ABTS or α-dianisidine as substrate. The results demonstrated only very subtle changes in peroxidase activity even after 15 min of incubation for both ABTS and α-dianisidine (Table 3.3.5), suggesting a separate binding site for NADH/NAD$^+$. Slight decrease in the peroxidase activity can be debated and the most plausible explanation could be the proximity between the binding sites for ABTS/α-dianisidine and NADH/NAD$^+$ but this needs confirmation by structural analysis of the ligand-enzyme complex.

3.3.2 INH hydrazine lyase activity by KatGs

The activation of INH as an anti-tubercular drug by catalase-peroxidases involves removal of the hydrazine moiety and proceeds via a radical producing reaction that can be monitored using NBT as a radical sensor (Hillar and Loewen, 1995). The H$_2$O$_2$
Figure 3.3.7. Removal of hydrazine from isoniazid. a and b. Radical generation in a solution containing 10 mM INH, 200 μM NBT as radical sensor in 50 mM Tris, pH 8.0, was followed by formazan appearance measured at 560 nm. Separate assays contain no enzyme (control), BpKatG, MtKatG, EcKatG, SyKatG, BskatG, AfKatG, or RckatG. c, pH dependence of radical generation in a solution of 200 μM NBT with and without MtKatG and a solution of 200 μM NBT and 10 μM INH with and without MtKatG is shown.
Figure 3.3.8. Effect of manganese on the removal of hydrazine lyase activity by KatG. a and b, radical generation in a solution containing 10 mM INH, 2 μM MnCl₂ and 200 μM NBT in 50 mM Tris, pH 8.0, was followed by formazan appearance measured at 560 nm. Separate assays contain no enzyme (control), BpKatG, MtKatG, EcKatG, SyKatG, BskatG, AfKatG or RckatG.
The graphs represent the activity of various KatG enzymes in comparison to a control. The x-axis represents time in seconds, ranging from 0 to 350. The y-axis represents the activity of NBT, measured in moles per mole of subunit per second. The enzymes labeled are EcKatG, BpKatG, MtKatG, SyKatG, RcKatG, AfKatG, and BsKatG. Each enzyme shows a different rate of NBT activity change over time.
Table 3.3.6. Comparison of effect of MnCl₂ and NADH on the hydrazine lyase activity of catalase-peroxidases.

<table>
<thead>
<tr>
<th>KatG</th>
<th>Hydrazine lyase (units/mg)ᵃ</th>
<th>Hydrazine lyase (with 2 µM Mn²⁺) (units/mg)ᵃ</th>
<th>INH-NADH synergistic reaction(units/mg)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG</td>
<td>76</td>
<td>410</td>
<td>1140</td>
</tr>
<tr>
<td>MtKatG</td>
<td>78</td>
<td>460</td>
<td>260</td>
</tr>
<tr>
<td>EcKatG</td>
<td>38</td>
<td>450</td>
<td>100</td>
</tr>
<tr>
<td>SyKatG</td>
<td>57</td>
<td>500</td>
<td>190</td>
</tr>
<tr>
<td>BsKatG</td>
<td>62</td>
<td>420</td>
<td>220</td>
</tr>
<tr>
<td>AfkatG</td>
<td>88</td>
<td>370</td>
<td>190</td>
</tr>
<tr>
<td>RcKatG</td>
<td>14</td>
<td>270</td>
<td>140</td>
</tr>
</tbody>
</table>

ᵃ data expressed as pmole NBT. min⁻¹ nmole⁻¹ heme.
independence (Figures 3.3.7a & b) and enhanced rates at alkaline pH (Figure 3.3.7c) of the KatG-mediated INH hydrazine lyase reaction differentiate it from the catalase and peroxidase reactions (Figure 3.3.3). There is a pH-dependent, nonenzymatic generation of radicals from INH, but in the pH 7–9 range, the contribution of the enzymatic reaction is clear and suggests a pH optimum between 8 and 9, albeit not well defined (Figure 3.3.7c). To minimize the nonenzymatic contribution, all subsequent assays and reactions involving INH were carried out at pH 8. Oxygen levels do not affect the KatG-mediated radical generation from INH, and superoxide dismutase does not reduce radical production (Table 3.3.2), confirming that molecular oxygen does not have a role in the reaction. AfKatG demonstrates the highest rate of hydrazine lyase whereas MtKatG shows almost the same rate as BpKatG, but the EcKatG-mediated reaction is slowest among the seven KatGs studied (Figure 3.3.7 and Table 3.3.6). Despite having a pyridine ring as part of its structure, NAD* does not inhibit INH hydrazine lyase (Table 3.3.2). Addition of 2 μM Mn^{2+} to a reaction mixture carrying INH and NBT resulted in a 4-5 fold increase in the radical production even in the absence of KatG, but the addition of KatG significantly increased the rates as compared to the control lacking KatG (Figure 3.3.8 and Table 3.3.6).

3.3.3 Interaction of KatG with a mixture of INH and NADH

Radical generation in a mixture of BpKatG, INH, and NADH is about two times faster than the cumulative rate of the individual reactions of INH and NADH (Figures 3.3.9a and b). A similar pattern was observed for other KatGs which show significantly higher rates of radical formation as compared to the individual rates by
Figure 3.3.9. Synergistic effect of INH and NADH on radical generation in a solution containing 10 mM INH, 100 µM NADH, 200 µM NBT as radical sensor in 50 mM Tris, pH 8.0, was followed by formazan appearance measured at 560 nm. Separate assays contain, no enzyme (control), BpKatG, MtKatG, EcKatG, SyKatG, BskatG, AfKatG or RckatG.
Graph (a) shows the reaction kinetics of various enzymes (BpKatG, MtKatG, EcKatG, Mn) over time (sec) with the graph label indicating nmole NBT. nmole subunit⁻¹. Graph (b) displays similar data for another set of enzymes (AfKatG, BsKatG, SyKatG, RcKatG, Mn), also plotted against time (sec) with the graph label indicating nmole NBT. nmole subunit⁻¹.
Figure 3.3.10. Elution profiles from reverse phase HPLC of reaction products from mixtures containing 100 μM NADH, 200 μM INH and no enzyme (a); 1.2 μM BpKatG (b); 1.2 μM MtKatG (c); 1.2 μM EcKatG (d). I, isonicotinic acid hydrazide; N-H, NADH; N-D, NAD⁺; I-N, isonicotinoyl-NAD.
Figure 3.3.11. Elution profiles from reverse phase HPLC of reaction products from mixtures containing 100 mM NADH, 200 μM INH, 2μM MnCl₂ and no enzyme (a); 1.2 μM BpKatG (b); 1.2 μM MtKatG (c); 1.2 μM EcKatG (d). I, isonicotinic acid hydrazide; N-D, NAD⁺; N-H, NADH; I-N, isonicotinoyl-NAD.
Figure 3.3.12. Part of a matrix-assisted laser desorption ionization mass spectrum of a reaction mixture after 18 h of incubation showing the isonicotinoyl-NAD product ion at m/z 771 and the decay product at m/z 753. N, NAD; I-N, isonicotinoyl-NAD.
Table 3.3.7. Comparison of expected and observed m/z values of ions in the MS/MS spectra of NADH and the product of the reaction of KatG with INH and NADH identified as isonicotinoyl-NAD

<table>
<thead>
<tr>
<th>Product ions (m/z) from parent iona</th>
<th>Assigned structureb</th>
<th>Formula to calculate expected ion</th>
<th>Expected m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/z 771 m/z 753 m/z 666</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent ions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>771.154</td>
<td>IN-NRPPA</td>
<td>C${27}$H${33}$N${8}$O${15}$P$_{2}$</td>
<td>771.154</td>
</tr>
<tr>
<td>753.140 753.166</td>
<td>IN-NRPPA-H$_2$O</td>
<td>C${27}$H${31}$N${8}$O${14}$P$_{2}$</td>
<td>753.144</td>
</tr>
<tr>
<td>666.090</td>
<td>NHRPPA (NADH)</td>
<td>C${21}$H${30}$N${7}$O${14}$P$_{2}$</td>
<td>666.133</td>
</tr>
<tr>
<td>Fragmentation from the adenine end ("y" ions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530.061</td>
<td>NHRPPR</td>
<td>C${16}$H${24}$N${2}$O${14}$P$_{2}$</td>
<td>530.070</td>
</tr>
<tr>
<td>514.059</td>
<td>NHRPPR-NH$_3$</td>
<td>C${16}$H${22}$NO${14}$P${2}$</td>
<td>514.052</td>
</tr>
<tr>
<td>424.093 424.101</td>
<td>IN-NRP</td>
<td>C${13}$H${19}$N${3}$O${8}$P</td>
<td>424.091</td>
</tr>
<tr>
<td>319.073</td>
<td>NHRP</td>
<td>C${13}$H${16}$N${2}$O${7}$P</td>
<td>319.070</td>
</tr>
<tr>
<td>229.044</td>
<td>IN-N</td>
<td>C${12}$H${10}$N${3}$O${2}$</td>
<td>229.085</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>C${6}$H${7}$N$_{2}$O</td>
<td>123.056</td>
</tr>
<tr>
<td>Fragmentation from the nicotinamide end ("b" ions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>649.109</td>
<td>NHRPPA-NH$_3$</td>
<td>C${21}$H${27}$N${6}$O${14}$P$_{2}$</td>
<td>649.106</td>
</tr>
<tr>
<td>664.126</td>
<td>NRPPA</td>
<td>C${21}$H${28}$N${7}$O${14}$P$_{2}$</td>
<td>664.117</td>
</tr>
<tr>
<td>542.078 542.072 542.082</td>
<td>RPPA</td>
<td>C${15}$H${22}$N${5}$O${13}$P$_{2}$</td>
<td>542.069</td>
</tr>
<tr>
<td>524.059 524.067 524.067</td>
<td>RPPA-H$_2$O</td>
<td>C${15}$H${20}$N${5}$O${12}$P$_{2}$</td>
<td>524.058</td>
</tr>
<tr>
<td>428.041 428.023 428.040</td>
<td>PPA</td>
<td>C${10}$H${16}$N${5}$O${10}$P$_{2}$</td>
<td>428.037</td>
</tr>
<tr>
<td>348.073 348.070 348.071</td>
<td>PA</td>
<td>C${10}$H${15}$N${5}$O${7}$P</td>
<td>348.071</td>
</tr>
<tr>
<td>250.094 250.087 250.100</td>
<td>A</td>
<td>C${10}$H${13}$N${3}$O${3}$</td>
<td>250.094</td>
</tr>
<tr>
<td>136.070 136.065 136.064</td>
<td>Adenine</td>
<td>C${5}$H${6}$N$_{5}$</td>
<td>136.062</td>
</tr>
</tbody>
</table>

a The parent ions at m/z 771.153, 753.166, and 666.090 were selected individually and fragmented by tandem mass spectrometry.

b A, adenosine; N, nicotinamide; IN, isonicotinoyl group; R, ribose
using NADH or INH as substrate (Figure 3.3.9a and b and Table 3.3.6). This rate is further enhanced by the inclusion of 2 μM manganese ion (either Mn^{2+} or Mn^{3+}) (Table 3.3.2). NAD^+ is not a substrate for radical generation, and the rate of radical formation from a mixture of NAD^+ and INH is the same as with INH alone (Table 3.3.2) and is enhanced by Mn^{2+} (Table 3.3.2). The MtKatG and EcKatG mediated reactions of INH and NADH are both slower in the absence of Mn^{2+} (Table 3.3.2) but approach or exceed the BpKatG-mediated reaction in the presence of Mn^{2+} (Table 3.3.2). Based on HPLC retention times (Figure 3.3.10) combined with mass spectrometry and tandem mass spectrometry analysis (Table 3.3.9), the main products of the combined NADH and INH reaction with KatG are NAD^+ and isonicotinoyl-NAD with other products being present in smaller amounts. Isonicotinoyl-NAD elutes from the column as four peaks, all exhibiting an ion at \textit{m/z} 771, consistent with a previous report (Wilming and Johnsson, 1999), which explained the elution pattern as the result of two stereoisomers, arising from the addition of the isonicotinoyl group to opposite faces of the nicotinamide ring, each with two rotamers, resulting from restricted rotation of the isonicotinoyl group. The time course of appearance and identity of isonicotinoyl-NAD were confirmed by mass spectrometry analysis of the reaction mixture, and the product ion at \textit{m/z} 771, coincident with the mass of isonicotinoyl-NAD, was evident only in mixtures containing all three of KatG, INH, and NADH or NAD^+ (discussed in the next section). Tandem mass spectrometry measurements of the ions at \textit{m/z} 753 and 771 produced almost identical fragmentation patterns, confirming that the ion at \textit{m/z} 753 is a product of the parent ion at \textit{m/z} 771 (Table 3.3.9). The difference in mass between the two ions, 18.014 Da, suggests the loss of H_2O (18.016 Da) but offers no clue as to the structural basis for the decay or
its cause. Comparison with the fragmentation pattern of NADH clearly confirms the presence of NAD in the pattern of fragments from the m/z 771 and 753 ions (Figure 3.3.12 and Table 3.3.9) degraded from the nicotinamide end and by inference allowing for the isonicotinoyl group, also after degradation from the adenine end (Table 3.3.9).

3.3.3.1. NAD$^+$ as Precursor for Isonicotinoyl-NAD

The facile KatG-mediated oxidation of NADH and lack of apparent reaction with NAD$^+$ initially suggested that NADH, not NAD$^+$, is the precursor to isonicotinoyl-NAD. However, isonicotinoyl-NAD is formed in a KatG-mediated reaction more efficiently from a mixture of NAD$^+$ and INH (Figure 3.3.14) than from a mixture of NADH and INH, both with 2 μM Mn$^{2+}$ (Figure 3.3.11). Therefore, NAD$^+$ is the probable precursor for isonicotinoyl-NAD as concluded earlier (Wilming and Johnsson, 1999), but NADH oxidation by KatG to NAD$^+$ will lead to the same product in an NADH mixture. The presence of 2 μM Mn$^{2+}$ greatly speeds the NAD$^+$-dependent formation of isonicotinoyl-NAD by all seven KatGs: BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG and RcKatG (Table 3.3.7).

3.3.3.2. Comparison of the rate of isonicotinoyl-NAD synthase activity by KatGs

The synthesis of the isonicotinoyl-NAD adduct was monitored at 326 nm and the rate was determined using an extinction coefficient of 6900 M$^{-1}$ cm$^{-1}$ (Rawat et al., 2003). All seven KatGs shows substantially higher rates for the synthase activity as compared to the control containing INH, NAD$^+$, and Mn$^{2+}$ but no KatG (Figure 3.3.13 and Table 3.3.7) clearly demonstrating the significant role of KatGs in the formation of
Figure 3.3.13. Elution profiles from reverse phase HPLC of reaction products from mixtures containing 100 µM NAD\(^+\), 200 µM INH, 2µM MnCl\(_2\) and no enzyme (a); 1.2 µM BpKatG (b); 1.2 µM MtKatG (c); 1.2 µM EcKatG (d). I, isonicotinic acid hydrazide; N-D, NAD\(^+\); I-N, isonicotinoyl-NAD. I(d).I,
Figure 3.3.14. Rate of synthesis of the isonicotinoyl-NAD adduct, a and b. The reaction mixture contained 100 µM NAD⁺, 200 µM INH, 2µM MnCl₂, in 50 mM Tris-HCL (pH 8.0). Separate assays contain, no KatG, or 1.2 µM of BpKatG, MtKatG, EcKatG, SyKatG, BsKatG, AfKatG, RcKatG. Absorbance at 326 nm was monitored and an extinction coefficient of 6900 M⁻¹cm⁻¹ was used to calculate the amount of isonicotinoyl-NAD formed, assuming no interference from other minor products formed in the reaction.
isonicotinoyl-NAD adduct. Among the seven KatGs compared in this study, SyKatG demonstrates the highest rate for synthase activity followed by BsKatG, RcKatG, MtKatG, BpKatG, AfKatG and the EcKatG being the lowest.

3.3.5. NADH Oxidation Can Be Uncoupled from Superoxide Formation

It has been well documented that changing any one of a number of residues in KatG reduces catalase activity with minimal effect on peroxidase activity (Jakopitsch et al., 2003; Yu et al., 2003, Jakopitsch et al., 2003; Regelsberger et al, 2000; Hillar et al., 2000). A number of variants of BpKatG with residues changed in the active site cavity and in the Met-Tyr-Trp cross-linked structure (Yamada et al., 2002; Carpena et al., 2003) were assayed for oxidase and hydrazine lyase activities for comparison with their catalase and peroxidase activities (Table 3.6.8). The hydrazine lyase reaction was largely unaffected by any of the changes except the change of His112 to Ala. By contrast, the oxidase reaction was affected in several of the variants, and two groups with different properties can be discerned. One group, including those with changes in any of the three residues in the cross-linked structure of Trp111, Tyr238, and Met264, exhibits normal rates of NADH disappearance but significantly reduced rates of radical production. The apparent uncoupling of NADH oxidation from superoxide generation could be a result of a broken electron tunnel or of a change in the reaction chemistry to favor H2O2 over superoxide formation. Unfortunately, the unambiguous identification or quantification of H2O2 formed in the reaction is not possible because it is immediately utilized in a peroxidatic reaction. Indeed, an inconclusive 13% hypochromic and 3–5-nm red shift in the Soret band and little change in the 500–700 nm region are observed for the
Table 3.3.8. Comparison of catalase, peroxidase, and oxidase activities of BpKatG and its variants.

<table>
<thead>
<tr>
<th></th>
<th>Catalase</th>
<th>Peroxidase</th>
<th>Oxidase<sub>(340 nm)</sub></th>
<th>Oxidase<sub>(500 nm)</sub></th>
<th>Hydrazine lyase</th>
</tr>
</thead>
<tbody>
<tr>
<td>units/mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BpKatG</td>
<td>4100 ± 200</td>
<td>4.4 ± 0.5</td>
<td>6.9 ± 1.0</td>
<td>7.7 ± 1.2</td>
<td>0.9 ± 0.02</td>
</tr>
<tr>
<td>Arg108Ala</td>
<td>1250 ± 110</td>
<td>1.0 ± 0.1</td>
<td>3.7 ± 0.5</td>
<td>2.2 ± 0.4</td>
<td>0.3 ± 0.01</td>
</tr>
<tr>
<td>Arg108Lys</td>
<td>320 ± 20</td>
<td>0.9 ± 0.1</td>
<td>2.2 ± 0.2</td>
<td>1.3 ± 0.1</td>
<td>0.32 ± 0.01</td>
</tr>
<tr>
<td>His112Ala</td>
<td>1 ± 0.2</td>
<td>0.1 ± 0.01</td>
<td>ND<sup>a</sup></td>
<td>ND<sup>a</sup></td>
<td>ND<sup>a</sup></td>
</tr>
<tr>
<td>His112Asn</td>
<td>2 ± 0.6</td>
<td>0.1 ± 0.01</td>
<td>3.1 ± 0.2</td>
<td>1.3 ± 0.5</td>
<td>0.2 ± 0.06</td>
</tr>
<tr>
<td>Trp111Phe</td>
<td>2 ± 0.1</td>
<td>3.3 ± 0.6</td>
<td>7.7 ± 2.4</td>
<td>ND<sup>a</sup></td>
<td>0.5 ± 0.04</td>
</tr>
<tr>
<td>Asp141Ala</td>
<td>60 ± 10</td>
<td>5.8 ± 0.4</td>
<td>2.2 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Asp141Asn</td>
<td>390 ± 20</td>
<td>5.4 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>1.2 ± 0.2</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Asp141Glu</td>
<td>3290 ± 40</td>
<td>6.3 ± 1.7</td>
<td>3.4 ± 0.1</td>
<td>2.8 ± 0.2</td>
<td>0.8 ± 0.02</td>
</tr>
<tr>
<td>Tyr238Ala</td>
<td>2 ± 0.1</td>
<td>6.1 ± 0.1</td>
<td>10.8 ± 2.0</td>
<td>0.4 ± 0.1</td>
<td>0.5 ± 0.04</td>
</tr>
<tr>
<td>Tyr238Phe</td>
<td>6 ± 1.1</td>
<td>2.8 ± 0.3</td>
<td>10.3 ± 2.0</td>
<td>ND<sup>a</sup></td>
<td>1.1 ± 0.05</td>
</tr>
<tr>
<td>Met264Ala</td>
<td>6 ± 1.1</td>
<td>7.0 ± 1.4</td>
<td>4.3 ± 0.1</td>
<td>ND<sup>a</sup></td>
<td>0.6 ± 0.04</td>
</tr>
<tr>
<td>Met264Leu</td>
<td>2 ± 0.9</td>
<td>6.1 ± 1.3</td>
<td>11.0 ± 1.5</td>
<td>4.9 ± 0.6</td>
<td>1.0 ± 0.06</td>
</tr>
<tr>
<td>MtKatG</td>
<td>3550 ± 160</td>
<td>9.7 ± 0.2</td>
<td>2.4 ± 0.8</td>
<td>1.2 ± 0.2</td>
<td>1.0 ± 0.06</td>
</tr>
<tr>
<td>EcKatG</td>
<td>2320 ± 230</td>
<td>9.9 ± 0.3</td>
<td>1.1 ± 0.4</td>
<td>0.2 ± 0.05</td>
<td>0.5 ± 0.02</td>
</tr>
</tbody>
</table>

^a ND, not determined.

BpKatG variants Arg108Ala, Arg108Lys, His112Ala, His112Asn, Asp141Ala, Asp141Asn, Asp141Glu were constructed and characterized by MR. Taweewat Deemagarn; Tyr238Ala, Tyr238Phe, Met264Ala, Met264Lys were constructed and characterized by MR. Ben Wiseman; Trp111Phe was constructed by MR. Jack Switala.
Trp111Phe and Tyr238Phe variants during the oxidase reaction, whereas no change in native BpKatG. The second group exhibits reduced rates of both NADH disappearance and superoxide formation, consistent with reduced NADH oxidation. This group includes those with changes in the active site residues Arg108, His112, and Asp141. The changes in catalase and peroxidase activities caused by the sequence changes are consistent with those reported previously for KatGs from Synechocystis (Regelsberger et al., 2000; Yu et al., 2003; Regelsberger et al., 2000), M. tuberculosis (Yu et al., 2003), and E. coli (Hillar et al., 2000).

3.4. Resistance against isoniazid in Mycobacterium tuberculosis.

3.4.1. Introduction

Multidrug-resistant strains of Mycobacterium tuberculosis seriously threaten tuberculosis (TB) control and prevention efforts. Resistance against isoniazid was reported soon after its first use in 1951 (Middlebrook, 1954). Simultaneously a correlation between INH resistance and the loss of catalase-peroxidase activity was discovered in the early 1950’s from the clinical isolates of M. tuberculosis (Middlebrook et al., 1954a; Middlebrook, 1954b; Middlebrook, 1954c). There was also a report mentioning katG deletion from the chromosome of two strains with high level INH-resistance isolates (MIC > 50 mg/ml) (Zhang et al., 1992). However, many subsequent studies have shown that the vast majority of INH resistance strains contain the katG gene, a result indicating that deletion of this gene is very rare among patient isolates (Ramaswamy and Musser, 1998 and other reviews therein). Almost 50–60% INH
resistance patient isolates have missense mutations, or small deletions or insertions that are not represented among INH sensitive control strains (Musser, 1995). A wide array of distinct KatG mutations have been reported among INH resistance isolates but a point mutation of Ser at position 315 is the most abundant. Statistically, the most common amino acid substitution is AGC (Ser)->ACC (Thr), but ACA (Thr), ATC (Ile), AGA (Arg), CGC (Arg), AAC (Asp), and GGC (Gly) changes also have been identified (Ramaswamy and Musser, 1998). As a result, Ser315Thr is one of the most characterized variants of MtKatG and has recently had its crystal structure determined (Zhao et al., 2006). To determine the effect of Ser315 mutation on hydrazine lyase, NADH oxidase and isonicotinoyl-NAD synthase activities of KatGs, Ser315Thr and Ser315Asn variants of MtKatG were constructed and characterized.

3.4.2. Purification of Ser315Thr, Ser315Asn variants of M. tuberculosis catalase-peroxidase

Purification of Ser315Thr and S315Asn variants employed the same protocol as described in section 3.2.1. Purified variants migrate on denaturing SDS-PAGE predominantly as a single band with a molecular mass of ~ 80 kDa (Figure 3.4.1). Comparative absorption spectra of the native MtKatG and the variants revealed similar absorbance peaks in the Sorêt region at 408 nm and in the charge transfer region (Figure 3.4.2 and Table 3.4.1). The Rz ratio of both Ser315Thr and Ser315Asn was comparable to that of native enzyme (Table 3.4.1) demonstrating more than 90% occupancy of heme.
3.4.3. Catalase and peroxidase specific activities of MtKatG and variants

Purified Ser315Thr variant exhibited catalase specific activity comparable to that of the native enzyme, while the Ser315Asn variant exhibited a 50% decrease in the catalase specific activity (Table 3.4.2). The peroxidase specific activities of the variants are significantly lower than those of the native enzyme with Ser315Thr being only 50% and 60% as active with ABTS and o-dianisidine respectively as electron donors. Even more striking, Ser315Asn variant is only 10% and 35% as active as the native enzyme with ABTS and o-dianisidine, respectively (Table 3.4.2).

3.4.4. Kinetic characterization of Ser315Thr and Ser315Asn variants.

A comparative analysis of the catalatic kinetic constants for native MtKatG and variants has been demonstrated in the Table 3.4.3 and Figure 3.4.3. They reveal comparable V_{max} values for both the MtKatG and Ser315Thr variants with Ser315Asn about 50% lower. Surprisingly the K_m of the Ser315Thr variant for H_2O_2 is six times higher than that of the native enzyme whereas the K_m of the Ser315Asn variant for H_2O_2 is lower by 60% than the native enzyme. The changes in the V_{max} and K_m values are indicative of the changes caused by these mutations in the heme environment and disruption in the substrate access channel to the active site heme. Ser315Thr consistent with the specific activities, exhibits a turnover rate comparable to that of native enzyme with a much reduced turnover rate, whereas Ser315Asn is reduced to almost 50% but with a specificity constant similar to that of the native enzyme.

Peroxidatic kinetic constants for native MtKatG and Ser315Thr and Ser315Asn variants are shown in the Table 3.4.4 and Figures 3.4.5 and 3.4.6. Both variants exhibit a
Figure 3.4.1. SDS-polyacrylamide analysis of purified MtKatG and variants Ser315Thr and Ser315Asn. Approximately 5 µg of protein was loaded and run on an 8% polyacrylamide gel and stained with Coomassie brilliant blue. Lane a, protein ladder; b MtKatG; c, Ser315Thr; d, Ser315Asn.
Figure 3.4.2. Absorption spectra of MtKatG and variants Ser315Thr and Ser315Asn. The left axis is for the range from 350 to 500 nm while the right axis is for the range from 500 to 700 nm.
Table 3.4.1. Comparison of observed optical absorbance maxima, A407/280 ratio and heme/subunit ratio for purified KatGs.

<table>
<thead>
<tr>
<th>KatG</th>
<th>Sorêt maximum (nm)</th>
<th>(A_{407/280}) ratio</th>
<th>Theoretical (A_{407/280}) ratios(^a)</th>
<th>Heme/subunit ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtKatG</td>
<td>408</td>
<td>0.60</td>
<td>0.61</td>
<td>0.98</td>
</tr>
<tr>
<td>Ser315Thr</td>
<td>408</td>
<td>0.54</td>
<td>0.61</td>
<td>0.88</td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>408</td>
<td>0.56</td>
<td>0.61</td>
<td>0.92</td>
</tr>
</tbody>
</table>

\(^a\) \(\varepsilon\) at 280 nm calculated based on the \(\varepsilon_{\text{TRP}} = 5500 \text{ M}^{-1} \text{ cm}^{-1}\) and \(\varepsilon_{\text{TYR}} = 1490 \text{ M}^{-1} \text{ cm}^{-1}\) and \(\varepsilon\) at 407 nm for heme estimated to be 100,000 \text{ M}^{-1} \text{ cm}^{-1}\)
Table 3.4.2. Comparison of catalase and peroxidase activities of MtKatGs and Ser315Thr and Ser315Asn variants.

<table>
<thead>
<tr>
<th>KatG</th>
<th>Catalase (units/mg)<sup>a</sup></th>
<th>Peroxidase</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ABTS<sup>b</sup> (units/mg)<sup>a</sup></td>
<td>o-dianisidine<sup>c</sup> (units/mg)<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>MtKatG</td>
<td>4450 ± 140</td>
<td>10 ± 2.5</td>
<td>8.8 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Ser315Thr</td>
<td>4200 ± 480</td>
<td>4.3 ± 0.3</td>
<td>5.4 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>1880 ± 180</td>
<td>1.3 ± 0.2</td>
<td>3.1 ± 0.4</td>
<td></td>
</tr>
</tbody>
</table>

^a Data expressed as μmole H₂O₂. min⁻¹. mg⁻¹

^b Data expressed as μmole ABTS. min⁻¹. mg⁻¹

^c Data expressed as μmole o-dianisidine. min⁻¹. mg⁻¹
50% reduction in the V_{max} values as compared to that of the native enzyme. The K_m of Ser315Thr for ABTS is 1.5 times higher and that for Ser315Asn is 25% lower as compared to the native enzyme. The K_m values for H_2O_2 (required only for generation of the compound 1 in the peroxidase activity) are similar for both native enzyme and Ser315Thr variant whereas the Ser315Asn variant has a K_m two times higher than the native enzyme.

3.4.5. Comparison of heme inhibition by cyanide and azide.

Both variants are inhibited by cyanide and azide, classical heme protein inhibitors (Figure 3.4.7 and Table 3.4.5). Ser315Thr shows 50% inhibition of catalase activity at 55 μM concentration of KCN while the Ser315Asn variant requires 126 μM KCN for 50% inhibition as compared to 112 μM needed for native MtKatG. For NaN$_3$, both variants exhibit 22-25 times higher IC$_{50}$ values than the same needed for native MtKatG (Figure 3.4.7 and Table 3.4.5) consistent with the mutation constricting the substrate access channel.

3.4.6. Effect of Ser315 mutation on NADH oxidase activity and isoniazid activation.

Neither Ser315Thr nor Ser315Asn exhibit NADH oxidase activity at 340 nm although Ser315Thr shows very low levels of radical formation using NADH as substrate and NBT as radical sensor (Figure 3.4.8 and Table 3.4.6). In addition a low level of hydrazine lyase activity is associated with both Ser315Thr and Ser315Asn as compared to the native enzyme. Similar results are evident when 2 μM of Mn$^{2+}$ was added to the
Figure 3.4.3. Effect of H$_2$O$_2$ concentration on the initial catalytic velocities of S31T and Ser315Asn variants of MtKatG.
Table 3.4.3. Comparison of the observed catalatic kinetic parameters of purified MtKatG and Ser315Thr and Ser315Asn variants using H$_2$O$_2$ as substrate.

<table>
<thead>
<tr>
<th>KatG</th>
<th>V_{max}</th>
<th>K_m (mM)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>k_{cat}/K_m (M$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtKatG</td>
<td>460 ± 22 x 103</td>
<td>2.4 ± 0.5</td>
<td>7600</td>
<td>3.2 x 106</td>
</tr>
<tr>
<td>Ser315Thr</td>
<td>440 ± 27 x 103</td>
<td>13 ± 2.6</td>
<td>7300</td>
<td>0.6 x 106</td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>240 ± 32 x 103</td>
<td>1.4 ± 0.9</td>
<td>4000</td>
<td>2.9 x 106</td>
</tr>
</tbody>
</table>

V_{max} is expressed as μmoles of H$_2$O$_2$ decomposed min$^{-1}$ μmole heme$^{-1}$
Figure 3.4.4. Effect of ABTS concentration on the initial catalatic velocities of Ser315Thr and Ser315Asn variants of MtKatG.
Figure 3.4.5. Effect of H$_2$O$_2$ concentration on the initial peroxidatic velocities of Ser315Thr and Ser315Asn variants of MtkatG.
Table 3.4.4. Comparison of the observed peroxidatic kinetic parameters of purified MtKatG and Ser315Thr and Ser315Asn variants using ABTS as substrate.

<table>
<thead>
<tr>
<th>KatG</th>
<th>V_{max}</th>
<th>K_m^a</th>
<th>K_m^b</th>
<th>k_{cat}</th>
<th>k_{cat}/K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtKatG</td>
<td>1870 ± 53</td>
<td>67 ± 7</td>
<td>360 ± 102</td>
<td>31 ± 0.9</td>
<td>4.5 x 10^5</td>
</tr>
<tr>
<td>Ser315Thr</td>
<td>940 ± 32</td>
<td>100 ± 16</td>
<td>380 ± 59</td>
<td>42 ± 0.5</td>
<td>5.0 x 10^5</td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>830 ± 30</td>
<td>50 ± 3</td>
<td>740 ± 101</td>
<td>14 ± 0.5</td>
<td>2.8 x 10^5</td>
</tr>
</tbody>
</table>

$^a V_{\text{max}}$ is expressed as μmoles of ABTS decomposed min$^{-1}$ μmole heme$^{-1}$

$^b K_m$ shown for ABTS, $^c K_m$ shown for H_2O_2
Figure 3.4.6. Comparison of sensitivity of MtKatG and its variants to cyanide (KCN) or azide (NaN₃).
Table 3.4.5. Comparison of sensitivity of KatG and its variants to cyanide (KCN) or azide (NaN₃).

<table>
<thead>
<tr>
<th>KatG</th>
<th>[KCN] causing 50% inhibition (μM)</th>
<th>[NaN₃] causing 50% inhibition (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtKatG</td>
<td>98</td>
<td>0.2</td>
</tr>
<tr>
<td>Ser315Thr</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>Ser315Asn</td>
<td>110</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Figure 3.4.7. NADH oxidation by MtKatG and variants Ser315Thr and Ser315Asn.

a, the rates of radical production in a solution containing 100 μM NADH, 1.2 μM enzyme, 200 μM NBT and 50 mM Tris, pH 8.75, are followed by formazan appearance measured at 560 nm. Separate assays contain no enzyme (control), MtKatG, S315T and Ser315Asn.

b, the rates of NADH oxidation in a solution containing 100 μM NADH, 1.2 μM enzyme, and 50 mM Tris, pH 8.75 were followed by NADH disappearance measured at 340 nm. Separate assays contain no enzyme (control), MtKatG, S315T and Ser315Asn.
Figure 3.4.8. Removal of hydrazine form isoniazid by MtKatG and variants. a, radical generation in a solution containing 10 mM INH, 200 mM NBT as radical sensor in 50 mM Tris, pH 8.0, was followed by formazan appearance measured at 560 nm. Separate assays contain no enzyme (control), MtKatG and variants Ser315Thr and Ser315Asn. b, Similar assay conditions were employed to determine the effect of Mn$^{2+}$ on the hydrazine lyase reaction.
Figure 3.4.9. Effect of NADH on the hydrazine lyase activity by MtKatG and variants a, Isonicotinoyl-NAD synthase activity by MtKatG and variants b.
Table 3.4.6. Comparison of NADH oxidase activity, hydrazine lyase, and synthase activity by MtKatG and variants.

<table>
<thead>
<tr>
<th></th>
<th>MtkatG<sup>a</sup></th>
<th>Ser315Thr<sup>a</sup></th>
<th>Ser315Asn<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH oxidase (A<sub>560</sub>)</td>
<td>100 ± 15</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>NADH oxidase (A<sub>340</sub>)</td>
<td>30 ± 3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>INH hydrazine lyase</td>
<td>78 ± 9</td>
<td>27 ± 3</td>
<td>60 ± 5</td>
</tr>
<tr>
<td>INH + NADH</td>
<td>1140 ± 76</td>
<td>57 ± 5</td>
<td>115 ± 6</td>
</tr>
<tr>
<td>INH + Mn<sup>2</sup></td>
<td>460 ± 5</td>
<td>250 ± 15</td>
<td>320 ± 10</td>
</tr>
<tr>
<td>Isonicotinoyl-NAD synthase<sup>b</sup></td>
<td>93 ± 6</td>
<td>20 ± 4</td>
<td>30 ± 8</td>
</tr>
</tbody>
</table>

^a Data expressed as pmole. min⁻¹. nmole⁻¹ subunit

^b Data expressed as pmole. min⁻¹. mmole⁻¹ subunit

ND, not determined
reaction mixture (Figure 3.4.9 and Table 3.4.6) demonstrating the significance of the native enzyme structure in drug activation. Following this trend, the rate of radical production from a reaction mixture including INH and NADH is 20 times lower for Ser315Thr and 10 times lower for Ser315Asn variant as compared to the native enzyme (Figure 3.4.10 and Table 3.4.6). Most significantly, the isonicotinoyl-NAD synthase activity is almost five times lower for Ser315Thr variant and three times lower for Ser315Asn variant compared to the native enzyme. These results are consistent with the reports demonstrating the lower sensitivity to isoniazid of clinical isolates carrying Ser315 mutation on katG of M. tuberculosis.
4. Discussion

4.1. Location of conserved residues in catalase-peroxidases

Because the *in vivo* peroxidase substrates remain unidentified, possible substrate-binding sites, for as yet unidentified substrates, was a topic for speculation in the original report of the BpKatG structure (Carpena *et al.*, 2002). Unambiguous identification of such sites will have to await a crystal structure determination of protein-ligand complexes. Evidence for a diversity of substrate binding sites in KatGs is shown in the high frequency of highly conserved residues (Table 4.1) and their broad distribution throughout the KatG subunit including on the surface (Figure 4.1). Over 27% and 18% of the residues, respectively, in the catalytic N-terminal domain and noncatalytic C-terminal domain of the KatG subunit are identical in more than 95% of the sequences available for KatGs. This is compared with the 8–14% frequency of nearly identical residues, all located near the active sites in pyruvate kinases, catalases, peroxidases, CuZn SODs, and FeMn SODs. Seven KatGs used in this study also have 50–70% similarity in the amino acid sequence (Figure 4.2) and, the four crystal structures that have appeared so far (Yamada *et al.*, 2002; Carpena *et al.*, 2003; Vada *et al.*, 2002; and Bertrand *et al.*, 2004) exhibit a high degree of structural integrity particularly in the vicinity of heme (Figure 1.3). All four KatGs adopt similar folds with MtKatG sharing 55% identity and 69% similarity with HmKatG and 66% identity and 77% similarity with BpKatG (Bertrand *et al.*, 2004). Cα backbone superpositions show root mean square deviations of 1.18 and 0.82 Å between MtKatG with HmKatG or BpKatG, respectively. Active site residues are conserved and align well in all three structures, and there are few structural differences in the three-dimensional arrangement of the polypeptide chains. In
Figure 4.1. Location of residues in BpKatG that are identical in more than 95% of the 53 catalase-peroxidase sequences available. The distribution in the N-terminal domain is shown in a, and the distribution in the C-terminal domain is shown in b. The domains are treated separately for a clearer representation of the differences.
Table 4.1 Comparison of the percentage of highly conserved residues (>95% identical) in KatGs compared to other families of proteins

<table>
<thead>
<tr>
<th></th>
<th>KatG</th>
<th>SOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-terminal</td>
<td>C-terminal</td>
</tr>
<tr>
<td>No. in family</td>
<td>52<sup>a</sup></td>
<td>52<sup>a</sup></td>
</tr>
<tr>
<td>Length</td>
<td>390</td>
<td>322</td>
</tr>
<tr>
<td>No. with >95% identity</td>
<td>107</td>
<td>59</td>
</tr>
<tr>
<td>Percentage with >95% identity</td>
<td>27.4</td>
<td>18.3</td>
</tr>
</tbody>
</table>

^a Accession numbers are described by Klotz and Loewen (Klotz and Loewen, 2003)

^b The accession numbers for the sequences used are: AA054860, AAR15417 AB087845, AF312586, AF312588, AF318938, AJ581746, AY428604, AY434497, BAC96317 BC061861, CAC28938 J02658, J04087, L13778, M15175, M84013, NM011435, NM174615, NP012638, NP231223, NP940620, P24704, X97766, and XM358882

^c The accession numbers for the sequences used are: AAN16456 AA057908, AB093035, AB109302, AF318020, AY314980, J03511, L11707, L25675, M33119, M60401, M74242, M94879, M96560, NM013671, NM057577, NM059889, NP011872, NP231679, NP232322, NP704405, NP940564, Q8K6Y8, and X03951

^d The accession numbers for the sequences used are: AB027752, AB009084, AB022273, AB024437, AB027752, AB027753, AF039027, AF109123, AF139910, AF149278, AF155124, AF159380, AF159629, AF175710, AJ003141, AJ011939, D11102, D11337, D14442, D83669, D84400, D90115, M60729, Y16773, and Y17192

^e The accession numbers for the sequences used are: AAB47952 AAH16619 AAH19265 AAHY25737, AAH61541 AA057788 AAQ57928 BAC91436 BAD01636 CAA24631 CAE07913 CAE14987 CAE20854 NP230139, NP231642, NP416191, NP416368, NP703926, NP721573, NP881869, NP934082, NP939895, Q8Z6K2, Q9Z9B4, Q89A18, XP224416, XP341924, ZP00026409, ZP00078743, and ZP000122573
particular, the covalent modification linking the distal Trp 111, Tyr238 and Met264 residues (BpKatG numbering), which are fully conserved in all seven KatGs used in this study, plays a crucial role in the modulation of catalase activity in these heme proteins (Donald et al., 2003; Jakospitch et al., 2003d). This modification is unique to KatGs and has been reported in all four crystal structures and confirmed using mass spectrometry (Donald et al., 2003; Jakospitch et al., 2003; Ghiladi et al., 2005; and Ghiladi et al., 2005a). Despite these apparent structural similarities, this study demonstrates significant differences upon interaction of KatGs with various substrates and in the catalytic efficiency of the reactions indicating the importance of subtle changes within the KatG backbone in the regulation of activities.

4.2. Overview and comparison of catalase and peroxidase activities

Seven KatGs studied demonstrated different levels of catalase and peroxidase activities ranging from 3700-6000 U/mg. The enzyme kinetics reveal differences in V_{max} and K_m values. For example, the catalatic K_m for H$_2$O$_2$ of MtKatG is 2.4 mM, but for BpKatG and EckatG, the K_ms are 4.3 and 4.2 mM (Table 3.6). Similarly the turnover rates for all seven KatGs vary from 7600 to 17300 s$^{-1}$ and k_{cat}/K_m values also vary from 2 to 5.6 M$^{-1}$s$^{-1}$ (Table 3.6). These variations are significant and a plausible explanation could be the differences in the substrate access channel. In KatGs there are conserved acidic residues in the main access channel: Glu242 (BpKatG numbering) at the entrance and Asp141 at the 3–4 Å wide constriction (Smuelvich et al., 2006). Both residues are critical for stabilizing the solute matrix in the channel and for orienting the water dipoles. In addition, Asp141 controls the access to the distal residues Arg108, His112 and Trp111.
These residues are conserved in the seven KatGs used in this study. Thus, the differences in the affinity for the substrate could also be arising from the presence of some other access route for the substrate apart from the main channel. Interestingly there are not significant differences in the pH optimum for the catalase activity which remains between pH 6.25 and 6.5 for seven KatG studies. This suggests that highly conserved active site residues modulate the catalase activity in a similar fashion and require a similar pH environment irrespective of the type of KatG.

Although the in vivo peroxidatic substrate is still unknown, various organic electron donors such as ABTS and o-dianisidine are used as in vitro peroxidatic substrates. Each KatG has a different affinity for the same substrate such as ABTS, where the K_m ranges from 7 to 300 µM in the seven enzymes studied (Table 3.7). Binding of the same substrate with different affinity to different KatGs could be attributed to the differences in the binding sites on the protein. Even between two different substrates used in this study (ABTS and o-dianisidine), different kinetic constants for peroxidase activity were noted among the enzymes but exhibited similar optimum pHs (Table 3.4) suggesting a common reaction involving similar catalytic residues. The specificity constants (k_{cat}/K_m) and the K_m for H_2O_2 for compound I formation for the peroxidase activity of the seven KatGs varied 20-80 folds from 0.5 to $40 \times 10^5 \text{M}^{-1}\text{s}^{-1}$ and 58 µM to 1 mM respectively. The structures of the peroxidatic substrates will play an important role in their binding to the enzyme and differences in the surface topology caused by sequence variations will affect their affinity toward enzyme. Cytochrome c, the peroxidatic substrate for Cytochrome c peroxidase (CcP), bounds at the surface of CcP and the electron transfer between the enzyme and substrate occurs through protein based radicals
formed on the CcP (Millett et al., 1995). A similar process could be a possibility with KatGs since they are closer to plant peroxidases in sequence and structure. In such a case, protein based radicals could play an important role in electron transfer from the heme to the distantly bound peroxidatic substrate. There are reports mentioning the formation of such protein based radicals in KatGs (Ivancich et al., 2003; Zhao et al., 2004) and determining the location and understanding the role of such protein radicals will be crucial in determining the peroxidatic reaction of KatGs. It is expected that studies such as this will eventually lead to the identification of the actual in vivo substrates for KatGs and as a result the significance of this activity for the organisms.

Heme inhibition by classical heme inhibitors also demonstrates different IC\textsubscript{50} value for different KatGs. For example, SyKatG and AfKatG needed almost three times higher concentration of KCN as compared to that needed by BpKatG, MtKatG and EcKatG for 50% inhibition of catalase activity. On the other hand, MtKatG needed a mere 0.2 μM NaN\textsubscript{3} for 50% inhibition in contrast to 20 μM needed by AfKatG (Table 3.9).

4.3. The oxidase, lyase and synthase activities of KatGs

The existence of catalase, peroxidase, and oxidase activities in a single protein makes KatG a complex and fascinating enzyme, an assessment further enhanced by INH hydrazine lyase and isonicotinoyl-NAD synthase activities. A summary of these various activities (Figure 4.2) illustrates the independence of the closely related catalase and peroxidase activities from the oxidase, hydrazine lyase, and synthase activities. Not only are the pH optima very different, but, unlike the catalase and peroxidase reactions, the
oxidase, hydrazine lyase, and synthase reactions do not require H₂O₂ or involve the formation of identifiable oxidized heme intermediates. The hydrazine lyase and synthase reactions are closely linked because hydrazine lyase must occur before the ligation of NAD⁺ to the isonicotinoyl radical, but the oxidase reaction is not mechanistically linked to any other reaction except that it very likely shares with the synthase the same NAD⁺/NADH-binding site. In addition, the oxidase reaction may serve as a source of NAD⁺ for the synthase reaction and H₂O₂ for the catalase and peroxidase reactions (Figure 4.3). The catalase and peroxidase functions of KatG are rationalized as protection against H₂O₂, and the NADH oxidase activity may present a complementary protection against molecular oxygen or a means of maintaining low cytoplasmic levels of oxygen. However, the turnover rate of the oxidase is very slow compared with the catalase and peroxidase reactions, and the oxidase activity may simply be a residual vestige of what was once a more substantial activity with metabolic significance in a particular environmental niche. Certainly, the high affinity of BpKatG for NADH is consistent with there being, or having been, a physiological significance to the activity. Among the seven KatGs in this study, the variation in NADH oxidase activity, highest in BpKatG and lower in the rest of the KatGs, might be interpreted as the result of an environmentally determined differential loss of activity. Although the KatGs can utilize NADH as a peroxidatic substrate, the NADH oxidation characterized here is clearly not a peroxidatic reaction, and it is also different in several key respects from the peroxidase-oxidase activity associated with HRP. H₂O₂ does not have a catalytic role, SOD and catalase do not inhibit the reaction, and lag periods in reaction initiation are not evident in the presence of high enzyme or low NADH concentrations. In addition, the pH dependence
Figure 4.2. Amino acid sequence alignment of BpKatG, MtKatG, EcKatG, SykatG, BskatG, AfkatG, RcKatG. Sequence alignment was created using clustal. ■ represents fully conserved residues; □ represents residues replaced with similar properties; and ▶ represents partially conserved residues.
<table>
<thead>
<tr>
<th>200</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG : WDLILICNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSK</td>
<td>203</td>
</tr>
<tr>
<td>MtKatG : WADLVPRCNAGEGSMGKRTEPFGACGRADTVEPE-DVMWGSKATW</td>
<td>204</td>
</tr>
<tr>
<td>EcKatG : WGLILVLTQNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSKPNK</td>
<td>209</td>
</tr>
<tr>
<td>SyKatG : WGLILICNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSKEK</td>
<td>220</td>
</tr>
<tr>
<td>BsKatG : WGLILICNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSKEW</td>
<td>220</td>
</tr>
<tr>
<td>AfKatG : WGLILICNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSKEEEM</td>
<td>234</td>
</tr>
<tr>
<td>RcKatG : WGLILICNVAYLESMGKRTEPFGACGRADTVEPE-DVMWGSKEK</td>
<td>234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>240</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG : LELSGPKSRYSGDRQ----LENDLAAYVMIILYVNPDCGDPDF</td>
<td>250</td>
</tr>
<tr>
<td>MtKatG : LCLLSCKLGDTRYFASNSA---LENDLAAYVMIILYVNPDCFPMPDF</td>
<td>251</td>
</tr>
<tr>
<td>EcKatG : LAO-----NRDKNSK----LENDLAAYVMIILYVNPDCPFDF</td>
<td>255</td>
</tr>
<tr>
<td>SyKatG : LASS----DHRGSEDAR----LENDLAAYVMIILYVNPDCGFAPDF</td>
<td>261</td>
</tr>
<tr>
<td>BsKatG : LAS-----ERYSDRE-----LENDLAAYVMIILYVNPDCGFDF</td>
<td>265</td>
</tr>
<tr>
<td>AfKatG : LTP-----AKREKEE----LENDLAAYVMIILYVNPDCGFDF</td>
<td>270</td>
</tr>
<tr>
<td>RcKatG : LAPS-----DGRGDLAKFEET---LENDLAAYVMIILYVNPDCGFDF</td>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>280</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG : VAABRERTRPRMMDGTETVALIDGHTGKHCAG-PESNVG</td>
<td>294</td>
</tr>
<tr>
<td>MtKatG : MADLIRTRPRMMDGTETVALIDGHTGKHCAG-PDLNG</td>
<td>298</td>
</tr>
<tr>
<td>EcKatG : LASSDRERTRPRMMDGTETVALIDGHTGKHGKEPKEKCG</td>
<td>250</td>
</tr>
<tr>
<td>SyKatG : LCTCVDRTVRPRMMDGTETVALIDGHTGKHCAG-PESVNL</td>
<td>309</td>
</tr>
<tr>
<td>BsKatG : KAAABSRTKPRMMDGTETVALIDGHTGKHCAG-PSTVCG</td>
<td>309</td>
</tr>
<tr>
<td>AfKatG : LGSSQREVRPRMMDGTETVALIDGHTGKHCAG-PADVPG</td>
<td>264</td>
</tr>
<tr>
<td>RcKatG : ARTLHERTRPRMMDGTETVALIDGHTGKHGM-DAKALG</td>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>320</th>
<th>340</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpKatG : APEPAEIGEAGLGC4SAYRTGCGADADTSLGEYTWETPOWSE</td>
<td>339</td>
</tr>
<tr>
<td>MtKatG : PEPEPAPLSEQGLGC4SAYRTGCGADADTSLGEYTWETPTWDN</td>
<td>336</td>
</tr>
<tr>
<td>EcKatG : AGPDQAPVEGGLGC4SAYRTGCGADADTSLGEYTWETPTWM</td>
<td>325</td>
</tr>
<tr>
<td>SyKatG : AGPETEAVREGGLGC4SAYRTGCGADADTSLGEYTWETPTQTM</td>
<td>325</td>
</tr>
<tr>
<td>BsKatG : PEPEPAPIEAGLGC4SAYRTGCGADADTSLGEYTWETPTQWDN</td>
<td>324</td>
</tr>
<tr>
<td>AfKatG : PDPSSPIEMGLGC4SAYRTGCGADADTSLGEYTWETPTKFGI</td>
<td>398</td>
</tr>
<tr>
<td>RcKatG : PDPSEAETDLGLGC4SAYRTGCGADADTSLGEYTWETPTQWDN</td>
<td>325</td>
</tr>
</tbody>
</table>

| 360 | P a qGLGW G g tSG E W PT |
Figure 4.3. Scheme showing the relationship of the five activities of KatG. The locations of the INH hydrazine lyase, NADH oxidase, isonicotinoyl-NAD synthase, catalase, and peroxidase reactions are underlined. The two pH-dependent options for the NADH oxidase reaction are also indicated. The isonicotinoyl (a) and hydrazide (b) radicals from the hydrazine lyase reaction are available to radical scavengers in the absence of NAD$^+$. The di-imide and proton products from the synthase reaction, indicated in parentheses with an asterisk, have not been confirmed as products but provide a convenient and logical way to balance the reaction. The catalase and peroxidase cycles are shown at the bottom and appear to be independent of the reactions at the top except for the possible metabolism of H$_2$O$_2$ generated in the oxidase reaction (dotted line) and the possibility that molecular oxygen may also bind to the heme.
\[
\begin{align*}
\text{INH} & \xrightarrow{\text{Hydrazine lyase}} \text{IN-NAD} \\
\text{NADH} & \xrightarrow{\text{Oxidase}} \text{H}_2\text{O}_2 (\text{or } 2\text{O}_2^-) \\
& \xrightarrow{\text{Oxidase}} \text{H}_2\text{O}_2 + \text{O}_2
\end{align*}
\]
of superoxide radical formation in the oxidase reaction suggests the possibility of two reaction outcomes for molecular oxygen depending on proton availability. Below pH 8, with protons more readily available, a two electron transfer to oxygen takes place generating H₂O₂ (Reaction 1), whereas at higher pH, two one-electron transfers to two oxygen molecules generate two superoxide ions (Reaction 2). The protonation state of the imidazole ring of the distal side His112 (Figure 1.5) may determine the reaction pathway through presentation of a proton to the bound oxygen in the active site. Any H₂O₂ produced via reaction 1 would rapidly oxidize the heme to compound I and subsequent reduction in catalase or peroxidase reactions would give rise to H₂O.

\[
\text{NADH} + \text{O}_2 + \text{H}^+ \rightarrow \text{NAD}^+ + \text{H}_2\text{O}_2 \quad (1)
\]

\[
\text{NADH} + 2\text{O}_2 \rightarrow \text{NAD}^+ + 2\text{O}_2^{-} \quad (2)
\]

The enhancement of INH hydrazine lyase by KatG and its importance in INH pro-drug activation is well documented. A single mutation in Ser315 of MtKatG is sufficient to reduce the affinity of the enzyme for INH (Yu et al., 2003) and to prevent isonicotinoyl-NAD formation (Wei et al., 2003) leading to in vivo isoniazid resistance. The facts that NAD⁺ is a competitive inhibitor of NADH oxidation but does not inhibit the hydrazine lyase reaction and that an INH-NADH mixture supports a rate of radical production greater than the cumulative rates of the individual reactions suggest that NADH/NAD⁺ and INH have separate binding sites and that there is an element of synergy between the two reactions. Manganese ions (both Mn²⁺ and Mn³⁺) enhance both nonenzymatic and enzymatic hydrazine lyase to the extent that the manganese-mediated isonicotinoyl radical formation is faster than the KatG-mediated reaction. However,
despite this high rate of manganese-mediated hydrazine lyase, manganese-mediated isonicotinoyl-NAD formation is negligible compared with its rapid formation in the presence of KatG. The data in this thesis do not dispute the observation that there can be a nonenzymatic origin of isonicotinoyl-NAD (Wilming and Johnsson, 1999), but under the conditions employed in this work, KatGs are a much more effective catalyst of isonicotinoyl-NAD synthesis than manganese ions.

The regulatory systems controlling KatG expression, involving OxyR in E. coli, are generally oxidative response systems, supporting the conjecture that the primary role of KatG is the detoxification of H₂O₂ as a catalase or peroxidases. The physiological role and importance of the peroxidatic reaction in the anti-oxidant process remains unclear, in large part because the identity of the in vivo peroxidatic substrate(s) remains unknown. The wide variety of in vitro substrates that are utilized by KatG and the wide variety of substrates used by the closely related plant peroxidases, ranging from whole proteins to simple carbohydrates and metal ions, have not helped in the identification. Furthermore, the structures of KatGs present several potential substrate-binding sites on their surface topographies, and there is an abnormally high percentage of highly conserved residues close to the protein surface, consistent with the idea of important features residing in other than the heme pocket. Of the known substrates, H₂O₂ binds at the heme iron, which is also the most likely site for O₂ binding and INH binds in the heme cavity or in the entrance channel near Ser324 (equivalent to Ser315) (Deeamgarn et al., 2005). The peroxidatic substrates probably also bind in the vicinity of Ser324 as suggested by benzhydroxamic acid binding in HRP (Henriksin et al., 1998), although the substrates used in this study are larger and would not fit into as small a cavity as benzhydroxamic
acid. Trying to identify the NADH-binding site would be pure conjecture at this point, but the possibility that the cross-linked side chains of Trp111, Tyr238, and Met264 may have a role in electron transfer from NADH to O₂, and the observations that INH does not inhibit NADH oxidation and NAD⁺ does not inhibit the hydrazine lyase reaction suggest that the NADH-binding site is some distance from the heme pocket. However, this surmise must be tempered by the logic of having NAD⁺ bind in close proximity to the site of isonicotinoyl radical formation. A structural definition of the binding sites is needed.

4.4. Modulation of isoniazid activation by Ser315 variants in MtKatG

An understanding of the role of KatG in the formation of isonicotinoyl-NAD has not been advanced greatly by the four native KatG structures (Yamada et al., 2002; Carpena et al., 2003; Vada et al., 2002; and Bertrand et al., 2004). One paramount question that remains unanswered is the location of the INH and NADH/NAD⁺ binding sites in KatG, although the location of INH binding in the structurally related horseradish peroxidase suggests a site close to the δ-meso (C₂₉) edge of the heme (Pierattelli et al., 2004). The Ser315Thr and Ser315Asn mutations are among the commonest causes of INH resistance (Heym et al., 1995) and while retaining significant catalase and peroxidase activities the variant enzymes exhibit a reduced affinity for INH (Yu et al., 2003). Both the Ser315Thr and Ser315Asn variants constructed in this study showed reduced NADH oxidase and INH hydrazine lyase activities compared to the native enzyme (Table 3.4.5), and this is mirrored in a slower rate of isonicotinoyl-NAD adduct formation by both variants (Figure 3.4.7). Recent crystallization of the Ser315Thr variant
of MtKatG (Zhao et al., 2006) and the equivalent Ser324Thr from BpKatG (Deemagran et al., 2005) have demonstrated that replacement of Ser with Thr causes a small change in conformation of the main-chain atoms including a small displacement of the adjacent main-chain carbonyl oxygen atoms. While these appear to be very subtle changes, their effect on isonicotinoyl-NAD synthesis and INH affinity is significant as shown in this study and in a previous report (Yu et al., 2003). The proposed binding site for isoniazid lies in a cavity on the distal side of the heme close to its δ-meso edge (Pierattelli et al., 2004). To reach this site in KatG, isoniazid must pass through the channel leading to the heme cavity, passing adjacent to Ser315. The mutation of Ser315 (MtkatG) or Ser324 (BpKatG) to Thr narrows the heme access channel from around 6 to 4.7 Å at its narrowest point in the mutant enzymes from both organisms (Deemagarn et al., 2005; Zhao et al., 2006). These observations in combination with significantly decreased INH activation in these variants suggest that drug binding within the heme pocket is a likely requirement for INH activation. Consequently, it is interference with INH accessibility to the heme cavity that best explains the reduced affinity and reactivity of KatG towards INH, although the possibility of INH binding in the channel cannot be excluded, in which case the methyl group would interfere with INH binding. Other mutations of this serine residue might cause a similar blockage of the channel.

4.5. Future directions

Recent success in the crystallization of KatGs has excited researchers studying these enzymes. In addition, the discovery of a new activity in this well studied enzyme is both interesting and intriguing. Further characterization of the NADH oxidase reactions
in KatGs other than those used in this study is needed. This would help in determining the physiological relevance of this activity. One of the observations during this study was variations in NADH oxidase activities from different batches of BpKatG. Different batch of EcKatG, prepared while writing this thesis, also demonstrated substantial NADH oxidase activity as compared to very low levels mentioned in this study. This raises the question about the requirement of specific conditions for expressing the enzyme and needs explanation. A recent report associating a pH induced perhydroxy modification of Trp 111 in BpKatG with NADH oxidase activity (Carpena et al., 2006) stresses the importance of crystallization of Trp111 variants of BpKatG so as to confirm the modulation of NADH oxidase activity and its association with Trp111. This study has determined the catalytic role of KatGs in isoniazid activation and isonicotinoyl-NAD synthesis over the non-enzymatic Mn²⁺ dependent drug activation. However, the lack of identity of the binding sites for INH and NADH/NAD⁺ hinders a complete understanding of how KatG’s modulates NADH oxidase, hydrazine lyase and isonicotinoyl-NAD synthase activities. The identification of ligand binding sites remains the ultimate goal of future work.
5. REFERENCES

Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I. & Rossmann, M. G.
Three-dimensional structure of catalase from *Penicillium vitale* at 2.0 Å resolution. *J. Mol. Biol.* 188, 49-61.

