
Improved Algorithms for Burning Graph Families

by

Mohammadmasoud Shabanijou

A thesis submitted in conformity with

the requirements for the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2022 by Mohammadmasoud Shabanijou

Abstract

In the graph burning problem, the input is an undirected, unweighted, finite, and

simple graph. A fire starts at a vertex at each round, and when a particular vertex is

burned, all of its adjacent vertices are burned in the next round. We assume that the

rounds are synchronous and discrete. At each round, one new fire can start in a new

vertex. The goal is to select the vertices at which fires are started so that all vertices

are burned as quickly as possible. Finding an optimal burning sequence is known to

be NP-hard and the problem remains NP-hard even for simple graph families such as

trees or a set of disjoint paths. The best approximation algorithm for general graphs

has an approximation factor of 3.

In this thesis, we investigate this problem on different graph families of sparse

graphs, and in particular, we look at cactus graphs and melon graphs and study algo-

rithms that aim to burn these graphs as quickly as possible. For both graph families,

we show that the problem is NP-complete, and provide approximation algorithms

with approximation factors smaller than 3.

1

Contents

List of Figures 4

1 Introduction 6
1.1 The burning problem . 6

Approximation algorithms . 7
Polynomial-Time Approximation Schemes (PTASs) 8

1.2 Contributions . 8

2 Literature Review 11
2.1 Burning number . 11
2.2 Burning graph families . 11
2.3 Computational complexity . 13
2.4 Similar problems . 13

Broadcasting a gossip . 13
Viral marketing . 14
The firefighter problem . 15
Epidemics modelling . 16

3 Problem Definition 18

4 Burning Cactus Graphs 20
4.1 Overview . 20
4.2 Necklace graphs . 20
4.3 NP-completeness . 22
4.4 Approximation algorithms . 28

Overview and necessary lemmas 28
Burn-guess-cactus procedure 30

5 Burning Melon Graphs 36
5.1 Overview . 36
5.2 Definition and related families 36

2

Improved Algorithms for Burning Graph Families 3

5.3 NP-completeness . 38
5.4 A O(n log n)-time approximation algorithm 41

Outline . 41
Burn-Guess-Melon procedure 42
Running time . 44

5.5 An APTAS for burning melon graphs 45
Outline . 45
Burn-Guess-Melon∗ procedure 45

6 Concluding Remarks 48

Bibliography 50

List of Figures

1 An illustration of the burning process 7
2 An example of a cactus graph and a melon graph 9
3 Examples caterpillar, spider, and Petersen graphs. 12
4 An example of the firefighter problem 16
5 Burning a path . 19
6 Examples of cactus graphs and necklace graphs 22
7 A set of disjoint paths . 23
8 Burning a set of disjoint cycles . 24
9 Examples of spider graph. 25
10 An example of a flower graph with 8 legs. 26
11 Construction of a cactus graph . 27
12 An illustration of Lemma 2 . 29
13 An illustration of burning a forest of g paths 30
14 An illustration of the Burn-Guess-Cactus procedure with g = 4. . . . 34
15 An example melon graph . 37
16 An example of a Cactus graph that is not a melon graph. 37
17 An illustration of the NP-hardness reduction 39
18 An illustration of the Burn-Guess-Melon for g = 5. 43

4

Improved Algorithms for Burning Graph Families 5

Acknowledgement

I would like to express my sincere gratitude to my parents without whom I would

have never reached this point...

I would like to thank Leila for supporting me through this journey. Her kind words

and kindness always filled my heart with happiness. I am so lucky to have her in my

life.

I would like to thank my friends Shahriar, Amir Winnnipegi, Matt, David, Khashayar,

Soheil, Ali Eghabl, Pouya, Dr. Ramun kakhal, Ali yari, Behnam (Amoo Karam),

Amoo Asad, Saeed, Behdad, Amir Kheiri, Alireza Sadeghi, Ali tavas, Amir Salimi,

Mamad, Erfan Sb, Ali khosarvi (Ar7), Ali ghobad, and all others who supported me

through this journey.

Improved Algorithms for Burning Graph Families 6

1 Introduction

1.1 The burning problem

There has been considerable effort in the past few years to develop models for

the analysis of social contagion in networks [5]. The literature in this area analyzes

a network and investigates how fast a meme or gossip could spread throughout the

network. The graph burning problem is one example of such abstractions that have

been studied in recent years [46]. In the graph burning problem, the main goal is to

“burn” vertices of a graph as quickly as possible. The burning number [46] of a graph

indicates the smallest number of rounds needed to spread a fire throughout the graph.

In the burning problem, our input is a simple graph that is undirected, unweighted,

and finite. We consider discrete rounds to model the time, and the data (that is, the

fire) is passed between the nodes in discrete and synchronous rounds [25].

In the graph burning problem, initially, all vertices are unburned. At the beginning

of each round, one vertex is selected by the algorithm and is set on fire. At each

consequent round, all nodes that are adjacent to a burning vertex are also burned [5].

Note that, at the beginning of every round, the algorithm can choose a new node to

burn, that is, a new fire is started, while the existing ones continue to spread. The

algorithm will continue until all vertices of the graph are burned [5].

To give some examples on the burning procedure, burning a complete graph takes

only 2 rounds. Since all of the vertices are connected, any vertex that is burned at

round 1 causes all its adjacent vertices to burn at round 2 (there is no need to start

a new fire at round 2). Similarly, burning a complete bipartite graph G = (A,B)

Improved Algorithms for Burning Graph Families 7

requires only 3 rounds. A fire starting at round 1 at one of the vertices in A spreads

to all vertices on the other side B at round 2, and by round 3 all vertices are burned

(again, one fire is sufficient to burn the graph as quickly as possible in this case).

Figure 1 provides an illustration of the burning process.

a

b

c

d

e f

h

g

i

j

a

b∗

c

d

e f

h

g

i

j

a

b

c

d

e f

h

g

i

j∗

(a) round 0 (b) round 1

(c) round 2 (d) round 3

a

b

c

d∗

e f

h

g

i

j

Figure 1: An illustration of the burning process. Blue vertices indicate unburned ver-

tices and red vertices are burned ones. Initially (at time 0), all vertices are unburned.

At round 1, an algorithm burns vertex d. At round 2, all vertices adjacent to vertex

d are burned while the algorithms starts a new fire at b. At round 3, a new fire starts

at j∗ while old fires extend to the neighboring vertices. By the end of round 3, the

burning process completes and all vertices are burned.

Approximation algorithms

In this thesis, we consider designing approximation algorithms for the burning

problem, which is the common approach for finding an algorithmic solution to NP-

complete problems. An approximation algorithm is a polynomial-time algorithm

Improved Algorithms for Burning Graph Families 8

that provides a solution that is “close” to the optimal solution. In the context of the

burning problem, an approximation algorithm is an algorithm A that for any graph

G outputs burning schemes that complete within c ·bn(G) rounds, where bn(G) is the

burning number of G. Here c is called the absolute approximation factor of algorithm

A. In addition, an algorithm might output schemes that complete in c′ · bn(G) + d,

where d = o(bn(G)). In this case, c′ is called the asymptotic approximation scheme

of G. In this thesis, for simplicity, we refer to the asymptotic approximation factor

as approximation factor.

Polynomial-Time Approximation Schemes (PTASs)

An approximation algorithm is said to be a polynomial-time approximation scheme,

if for any ε > 0, it provides an approximation factor of 1 + ε and runs in polynomial

time with respect to n (the size of graph), but possibly exponential time with respect

to 1/ε. If the time complexity of the algorithm is polynomial to both n and 1/ε,

it is said to be a fully-polynomial time approximation scheme (FPTAS). Finally, an

Asymptotic Polynomial-Time Approximation Scheme (APTAS) is an algorithm that

accepts a parameter ε and has an asymptotic approximation ratio of (1 + ε) [28].

1.2 Contributions

The burning problem is known to be a computationally hard problem [1]. In par-

ticular, the problem is NP-complete for very basic graph families such as path forests

(a set of disjoint paths) and trees. The best existing approximation algorithm for

burning general graphs has an approximation factor of 3 [2, 5]. Better approxima-

tion algorithms exist for certain graph families, e.g., trees [5] and graphs of bounded

treelength, e.g., interval graphs [25].

In this thesis, we study the burning problem for two simple families of sparse

Improved Algorithms for Burning Graph Families 9

graphs, that is, cactus graphs, and melon graphs. A cactus graph is a graph in which

every edge belongs to exactly one cycle. A melon graph is a graph formed by con-

necting endpoints of a set of paths to two distinguished vertices (poles). See Figure 2

for examples of cactus and melon graphs.

s t

Figure 2: An example of a cactus graph (left) and a melon graph (right).

Our contributions in this thesis are as follows:

• We observe that the existing results for the hardness of the burning problem for

graph families do not extend to the two families of graphs studied in this thesis.

For example, cactus or melon graphs do not generalize trees and/or path forests

and hence we cannot conclude the hardness of the problem from the hardness of

burning trees and path forests. Similarly, the existing approximation algorithms

for graph families do not extend to cactus and melon graphs. For example, the

known polynomial-time approximation scheme for burning path forests [1] or

the 2-approximation algorithm for burning trees [5] do not extend to cactus and

melon graphs.

• For cactus graphs, we use a reduction from burning path forests to show it is

NP-hard to burn a cactus graph. This shows that approximation algorithms

are needed for burning cactus graphs.

Improved Algorithms for Burning Graph Families 10

• For a specific family of cactus graphs, known as necklace graphs (formed by a

“path of uniform cycles”), we propose an algorithm that burns a necklace of n

vertices in
√
n+ o(

√
n).

• For the general family of cactus graphs, we provide an algorithm with an approx-

imation factor of at most 2.5. This is an improvement over the approximation

factor of 3 known for general graphs.

• We show that the burning problem is NP-complete in melon graphs, and pro-

vide an approximation algorithm with an approximation factor of 2 for burning

melon graphs that runs in O(n log n). We also provide a (slower) polynomial-

time approximation scheme for burning melon graphs.

Improved Algorithms for Burning Graph Families 11

2 Literature Review

In this chapter, we review the previous work on the burning problem and some of

its related problems.

2.1 Burning number

An introduction to the graph burning problem in terms of social contagion was

presented by Bonato et al. [4, 3]. Bonato et al. [3] proved that 2d
√
ne − 1 is an

upper bound for the burning number in connected graphs [3]. They also made a

conjecture that, in any connected graph, the burning number is at most d
√
ne. It is

rather easy to observe that this conjecture holds for paths. Mitsche et al. [33, 34]

proved the conjecture for other graph families. They also studied a different model

in which the selection of the burning sequence follows a probabilistic rule. Land and

Lu [31] improved the upper bound of [3] for the burning number of connected graphs

to d
√
6
2

√
ne ≈ 1.224

√
n + O(1). Bonato and Kamali [6] were able to further improve

this upper bound and provide the best existing upper bound for the burning number

which is
√

(4/3)n+O(1) ≈ 1.154
√
n+O(1).

2.2 Burning graph families

Liu et al. [32] studied the burning number of caterpillars and showed the burning

conjecture (see Section 2.1) holds for caterpillars. A caterpillar graph is a tree in

which there is a “backbone path” of vertices such that every vertex either belongs

to the backbone path or is adjacent to exactly one vertex in the backbone (see Fig-

Improved Algorithms for Burning Graph Families 12

ure 3). Bonato et al. [22] investigated the problem in path forests and spiders (see

Figure 3). A spider graph is a tree in which at most one vertex has a degree of more

than two. Sim et al.[44] improved the bound for the burning number of generalized

Petersen graphs. A Petersen graph is a graph formed by connecting the vertices of

a regular polygon to the corresponding vertices of a star polygon (see Figure 3 for

a Patersen graph with polygons of size k = 5). The burning number of some other

families and some products of graphs is studied in [24]. Other works in this area

include research on the burning number in random geometric graphs [33] and bino-

mial random graphs [33]. Kamali et al. [25] presented an algorithm that burns any

connected n-vertex graphs with the minimum degree δ in at most d
√

24n
δ+1
e rounds.

In particular, this algorithm proves the burning conjecture for graphs of minimum

degree δ ≥ 23.

(a) A caterpillar.
(b) A spider graph.

(c) A generalized Petersen

graph.

Figure 3: Examples caterpillar, spider, and Petersen graphs

models as well as graphs G(d) [17].

Improved Algorithms for Burning Graph Families 13

2.3 Computational complexity

Bonato et al. [1] have proved that it is NP-hard to find a burning sequence that

completes the burning in the minimum number of rounds. This hardness result holds

even for basic graph families such as spider graphs, and path forests. Mondal et al.

[35] have claimed that the burning problem is APX-hard.

Bonato and Kamali [5] investigated some approximation algorithms for this prob-

lem and introduced a general approximation algorithm for burning any graph G with

the approximation ratio of 3. In addition, they also provided an algorithm with

the approximation ratio of 2 for burning trees and polynomial-time approximation

schemes (PTAS) for path-forests.

A graph G has treelength at most k if there is a tree decomposition of such that

the maximum distance between vertices in each bag of the tree decomposition is at

most k [15]. Note that there is no direct connection between the treewidth [43] and

treelength of a graph. For example, a cycle formed by n vertices has treewidth 2 and

treelength Θ(n), while a complete graph has treewidth n − 1 and treelength 1. The

concept of pathlength is defined similarly when the tree decomposition is indeed a

path decomposition. In particular, a graph has pathlength 1 if and only if it is an

interval graph. Kamali et al. [25] provided an algorithm with the approximation ratio

of 1 + o(1) for graphs that have bounded pathlength and another algorithm with the

approximation ratio of 2 + o(1) for burning connected graphs of bounded treelength.

2.4 Similar problems

Broadcasting a gossip

There are several broadcasting and gossiping protocols that have similarities to

the burning problem. For instance, in the telephone broadcasting problem [5], the

Improved Algorithms for Burning Graph Families 14

input is a directed or undirected graph. A particular vertex is the originator of a

gossip that needs to be transmitted throughout the network via “telephone calls”.

The communication takes place in synchronous rounds. Initially, only the originator

knows the gossip. At each round, any vertex that knows the gossip makes a tele-

phone call to at most one of its (outgoing) neighbors to pass the gossip. The goal is

to schedule these telephone calls so that all vertices of the graph receive the gossip in

a minimum number of rounds [5]. This telephone broadcasting is NP-hard [19, 45],

and an approximation algorithm with a sublogarithmic factor exists[16]. An impor-

tant open problem asks whether an algorithm with constant approximation factor

exists. You could find more details about telephone broadcasting on [21, 37, 41]. The

telephone model is not a good model for some cases where a node can expose all its

neighbors in a single round (e.g., by exposing all neighbors simultaneously via a post

in social media). In these scenarios, the radio model is more relevant, which is often

studied under a distributed setting where it is assumed that vertices have a restricted

amount of information regarding the structure of the graph [11, 20, 30, 40].

Viral marketing

Social contagion is very important from a viral marketing perspective[5]. This is

because social contagion can prove the fact that choosing a few users can result in

a word-of-mouth effect in the environment of a social network [5]. Domingos and

Richardson [14, 42] introduced the influence maximization problems. In those prob-

lems, the goal is to define a number of users who are activated from the beginning

and are capable of influencing the maximum number of users in a network. These

problems are generally NP-hard, and there are approximation algorithms for uncom-

plicated diffusion models in these problems [26, 27]. We refer to [29] for further details

Improved Algorithms for Burning Graph Families 15

on these problems. We note that the burning problem is different from the problem of

influence maximization. The reason is that in burning problem users (vertices) start

fires at different rounds, while in influence maximization problem starting notified

users begin rolling out data simultaneously [5].

The firefighter problem

There is another problem similar to the burning problem which is called firefighter

problem [5]. This problem is very close to the burning problem because it also consid-

ers burning a graph in synchronous and discrete rounds [5]. Assume that the graph

G is given to us. At round 1, a fire will initiate at a given node x of the graph G.

At each following round, one firefighter is able to defend a non-burning vertex and in

the meantime, the fire will spread over all neighbors of the burning vertex which are

undefended. In a situation where the state of a vertex is “defended” or “burning”,

then that vertex will keep that state for all subsequent phases. The termination of

the process takes place when the fire is no longer able to spread. The objective of the

algorithm is to keep the maximum number of vertices that can be saved defended,

which are not burning at the end of the process [5]. See Figure 4 for an example

of the firefighter problem. Even though there are some resemblances between the

firefighter model and the burning problem but their main goals are different from one

another [5]. Namely, in the burning problem, an algorithm wants to burn the graph

in a minimum number of rounds, while in the firefighter problem the algorithm wants

to save a maximum number of vertices from the fire.

Improved Algorithms for Burning Graph Families 16

burning defended

round 1 round 2 round 3

Figure 4: An example of the firefighter problem. At round 1, a fire starts at the root

of the tree (a). At round 2, the firefighter defends the right child of the root, while

the left child is burned (b). At round 3, the firefighter defended another vertex while

the fire spreads to the leftmost leaf of the root. Note that this is the best strategy for

the firefighter, which saves all but three vertices of the graph. The example is taken

from [18].

Epidemics modelling

Modeling epidemics is a related topic to the burning problem which has been

studied in a few previous works [12, 36, 38, 47, 48]. A very general model was

introduced by Wang et al.[8], where a simulation model of a virus spreading through a

stochastic graph was proposed. Similar work was introduced by Comellas et al.[9, 10].

Their approach was similar in terms of the discrete probability model, where it was

assumed that when a vertex is infected, it will keep that statue for a specific time

window. In addition, an infected vertex is also able to infect an α number of neighbors

during each time unit. The authors studied the expected time it takes for a virus to

spread all over the graph and also a setting where several defenders are placed on the

different sections of the graph prior to the initiation of the process. These so-called

“defenders” are capable of not only allowing a vertex that is infected, spread the virus

Improved Algorithms for Burning Graph Families 17

to its neighbors. In this sense, the model is more similar to the firefighter problem.

We note that the stochastic assumption behind these modelings makes them different

from the graph burning problem.

Improved Algorithms for Burning Graph Families 18

3 Problem Definition

The graph burning problem is defined as follows.

Definition 1. Assume that an undirected and unweighted graph G is given. A fire

spreads throughout G in synchronous rounds as follows. At round t = 0, none of

the vertices of the graph are burned. At round t = 1, we select a vertex x1 to burn.

At round t = 2, we select a vertex x2 to burn, while the fire at x1 extends to all its

neighbours. Similarly, at any subsequent round i, at most one fire starts at a vertex

xi, while all unburned vertices that are adjacent to a vertex that is burned at round

xi−1 also burn. This process continues until all vertices are burned. When a vertex is

burned, it will preserve its state as burned in all consequent rounds. In other words,

the vertices do not change their state from “burned” to “unburned”. The goal is to

select the starting location of the fires in a way to minimize the number of rounds that

it takes to burn the graph.

The burning number of a graph G, denoted by bn(G), is the smallest number of

rounds that is needed to burn all the vertices of a graph.

Observation 1. [25] Suppose we are given a path graph P with n vertices. Then

d
√
ne rounds are necessary and sufficient in order to burn this graph completely. In

other words bn(P) = d
√
ne.

To see why the above observation holds, let k = bn(P). The fire started at round

i ≤ k burns at most 2(k − i) + 1 vertices. The total number of burned vertices is

Improved Algorithms for Burning Graph Families 19

Figure 5: A path of length n can be covered with disks with radii of 0, . . . , d
√
ne − 1

i.e., it can be burned in at most
√
n rounds. Here, n = 9, and disks of radii 0, 1, 2

cover the path.

then at most
∑k

i=1 2(k − i) + 1 =
∑k−1

i=0 (2i+ 1) = k(k − 1) + (k − 1) = k2 − 1. This

means that k2 ≥ n + 1or k ≥ d
√
ne. The upper bound argument is similar [25].

A burning scheme can be devised by “covering” nodes in a path with disks of radii

0, 1, . . . , d
√
ne−1. A disk of radii i is associated with a fire started at round d

√
ne−1.

See Figure 5.

Improved Algorithms for Burning Graph Families 20

4 Burning Cactus Graphs

4.1 Overview

This chapter is dedicated to studying the burning problem in cactus graphs (see

Definition 2). We will show that the burning problem is not trivial for this graph

family, in the sense a simple algorithm cannot yield to an optimal or approximate

solution. We provide three findings. First, we consider a subfamily of cactus graphs,

named necklace graphs, and show that the burning process can complete within
√
n+

o(
√
n) rounds in necklace graphs. Second, we show that the burning problem is

NP-complete in cactus graphs. Finally, we introduce an improved approximation

algorithm for burning cactus graphs which has an approximation ratio of 2.5.

Definition 2. [39] A connected graph is called a cactus graph if any edge in the

graph is a part of exactly one cycle in the graph. See Figure 6.

We note that sometimes in the literature, a graph is defined to be a cactus iff

any edge is a part of “at most” one cycle. In this thesis, we considered the definition

above. In particular, we assume trees are not cactus graphs.

4.2 Necklace graphs

We start this chapter by studying the burning problem in a subfamily of cactus

graphs that called necklace graphs.

Improved Algorithms for Burning Graph Families 21

Definition 3. A necklace graph is a cactus graph formed by a set of cycles of uniform

length k that are connected sequentially in a “path-way” manner. More formally, a

connected graph is a necklace graph iff 1) every edge is a part of exactly one cycle,

2) every cycle has at most two vertices that participate in other cycles. 3) all cycles

have the same length. See Figure 6.

Note that a single cycle of length n is a necklace graph. Moreover, a cycle graph

cannot be burned in fewer than d
√
ne rounds. This is because a disk of radius i cannot

burn more than 2i+1 vertices in a cycle. We conclude that there are necklace graphs

that require d
√
ne rounds to burn. In what follows, we provide an almost matching

bound, showing that burning a necklace graph with n vertices can complete within
√
n+O(1) rounds.

Recall that a graph G has treelength k iff there is a tree decomposition for G

such that vertices in each bag of the tree decomposition are at pairwise distance at

most k [15]. We note that the existing approximation algorithms for burning graphs

of small treelength [25] do not always yield to algorithms for burning cactus graphs

because we can make the following observation.

Proposition 1. There are cactus graphs that have unbounded treelength.

The above proposition holds because a cycle of arbitrary large length is a cactus

graph (in fact, a necklace graph) with unbounded treelength.

Theorem 1. Any necklace graph G of size n can be burned within
√
n+o(

√
n) rounds.

Proof. Let k denote the number of cycles in G. First assume k ∈ o(n). Since there

are k cycles, there will be k−1 vertices that appear in more than one cycle. We form

a Travelling Salesperson (TSP) tour of G, which has length n+k−1 = n+o(n) (this

Improved Algorithms for Burning Graph Families 22

Figure 6: Examples of cactus graphs (left) and necklace graphs (right).

is because it visits the vertices that are shared between two cycles twice, and other

vertices once). We can “stretch” the TSP tour to form a path of length n + o(n),

in which o(n) vertices are repeated. The fact that some nodes are repeated in this

path does not increase the burning time. Therefore we can use the same algorithm for

burning paths, as in Observation 1, to burn the TSP tour in
√
n+ o(n) =

√
n+o(

√
n)

rounds. Given that the TSP path covers all vertices in the graph, all vertices will

beurned within
√
n+ o(

√
n) rounds.

Next, suppose k ∈ Θ(n). Then each cycle has length n/k ∈ O(1). Consider a

path starting form any vertex in the leftmost cycle and ending at any vertex at the

rightmost cycle. The length of the path is less than n and hence all vertices on the

path can be burned within d
√
ne rounds. All other vertices are within distance O(1)

of the path, and hence the burning process completes in
√
n+O(1) rounds.

4.3 NP-completeness

The burning problem in general graph is in NP and therefore it is also NP in any

graph family, and in particular in cactus graphs. In what follows, we establish the

NP-hardness of the problem in cactus graphs. For that, we use a reduction from the

burning problem in disjoint path forests which is known to be NP-hard [2]. Given a

Improved Algorithms for Burning Graph Families 23

graph P formed by a set of disjoint paths, the decision problem asks whether it is

possible to burn P within k rounds, for some k ≥ 1. We first prove that burning a set

of disjoint cycles is NP-hard, and use this problem as an intermediate step towards

establishing the NP-hardness of cactus graphs.

Figure 7: A set P of disjoint paths. Burning P is NP-hard, and we use a reduction

from this problem to settle NP-hardness of the burning problem in cactus graphs.

Theorem 2. It is NP-hard to decided whether a set of disjoint cycles can be burned

within k rounds.

Proof. Consider the decision problem that asks whether a given set P0 of paths can

be burned within k rounds, i.e., it can be covered with disks of radii {0, 1, . . . , k− 1}.

We assume the number of disjoint paths in P0 is at most k, for if it is larger than k,

the answer to the decision problem is trivially “no”. This is because any of the paths

require at least one fire.

Suppose P0 contains q paths of length 1 (q ≥ 0), and let P be a copy of P0 in which

these q paths are replaced with q paths of length 2. We claim that P0 can be burned

in k rounds if and only if P can be burned in k rounds. Suppose P0 can be burned in

k rounds, i.e., we can cover P0 with disks of distinct radii from {0, 1, . . . , k−1}. Then

each of the q paths in P0 has been covered with a disk of radii at least 1; such disk is

enough to cover a path of length 2 in P , and hence we can burn P in k rounds. The

other direction is obvious: if we can cover vertices of P with disks of distinct radii

Improved Algorithms for Burning Graph Families 24

u

v

u

v

dc

d′c

dc

d′c

Figure 8: It is possible to shift disks in the burning scheme for cycles such that edges

added to create C are not used.

from {0, . . . , k}, we can clearly use the same covering scheme to cover vertices of P0

(because P0 is an induced subgraph of P).

Next, we reduce the burning problem in P into an instance of burning problem in

disjoint cycles. Create an instance C of the burning problem in cycles by adding an

edge between the endpoints of any of the paths in P . Given that all paths in P have

length at least 2, C is a set of disjoint cycles. We show that it is possible to burn P

in k rounds if and only if it is possible to burn C in k rounds. First, suppose we can

burn P in k rounds. Since P is a spanning subgraph of C (it contains all vertices of

C), the same burning scheme can be used to burn C in k rounds.

Next, suppose C can be burned in k rounds. That is, we can cover vertices of C

with disks of radii {0, 1, . . . , k − 1}. For any cycle c ∈ C, let dc be any disk used to

burn vertices in C. In case there is one or more disk d′c such that dc and d′c intersect

(they both cover a same vertex), we shift d′c so that it does not intersect dc (see

Figure 8), while all vertices in C are still covered by at least one disk. This shifting

process ensures that, in the updated burning scheme, any cycle c ∈ C contains an

edge from which the fire is not transferred, namely the edge that separates dc and d′c.

Therefore, the resulting scheme burns P in k rounds.

Improved Algorithms for Burning Graph Families 25

Next, we reduce the burning problem in a set C of disjoint cycles into the burning

problem in cactus graphs. For that, we add some modifications and also gadget

subgraphs to C. To construct our gadgets, we consider the family of spider graphs.

Definition 4. A spider graph is a tree in which at most one vertex has a degree of

more than two. In other words, it is a collection of paths, known as the legs of the

spider, that share one endpoints. An r−uniform spider graph is a spider graph in

which the length of all legs is equal to r. See Figure 9.

(a) A (non-uniform) spider (b) A uniform spider of length 4.

Figure 9: Examples of spider graph.

Next, we convert spider graphs into a special gadget graph that could help us with

the construction of cactus graphs.

Definition 5. A flower graph is an r−uniform spider graph that has an even number

of legs such that the ending points of pairs of legs are attached by an edge. The value

of r is called the radius of the flower. See Figure 10.

Note that a flower graph is a cactus graph.

We are now ready to settle the NP-hardness of burning cactus graphs.

Improved Algorithms for Burning Graph Families 26

Figure 10: An example of a flower graph with 8 legs.

Theorem 3. It is NP-hard to burn cactus graphs.

Proof. Consider the decision problem that asks whether a give set C of m ≥ 2 disjoint

cycles with n vertices in total can be burned within k rounds. Note that we have

m ≤ k; otherwise the answer to the decision problem is trivially “no”. As proved in

Theorem 2, this problem is NP-hard. From C, we create an instance of the burning

problem in cactus graph as follows. We arbitrarily order cycles in P , and connect

consecutive pairs of cycles via flower graphs Fr that have distinct radii from r ∈

{k, k + 1, . . . , k + m − 2}. The number of legs in each flower graph is set to be 2k2.

Intuitively, this number should large enough so that any optimal burning scheme

needs to start burning spiders from their center. Figure 11 illustrates the reductions

we used to construct our cactus graphs.

We first observe that the graph G is a cactus graph. This is because any edge in

G belongs to either one of the cycles in G or a flower graph. In both cases, it is a

part of exactly one cycle. We also note that our construction takes polynomial time.

We claim that it is possible to burn C in k rounds if and only if one can burn G

in k +m− 1 rounds.

First, suppose it is possible to burn C in k rounds. We use the same burning

scheme to burn the vertices of C in G. That is, we cover these vertices with disks of

Improved Algorithms for Burning Graph Families 27

Figure 11: Construction of a cactus graph G by connecting cycles via flower graphs

of distinct radii from {k, . . . , k +m− 2}.

distinct radii from {0, . . . , k − 1}. It is also possible to cover the flowers in G with

disks of distinct radii from {k, . . . , k +m− 2}. For that, it suffices to put the center

of these disks at the center of the flower graphs. We conclude that we can cover all

vertices of G using disks of distinct radii from {0, 1, . . . , k + m − 2}, which means

there is a burning schedule for G that completes in k +m− 1 rounds.

Next, we show that if a burning scheme for G completes within k+m− 1 rounds,

then there is a burning scheme S for C that completes in k rounds. Note that the

largest flower graph Fk+m−2 has radius k+m−2. We claim that the scheme S places

a disk of radius k+m−2 at the center of such graph. Consider otherwise, i.e., assume

a smaller disk is located at the center of Fk+m−2 or a disk is located at a non-center

of Fk+m−2. In both cases, at least 2k2 − 2 vertices of Fk+m−2 are not covered. That

is, at most two leaves of the spider graph of Fk+m−2 are covered. Given that Fk+m−2

has 2k2 leaves, it is not possible to cover all its vertices with k disks. We conclude

that Fk+m−2 is covered with a disk whose center is at the center of Fk+m−2. With a

similar argument, Fk+m−3 must be covered by a disk of radius k + m − 3, and more

generally the largest m− 1 disks in G must be covered by disks of distinct radii from

{k +m− 2, k +m− 3, . . . , k} in S. We conclude that the remaining disks with radii

from {0, . . . , k − 1} must cover vertices in C. That is, there is a burning scheme for

C that completes within k rounds.

Improved Algorithms for Burning Graph Families 28

Given that the burning problem is in NP for the general graphs, we can conclude

the following theorem.

Theorem 4. The Burning Problem is NP-complete for cactus graphs.

4.4 Approximation algorithms

Overview and necessary lemmas

In this section, we present an algorithm that has an approximation factor of

at most 2.5 and runs in O(n log n) for burning cactus graphs of size n. We start

with proving the following lemmas that are all necessary for proving the desired

approximation factor.

Lemma 1. [5] For any positive integer r, if a graph G contains r vertices with

pairwise distances of at least 2r, then any burning scheme for G needs at least r

rounds to complete.

Proof. Let v1, v2, ..., vr indicate r vertices that are at pairwise distance of at least

2r − 1. No two of these vertices can be covered with a disks with radius ≤ r − 1.

Therefore, to burn these vertices within r rounds (to cover them with disks of distinct

radii from {0, . . . , r − 1}), no two vi and vj can be burned by the same fire (can be

covered by the same disk). Therefore, there must be at least r disks, one for each vi.

Lemma 2. Let s and t be two vertices of a cactus graph. Let g be any positive integer,

and suppose d(s, t) ≥ g. Then there are at most 2 vertices that are at distance g of s

and lie on a shortest path between t and s.

Improved Algorithms for Burning Graph Families 29

a

b

c

s t

a′

Figure 12: An illustration of Lemma 2

Proof. For the sake of contradiction, suppose there are three vertices a, b, c located on

the shortest paths between s and t (see Figure 12) and all three vertices are at distance

g of s. Let a′ be the vertex at distance g−1 of s that appears before a on the shortest

path from s to a. Note that a′ /∈ {a, b, c}. Therefore, (a′, a) is an edge that is part

of the following two cycles: one that goes through (s, . . . , a′, . . . , a, . . . , t, . . . , b, . . . , s)

and one that goes through (s, . . . , a′, . . . , a, . . . , t, . . . , c, . . . , s). Since (a′, a) is a part

of two cycles, the input graph cannot be a cactus, which is a contradiction.

Lemma 3. Let g be an even integer. Consider a set of g disjoint paths, all including

at most 2g vertices. It is possible to burn all vertices in these disjoint paths within

1.5g rounds.

Proof. We would like to show it is possible to cover all vertices in the paths with disks

of distinct radii from {0, 1, . . . , 1.5g}. In order to cover half the paths (0.5g paths), we

use each of the largest 0.5g disks, i.e., those with radii in {g, . . . , 1.5g}. Note that the

radius of these disks is large enough to cover the 2g vertices in a path. For burning

the remaining 0.5g paths with disks of radii {0, 1, . . . , g − 1}, we pair disks of radii i

and g− i to burn the i’th path. The total number of vertices that can be covered by

the two disks is 2(i+ g − i) = 2g. See Figure 13.

Improved Algorithms for Burning Graph Families 30

0.5g paths . . .

. . .

0.5g paths

Figure 13: An illustration of burning a forest of g paths, each of length of at most 2g

length, within 1.5g rounds.

Burn-guess-cactus procedure

Our approximation algorithm is based on a procedure called Burn-guess-cactus(G, g)

that receives as input a cactus graph G and an integer parameter g, and returns one

of the following outputs:

1. A burning scheme that completes the process in at most 2.5g + 2 rounds.

2. “Bad-guess” that guarantees burning cannot be complete in g − 1 rounds (i.e.,

b(G) ≥ g).

For the algorithm, it suffices to find the smallest guess value g∗ for which Burn-

Improved Algorithms for Burning Graph Families 31

guess-cactus(G, g) returns a schedule. That is, the algorithm returns a schedule for

the guess value g = g∗ and Bad-guess for g = g∗− 1. This way, the returned schedule

completes in at most 2.5g∗ + 2 rounds while an optimal burning scheme requires

at least g∗ rounds to complete. This results in an algorithm with an asymptotic

approximation ratio of at most 2.5.

In what follows, we consider the cactus graph G as a rooted cactus, i.e., we select

an arbitrary vertex r as the root of the cactus and define the “depth” of a node as

its distance to the root.

We maintain an initially empty set of center-terminal pairs. Each pair has a

“center”, which is a path of length at most 2g, and a “terminal”, which is singular

vertex. The algorithm is based on a marking scheme. At the beginning, all vertices

are unmarked. There are two phases in the algorithm. At the end of the first phase,

either all vertices are marked, in which case the algorithm proceeds with the second

phase, or Bad-Guess is returned.

Phase 1 of the algorithm works in iterations. At each iteration i, we select (any

of) the deepest unmarked vertex (the one with the maximum distance from the root)

and mark it as a terminal Ti. We will select a path Ci that together with Ti form a

“center-path pair”. For that, we consider the shortest paths between Ti and the root

r of the cactus. By Lemma 2, there are at most two vertices like x and x′ that are at

distance g of Ti and lie on the shortest path between r and Ti. Three scenarios might

happen at this point:

(i) Suppose Ti is within distance g or closer to the root. Since Ti is the deepest

unmarked node, all unmarked nodes must be within distance g of the root r.

In this case, we mark r as a center path, formed by a single vertex, and mark

vertices within distance g of r. Note that all vertices will be marked. In this

case, Phase 1 of the algorithm completes and we proceed with Phase 2.

Improved Algorithms for Burning Graph Families 32

(ii) Suppose there are two vertices x and x′ at distance g of Ti that lie on the

shortest path between r and Ti. For the distance between x and x′, we can

write d(x, x′) ≤ d(x, Ti) + d(r, T ′i) = 2g. Therefore, the shortest path between

x and x′ has length at most 2g. We treat this path as a center Ci to form

a center-terminal pair (Ci, Ti). We proceed with marking all vertices that are

within distance g of any vertex in Ci. Note that, since Ti is the deepest unmarked

node in the graph, the shortest path between any unmarked node and Ti passes

through either x and x′, and we can conclude that any unmarked node is at

distance at least 2g from Ti. This ensures that all future terminals will be at

distance 2g or larger from Ti. See Figure 14a.

(iii) Suppose there is only one vertex x at distance g of Ti. In this case, we consider

a path C formed by a singular vertex x and let (Ci, Ti) form a center-terminal

pair. We proceed with marking all vertices within distance g of x. Similarly to

case (iii), all unmarked vertices (and hence future terminals) will be at distance

at least 2g of the terminal Ti. See Figure 14.

After g iterations of the above process, either all vertices are marked, in which

case we proceed to Phase 2, or we have managed to find g pairs (Ci, Ti). In the second

case, Burn-Guess-Cactus returns Bad-Guess.

Lemma 4. If Burn-Guess-Cactus(G, g) returns Bad-Guess, then it is not possible to

burn G with less than g rounds.

Proof. The algorithm returns Bad-Guess if we have found g center-terminal pairs.

As mentioned earlier, all terminals are at pairwise distance at least 2g. Then we can

apply Lemma 1 (with r = g) to conclude that it is not possible to burn G within less

than g rounds.

Improved Algorithms for Burning Graph Families 33

Next we discuss Phase 2, where the algorithm marks all vertices with less than

g iterations. That means we have found at most g − 1 pairs (Ci, Ti) such that all

vertices in the graph are within distance g of some Ci. Recall that each Ci is either

a single vertex or a path of length at most 2g. So, we can use Lemma 3 to burn all

vertices that are a part of some Ci in at most d1.5g + 1.5e ≤ 1.5g + 2 rounds. The

extra 1.5 factor is for the case when g is an odd number, in which case, we have to

use g+ 1 in Lemma 3. Since all vertices are within distance g of some paths, an extra

g number of rounds ensures that all vertices are burned within 2.5g + 2 rounds. We

can conclude the following lemma:

Lemma 5. The Burn-Guess-Cactus(G, g) either returns Bad-Guess or a schedule

that completes burning g within 2.5g + 2 rounds.

After g iterations of the above process, either all vertices are marked, in which

case we proceed to Phase 2, or we have managed to find g pairs (Ci, Ti). In the second

case, Burn-Guess-Cactus returns Bad-Guess.

Lemma 6. The Burn-Guess-Cactus(G, g) either returns Bad-Guess or a schedule

that completes burning g within 2.5g + 2 rounds.

Proof. If the algorithm does not return Bad-Guess, then it continues to Phase 2, and

as discuss above, we can burn all vertices in 2.5g + 2.

Theorem 5. There is an approximation algorithm with approximation factor at most

2.5 for burning cactus graphs.

Proof. We apply the Burn-Guess-Cactus(G, g) successively to find the smallest value

of g = g∗ for which a burning schedule is returned. By Lemma 6, the schedule com-

pletes burning within 2.5g∗ + 2 rounds. Meanwhile, since Burn-Guess-Cactus(G, g)

Improved Algorithms for Burning Graph Families 34

root r x

x′

C1

T1

(a) Iteration 1: an example of case (ii); the pair (C1, T1) is formed, where C1

is the highlighted shortest path between x and x′.

root r

T2

T1

C2

x

C1

(b) Iteration 2: an example of case (iii); the center-terminal pair (C2, T2) is

formed, where C2 is a singular vertex x.

Figure 14: An illustration of the Burn-Guess-Cactus procedure with g = 4. White

vertices are unmarked, pink vertices are marked, and red vertices are terminals. The

center paths are highlighted. At the end of the second iterations, all vertices will be

marked, and Phase 1 ends.

Improved Algorithms for Burning Graph Families 35

returns Bad-Guess for g = g∗ − 1, by Lemma ??, at least g∗ rounds are needed to

burn G. We conclude that there is an approximation algorithm with approximation

factor 2.5.

Improved Algorithms for Burning Graph Families 36

5 Burning Melon Graphs

5.1 Overview

In this chapter, we study the burning problem in melon graphs. A melon graph is

formed by a set of paths that share both endpoints (see Definition 6). Melon graphs

are special instances of Series-Parallel (SP) graphs. Therefore, the study of melon

graphs can pave the road for studying more general graph families such as graphs with

bounded treewidth (because SP-graphs have treewidth 2) and planar graphs. As we

will show, burning melon graphs is not trivial and hence they are worth studying.

In particular, we show that it is NP-complete to find an optimal burning scheme in

melon graphs. We complement this result with two polynomial-time approximation

algorithms. First, we provide a simple algorithm with an approximation factor of 2.

This algorithm runs in O(n log n) time to burn a melon graph of size n. Second, we

provide an asymptotic polynomial-time approximation scheme (APTAS) for burning

melon graphs.

5.2 Definition and related families

A melon graph is defined as follows:

Definition 6. A melon graph consists of a set of paths and two vertices named poles.

Each of those paths is connected to one of the poles (t) from one end and they are

connected to another pole (s) by their other end [13]. See Figure 15.

Improved Algorithms for Burning Graph Families 37

s t

Figure 15: An example melon graph with vertices s and t being its poles.

Before studying algorithms for burning melon graphs, we need to discuss their

relationship with other graph families. First, we show that melon graphs are not

related to cactus graphs, and hence our approximation algorithm from the previous

chapter cannot be used to burn melon graphs.

Proposition 2. There are melon graphs that are not cactus graphs, and there are

cactus graphs that are not melon graphs.

Some melon graphs are not cactus graphs. For example, in the melon graph of

Figure 15, any edge is a part of multiple cycles.

Some Cactus graphs are not melon graphs. The definition of melon graphs requires

every vertex to be on on a simple path between the poles of the graph. Some Cactus

graphs do not hold this about every vertex. See Figure 16.

Figure 16: An example of a Cactus graph that is not a melon graph.

Improved Algorithms for Burning Graph Families 38

Next, we show that the existing approximation algorithms for burning graphs of

small treelength cannot be used to burn melon graphs.

Proposition 3. There are melon graphs that have unbounded treelength.

The above proposition holds because a cycle of arbitrary large length is a melon

graph with unbounded treelength.

Melon graphs have treewidth at most 2. This is because they are special instances

of SP-graphs, which are known to have treewidth 2 [7]. Unfortunately, however, there

is no previous work for burning graphs of small treewidth. Therefore, to provide

algorithms for burning melon graphs, new approaches might be needed.

5.3 NP-completeness

In this section, we show that burning melon graphs is NP-complete.

Lemma 7. The burning problem, when restricted to melon graphs, is NP-complete.

Proof. Burning melon graphs is a subcategory of the burning graph problem. Bonato

et al. [1] prove that the burning problem is in NP. Considering the fact burning melon

graphs is a subcategory of the more general problem (burning general graphs) we can

conclude that burning melon graphs is NP.

Next, we provide a hardness result. We use a reduction from burning a set of disjoint

paths, which is known to be NP-complete [1]. Let P be a set of m disjoint paths (of

different lengths), and suppose a decision problem asks whether P can be burned in

at most k rounds (for some integer k > 1). We create an instance of the burning

problem in melon graphs as follows.

Improved Algorithms for Burning Graph Families 39

Create a melon graph by creating a copy of P . We add a vertex s that is linked

to one endpoint of all paths via paths of length k. That is, there are k − 1 vertices

between s and the endpoint of any path. Similarly, we add a vertex t that is linked

to the other endpoints of all paths via paths of length k− 1. That is, there are k− 2

vertices between t and the endpoint of any path. We also add to G another k + 1

paths between s and t. These new paths each include 2k − 3 vertices other than s

and t. Note that graph G is clearly a melon graph with s and t being its poles. See

Figure 17.

.

s

k −
1
no
de
s

. . .

t

k − 2 nodes

Figure 17: An illustration of the reduction used for the NP-hardness. On the left,

we have a set P of disjoint paths, and on the right, we have the constrcuted melon

graph G.

Improved Algorithms for Burning Graph Families 40

The decision problem for burning melon graph asks whether it is possible to burn

G in k+ 2 rounds. In what follows, we show that it is possible to burn P in k rounds

if and only if it is possible to burn G in k + 2 rounds.

First, we show that if one can burn P in k rounds, it is possible to burn G in k + 2

rounds. Assume that it is possible to burn P in k rounds. That is, we can cover all

vertices in P with disks of radii 0, 1, . . . , k−1. A burning scheme for G can be devised

by first burning s at round 0, then t at round 1, and then applying the same burning

scheme that was used for burning P in k rounds. The first two fires, initiated at s

and t, will burn all vertices that are in G and not in P . This is because the extra

vertices added to G are either within distance k − 1 of s or distance k − 2 of t. The

remaining fires (which were used for burning P) will be used to burn all vertices of

G that are copied from P . Note that these fires will be associated with disks of the

same radii used for burning P . See Figure 18.

Next, we show that if it is possible to burn G in k + 2 rounds (with disks of

radii 0, . . . , k + 1), then it is possible to burn P in k rounds. Consider a burning

scheme that burns G in k+ 2 rounds. We claim that the first two fires must burn the

two poles of G. We know that there are k + 1 paths, each including 2k − 3 vertices

(excluding the poles) that link s and t. The middle points (vertices) of these paths

are at distance k−1 from both poles. So, the pairwise distance between these middle

points is 2k − 2. Except for the first fire, all other fires are associated with the disk

of radii less than k − 1. Therefore, if the first fire does not start in any of the poles,

no two middle points can share a fire. Given that there are k+ 1 middle points, k+ 1

fires will be needed, which is not possible in a scheme that completes in k rounds. We

conclude that the first fire must burn one of the poles. Given the symmetric nature

of poles, suppose the first fire burns s. Next, we show that the second fire must start

Improved Algorithms for Burning Graph Families 41

at t. The fire started at s burns vertices within distance k − 1 of s. On any of the

extra paths added between s and t, the furthest vertex from t that is not burned by

the fire at s is at distance k − 2 of t. The pairwise distance between these “furthest

points” is, therefore, 2k − 4. Given that k + 1 paths added between s and t, there

are k + 1 vertices that are at pairwise distance 2k − 4 which are not burned by the

fire at s. If the fire at t does not start at round 2, no two of the furthest vertices

can be burned by the same fire (because any such fire must “pass through t”), and

hence k + 1 fires are needed, which is not possible, given that the burning schedule

completes in k rounds.

We conclude that if there is a burning scheme that completes in k + 2 rounds

for burning G, it must be that the first two fires burn the poles of G. Therefore, no

vertex copied from P can be burned by these first two fires. We conclude that all

vertices copied from P are burned by the remaining k fires. That is, they are covered

by disks of radii 0, 1, . . . , k − 1 and hence P can be burned in k rounds.

5.4 A O(n log n)-time approximation algorithm

In this section, we present an algorithm that has an approximation factor of at

most 2 and runs in O(n log n) for burning melon graphs of size n.

Outline

The algorithm is based on a procedure named Burn-Guess-Melon. This procedure

receives a melon graph G of size n and a guess value g ≤ 2
√
n (note that 2

√
n is an

upper bound for burning connected graphs) returns:

• either a “Bad-Guess”, which indicates that it is not possible to burn G in g

rounds

Improved Algorithms for Burning Graph Families 42

• or a burning scheme that completes in at most 2g rounds.

Our approximation algorithm works by finding the smallest value of g for which

Burn-Guess-Melon returns a scheme. Let g∗ denote such value. Since the outcome has

been Bad-Guess g∗ − 1, we can conclude that the optimal burning schedule requires

at least g∗ rounds. Given that our scheme completes at most 2g∗, an approximation

factor of at most 2 follows.

Burn-Guess-Melon procedure

The Burn-Guess-Melon procedure receives a graph G, and a guess value g and

must output either Bad-Guess or a scheme that completes within 2g rounds. Let

P1, P2, . . . , Pm be the paths resulting from deletion of the poles of G. Let ni denote

the number of vertices in Pi, and let xi = ni mod (2g − 1).

We cover vertices of each path (if any), by grouping collections of 2g−1 consecutive

vertices. The middle vertex from each group is marked as a “center”. This ensures

that all centers are at a pairwise distance of at least 2g−1. The remaining xi vertices

will be within distance g of one of the poles. See Figure 18.

At the end of this process, if the number of centers becomes larger than g, the

procedure returns Bad-Guess. Otherwise, when all vertices are added to a group, we

devise the following burning scheme: In the first two rounds, we burn the two poles.

In the subsequent q ≤ g rounds, we burn the center vertices in an arbitrary order.

Lemma 8. If Burn-Guess-Melon returns Bad-Guess for the guess value g and a graph

G, then it is not possible to burn G within g rounds.

Improved Algorithms for Burning Graph Families 43

s
t

g g

g

g g

. . .

Figure 18: An illustration of the Burn-Guess-Melon for g = 5. Vertices in each path

in the melon graph are covered in groups of 2g − 1(= 9). The centers of the disks

are (red vertices) are at pairwise distance 2g− 1. The disks are located such that the

remaining xi nodes from each paths are within distance g from one of the poles.

Proof. Burn-Guess-Melon returns Bad-Guess only if there are g+ 1 vertices (centers)

of pairwise distance at least 2g − 1. Suppose for the sake of contradiction that there

is a scheme that completes in g rounds, i.e., it is possible to cover vertices of G with

disks of radii 0, 1, . . . , g − 1. Given that centers are at pairwise distance 2g − 1, the

same disk cannot cover two of them. That is, we need a separate disk for each center,

resulting in at least g+ 1 disks. this contradicts the fact that there are g disks (fires)

in scheme S.

Lemma 9. If the Burn-Guess-Melon returns a scheme for input graph G and guess

value g, then it is possible to burn G in at most 2g + 2 rounds.

Proof. Burn-Guess-Melon returns a scheme when a set of at most g centers are formed,

and all vertices are within distance 2g of a pole or within distance g−1 of some center.

Since we burn poles in the first two rounds, all vertices within distance 2g of a pole

will be burned within 2g + 2 rounds. Given that we burn centers in arbitrary order

Improved Algorithms for Burning Graph Families 44

and there are q ≤ g centers, the last center is burned at round q + 2 ≤ g + 2. Since

all vertices are within distance g − 1 of one center, all vertices will be burned within

q+2+g−1 ≤ 2g+1 rounds. To summarize, all vertices will burn by round 2g+2.

Theorem 6. Let bn(G) denote the burning number of G, i.e., the optimal number of

rounds to burn a melon graph G. There is a polynomial-time approximation algorithm

for burning G that completes within 2bn(G) + 2 rounds.

Proof. Given a melon graph G, we find the smallest value g∗ for which Burn-Guess-

Melon(G, g) returns a scheme. Since Burn-Guess-Melon(G, g∗−1) returns Bad-Guess,

by Lemma 8, we conclude that the optimal burning schedule requires at least g∗

round. Moreover, since a schedule is returned for guess value g∗, by Lemma 9, we get

a burning scheme that completes in 2g∗+ 2 rounds. The approximation factor of the

algorithm is thus at most 2g∗+2
g∗

, which converges to 2 for large values of g∗.

Running time

To study the running time of the algorithm, we first investigate the running time

of Burn-Guess-Melon(G, g). Let n denote the number of vertices in G. Assuming the

graph is stored using an adjacency list, one can mark vertices within desired distances

of the poles (g − 1 + bxi/2c and g − 1 + bxi/2c of Pi) by traversing each vertex at

most once (using, e.g., a Breadth-First-Approach). Similarly, we can locate centers

and mark vertices within distance 2g − 1 of them by traversing each vertex at most

once. Therefore, the running time of one run of Burn-Guess-Melon is O(n). In order

to find the best guess value g∗, we can apply a binary guess in the range [1, d2
√
ne].

This takes O(log n) calls of Burn-Guess-Melon. We can conclude that the running

time of our algorithm is O(n log n)

Improved Algorithms for Burning Graph Families 45

5.5 An APTAS for burning melon graphs

Outline

We extend the algorithm of the previous section to get an asymptotic polynomial-

time approximation scheme (APTAS) for burning melon graphs. As before, we devise

a procedure, named Burn-Guess-Melon∗(G, g), which receives a melon graph and a

guess value g. The Burn-Guess-Melon∗(G, g) either returns Bad-Guess, which implies

that it is not possible to burn G within g rounds, or returns a scheme that completes

in (1 + ε)g + c rounds, where ε is a parameter of the algorithm, and c is a constant

independent of the input size. As before, we run Burn-Guess-Melon∗ on different

values of g to find the smallest value g∗ for which a schedule is returned. Since

the procedure returns Bad-Guess for g∗ − 1, an optimal scheme requires at least g∗

rounds. Meanwhile, our scheme completes in (1 + ε)g∗2 + 2 rounds. This ensures an

approximation factor of (1 + ε) when the value of g∗ is asymptotically large.

Burn-Guess-Melon∗ procedure

The Burn-Guess-Melon∗ procedure receives a graph G, and a guess value g and

must output either Bad-Guess or a scheme that completes within (1+ε)g∗+2 rounds,

where ε < 1 is a positive parameter.

As before, let P1, P2, . . . , Pm be the paths resulting from deletion of the poles of

G. Let ni denote the number of vertices in Pi. We mark vertices within distance g

of the left endpoint of Pi as well as the g vertices of the right endpoint of Pi. So any

vertex marked at the beginning is within distance g of one pole of G.

We remove marked vertices and consider the path forest P induced by the remain-

ing vertices. We apply the PTAS of [5] to get a burning scheme SP for burning P .

Let q denote the number of rounds that the PTAS for burning P takes. There are

two possibilities to consider:

Improved Algorithms for Burning Graph Families 46

• If q ≤ (1 + ε)g rounds, we return a scheme SG for burning G that starts with

first burning the two poles of G and then applies SP to burn the remainder of

the graph. Note that SG requires two more rounds than SP .

• If q > (1 + ε)g, the Burn-Guess-Melon∗ returns Bad-Guess.

Lemma 10. If Burn-Guess-Melon∗(G, g) returns Bad-Guess, then it is not possible

to burn G within g rounds.

Proof. Suppose Burn-Guess-Melon∗ returns Bad-Guess. Since the vertices within

distance g of the poles were marked at the beginning, vertices in different components

(paths) in P have a pairwise distance larger than 2g and hence the same fire cannot

be used to burn two of them. This means that if one can burn G within g rounds,

the same schedule can be used to burn P within g rounds. We show, however, that

it is not possible when the procedure returns Bad-Guess. Since Burn-Guess-Melon∗

returns Bad-Guess, the PTAS for P outputs a burning scheme that completes in

q ≥ (1 + ε)g rounds. We know that q ≤ (1 + ε)bn(P), i.e., bn(P) ≥ q/(1 + ε), any

burning scheme for P requires at least q/(1 + ε) = g round.

Lemma 11. If the Burn-Guess-Melon∗(G, g) returns a scheme, then it is possible to

burn G in at most (1 + ε)g + 2 rounds.

Proof. Burn-Guess-Melon returns a scheme when the scheme SP for burning P com-

pletes in q ≤ (1 + ε)g rounds. The burning scheme for G starts with burning the

poles of G and then follows the scheme of SP . Given that all unmarked vertices at

the beginning of the procedure are within distance g of a pole, all of them will be

Improved Algorithms for Burning Graph Families 47

burned by round g+ 2. All other vertices, i.e., vertices in P are also burned by g+ 2

rounds, given that the burning scheme for them follows SP by a delay of 2 rounds.

Theorem 7. Let bn(G) denote the optimal number of rounds to burn a melon graph

G. For any positive parameter ε < 1, there is a polynomial-time approximation

scheme for burning G that completes in (1 + ε)bn(G) + 2 rounds.

Proof. Given a melon graph G, we find the smallest value g∗ for which Burn-Guess-

Melon∗(G, g) returns a scheme. Since Burn-Guess-Melon∗(G, g∗ − 1) returns Bad-

Guess, by Lemma 10, we conclude that the optimal burning schedule requires at least

g∗ round. Moreover, since a schedule is returned for guess value g∗, by Lemma 11, we

get a burning scheme that completes in (1+ε)g∗+2 rounds. The approximation factor

of the algorithm is thus at most (1+ε)g∗+2
g∗

, which converges to 2 for asymptotically

large values of g∗.

The PTAS of [23] is based on another PTAS for the bin covering problem. These

algorithms are fully-polynomial, that is, their running time is polynomial on both 1/ε

and the number n of vertices in the input. Unfortunately, however, these polynomials

grow fast with n and 1/ε. In particular, the running time of one run of Burn-Guess-

Melon∗ takes O(α5n2 log(αn)), for α = 1/ε [23]. Therefor this PTAS is also considered

an FPTAS.

Improved Algorithms for Burning Graph Families 48

6 Concluding Remarks

In this thesis, we studied the graph burning problem for the cactus and melon

family of graphs. We note that the burning problem is generally harder when the un-

derlying graph is sparse (e.g., a tree). This makes the burning problem different from

many other optimization problems, which are easy in sparse graphs. As expected,

the problem is not trivial for cactus and melon graphs, as we proved via our hardness

results.

Here is a short summary of our contributions:

• Proving that burning problem is NP-complete in cactus graphs.

• An approximation algorithm for burning cactus graphs with an approximation

ratio of 2.5 (which is an improvement over the approximation factor 3 for burn-

ing general graphs).

• An algorithm that burns necklace graphs, a subfamily of cactus graphs, in
√
n+ o(

√
n), which is optimal within lower order terms.

• We prove that the burning problem is NP-complete in melon graphs.

• We provide an approximation algorithm with an approximation factor of 2

for burning melon graphs and a slower polynomial-time approximation scheme

(with an approximation factor 1 + ε) for burning melon graphs.

For future work, improving the current approximation algorithms that we have

proposed for cactus graphs is an interesting subject. We believe a PTAS might exist

Improved Algorithms for Burning Graph Families 49

for cactus, and more generally, for SP-graphs (and possibly for the even more-general

class of graphs with bounded treewidth). Another interesting open problem is to

investigate the hardness of the burning problem in necklace graphs.

Bibliography

[1] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, and E. Roshanbin. Burning a

graph is hard. Discrete Applied Mathematics, 232:73 – 87, 2017.

[2] S. Bessy, A. Bonato, J. C. M. Janssen, D. Rautenbach, and E. Roshanbin. Bounds

on the burning number. Discret. Appl. Math., 235:16–22, 2018.

[3] A. Bonato, J. Janssen, and E. Roshanbin. Burning a graph as a model of social

contagion. In International Workshop on Algorithms and Models for the Web-

Graph, pages 13–22. Springer, 2014.

[4] A. Bonato, J. Janssen, and E. Roshanbin. How to burn a graph. Internet

Mathematics, 12(1-2):85–100, 2016.

[5] A. Bonato and S. Kamali. Approximation algorithms for graph burning. In

T. Gopal and J. Watada, editors, Theory and Applications of Models of Compu-

tation, pages 74–92, Cham, 2019. Springer International Publishing.

[6] A. Bonato and S. Kamali. An improved bound on the burning number of graphs.

arXiv preprint arXiv:2110.01087, 2021.

[7] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM,

1999.

50

Improved Algorithms for Burning Graph Families 51

[8] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic

thresholds in real networks. ACM Transactions on Information and System

Security (TISSEC), 10(4):1–26, 2008.

[9] F. Comellas, M. Mitjana, and J. Peters. Broadcasting in small-world communi-

cation networks. TIC, 1997:0963, 2002.

[10] F. Comellas, M. Mitjana, and J. G. Peters. Epidemics in small world communi-

cation networks. Technical report, Tech. Rep SFU-CMPT-TR-2002, 2002.

[11] A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with un-

known topology. In 44th Annual IEEE Symposium on Foundations of Computer

Science, 2003. Proceedings., pages 492–501. IEEE, 2003.

[12] Z. Dezső and A.-L. Barabási. Halting viruses in scale-free networks. Physical

Review E, 65(5):055103, 2002.

[13] T. Dissaux, G. Ducoffe, N. Nisse, and S. Nivelle. Treelength of series-parallel

graphs. In C. E. Ferreira, O. Lee, and F. K. Miyazawa, editors, Proceedings of the

XI Latin and American Algorithms, Graphs and Optimization Symposium, LA-

GOS 2021, Online Event / São Paulo, Brazil, May 2021, volume 195 of Procedia

Computer Science, pages 30–38. Elsevier, 2021.

[14] P. Domingos and M. Richardson. Mining the network value of customers. In

Proceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 57–66, 2001.

[15] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diam-

eter. Discrete Mathematics, 307(16):2008–2029, 2007.

Improved Algorithms for Burning Graph Families 52

[16] M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone multi-

cast. Journal of Computer and System Sciences, 72(4):648–659, 2006.

[17] R. Elsässer. On the communication complexity of randomized broadcasting in

random-like graphs. In Proceedings of the eighteenth annual ACM symposium on

Parallelism in algorithms and architectures, pages 148–157, 2006.

[18] S. Finbow and G. MacGillivray. The firefighter problem: a survey of results,

directions and questions. Australas. J Comb., 43:57–78, 2009.

[19] M. R. Gary and D. S. Johnson. Computers and intractability: A guide to the

theory of np-completeness, 1979.

[20] M. Ghaffari, B. Haeupler, and M. Khabbazian. Randomized broadcast in radio

networks with collision detection. Distributed Computing, 28(6):407–422, 2015.

[21] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A survey of gossiping

and broadcasting in communication networks. Networks, 18(4):319–349, 1988.

[22] M. Hiller, E. Triesch, and A. M. Koster. On the burning number of p-caterpillars.

arXiv preprint arXiv:1912.10897, 2019.

[23] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation

scheme for bin covering. Theoretical Computer Science, 306(1-3):543–551, 2003.

[24] B. Jyothsna and B. Radhakrishnan Nair. Burning number of some families and

some products of graphs. International Journal of Pure and Applied Mathemat-

ics, 118(18):1489–1501, 2018.

[25] S. Kamali, A. Miller, and K. Zhang. Burning two worlds. In International

Conference on Current Trends in Theory and Practice of Informatics, pages

113–124. Springer, 2020.

Improved Algorithms for Burning Graph Families 53

[26] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 137–146, 2003.

[27] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 137–146, 2003.

[28] A. Khan and E. Sharma. Tight approximation algorithms for geometric bin

packing with skewed items. arXiv preprint arXiv:2105.02827, 2021.

[29] J. Kleinberg. Cascading behavior in social and economic networks. In Proceedings

of the fourteenth ACM conference on Electronic commerce, pages 1–4, 2013.

[30] D. R. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topol-

ogy radio networks. Distributed Computing, 19(3):185–195, 2007.

[31] M. R. Land and L. Lu. An upper bound on the burning number of graphs.

In International Workshop on Algorithms and Models for the Web-Graph, pages

1–8. Springer, 2016.

[32] H. Liu, X. Hu, and X. Hu. Burning number of caterpillars. Discrete Applied

Mathematics, 284:332–340, 2020.

[33] D. Mitsche, P. Pra lat, and E. Roshanbin. Burning graphs: a probabilistic per-

spective. Graphs and Combinatorics, 33(2):449–471, 2017.

[34] D. Mitsche, P. Pra lat, and E. Roshanbin. Burning number of graph products.

Theoretical Computer Science, 746:124–135, 2018.

[35] D. Mondal, N. Parthiabn, V. Kavitha, and I. Rajasingh. Apx-hardness and

Improved Algorithms for Burning Graph Families 54

approximation for the k-burning number problem. arXiv e-prints, pages arXiv–

2006, 2020.

[36] M. E. Newman, I. Jensen, and R. Ziff. Percolation and epidemics in a two-

dimensional small world. Physical Review E, 65(2):021904, 2002.

[37] A. Nikzad and R. Ravi. Sending secrets swiftly: Approximation algorithms

for generalized multicast problems. In International Colloquium on Automata,

Languages, and Programming, pages 568–607. Springer, 2014.

[38] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks.

Physical review letters, 86(14):3200, 2001.

[39] B. Paten, M. Diekhans, D. Earl, J. S. John, J. Ma, B. Suh, and D. Haus-

sler. Cactus graphs for genome comparisons. Journal of Computational Biology,

18(3):469–481, 2011.

[40] D. Peleg. Time-efficient broadcasting in radio networks: A review. In Inter-

national Conference on Distributed Computing and Internet Technology, pages

1–18. Springer, 2007.

[41] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast

time. In Proceedings 35th Annual Symposium on Foundations of Computer Sci-

ence, pages 202–213. IEEE, 1994.

[42] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral mar-

keting. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 61–70, 2002.

[43] N. Robertson and P. D. Seymour. Graph minors. iii. planar tree-width. Journal

of Combinatorial Theory, Series B, 36(1):49–64, 1984.

Improved Algorithms for Burning Graph Families 55

[44] K. A. Sim, T. S. Tan, and K. B. Wong. On the burning number of general-

ized petersen graphs. Bulletin of the Malaysian Mathematical Sciences Society,

41(3):1657–1670, 2018.

[45] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information dissemination

in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

[46] W. Wang, S. Finbow, and P. Wang. The surviving rate of an infected network.

Theoretical Computer Science, 411(40-42):3651–3660, 2010.

[47] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks.

nature, 393(6684):440, 1998.

[48] D. H. Zanette and M. Kuperman. Effects of immunization in small-world epi-

demics. Physica A: Statistical Mechanics and its Applications, 309(3-4):445–452,

2002.

	List of Figures
	Introduction
	The burning problem
	Approximation algorithms
	Polynomial-Time Approximation Schemes (PTASs)

	Contributions

	Literature Review
	Burning number
	Burning graph families
	Computational complexity
	Similar problems
	Broadcasting a gossip
	Viral marketing
	The firefighter problem
	Epidemics modelling

	Problem Definition
	Burning Cactus Graphs
	Overview
	Necklace graphs
	NP-completeness
	Approximation algorithms
	Overview and necessary lemmas
	Burn-guess-cactus procedure

	Burning Melon Graphs
	Overview
	Definition and related families
	NP-completeness
	A O(n logn)-time approximation algorithm
	Outline
	Burn-Guess-Melon procedure
	Running time

	An APTAS for burning melon graphs
	Outline
	Burn-Guess-Melon* procedure

	Concluding Remarks
	Bibliography

