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                                                               ABSTRACT  

 

Olayinka Adamolekun, M.Sc., The University of Manitoba, April 2019. Field Validation of 
Proximal Sensors on a Typical Prairie Field.                                                                         
Advisor: Dr. Wole Akinremi 

 

Spatial variability of soil properties across fields affect crop yield potential, available water, and 

other site-specific management zones. The concept of Precision Agriculture can only be 

achieved when operationally feasible methods of depicting spatial variability in soil properties 

have been devised. Hence, the use of proximal sensors to estimate soil properties at the field 

scale. The objectives of this study were to investigate the spatial distribution of bulk density with 

depth, compare the spatial pattern of soil moisture in two seasons (Spring 2014 and Fall 2017), 

determine the potential of using proximal sensors to estimate soil organic carbon, total carbon, 

total nitrogen, and soil moisture. Bulk density and soil moisture content showed strong spatial 

correlation from the soil surface to 75 cm depth. The spatial pattern of soil moisture content was 

temporally invariant as similar spatial coherent regions were found in both seasons (Spring of 

2014 and Fall of 2017). Measurements made using the Veris OpticalMapper had a good 

correlation with soil organic carbon, total carbon, and total nitrogen that were measured in the 

lab. Measurements made with the ground penetrating radar was also well correlated with soil 

moisture content determined by the thermogravimetric method. Soil organic carbon had a root 

mean square error of 0.28, an R2 of 0.70, and ratio of prediction to deviation of 2.40, total carbon 

had a root mean square error of 0.57, R2 of 0.67, and ratio of prediction to deviation of 2.01, and 

total nitrogen had a root mean square error of 0.58, R2 of 0.68, and ratio of prediction to deviation 

of 1.80. Ground penetrating radar measurements of soil moisture content had a R2 of 0.83 and 

root mean square error of 0.014.  
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Our results showed that variation of bulk density and soil moisture content exists within the field 

and at various depths that the stability in the spatial pattern of soil moisture content with time 

was due to soil texture. Both sensors have the potential to estimate soil properties with an 

acceptable degree of accuracy, the Veris OpticalMapper for soil organic carbon, total carbon, 

total nitrogen, and ground penetrating radar for soil moisture content on a Canadian Prairies 

field.  
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                                                              FOREWORD  

Guidelines of the Department of Soil Science, University of Manitoba were taken into 

consideration in the preparation of this thesis in manuscript format. Chapter 1 consists of an 

extensive literature review of spatial variability in soil properties and the use of proximal sensors 

along with the objectives of this research. Chapter 2 describes the spatial variability of bulk 

density with depth and the spatial pattern of soil moisture in two seasons (Spring of 2014 and 

Fall of 2017) on a loamy sand over the Assiniboine Delta Aquifer. Chapter 3 explores the 

potential of the Veris OpticalMapper to make real time measurements of soil organic matter, 

total carbon and total nitrogen and produce maps of the spatial variability within field. Chapter 

4 will focus on the use of Ground Penetrating Radar to estimate soil moisture content. Chapter 

5 summarizes the findings of the research, implications, and recommendation for further 

research. Chapter 2, 3, and 4 will be a manuscript each, and will be submitted for publication. 
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                                                    INTRODUCTION 

1.1. Precision Agriculture 

Our ability to measure spatial and temporal variation of soil properties within fields, and the 

development of Global Positioning Systems have resulted in the advent of Precision 

Agriculture (Stenberg et al., 2010). Site specific management / Precision Agriculture (PA) is a 

term used to encompass a range of devices that are used to collect agriculture information and 

the geospatial tools that enable resources to be applied and take advantage of the inherent field 

variability. The advent of site-specific management requires the utilization of a large data set 

and detailed soil information to enhance crop productivity and environmental quality at a finer 

spatial resolution (Harmon et al., 2005). The intent of site-specific management is to maximally 

utilize soil, water resources, and chemical inputs based on the variability in soil properties and 

this can only be achieved when accurate information about soil properties are obtained (Cho, 

2016; Perron et al., 2018). 

1.2. Spatial variability in soil properties 

Numerous studies have shown the variability of soil within a landscape, and within the soil 

profile, as well as its importance in agriculture (Miller, 2012; Joao et al., 2014). Sudduth et al., 

(2015) reported spatial and temporal variability of electrical conductivity. Jonard (2013) also 

reported the characterization of tillage effects on spatial variation of soil properties. Delbari et 

al., (2011) investigated the spatial structure of soil texture within landscape, at the field scale 

and in both landscape and field levels and found that samples taken in close proximity are 

efficient in mapping spatial variation with low uncertainty of prediction than samples taken 

further apart. Most farmers consider the soil to be uniform for its management, but soil 

properties are variable in space and time.  
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Soils commonly exhibit inherent variability of properties such as texture, depth of soil, and 

organic carbon content, which influences many physical and chemical properties that can affect 

available plant nutrients leading to variability in yield (Shahandeh et al., 2011). Castrignanò et 

al., (2015) reported that agricultural management practices applied to fields such as tillage, 

irrigation, and the use of heavy machinery can affect edaphic properties leading to variation in 

soil. Soil variability within field brings about variation in yield potential, and because this yield 

varies, there is the need to improve the utilization of inputs by varying the rate of application 

based on the pattern of soil variation. The concept of Precision Agriculture can only be 

achieved when operationally feasible methods of depicting spatial variability in soil properties 

are devised. 

1.3. Proximal soil sensing  

Proximal soil sensing is the use of field-based sensors to measure signals directly from the soil 

while in close proximity (<2 m) (Viscarra Rossel et al., 2011). Adamchuk et al. (2004a) 

categorized different sensors based on their design concept. They include the Reflectance based 

soil sensors (Visible–near infrared and Mobile (on-line) field vis–NIR), conductivity, 

resistivity, and permittivity based soil sensors (time domain reflectance (TDR), frequency 

domain reflectance (FDR), ground penetrating radar (GPR), and electromagnetic induction 

(EMI) (Mahmood, 2013), passive radiometric based soil sensors (Gamma-ray spectrometers), 

strength based soil sensors (draught sensors), electrochemical based soil sensors (Ion-sensitive 

field-effect transistors). Allred et al., (2008) reported that conventional methods of soil 

sampling are labour intensive and are not cost effective. The labour and cost requirement 

associated with conventional sampling sets in limitation to sampling at a density that precisely 

maps the variability existing in the field. 
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Therefore, the use of soil sensors has provided spatially dense data that are cost effective 

(Dhillon et al., 2010). In addition, soil sensors have the potential to obtain large sample data 

compared to other sampling techniques, as well as increase the entire spatial accuracy when 

that of individual measurement is low (Daran, 2014). This makes it an attractive tool for site-

specific decisions in many environments, particularly with regards to soil characterization. 

1.4.  Non-invasive Geophysical methods applied to Agriculture. 

Bulk density is a vital property of the soil that varies with the soil structural conditions. The 

knowledge of bulk density is important in precision agriculture as it affects plant nutrient 

availability, movement of air and water through the soil, the rooting depth, ease of seedling 

emergence, permeability of soil to water, and can be used to assess soil compaction as well as 

in the planning of modern farm techniques (Ping et al., 2016). Bulk density increases with 

depth due to overburden pressure, low organic matter content and reduced pore space that 

occurs subsurface, resulting in soil variability at depth. Due to the vast nature of agricultural 

soil systems, the use of sensing techniques that can provide information about the soil from a 

single sensor has been said to be inadequate and invalid. Therefore, to obtain more accurate 

information, sensors based on different measurement principles should be used to separate 

various soil properties (Castrignanò et al., 2015), hence the use of a Ground Penetrating Radar. 

1.4.1. Ground Penetrating Radar (GPR) 

Doolittle et al., (2012) reported that over the last three decades, the use of geophysical methods 

has remarkably grown in soil investigation. Geophysical methods most commonly used in these 

pursuits include electromagnetic induction (EMI), ground penetrating radar, transient EMI, 

galvanic resistivity, and magnetics (Allred, 2011).  

These methods are used to infer and better understand the spatial variability of soils and its 

properties, and to guide observations and sampling. GPR is a time-dependent geophysical 
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technique and nondestructive method which uses electromagnetic radiation with central 

frequencies ranging from 50 -1200 MHz (Lunt et al., 2005) to map shallow subsurface 

properties at field scale with high temporal and spatial resolutions (Jonard et al., 2011). Jeffery 

et al., (2008) reported that GPR can provide precise information about buried objects as well 

as a three-dimensional pseudo image of the subsurface with an accurate depth estimate. Three 

GPR techniques are used to map soil moisture variability in an agricultural field. The direct 

ground wave (Mahmoudzadeh, et al., (2012), surface reflection coefficient (on-ground GPR), 

and surface reflection inversion (off-ground GPR) (Reza, 2013). Furthermore, off-ground and 

on-ground penetrating radar was used in a study carried out by (Jonard et al., 2013) in 

characterizing spatial variation in soil moisture. 

1.4.2. Basic principle of the GPR. 

Ground Penetrating Radar works on the principle of electromagnetic energy in the form of an 

electromagnetic wave (Jeffery et al., 2008). Electromagnetic pulse is transmitted through a 

medium, and the receiving antenna(s) collects the reflected energy (Francesco and Fabio, 

2013). Ground Penetrating Radar systems transmit short pulses of very high and ultrahigh 

frequency (30 MHz to 1.2 GHz) electromagnetic energy into the ground from the antenna. Each 

pulse consists of a spectrum of frequency (Butnor et al., 2001). The transmitted pulse of energy 

is propagated downward into the soil. The receiving unit intensifies and samples the reflected 

energy converting it to a similarly shaped waveform in a lower frequency range. The period it 

takes for the electromagnetic energy to move from the antenna to a subsurface and back is 

measured by the GPR.  

Rial et al., (2005) reported that for GPR data to be more useful, it must be integrated with a 

GPS (Global Positioning System), which helps in obtaining visually georeferenced data. This 

is also useful during post analysis whereby the position of the radar can be adjusted per the 
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time stamp of the two closet positions recorded with the GPS. The integration of geophysical 

methods with GPS, data processing software, and GIS (Geographical Information Systems) 

have fostered the expanded use of geophysical techniques in soil investigations (Castrignano 

et al., 2018). 

1.4.3.   Applications and limitations of GPR 

Ground Penetrating Radar is principally used as a superior control device to estimate spatial 

and temporal variations in soil properties. Ground Penetrating Radar has been applied widely 

in many fields in civil engineering and geosciences (Salucci et al., 2014), archeological 

research (Conyers, 2013) investigation of water table depth (Mahmoudzadeh et al., 2012) 

animal burrow detection (Chlaib et al., 2014) and to assess the inorganic pollutant 

contamination in ground water (Wijewardana et al., 2015). Ground Penetrating Radar has been 

used extensively in estimating soil water content and in measuring water content profile, 

estimating the spatial variability of soil water content, and under irrigation conditions (Liu et 

al., 2016). Huisman et al. (2002) reported that in mapping an extensive area (> 5 m) for soil 

water content, GPR is a better method than a Time Domain Reflectometry (TDR).  

The main constraint of GPR is the relationships between the antenna frequency, penetration 

depth and resolution. Buynevich et al., (2009) reported that higher frequency antennas provide 

higher resolution but have less penetration depth than lower frequency antennas. Depth 

penetration is controlled by soil electrical conductivity.  

Ground Penetrating Radar is highly sensitive to soil texture and soils with high electrical 

conductivity and thus reduces penetration thereby reducing the range of soil where GPR can 

be successfully applied (Huisman et al., (2003). Lebron et al., (2004) also reported that the high 

adsorptive capacity of clays for water and exchangeable cations is inversely related to the depth 
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of penetration of the GPR. Soils with substantial amounts of CaCO3 at similar moisture and 

clay content also reduces the penetration depths of GPR.   

1.5.  Non-invasive Geoelectrical methods applied to Agriculture. 

Soil organic matter plays a vital role in ecosystems functioning and soil productivity. Soil 

organic carbon has a significant effect on soil structure and this can affect the physical, 

chemical and biological processes taking place in the soil, specifically affecting the capacity to 

supply nutrient and to store water for plant uptake (Knadel, 2015). Preserving soil organic 

carbon improves the productivity and quality of the soil as well as sustains the production of 

food while alleviating the emission of greenhouse gases (Viscarra-Rossel, 2016). The 

knowledge of soil carbon distribution is important in managing the fertility of the soil as well 

as improving the soil structure and soil health through the promotion of the factors leading to 

aggregation. The sequestration of soil carbon is an important mitigation factor in greenhouse 

gas accounting. This has prompted increased attention to delineating and observing changes in 

soil carbon (Miklos, 2010).  

Recent research shows that electromagnetic sensors can be used to obtain indirect measures of 

organic matter, soil moisture content, clay content, cation exchange capacity, if the 

contributions of other soil characteristics influencing ECa are known or can be determined.  

1.5.1. Basic principle of the Veris OpticalMapper. 

 

Veris technology has developed innovative spectroscopic products and real-time sensors to 

tackle the challenges of precision agriculture. Veris uses the optical mapper, a two-wavelength 

optical module, to measure the reflectance of soil in both visible and Near-infrared ranges. A 

two-wavelength optical mapper is used to measure reflectance in both visible and near-infrared 

ranges. It operates under the surface residue and soil with a depth gauging side wheel to control 

the depth and produce a constant soil position. Optical sensing uses near-infrared spectroscopy. 
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Veris technology (2009) reported that the energy of near-infrared light depending on the 

wavelength corresponds to overtones and combination bands of fundamental molecular 

vibrations of C-H, O-H, and N-H (Wetterlind, 2009) making this area perfect for expressing 

various forms of carbon, nitrogen and water respectively. Molecules absorb light only at energy 

that coincides with the energy difference between the quantized energy levels of different 

vibrational states of the molecule. Light energy is inversely proportional to its wavelength; 

therefore, only certain wavelengths of light can be absorbed by a molecule.  

1.5.2.   Applications and limitations of Veris OpticalMapper 

The Veris OpticalMapper has been evaluated in the scientific literature for determination of 

soil properties such as electrical conductivity, soil water content, organic matter, soil nitrogen, 

soil total carbon (Giyoung et al., 2013) and cation exchange capacity (Adamchuk et al., 2004). 

Sudduth et al., (2003) reported that one of the operational disadvantages of the Veris EC 

mapper is that it is very heavy and requires the aid of a tractor to pull it while in operation, and 

this limits its use to unplanted fields. For soils that are dry with low conductivity, Veris data is 

limited due to poor electrical contact of the coulters with the ground. Joao et al., (2014) 

explained that the Veris OpticalMapper must be in good contact with the soil during sampling. 

Giyoung and Chase (2013) reported that a gap between the sensor and sapphire window 

reduces the potential to estimate soil organic matter. They also explained the complexity in 

processing the data as well as the calibration procedure, and this has restricted its extensive use 

by farmers. Variations in soil moisture interferes with spectral reflectance by darkening the soil 

and smoothening the spectra (Nocita et al., 2013). 

1.6.   Spatial variation of Soil moisture content 

Variation in soil moisture content occurs due to the interaction of various soil properties such 

as depth of soil, texture, structure, soil organic matter content, temperature, and density. To 
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spatially characterize nutrient up-take by plants for quality crop yield and development, soil 

water must be determined across the field as transpiration is correlated with plant growth and 

crop yield. Knowledge of soil moisture content is also useful for efficient irrigation processes 

as stated by (Grote et al., 2010). The evolution of soil moisture sensing techniques in various 

applications such as agriculture, climate, and hydrology are as a result of the importance of 

obtaining accurate and precise soil moisture characterization at various time and space (Minet 

et al., 2012).  

1.6.1. Soil Moisture Sensors 

Mahmoudzadeh, et al., (2012) showed that laboratory-based techniques such as soil sampling 

for characterizing soil water content, are limited and invasive. On the other hand, remote 

sensors on platforms such as satellites (Kerr et al., 2010; Franz et al., 2013) are limited to large-

scale analyses at the field scale. The electrical property of the soil is used to deduce the soil 

water content by dielectric soil moisture sensors. Saito et al., (2016) reported that dielectric soil 

moisture sensors have the potential to determine real-time soil water content and are non-

destructive.  

A 100 MHz frequency is generally used because it reduces the influence of ionic conductivity. 

As a result, a change in the transmission line impedance depends only on the soil’s dielectric 

constant (Kargas and Kerkide, 2008).  

The direct relationship between the voltage and contrast in amplitude of the standing wave at 

two points forms a precise measure of soil moisture content. (Kargas and Kerkide, 2009). 

Haung et al., (2004) reported that the Theta Probe was more accurate than watermark, Aqua-

Tel, and Aquaterr when compared in the laboratory. The Hydra Probe (POGO) which is a 

frequency domain reflectometry sensor functions at a frequency of 50 MHz. The reflected 

voltage corresponds to the real dielectric constant of the soil (Rowlandson et al., 2013). 
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1.7. Research Objective 

A review of the literature showed that several studies have been carried out on the use of Veris 

OpticalMapper for measuring soil chemical properties such as organic carbon and electrical 

conductivity, total carbon and total nitrogen and the use of Ground Penetrating Radar for 

measuring soil moisture content. The increase in the demand for soil moisture data has led to 

the development of various techniques to quantify soil moisture. But, we are not aware of 

studies that mapped the spatial variability of bulk density on a Canadian Prairies with depth. 

Therefore, the objectives of this study were to investigate the spatial distribution of bulk density 

with depth, compare the spatial pattern of soil moisture in two seasons (Spring 2014 and Fall 

2017), determine the potential of using proximal sensors to estimate soil organic carbon, total 

carbon, total nitrogen, and soil moisture. 

Hypothesis: 

Proximal sensors can provide estimates of soil organic carbon, total carbon, total nitrogen, and 

soil moisture content, and quantify the spatial variability of soil bulk density and moisture 

content, both horizontally and with depth.  

 

 

 

 

 

 

 



  

10 
 

                                                                References  

 

Adamchuk, V. I., Hummel, J. W., Morgan, M. T., and Upadhyaya, S. K. 2004a. On-the-

go soil sensors for precision agriculture. Computer Electron. Agric. 44: 71–91. 

 

Allred, B. 2011. The Second Global Workshop on Proximal Soil Sensing – Montreal 2011 24 

Keynote Presentation Agricultural Geophysics: Past/Present Accomplishments and 

Future Advancements. 

Allred, B.J., Ehsani, M.R. and Daniels, J.J., 2008. General considerations for geophysical 

methods applied to agriculture, p. 3-16. In Allred, B.J., Ehsani, M.R., Daniels, J.J 

(eds.) handbook of agricultural geophysics. CRC press, Taylor & Francis, Boca 

Raton, FL. 

Audun, K., 2008. Dependence of soil apparent electric conductivity upon soil texture and 

ignition loss at various depths in two morainic loam soils in southwest Norway. 

Handbook of agricultural geophysics. 

Barry, J. A., Jeffrey, J., Daniels, M. and Reza, E. 2008. Handbook of Agricultural 

Geophysics.  

Bo Stenberg, Raphael A. Viscarra Rossel, Abdul Mounem Mouazen, and Johanna 

Wetterlind. 2010 Visible and Near Infrared Spectroscopy in Soil Science. In Donald 

L. Sparks, editor: Advances in Agronomy. Burlington: Academic Press. 107: 163-

215. 

Butnor, R., Doolittle, J.A., Kress, L., Cohen, S. and Johnsen, K.H. 2001. Use of ground-

penetrating radar to study tree roots in the southeastern United States. Tree 

physiology. 21: 1269-1278.  



  

11 
 

Buynevich, I.V., Jol, H.M. and itzGerald, D.M., 2009. Coastal environments. In: Jol, H.M., 

Ground penetrating radar: theory and application. Elsevier, Amsterdam, the 

Netherlands. 299-322.  

Castrignanò, A., Landrum, C. and De Benedetto, D. 2015. Delineation of Management 

Zones in Precision Agriculture by Integration of Proximal Sensing with Multivariate 

Geostatistics. Examples of Sensor Data Fusion. Agric. Conspectus Science.  80: 39-

45. 

 

Castrignanò, A., Buttafuoco, G., Quarto, R., Parisi, D., Viscarra Rossel, R.A., Terribile, 

F., Langella, G., Venezia, A. 2018. A geostatistical sensor data fusion approach for 

delineating homogenous management zones in Precision Agriculture. Catena. 167: 

293-304.  

 

Chlaib, H.K., Mahdi, H., Al-Shukri, H., Su, M.M., Catakli, A. and Abd, N., 2014. Using 

ground penetrating radar in levee assessment to detect small scale animal burrows. 

Journal of applied geophysics. 103: 121-131. 

Cho, Y., Sudduth, K.A. and Chung, S. 2016. Soil physical property estimation from soil 

strength and apparent electrical conductivity sensor data. Journal of Biosystems 

engineering. 152: 68 -78 

Conyers, L.B., 2013. Ground penetrating radar for archeology. Rowman and Littlefield 

publishers, Alta Mira press, Latham, MD, USA.  

Daran, R. R. and Suat, I. 2014. American Society of Agricultural and Biological Engineers 

57: 1359-1373. 



  

12 
 

Delbari, M., Afrasiab, P., and Loiskandl, W. 2011. Geostatistical analysis of soil texture 

fractions on the field scale. Soil Water Res. 6: 173-189. 

Dhillon, S.R., Adamchuk, V.I., Holland, K.H. and Hempleman, C.R. 2010. Development 

of an integrated on-the-go sensing system for soil properties. ASABE paper 

No.1009817. ASABE, St. Joseph, Mich.  

Doolittle, J., Zhu, Q., Zhang, J., Guo, L. and Lin, H. 2012. Geophysical Investigations of 

Soil–Landscape Architecture and Its Impacts on Subsurface Flow. Journal of 

Hydropedology 413–447. 

Francesco, B. and Fabio, T., 2013. GPR spectral analysis for clay content evaluation by the 

frequency shift method. Journal of applied geophysics 97: 89-96.   

Franz, T.E., Zreda, M., Rosolem, R, and Ferre, T.P.A. 2013. A universal calibration    

function for determination of soil moisture with cosmic-ray neutrons. Journal of 

Hydrology Earth System Science. 17:453–460. 

 

Giyoung, k. and Chase, M., 2013. Soil organic matter sensing with an on-the-go optical 

sensor. Journal of Biosystems engineering. 115: 66-81.  

Giyoung, k., Chase, M. and Eric, L. 2013. Soil organic matter and cation-exchange capacity 

sensing with an on-the-go electrical conductivity and optical sensor. Journal of 

Biosystems engineering. 199: 80-89. 

Grote, K., Anger, C., Kelly, B., Hubbard, S., and Rubin, Y. 2010. Characterization of Soil 

Water Content Variability and Soil Texture using GPR Groundwave Techniques. 

Journal of Environmental and Engineering Geophysics. 15: 93–110. 

http://www.sciencedirect.com/science/article/pii/B9780123869418000137
http://www.sciencedirect.com/science/article/pii/B9780123869418000137
http://www.sciencedirect.com/science/article/pii/B9780123869418000137
http://www.sciencedirect.com/science/article/pii/B9780123869418000137
http://www.sciencedirect.com/science/article/pii/B9780123869418000137
http://www.sciencedirect.com/science/book/9780123869418


  

13 
 

Hamon, T., Kvien, C., Mulla, D., Hoggenboom, G., Judy, J. and Hook, J. 2005. Precision 

agriculture scenario P. Arzberger (Ed.), NSF workshop on sensors for environmental 

observatories, World Tech. Evaluation Center, Baltimore, MD, USA. 

Hiusman, J., Snepvangers, J., Bouten, W. and Heuvelink, G., 2002. Mapping spatial 

variation in surface soil water content: comparison of ground penetrating radar and 

time domain reflectometry. Journal of hydrology. 269: 194-207.  

Huang, Q., Akinremi, O.O., Sri Rajan, R. and Bullock, P. 2004. Laboratory and field 

evaluation of five soil water sensors. Canadian journal of soil science 84: 431-438.  

Huisman, J.A., Hubbard, S.S., Redman, J.D. and Annan, A.P., 2003. Measuring soil water 

content with ground penetrating radar: A review. Vadose Zone J. 2: 476-491.  

Jeffrey, D., Reza, M.E., Barry and J.A., 2008. Ground penetrating methods (GPR). 

Handbook of agricultural geophysics. 

Joao S., Shakib, S. and Jose, M. 2014. Spatial and temporal patterns of apparent electrical 

conductivity: DUALEM vs Veris sensors for monitoring soil properties. 

www.mdip.com/journal/sensors. ISSN 1424-8220. 

Jonard, F., Mohammad, M., Christian, R., Lutz, W., Frederic, A., Julien, M., Harry, V. 

and Sebastien, L., 2013. Characterization of tillage effects on the spatial variation of 

soil properties using ground penetrating radar and electromagnetic induction. 

Geoderma 207: 310-322. 

Jonard, F., Weihermuller, L., Jadoon, K.Z., Schwank, M., Vereecken, H. and lambot, S. 

2011. Mapping field-scale soil moisture with L band radiometer and ground 

penetrating radar over bare soil. IEEE transactions on geoscience and remote sensing 

49: 2863-2875. 

http://www.mdip.com/journal/sensors.%20ISSN%201424-8220


  

14 
 

Kargas, G. and Kerkides, P. 2008. Water content determination in mineral and organic 

porous media by ML2 theta probe. Irrigation and drainage. 57: 435-449.  

Kargas, G. and Kerkides, P. 2009. Performance of the theta probe ML2 in the presence of 

nonuniform soil water. Soil and Tillage research. 103: 425-432.  

Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F. and Boutin, J. 2010. 

The SMOS Mission: New tool for monitoring developments of the global water cycle. 

98: 666–687. 

Knadel, M., Thomsen, A., Schelde, K. and Greve, M.H. 2015. Soil organic carbon and 

particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform.  

Journal of Computers and Electronics in Agriculture. 114: 134–144. 

Lebron, I., Robinson, D.A., Goldberg, S. and Lesch, S.M., 2004. The dielectric permittivity 

of calcite and arid zone soils with carbonate minerals. Soil science society of America 

journal. 68: 1549-1559.  

Liu, X., Dong, X. and Daniel, I.L., 2016. Ground penetrating radar for underground sensing 

in agriculture: a review. Journal of international agrophysics. 30: 533-543. 

Lunt, I.A., Hubbard, S.S. and Rubin, Y., 2005. Soil moisture content estimation using 

ground penetrating radar reflection data. Journal of hydrology 307: 254-269.  

Mahmood, H.S. 2013. Proximal soil sensors and data fusion for precision agriculture. Master’s 

thesis 

Mahmoudzdeh, M., Frances, A., Lubczynski, M. and Lambot, S., 2012. Using ground 

penetrating radar to investigate the water table depth in weathered granites-Sardon 

case study. Spain journal of applied geophysics. 79: 17-26.  



  

15 
 

Miller, B.A., 2012. The need to continue improving soil survey maps. Soil horizons 53: 11-15.  

Minet, J., Bogaert, P., Vanclooster, M. and Lambot, S. 2012. Validation of ground 

penetrating radar full-waveform inversion for field scale soil moisture mapping. 

Journal of Hydrology. 424: 112–123.  

 

Nocita, M., Stevens, A., Noon, C. and Van Wesemael, B., 2013. Prediction of soil organic 

carbon for different levels of soil moisture using VIS-NIR spectroscopy. Geoderma 

199: 37-42. 

Perron, I., Cambouris, A. N., Chokmani, K., Vargas Gutierrez, M. F., Zebarth, B. J., 

Moreau, G., Biswas, A. and Adamchuk, V. 2018. Delineating soil management zones 

using a proximal soil sensing system in two commercial potato fields in New 

Brunswick, Canada. Canadian Journal of Soil Science 98(4):724-737. 

Ping, W., Zhenqi, H., Yanling, Z. and Xinju, L. 2016. Experimental study of soil compaction 

effects on GPR signals. Journal of Applied Geophysics. 126: 128–137.  

Rial F.I., Pereira, M., Lorenzo, H., Arias, P., 2005. Acquisition and synchronism of GPR 

and GPS data. Application on road evaluation. In L. Bruzzone (ed.) Image and signal 

processing for remote sensing XI. Article no. 598219, September 2006, Bruges, 

Belgium. Proceedings of SPIE. 5982: 20-22 The international society of optical 

engineering, Bellingham, WA.   

Rowlandson, T.L., Berg, A.A., Bullock, P.R., Ojo, E.R., McNairn, H., Wiseman, G. and 

Cosh, M.H. 2013. Evaluation of several calibration procedures for a portable soil 

moisture sensor. Journal of hydrology. 498: 335-344.  

http://www.sciencedirect.com.uml.idm.oclc.org/science/article/pii/S0022169411009383?np=y
http://www.sciencedirect.com.uml.idm.oclc.org/science/article/pii/S0022169411009383?np=y
http://www.sciencedirect.com.uml.idm.oclc.org/science/article/pii/S0022169411009383?np=y
http://www.sciencedirect.com.uml.idm.oclc.org/science/article/pii/S0022169411009383?np=y
http://www.sciencedirect.com.uml.idm.oclc.org/science/journal/00221694


  

16 
 

Saito, T., Yasuda, H., Sakurai, M., Acharya, K., Sueki, S., Inosako, K., Yoda, K., 

Fujimaki, H., Mohamed, A.M., Elbasit, A., Eldoma, A.M. and Nawata, H. 2016. 

Monitoring of stem water content of native and invasive trees in Arid environments 

using GS3 soil moisture sensors. Vadose zone journal. 15. 

Salucci, M., Tenuti, L., Nardin, C., Oliveri, G., Viani, F., Rocca, P. and Massa, A., 2014. 

Civil engineering applications of ground penetrating radar recent advances @ the 

ELEDIA research Centre. EGU general assembly conference abstracts, 1, 1945.  

Shahandeh, H., Wright, A.L. and Hons, F.M. 2011. Use of soil nitrogen parameters and 

texture for spatially-variable nitrogen fertilization. Precision Agriculture 12: 146-163. 

Sudduth, K.A., Hummel, J.W. and Birrell, S.J., 1997. Sensors for site-specific management. 

In: Pierce, F.J., Sadler, E.J. (Eds), The state of site-specific management for 

agriculture. ASA/CSSA/SSSA, Madison, WI 183-210. 

Sudduth, K.A., Kitchen, N.R., Bollera, G.A., Bullock, D.G. and Wiebold, W.J., 2003. 

Comparison of electromagnetic induction and direct sensing of soil electrical 

conductivity. Agronomy journal. 95: 427-428. 

 

Sudduth, K.A., Kitchena, N.R., Wiebold, W.J., Batchelor, W.D., Bollero, G.A., Bullock, 

D.G., Clay, D.E., Palm, H.L., Pierce, F.J., Schuler, R.T. and Thelen, K.D. 2015. 

Relating apparent electrical conductivity to soil properties across the north-central 

USA. Journal of Computers and Electronics in Agriculture. 46: 263-283. 

 

Veris 3100 (Veris Technologies, Salina, KS). 

Viscarra Rossel, R.A.,   Brus, D.J., Lobsey, C. and Shi, Z.  2016. Baseline estimates of soil 

organic carbon by proximal sensing: Comparing design-based, model-assisted and 

model-based inference. Geoderma. 265. 152–163. 



  

17 
 

Wetterlind. J. 2009. Improved Farm Soil Mapping Using Near Infrared Reflection 

Spectroscopy. PhD thesis. 

Wijewardana, Y., Galagedara, L., Mowjood, M. and Kawamoto, K., 2015. Assessment of 

inroganics pollutant contamination in ground water using ground penetrating radar. 

Tropical agricultural research. 26: 700-706.  

 www.veristech.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.veristech.com/


  

18 
 

2.   SPATIAL VARIABILITY OF BULK DENSITY AND SOIL MOISTURE ON A 

LOAMY SAND OVER THE ASSINIBOINE DELTA AQUIFER 

                                                             2.1. Abstract 

The knowledge of spatial and temporal variation of bulk density and soil water content within 

a field provides prospects for precision agriculture soil management. The objectives of this 

study were to investigate the spatial distribution of bulk density with depth and compare the 

spatial pattern of soil moisture in two seasons (Spring 2014 and Fall 2017). The study was 

carried out at Carberry, over the Assiniboine Delta Aquifer, on an Orthic Black Chernozem. 

One hundred and seventy-eight soil cores were sampled in spring of 2014 using a geospatial 

sampling scheme. Bulk density and soil moisture were determined from fifty (50) of the 179 

sampling points in fall 2017. Soil samples were taken from 0-90 cm depth with a Giddings 

hydraulic punch in a 7.6 cm plastic sleeve. Spatial dependence and variability of bulk density 

and soil moisture were calculated with kriging and assessed with semi variograms using a 

Geostatistical software (GS+). Bulk density was strongly spatially correlated from the top soil 

to the 75 cm depth, and moderately correlated at the 75-90 cm depth. Soil moisture was strongly 

spatially correlated from the top soil to the 75 cm depth in both seasons. Below the 75 cm 

depth, soil moisture was weakly to moderately spatially correlated in both seasons. The spatial 

pattern of soil moisture content was temporally invariant as similar spatially coherent regions 

were found in both seasons for soil moisture. We concluded that variation of bulk density and 

soil water content exists within the field and at various depths and that the stability in the spatial 

pattern of soil water content with time was due to soil texture.  
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                                                           2.2. Introduction 

Spatial variability occurs when a property that is measured at distinct spatial locations shows 

values that vary across the locations. Variation can occur in space and time (spatio-temporal). 

This variability occurs naturally in soil properties because of the various processes of soil 

formation (Silva et al., 2016). Aside from natural soil formation, Ozgoz (2009) stated that 

variation can occur due to tillage effect and field management. The knowledge of spatial 

variability is crucial in defining relationships between soil properties, identifying factors 

influencing these properties, and developing management practices to maintain soil 

productivity (Barik et al., 2014), modelling soil processes at scales applicable to decision 

makers (Stacey et al., 2018), and precision farming (Cassel et al., 2000). 

Spatial variability of soil properties across fields affects crop yield potential, available water, 

and other site-specific management zones. In quantifying soil spatial variability, it is crucial to 

divide the site into management zones according to their levels of productivity (Khosla et al., 

2002). Mzuku et al., (2005) stated that the knowledge of the roles and interactions of various 

soil properties can be beneficial in explaining the causes of variation. Productivity of soil is 

greatly dependent on the varying soil properties within a field (Usowicz and Lipiec, 2017), as 

it can lead to variability in crop yield (Diacono et al., 2013). 

Several studies have investigated the spatial and temporal variation in soil properties. A study 

by Tagliarolo et al., (2018) investigated the spatial and temporal variability of carbon budgets 

of shallow South African subtropical estuaries and found that carbon fluxes in sub-tropical 

estuaries are highly variable in space and time. Gilsonley et al., (2016) reported the influence 

of landscape curvature on the spatial variability of soil physical and chemical properties.  
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Spatial variability of soil moisture has been investigated by various researchers (Niether et al., 

2017; Fu et al., 2018). Liao et al., (2017) detected spatio-temporal variability of soil moisture 

content on two contrasting land use hillslopes, where the spatial variability of tea garden 

hillslope was stronger than the forest hillslope. Neves et al., (2016) investigated the spatial and 

temporal patterns of soil water content in an agroecological production system, where they 

reported variation of soil moisture and clay content with depth, and the effect of tillage on the 

top soil. Spatial variability of physical and chemical soil properties in semi-arid regions was 

reported by (Diego et al., 2017), and in desert riparian forests (Ding et al., 2017) where they 

found that spatial variation of bulk density, organic carbon, soil moisture and soil particle 

distribution are the main factors influencing the spatial variation of these areas. Fu et al., (2017) 

reported the spatial distribution of soil moisture in different types of sand dunes, where the 

spatial distribution of soil moisture in the various dunes occurs in relation to the degree of fine 

particle content. 

The bulk density of the soil influences several soil and plant processes such as movement of 

air and water, compaction, and seedling emergence (Timm et al., 2006). Soil bulk density is an 

important criterion for evaluating the quality and productivity of soil (Suuster et al., 2011). 

Bulk density has been observed to have a significant effect on erosion, soil water retention, 

infiltration (Geng et al., 2014), and organic-carbon stocks (Sequeira et al., 2014). Soil bulk 

density has been well known to vary significantly within a single field (Ozgoz, 2009). Alletto 

and Coquet (2009) reported that one of the major sources of variability of bulk density is 

temporal effect, where the timing of tillage activities corresponding to the time of soil sampling 

has a strong impact on soil bulk density. Recent studies have shown several factors that can 

result in spatial variability of bulk density across the field. 
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Barik et al., (2014) reported that a change in spatial variability of bulk density, aggregate 

stability, total porosity, and volumetric water content can exist due to field traffic operations. 

Field traffic operations increase soil bulk density and decrease total porosity. Texture has been 

reported to be a prime factor affecting the spatial distribution of bulk density even at depth 

(Yao et al., 2006). Soil bulk density can be estimated using other soil property such as soil 

moisture content. Zhao et al., (2018) reported that the distribution of bulk density can be 

estimated using soil moisture content. Spatial variability of bulk density has been studied 

within field. Silva et al., (2016) investigated the spatial variability of bulk density in 

Archeological dark earth sites under Cacao cultivation and observed the influence of organic 

carbon content on soil bulk density. 

Soil moisture is an essential variable in water management of the field (Neves et al., 2017). It 

is also crucial in the distribution of vegetation in arid and semiarid regions (Guoce et al., 2017), 

and acts as a vector between soil plant-atmosphere systems (Arriaga and Rubio, 2017). The 

knowledge of the spatial and temporal variation of moisture is important in the management of 

water in the field (Neves et al., 2017), understanding of land surface processes (Lin, 2011), 

vegetation restoration in terraces (McVicar et al., 2010), and ecosystem sustainability (Yu et 

al., 2018). 

Defining the spatio-temporal variation of soil moisture under field conditions is of importance 

in Precision Agriculture (Wang et al., 2015). Numerous factors, either singly or in combination, 

affect the variability of soil moisture under field conditions (Vanderlinden et al., 2012). Yang 

(2017) reported that aside from vegetation, soil texture and topography were the primary 

variables having a significant effect on soil moisture variability. A study by Garnaud et al 

(2017) carried out in Quebec, Canada showed that in drier periods, vegetations, organic matter, 

and rock fractions affects moisture significantly other than soil texture, but in wet periods, 
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texture is a crucial factor with respect to the variability of soil moisture. Cho and Choi (2014) 

reported that meteorological factors also affect the spatio-temporal variability of soil moisture 

content. An increase in soil depth under shrubland, crop land and fallow land can result in a 

decrease in variation of soil water content with depth (Zhao et al., 2017; Xu et al., 2017; Yu et 

al., 2018). Soil texture affects the spatial and temporal variability of moisture content (Miller 

and Loheide, 2015; Wei et al., 2017; Yongseok and Sanghyun, 2017). Furthermore, Neves et 

al., (2017) studied the correlation between soil texture (clay) and soil water content and 

reported that spatial distribution of soil water content is related to soil texture, and the effect of 

clay content depends on the amount of soil moisture irrespective of the soil profile. 

Vivakanahan et al. (2018) observed high soil moisture content in regions with high clay 

content. Spatio-temporal variability in soil moisture content has been used in calibrating soil 

moisture sensors data (Jacobs et al., 2010; Dorigo et al., 2013;). Temporal variability has been 

established to be higher in the dry season than in the wet season (Martinez et al., 2013).  

Geostatistics, which is based on a probabilistic model, is a widely used method to study and 

quantify spatial variability in soil science, especially in precision farming, and for the 

interpretation of semivariograms (Barik et al., 2014). Over the years, this technique has been 

relevant in investigating soil physical and chemical properties (Diego et al., 2017). 

Geostatistics has been an important mathematical tool in determining the variation that occurs 

in soil due to the complex nature of soil (Oliver and Webster, 2014). Zhao et al., (2018) used 

geostatistical techniques to predict spatial variability of soil bulk density in gravel-mulch fields. 

Diego et al., (2017) used Geostatistics to determine the spatial variability of soil attributes in 

the semi-arid regions. Geostatistics has been used on sandy soils to determine the spatial 

variability of soil physical and chemical properties (Usowicz and Lipiec, 2017).  
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Geostatistics have been reported to suitably represent the spatial variation of soil properties 

during mapping. Coefficient of variation (CV) has also been used to investigate spatio-temporal 

variability of soil properties (Manns et al., 2014; Zhao et al., 2017) although it does not give a 

corresponding estimate with space like the geostatistical tools (Duffera et al., 2007). 

Semivariogram has been proven by researchers as an excellent tool for investigating spatial 

variability. Ceddia et al., (2009) used Semivariogram to investigate the spatial variability that 

occurs in elevations and soil characteristics. Zhao et al., (2018) investigated the spatial 

variability of soil bulk density in gravel-mulched fields using Semivariogram with kriging. 

Spatial dependency has been reported to be strong for various soil properties by several 

researchers (Liao et al., 2017; Usowicz and Lipiec, 2017; Qiao et al., 2018). Spatial dependence 

is important in executing a good interpolation when producing maps. Xu et al., (2017) reported 

a strong spatial dependency for soil moisture content during the whole year and in the rainy 

season. A strong spatial dependence was observed in clay and sand content, and penetration 

resistance (Ozgoz 2009).  

Kriging, which is used to interpolate and generate maps has been applied in environmental 

science analysis to help solve precision agriculture problems, especially for unsampled points. 

According to Oliver and Webster (2014), kriging is more popularly used due to its unbiased 

linear predictions with minimum errors. A study carried out by Zhao et al., (2018) reported the 

effectiveness of kriging in estimating the spatial distribution of soil bulk density. Kriging was 

used in establishing the spatial variability that occurred in a compacted field due to traffic 

operations (Barik et al., 2014). Silva et al., (2016) analysed the spatial variability of physical 

properties of cohesive soil under conventional and no-tillage management systems using 

Semivariogram parameter and ordinary kriging geostatistical interpolation.  
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The soil overlying the Assiniboine Delta Aquifer (ADA) has been reported to be susceptible to 

leaching (Nikiema et al., 2013; Vivekanahan, 2018). Vivekanahan et al. (2018) reported the 

spatial variability of soil texture within the field, and the influence it had on soil moisture 

content with depth, and the amount of leachate produced. This study was a follow up of 

Vivekanahan et al. (2018) to see if the pattern of soil moisture that was measured in 2014 

persisted to 2017. Vivekanahan et al. (2018) did not measure the spatial variability of bulk 

density with depth, and we are not aware of studies that mapped the spatial variability of bulk 

density on a Canadian Prairies with depth. Therefore, the objectives of this study were 

(a) to investigate the spatial distribution of bulk density with depth 

(b) to compare the spatial pattern of soil moisture in two seasons (Spring 2014 and Fall 

2017). 

Hypothesis: Spatial variability occurs in soil bulk density and moisture content, both 

horizontally and with depth. 
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2.3. Materials and methods 

2.3.1. Study area description 

The study was carried out on a farmer’s cooperator field that is located about 10 km, northwest 

of Carberry in Southwestern Manitoba, Canada (SW-19-11-15W). The region is characterized 

by an average annual precipitation of 456 mm, with approximately 70 % falling as rain from 

April-October and 30 % as snow during the winter months and mean annual temperature of 2.1 

oC. The site is located over the Assiniboine Delta Aquifer, an unconfined aquifer that is the 

source of drinking water. The site consists of Orthic Black Chernozem soils, which developed 

on lacustrine deposits. These are medium textured, well drained soils, where the upper (0 - 90 

cm) depth is classified as loamy sand, and the underlying layer (> 90 cm) is sandy loam to 

loam. Sand content decreases with depth, from about 78% in the upper layer (0-10 cm) 

(Vivekanahan et al., 2018), while pH increases with depth from 6.37 at the surface layer to 8.33 

at the 120 cm depth, and bulk density also gradually increases from 1.31 Mg m-3 at the top soil 

to 1.50 Mg m-3 at the 120 cm depth (Enns, 2004). 

The experimental field was 65 × 55 m (0.36 ha) in size. The cropping system was a barley-

wheat rotation with conventional agronomic management. 
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2.3.2. Sampling scheme and soil sampling 

Vivekanahan et al. (2018) used a method developed by Zar (2010) to determine the number of 

sampling points (178) for analysis using the variability of sand percentage at 0 - 10 cm and 60 

- 90 cm depth of the field. We selected fifty (50) sampling points from the 178 sampling points 

as the number of samples required to identify significant difference based on variability of bulk 

density at the site. This was calculated using the bulk density data obtained in 2001 (Enns, 

2004) and the preliminary bulk density data for this study acquired in August 2017. Fifty 

samples were required to detect the variability at 1 % difference with the power of test of 0.8. 

  

The geospatial sampling scheme showed the 178 sampling points used in the Spring of 2014 

and the 50 sampling points (shown in circle in Figure 2.1) used in the Fall of 2017. The details 

of the 2014 soil sampling campaign were described by Vivekanahan et al., (2018).  In the Fall 

of 2017, the site was surveyed, field boundaries were marked and spatial coordinates for each 

sample points were recorded. In each of the 50 sampling points, Universal Transverse Mercator 

(UTM) coordinates were measured using a GPS. Undisturbed soil samples were taken from 0 

- 90 cm depth in 3" plastic sleeves with a Giddings hydraulic soil punch. After the soil samples 

were collected, they were stored in totes containing ice during transport to the laboratory and 

immediately stored in the refrigerator (4 ºC) on arrival to prevent moisture loss. 
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Figure 2.1. Geospatial soil sampling design for the study area in the Spring of 2014   , and the 

 selected 50 sampling points for Fall 2017 
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2.3.3.  Laboratory analysis and calculations 

The soil in the sleeve was divided into six depths at 15 cm interval (0-15 cm, 15-30 cm, 30-45 

cm, 45-60 cm, 60-75 cm, 75-90 cm). The total wet weight of each sample was measured and a 

subsample (50 g) was taken for moisture content determination by drying in an oven (105 ºc) 

for 48 hours (Gardner, 1986). Gravimetric water content and bulk density were calculated as 

follows.  

                                                              𝜽𝒈 =    𝑴𝒘                                  (1) 

                                                                           𝑴𝒔 

                                         

where Ms is the mass of dry soil, Mw is the mass of water, and θg is the gravimetric water  

content. 

 

                                                                        𝜌𝑏 = 𝑀𝑠                                           (2) 

                                                                        𝑉𝑡 

 

Bulk density (𝜌𝑏) was calculated as the ratio of the total mass of the dry soil (Ms) to the total 

volume of the soil (Vt). The total volume of soil was calculated using the formula fir volume 

of a cylinder, λr²h. 
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2.3.4. Statistical and Geostatistical analysis 

Descriptive statistical parameters such as the mean, standard deviation, test for normality were 

carried out with SAS 9.4 (SAS Institute Inc, 2014) software. Data must be normally distributed 

before it can be analysed for geostatistical modelling (Moulin et al., 2014). While the bulk 

density data was normally distributed, soil moisture content was not (Shapiro-Wilk) and was 

transformed using the Johnson SI in JMP software (Moulin et al., 2011). The spatial and 

temporal dependence of bulk density and soil moisture content at this site was analyzed using 

semivariograms (Liao et al., 2017).  

All the Geostatistics computations were conducted using the GS + version 10.0 (Gamma 

Design Software LLC., Plainwell, MI, USA). Four semi-variogram models (exponential, 

gaussian, linear and spherical) were calculated with the experimental data, and the best-fitted 

model with the lowest residual sum of squares for predictions and largest coefficient of 

determination was identified (Oliver and Webster, 2014; Wang et al., 2018). Geostatistical 

parameters; sill (C + CO), nugget (CO), and range, were obtained. The sill is the sum of the 

nugget and the spatial variability. The nugget estimates the spatial variability at distances closer 

than the minimum sampling space. The range shows the distance at which the sampling points 

are spatially correlated with each other. The ratio of the spatial variability and the sill is the 

proportion of total variability which is explained by the spatial autocorrelation (Bong et al., 

2018). Kriging, a regression method, provides a means of interpolating values for points not 

physically sampled. Ordinary kriging was used to interpolate and generate maps of bulk density 

and soil water content for this study (Diego et al., 2017). 
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                                                               2.4. Results 

2.4.1. Bulk density 

The descriptive statistics for soil bulk density is summarized in (Table 2.1). The mean bulk 

density (g cm-3) increased with soil depth. Enns (2004) also reported similar variability for bulk 

density at this site.  

Table 2.1. Descriptive summary statistics of bulk density sampled in the Fall of 2017. 

 

Depth  

  (cm) 

Mean  

(g cm-3) 

Standard 

deviation  

Coefficient 

of variation 

Skewness Minimum 

   (g cm-3) 

Maximum 

   (g cm-3)  

0-15 1.34 0.10 7.5   0.2 1.11 1.59 

15-30 1.44 0.15 10.1 -0.1 1.17 1.68 

30-45 1.46 0.09 6.8 -0.3 1.24 1.63 

45-60 1.47 0.10 6.8 -0.5 1.23 1.69 

60-75 1.47 0.13 8.6 -0.3 1.16 1.70 

75-90 1.48 0.13 8.8 -0.4 1.17 1.75 

 

Unlike the mean, there was no consistent pattern of the coefficient of variation (CV) with 

depth. The CV is an important measure of precision, as it contains all the variation due to 

experimental error. The lower the CV, the higher the precision of the experiment. The 30-60 

cm depth had the lowest CV, while the 15-30 cm depth had the highest CV. Overall, the CV 

of bulk density was low at this site according to the classification of Warrick and Nielson 

(1980), who classified CV <12 % as low; between 12 and 60 as medium; and CV > 60 % as 

high (Table 2.1). The range between the minimum and maximum values increased with depth.  

For example, the range of bulk density at the surface (0-15 cm) depth was 1.11 g cm-3 to 1.59 

g cm-3 and 1.23 g cm-3 to 1.69 g cm-3 at the depth of 45 cm, further increasing to 1.17 g cm-3 

and 1.75 g cm-3 at the depth of 90 cm.  
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The skewness of bulk density varied between -1 and +1. The highest skewness of bulk density 

data (-0.5) was observed at the 45-60 cm depth. Bulk density was strongly spatially auto-

correlated from the top soil to the 75 cm depth, and moderately auto-correlated at the 90 cm 

depth (Table 2.2). The Nugget value was close to zero, which indicates that the experimental 

error is null, with the presence of variation at distances closer than the minimum sampling 

space used. Best-fit semi variograms for bulk density were obtained using Gaussian and 

Exponential models, and the spatial dependence was strongly and moderately auto-correlated 

(spatial dependency greater than 75 %, and between 25 -75 % respectively).  

The coefficient of determination (R2), which reflects the significance of the fit of the model to 

the semi-variogram data, increased from the top soil to the 75 cm depth (Table 2.2.). The R2 

value is not as sensitive as the residual sum of squares for best-fit calculations. The residual 

sum of squares indicates how well the model fits the data. The lower the residual sum of 

squares, the better the model fits. GS+ version 10 (Gamma Design Software LLC., Plainwell, 

MI, USA) uses the residual sum of squares to calculate the model parameter.  
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Table 2.2. Parameter for semi-variogram models of bulk density along the soil depth (Fall 
2017) 

 

Depth  

  (cm) 

Variogram             

  (model) * 

Nugget 

varianc

e (Co) 

Sill  

(Co+C) 

C/C+Co ** 

     (%) 

R2 RSS *** Spatial 

class **** 

0-15 Exponential 0.002 0.012  81 0.81 8.74x10-6 S  

15-30 Gaussian  0.006 0.041  86 0.98 8.80x10-6 S  

30-45 Gaussian 0.002 0.017  86 0.98 2.51x10-6 S  

45-60 Gaussian 0.003 0.031  89 0.98 1.68x10-6 S  

60-75 Gaussian  0.003 0.027  90 0.99 2.82x10-6 S  

75-90 Exponential 0.011 0.032  70 0.89 5.07x10-6 M 

 

* Models are all isotropic        

** Nugget to sill ratio (%) = (Nugget semivariance / total semivariance) X 100 

*** Residual sum of squares 

****S = Strong spatial dependency (C/C+Co % > 75); M = Moderate spatial dependency 
(C/C+Co % between 75 and 25) Chien et al., (1997).  
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Maps calculated with point kriging (Figure 2.2) show variability in bulk density within the field 

at the soil surface. The map can generally be divided into three regions, with the North-East 

region having a lower bulk density ranging from 1.25-1.30 g cm-3 compared to the middle of 

the field with a moderate bulk density ranging from 1.32-1.34 g cm-3, and the South-West 

region having a high bulk density ranging from 1.36-1.41 g cm-3.  

 

 

Figure 2.2. Kriged map of bulk density at 0-15 cm depth across the field. 
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        Figure 2.3. Kriged map of bulk density at 15-30 cm depth across the field  

 

 

A similar trend was observed in the 15-30, 30-45, and 45-60 cm depth intervals with three 

distinct regions similar to the spatial pattern of the top soil (Figure 2.3, 2.4, and 2.5). Bulk 

density increased with depth at the 45-60 cm depth (Figure 2.5) relative to the 30-45 cm depth 

(Figure 2.4). Bulk density also increased with depth from the 60-75 cm depth interval to the 

75-90 cm depth. For example, a larger portion of the map in the 75-90 cm depth showed the 

Southern region with higher bulk density compared to the Southern region of the 60-75 cm 

depth. The lowest bulk density value for the 75-90 cm depth was higher (1.37 g cm-3) than the 

lowest bulk density value for the 60-75 cm depth (1.24 g cm-3). The 75-90 cm depth (Figure 

2.7) was less spatially coherent than the 60-75 cm depth (Figure 2.6). In general, bulk density 

was spatially correlated across the field and at various depth intervals, and short scale spatial 

variability increased with depth. 
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Figure 2.4. Kriged map of bulk density at 30-45 cm depth across the field.  

 

 

Figure 2.5. Kriged map of bulk density at 45-60 cm depth across the field. 
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Figure 2.6. Kriged map of bulk density at 60-75 cm depth across the field.  

 

 

  

Figure 2.7. Kriged map of bulk density at 75-90 cm depth across the field. 
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2.4.2. Soil water content 

Soil moisture content, measured in two field campaigns in Spring 2014 and Fall 2017, did not 

change with depth. Soil moisture content was measured just after snow melt in the Spring of 

2014 (Vivekanahan, et al., 2018).  

Table 2.3. Descriptive summary statistics of soil gravimetric moisture content sampled in the 

Fall of 2017. 

 

Depth  

  (cm) 

Mean  

 (g g-1) 

Standard 

deviation  

  Coefficient 

 of variation 

Skewness Minimum 

    (g g-1) 

Maximum 

    (g g-1)  

0-15 0.15 0.04 25.5  0.9 0.09 0.28 

15-30 0.14 0.05 36.2  0.6 0.06 0.29 

30-45 0.12 0.05 39.7  0.6 0.03 0.25 

45-60 0.11 0.05 48.3  1.1 0.04 0.27 

60-75 0.12 0.07 59.0  0.7 0.03 0.30 

75-90 0.15 0.07 51.1  0.4 0.03 0.32 

 

The soil water content of the six soil depths ranged from 0.11 g g-1 to 0.15 g g-1 in the Fall of 

2017 (Table 2.3). The coefficient of variation for soil moisture content in Fall of 2017 increased 

with increasing soil depth. The coefficient of variation for soil moisture in the Fall of 2017 was 

moderate with depth, according to the classification of (Warrick and Nielson, 1980). The 

increase in the coefficient of variation and standard deviation indicated an increase in 

variability with depth. The minimum soil water content decreased with depth, while the 

maximum values increased with depth. Skewness varied between 0 and +1. The highest 

skewness for gravimetric moisture content was at the 45-60 cm depth, similar to that of bulk 

density.    
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Table 2.4. Parameter for Semivariogram models of soil water content (Fall, 2017) along the 

soil depth. 

 

Depth  

  (cm) 

Variogra

m             

  (model) * 

Nugget 

variance 

(Co) 

Sill  

(Co+C) 

C/C+C

o 

     % 

RSS 

** 

Range 

  (m) 

Spatial 

class *** 

0-15 Gaussian 0.2 2.52 89 0.38 83.2 S  

15-30 Gaussian  0.2 2.50 90 0.25 84.5 S  

30-45 Gaussian  0.3 2.79 88 0.34 96.9 S  

45-60 Gaussian  0.4 2.89 84 0.56 102.1 S  

60-75 Gaussian  0.3 2.71 87 0.91 97.2 S  

75-90 Linear 1.1 1.12 00 2.96 38.2 W 

  

* Models are all isotropic        ** Residual sum of squares 

***S = Strong spatial dependency (C/C+Co % > 75; W = Weak spatial dependency (C/C+Co 

% < 25. Chien et al., (1997). 

 

(Table 2.4) shows the geostatistical parameter for soil moisture content for Fall 2017. Soil 

moisture content was strongly spatially correlated from the top soil to the 75 cm depth, as 

indicated by the Gaussian semivariograms, (as observed for bulk density), and a shift from 

Gaussian to the Linear model, with the linear model weakly correlated. The proportion of total 

variance explained by spatial variability (C/C+Co) decreased with depth such that at the 75-90 

cm, a pure nugget effect was observed (Figure 2.9).  The range, which is the separation distance 

over which the spatial dependence is evident, increased with soil depth with the highest range 

at the 45-60 cm depth, and the lowest at the 75-90 cm depth. 
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Figure 2.8. Fitted theoretical semivariograms for soil moisture content at depth 75-90 cm 
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Table 2.5. Parameter for variogram models of soil water content (Spring, 2014) along the soil 

depth (Vivekanahan et al., 2018). 

 

Depth  

  (cm) 

Variogram             

  (model) * 

Nugget 

variance 

(Co) 

Sill  

(Co+C) 

C/C+Co 

     % 

Range 

  (m) 

Spatial 

class ** 

0-15 Gaussian 0.1 2.2 96 64.1 S  

15-30 Gaussian  0.1 2.2 95 65.8 S  

30-45 Gaussian  0.2 1.7 89 51.5 S  

45-60 Gaussian  0.3 1.8 85 59.2 S  

60-75 Gaussian  0.4 1.5 75 55.8 S  

75-90 Exponential 0.4 1.2 64 56.9 M 

 

* Models are all isotropic         

**S = Strong spatial dependency (C/C+Co % > 75); M = Moderate spatial dependency 
(C/C+Co % between 75 and 25).  Chien et al., (1997). 
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The nugget effect in both seasons (Spring and Fall), increased with depth (Table 2.4 and 2.5). 

The sill values in the Spring of 2014 decreased with depth while in Fall 2017 it increased up to 

the 75 cm depth. The spatial dependencies (‘nugget-to-sill’) for both seasons decreased with 

depth. The effective range of the spatial dependency increased with depth for Fall 2017 and 

decreased with depth for Spring 2014. The ranges for soil moisture content was generally 

higher in Fall 2017 than in Spring 2014. Soil moisture was strongly spatially correlated from 

the top soil to the 75 cm depth, and moderately correlated at the 90 cm depth in Spring 2014. 

A weak correlation at the 90 cm depth was observed in Fall 2017.  

The spatial pattern of soil moisture in both seasons was similar as they both had the same 

regions with high and low soil moisture content (Figure 2.10). The geospatial pattern of soil 

moisture in both seasons is a mirror image of bulk density as the North-East region with low 

bulk density have higher moisture content, and the South-West region with high bulk density 

have lower moisture content (Figure 2.10). At the 90 cm depth, soil water was spatially 

incoherent (Figure 2.13), unlike what we observed at the other depths.  
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a. Spring 2014                                                                                         b. Fall 2017 

 

 

 

 

 

 

 

 

 

 

 

 

          

               Figure 2.9. Kriged map of soil water content (Johnson SI transform) at 0-15 cm depth across the field for (a) Spring 2014 (b) Fall 2017. 
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a. Spring 2014                                                                                           b.  Fall 2017 

 

 

 

 

.   

 

 

 Figure 2.10. Kriged map of soil water content (Johnson SI transform) at 30-45 cm depth across the field for (a) Spring 2014 (b) Fall 2017. 
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a. Spring 2014                                                                                             b.  Fall 2017 

 

 

 

 

 

 

Figure 2.11.  Kriged map of soil water content (Johnson SI transform) at 60-75 cm depth across the field for (a) Spring 2014 (b) Fall 2017.
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Figure 2.12. Kriged map of soil water content (Johnson SI transform) at 75-90 cm depth across 

the field for Fall 2017. 
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                                                             2.5. Discussion  

2.5.1. spatial structure of soil bulk density 

The coefficient of variation of bulk density in this study was low according to the classification of 

Warrick and Nielson (1980). These results are consistent with those reported by (Ceddia et al., 

2009; Silva et al., 2015; Diego et al., 2017; Qiao et al., 2018). The precision of the experiment is 

determined by the coefficient of variation. Bulk density fitted an exponential model at two depths, 

with a shift to the Gaussian model at four depths (Table 2.2). Bulk density was strongly spatially 

autocorrelated from the top soil to the 75 cm depth. A study by Usowicz and Lipiec (2017) on the 

spatial variability of soil properties and cereal yield in a cultivated field on sandy soil, reported a 

strong spatial dependence (>75 %) on bulk density. Qiao et al., (2018) investigated the spatial 

variation and simulation of bulk density in a deep profile (0 - 204 m) on the Loess Plateau and 

showed that bulk density had a strong spatial dependence (>75 %) with depth. This spatial 

dependence of bulk density at our site increased from the soil surface to the 75 cm depth (Table 

2.2). For examples, only 81 % of total variability was due to spatial variation at the 0-15 cm depth 

interval and this increased to 86 % at the 15-30 cm depth. There was also a shift of semi variogram 

from the Exponential to the Gaussian model for the two layers. There was a decrease in the spatial 

dependency at the 90 cm depth, with a shift of semi variogram from Gaussian to Exponential. 
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2.5.2. Spatial pattern and distribution of soil bulk density 

Variation in bulk density within the field was observed (Figure 2.2). This variability shows the 

heterogenous nature of the soil in this area. The South-West region of the field had a higher bulk 

density compared to the North-East region. Variability of bulk density within the field is consistent 

with results by Gilsonley et al., (2016), who reported a change in spatial variability in both convex 

and concave landforms, with an increase in bulk density towards the foot slopes, and a decrease in 

clay content along the same slope. Variation in bulk density was most likely due to spatial 

heterogeneities of soil texture in the area, where bulk density was higher in sandy areas. This is so 

because the total pore space in sands was less than that of silt or clay (Usowicz and Lipiec, 2017), 

and frequent equipment travel over the top soil. This is consistent with results by Deigo et al., 

(2017) where they investigated spatial variability of soil attributes in an experimental basin in the 

semi-arid region of Pernambuco, Brazil. These authors reported an increase in bulk density in the 

upstream portion of the basin with a higher sand fraction. Ozgoz (2009) observed that bulk density 

and penetration resistance were higher in sandy areas compared to the rest of the field. Ceddia et 

al., (2009) reported the influence of sand texture on bulk density values. 

Bulk density was less spatially coherent at the soil surface compared to deeper depths probably 

due to directional tillage over the years (Logsdon and Cambardella, 2000; Ozgoz, 2009). The 

spatial pattern of soil bulk density in this study was in line with the spatial pattern of sand content 

obtained by Vivekanahan et al., (2018) for the same study site. Areas with low sand content had 

low bulk density, and areas with high sand content had high bulk density. Barik et al., (2014) also 

reported that repeated tillage operations which occurs majorly on the top soil, spatially and 

significantly influences aggregate stability and bulk density, and a change in bulk density that 
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occurs at the surface doubles that of other depths approximately. Bulk density increased with depth 

in this study. This can be due to the compaction because of stress from the top soil (Ozgoz, 2009).                                      

2.5.3. Soil moisture content 

The coefficient of variation for soil moisture content in the Fall of 2017 increased with depth. This 

agrees with the results of Ceddia et al., (2009), who also found an increase in CV with increasing soil 

moisture. These results contradicted the results of Gwak and Kim (2017) which indicated that soil 

moisture variability decreases with increasing mean. The coefficient of variation for soil moisture 

content in the Fall of 2017 was moderate. This CV classification is in line with those of (Xu et al., 

2017; Wang and Singh, 2017; Xu et al., 2017; Zhao et al., 2017), who observed a moderate CV values 

for soil moisture content. There was an increase in standard deviation with depth (Table 2.3) which 

agrees with previous findings by (Cho and Choi, 2014). Soil moisture content was strongly spatially 

correlated from the top soil to the 75 cm depth (Usowicz and Lipiec, 2017). The pure nugget effect 

observed at the 75-90 cm depth indicated that variability was solely due to a random effect at this depth 

(Table 2.4). At the 75-90 cm depth, there was no spatially dependent variation in soil moisture at the 

range specified (Figure 2.9).  

The geospatial pattern of soil moisture content in the Spring of 2014 and the Fall of 2017 was 

almost invariant. The mirror image between soil bulk density and soil moisture content may be 

due to the negative correlation between both variables. Yang et al., (2016) reported a negative 

correlation between soil bulk density and soil moisture content. The spatial pattern obtained in the 

Fall of 2017 was similar to that in the Spring of 2014 as the region with high moisture content in 

the Fall of 2017 had high moisture in the Spring of 2014, and the region with low moisture content 

in the Fall had low moisture in the Spring. 
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 This was probably due to the spatial pattern of soil texture at this site (Vivekanahan et al., 2018), 

where the northeastern part of the field had high clay content, hence, high moisture content in both 

seasons compared to the Southwestern part. This is in agreement with the results obtained by other 

researchers (Penna et al., 2013; Manns et al., 2014; Chaney et al., 2015; Dong and Ochsner, 2018) 

where they reported the effect of particle size distribution on the spatial variation of soil water 

content. Wang and Singh (2017) confirmed texture as the dominant factor controlling soil moisture 

content variation. Khosla et al., (2005) also reported a significant increase in soil water content in 

areas with finer soil texture. The 75-90 cm depth was spatially incoherent. This was due to the 

dominance of random variation and the weak spatial dependency of soil water content at this depth 

(Table 2.4). 
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                                                         2.6.  Conclusion 

Spatial variability of bulk density and soil water content on a Canadian Prairies field was evaluated. 

The results showed that bulk density and water content were both spatially autocorrelated at the 

field scale. Although soil moisture is known to be temporally variable, our results showed that the 

spatial pattern of soil moisture is temporally invariant at this site, perhaps due to the dominant 

influence of soil texture on soil water content. The results from this study show the significance of 

microspatial variability on a Canadian Prairie field which can be taken advantage of to delineate 

management zones for precision agriculture.  
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3.  FEASIBILITY OF MEASURING SOIL CHEMICAL PROPERTIES USING THE 

VERIS SENSOR 

 

                                                         3.1.      ABSTRACT 

 

Conventional measurement of soil properties such as organic carbon and nitrogen (OC and ON) is 

expensive and tedious particularly at the field scale. Yet, such information is required if farmers 

are to be compensated for adopting agricultural practices that sequester carbon. The Veris 

OpticalMapper, based on near-infrared (400-2200 nm) soil reflectance spectra, is a practical 

approach to estimate and map high spatial resolution OC and ON. This study aims to evaluate the 

potential of the Veris OpticalMapper to measure soil OC and ON across a Canadian Prairies field. 

The study area was located in Carberry, over the Assiniboine Delta Aquifer, on an Orthic Black 

Chernozem. The investigated soil properties were soil organic carbon, total carbon, and total 

nitrogen. To develop the calibration model, 515 soil spectra were collected with the Veris 

OpticalMapper. Partial least squares regression (PLSR) coupled with leave-one-out cross 

validation were used to establish the relationship between the near-infrared soil reflectance spectra 

and the soil properties, whose values were obtained by soil chemical analysis. The accuracy and 

the goodness of fit were expressed by the coefficient of determination (R2), root mean square error 

(RMSE), and residual prediction deviation (RPD). The RMSE was lowest (0.28) and the R2 value 

was highest (0.70) for SOC, with RPD 2.40, TC had a RMSE of 0.57, R2 of 0.67, and RPD 2.01, 

and TN with RMSE 0.58, R2 0.68 and RPD 1.80. Ordinary kriging was used to generate maps, 

with the soil properties showing a strong dependency (> 75) at the soil surface (0-15 cm). Our 

results showed that the Veris OpticalMapper has the potential to estimate soil OC and ON at the 

field scale. 
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                                                       3.2.    INTRODUCTION 

 

Soil organic carbon and total nitrogen are indicators of soil productivity (Wang et al., 2018). Soil 

organic carbon affects the soil directly or indirectly through its influence on other soil properties 

and soil processes (Hbirkou et al., 2012). These include interaction between soil and plants (Ladoni 

et al., 2010), soil moisture content, aggregate stability, nutrient cycling, and activities of 

microorganisms (Vasques et al., 2010). Studies have shown that organic matter is spatially variable 

across the field (Kweon et al., 2013). A knowledge of the spatial variability of soil organic carbon 

in agricultural fields (Hbirkou et al., 2012) is important for site-specific management in soil carbon 

monitoring (Gebbers and Adamchuk, 2010). Variation in soil organic carbon has been found to 

affect the input of fertilizers, herbicide as well as the productivity of crops (Ladoni et al., 2010). 

Hence, accurate information about its variability within field is crucial to farmers for optimum 

crop yield.  

Conventional mapping of soil organic carbon is time consuming, laborious, destructive, and lacks 

spatial details (Hill et al., 2010; Hbirkou et al., 2012; Kweon et al., 2013; Perron et al., 2018; Sun 

et al., 2018) at the field scale (Hill et al., 2010; Vasques et al., 2010). Although, conventional 

methods have been a standard for calibration for proximal sensors (Vasques et al., 2010). There is 

therefore the need to use a mapping technique that is non-destructive and can provide detailed 

information about the concentration of soil organic matter at the field scale.  

The Near infrared spectroscopy (NIRS) provides data with high spatial and temporal resolutions, 

and this technique is very sensitive to organic carbon (Li et al., 2013). This is because the 

reflectance from NIR conveys vital information (C-H, N-H, and O-H functional groups) relating 

to the organic and inorganic component of the soil (Stevens et al., 2013; Shi et al., 2015). Over the 
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years, many efforts have been made to use NIRS to map out soil properties, such as soil organic 

matter and cation exchange capacity (Bellon-Maurel and McBreatney, 2011; Kweon et al., 2013; 

Ji et al., 2014), % clay (Bricklemyer and Brown, 2010), electrical conductivity (Sudduth et al., 

2003; Sudduth et al., 2005; Serrano et al., 2014), total available water content (Hezarjaribi and 

Sourell, 2007), available phosphorus, total nitrogen, and moisture content (Kodaira and 

Shibusawa, 2013). Other investigations that have explored the use of NIRS include land suitability 

assessment (Fulton et al., 2011), measuring nutrient composition of cattle manure (Malley et al., 

2005), measurement of settled and suspended materials in lake, and measurement of mass transport 

of dissolved chemical through intact soil (Katuwal et al., 2018). These studies have been shown to 

provide high density data with R2 as high as 0.93 for organic carbon, and 0.94 for nitrogen (Malley 

and Williams, 2014). 

Studies that used NIRS have been conducted in the field (Fulton et al., 2011; Malley and William, 

2014; Aliah Baharom et al., 2015), as well as in the laboratory (Mouazen et al., 2007; Zornoza et 

al., 2008; Bricklemyer and Brown, 2010; Gomez and Coulouma, 2018). Measurement of soil 

organic carbon with the NIRS under laboratory condition has been carried out by several 

researchers and the ability of the sensor to produce satisfactory results have been reported (Christy, 

2008; Kweon et al., 2013; Rodionov et al., 2015). Kweon and Maxton (2013) found a strong 

correlation between the NIR spectral obtained from the OpticalMapper and the lab-analyzed soil 

organic carbon with an R2 of 0.87. Soil organic matter, (often approximated as 1.72 x SOC) is the 

soil property that is widely measured with NIRS. The Veris OpticalMapper combined with the 

Global Positioning System (GPS) provides real-time data (Fulton et al., 2011). Satisfactory results 

with the NIRS has been reported for field survey.  
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Xu et al. (2018) estimated soil organic matter and total nitrogen using the NIR spectroscopy in soil 

cores of paddy fields with an R2 of 0.88. Nawar and Mouazen (2018) measured soil organic carbon 

using the Vis-NIR spectroscopy in the field with an R2 of 0. 74. Vasques et al. (2010) estimated 

soil organic carbon with depth and reported an R2 value of 0.86.  

The Veris OpticalMapper, a dual wavelength optical sensor works using NIRS to measure soil 

organic carbon (Veris technology, 2009). Soil organic matter was measured with the 

OpticalMapper with satisfactory results (Ji et al., 2019), and provided a map of the spatial 

variability of SOM for potato production in New Brunswick (Ji et al., 2019). Sudduth et al (2003) 

measured SOC with the optical mapper and reported an R2 of 0.62. A study by Christy (2008) 

reported an R2 of 0.67 with the OpticalMapper in estimated SOC. Kweon and Maxton (2013) 

measured soil organic matter using the OpticalMapper and reported an R2 of 0.86. A range of 

factors affect the effectiveness of the OpticalMapper to measure soil organic matter, the most 

important of which is varying soil moisture (Christy, 2008; Rienzi et al., 2014). Furthermore, the 

amount of CaSO4 and CaCO3 in arid and semiarid regions, as well as varying parent material and 

topography, affects reflectance (Ladoni et al., 2010). A study by Vasques et al. (2010) reported a 

better performance of the laboratory spectrometry than the field spectrometry due to the 

interference of soil moisture, which alters the refractive index, and diffusion of light.  

Partial Least Squares Regression (PLSR) has been the most commonly used model to determine 

important wavelengths and estimate soil organic carbon from reflectance spectral (Minu and 

Shetty, 2018). To estimate soil organic carbon, PLSR generates a linear relationship between the 

predictor variables (spectral reflectance) and the response variables (soil organic carbon) (Peng et 

al., 2014).  
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A leave-one-out cross validation is used with PLSR to test how robust the prediction equations are 

(Jiang et al., 2016; Grinand et al., 2017). Kweon and Maxton (2013) used partial least square 

regression to determine important wavelengths (660 and 940 nm) and estimated soil organic matter 

using spectra reflectance with an R2 of 0.91. Bullock et al., (2004) investigated soil water in small 

soil volumes using NIR spectroscopy and determined two important wavelengths (1450 and 1940 

nm) using partial least squares. Ji et al (2019) used partial least square regression to estimate soil 

organic matter with the proximal sensor data and reported an R2 of 0.86. 

Once a prediction equation has been generated using PLSR, measures are then taken to determine 

the accuracy or predictive power of the calibration. The best calibration is the one with the lowest 

standard error of prediction (SEP) and root mean square error (RMSE), highest coefficient of 

determination (R2) between measured and predicted values, and ratio of prediction to deviation / 

ratio of performance to prediction (RPD) (Mouazen et al., 2007; Zornoza et al., 2008; Aliah 

Baharom et al., 2015; Clairotte et al., 2016; Xu et al., 2018). The RMSE explains the standard 

error that occurs during the calibration process (Hbirkou et al., 2012). Performance to prediction 

(RPD) values < 1.4 indicates no predictive ability, between 1.4 and 2 indicates a moderate 

predictive ability, and > 2 are said to accurately predict soil parameters (Peng et al., 2014). Analysis 

using the Near Infrared spectroscopy relies solely on calibration for its effectiveness. Conventional 

laboratory analysis is being used for calibration (Vasques et al., 2010; Stevens et al., 2013).  

A study by Kweon and Maxton (2013) evaluating the performance of a developed sensor in 

estimating soil organic matter gave an RPD of 2.0. Hbirkou et al. (2012) reported an RPD of 2.08 

while studying the spatial heterogeneity of soil organic carbon at field scale. Sun et al., (2018) 

estimated soil organic carbon in a coal mining area using Vis-NIR spectroscopy and reported an 

RPD of 2.69.  
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Precise evaluation of soil organic carbon and other soil properties can help manage long-term 

sustainability of soils. However, this involves conventional methods, which can be time-

consuming and costly. Hence, there is a growing demand for optical sensors that can extensively 

be used for soil analysis, and on the appropriate management of spatial and temporal variability of 

soil properties. Therefore, the objectives of this study were  

1. to evaluate the potential of the Veris OpticalMapper to measurements of soil SOC, TC, and 

TN on a Canadian Prairies.  

2. to produce soil maps of OC, TC and TN showing its variability within field, as required 

for Precision Agriculture.    

Hypothesis: Veris OpticalMapper can estimate SOC, TC, and TN and that variation in these 

properties occurs at the soil surface.  
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                                                       3.3. Materials and methods 

3.3.1. Study area and soil description 

The study was carried out on a farmer’s cooperator field that is located about 10 km, Northwest of 

Carberry in Southwestern Manitoba, Canada (SW-19-11-15W). The region is characterized by an 

average annual precipitation of 456 mm, with approximately 70 % falling as rain from April-

October and 30 % as snow during the winter months and mean annual temperature of 2.1 oC. The 

site is located over the Assiniboine Delta Aquifer, an unconfined aquifer that is the source of 

drinking water. The site consists of Orthic Black Chernozem soils, which developed on lacustrine 

deposits. Further information on the study area was provided in Chapter 2, section 2.3.1. 

 

3.3.2. Sample collection 

 

Soil spatial variability of the 0.36 ha experimental field was characterized by one hundred and 

twenty-four (124) geo-referenced samples collected with a 3" plastic sleeves with a Giddings 

hydraulic soil punch, at a depth of 0-15 cm to calibrate the sensor data. Plant residues were 

removed from the surface during sampling to minimize the impact on the organic carbon analysis. 

A geospatial sampling scheme was used for sampling, which could detect small scale variability 

in organic carbon across the field.  

3.3.3. Laboratory analysis 

Air-dried surface soil samples (0 - 15 cm) (n = 124) were ground with an 8000D mixer/mill high-

energy ball mill in preparation for chemical analysis. This sample size provided satisfactory 

statistical power (0.8) for statistical analysis of SOC, TC, and TN. Soil organic carbon, TC, and  
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TN were analyzed by dry combustion with a flash 2000 elemental analyzer (Thermo Fisher 

Scientific). Inorganic carbon was removed with 0.5 mL of 2 mol L-1 HCL before determination of 

SOC (Vivekanahan et al., 2018). 

3.3.4. Spectrum acquisition  

The Veris OpticalMapper was used to map a 65 x 55 m (0.36 ha) field using the Veris 3100 (Veris 

Technologies, Salina, KS) designed for mapping with multiple sensor, and equipped with a Global 

Positioning System (GPS) antenna to provide positional information. The OpticalMapper consists 

of six coulters for measuring electrical conductivity and a unit for optical measurement. The optical 

unit consists of red LED (660 nm) and NIR red (940 nm) collecting red and near-infrared 

wavelengths through a sapphire window (20 spectra per second with an 8nm resolution), which 

are both sources of light, and a single photodiode. The sensor was mounted in between two disks 

which operate at a slight angle, forming a V-shaped slot in the soil. A depth-gauging side wheel 

for each disk controls sensing depth. The wear plate with window was pressed against the bottom 

of the slot to provide consistent pressure for self-cleaning function. Veris sensor measurements 

were continuously measured in a grid transects across the entire site. Data was collected at about 

7cm below the soil surface.  A total of 583 reflectance data was collected. The GIS software was 

set to average the reflectance data within 3 m around the sampling points for laboratory analysis. 

This brought the reflectance data down to 124 points. 
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3.3.5. Statistical analysis 

Prior to analysis, the data was centered and scaled, and the JMP 13.0 SAS institution was used to 

calculate partial least square regression, with the Nonlinear Iterative Partial Least Squares 

(NIPALS) method. A prediction model was developed using partial least square regression to 

calibrate the NIR data (reflectance reading), which were predictor variable, with the reference soil 

organic carbon, total carbon, and total nitrogen data from the elemental analysis as predicted 

variables.  

A validation step is required to access the accuracy of the calibration model. The validation 

procedure was done using the leave-one-out cross validation. This procedure leaves one sample 

out at a time and then uses the equation generated with the other sample to estimate the value of 

the omitted sample. This procedure was repeated until all samples have been omitted and 

estimated. The procedure was applied to all possible combinations of independent variables to 

estimate soil organic carbon, total carbon, and total nitrogen. Root mean square error (RMSE), R2, 

and ratio of prediction to deviation (RPD) were produced for the cross-validation dataset. The RPD 

was used for assessing the goodness of fit for NIR spectroscopy. The correlation between the 

predicted Veris OpticalMapper data and the laboratory data was determined. Linear regression 

between the predicted and measured value was performed using XLSTAT 2017 least squares 

method (Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft, Paris, France) 

(Figure 3.1). 
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3.3.6. Geostatistical data processing 

All Geostatistics computations were conducted using the GS + version 10.0 (Gamma Design 

Software LLC., Plainwell, MI, USA). One Semivariogram model (gaussian) was used to describe 

the Semivariogram, as it was the best-fitted model with the lowest residual sum of squares for 

predictions and largest coefficient of determination (Wang et al., 2018). Geostatistical parameters; 

sill (C + CO), nugget (CO), and range, were obtained. The sill is the sum of the nugget and the 

spatial variability. The nugget estimates the spatial variability at distances closer than the minimum 

sampling space. The range shows the distance at which the sampling points are spatially correlated 

with each other.  

The ratio of the spatial variability and the sill is the proportion of total variability which is 

explained by the spatial autocorrelation (Bong et al., 2018). Kriging, a regression method, provides 

a means of interpolating values for points not physically sampled. Ordinary kriging was used to 

interpolate and generate maps of lab-analyzed and Veris estimated SOC, TC, and TN for this study 

(Diego et al., 2017). 
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                                                                3.4. Results 

3.4.1.  Soil organic carbon and related properties 

The results obtained from a total of 124 soil samples for the calibration and validation sets are 

listed in (Table 3.1). The statistical results include the mean, coefficient of variation, standard 

deviation, minimum, and maximum for each soil parameter. Coefficient of variation for soil 

organic carbon, total carbon, and total nitrogen were similar (Table 3.1) perhaps as a result of the 

association of carbon and nitrogen to soil organic matter. Maximum SOC, TC, and TN were about 

four times greater than their respective minimum values (table 3.1). 

Table 3.1. Descriptive statistics of soil organic carbon % (SOC), total carbon % (TC), and total 

nitrogen % (TN) at the soil surface (0-15 cm). 

 

Soil 

properties 

Number 

of 

samples 

Mean   Coefficient 

of variation 

      (%) 

Standard 

deviation  

Minimum 

     (%) 

Maximum 

     (%)  

Organic 

carbon  

124 1.70        29  0.49 0.74 2.80 

Total 

carbon 

124 1.74       29  0.51 0.74 2.86 

Total 

nitrogen 

 

124 0.14       28  0.04 0.07 0.22 
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3.4.2. Performance of the calibration model 

The quality of the PLSR model (JMP 13.0 SAS institution) fit was evaluated using performance 

statistics derived from the regression of values estimated using PLSR versus those that were 

measured in the laboratory. The PLSR results were obtained as shown in (Table 3.2). Based on the 

coefficient of determination (R2), RPD, and RMSE, the accuracy of the model was determined, 

with SOC having an R2 of 0.70 and RPD of 2.40, TC with an R2 of 0.67 and RPD of 2.01, and TN 

with an R2 of 0.68 and RPD of 1.80. The predictive ability of this model was considered to be 

accurate for SOC and TC and moderate for TN according to the RPD. 

 

Table 3.2. Summary of PLSR results of the soil properties dataset 

Soil 

properties 

Number 

of 

samples 

Multivariate 

method* 

RPD** Predictive 

ability***  

RMSE**** 

Organic 

carbon  

124 PLSR 2.40 Accurate  0.28 

Total 

carbon 

124 PLSR 2.01 Accurate  0.57 

Total 

nitrogen 

 

124 PLSR 1.80 moderate 0.58 

 

            *PLSR=Partial least square regression 

**RPD = Ratio of prediction to deviation.  

***Performance to prediction (RPD): RPD > 2.0 accurate; RPD= 1.4-2.0 moderate; RPD= 

< 1.4 no predictive ability. (Peng et al., 2014). 

****RMSE = Root mean square error. 
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Figure 3.1. Correlation between laboratory measured and Veris estimated soil (a) organic carbon, 
(b) total nitrogen, and (c) total carbon. 

 

3.4.3. Geostatistics  

The investigated soil properties were tested for normality using the SAS 9.4 (SAS institute Inc, 

2014) software. The laboratory analyzed organic carbon, total carbon, total nitrogen, and estimated 

Veris OC, and TC were normally distributed (p > 0.05) thus, were not transformed. The Veris 

estimated TN was not normally distributed and was transformed using the Johnson SI 

transformation. The best fitted model parameters are presented in Table 3.3. The coefficient of 

determination (R2) was 0.98 for laboratory analyzed OC, total carbon, total nitrogen, and Veris 

estimated OC, and was 0.99 for estimated Veris TC and TN as obtained with the Gaussian model. 

The residual sum of square was small. The sill (C0 + C) values were higher than the value of the 

nugget. Ranges of Veris SOC, TC, and TN were large compared to the lab-analyzed values.  
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The ratio of the sill and nugget reflects spatial autocorrelation and was strong for all soil properties 

(Table 3.3). For example, only 90 % of total variability of SOC was due to spatial variation in the 

top soil. Ordinary kriging was used to estimate unsampled location based on the fitted 

Semivariogram model. 

Table 3.3. Parameter for Semivariogram models for Lab analyzed SOC, TC, and TN and Veris 
estimated SOC, TC, and TN. 

 

Soil 

property 

Variogram 

Model * 

 

Nugget 

Variance 

 Co 

Sill  

Co+C 

C/Co+C 

    (%) ** 

R2 Range  Spatial  

Class 

*** 

Total N 

 

Gaussian 0.000 0.002 89.7 0.98 55.75 S 

Total C Gaussian 

 

0.039 0.477 91.8 0.98 55.32 S 

Organic 

C 

Gaussian 

 

0.044 0.451 90.2 0.98 58.66 S 

Veris OC Gaussian 

 

0.024 0.345 93.0 0.98 72.46 S  

Veris TC 

 

Gaussian 0.000 0.018 99.0 0.99 88.08 S 

Veris TN 

 

Gaussian 0.001 1.985 99.0 0.99 87.72 S 

 

* Models are all isotropic        

** Nugget to sill ratio (%) = (Nugget semivariance / total semivariance) X 100 

***S = Strong spatial dependency (C/C+Co % > 75); M = Moderate spatial dependency (C/C+Co 
% between 75 and 25) Chien et al., (1997). 
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3.4.4. Pearson correlation coefficient for Veris SOC with other variables 

Pearson correlation coefficient was used to determine the strength of possible relationships 

between Veris SOC, and other soil properties. Table 3.4 displays the linear correlation coefficient 

among the four variables. Veris SOC was significantly positively correlated with TN (0.807**), 

TC (0.811**), and Lab-analyzed SOC (0.805**).  

 

Table 3.4. Pearson Correlation coefficient for Veris SOC with other variables 

 

Variables    Total nitrogen     Total carbon    Lab-analyzed               

SOC 

 

       Veris 

Predicted SOC 

Total nitrogen             -         0.992**          0.992**      0.807** 

 

Total carbon        0.992**             -          0.989**      0.811** 

  

Lab-analyzed     

SOC 

       0.992**           0.989**               -      0.805** 

Veris predicted 

SOC 

       0.807**         0.811**          0.805**          - 

 

SOC=soil organic carbon 

** significant at <0.05 
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3.4.5. Soil mapping 

Kriged maps of the spatial distribution of SOC, TC, and TN were prepared based on 

Semivariogram models (Figure 3.4 to 3.6). Figure 3.4 to 3.6 show the spatial variability of soil 

properties of the experimental field. The spatial pattern of the laboratory analyzed soil organic 

carbon, total carbon, and total nitrogen are similar to those estimated using the Veris 

OpticalMapper. The North-East region of the field had higher values of the 3 properties while the 

South-West region had lower values.   
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a. Laboratory organic carbon                                                                 b. Veris predicted organic carbon 

 

                                                                                                                                                                            

 

                                                                                                             

 

 

 

 

 

 

Figure 3.2: Kriged maps of soil organic carbon content as measured (a) conventionally and (b) as estimated using the Veris 

OpticalMapper. 3.0   24.0   45.0   66.0
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                       a. Laboratory total carbon                                                                 b. Veris predicted total carbon 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Kriged maps of soil total carbon content as measured (a) conventionally and (b) as estimated using the Veris OpticalMapper. 
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a. Laboratory total nitrogen                                                              b. Veris predicted total nitrogen 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Kriged maps of soil total nitrogen content as measured (a) conventionally and (b) as predicted using the Veris 
OpticalMapper.
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                                                                    3.5. Discussion 

 

3.5.1. Performance of the calibration model 

The strong relationship between laboratory measured soil organic carbon and spectral reflectance 

from the Veris OpticalMapper indicates that SOC can be modelled using soil reflectance (Liu et 

al., 2018; Minu and Shetty, 2018). Different spectra have been examined to determine the most 

suitable wavelength for organic carbon (Bellon-Maurel and McBratney, 2011; Rodionov et al., 

2015). Using the accuracy classification by Peng et al. (2014), the calibration set proved to be 

excellent for SOC and TC with the RPD above 2 similar to what was reported by (Kweon et al. 

2013; Aliah Baharom et al., 2015; Minu and Shetty, 2018). For TN, the RPD was between 1.4 and 

was regarded as moderate in agreement with (Malley et al., 2009) who obtained a moderate 

calibration when analyzing total nitrogen on the Canadian Prairie (Table 3.2 and Figure 3.1). 

St.Luce at al. (2014) reported an RPD > 2 for SOC and TN using the visible near infrared 

spectroscopy. The coefficient of determination R2, showed that 70 % of the variability in SOC was 

explained by the Veris predicted SOC and 68 % of the variability of field measured total nitrogen 

was explained by the Veris TN, while 67 % of the variability in measured TC was explained by 

the Veris TC. Christy (2008) reported an R2 of 0.75 for organic matter using on-the-go near 

infrared reflectance spectroscopy. Sun et al. (2018) reported R2 of 0.70 for soil organic carbon 

estimated in a coal mining area using Vis-NIR spectroscopy. The value obtained by Grinand et al. 

(2017) was R2 of 0.72 while estimating temporal changes in soil carbon stock with remote sensing.  
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The performance of the Veris OpticalMapper in this study could have been influenced by the small 

range of SOC and to some extent low clay content as the dominant soil texture at this site is loamy 

sand (Ladoni et al., 2010; Bricklemyer and Brown, 2010; Deiss et al., 2017; Vivekanahan et al., 

2018). Soil organic carbon, TC, and TN were low in areas with high sand content, and high in 

areas with high clay content. Clay content was positively correlated with SOC (Figure 2.10) 

(Vanek et al., 2008; Xiao-Wei et al., 2012). It has also been reported that variations in soil moisture 

affects the performance of NIR in the field by changing the refractive index and diffusion of light 

(Kweon et al. 2013; Rodionov et al., 2015; Deiss et al., 2017). Rienzi et al. (2013) observed a 

decline in reflectance with increasing soil moisture content when predicting soil organic carbon 

under varying moisture levels. Also, because of the small nature of the plot and heavy traffic, 

wheel tract compaction can cause sensor anomalies like streaks or shifts (Deiss et al., 2017). These 

effects are more significant to the optical sensor as it only investigates a few inches of the topsoil 

(Bricklemyer and Brown, 2010). 
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3.5.2. Geostatistics and Pearson analysis 

These maps show that the experimental field is spatially heterogenous (Figure 3.4 to 3.6). The 

residual sum of squares for all measured values were roughly equals to zero, which indicated that 

the model efficiently reflected the experimental variogram (Liu et al., 2011; Wang et al., 2017). 

The value of Co / (C + Co) ranged from 89.7 % to 93.0 % which showed that the soil properties 

exhibited strong spatial dependency. Other studies have previously reported strong spatial 

dependency for SOC, TC, TN, and Veris OC (Wang et al., 2009; Liu et al., 2014; Wang et al., 

2017). The highest R2, which shows how well the model fit was 0.98 for all soil properties in this 

study (PingguoYang et al., 2016; Wang et al., 2017; Wang et al., 2009). The landscape texture has 

caused many of the soil parameter to vary, a phenomenon which was also observed by (Piotrowska, 

2011; Hu et al., 2104; Naveed at al., 2016; Mingjun et al., 2017; Vivekanahan et al., 2018). The 

variability of these parameters may be due to the influence of other soil properties, such as soil 

bulk density, which has a negative correlation with SOC, TC, and TN (Figure 2.2) (Beleke et al., 

2013; Bameri et al., 2015; Zhang et al., 2015; Wang at al., 2017). Kweon et al. (2013) reported 

variations in soil organic matter due to soil texture. Soil moisture content had a positive correlation 

with SOC, TC, and TN, where regions with high moisture content also had high SOC, TC, and 

TN. This is because soils with high organic matter can hold more water.  
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                                                          3.6. Conclusion 

Laboratory analysis of soil carbon is time consuming and expensive especially for a large field 

size. In an attempt to address this problem, different types of sensors have been developed to map 

these soil properties that are useful for precision agriculture. This study evaluated the potential of 

Veris OpticalMapper to estimate SOC, TC, and TN. Pearson correlation coefficient between the 

soil properties indicated positive linear relationship. The results showed that capability of 

measuring SOC, TC, and TN of Canadian prairie soil with Veris OpticalMapper. Mapping of 

chemical properties with the Veris OpticalMapper will be useful in monitoring large-scale 

variability, help to improve site-specific management, and field experiments e.g. in application of 

fertilizers, herbicides, monitoring carbon sequestration, and nitrogen leaching.   
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4.  SOIL MOISTURE CONTENT ESTIMATION USING GROUND PENETRATING 

RADAR 

 

                                                                4.1. Abstract  

Soil moisture content is an important index that influences irrigation scheduling and crop yield. 

However, conventional sampling method for site-specific evaluations cannot be used to acquire 

the large dataset required for soil water content. Therefore, geophysical investigation performed 

using the Ground Penetrating Radar technique with a wide-angle reflection and refraction survey 

method was used to estimate soil moisture content in the Northwest of Carberry in Southwestern 

Manitoba, Canada. This study was carried out to evaluate the potential of the Ground Penetrating 

to measure soil moisture content. In this study, a Pulse EKKO PRO GPR system with a central 

frequency of 500 MHz antenna was used at a loamy sand soil site. Soil moisture content was 

measured using the thermogravimetric method. The travel time and depth of reflector were used 

to calculate the dielectric permittivity, and volumetric water content was estimated using Topp’s 

equation. The linear regression between the moisture content estimated using Topp’s equation and 

lab-analyzed soil moisture content gave an R2 of 0.83, and RMSE of 0.014 m3 m-3. Dielectric 

permittivity was linearly related to soil moisture content with an R2 of 0.95, and RMSE of 0.44. 

The obtained calibration curve shows that the dielectric permittivity measured by GPR is a good 

proxy for soil moisture content. These results indicate that Ground Penetrating Radar has the 

potential as an indirect technique for reliable measurement of soil moisture content at the field 

scale. 
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                                                         4.2. INTRODUCTION 

The monitoring of soil moisture content is important for irrigation scheduling and optimizing crop 

yield (Grote et al., 2010). Other areas where the soil moisture content is important includes the; 

hydrologic cycle and fluxes (Steelman and Endres, 2012), remediation of contaminated lands and 

soil erosion (Ercoli et al., 2018), ground water recharge (Klotzsche et al., 2018), and 

meteorological and climatological researches (Reza and Ardekani, 2013). Conventional methods 

of measuring soil moisture content such as the thermogravimetric method, neutron scattering, and 

capacitance sensors provides point measurements (Weihermuller et al., 2007; Qin et al., 2013), 

and are not suited for taking measurement of an entire field (Cosenza, 2016). This is a major 

limitation in the management of irrigation (Galagedara et al., 2005). 

To address this limitation, non-invasive methods of monitoring soil moisture content such as 

Ground Penetrating Radar (GPR), Time Domain Reflectometry (TDR), electromagnetic induction, 

ground-based radiometers, and Frequency Domain Reflectometry (FDR) are currently being used 

(Qin et al., 2013; Sharma et al., 2017; Ercoli et al., 2018). Ground penetrating radar has been the 

most extensively used non-invasive technique for estimating soil water content in the field or 

laboratory (Shamir et al., 2016). These non-invasive techniques are promising in advancing the 

current knowledge of soil moisture content and its variability by producing a more accurate sub-

surface view than the one provided by conventional methods. Parsekian et al. (2012) recorded 

dielectric permittivity using a 1.6 MHz ground penetrating radar antenna at multiple water contents 

on four peats monoliths and confirmed that GPR is an effective tool for investigating soil moisture 

content in peat soil.  
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Gacitua et al. (2012) investigated soil moisture content with the GPR (400 MHz antenna) and 

concluded that GPR can provide continuous information in large areas without soil disturbance. 

El-Behiry and Hanafy (2013) used GPR tomography and reflection method to image relative soil 

moisture. Bakken and Stolt (2018) investigated subaqueous soils in created and natural lakes in 

Southern New England with GPR. Three common methods of survey are employed by the GPR. 

The Fixed offset (FO) method, Common mid-point (CMP) method, and the Wide-angle reflection 

and refraction (WARR) method. During the fixed offset survey, the distance between the 

transmitting and receiving antenna are fixed throughout the survey (Paz et al., 2017). In the CMP 

survey, both the transmitting and receiving antenna are moved apart during survey (Steelman and 

Endres, 2012). This is different for the WAAR method where the transmitting antenna is kept at a 

fixed position and the receiving antenna moved at increasing distances away from the transmitting 

antenna (Huisman et al., 2003).    

The ground penetrating radar is a geophysical indirect technique for estimating soil moisture 

content. This is made possible because the electromagnetic wave velocity of the Ground 

Penetrating Radar is determined primarily by the dielectric constant of the medium (Galagedara et 

al., 2005; Mangel et al., 2017), a parameter that is strongly influenced by soil moisture content. In 

a GPR survey, the electromagnetic energy with a frequency ranging from 1 – 1000 MHz is 

transmitted to into the ground. Changes in dielectric properties of various soil component in the 

subsurface causes reflections, refraction or scattering of energy to occur which is then detected by 

the receiving antenna on the surface (Benedetto and Tosti, 2013; Raffelli et al., 2017). Aside the 

velocity analysis from the two-way travel time, which is the most common approach, other GPR 

methods employed in soil studies for water content include; Ground wave velocity, guided wave 

velocity and scattering, reflection coefficient, early-time signal analysis and full-time wave 
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inversion, which is mostly used in GPR signal numerical modelling (Zajicova and Chuman, 2019). 

Several studies have been carried out using these GPR survey methods. Lu et al. (2017) used both 

the common mid-point and fixed offset methods to measure soil moisture in steep slopes and 

observed a high accuracy with RMSE of 0.0101 m3 / m3 and 0.0068 m3 / m3 respectively. A study 

carried out in Guelph, Ontario, Canada used the wide-angle reflection and refraction and fixed 

offset methods to estimate soil water content during irrigation and drainage and obtained similar 

results between the two methods (Galagedara et al., 2005).  

There are no fixed rules for determining the antenna frequency that should be used for a survey. 

The antenna frequency of the GPR used is based on the objectives of the study. The choice of 

antenna frequency is always dependent on the depth of penetration needed. Higher frequencies 

have higher resolutions and lower penetration depths, and lower frequencies have lower 

resolutions and higher penetration depths (Ludwig et al., 2009; Raffeli et al., 2017). Steelman and 

Endres (2012) used three sets of frequency, 225 MHz, 450 MHz, and 900 MHz, and reported their 

preference for the 450 MHz and 900 MHz frequencies for better resolution. Galagedara et al. 

(2005) investigated four different depths corresponding to higher and lower frequencies. A 900 

MHz at a depth of 0.05 m, 450 and 200 MHz at a depth of 0.10 m, 100 MHz at a depth of 0.20 m.  

Possible drawbacks in the estimation of soil moisture content using the GPR are bound to occur 

due to the heterogeneity of the soil. Clustering, considered to be noise, reduces the quality of the 

signal, and the amount of cluster depends on the degree of soil heterogeneities (Gacitua et al., 

2012; Takahasi et al., 2015; Beauchamp et al., 2018). The degree of soil heterogeneity can be 

linked to soil stratigraphy, where contrasting soil horizons differ in the property that controls soil 

water content (Zajicova and Chuman, 2019). 
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Surface roughness can affect reflection resulting in distortion of incident and refracted rays 

(Agliata et al., 2018). Algeo et al. (2016) reported that soils with high clay content due to its high 

conductivity can impair the radar energy of the GPR by obscuring the reflection (Zajicova and 

Chuman, 2019). 

The time interval of the electromagnetic wave between the transmitting antenna and the receiving 

antenna is termed the travel time, measured in nanoseconds (Parsekian et al., 2012; Huang et al., 

2014; Lui et al., 2017). The velocity of electromagnetic wave in the air 3 x 108 m/s (0.3 m/ns) is a 

constant, hence the travel time for electromagnetic wave in the air is the same as the velocity of 

electromagnetic wave in the air (Lunt et al., 2005).  

The dielectric permittivity measures the polarizability of a material, causing displacement current 

to flow, thereby affecting the propagation of electromagnetic waves (Mansi et al., 2017). The 

dielectric permittivity is directly related to the velocity of the electromagnetic waves, which is an 

essential property for processing and analyzing Ground Penetrating Radar data (Qin et al., 2013; 

Paz et al., 2017). 

In relating the dielectric permittivity measured by the Ground Penetration Radar to soil moisture 

content, petrophysical relationships (Steelman and Endres, 2011) such as the Topp’s equation or 

dielectric mixing model can be used to estimate soil water content (Lui et al., 2016; Klotzsche et 

al., 2018). The most commonly used relationship between apparent permittivity, ԑr, and volumetric 

soil water content, Өv (cm3 cm-3), was proposed by (Topp et al., 1980). The quality of the data in 

terms of accuracy and reliability can be checked. This is done by calibrating the indirect 

measurement of soil bulk density and moisture content from ground penetrating radar with direct 

sampling from laboratory measures (Ercoli et al., 2018). 
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Although innovative data analysis has been initiated for ground penetrating radar sensing of soil 

moisture content in civil engineering and geosciences, it has not been widely explored in 

agricultural research. There is an increasing relevance of soil moisture determination for 

understanding global weather dynamics, flooding and drought severity, crop yield estimation, 

movement of fertilizers and pesticides as well as many other applications. This increase in the 

demand for soil moisture data has led to the development of various techniques to quantify soil 

moisture (Ojo et al., 2015).  

Therefore, the objective of this study was to 

(a) to evaluate the potential of the GPR to measure soil moisture content. 

Hypothesis: GPR travel time data, and a petro-physical relationship between dielectric constant 

and soil moisture content can be used to estimate soil moisture content on a Canadian Prairies 

field. 
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                                                       4.3. Materials and methods 

4.3.1. Study area and description 

The study was carried out on a farmer’s cooperator field that is located about 10 km, northwest of 

Carberry in Southwestern Manitoba, Canada (SW-19-11-15W). The region is characterized by an 

average annual precipitation of 456 mm, with approximately 70 % falling as rain from April-

October and 30 % as snow during the winter months and mean annual temperature of 2.1 oC. The 

site is located over the Assiniboine Delta Aquifer, an unconfined aquifer this is the source of 

drinking water. The site consists of Orthic Black Chernozem soils, which developed on lacustrine 

deposits. These are medium textured, well drained soils, where the upper (0 - 90 cm) depth 

increment is classified as loamy sand, and the underlying layer (> 90 cm) is sandy loam to loam. 

Sand content decreases with depth, from about 78% in the upper layer (0-10 cm) (Vivekanahan et 

al., 2018), while pH increases with depth from 6.37 at the surface layer to 8.33 at the 120 cm depth, 

and bulk density also gradually increases from 1.31 Mg m-3 at the top soil to 1.50 Mg m-3 at the 

120 cm depth (Enns, 2004). The experimental field was 65 × 55 m (0.36 ha) in size. The cropping 

system followed a Barley-wheat rotation with conventional agronomic management starting in 

2002. 
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4.3.2. Sampling scheme and soil sampling 

 Vivekanahan et al. (2018) used a method developed by Zar (2010) to determine the number of 

sampling points (178) for analysis using the variability of sand percentage at 0 - 10 cm and 60 - 

90 cm depth of the field. We selected fifty (50) of the 178 sampling points as the number of samples 

required to identify significant difference in bulk density at the site. This was calculated using the 

bulk density data obtained in 2001 (Enns, 2004) and the preliminary bulk density data for this 

study acquired in August 2017. Based on these two datasets fifty samples were required to detect 

the variability at 1 % difference with the power of test of 0.8. The site was surveyed, field 

boundaries were marked and spatial coordinates for each sample points were recorded. In each of 

the 50 sampling points, Universal Transverse Mercator (UTM) coordinates were measured using 

a GPS. Undisturbed soil samples were taken from 0 - 90 cm depth in 3" plastic sleeves with a 

Giddings hydraulic soil punch. After the soil samples were collected, they were stored in totes 

containing ice during transport to the laboratory and immediately stored in the refrigerator (4 ºC) 

on arrival to prevent moisture loss. 

 

4.3.3. Ground Penetrating Radar data collection 

This study used the pulse EKKO PRO GPR at a central frequency of 500 MHz shielded antenna 

(Sensors and Software Inc., Mississauga, Ontario, Canada). The instrument is fitted with an 

odometer wheel for triggering antennas, and a Panasonic Toughbook for data collection, to conduct 

a wide-angle reflection and refraction survey along a fixed survey line at each of the 50 sampling 

points (0 - 0.1 m), and a Global Positioning System (GPS) antenna to provide positional 

information. 
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 Repeated measurements were taken at the same location with increasing antenna spacing using 

the wide-angle reflection and refraction method. This method allowed the same feature to provide 

the echoes, but at different antenna spacing, making the wide-angle reflection and refraction 

method excellent at obtaining good velocity estimates. The transmitting antenna was held 

stationary at the sampling location, and the receiving antenna (Rx) was moved out from the 

transmitting antenna (Tx) in increment of 2.5 cm up to 0.1 m and readings taken at each increment. 

4.3.4. Ground Penetrating Radar processing 

The Ground Penetrating Radar data was processed using the EKKO project software (Sensors & 

software 2019). The processing was applied only to the data collected at the 50 sampling (test 

holes) for laboratory analysis, using the positional information provided by the GPS.  Prior to 

processing, a typical wide-angle reflection and refraction section showed multiple half parabolas 

(Figure 4.1). This radargram needs hyperbola fitting to calculate the electromagnetic wave velocity 

from the reflection. This velocity can be used to estimate the soil moisture content. 
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Figure 4.1. Raw GPR data (radargram) showing hyperbolic reflections.  

To ensure accurate depths, the first break at time zero was examined, adjusted and repicked on 

each trace on an amplitude deviation corresponding to 5 % of the maximum amplitude (Hans et 

al., 2015; Jazayeri et al., 2018; Nyquist et al., 2018).  Background subtraction was then applied to 

the sections (raw data). The background subtraction was completed with a filter width that is equal 

to the survey line length (Akpan et al., 2018). With this filter length, multiple echoes due to noise 

such as antenna ringing were removed while retaining signals from any flat laying reflectors. 

Background subtraction essentially removes the average trace amplitude of all traces from each 

trace (Paz et al., 2017; Godio et al., 2018). The next step was enveloping (Figure 4.2), this 

operation converts the traces from a wavelet with both positive and negative amplitudes to a 

monopulse wavelet with all positive amplitude (Castrignano et al., 2018). Enveloped data gives a 

better representation of reflection strength, removes oscillatory nature, and leaves true resolution. 

The acquired GPR signal represents the original portion of the signal.  
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Figure 4.2. Typical ground penetrating radar trace (thick black line) and corresponding envelope 

(broken line) from a sampling point in the field.  

A spreading exponential calibrated compensation (SEC) gain was applied to the data to boost 

returns from weak reflectors. The SEC gain is the closest to physical reality. It starts at the Start 

Gain and becomes constant at the Max Gain (Figure 4.3). The spreading exponential calibrated 

compensation gain was used because it has an exponential component, a constant component, and 

most accurately compensates for signal loss due to energy / wave front size factors and amplify 

the strength of the signal (Castrignano et al., 2018; Nyquist et al., 2018). The exponential 

component was used to compensate for the dissipation of energy that occurred as the wave 

propagates and the physical dilution of the signal that occurred due to increased wave front area.  

 

                                                                    

Figure 4.3. Shape of the SEC gain function. 
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Data stacking was done using semblance analyses. This analysis essentially stacks the data traces 

at multiple velocities in very small velocity increments. For this study, data was stacked at 0.01 

m/ns. Data stacking reduces noise and reveals the true velocities as traces stacked at their true 

velocity tend to be additive and shows stronger signal, whereas traces stacked at improper 

velocities tend to stack destructively (Campbell et al., 2018; Lu et al., 2018). Figure 4.4. shows a 

stacked WAAR traces, and from semblance plots velocity and return time, the travel depth and 

electromagnetic wave velocity were obtained. 

 

      

Figure 4.4. Semblance plot of the wide-angle reflection and refraction measurement to illustrate 

how electromagnetic wave velocity vs time are obtained. The red colours indicate high semblance.  
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4.3.5.  Laboratory analysis and calculations used for calibration 

The Ground Penetrating Data mapping requires calibration equations for soil moisture content. 

The soil in the sleeve was divided into six depths at 15 cm interval (0-15 cm, 15-30 cm, 30-45 cm, 

45-60 cm, 60-75 cm, 75-90 cm), and the top soil (0-15 cm) was used for analysis. The total wet 

weight of each sample was measured and a subsample (50 g) was taken for moisture content 

determination by drying in an oven (105 ºc) for 48 hours (Gardner, 1986). Volumetric water 

content was calculated as follows. 

 

                                                              𝜽𝒈 =    𝑴𝒘                                  (1) 

                                                                           𝑴𝒔 

                                         

where Ms is the mass of dry soil, Mw is the mass of water, and θg is the gravimetric water  

content. 

                                                                        𝜌𝑏 = 𝑀𝑠                                           (2) 

                                                                        𝑉𝑡 

 

Bulk density (𝜌𝑏) was calculated as the ratio of the total mass of the dry soil (Ms) to the total 

volume of the soil (Vt). The total volume of soil was calculated using the formula for volume of a 

cylinder, 𝜋𝑟2h. 

𝜽𝒗 =        
𝜽𝒈 𝑿 𝛒𝐛

 𝛒𝐰
                          (3)  

Where θv = Volumetric water content, and ρw = density of water 
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4.3.6. Soil moisture content - Permittivity relationship 

 

Topp’s equation was used to relate the Ground Penetration Radar measurement of dielectric 

permittivity to soil moisture content in this study.  

                                            The velocity of propagation V is given by: 

                                                                      V =   C                                     (4)        

                                                                             √ԑ
r                                        

 

 

                        C = propagation velocity of an electromagnetic wave in free space (3x 10
8

 m/s) 

                                                          ԑ
r 
= relative permittivity. 

                                                         V = velocity of propagation 

 

using the expression                                                         2 

                                                                     ԑ𝐫 =   
𝒄𝒕
𝟐𝒅

                         (5) 

                                                                         

 

The ԑr was determined from the electromagnetic wave travel time (signal time) (t) that a voltage 

pulse takes to travel forward and backward along a wave-guide (transmission line) of length L / 

depth D (Fantello et al., 2018). ԑr as a function of θv is only weakly dependent on soil type, bulk 

density, temperature, and EC of the soil. Topp’s equation to determine θv was used as thus (Hillel, 

D. 1998); 

                         θv = - 5.3x10-2 + 2.9x10-2 ԑr – 5.5x10-4 ԑr
2 +4.3x10-6 ԑr

3         (6) 

 

4.3.7. Statistical analysis 

Descriptive statistical parameters such as the mean, standard deviation, and test for normality were 

calculated with SAS 9.4 (SAS Institute Inc, 2014) software. Standard statistical analysis such as 
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coefficient of determination, and root-mean-square error (RMSE) were measured. For validation, 

the 50-soil moisture content values (0-15 cm) were used to obtain a simple linear regression 

between the dielectric permittivity and soil moisture content obtained from volumetric method, 

and between the Ground Penetrating data reflection travel times and wave velocity (relative 

permittivity), and lab-analyzed soil moisture content. The statistical software XLSTAT 2017 (least 

squares method) (Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft, Paris, 

France) was used to assess these relationships.  
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                                                     4.4. Results and discussion 

4.4.1. Soil moisture content and Ground Penetrating Radar. 

The soil moisture content at this site ranged from 0.06 cm3 cm-3 to 0.30 cm3 cm-3. The estimated 

soil moisture content from the ground penetrating radar ranged from 0.15 cm3 cm-3 to 0.26 cm3 

cm-3, and dielectric permittivity ranged from 6.24 to 14.04 (Table 4.1). The coefficient of variation 

due to experimental error was highest in lab-analyzed soil moisture content and lowest in estimated 

soil moisture content.  

Table 4.1. Descriptive summary statistics for measured soil moisture content, GPR estimated soil 

moisture content and dielectric permittivity (0- 15 cm). 

 

Soil property 

   (0-15 cm) 

Mean Coefficient 

of variation 

      (%) 

Standard 

deviation  

Minimum 

      

Maximum 

      

Soil Moisture  

content (Lab) 

(cm3 cm-3) 

 

 

0.17 

 

     43 

 

0.07 

 

0.06 

 

0.30 

     

    GPR*  

(cm3 cm-3) 

 

0.19 

 

     17 

 

0.03 

 

0.15 

 

0.26 

 

 

Dielectric 

permittivity (GPR) 

  

10.26 

 

     19 

 

2.0 

 

6.24 

 

14.04 

 

        * GPR = Ground Penetrating radar estimated soil water content. 
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4.4.2. Dielectric permittivity and soil moisture content 

Dielectric permittivity depends on factors such as temperature, salt content, soil texture and soil 

moisture content, but strongly on soil moisture content. Figure 4.1. shows the relationship obtained 

between dielectric permittivity and soil moisture content with a coefficient of determination of 

0.95 and root means square error of 0.44. The success of this relationship is attributed to the large 

contrast in permittivity of water within the frequency bandwidth (10 MHz to 1 GHz) of the ground 

penetrating radar (Huisman et al., 2003; Hans et al., 2015; Cosenza, 2016). The high correlation 

indicates that the dielectric permittivity is a good proxy for soil moisture content. Both Kaplanvural 

et al. (2018) and Agliata et al. (2018) reported that the permittivity determined from the 

electromagnetic wave velocity also agreed well with the gravimetric method. This result was in 

line with the Mahmoudzadeh Ardekani (2013) who reported a coefficient of determination of 0.96 

during a field-scale mapping of soil moisture using the GPR technique. Hans et al. (2015) also 

reported an R2 of 0.97 for thawed wood and R2 = 0.99 for frozen wood when GPR was used to 

measure the water content of the log. 
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Figure 4.5. Relationship between dielectric permittivity estimated from the GPR and soil moisture 
content from thermogravimetric method. 
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4.4.3. Soil moisture content. 

Soil moisture content by thermogravimetric method was used as standards to validate the GPR 

derived soil moisture content that was estimated from Topps’s equation. A simple linear regression 

was used for the validation. Based on the coefficient of determination (R2) and RMSE, the 

accuracy of the method was determined. Relating the volumetric water content derived from 

Topp’s equation to the soil moisture content by volumetric method gave a RMSE of 0.014 cm3 

cm-3 and a coefficient of determination of 0.83, which implies that the ground penetrating radar 

measurement results are reliable on a Canadian Prairies (Figure 4.2).   

 

               

Figure 4.6. Graph of conventionally measured and GPR estimated soil moisture content derived 

from Topp’s equation.  
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The good relationship between measure soil moisture and GPR estimated soil moisture (Figure 

4.6b) was in line with the results reported by (Lunt et al., 2005; Huang et al., 2014; Cui et al., 2015; 

Ercoli et al., 2018). The sources of errors could be due to the site condition. The performance of 

the Ground Penetrating Radar is affected by soil texture (Grote et al., 2010). Sandy soils reduce 

the reflected wave. A study carried out by Cui et al. (2015) investigated the relationship between 

radar wave energy and the level of compaction of a sandy loam. They reported an increase in radar 

wave energy in areas with low sandy loam and compaction.  
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                                                              4.5. Conclusion 

High frequency electromagnetic soil water sensors are promising techniques to fulfil the goal of 

Precision Agriculture. We have specifically demonstrated the potential of estimating moisture 

content on a Canadian Prairies field using a non-destructive Ground Penetrating Radar. Wide-

angle reflection and refraction survey method was used in measuring soil moisture content. Ground 

Penetrating Radar has shown to be an excellent tool for subsurface mapping of soil moisture 

content due to its ability to provide continuous information. The soil moisture content 

measurement by ground penetrating radar was consistent with the thermogravimetric method 

result, with a RMSE of 0.014 cm3 cm-3. Compared with conventional method, ground penetrating 

radar can rapidly measure soil moisture content without wrecking the soil layers. The correlation 

between the Ground Penetrating Radar and thermogravimetric method was remarkably good (R2 

0.83) for soil moisture content. Further studies should be carried out on the application of different 

ground penetrating radar method of survey in the Canadian Prairies, with the combination of other 

GPR and soil water model. The results showed satisfactory applicability of the Ground Penetrating 

Radar in estimating soil moisture content, by verifying this accuracy using the thermogravimetric 

method. These are important in modelling ground water recharge, transport of pollutant to ground 

water, preferential flow, managing the vadose zone and irrigation. 
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                                                           5. General Synthesis 

Spatial variability of soil properties that exists in the field, and within the soil profile has received 

increased attention in recent times. However, conventional sampling of these variable soil 

properties has not been able to meet the goal of Precision Agriculture, which is to utilize soil, water 

resources, and chemical input based on the variability in soil properties. Hence, the introduction 

of proximal sensors which provides more detailed information about the field and allows for 

repeated measurements. Several studies have emphasized the susceptibility of the Assiniboine 

Delta Aquifer to leaching (Vivekanahan et al., 2018).  

The leachate produced was influenced by the variability of soil texture. To further understand the 

influence of texture, a detailed analysis on the spatial distribution of soil bulk density and moisture 

content with depth was conducted in this study. Investigation on the spatial variability of bulk 

density with depth has not been undertaken on prairie soils. There is also a growing demand for 

proximal sensors in areas where conventional methods are limited. This study was conducted to 

investigate the spatial distribution of bulk density with depth, and soil moisture in two seasons. 

We also evaluated the potential of using proximal sensors to estimate soil physical and chemical 

properties, and to produce maps showing variability of soil properties within the field and in the 

soil profile on a Canadian Prairies field. Thus, a geospatial sampling scheme was used for sampling 

to capture such variabilities in the field. Undisturbed soil samples were taken from 0 - 90 cm depth 

in 3" plastic sleeves with a Giddings hydraulic soil punch. They were analyzed for soil bulk density 

and moisture content. Soil samples from the top 15 cm were analyzed for soil organic carbon, total 

carbon, and total nitrogen.  
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The Veris OpticalMapper equipped with a GPS was pulled with a truck through the field to 

measure spectral reflectance at approximately 7 cm below the soil surface, which can be related to 

soil organic carbon, total carbon, and total nitrogen. Ground Penetrating Radar with a frequency 

of 500 MHz was used to measure electromagnetic wave velocity and travel time, which can be 

used to estimate the dielectric permittivity of the soil.  

Soil bulk density and moisture content were spatially autocorrelated and varied significantly within 

the field. Soil bulk density showed strong spatial autocorrelation from 0 cm to 75 cm depth where 

more than 80 % of the total variation was accounted for by spatial variability. However, the spatial 

dependence increased with depth as the residual sum of square values decreased. The interpolated 

maps clearly showed the spatial variability of bulk density at the study site. However, the 

variability of bulk density increased with depth (Gilsonley et al., 2016). We found that the top soil 

was less spatially coherent compared to other depth which we attributed to directional tillage over 

the years (Barik et al., 2014). The increase in bulk density with depth suggests the effect of 

compaction which occurs at the soil surface but increases with depth. We also observed that soil 

texture had a major influence on the variability of bulk density at this site.  

Soil moisture content in both seasons were strongly autocorrelated from the top soil to the 75 cm 

depth, where more than 75 % of the total variation was accounted for by spatial variability. The 

weak correlation observed at the 90 cm depth in the Fall of 2017 suggests that variability at this 

depth was due to random effect. Interpolated maps clearly showed a mirror image of bulk density. 

This suggests a negative correlation between moisture content and bulk density.  
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Geospatial pattern of soil moisture in both seasons was almost invariant as they both had the same 

regions with high and low soil moisture content, which suggests that the spatial pattern of soil 

texture controls soil moisture at this site. Our results showed the dominant effect of soil texture 

and bulk density on soil water content.  

Spectral reflectance measured by the Veris OpticalMapper was strongly related with laboratory 

values of organic carbon. This suggest that organic carbon can be modelled with spectral 

reflectance because of the relationship between the wavelengths, overtones and combination bands 

of molecular vibrations of C-H, O-H, and N-H. This result was validated by the ratio of predictive 

deviation (RPD), which was accurate (> 2.0) for both organic carbon and total carbon, and 

moderate (between 1.4 – 2.0) for total nitrogen. We found out that variability in soil texture, 

moisture, and bulk density influenced the performance of the Veris OpticalMapper, with the 

dominant soil texture being loamy sand at this site. The regions having high bulk density and sand 

content were low in soil organic carbon, total carbon, and total nitrogen, and the regions with high 

clay content and soil moisture were high in the soil properties investigated. This suggest the 

retaining ability of organic matter to soil water, and the ability of clay soils to retain organic matter. 

Our results showed that the distribution of soil texture, bulk density, and soil moisture influenced 

the variability of soil organic carbon, total carbon and total nitrogen. Also, bulk density and sand 

content were negatively correlated with SOC, TC, and TN, and positively correlated with moisture 

content and clay content. Soil organic carbon, total carbon, and total nitrogen showed strong 

autocorrelation (0 – 15 cm), where more than 80 % of total variation was accounted for by spatial 

variability.  
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Our results thereby suggest that continuous tillage, fertilizer application, and minerology could 

also lead to variability in soil organic carbon, total carbon, and total nitrogen. We found the Veris 

soil organic carbon from the Pearson analysis to be significantly (> 0.05) and positively correlated 

with Lab-analyzed soil organic carbon, total carbon, and total nitrogen.  The coefficient of 

determination (R2) between the dielectric permittivity obtained by the Ground Penetrating Radar 

and soil moisture content by volumetric method was 0.95. This high correlation suggests that the 

dielectric permittivity of the medium is strongly influenced by soil moisture content and essential 

in analyzing Ground Penetrating Radar data, hence a good proxy to determine soil moisture 

content. The validation method to determine the accuracy of the estimated soil moisture content 

obtained from Topp’s equation gave an R2 of 0.83 for soil moisture content. This result suggests 

the reliability of the ground penetrating radar measurement of soil moisture content on a Canadian 

Prairies.  

This study provides an insight into the significance of microspatial variability on a Canadian 

Prairies and demonstrated the potential of proximal sensors to accurately measure and provide 

detailed information on soil physical and chemical properties. We recommend that the spatial 

distribution of soil texture, moisture, and bulk density should be considered in delineating 

management zones for irrigation, and application of fertilizers. We also recommend the evaluation 

of spatial variability of bulk density over time. Further studies should also be done on other GPR 

and soil moisture models in using the GPR to estimate soil moisture on a Canadian Prairies field. 
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