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ABSTRACT 

Taurai T. Matengu, M.Sc., The University of Manitoba, May 2022. Developing risk models to 

mitigate Fusarium Head Blight in western Canadian cereal production. Advisors: Dr. Paul Bullock 

and Dr. Manasah Mkhabela 

Producers in western Canada can mitigate the risk of Fusarium Head Blight (FHB) infection and 

damage to their cereal crops by growing resistant varieties and applying fungicides during the 

critical flowering period. However, fungicide application should not be based only on the 

conventional calendar since FHB occurrence and severity is sporadic and is primarily influenced 

by weather conditions. Weather-based decision-making tools can improve FHB management 

while also providing significant financial and environmental benefits. Several models have been 

developed worldwide, with some predicting Fusarium damaged kernels (FDK) or deoxynivalenol 

(DON) indirectly based on visual estimates of FHB incidence/severity/index (FHBi). This study 

analyzed FHB over two growing seasons and revealed no significant correlation between the FHBi 

and FDK and FHBi and DON in all crop types except durum (Chapter 2). The correlation between 

FDK and DON, on the other hand, was significant across all crop types; though, it varied between 

the two years. Weather-based risk models were developed for predicting FHBi, FDK, and DON in 

spring wheat, winter wheat, barley, and durum across three Canadian prairie provinces. The 

number of models developed ranged from 5 to 9 for each disease indicator and crop type, but only 

the two best models (based on their simplicity, fit, and accuracy) for each disease indicator and 

crop type were chosen for further evaluation. The prediction accuracy of the selected models 

ranged between 75 and 81, 77 and 84, 78 and 79% for FHBi, FDK, and DON, respectively, across 

crop types. The most highly correlated and frequently selected weather variable in all FDK and 

DON models was relative humidity. Variables with more extended weather duration summaries 
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(10 and 14 days before mid-anthesis) had better prediction accuracy than variables with shorter 

weather duration summaries (4 days before mid-anthesis). The selected models were validated 

using producer field data collected in western Canada. The prediction accuracy of the models 

across crop types ranged between 70 and 100, 66 and 89, 75 and 82% for FHBi, FDK, and DON, 

respectively. The accuracy of models was greatest when the distance between the fields and the 

nearest weather stations was less than 40 km. Additionally, this study validated FHBi models 

currently used in western Canada, which were originally developed in the USA. Although the De 

Wolf I model predicted winter wheat FHBi with high accuracy (80%), it predicted spring wheat 

with low accuracy (59%). Errors associated with these models were mostly false positives. The 

data used in this study were limited to two growing seasons and may not represent all disease-

weather conditions that could favor FHB epidemics. For example, the sensitivity of the models in 

the validation study was low or infinite as there were few or no epidemic cases to predict. 

Therefore, additional data from years of high disease pressure is required to refine and validate 

these models. The models developed in this study will serve as the basis for an interactive FHB 

risk assessment tool that is currently being developed in western Canada. This risk assessment tool 

will assist producers in optimizing fungicide application by minimizing unnecessary fungicide 

application and FHB epidemic-related losses. 
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FOREWORD 

 

This thesis was prepared in the manuscript format following the thesis guidelines of the 

Department of Soil Science, University of Manitoba. The thesis consists of five chapters. Chapter 

1 is the literature review of weather-based models for Fusarium Head Blight risk assessment in 

wheat and barley. Chapter 2 assessed the effect of cultivar resistance on Fusarium Head Blight 

index, Fusarium damaged kernels, and deoxynivalenol (disease indicators) in wheat and barley. It 

also assessed the correlation between disease indicators plus spore concentration. Chapter 3 

documents the development of Fusarium Head Blight index, Fusarium damaged kernels, and 

deoxynivalenol weather-based models for winter wheat, spring wheat, barley, and durum grown 

in western Canada. In Chapter 4, the weather-based models developed in Chapter 3 and the existing 

weather-based USA FHBi models utilized in Canada were validated. Chapter 5 is the overall 

synthesis.  
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1. INTRODUCTION 

 

1.1 General Background 

 

Epidemics of Fusarium Head Blight (FHB) in small cereal crops such as wheat and barley are 

frequently triggered when favorable weather conditions for Fusarium species infection coincide 

with flowering and early kernel filling (De Wolf et al., 2003; McMullen et al., 2012). Numerous 

studies and surveys have established that temperature and moisture (rainfall and humidity) are the 

primary determinants of FHB development (Hooker et al., 2002; Del Ponte et al., 2009; Shah et 

al., 2019a). If FHB is left uncontrolled, wheat and barley heads are blighted, and severe yield 

reduction occurs due to flower abortion, which reduces the number of kernels formed (Bai and 

Shaner, 2004). Grain filling is also impacted, leading to Fusarium damaged kernels (FDK), often 

light in weight (Góral et al., 2018). These yield losses are exacerbated by the production of 

mycotoxins such as deoxynivalenol (DON) by the Fusarium species, which are toxic to humans 

and livestock (Tamburic-Ilincic et al., 2015). DON-contaminated grains may be unfit for human 

consumption or the production of products such as bread, beer, and animal feed and are thus 

frequently downgraded during marketing (Dahl and Wilson, 2018). 

Due to the high cost of FHB damage to a crop, some producers do preventative fungicide 

applications to protect the crop from disease without knowing if FHB will cause significant 

damage (Nita, 2013). Fungicide overuse can be detrimental to the environment, and the marginal 

cost/revenue ratio of wheat makes it critical to use inputs cost-effectively, including fungicides 

(Wallhead and Zhu, 2017). Fungicide spray for FHB suppression in wheat and barley production 

can be reduced if the risk of a disease epidemic can be accurately predicted. This could result in 

more sustainable and environmentally friendly wheat and barley cultivation. Forecasting models 
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are appropriate for FHB due to the disease's sporadic manifestation, reliance on weather factors, 

limited periods of pathogen sporulation, inoculum dispersal, and host infection (De Wolf et al., 

2003; Góral et al., 2018). Researchers worldwide have created, validated, and adapted weather-

based models to predict the likelihood of the presence and severity of FHB and DON toxin levels 

so that informed in-season decisions can be made and post-season marketing decisions can be 

anticipated (Rossi et al., 2003; Del Ponte et al., 2005; Birr et al., 2019). These models are primarily 

based on meteorological data such as temperature, relative humidity, and precipitation, which are 

sometimes combined with agronomic variables such as crop residues, tillage, crop rotation, and 

crop variety. Some of these models are specific to where they are developed, so researchers have 

tested these models in different climatic zones to determine how well they work. After a few 

modifications, some of these models worked well in other locations and crop types (Schaafsma 

and Hooker, 2007; Giroux et al., 2016). Therefore, this chapter discusses the various weather-

based FHB models developed around the world for assessing the real-time risk of FHB epidemics 

and their application and adoption in different regions/countries. It also discusses the modelling 

approach that is suggested for western Canada. When the model developers did not specify a name 

for a model, the author’s name(s) was utilized.  

1.2 Wheat, Durum, Barley as FHB Hosts 

Wheat, durum, and barley are major small grain cereal crops grown in western Canada (Klinck, 

2007). In 2019, wheat production in Manitoba, Saskatchewan, and Alberta was 5.0, 15.1, and 10.3 

million metric tonnes, respectively (Statistics Canada, 2019). Wheat grain is a significant energy 

source for the humans and is richer in protein than most cereals (McMullen et al., 2012). Flour 

made from wheat is used to make bread, pasta, biscuits, cakes, pastries, sauces, and confectionery. 

Although durum wheat is used similarly to winter and spring wheat, its high protein content and 
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amber color, which is ideal for dough structure properties, make it an ideal choice for pasta 

production. Barley is grown primarily as a fodder crop but is also used as a source of malting in 

brewing (Bondalapati et al., 2012). However, wheat, barley, and durum quality and yield have 

been drastically reduced, mainly due to FHB in some growing seasons (Giroux et al., 2016).  

1.3 The Pathogen 

The predominant species that causes FHB disease in Canada, the USA, several European regions, 

and other temperate environments is Fusarium graminearum  (De Wolf et al., 2003; Bernardo et 

al., 2007). Other species known for causing FHB include F. avenaceum, F. poae, F. culmorum, 

Microdochium nivale, F. verticilloides, F. sambucinum, and F. sporotrichiodes (Wolny-Koładka 

et al., 2015). Overwintering of Fusarium species in various plant debris as mycelium or 

macroconidia (asexual spores) and/or ascospores (asexual spores) serves as the initial inoculum 

for the infection process (Figure 1.1). Rain or turbulent wind currents can disperse these primary 

inoculums, which can travel long distances in the air. Fusarium species spore germination requires 

at least 12 hrs of precipitation or high humidity (Government of Saskatchewan, 2022) and optimal 

temperatures for ascospore germination at 100% RH are between 20 and 25°C (Manstretta et al., 

2016). Infection occurs most frequently when Fusarium viable ascospores and macroconidia land 

on susceptible wheat/barley heads during flowering (Shah et al., 2013). Choline and betaine found 

in anthers promote the fungus development and serve as an initial entrance for the pathogen into 

the spike tissue (Bai and Shanner, 1994; Gilbert and Haber, 2013). Extended periods (48 to 72 h) 

of RH > 90% and temperatures between 15 and 30 °C are also beneficial for infection (Figure 1.1) 

(De Wolf et al., 2003; Del Ponte et al., 2005) . 

The most conspicuous symptom of FHB is premature bleaching of spikelets, which occurs within 

three weeks of infection (Hollingsworth et al., 2006; Vogelgsang et al., 2011). Translocation of 
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nutrients and water is interrupted as the pathogen grows into the rachis blocking the xylem and 

phloem tissues (Ha et al., 2016). Grain filling is impacted, resulting in florets with shriveled or no 

seed (Figure 1.1) (Bernardo et al., 2007). Chalky and pinkish mycelial symptoms also appear on 

the surfaces of florets (Góral et al., 2018). Floret sterility, smaller shriveled, lightweight, and 

discolored kernels are collectively referred to as FDK. This reduces grain yield and quality, 

eventually downgrading grain and reducing its market value (Góral et al., 2018). 

Wheat milling and secondary processing suffer from Fusarium damage, necessitating lower FDK 

limits in premium wheat milling grades than those based solely on food safety requirements (Dahl 

and Wilson, 2018). In addition, poor germination occurs when FDK are used for seeding 

(McMullen et al., 2012). The percentage of FDK in a grain sample is also directly correlated to the 

grade of wheat and barley in western Canada (Table 1.1) (Canadian Grain Commission, 2019). 

Figure 1. 1. The disease cycle of Fusarium Head Blight. Fusarium species overwinter as mycelium 

on seed or as saprophytes as spores in crop residues including maize, canola, and soybean. At 

flowering, both sexual (ascospores) and asexual (macroconidia) spores can be disseminated to the 

susceptible host, and infection occurs in warm, humid weather. 
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Table 1. 1. Fusarium damage % thresholds in winter wheat, spring wheat, barley, and durum in western Canada. 

Crop Type Grade Name Fusarium damaged % 

Canada Western Red  No. 1 CWRW 0.8 

Winter (CWRW) wheat No. 2 CWRW 1 

No. 3 CWRW 1.5 

CW Feed 4 

Grade if specs for CW feed not met Wheat, sample CW account Fusarium damage over 10% 

- wheat, commercial salvage 

Canada Western Red  No. 1 CWRS 0.3 

Spring (CWRS) wheat No. 2 CWRS 0.8 

No. 3 CWRS 1.5 

CW Feed 4 

Grade, if specs for CW feed not met Wheat, sample CW account Fusarium damage over 

10%- wheat, commercial salvage 

Canada Western Amber No. 1 CWAD 0.5 

Durum (CWAD) wheat No. 2 CWAD 0.5 

No. 3 CWAD 2 

No. 4 CWAD 2 

No. 5 CWAD 4 

Grade, if No. 5 specs not met Wheat, sample CW account Fusarium damage over 10% 

- wheat, commercial salvage

Barley, Canada Western Select Malting CW/CE Two-row 0.2 

(CW)/Canada Eastern  Select Malting CW/CE Six-row 0.2 

(CE) Malting Select Malting CW/CE Two-row Hulless 0.2 

Select Malting CW/CE Six-row Hulless 0.2 

Grade if specs for select malting CW/CE 

two-row / six-row (Hulless) not met 

Barley sample select malting CW/CE two-row / six-row 

account Fusarium damage 

Barley that is not selected for food is graded according to “General Purpose” grades with Fusarium damage % of 0.5. 

https://www.grainscanada.gc.ca/en/grain-quality/official-grain-grading-guide/04-wheat/primary-grade-determinants-tables.html. 

https://www.grainscanada.gc.ca/en/grain-quality/official-grain-grading-guide/04-wheat/primary-grade-determinants-tables.html
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Fusarium graminearum produces trichothecene mycotoxins in addition to reducing yield. 

Currently, over 200 trichothecenes are identified and classified into four types (A–D) (Schmale et 

al., 2011). Fusarium graminearum is primarily responsible for producing Type B deoxynivalenol 

(DON) and its acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivaleol 

(15-ADON), and nivalenol (NIV) in Canada (Schmale et al., 2011). In the past, strains of Fusarium 

graminearum capable of producing 15-ADON were prevalent in North America, while the 3-

ADON chemotype was predominant in Europe and Asia (Ward et al., 2008; van der Lee et al., 

2015). However, the prevalence of 3-ADON chemotypes has recently increased in Canada's 

western and Atlantic regions and the upper Midwest of the USA (Ward et al., 2008; Burlakoti et 

al., 2017). Between 1998 and 2004, 492 Fusarium graminearum isolates from eastern and western 

Canada were 25% 3-ADON and 75% 15-ADON (Ward et al., 2008). A distinct longitudinal cline 

was described where 100% of 3-ADON was found in eastern Canada, and less than 10% of 3-

ADON was found in western Canada (Ward et al., 2008). Variations in hosts in a region have been 

shown to significantly impact FHB species and trichothecenes chemotype composition (Cowger 

et al., 2020). Spring wheat is mainly grown in western Canada, while winter wheat is primarily 

grown in Ontario (Burlakoti et al., 2017; Crippin, 2019). Furthermore, 3-ADON increased 14-fold 

in the western provinces between 1998 and 2004. However, more recent reports indicate that 3-

ADON increased 6-fold in Saskatchewan, and 2.5-fold  in Manitoba, in the last 15 years 

(Oghenekaro et al., 2021). 

The change in the chemotype from 15-ADON to 3-ADON is alarming as FHB severity, and DON 

levels increase (Ward et al., 2008; Gilbert et al., 2010). In vitro, 3-ADON isolates develop and 

produce larger and more conidia and DON than 15-ADON isolates (Ward et al., 2008). This can 

also reflect improved environmental fitness of the pathogen when these characteristics are 
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exhibited in the field (Ward et al., 2008). Although deoxynivalenol is the least toxic of the 

trichothecene B mycotoxins produced by Fusarium species, when ingested in large amounts, it can 

cause significant harm to humans and animals (Sobrova et al., 2010; Gaigé et al., 2013). High 

DON intake causes health problems, including chronic toxicity, carcinogenicity, genotoxicity, 

immunotoxicity, cytotoxicity, and reproductive and teratological effects in humans (Sobrova et al., 

2010; Gaigé et al., 2013; Wu et al., 2014). In animals, high DON intake causes problems such as 

feed refusal, vomiting, retarded growth, diarrhea, and even shock or death (Gaigé et al., 2013). 

These effects vary depending on the gender and age of the animal but are generally more 

pronounced in non-ruminant animals such as swine and poultry than in ruminants (Canadian Grain 

Commission, 2019). As a result, Canada has imposed strict DON tolerance limits. These limits 

were set at 1 ppm for swine, young calves, and lactating milk animals' diets, 5 ppm for cattle and 

poultry diets, and 2 ppm for wheat intended for human consumption (Table 1.2) (CFIA, 2015). 

Fusarium graminearum also produces Nivalenol (NIV) and 4-acetylnivalenol (4-ANIV), which 

are more toxic than DON (Wang et al., 2019). 

1.4 Fusarium Head Blight Control 

 

Control of FHB outbreaks is crucial due to substantial loss in crop yield and quality and health 

effects of mycotoxins on consumers. Besides cereals, Fusarium species infect other crops grown 

in western Canada, causing diseases such as root rot in soybeans, peas, and beans; ear rot in corn; 

and Fusarium wilt in canola. As a result, FHB disease management with a single strategy such as 

crop rotation is challenging (Government of Saskatchewan, 2022; Harris et al., 2016). It is, 

therefore, essential to combine multiple control strategies to manage FHB (Bai and Shaner, 2004). 
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Table 1. 2. Legislated and proposed maximum tolerated levels of deoxynivalenol in certain 

feeds and foodstuffs in Canada. 

Species/Class of Animal 

Proposed 

Maximum 

Limit: Single 

Ingredient 

Feeds 

Proposed 

Maximum Limit: 

Total Diet in an 

amount not 

exceeding (ppm) 

Current Action 

Level:  Complete 

diets, in an amount 

not exceeding (ppm) 

 Feeda   

Cattle - calves (<4 months) 5 1 1 

Cattle - Beef 10 5 5 

Cattle - Dairy 10 5 5 

Lactating Dairy Animals 5 1 1 

Swine 5 1 1 

Poultry: chickens, turkeys, ducks 10 5 5 

Other animals including  10 5 No action 

sheep, equine, and rabbits   levels established 

 Foodb   

Uncleaned soft wheat for human 

consumption - - 2 
ahttps://inspection.canada.ca/animal-health/livestock-feeds/consultations/contaminant-standards-

for-aflatoxins-deoxynivaleno/eng/1500908795245/1500908795965. 

bLegislated maximum permissible levels of deoxynivalenol in some foodstuffs (CFIA, 2015). 

 

1.4.1 Agronomic Control  

 

Tillage and crop rotation with non-host crops are suitable agricultural activities that reduce the 

likelihood of FHB epidemics by reducing inoculum sources and eliminating wintering plant 

residues for the pathogen and other hosts (Bergstrom and Spolti, 2014). While reducing inoculum 

levels and disease epidemics with high tillage levels is significant, it is not enough to control FHB 

(Gilbert and Fernando, 2004). The selection of varieties with some resistance levels to FHB plays 

a crucial role in managing FHB. Several FHB resistance types have been identified, for example, 

type I (resistance to initial infection) and type II (resistance to pathogen spread throughout the 

spike ( Ha et al., 2016, p. 1; Góral et al., 2020). The application of fungicides during flowering 

https://inspection.canada.ca/animal-health/livestock-feeds/consultations/contaminant-standards-for-aflatoxins-deoxynivaleno/eng/1500908795245/1500908795965
https://inspection.canada.ca/animal-health/livestock-feeds/consultations/contaminant-standards-for-aflatoxins-deoxynivaleno/eng/1500908795245/1500908795965
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greatly reduces FHB epidemics (De Wolf et al., 2003). The efficacy of chemical controls relies on 

predicting the best possible time for fungicide spray, as the weather plays a major role in the 

outbreak of FHB (Hollingsworth et al., 2006). 

1.4.2 Disease Forecasting Models 

FHB forecasting has gained popularity in recent decades to maximize fungicide efficiency while 

also minimizing its cost (Musa et al., 2007). FHB is ideal for forecasting due to environment 

dependency and a comparatively narrow window of pathogen sporulation, spore dispersal, and 

infection on the host (De Wolf et al., 2003). Disease forecasting, days or weeks before infection 

or major epidemic, helps producers to respond quickly and efficiently by modifying crop 

management practices, including fungicides application (Shah et al., 2013). FHB forecasting has 

adopted two strategies: i) predicting the risk of disease occurrence based on FHB incidence and 

severity and ii) forecasting the concentration of DON in harvested grain (Hooker et al., 2002; De 

Wolf et al., 2003). 

1.4.2.1 The De Wolf Model in the USA 

1.4.2.1.1 First-generation Models 

The first generation models for FHB risk assessment in wheat in the USA were logistic regression 

models developed by De Wolf et al. (2003). These models utilized data gathered from four states 

in the USA. Field FHB severity ≥ 10% was considered an epidemic in their forecasting models. 

Disease forecasting depended on weather data that were observed and predicted from 7 days before 

to 10 days after 50% anthesis and a combination of predictor variables, which were most aligned 

with the disease's patterns of occurrence or severity. Predictor variables included the period (h) of 

15 ≤ T ≤ 30 °C in the 7 days before flowering (T15307), the period of precipitation (h) 7 days 
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preceding flowering (DPPT7), and the period (h) with both 15 ≤ T ≤ 30 °C, and RH ≥ 90% 10 days 

after flowering (TRH9010) (De Wolf et al., 2003). 

 Three prediction models, namely model A, model B, and model I (De Wolf A, B, and I, 

respectively), were selected. The De Wolf A model utilized only the TRH9010 weather anthesis 

component (equation 1.1), while De Wolf B used T15307 and TRH9010 interaction (equation 1.2). 

In contrast, De Wolf I used T15307 and DPPT7 pre-anthesis weather variables (equation 1.3). The 

accuracy of the models (successful classification of FHB epidemics and non-epidemics) during 

validation was 78%, which was perceived to be good, although further improvement was needed 

(De Wolf et al., 2003).  

𝑃 = 1/ (1 + 𝑒𝑥𝑝 − ( – 3.3756 +  6.8128𝑇𝑅𝐻9010))                                                  [1.1] 

𝑃 = 1/ (1 + 𝑒𝑥𝑝 − ( – 3.7251 +  10.5097𝐼𝑁𝑇3))                                                        [1.2] 

𝑃 = 1/ (1 + 𝑒𝑥𝑝 − ( – 8.2175 +  8.4358𝑇15307 +  4.7319𝐷𝑃𝑃𝑇7))                       [1.3] 

 

Where TRH9010 is the duration (h) of temperature between 15 and 30 °C, and when RH  ≥ 90% 

10 days pre-anthesis,  T15307 is the duration (h) of temperature between 15 and 30 °C 10 days 

pre-anthesis,  DPPT7 is the duration of precipitation (h) 7 days pre-anthesis, and INT3 is an 

interaction term between T15307 and TRH9010 (De Wolf et al., 2003). The probabilities (P) of 

FHB epidemics are defined by the chances that field severity is 10% or more. Severity corresponds 

to the percentage of infected spikelets, and the probability varies between 0 and 1. To use equations 

1.1 to 1.3, variables must first be placed on the same scale as the data used to develop the models. 

This is done by dividing TRH9010, T15307, or DPPT7 by 136, 168, or 39, respectively 

(TRH9010/136; T15307/168; DPPT7/39) (De Wolf et al., 2003).  



11 

The models by De Wolf have been used to develop a Fusarium risk assessment tool, an electronic 

database offering FHB forecasts maps to 31 USA states across both spring and winter wheat 

growing regions (www.wheatscab.psu.edu). The tool provides information (risk maps) on the 

probability of a severe FHB outbreak (FHB ≥ 10%) based on weather data from multiple weather 

stations in the states covered by the prediction system (McMullen et al., 2012). The producer 

controls the tool, and data such as flowering date, crop type (winter wheat or spring wheat), and 

crop variety (very susceptible, susceptible, moderately susceptible, and moderately resistant) can 

be imputed to provide FHB risk at the field scale (McMullen et al., 2012; Shah et al., 2021).  

Canada has also adopted the USA models for predicting FHB severity greater than 10%. In 

Manitoba and Alberta, FHB risk assessment maps are based on De Wolf I (equation 1.3), whereas 

in Saskatchewan, FHB risk assessment maps are based on the second-generation model that 

incorporates agronomic and climatic variables (ACIS, 2021; MARD, 2021; SWDC, 2021). 

However, the accuracy of these models is unknown in western Canada. In Quebec, Canada, De 

Wolf A, B, and I were evaluated under Quebec conditions (Giroux et al., 2016). DON levels of 1 

ppm or greater were better predicted by the De Wolf A and De Wolf B models, even though these 

models were not designed to predict DON levels directly but rather field FHB severity or index 

(Giroux et al., 2016). The best of the three De Wolf models varied by region/country, possibly due 

to regional differences in crop type and variety, crop production practices, weather conditions, 

pathogen population and profile, and disease management practices, all of which have been shown 

to influence model adoption in various regions (Paul et al., 2005; Kelly et al., 2015; Cowger et al., 

2020). 

1.4.2.1.2 Second-generation Models 

http://www.wheatscab.psu.edu/
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Recently, efforts have been made by Shah et al. (2013, 2014) to understand the role of pre-and 

post-anthesis weather indicators on FHB forecast utilizing an enormous dataset collected across 

15 states over 27 years and an extensive number of climate-related predictors. Wheat resistance 

category (RESIT) was utilized as an ordinal variable, where 0, 1, 2, and 3 represented very 

susceptible, susceptible, moderately susceptible, and moderately resistant, respectively (Shah et 

al., 2013). Only 21 out of 380 total weather-based predictors through various pre- and post-anthesis 

periods were identified and integrated into 15 separate logistic regression models (Shah et al., 

2013). These models differed in the pre or post-anthesis duration, with specific RH, temperature, 

or rainfall conditions (Shah et al., 2013). The pre-anthesis model with the least misclassification 

of FHB epidemics contained the duration (h) with a temperature between 15 and 30 °C, where RH 

exceeded 80% (Shah et al., 2013). The mean temperature per day was also incorporated in this 

model, along with the number of hours at a temperature greater than 9 °C (Shah et al., 2013). 

Rainfall generally was not crucial for forecasting the likelihood of epidemics in this study (Shah 

et al., 2013). The updated winter wheat model (equation 1.4) and spring wheat model (equation 

1.5) were as follows: 

𝑙𝑜𝑔𝑖𝑡 (𝜇)  = – 1.7954 +  0.0245 𝑇𝐻2                                         [1.4] 

𝑙𝑜𝑔𝑖𝑡 (𝜇)  = – 11.008 –  0.9578 𝑅𝐸𝑆𝐼𝑆𝑇𝐶 +  0.1516𝐻1           [1.5] 

In both equations, μ is the probability of a significant FHB epidemic (FHB index ≥ 10%), H1 is 

the mean hourly RH, and TH2 is the number of hours during which the following two conditions 

are met simultaneously within a given hour: t is 9 to 30 °C and RH  90% 7 days before anthesis. 

RESISTC is categorical variable of four different levels of disease resistance: very susceptible = 

0; moderately susceptible = 1; moderately resistant = 2; and resistant = 3 (Shah et al., 2013). 
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1.4.2.1.3 Third-generation Models (Shah 2019a and 2019b) 

The first and second generations of USA FHB models were based on variables that summarized 

temperature and moisture during short periods of not more than 15 days preceding and following 

anthesis (De Wolf et al., 2003; Shah et al., 2013, 2014). This was based on the idea that FHB 

prediction should be made in time to provide fungicide application recommendations during 

anthesis or no later than five days after anthesis to control the disease effectively (De Wolf et al., 

2003; Shah et al., 2013). However, more early-anthesis and near-flowering signals were detected 

in recent years through a functional regression analysis of weather data from 120 to 30 days before 

and after anthesis, indicating that FHB epidemics can be detected as early as 40 to 60 days before 

anthesis (Shah et al., 2019a; b). The findings were utilized to construct new weather variables used 

to develop models that performed similarly to previously developed models for real-time disease 

risk, although the new models had a better fit to the data than the first- and second-generation 

models (Shah et al., 2019a; b). 

1.4.2.2 Argentina 

A site and year specific empirical model to predict the incidence of FHB (predictive index or PI%) 

was developed by (Moschini et al., 2001) in Argentina using cultivars of different FHB 

susceptibility, 2-d periods of rainfall exceeding 0.2 mm (NP2), and relative humidity  > 81% and 

≥ 78 % for the first and second day respectively. The empirical equations were as follows: 

𝑃𝐼 % = 20.37 + 8.63 𝑋 𝑁𝑃2 − 0.49 𝑋 𝐷𝐷926 [1.6] 

𝑃𝐼 % = 18.34 + 4.12 𝑋 𝑁𝑃12 − 0.45 𝑋 𝐷𝐷1026 [1.7] 

Maximum and minimum temperatures were utilized to calculate degree days between 9 and 30 °C. 

The observations start eight days before heading (Z51) and extend up to 530-degree days 
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accumulation. In the equations, DD926 and DD1026 represented 926 and 1026 accumulated 

extreme temperatures, respectively, and was calculated using equation 1.8 and 1.9. 

𝐷𝐷926 = Σ[(𝑇𝑚𝑎𝑥) − 26) + (9 − 𝑇𝑚𝑖𝑛)] [1.8] 

𝐷𝐷1026 = Σ[(𝑇𝑚𝑎𝑥) − 26) + (9 − 𝑇𝑚𝑖𝑛)] [1.9] 

If the maximum daily temperature ≤ 26 °C, the accumulation of Tmax – 26 is set to zero, and if 

the minimum daily temperature ≥ 9 °C (or 10 °C), the 9 – Tmin (or 10 – Tmin) is set to zero. 

Therefore, values accumulate only on days with extreme high and low temperatures. Equations 

1.8 and 1.9 lists all factors during the critical time (CPL). The CPL starts eight days before 50% 

heading date and ends after GDD > 0 is 530. 

The specificity of the model was reduced in 2001 by adapting the model to regions from the North 

of Argentina (a mild oceanic climate) than for the regions from further South of Argentina (humid 

subtropical). The minimum and maximum daily temperatures threshold used in the equations of 

the 1996 model were changed from 12 to 10 °C and 26 to 30 °C, respectively. The number of 

degree days was also increased from 530 to 550. The model is more appropriate for cooler areas 

of Argentina, offering predictions closer to the observed infection (Moschini et al. 2001). 

However, the model does not have an action threshold (i.e., a specific level that triggers fungicides 

application) as it directly predicts the impact of the FHB disease on the country (Moschini et al., 

2001). 

1.4.2.3 Italian Model 

Rossi et al. (2003) developed an epidemiological model in Italy, in which weather variables and 

information on wheat growth stages were used to predict the risk of FHB and DON. Model 

development was based on four problematic FHB pathogens in Italy (F. culmorum, G. zeae, G. 
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avenacea, and M. nivalis). The model pivots on three equations related to the phases in the 

epidemiological cycle of FHB in wheat. In the first equation, the sporulation rate (SPO) was 

determined using four equations (one for each fungal species) under controlled incubation 

conditions (Rossi et coll. 2003). In G. Zeae, SPO was determined by the following equation: 

𝑆𝑃𝑂 = [25.98 𝑥 𝑇𝑒𝑞8.59 𝑥 (1 − 𝑇𝑒𝑞)]0.24/ [1 + exp (5.52 − 0.51 𝑥 𝑡 ]                      [1.10]

Where: Teq = equivalent of temperature calculated as (T- Tmin) / (Tmax - Tmin). T = temperature 

(Tmin = 5 °C and Tmax = 35 °C), and t = incubation time (days). 

The second equation calculated the spore dispersal rate (DIS). Since precipitation influences the 

rate of spore dispersal, two regression equations were developed, one adjusted to rainy days (rain 

> 0.2 mm) and the other on non-rainy days (rain < 0.2 mm). The regression equations also included

the rainfall intensity, daily average temperature, and RH > 80%. 

𝐷𝐼𝑆1 =  −839.7 + 410.3 𝑊 + 4.08  𝑇2 + 115.45 𝑅𝑖𝑛𝑡𝑀𝑎𝑥−𝑃 − 455.9 𝑌95 [1.11] 

𝐷𝐼𝑆2 =  −682.3 + 45.68 𝑊 + 21.5 𝑇2 + 𝑅𝐻80 + 107.0 𝑅𝑡𝑜𝑡_𝑃 [1.12] 

Where DIS1 and DIS2 are conidia numbers (m3 air/day) estimated in days with and without rainfall, 

respectively. W is an empirical weight assigned each day in a sequence of n successive rainy days, 

as follows: first rainy day = 1.1, second rainy day = 2.5, third rainy day = 1.2, fourth or later rainy 

day = 0.8. T is the average air temperature (°C). RintMax_P = maximum intensity of rain (mm h-

1) in the preceding day. Y95 = dummy variable for 1995, equal to zero (for the yrs 1994, 1996, and

1997) and 1 (for 1995). RH80 = number of hours with RH > 80%. Rtot_P = total rainfall (mm) on 

a preceding day (Rossi et al., 2003). 
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The third equation calculated the disease infection frequency (INF) based on leaf wetness duration 

and temperature combination following inoculation considering wheat growth stages (GS) (Rossi 

et al. 2003). The invasion rate of tissues by mycelium (INV) was calculated with equation 1.13. 

𝐼𝑁𝑉 =  [5.33 ×  (𝑇𝑒𝑞)1.55 × (1 –  𝑇𝑒𝑞)]1.35                                                [1.13] 

In equation 1.13, Teq =  (T –  Tmin)/(Tmax – Tmin)   where Tmin = 0 and Tmax = 38. 

Two risk indexes are given by the Italian model and are calculated as below: 

𝐹𝐻𝐵_𝑟𝑖𝑠𝑘 =  𝛴𝑆𝑃𝑂 ×  𝐷𝐼𝑆 ×  𝐼𝑁𝐹 ×  𝐺𝑆                                         [1.14] 

𝑇𝑂𝑋_𝑟𝑖𝑠𝑘 =  𝛴𝐼𝑁𝐹 ×  𝐺𝑆 ×  𝐼𝑁𝑉                                                       [1.15] 

The risk of FHB infection (FHB-risk) is used for the four Fusarium species and the risk of 

mycotoxin development (TOX-risk) for F. Culmorum and G. Zeae. The indices are computed daily 

and accumulate throughout the growing season. Data from various winter wheat crops were used 

to validate the model. A comparison of actual infection and mycotoxin against predicted data 

produced satisfactory results (R2  > 0.8) (Rossi et al., 2003).  

1.4.2.4 Brazil 

 

A phenology-based FHB simulation model was developed in Brazil, accounting for host, 

environment, and inoculum dynamics during infection (Del Ponte et al., 2005). Firstly, the host 

factor calculates the groups of heads that emerged (cohort) on the same day (HNG) (equation 

1.16). The daily rate in the cohort of heads as a temperature function (ANText) was then calculated 

(equation 1.17): 

𝐻𝑁𝐺 =  1 –  𝑒𝑥𝑝 (−0.0127 𝑡2.4352)                                                      [1.16] 

𝐴𝑁𝑇𝑒𝑥𝑡 =  1 –  𝑒𝑥𝑝 (𝑎 𝑡𝑏)                                                                     [1.17] 
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Where t = 1 day, a = 0.225 – 0.029T + 0.0009T2 and b = -5.773 + 0.966T – 0.0278T2 where T is 

daily mean temperature (°C). Equation (1.16) assumes that every part of the cohort has its first part 

extruded three days later. An empirical rule was determined when anthers were attached to wheat 

spikelets before falling on the ground (anther longevity). A rule was established based on empirical 

observations reporting prolongation of flowering during a series of cloudy days, indicating that 

flowers remained attached for longer. The rule suggested that flower longevity is a minimum of 

two days if the daily solar radiation on the second or next day is < 10 MJ m-2 day-1, anther remains 

attached for an extra day up to a maximum of five days. Therefore, the proportion of anthers 

present in one day (ANT) results from the sum of extruded and attached anthers in each cohort of 

heads subtracted from anthers removed from the cohorts (Del Ponte et al., 2005). 

Coefficients for determining the proportion of susceptible tissue (ST) were developed using ANT 

and coefficients for post-peak anthesis infections. ST is ANT until ANT reaches the peak and 

decreases to 0.25. ST = 0.25 for the next seven days after anthesis (ANT < 0.01), while ST = 0.10 

for the next 8 to 14 days after anthesis. Such guidelines were developed to compensate for potential 

late infections from post-peak flowering to kernel filling levels (Del Ponte et al., 2005).  

Secondly, the inoculum factor was derived from the night and daytime inoculum observations. 

Spore cloud relative density was estimated by adjusting a linear equation to the relative density of 

colony-forming units observed during the nighttime using equation (1.18). 

𝐺𝑍 =  (−0.6306 +  0.0152 𝑅𝐻 +  0.176 𝐶𝑅𝐷)2                 [1.18] 

Where: RH = daily mean relative humidity (%) and CRD is a variable for the rainy-day position 

(> 0.3 mm) in consecutive rainy days (for four consecutive days: CRD = 1; 2; 2.5; or 0.3 for each 
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subsequent day). GZ is a fraction (0 < GZ < 1), which adjusts the daily index of infections by 

accounting for lower or higher inoculum pressure in the course of an infection event. 

Thirdly, daily rainfall and mean RH combinations were used to determine head wetness duration 

between 30 and 48 h. Within two days, infection events were recorded, and infection happens 

when PREC > 0.3 mm occurs in both days with average RH > 80% for the two days or when PREC 

>0.3 mm with mean RH ≥ 80% followed by a non-rainy day with mean RH≥85%. An exponential 

to calculate Fusarium graminearum infection frequency (INF) under temperature effect (10 to 30 

°C) for 48 h of head wetness was developed as follows: 

𝐼𝑁𝐹 =  0.001029 𝑒𝑥𝑝(0.1957 𝑇)                                                  [1.19]     

In this case, T = average mean daily temperature in the two-day window of the infection event. 

Finally, four models calculating the daily infection rate (GIB) were developed. The daily GIB is 

then added and multiplied by 100 to get the accumulated infection index (% GIB). The GIBs are 

calculated using equations 1.20 through 1.23. 

𝐺𝐼𝐵1 =  𝐴𝑁𝑇 ×  𝐼𝑁𝐹                                                                           [1.20] 

𝐺𝐼𝐵2 =  𝐴𝑁𝑇 ×  𝐼𝑁𝐹 ×  𝐺𝑍                                                                [1.21] 

𝐺𝐼𝐵3 =  𝑆𝑇 ×  𝐼𝑁𝐹                                                                               [1.22] 

𝐺𝐼𝐵4 =  𝑆𝑇 ×  𝐼𝑁𝐹 ×  𝐺𝑍                                                                   [1.23] 

Where ANT is the daily mean proportion of anthers during a two-day infection event (IE), ranging 

from 0 to 1; ST = mean daily proportion of susceptible tissue during IE; INF = Infection frequency 

at the second day of IE and GZ = mean spore cloud density during IE. The accumulated infection 
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index (GIB %) is the summation of partial infection indices by the four different models along the 

susceptible period (equation 1.24). 

𝐺𝐼𝐵% =  𝛴(𝐺𝐼𝐵 ×  100)                                                                         [1.24] 

The models were evaluated based on FHB incidence, FHB severity, and Fusarium kernel damage. 

Since the models estimate an infection index rather than a disease level, regression was used to 

validate each model using the coefficient of determination to verify the adequacy of the index to 

explain the observations of the disease level (Del Ponte et al., 2005). The coefficient of 

determination for the regression analysis between predicted and actual infection ranged from 0.73 

to 0.93, 0.43 to 0.69, and 0.14 to 0.37 for FHB severity, incidence, and FDK, respectively. 

1.4.2.5 The DONcast Model in Canada 

 

Forecasting disease using the FHB incidence approach is timely, reliable, and simple, but some 

infected kernels are, in some instances, asymptomatic but infected with mycotoxin  (Hooker et al., 

2002). One limitation of the predictability of epidemics is that visual FHB intensity is not 

necessarily associated with DON incidence. In Ontario, Canada, a model predicting DON 

concentration in wheat grain was developed by Hooker et al. (2002) and consisted of three 

regression equations. The model was further improved through the years into a forecasting tool 

called DONcast (Schaafsma and Hooker, 2007). In the model, the grain DON level is dependent 

on three critical periods. The first critical period was 4 to 7 d before heading and calculated by 

equation 1.25: 

𝐷𝑂𝑁 = exp[−0.30 + 1.84𝑅𝐴𝐼𝑁𝐴 − 0.43(𝑅𝐴𝐼𝑁𝐴)2 − 0.56𝑇𝑀𝐼𝑁] − 0.1     [1.25] 

Where DON concentration (mg g-1) is a function of RAINA (the number of days with rain > 5 mm 

day-1), and TMIN is the number of days of temperature < 10 °C between 4 and 7 d before heading 
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(Hooker et al., 2002). The second critical period was 7 d before heading to 10 d after heading and 

calculated as follows: 

𝐷𝑂𝑁 = exp[−2.15 + 2.21 𝑅𝐴𝐼𝑁𝐴 − 0.61 (𝑅𝐴𝐼𝑁𝐴)2 + 0.85 𝑅𝐴𝐼𝑁𝐵 + 0.52 𝑅𝐴𝐼𝑁𝐶 −

               0.30 𝑇𝑀𝐼𝑁 − 1.10 𝑇𝑀𝐴𝑋] − 0.1                                      [1.26] 

Where RAINB is the number of days of rain > 3 mm day-1 in the period 3 to 6 days after heading, 

TMIN was the number of days of temperature < 10 °C between 4 and 7 days before heading, and 

TMAX was the number of days with temperature > 32 °C in the period 4 and 7 days before heading. 

The third critical period included RAINC (number of days of rain > 3 mm day-1 in the period 7–

10 days after heading), and is given by the following equation: 

𝐷𝑂𝑁 = exp[−0.84 + 0.78 𝑅𝐴𝐼𝑁𝐴 + 0.40 𝑅𝐴𝐼𝑁𝐶 − 0.42 𝑇𝑀𝐼𝑁] − 0.1     [1.27] 

Rainfall, high humidity, and warm temperatures were favorable for disease development during 

all three periods, and DON concentrations in the increased set of weather variables for the three 

periods varied marginally. Daily rainfall > 5 mm increased the potential DON concentration in the 

first critical period. In contrast, DON concentration was decreased when the daily minimum 

temperature was < 10 °C. In the second critical period, DON levels were reduced with mean 

temperature > 32 °C. In both second and third critical periods, daily rainfall > 3 mm and RH > 80 

%  increased DON concentration in the grain, while daily average temperature < 15 °C reduced 

DON concentration (Schaafsma and Hooker, 2007). 

The model developed by Hooker et al. (2002) explained 73% of the DON concentration variability 

across 5 years and 399 samples. Prediction of DON concentration lower than 1 ppm showed a high 

accuracy of 89% (Hooker et al., 2002). The Hooker model was further enhanced by incorporating 

FHB observation into the dataset and variables of crop history, tillage, and host susceptibility to 
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render it field-specific. The Hooker model was further developed by Weather Innovations (WIN) 

Consultancy LP into the world's first commercialized forecasting method, DONcast, accessible in 

different parts of the world (Schaafsma and Hooker, 2007). DONcast is reasonably stable across 

the years, continents, and cropping systems due to the robustness of the data used for its 

development. For example, one study found DONcast accuracy of 80 to 85% and explained 72% 

of DON variation in over 1000 field samples from four countries using a 1 ppm threshold level 

(Schaafsma and Hooker, 2007).  

The DONcast model reviewed in this study considers a wide range of agronomic factors, such as 

varietal susceptibility to disease and the amount of crop residue on the soil surface. However, it 

was difficult to get accurate DON forecasts and fungicide treatment recommendations due to over-

generalized agronomic factors and regional variability, which led to low system adoption (Pitblado 

et al., 2007). Thus, the DONcast model was refined further by including other meteorological 

variables such as leaf wetness and agronomic factors such as crop history, tillage, and crop FHB 

resistance to make it more field-specific and improve its forecasting accuracy (Schaafsma and 

Hooker, 2007; Pitblado et al., 2007). As a result, the DONcast has been renamed site-specific 

DONcast (ssDONcast) (Schaafsma and Hooker, 2007; Pitblado et al., 2007). 

1.4.2.6 Germany 

 

Birr et al. (2019) developed three multiple regression models to predict DON and ZEA 

concentrations in wheat grain at harvest in a maize-free crop rotation in Northern Germany. The 

model for the highly susceptible cultivar (model 1) was based on a 2008 to 2014 dataset. The 

moderately to highly susceptible cultivar (model 2) and the lowly to moderately susceptible 

cultivar (model 3) were based on data from 2012 to 2016. The models utilized cumulative 

precipitation and average temperature covariates and the interaction term of precipitation and 
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temperature during wheat flowering. In collaboration with the Schleswig-Holstein Plant Protection 

Service (SCA), the three models were adapted to farms using representative local weather stations 

for weather-based DON and ZEA predictions as part of the regional monitoring of leaf pathogens 

and FHB in wheat in Northern Germany. 

Model 1: Highly susceptible ("Ritmo") 

DON 646 – 4.50P − 31.94T + 2.70PT                                                        [1.28] 

ZEA − 40 + 3.86P + 2.41T + 0.18PT                                                         [1.29] 

Model 2: Moderately to highly susceptible ("Inspiration")  

DON 481–18.42P − 26.37T + 2.87PT                                                        [1.30] 

ZEA − 75 + 2.17P + 5.34T + 0.14PT                                                          [1.31] 

Model 3: Lowly to moderately susceptible (“Dekan”): 

DON 305–24.09P − 18.74T + 2.73PT                                                         [1.32] 

ZEA − 39 + 1.18P + 2.87T + 0.11PT                                                          [1.33] 

Where P is the cumulative precipitation (mm) during wheat flowering (GS 61 to 69), T is the 

average temperature (°C) during wheat flowering (GS 61 to 69), P × T is the interaction term of 

precipitation and temperature. All intercepts were merged to an overall intercept a. b = fixed effect 

for precipitation, c = fixed effect for temperature, and d = fixed effect for the interaction of 

precipitation and temperature. 

Model evaluation using new data sets not used in the development of the models but derived from 

similar sampling locations as those for the development of the models produced satisfactory results 

(Birr et al., 2019). The models revealed that 89, 91, and 86% of the variation for models 1, 2, and 
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3, respectively, in the observed DON values are accounted for by the variation in the predicted 

DON values. In 95.2% of the cases, model 1 correctly predicted whether DON and ZEA 

concentrations were lower or higher than the European limit of 1250 µg DON/kg and 100 µg 

ZEA/kg for both mycotoxins. The accuracy of Models 2 and 3 were 85.7 (14.3% false negative) 

and 100%, respectively, for DON predictions when the 2017 dataset was used (Birr et al., 2019). 

Models 2 and 3 accurately estimated in 100 and 85.7% (14.3% false positive) of cases, ZEA 

concentrations below or above the maximum level of 100 µg ZEA/kg, respectively, when the 2017 

validation dataset was used (Birr et al., 2019). 

In contrast to other published models (Hooker et al., 2002; Franz et al., 2009; Van Der Fels-Klerx 

et al., 2010), all three models produced reliable DON and ZEA concentration estimates in wheat 

grain without including post-anthesis weather conditions. Therefore, the models will not be used 

only as a tool for identifying years, regions, or fields under risk, but also to assist producers in 

determining whether to make a fungicide application at flowering based on weather data from local 

weather stations to reduce the risk of food and feed contamination with DON and ZEA  (Birr et 

al., 2019). 

1.4.2.7 Netherlands 

 

In Netherlands, the application of the DONcast regression equations defined by Hooker et al. 

(2002) directly to Dutch data resulted in poor quantitative predictive performance (Franz et al., 

2009). Thus, two multiple regression models specific for the Dutch conditions were developed to 

predict DON concentrations in mature wheat grain in Dutch-specific situations (Franz et al., 2009). 

These models utilize pre-, and post-heading weather data, cultivar resistance, region (REG) 

classified into southwest (SW), central (C), and northeast (NE), fungicide use (SPRAY) classified 

into Yes or No, and heading dates (HD) which include eight blocks of 6 days around the HD 
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(numbered 1 to 8 [as a suffix] to the weather variables as well as for the entire pre- and post-

heading time blocks of 24 days) (Franz et al., 2009). The heading date was estimated by a linear 

relationship between the observed heading date and the pre-heading temperature sum (Tsum) when 

not recorded. The first model focused on average climatic variables in a 24-day pre-heading and a 

24-day post-heading period. The second model focused on average climatic variables in eight-time 

blocks of 6 days. Model 1 and 2 explained 59% and 56% DON variation across all fields, 

respectively. Climate variables accounted for 30% of the overall variance in model 1. 

Model 1 

DON (µg/kg) = 3.771 + 0.209T (post-heading) + 0.005Pmm (pre-heading) + 0.004Pmm (post-

heading) - 0.002Th25 (pre-heading) - 0.005Th25 (post-heading) + 0.001RHh90 (post-heading) -

0.031HD + REG + RES + SPRAY                                                                                      [1.34] 

Where T (post-heading) is the average hourly post heading temperature, Pmm (pre-heading) and 

Pmm (post-heading) are the total hourly pre and post heading precipitation (mm), respectively, Th25 

(pre-heading) and Th25 (post-heading) are the number of hours with a temperature greater than 250 

oC and RHh90 is the number of post heading hours with an RH greater than 90%. Non-climatic 

variables included HD, which are the heading dates; REG is the wheat-producing region (factorial) 

with coefficients: C REG (reference level); -0.366SW REG and 0.3442NE REG. RES is the wheat 

resistance category with coefficients: RES 5 (reference level); -0.415RES 5.5; 0.057RES 6; 

0.375RES 6.5; 0.482RES 7; 0.336RES 7.5; 0.525RES 8.5). SPRAY (factorial) is a fungicide 

application with coefficients: No (reference level); - 0.192Yes (Franz et al., 2009). 

Model 2 
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DON (µg/kg) = 4.427 + 0.1320T (8) + 0.025RH (4) - 0.018Th25 (8) -0.034HD + REG + RES + 

SPRAY                                                                                                                    [1.35] 

Where T (8) is the average hourly temperature 18 to 24 days after heading, RH (4) is the average 

hourly relative humidity 0 to 6 days before heading, and Th25 (8) is the number of hours with a T 

greater than 25 oC. The HD is the pre-and post-heading dates, the REG is the region where the 

wheat is produced (factorial) with coefficients as C REG, reference level; -0.385SW REG; 

0.259NE REG, RES is wheat resistance (factorial) with coefficients: - 0.441RES 5.5; - 0.037RES 

6; - 0.319RES 6.5; - 0.508RES 7; - 0.270RES 7.5; - 0.618RES 8.5 and SPRAY (factorial) with 

coefficients No, reference level; -0.211Yes (Franz et al., 2009). 

Both models predict concentrations of 10 log(x+1) in DON (µg/kg). The model validation showed 

a strong correlation between predicted and observed DON values. Models 1 and 2 correctly 

predicted whether the DON concentration was lower or higher than the maximum level of 1,250 

µg/kg in 92 and 88% of the cases, respectively. The estimated DON amount was increased in both 

models with increased average temperature, precipitation, and RH but decreased with an increased 

number of hours with a temperature above 25 °C  (Franz et al., 2009). 

There was an apparent regional effect on DON concentrations, with considerably greater levels 

when progressing from the SW to the NE regions of the Netherland that climatic and non-climatic 

variables could not explain in the models (Franz et al., 2009). Region effects were thought to be 

caused by differences in infection pressure in different parts of the country because of how much 

wheat is grown. Wheat-after-wheat rotations are more typical in the northeast, with more intensive 

wheat cultivation. Another possible explanation for the region effect were differences in 

temperature sensitivity between populations of Fusarium species in different locations (Franz et 

al., 2009). Northern populations may have adapted to lower average temperatures, resulting in 
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increased growth, and dividing regional impact into underlying variables could greatly increase 

model efficiency, making prediction models less site-specific and generally applicable to control 

authorities, producers, and industry (Franz et al., 2009). 

1.5 Recommendation for Modelling Approach in Western Canada 

 

The quest for a crucial period conducive to FHB epidemics is common in all models reviewed in 

this chapter. The timeframe for prediction of the FHB and the probability of outbreak varies from 

18 days prior to the commencement of anthesis, with most models focused on 7 days prior to the 

beginning of the anthesis. The evidence of these models' validity is how well they link theoretical, 

scientific, and small-scale knowledge to knowledge on the large-scale disease, which is assessed 

by different measures of accuracy (R2 and accuracy sensu stricto) (Hollingsworth et al., 2006). Of 

the models reviewed, only De Wolf et al. (2003) use accuracy as such (the percentage of cases 

accurately predicted) and is around 70% accurate when using pre-anthesis information, and 84% 

accurate when using additional post-anthesis information (De Wolf et al., 2003). Parsimony is the 

principle of modelling that means that simplicity rather than complexity is preferable (Rossi et al., 

2003; Prandini et al., 2009). Models must be as efficient as possible without reduced capacity using 

the fewest possible variables. While complexity can increase the accuracy of a model, it can also 

minimize its usability and applicability. The parsimony theory ought to be used in the simulation, 

implying that consistency is superior to ambiguity (Rossi et al., 2003; Shah et al., 2021). Prediction 

of FHB days before anthesis is a valuable tool for producers to decide on fungicide spraying or 

not. Late-season evaluations miss the intervention window though it can be helpful to anticipate 

impacts on grain marketing and food systems (De Wolf et al., 2003; Rossi et al., 2003)  
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1.6 Objectives 

 

The overall objective of this study was to develop and validate weather-based models for FHBi, 

DON, and FDK risk using weather data and FHBi, FDK, and DON levels measured in plots across 

3 prairie provinces. The specific objectives were to i) assess the correlation between the FHBi, 

FDK, DON, and spore concentration in winter wheat, spring wheat, barley, and durum in western 

Canada (Chapter 2), ii) evaluate the response of winter wheat, spring wheat, and barley varieties 

to FHB under natural infection in the field by assessing visual symptoms (FHBi) and harvested 

samples for FDK and DON concentration across western Canada (Chapter 2), iii) develop FHBi, 

FDK and DON weather-based models to forecast the risk of FHB epidemic in wheat, barley and 

durum in western Canada (Chapter 3), iv) validate models that predict FHBi, FDK and DON 

epidemics for different spring wheat, winter wheat, barley and durum developed in western Canada 

(Chapter 4), v) validate and compare existing spring wheat and winter wheat FHBi in western 

Canada developed in the USA to FHBi models developed in western Canada using producer field 

data (Chapter 4), vi) determine the effect of distance between the field and the nearest weather 

station on the accuracy of winter wheat, spring wheat, barley and durum FHBi, FDK and DON 

models developed in Canada (Chapter 4). 

1.7 Thesis Outline 

 

The layout of this thesis followed the thesis guidelines of the Department of Soil Science, 

University of Manitoba. Chapters 2 to 4 were prepared in manuscript formats with the titles as 

follows: 

Chapter 2: Effect of variety and correlation between FHB disease indicators in western Canadian 

cereal production 
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Chapter 3: Developing risk models to mitigate Fusarium Head Blight in western Canadian cereal 

production 

Chapter 4: On-farm validation of Fusarium Head Blight risk models in western Canadian cereal 

production 
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2. EFFECT OF VARIETY AND CORRELATION BETWEEN FHB DISEASE 

INDICATORS IN WESTERN CANADIAN CEREAL PRODUCTION 

 

2.1 Abstract 

 

Producers of wheat and barley continue to be negatively impacted by Fusarium Head Blight (FHB) 

disease. The economic costs of FHB are manifested not only in yield reduction but also in the 

downgrading of grain as a result of Fusarium damaged kernels (FDK) and contamination with 

mycotoxins such as deoxynivalenol (DON). Visual FHB and FDK symptoms are frequently used 

as rough predictors of DON due to the high cost of DON analysis with the aim of managing FHB. 

Additionally, varieties with some resistance to FHB can substantially reduce the epidemic level, 

especially when integrated with other control strategies such as FHB forecasting and fungicide 

application. Field experiments were conducted in the 2019 and 2020 growing seasons to i) assess 

the response of winter wheat, spring wheat, barley, and durum varieties to FHB, FDK, and DON 

under field conditions and ii) evaluate the correlation between FHB index (FHBi), FDK, DON, 

and spore concentration (SC) in winter wheat, spring wheat, barley, and durum in western Canada. 

In contrast to other provinces, Manitoba had the highest levels of FHBi, while Saskatchewan had 

the highest levels of FDK. In both years, the correlation between FDK and DON was linear and 

significantly positive for all crop types and cultivars, with the correlation being stronger in the 

winter wheat crop type (r = 0.92). The effect of varieties on FHBi and FDK was not significant. 

Low disease pressure in both seasons may have obscured the impact of FHB resistance levels 

among crop varieties. However, the moderately resistant varieties (F. RC3) accumulated 

significantly less DON (p < 0.05) than susceptible varieties (F. RC1) in all crop types except 

durum, which had only one FHB category. These findings highlight the importance of 

incorporating the effects of resistant cultivars in developing weather-based models in western 
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Canada and developing independent models for FHBi, FDK, and DON, as the correlation between 

these disease indicators varied between the two years. 

2.2 Introduction 

 

FHB is a widespread fungal disease caused by phytopathogenic members of the Fusarium species 

(Dexter et al., 1996). Fusarium graminearum is regarded as one of the most damaging fungal 

pathogens in wheat and barley in western Canada (Fowler, 2011). Fusarium species infect wheat 

and barley heads during the flowering period, and significant yield and quality reduction occur 

under favorable environmental conditions (McCallum and Tekauz, 2002; De Wolf et al., 2003). 

Fusarium species have received much attention because of their ability to produce mycotoxins that 

can seriously contaminate the food and feed chain. Trichothecenes are the most common 

mycotoxins found in small grain cereals, with DON and its acetylated derivatives 3- and 15-

acetyldeoxynivalenol being the most common (Clear et al., 2013). As a result, DON-contaminated 

grains are frequently downgraded and either fed to livestock or destroyed (Alberta Government, 

2015). Economic losses in the United States of America (USA) have been estimated at $1.176 

billion for wheat and $293 million for barley between 2015 and 2016 (Wilson et al., 2018). In 

Alberta, Canada, FHB-induced downgrading resulted in significant economic losses of about $8.7 

million in 2010 and about $3 million in 2012 (Alberta Government, 2015). 

FHB forecasting, fungicide applications, crop rotation, and the selection of varieties with some 

resistance to FHB can all be used to mitigate the negative impact of the disease (Dill-Macky, 

2008). Several FHB resistance types have been identified, including resistance to the initial 

infection (type I), resistance to pathogen spread throughout the spike (type II), resistance to kernel 

infection (type III), host tolerance to FHB and DON (type IV), and resistance to DON 

accumulation (type V) (Kubo et al., 2014; He et al., 2015; Góral et al., 2020). The number of FHB-
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resistant wheat and barley varieties available to growers in western Canada is steadily increasing 

(Sask Seed Guide, 2019). Continuous testing to determine a variety's resistance to FHB has the 

potential to avert major FHB epidemics in western Canada, given the observed shift to more 

aggressive Fusarium chemotypes. In durum, long-term control of FHB disease has been difficult 

because FHB resistance sources are scarce in the primary gene pool of tetraploid wheat, which 

complicates breeding for resistance (Haile et al., 2019). 

Fungicides provide an alternative FHB management strategy to varietal resistance, especially 

when used with forecast models (De Wolf et al., 2003; Rossi et al., 2003; Brustolin et al., 2013). 

Numerous weather-based models have been developed worldwide to aid in the timing and 

application of fungicides, including those developed in the USA and currently used in western 

Canada (De Wolf et al., 2003; Shah et al., 2013). These models predict FHB epidemics with a field 

severity or FHBi greater than 10%, a disease severity level strongly correlated with FHB yield 

losses and generally associated with elevated levels of DON in harvested grain (De Wolf et al., 

2003). A wide range of correlations has been found between FHB and disease indicators (FHBi, 

FDK, and DON), ranging from high positive correlations to low significant correlations to negative 

correlations to almost null correlations (Kubo et al., 2014; He et al., 2015; Miedaner et al., 2016). 

Understanding the relationship between disease indicators and the effect of cultivars in western 

Canada may aid in ongoing efforts to predict FHB. The objectives of this study were to i) evaluate 

the correlation between the FHBi, FDK, DON, and SC in winter wheat, spring wheat, barley, and 

durum in western Canada, and ii) evaluate winter wheat, spring wheat, and barley varieties 

response to FHB under natural infection in the field by assessing visual symptoms (FHBi) and 

harvested samples for FDK and DON concentration across western Canada.  
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2.3 Materials and Methods 

 

2.3.1 Plot Sites 

 

Small-plot research trials with five plot sites per province (15 sites) were conducted in Manitoba, 

Saskatchewan, and Alberta during the 2019 and 2020 growing seasons (Figure 2.1). The plot sites 

were located in fields with at least two years of FHB data collected through provincial and federal 

government annual FHB surveys. In addition, these 15 sites were geographically distributed across 

western Canada to maximize the likelihood of each site experiencing a variety of growing-season 

weather conditions. Each plot was approximately 4 m long and 2 m wide, with at least 8 rows.    

 
Figure 2. 1. FHB small-plot research trials in western Canada during the 2019 and 2020 

growing seasons. 
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2.3.2 Experimental Design  

 

The experimental design was a randomized complete block design (RCBD) with four replications 

(blocks) for each of the separate side by side winter wheat, spring wheat, barley, and durum 

experiments (Figure 2.2). Three different spring wheat, winter wheat, and barley varieties were 

used in the treatments, representing three different FHB resistance categories (F. RC) (Table 2.1). 

FHB resistance categories included F. RC1 (susceptible or moderately susceptible varieties), F. 

RC2 (intermediate varieties), and F. RC3 (moderately resistant or resistant varieties), depending 

on the crop type. Only one durum wheat variety was grown because all durum wheat varieties are 

FHB susceptible or moderately susceptible. 

 Experiment 1   Experiment 2   Experiment 3   Experiment 4   

Block 4 
WW10                                                                                     
F.RC1 

WW11                                                                                     
F.RC3 

WW12                                                                                     
F.RC2 

  
SW10                                                                                     
F.RC1 

SW11                                                                                     
F.RC3 

SW12                                                                                     
F.RC2 

  
BA10                                                                                     
F.RC1 

BA11                                                                                     
F.RC2 

BA12                                                                                     
F.RC3 

  
DU4                                                                                     

F.RC1 
❖  = spore trap 

             
❖        

Block 3 
WW7                                                                                     
F.RC3 

WW8                                                                                    
F.RC2 

WW9                                                                                    
F.RC1 

  
SW7                                                                                     
F.RC3 

SW8                                                                                    
F.RC1 

SW9                                                                                    
F.RC2 

  
BA7                                                                                     

F.RC2 
BA8                                                                                    

F.RC3 
BA9                                                                                    

F.RC1 
  

DU3                                                                                     
F.RC1 

+ weather station 

   
❖                  

Block 2 
WW4                                                                                     
F.RC2 

WW5                                                                                     
F.RC3 

WW6                                                                                     
F.RC1 

  
SW4                                                                                     
F.RC2 

SW5                                                                                     
F.RC3 

SW6                                                                                     
F.RC1 

  
BA4                                                                                     

F.RC3 
BA5                                                                                     

F.RC2 
BA6                                                                                     

F.RC1 
  

DU2                                                                                     
F.RC1  

                    

Block 1 
WW1                                                                                     
F.RC1 

WW2                                                                                    
F.RC2 

WW3                                                                                     
F.RC3 

  
SW1                                                                                     
F.RC3 

SW2                                                                                    
F.RC2 

SW3                                                                                     
F.RC1 

  
BA1                                                                                     

F.RC1 
BA2                                                                                    

F.RC3 
BA3                                                                                     

F.RC2 
  

DU1                                                                                     
F.RC1  

 

Figure 2. 2. Experimental layout at the plot sites. Winter wheat (WW), spring wheat (SW), 

barley (BA) and durum (DU). F.RC1, F.RC2, and F.RC3 represent susceptible or moderately 

susceptible, intermediate, and moderately resistant or resistant varieties depending on the crop 

type, respectively. 
 

2.3.3 Planting and Crop Growth Stages 

 

Three winter wheat varieties with three levels of FHB resistance (Table 2.1) were planted in the 

fall of 2018 and 2019, while spring cereals (spring wheat, barley, and durum) were planted in the 

spring of 2019 and 2020, based on the best management practices at each location. Standard 

agronomic practices such as fertilizer application, seeding depth, row spacing, and herbicide 
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application were implemented at each site. However, no fungicides were used. Planting, maturity, 

and harvesting dates for each crop were recorded. Crop growth was regularly monitored 

throughout the growing season, and the date when each cultivar reached BBCH stage 59 (main 

stem spikes completely emerged) was recorded; thereafter, BBCH growth stages were recorded 

weekly until BBCH 80 (Meier et al., 2009). When the 50% anthesis date in wheat and 50% heading 

date in barley were not observed, the planting date along with a thermal model was used to estimate 

these dates (Appendix 5). 

Table 2. 1. Winter wheat, spring wheat, barley, and durum cultivars with their Fusarium Head 

Blight susceptibility category in western Canada (Sask Seed Guide, 2019). 

Crop type Variety name FHB resistance category Resistance category 

abbreviatione 

Winter wheat (CWRWa) Emerson Resistant (R) F. RC3 

 AACd Gateway Intermediate (I) F. RC2 

 Moats Susceptible (S) F. RC1 

Spring wheat (CWRSb) AAC Brandon Moderately resistant (MR) F. RC3 

 AAC Elie Intermediate (I) F. RC2 

 Muchmore Moderately susceptible (MS) F. RC1 

Barley AAC Connect Moderately resistant (MR) F. RC3 

 CDC Copeland Intermediate (I) F. RC2 

 AAC Synergy Moderately susceptible (MS) F. RC1 

Durum (CWADc) Strongfield Susceptible (S) F. RC1 
aCWRW is Canada Western Red Winter. 
bCWRS is Canada Western Red Spring. 
cCWAD is Canada Western Amber Durum. 
dAcronym "AAC" denotes varieties developed by Agriculture and Agri-Food Canada. 
eFHB resistance categories.  F. RC1 (susceptible or moderately susceptible varieties), F. RC2 

(intermediate varieties), and F. RC3 (moderately resistant or resistant varieties), depending on the 

crop type. 

 

2.3.4 Meteorological Data 

 

Watchdog® portable weather stations (Spectrum Technologies 2000 Series, Thayer Case, IL, 

USA) were used to collect data during the growing season. One weather station was mounted on 
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a solid post at an average height of 1.80 m within 10 m of the plots at each site. Weather data 

collected hourly included air temperature (°C), relative humidity (RH), rainfall (mm), solar 

radiation (W m-2), and wind speed (km h-1) and direction. The weather stations were installed 

following the spring crop seeding. Any meteorological data required prior to deploying the 

portable weather stations were obtained from a nearby weather station in the networks operated by 

Manitoba Agriculture Weather Program, Alberta Climate Information Service, and Environment 

and Climate Change Canada (ACIS, 2021; ECCC, 2021; MARD, 2021).  

2.3.5 FHB Spore Traps 

 

2.3.5.1 Spore Trap Installation and FHB Spores Identification 

 

FHB spores were trapped using Guo's (2008) method, with minor modifications. Two adhesive 

spore traps were placed in two central locations within the plot area at a height of about 1 m prior 

to anthesis (BBCH 59). The spore traps consisted of a trap head and a supporting rod. A rectangular 

piece of foam with four spore collection surfaces (6 mm x 90 mm each) was used as the trap head. 

The spore head surfaces were covered with a base tape, followed by Melinex double-sided tape 

coated with a thin layer of petroleum jelly to which airborne spores adhered. The spore traps were 

replaced weekly for four weeks (8 spore traps in total). Following the collection of spores, a small 

piece measuring 5 mm x 19 mm was cut from the Melinex tape on one side of the trap head and 

fixed to a glass slide. Fusarium species spores were determined under a compound microscope 

(400x) to confirm the presence of the inoculum in the environment.  

2.3.5.2 Determination of Spore Concentration  

 

The volume of air passing through the area (5 mm x 19 mm) was calculated by first calculating 

the average daily wind speed for the period when the spore traps were in the field (i.e., from date 
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of installation to date of removal). The wind speed was recorded at approximately 1.8 m at the plot 

sites. However, the spore traps were installed at about 1 m above ground, and thus, there was a 

need to extrapolate the wind speed from 1.8 to 1 m. This was done using the log law wind profile 

formulae with roughness length set at 0.1 m (Stull, 2000). The total wind run (i.e., how much wind 

has passed) for the day (m) was then calculated by multiplying the average wind speed at 1 m 

(m/s) 86400 s (number of seconds in 24 h). The volume of air (m3) was calculated by multiplying 

the wind run by sampled area (0.005 m x 0.019 m). Since the spore traps have 4 sides, the wind 

run (m3) was then divided by 4, assuming that the wind run was equally divided among all 4 sides 

of the spore trap. The total volume of air (m3) was calculated by multiplying the volume of air per 

day (m3) by the number of days the spore traps were in the field. 

2.3.6 Disease Indicators 

 

2.3.6.1 Fusarium Head Blight Index 

 

Fusarium Head Blight was assessed 18 to 21 days after 50% anthesis (BBCH 65). This was 

between the early milk stage (BBCH 73) and the soft dough stage (BBCH 85). FHB incidence (% 

of spikes affected) and FHB severity (mean percentage of blighted spikelets per infected head) 

were determined by scoring five spikes at ten random locations (total 50 spikes) within a plot. 

Fusarium Head Blight index (FHBi) was then determined according to  Shah et al. (2014) using 

the following formula: 

𝐹𝐻𝐵𝑖 =  (𝐹𝐻𝐵𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 ×  𝐹𝐻𝐵𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)/100 

2.3.7 Fusarium Damaged Kernels and Deoxynivalenol 
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Grain samples (1 kg plot-1) were collected for official grading, FDK and DON analysis at harvest. 

During combining, grain samples were collected with a level of dockage similar to that from 

producer fields to retain a representative amount of the lightweight Fusarium damaged kernels. 

Grain grading, FDK determination, and DON analysis were conducted by a commercial laboratory 

(Intertek, Canada) following the procedures outlined in the Canadian Grain Commission's Official 

Grain Grading Guide (Canadian Grain Commission, 2019). Briefly, samples were divided into a 

representative portion using a Boerner-type divider. The samples were then visually divided into 

two groups of healthy and infected kernels with different damage levels. A 10-power magnifying 

lens was used to confirm the presence of a chalk-like appearance or pinkish mold. FDK was then 

calculated as a percentage of the number of grains with FDK divided by the total number of grains 

in a sample. To determine DON concentration, 50 g subsamples were ground and analyzed using 

high sensitivity (HS) Neogen ELISA 5/5 Vomitoxin kits with a DON detection limit of 0.5 mg kg-

1 (Neogen Corporation, 2013).  

2.3.8 Statistical Analysis 

 

Data were analyzed using SAS 9.4 (SAS Institute, 2021). Analysis of variance (ANOVA) was 

carried out using the generalized linear mixed model procedure (PROC GLIMMIX) to determine 

the effect of the cultivar (treatment) on FHBi, FDK, and DON concentration. The "DIST =" 

function was used in the MODEL statement of PROC GLIMMIX to specify all distributions other 

than Gaussian. FHBi and FDK followed a binomial distribution while DON data followed a 

lognormal distribution. Treatment and year were modeled as fixed effects, while block and site 

were random effects. Treatment means were compared using the Tukey multiple comparison 

procedure at α = 0.05. The relationships between FHBi, FDK, DON and SC, and mycotoxin 

concentrations were investigated by Pearson correlation tests in SAS using PROC CORR. 
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2.4 Results 

 

2.4.1 Prevalence of FHB in the Prairies 

 

2.4.1.1 Weather Conditions 

 

Weather conditions varied between the 2019 and 2020 growing seasons and plot site locations 

(Table 2.2). Most plot sites experienced hotter and drier than normal growing conditions in both 

seasons. In July, 67% of the sites were hotter in 2020 than in 2019, while 47% were wetter in 2020 

than 2019 (Table 2.2). Of the 47%, 14% were sites from Manitoba, 43% from Saskatchewan, and 

43% from Alberta. In 2019, monthly mean temperatures ranged from 14.2 to 24.7 °C, with monthly 

total rainfall ranging from 7.1 to 180 mm. In 2020, monthly mean temperatures ranged between 

11.9 and 21.5 °C, while total rainfall varied between 9.3 and 197.9 mm between sites (Table 2.2). 

The overall highest total monthly rainfall (197.9 mm) was recorded in Kelburn in June during the 

2020 growing season, while the overall lowest total monthly rainfall (7.1 mm) was recorded in 

Roblin in August during the 2019 growing season. Overall, the highest mean monthly air 

temperature (26.1 °C) was recorded in Brooks during the 2019 growing season in July, while the 

lowest (11.9 °C) was recorded in Melita during the 2020 growing season in June (Table 2.2).  

2.4.1.2 Fusarium Head Blight Index 

 

The occurrence of FHBi varied during the 2019 and 2020 growing seasons. FHBi levels in Alberta 

were slightly higher in 2019 than in 2020 across all crop types (Figure 2.3). In Saskatchewan, all 

crop types except barley had slightly higher FHBi levels in 2020 than 2019. In Manitoba, FHBi 

levels in winter wheat and spring wheat crop types were slightly higher in 2019 than 2020 (Figure 

2.3). FHBi levels were highest in Manitoba, particularly Carberry and Roblin, and lowest in 

Alberta in both individual and combined years (Figure A2.1). The mean FHBi for both years in 
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Manitoba was 17.4, 14.6, 22.8, and 6.7% in winter wheat, spring wheat, barley, and durum, 

respectively, 7.8, 5.0, 2.5, and 12.8% in Saskatchewan, and 0.7, 0.2, 0.3, and 0.4% in Alberta 

(Figure 2.3). 

2.4.1.3 Fusarium damaged kernels 

 

The distribution of FDK in the prairie provinces is shown in Figure 2.4. Interestingly, the mean 

FDK for all crop types in Saskatchewan was higher than in other provinces, particularly in Prince 

Albert, Melfort, and Scott (Figure A2.2). The durum crop type had the highest DON levels in both 

years, while barley had the lowest. The mean FDK for both years in winter wheat, spring wheat, 

barley, and durum were 0.17, 0.27, 0.02, 1.69% in Manitoba, 1.23, 0.78, 0.09, 4.37% in 

Saskatchewan, and 0, 0.08, 0, and 1.13% in Alberta, respectively (Figure 2.4). 

2.4.1.4 Deoxynivalenol 

 

DON levels were higher in Saskatchewan than in Manitoba or Alberta in all crop types (Figure 

2.5). Sites with greater DON levels included Melfort, Prince Albert, and Scott, with mean DON 

levels ≥ 1 mg kg-1 in winter wheat, spring wheat, barley, and durum (Figure A2.3). The sensitivity 

to DON accumulation was reduced from durum to spring wheat to winter wheat to barley in all 

three prairie provinces (Figure 2.5). In 2019, mean DON levels in winter wheat, spring wheat, 

barley, and durum ranged from 0 to 0.2, 0 to 0.93, 0 to 0.1, and 0.17 to 4.22 mg kg-1, respectively. 

In 2020, mean DON levels in winter wheat, spring wheat, barley, and durum ranged from 0 to 

0.12, 0 to 0.61, 0 to 0.19, and 0.03 to 1.9 mg kg-1, respectively in the prairie (Figure 2.5).  

2.4.2. Correlation between Disease Indicators 

 

2.4.2.1 Correlation in Winter Wheat 
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Winter wheat correlation coefficient of FHBi versus FDK or DON was not significant in 2019 and 

both years combined (Table 2.3). However, in 2020, there was a significant but poor correlation 

between FHBi and FDK (r = 0.2; p = 0.025). The relationship between FHBi and SC in winter 

wheat was significantly positive in 2019 (r = 0.3; p = 0.025), but not significant (p > 0.05) in 2020 

and both years combined. Results in 2019 (r = 0.96), 2020 (r = 0.87) and combined years (r = 0.92) 

revealed highly significant (p < 0.0001) positive correlation between FDK and DON. Correlation 

analysis in 2019 (r = 0.21; p = 0.04) and combined years (r = 0.32; p < 0.0001) indicated a highly 

significant but low positive correlation between FDK and SC (Table 2.3). Similarly, correlation 

analysis between DON and SC revealed a significant positive correlation in 2020 (r = 0.27; p = 

0.009) and combined years (r = 0.36; p < 0.0001).  

Table 2.4 shows the effect of winter wheat varieties on the relationship between FHB disease 

indicators. FHBi had no significant correlation with either FDK or DON (p > 0.05). However, a 

significant positive correlation (p < 0.05) between FDK and DON was observed, which varied 

between winter wheat varieties. The correlation coefficient for Emerson, a moderately resistant 

variety (F. RC3) was lower (r = 0.84) than for AAC Gateway, an intermediate variety (F. RC3) (r 

= 0.95) and Moats, a susceptible variety (F. RC3) (r = 0.90) (Table 2.4). 

2.4.2.2 Correlation in Spring Wheat 

 

There was no significant correlation (p > 0.05) between FHBi and FDK and FHBi and DON in 

both individual and combined years in spring wheat (Table 2.3). Correlation analysis revealed a 

significant correlation between FHBi and SC and FDK and DON in individual and combined years 

(Table 2.3). However, correlation between FDK and SC and DON and SC was significant (p > 

0.05) only in 2019. The highest Pearson correlation coefficients were found between FDK and 

DON (r = 0.79) when both years were combined (Table 2.3). 
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Correlation analysis between spring wheat varieties is shown in (Table 2.4). There was a poor 

correlation (p > 0.05) between FHBi and FDK or DON in all spring wheat varieties. A significant 

(p < 0.001) positive correlation was found between FDK and DON, which differed between spring 

wheat cultivars. The correlation coefficient between FDK and DON decreased from a moderately 

susceptible variety Muchmore (F.RC1) (r = 0.83) to an intermediate variety AAC Elie (F.RC2) (r 

= 0.78) to a moderately resistant variety AAC Brandon (F.RC3) (r = 0.68). 

2.4.2.3 Correlation in Barley 

 

There was no significant correlation (p > 0.05) between FHBi and FDK, FHBi and DON, and 

DON and SC in both individual and combined years in barley crop type (Table 2.3). However, 

correlation analysis revealed a significant correlation between FHBi and SC and FDK and DON 

in both individual and combined years. In combined years, the highest significant correlation was 

found between FDK and DON (r = 0.71), while the lowest significant positive correlation was 

found between FDK and SC (r = 0.17; p = 0.019) (Table 2.3).  

Results of correlation analysis between barley varieties and FHB disease indicators are presented 

in Table 2.4. There was no significant correlation (p > 0.05) between FHBi and FDK or DON in 

any variety. However, there was a significant positive correlation (p < 0.001) between FDK and 

DON that varied according to barley varieties (Table 2.4). Correlation coefficients between FDK 

and DON were found to be highest in the moderately susceptible variety (F. RC1) (r = 0.82). 

However, the correlation coefficient for the intermediate variety (F. RC2) was lower (r = 0.5) than 

for the moderately resistant variety (F. RC3) (r = 0.7) (Table 2.4). 

2.4.2.4 Correlation in Durum 
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The correlation between FHBi, FDK, DON, and SC differed between the 2019 and 2020 growing 

seasons. The correlation between FHBi, FDK, DON, and SC was significantly higher and more 

positive in 2020 than 2019. However, in 2019, the correlation between FDK and SC and DON and 

SC were not significant (p > 0.05). It was interesting to note the high positive correlation between 

FHBi and SC in 2020 (r = 0.72; p < 0.0001). However, when both years were combined, the 

correlation coefficient between FHBi and SC dropped to 0.39. The strongest correlation 

coefficients were found between FDK and DON (r ≥ 0.65; p < 0.0001) in both individual and 

combined years.  

2.4.3 Variety Resistance 

 

2.4.3.2 Winter Wheat Varieties 

 

There was no significant difference (p = 0.94) in the mean FHBi percentage among the three winter 

wheat varieties with varying levels of FHB resistance (Table 2.5). However, there was a significant 

difference (p < 0.0001) in the levels of DON accumulation among the varieties. The resistant 

variety Emerson (F. RC3) had significantly lower DON levels (1.23 mg kg-1) compared to the 

susceptible variety Moats (F. RC1) (1.78 mg kg-1) and an intermediate variety AAC Gateway (F. 

RC2) (1.87 mg kg-1) (Table 2.5). Across all treatments, the levels of FHBi, FDK, and DON did 

not differ significantly (p > 0.05) between 2019 and 2020 in all three winter wheat varieties (Table 

2.5). 

2.4.3.2 Spring Wheat Varieties 

 

FHBi and FDK mean levels did not vary significantly with spring wheat varieties (p > 0.05), 

regardless of year (p > 0.05 for treatment x year interaction) (Table 2.5). However, DON levels 

were significantly higher in a moderately susceptible variety Muchmore (F. RC1) (1.65 mg kg-1) 
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than a moderately resistance variety AAC Brandon (F. RC3) (1.28 mg kg-1) and an intermediate 

variety AAC Elie (F. RC2) (1.2 mg kg-1) (Table 2.5). Additionally, the mean concentration of 

DON was significantly higher (p < 0.0001) in 2019 (1.51 mg kg-1) than in 2020 (1.23 mg kg-1) 

(Table 2.5). 

2.4.3.3 Barley Varieties 

 

There was no significant difference (p > 0.05) in the variety and the treatment x year interaction 

for FHBi, FDK, and DON concentration (Table 2.5). However, DON levels were significantly 

higher in 2020 (1.09 mg kg-1) compared to 2019 (1.04 mg kg-1) (Table 2.5). 

Table 2. 2. Growing season weather conditions at the plot sites across Manitoba, 

Saskatchewan, and Alberta.  

Site Year Mean air temperature (oC) Total rainfall (mm) 

  June July August June July August 

   Manitoba    

Melita 2019 17.5 19.8 17.5 115.1 82.5 101.2 

 2020 18.3 20.4 19.6 78.6 62.8 42.2 

 Normala 16.8 19.6 18.9 77.7 70.4 51.6 

Carberry 2019 17.3 19.9 17.4 79.1 68.7 11.7 

 2020 18.5 20.4 18.9 104.3 66.7 67.3 

 Normal 16.7 18.8 18.1 80.3 83.7 61.9 

Arborg 2019 18.1 20.5 18.0 30.8 87.0 24.6 

 2020 17.6 20.6 19.0 86.6 61.1 32 

 Normal 15.8 18.6 17.5 80.9 70.3 68.9 

Kelburn 2019 19.1 20.5 19.1 32.0 122.9 20.4 

 2020 19.7 21.5 19.8 197.9 45.8 83.9 

 Normal 17.0 19.4 18.8 99.7 91.7 72.4 

Roblin 2019 15.8 17.8 15.3 68.8 44.9 7.1 

 2020 15.7 18.9 17.2 114.3 80.8 47.9 

 Normal 15.7 17.7 16.8 82.0 64.0 66 

   Saskatchewan    

Prince Albert 2019 15.8 17.6 15.1 52.3 75.1 19.3 

 2020 16.9 19.1 17.6 69.6 34.6 31.4 

 Normal 15.3 18.0 16.7 68.6 76.6 61.6 

Melfort 2019 15.3 17.9 14.8 87.4 68.8 36.2 

 2020 11.9 16.0 18.8 20.0 81.7 48.3 

 Normal 15.9 17.5 16.8 54.3 76.7 52.4 
bSwift Current 2019 15.6 18.2 16.7 180.0 14.0 45.4 
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aLong-term normal (30 years; 1981-2010 for June-August) from Environment Canada (ECCC, 2011). 

Long term normal for Carberry, Kelburn, Melita, Roblin, Vermillion, Brooks were derived from nearest 

weather station Neepawa Murray 6 Southwest, Glenlea, Pierson Langenburg, Fayban, and Vauxhall 

North, respectively. 

bRainfall data were derived from nearest Environment and Climate Change Canada weather stations. 

 

 2020 16.6 18.0 19.5 70.6 70.7 9.3 

 Normal 15.4 18.5 18.2 72.8 52.6 41.5 

Indian Head 2019 16.7 18.2 16.2 80.2 75.5 96.3 

 2020 16.8 19.3 19.0 26.1 57.8 33.1 

 Normal 15.8 18.2 17.4 77.4 63.8 51.2 
bScott 2019 14.9 16.4 14.5 93.9 107.8 20.3 

 2020 16.3 17.3 16.2 33.6 123 33.0 

 Normal 15.3 17.1 16.5 61.8 72.1 45.7 

   Alberta    

Lethbridge 2019 16.2 17.8 17.3 95.6 146.0 71.4 

 2020 16.9 18.2 19.2 138.1 24.2 10.3 

 Normal 15.2 18.2 17.7 82.0 42.6 36.4 

Medicine Hat 2019 17.2 20.3 18.9 69.6 23.9 37.3 

 2020 17.9 19.6 20.6 56.0 43.6 12.4 

 Normal 16.7 20.0 19.3 65.4 36.3 33.8 

Bow Island 2019 16.8 18.8 18.0 38.5 80.4 36.9 

 2020 17.6 18.6 19.3 87.3 17.7 10.1 

 Normal 15.8 18.8 18.7 73.0 39.7 39.8 

Brooks 2019 23.9 26.1 24.7 26.3 46.4 25.8 

 2020 17.7 18.9 19.7 187.9 83.2 12.6 

 Normal 15.4 17.7 17.4 64.5 44.9 34.7 

Vermillion  2019 14.2 15.8 14.0 130.6 98.3 36.3 

 2020 16.6 16.7 15.2 44.4 98.6 115.4 

 Normal 14.6 17.0 15.9 68.2 72.5 61.0 
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Figure 2. 3. Prevalence of Fusarium Head Blight in the prairie in winter wheat, spring wheat barley, and durum in 2019 (a), 2020 

(b), and 2019 and 2020 combined (c). 
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Figure 2. 4. Prevalence of Fusarium damaged kernels in the prairie in winter wheat, spring wheat barley, and durum in 2019 (a) 

2020 (b) and 2019 and 2020 combined (c). 
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Figure 2. 5. Prevalence of deoxynivalenol in the prairie in winter wheat, spring wheat barley, and durum in 2019 (a), 2020 (b), and 

2019 and 2020 combined (c). 
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Table 2. 3. Correlation between Fusarium Head Blight (FHBi), Fusarium damaged kernels (FDK), deoxynivalenol (DON), and 

spore concentration (SC) for different crop types in 2019 and 2020 growing season.  
         Winter Wheat  Spring Wheat            Barley          Durum 

Variables FHBi FDK DON   FHBi FDK DON   FHBi FDK DON   FHBi FDK DON 

2019 

FDK -0.082 -   0.133 -   -0.008 -   0.332 -  

p-valuea 0.352    0.077    0.923    0.010   

DON -0.093 0.963 -  0.039 0.701 -  0.059 0.728 -  0.362 0.673 - 

p-value 0.293  <.0001   0.608  <.0001   0.467 <.0001   0.005 <.0001  

SC 0.258 0.219 0.172  0.307 0.262 0.227  0.348 0.185 -0.101  0.311 0.254 0.281 

p-value 0.025 0.059 0.139  0.003 0.011 0.029  0.002 0.097 0.371  0.09 0.168 0.126                 
2020 

FDK 0.161 -   0.036 -   0.029 -   0.316 -  

p-value 0.045    0.629    0.703    0.014   

DON 0.188 0.868 -  0.015 0.93 -  0.008 0.698 -  0.464 0.862 - 

p-value 0.019  <.0001   0.842 <.0001   0.912  <.0001   0.0002  <.0001  

SC 0.156 0.21 0.266  0.583 0.024 -0.02  0.521 0.089 -0.02  0.715 0.597 0.523 

p-value 0.128 0.04 0.009  <0.0001 0.808 0.84   <0.0001 0.358 0.834   <.0001 0.0001 0.0011                 
2019 and 2020 

FDK 0.026 -   0.051 -   0.019 -   0.303 -  

p-value 0.659    0.341    0.729    0.001   

DON 0.025 0.919 -  0.007 0.787 -  0.019 0.705 -  0.373 0.705 - 

p-value 0.671  <.0001   0.901  <.0001   0.727  <.0001    <.0001  <.0001  

SC 0.004 0.32 0.356  0.251 0.09 0.075  0.205 0.17 0.095  0.388 0.081 0.189 

p-value 0.957  <.0001  <.0001   0.003 0.204 0.29   0.005 0.019 0.191   0.001 0.513  0.125 
ap-values in bold-face are significant (p < 0.05). 
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Table 2. 4. Correlation between Fusarium Head Blight (FHBi), Fusarium damaged kernels 

(FDK), and deoxynivalenol (DON) in different crop types and varieties in 2019 and 2020 

growing seasons combined. 

Variables 
FHBi   FDK 

F. RC1 F. RC2 F. RC3   F. RC1 F. RC2 F. RC3 

Winter Wheat 

FDK 0.05 -0.02 0.13  
- - - 

p-value a 0.612 0.827 0.205  

DON 0.02 -0.01 0.14  0.90 0.95 0.84 

p-value 0.82 0.89 0.17   <.0001  <.0001  <.0001         
Spring Wheat 

FDK 0.06 0.01 0.07   
- - - 

p-value 0.505 0.892 0.444  

DON 0.03 -0.03 -0.02  0.83 0.78 0.68 

p-value 0.762 0.717 0.862    .0001  <.0001  <.0001         
Barley 

FDK 0.03 0.10 -0.06   
- - - 

p-value 0.758 0.275 0.551  

DON 0.04 -0.02 0.02  0.82 0.59 0.66 

p-value  0.680 0.852 0.861    <.0001   .0001   .0001 
a p-values in bold-face are significant (p < 0.05). 
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Table 2. 5. Effect of winter wheat, spring wheat, and barley varietal resistance on Fusarium 

Head Blight index (FHBi), Fusarium damaged kernels (FDK), and deoxynivalenol (DON). 

Treatment FHBi FDK DON   
(%) (%) (mg kg-1)   

Winter Wheat   

FHB Category 1 8.54 0.55 1.78a  

FHB Category 2 7.58 0.64 1.87a  

FHB Category 3 8.94 0.19 1.23b  

Year     

2019 7.93 0.33 1.61  

2020 8.76 0.50 1.58   
 p-value a   

Treatment 0.94 0.91  <0.0001  

Year 0.80 0.85 0.86  

Treatment × Year 0.97 0.99 0.81  

     

   Spring Wheat    

FHB Category 1 6.64 0.52 1.65a  

FHB Category 2 5.59 0.31 1.2b  

FHB Category 3 6.64 0.29 1.28b  

Year     

2019 4.93 0.44 1.51b  

2020 7.94 0.29 1.23a   
 p-value   

Treatment 0.93 0.95  <0.0001  

Year 0.25 0.81  <0.0001  

Treatment × Year 0.99 1.00 0.25  

     

   Barley    

FHB Category 1 3.11 0.04 1.07  

FHB Category 2 3.09 0.04 1.04  

FHB Category 3 3.75 0.03 1.07  

Year     

2019 3.29 0.03 1.04b  

2020 3.32 0.05 1.09a   
 p-value   

Treatment 0.95 0.99 0.2  

Year 0.99 0.92 0.01  

Treatment × Year 0.97 1.00 0.24  
ap-values in bold-face are significant (p < 0.05). Means within a column followed by different 

letters are significantly different at α = 0.05 according to Tukey's multiple comparison procedure.   
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2.5 Discussion 

 

2.5.1 Prevalence of FHB 

 

 FHBi, FDK, and DON levels reflect weather conditions at the plot sites during the 2019 and 2020 

growing seasons. Warm, dry weather during the optimum time for FHB infection was most likely 

unfavorable at most sites during the two growing seasons. There were observed differences in the 

occurrence of FHB across crop types. Sensitivity to FHB was higher for durum than barley. Durum 

wheat is infamous for its high susceptibility to FHB, and breeding for resistance is difficult. Winter 

wheat was less susceptible to FHB infection than spring wheat, most likely because it flowered 

early, before most Fusarium spores were present in the environment. As demonstrated in this 

study, the correlation between FHBi and spore concentration was significantly higher in spring 

wheat in both years than in winter wheat. Barley was the least susceptible, which may be because 

barley, typically flowers inside the boot before the spike emerges, which protects the flowers from 

infection with FHB (Alberta Government, 2021). FHB expressed as FHBi was found to be higher 

in Manitoba than in Saskatchewan and Alberta, confirming previous reports that FHB is moving 

east to west. However, it was interesting to note that Saskatchewan had higher FDK and DON 

levels than Manitoba. The causes of this disparity are unknown. Nonetheless, the relationship 

between FHBi, FDK, and DON has been known to be influenced by different FHB species, 

management practices, and weather conditions (Dill-Macky and Jones, 2000; Xu et al., 2007; 

Czembor et al., 2015). 

2.5.2 Correlation between Disease Indicators 

 

Winter wheat. DON is the more concerning disease indicator for food and feed safety than FHBi 

or FDK (Miller et al., 2014). However, it is more expensive to analyze than FHBi and FDK (Zhao 
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et al., 2016). As a result, producers, modellers, and breeders attempt to use visual estimates of 

FHBi and FDK to model DON concentration (Shah et al., 2013; Miedaner et al., 2016; Haile et 

al., 2019). The present study established a positive linear relationship between FDK and DON 

accumulation, implying that DON accumulation in grain increases as FDK percentage increases. 

This correlation was true across all crop types and resistance classes. These results are consistent 

with previous findings. Cowger et al. (2009) found a higher FDK–DON correlation in winter wheat 

when inoculations were done at 0 and 10 days post anthesis and misting was done at 0 to 20 days 

post anthesis than when inoculations were done later or longer misting was used.  

Spring wheat, durum, and barley. Tittlemier et al. (2020) studied the relationships between FDK 

and DON in Canada Western Red Spring (CWRS) wheat and Canada Western Amber Durum 

(CWAD) wheat using 2016 harvest survey samples collected in western Canada. For CWAD and 

the majority of CWRS, they observed a positive linear relationship between FDK and DON. He et 

al. (2015) evaluated 402 barley advanced breeding lines from Alberta, Canada, using five cultivars 

released in Alberta with known FHB resistance as controls under Mexican conditions. They found 

a significant correlation between FDK and DON, with correlation coefficients ranging between 

0.37 and 0.45 (He et al., 2015). However, correlation coefficients between FHBi and DON were 

greater than those between FHBi and FDK and FDK and DON (He et al., 2015). This contrasted 

with our finding where no significant correlation between FHBi and DON or FHBi and FDK was 

found. The discrepancy between these results could be explained by the fact that they inoculated 

barley with FHB several times after heading, whereas no inoculation was performed in our study. 

Previous studies have also found no correlation between FHBi and DON concentrations under 

field conditions (Brunner et al., 2009; Landschoot et al., 2012; Góral et al., 2018). A variety of 

reasons may explain the poor correlation between FHBi and DON, including i) blowing off heavily 
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infected FDK during harvesting, which may lower DON concentrations by reducing the proportion 

of contaminated FDK that contains DON, ii) unintentional bias in the field assessment of FHB 

because the visual symptoms of FHB were scored in this study by a variety of individuals, and iii) 

although less aggressive Fusarium strains such as Fusarium avenaceum, Fusarium culmorum, 

Fusarium poae, and Microdochium nivale have been known to cause the same symptoms as 

Fusarium graminearum, they do not produce the same toxin levels (Tan et al., 2020). 

2.5.3 Cultivar Effect on Disease Indicators 

 

Several studies have shown that a cultivar's ability to resist FHB depends on its environment (Dill-

Macky and Jones, 2000; Xu et al., 2007; Czembor et al., 2015). In general, FHB intensity was very 

low in 2019 and 2020, and cultivars performed similarly across all crop types. Other studies have 

found no significant differences between cultivars under low FHB disease pressure (Ye et al., 

2017). Our results, however, indicate that the moderately resistant wheat and barley varieties 

accumulated significantly less DON than the susceptible and intermediate varieties. The 

significant DON reductions observed in the grains of moderately resistant varieties in this study 

concur with previous findings. Generally, cultivars with type II resistance have been found to have 

lower DON concentrations in the grain, suggesting that cultivars with moderate resistance often 

reduce mycotoxin concentrations (Tamburic-Ilincic et al., 2007; Liu et al., 2013; Tucker et al., 

2019). Previous research has established that wheat cultivars susceptible to FHB accumulate more 

DON than resistant cultivars. For example, Cowger et al. (2009) examined the effects of post-

anthesis moisture (mist) on DON accumulation in winter wheat grown in North Carolina, USA. 

USG 3592, a susceptible cultivar, accumulated more DON than cultivars with moderate resistance. 

Similarly, Ye et al. (2017) conducted field trials at seven locations across the Canadian prairies to 

determine the genetic and management effects of FHB in wheat. Carberry and Emerson (spring 
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wheat and winter wheat, respectively) were superior to susceptible cultivars Harvest and CDC 

Falcon (spring wheat and winter wheat, respectively) in reducing FDK and DON concentration 

under conditions of high Fusarium pressure. 

2.6 Conclusion 

 

The correlation between FHB disease indicators and SC in wheat and barley under natural field 

conditions was evaluated in this study. The lack of correlation between FHB and DON in this 

study under field conditions in western Canada is concerning. In western Canada, existing weather-

based models developed in the USA many years ago predict FHB epidemics with a field severity 

or FHBi greater than 10%, which is a disease severity level strongly linked to FHB yield losses 

and generally linked to high levels of DON in harvested grain (De Wolf et al., 2003). However, 

findings from this study indicate a poor relationship between FHBi and DON. In such cases, it is 

recommended that FHB modelling be based solely on a single and specific disease indicator 

(FHBi, FDK, or DON model). The Canadian Grain Commission employs FDK as a grading factor 

and to estimate DON levels in the grain. It is therefore suggested that the FDK-DON relationship 

be continuously monitored. This study found no differences in FHBi and FDK levels between the 

varieties under low disease pressure in all crop types. However, there were varietal differences in 

DON concentrations. These results emphasize the importance of selecting resistant varieties to 

reduce the costs associated with the downgrading of grain due to high DON levels during 

marketing. Additionally, breeders can use this information to enhance FHB resistance in 

commercial cultivars. The data in this study were limited to two growing seasons and thus may 

not reflect all disease-weather conditions that could influence variety performance and correlation 

between FHB disease indicators. Additional data from high disease pressure years may be required 
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to understand further the relationship between cultivar reaction and FHB disease indicators in 

western Canada. 
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3. DEVELOPING RISK MODELS TO MITIGATE FUSARIUM HEAD BLIGHT IN 

WESTERN CANADIAN CEREAL PRODUCTION 

 

 

3.1 Abstract 

 

Predicting the occurrence of Fusarium Head Blight (FHB) disease in cereal crops before flowering 

is critical for determining the need for and timing of fungicide sprays. Existing models for 

predicting FHB risk that were developed many years ago may no longer be applicable to the current 

Fusarium species complex that has evolved in Canada. Therefore, the objective of this study was 

to develop weather-based risk models for predicting FHB index (FHBi), Fusarium damaged 

kernels (FDK), and deoxynivalenol (DON) in spring wheat, winter wheat, barley, and durum 

across three Canadian prairie provinces. Agronomic and weather data collected from 15 small-plot 

research sites in western Canada in 2019 and 2020 were used to develop weather-based models 

for forecasting Fusarium epidemics. The same data were used to classify epidemic at 5% FHBi 

(all crops), 1 mg kg-1 DON (all crops), or 0.2, 0.3, 0.8, and 2% FDK thresholds for barley, spring 

wheat, winter wheat, and durum, respectively. Kendall correlation and stepwise logistic regression 

analyses identified suitable combinations of temperature, relative humidity (RH), rainfall, and 

solar radiation at 4, 7, 10, 14 days pre-anthesis, and 3 days pre-anthesis to 3 days post-anthesis for 

predicting FHB risk. The FHBi models used combinations of RH, temperature, and rainfall 

weather variables across crop types, while RH alone was frequently chosen in both FDK and DON 

models. The prediction accuracy of the models ranged from 72 to 82, 58 to 88, and 77 to 83% for 

FHBi, FDK, and DON, respectively. FHB pressure was low in both 2019 and 2020, most likely 

due to drier than normal weather conditions unfavorable for the disease. The models will be used 

to power an interactive, online digital viewer that will provide early warning of potential FHBi, 

FDK, and DON epidemics in prairie cereal crops. 
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3.2 Introduction 

 

Wheat and barley are two of the most economically important hosts affected by FHB worldwide 

(Fowler, 2011). Fusarium graminearum, Fusarium culmorum, Fusarium poacea, and Fusarium 

avenaceum are among the species that cause FHB infection (Birr et al., 2020). However, Fusarium 

graminearum is the present major species of concern in western Canada (Fowler, 2011). Cool and 

moist conditions favor the development of FHB, and if left uncontrolled, it can result in partially 

or entirely bleached spikelets, which are often not viable (Gilbert and Tekauz, 2011). Bleached 

spikelets also contain shrivelled kernels that appear chalky white or pink discoloration and are 

classified as FDK (Jin et al., 2013). Since FDK grains are smaller and have less weight than healthy 

kernels, some are blown through the combine, resulting in yield loss (Góral et al., 2021). In 

addition to reduced yield, FHB infection often contributes to DON contamination, a mycotoxin 

toxic to humans and animals (Xu et al., 2013). Mycotoxin regulations have been established in 

many countries to ensure food and feed safety. In Canada, a DON limit of 2 mg kg-1 for domestic 

soft wheat and 1 mg kg-1 for uncleaned soft wheat for children has been set (CFIA, 2017). 

Livestock grain should not exceed 5 mg kg-1 DON for animal feed, while grain for swine, calves, 

and dairy cattle should not surpass 1 mg kg-1 DON (CFIA, 2017). 

The occurrence of FHB epidemics has increased in recent decades, possibly due to the widespread 

use of conservation tillage and no-till farming practices (Haile et al., 2019). These practices aim 

to prevent topsoil erosion by retaining crop residues from previous seasons (Dill-Macky and Jones, 

2000). However, retaining infected residues increases inoculum availability for Fusarium 

graminearum (Dill-Macky and Jones, 2000). The incidence and severity of FHB have also 

increased due to monoculture and the effects of climate variation, thus forcing growers to use 

excessive fungicides (Del Ponte et al., 2005). As a result, grain revenue is drastically impacted 
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with lower yields, lower quality, and DON presence (McCallum and DePauw, 2008). To illustrate 

the magnitude of the problem, approximately 65% of common spring wheat and 36% of durum 

were downgraded due to FHB in 2016 in Saskatchewan, Canada, costing producers an estimated 

$1 billion in lost revenue (Canadian Grain Commission, 2019; Haile et al., 2019).  

Reducing FHB damage is desirable to maintain producer profitability, food and feed safety, and 

export integrity (Haile et al., 2019; Hooker et al., 2002). Breeding for FHB resistance has the 

potential to provide adequate control (He et al., 2015), and it is also an ecological and economical 

technique for successfully managing an epidemic (Chen, 2019). Enhanced cultivar resistance has 

become one of the world’s most important goals for wheat breeding. However, the quantitative 

complexity of resistance and technical difficulty in screening cultivars in inoculated experiments 

make breeding against FHB challenging (McMullen et al., 2012). In FHB epidemic years, 

fungicide application dramatically reduces the severity of the disease (Musa et al., 2007).  

However, when weather is not favorable for FHB occurrence, producers could use FHB forecasts 

models to reduce unnecessary fungicide applications, thereby decreasing the financial and 

environmental costs associated with traditional calendar-based spray programs. Several FHB and 

DON forecasting models for wheat and barley have been developed around the world, including 

in eastern Canada (Hooker et al., 2002; Schaafsma and Hooker, 2007), the United States (De Wolf 

et al., 2003; Shah et al., 2013), Argentina (Moschini et al., 2001) and Brazil (Del Ponte et al., 

2005). FHB is suitable for modelling due to its narrow window of infection during flowering and 

environmental dependence; thus, all these models use different statistical approaches to relate the 

biology of the fungus to environmental conditions (Rossi et al., 2003). 
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FHB prediction models are typically location-specific due to differences in wheat varieties and 

regions in fungal populations, resulting in differences in aggressiveness and mycotoxin production 

and thus require adjustment when used outside of the region or country in which they are used or 

they were developed (Cowger et al., 2020). Different FHB index models have been adopted from 

the USA in the prairies and use different risk assessment factors. This can be concerning, especially 

for producers near provincial borders, when the FHB risk model forecasts high risk near their 

location in one province but low FHB risk near their location in the other province. A standardized 

risk model across all three provinces can provide more meaningful information for producers and 

the agriculture industry. Furthermore, in recent years, changes in the Fusarium species complex 

have been reported in Canada, with the more toxic 3-acetyldeoxynivalenol (3-ADON) chemotypes 

replacing the traditional 15-acetyldeoxynivaleol (15-ADON) (Schmale et al., 2011; Crippin, 2019; 

Cowger et al., 2020). This suggests that current FHBi models are likely no longer representative 

of FHB in the prairies. Currently, western Canada has no system for estimating the risk of FDK 

and mycotoxins from FHB in wheat and barley. This research project aimed to develop weather-

based prediction models for forecasting FHBi, FDK, and DON risk in winter wheat, spring wheat, 

barley, and durum with different FHB resistant categories in western Canada. 

3.3 Materials and Methods 

 

3.3.1 Site 

 

The site description for this study is given in Chapter 2. In brief, small-plot research trials with 

five plot sites per province (15 sites) were conducted in the 2019 and 2020 growing seasons in 

Manitoba, Saskatchewan, and Alberta (Figure 2.1). The plot sites were located in fields with at 

least two years of FHB data collected through provincial and federal government annual FHB 
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surveys. These 15 sites were geographically distributed across western Canada to maximize the 

likelihood of each site experiencing various growing-season weather conditions and FHB 

occurrence. Each plot measured approximately 4 m in length and 2 m in width with at least 8 rows. 

3.3.2 Experimental Design  

 

The experimental design was a randomized complete block design (RCBD) with four replications 

(blocks) for separate side by side winter wheat, spring wheat, barley, and durum experiments 

(Figure 2.2). Treatments included three different varieties of spring wheat, winter wheat, and 

barley representing three types of FHB resistance categories (F. RC) (Table 2.1). FHB resistance 

categories included F. RC1 (susceptible or moderately susceptible varieties), F. RC2 (intermediate 

varieties), and F. RC3 (moderately resistant or resistant varieties), depending on the crop type. As 

all durum wheat varieties are FHB susceptible or moderately susceptible, only one durum variety 

was grown.  

3.3.3 Planting and Crop Growth Stages 

 

Three winter wheat varieties representing 3 levels of FHB resistance (Table 3.1) were planted in 

the fall of 2018 and 2019, while spring cereals (spring wheat, barley, and durum) were sown in 

spring 2019 and 2020 according to the best management practices at each location. Standard 

agronomic practices such as fertilizer application, seeding depth, row spacing, and herbicide 

application were followed at each site. However, no fungicides were applied. Planting, maturity, 

and harvesting dates for each crop were recorded. Crop growth was regularly monitored during 

the growing season, and the date when each cultivar reached BBCH stage 59 (main stem spikes 

completely emerged) was noted; thereafter, BBCH growth stages were recorded weekly until 

BBCH 80 (Shah et al., 2013). In cases where the 50% anthesis and heading date in wheat and 
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barley, respectively, were not directly observed, these dates were estimated using thermal models 

described in Appendix 5. 

3.3.4 Meteorological Data 

 

Watchdog® portable weather stations (Spectrum Technologies 2000 Series, Thayer Case, IL, 

USA) were used to record growing-season weather data. At each site, one weather station was 

mounted on a solid post at an average height of 1.82 m within 10 m of the plots. Weather data 

collected included air temperature (°C), relative humidity (RH), rainfall (mm), solar radiation (W 

m-2), and wind speed (km h-1) on an hourly basis. The weather stations were installed about a 

month after spring crop seeding. Before deploying the weather stations, pre-season calibration was 

conducted by running the weather stations side by side. The weather stations were calibrated in 

cases where the rain sensor, under a standardized sensor test, recorded rainfall values outside those 

recommended by Watchdog®, 2010. Briefly, 84 ml of water (equivalent to 10 tips of the tipping 

spoon) was slowly poured into the bucket. When the readings were lower than expected, tipping 

bucket adjustment screws were raised by a quarter turn, and 84 ml of water was poured through 

the bucket to determine if further adjustment was required. The opposite was true when rainfall 

measurements were overestimated.  

 3.3.5 Spore Traps 

 

For FHB disease to occur, a susceptible host plant, favorable weather conditions, and the presence 

of Fusarium spores are required. To confirm the presence of Fusarium spores at each site, 

Fusarium spores were collected using Guo’s (2008) method with minor modifications. Two 

adhesive spore traps were placed at two central locations inside the plot area just before the 

beginning of the anthesis (BBCH 59) to capture the FHB spores. The spore traps consisted of a 
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trap head and a supporting rod. A rectangular plastic foam with four spore collection surfaces (6 

mm x 90 mm each) was used as the trap head. The spore head surfaces were covered with a base 

tape, followed by Melinex double-sided tape coated with a thin layer of petroleum jelly to adhere 

spores. The spore traps were replaced weekly for four weeks (8 spore traps in total). Following the 

collection of spores, a small piece measuring 5 mm x 19 mm was cut from the Melinex tape on 

one side of the trap head and fixed to a glass slide. Fusarium spores were determined under a 

compound microscope (400x) to confirm the presence of the inoculum in the environment.  

3.3.6 Disease Indicators 

 

3.3.6.1 Fusarium Head Blight Index 

 

Fusarium Head Blight incidence (percentage of infected heads) was assessed 18 to 21 days after 

50% anthesis (BBCH 65); between the early milk stage (BBCH 73) and the soft dough stage 

(BBCH 85). FHB incidence and FHB severity (mean percentage of blighted spikelets per infected 

head) were determined by scoring five spikes at ten random locations (total 50 spikes) within a 

plot. The FHB index (FHBi) was then determined according to  Shah et al. (2014) using the 

following formula: 

𝐹𝐻𝐵𝑖 = (𝐹𝐻𝐵𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 ×  𝐹𝐻𝐵𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)/100 

Observations of FHBi were further classified into two groups of either epidemic (=1) or non-

epidemic (=0) using 5 and 10% FHBi thresholds to define an epidemic. Thus, for example, in the 

latter case, observations of FHBi ≥ 10% were regarded as an epidemic and FHBi < 10% as non-

epidemics. Using the 5 and 10% FHBi disease severity thresholds is in line with previous 

regression models developed in the USA (De Wolf et al., 2003; Shah et al., 2013) and eastern 

Canada (Giroux et al., 2016).  
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3.3.6.2 Fusarium damaged kernels and Deoxynivalenol 

 

Grain samples (1 kg plot-1) were collected at harvest for official grading and DON analysis. During 

combining, grain samples were collected with a level of dockage that would be similar to that from 

producer fields in order to retain lightweight FDK. Grain grading, FDK determination, and DON 

analysis were conducted by a commercial laboratory (Intertek, Canada) following the procedures 

outlined in the Canadian Grain Commission’s Official Grain Grading Guide (Canadian Grain 

Commission, 2019). Briefly, samples were divided into a representative portion using a Boerner-

type divider. The samples were then visually divided into two groups of healthy and infected 

kernels with different damage levels. A 10-power magnifying lens was used to confirm the 

presence of a chalk-like appearance or pinkish mold. FDK was then calculated as a percentage of 

the number of grains with FDK divided by the total number of grains in a sample. For modelling 

purposes, samples were then classified into epidemic and non-epidemic categories using 0.2, 0.3, 

0.8, and 1.5% thresholds for barley, spring wheat, winter wheat, and durum, respectively. These 

thresholds reflect the maximum level allowed in the number one grade for each crop and represent 

an economic cut-off value that would justify the application of fungicides to prevent loss of 

revenue as a result of downgrading. To determine DON, 50 g subsamples were ground and 

analyzed using high sensitivity (HS) Neogen ELISA 5/5 Vomitoxin kits with a DON detection 

limit of 0.5 mg kg-1 (Neogen Corporation, 2013). For modelling, DON thresholds of 1 and 2 mg 

kg-1 were used to distinguish between epidemic and non-epidemic cases, and these thresholds 

correspond to values that result in wheat downgrading during marketing as set by the Canadian 

grain commission (Canadian Grain Commission, 2019). 

3.3.7 Logistic Regression Analysis  
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3.3.7.1 Selection of Predictor Variables 

 

Predictor variables of potential value were derived using information from previous research (De 

Wolf et al., 2003; Hooker et al., 2002). These variables were derived from summations and 

averages of daily and hourly data as well as the duration (hours) of specified critical conditions 

during five different time periods (-4DMA, -7DMA, -10DMA, -14DMA, and ±3DMA, 

representing 4, 7, 10 and 14 days pre-anthesis and from 3 days pre-anthesis to 3 days post-

anthesis). In total, 84 weather variables were compiled using the original hourly temperature, RH, 

and rainfall data (Table A3.1.1). Kendall’s Tau non-parametric correlation analysis was performed 

to evaluate the relationship between weather variables and the binary FHB damage indicators using 

the PROC CORR in SAS 9.4 (SAS Institute, 2021). Only variables with a correlation coefficient 

greater or equal to 0.21 and (P < 0.05) were considered for model development. When variables 

providing similar information had only slight differences in correlation results, both variables were 

retained and tested further in model development. 

 Additionally, multicollinearity was determined by examining the variance inflation factor (VIF), 

which quantifies the inflation of parameter estimate variances due to multicollinearity possibly 

caused by the correlated predictors and tolerance (the inverse of VIF). Variables with VIF > 10  

and tolerance < 0.2 indicated multicollinearity; therefore were discarded from the selection  

(Tabachnick et al., 2019). 

3.3.7.2 Model Development and Evaluation 

 

Multiple logistic regression with stepwise selection (PROC LOGISTICS; SAS Institute, 2021) was 

used to develop models that predict the occurrence of FHB epidemics (=1) and non-occurrence of 

FHB epidemics (=0) using weather predictor variables. Logistic regression is best suited for 
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predicting the presence or absence of an outcome based on a set of predictor variables. Similar to 

the more common linear regression, logistic regression aims to build the best fitting, parsimonious, 

and biologically rational model (Del Ponte et al., 2005). The stepwise selection was preferred over 

the other selection because variables must meet both the entry and retention criterion, rendering it 

a more stringent procedure (Hosmer et al., 2013). Thus, models were developed using entry and 

retention criteria probability thresholds of 0.3 and 0.5, respectively. 

The accuracy and model fit of the developed models were assessed using a variety of metrics. The 

sensitivity (percentage of epidemic cases correctly classified) and specificity (percentage of non-

epidemic cases correctly classified) of each model were determined from the analysis results. The 

overall accuracy of each model was calculated as (TPP+TNP)/2, where TPP is the true positive 

proportion, which is the proportion of correctly predicted epidemic cases with a disease response 

to weather variables, and TNP is the proportion of correctly classified cases with a low or no 

infection response to weather variables (Bondalapati et al., 2012; Giroux et al., 2016). These 

parameters, however, may be influenced by the proportion of cases that fall into each binary 

response variable category. The Youden’s index (J) is a well-known receiver operating 

characteristic (ROC) curve measurement used to assess models’ accuracy in many statistical and 

medical applications (Fawcett, 2006). Youden’s index was calculated as J = TPP - FPP, where J is 

the Youden’s index, TPP is the true positive proportion, and FPP is the false-positive proportion 

(Giroux et al., 2016). A Youden’s index value of 1 indicates a perfect model (Martínez-Camblor 

and Pardo-Fernández, 2019). The models’ optimal probability cut-off value (where sensitivity and 

specificity are maximized and balanced) was identified when Youden’s index was at its maximum. 
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The area under the ROC curve helps estimate models’ ability to correctly classify cases as 

epidemic or non-epidemic events for a number of potential posterior probability thresholds 

(Fawcett, 2006). Like Youden’s index, a perfect model would have an area under the ROC curve 

(AUC) equivalent to 1. When the trapezoidal method is used to calculate the AUC, the Mann-

Whitney U-statistic from which standard errors can be determined, and the AUC hypothesis that 

the discriminatory ability of the model is not different from 0.5 can be tested. This test compares 

the model’s performance to random predictions. The method reported by (DeLong et al., 1988) 

was used to compare the AUCs of selected models in which a non-parametric approach derived 

from the U-statistics theory to generate an estimated covariance matrix was used. The Hosmer-

Lemeshow Goodness of Fit test was used to further evaluate model’s fit. The Hosmer-Lemeshow 

goodness-of-fit test is performed by categorizing the observations into ten groups of predicted 

probabilities and comparing observed and expected FHB epidemic counts in these ten categories 

(Hosmer et al., 2013). These three statistics (AUC, Youden’s Index, and Hosmer-Lemeshow test) 

were used to evaluate each model’s ability to predict infection events. Models that describe 

estimated probabilities of an event can be written as follows: 

π (μ) =     eα+βx/ (1 + eα+βx) 

Where π (μ) is the estimated probability of infection, α is the Y-intercept, β is the regression 

coefficient, and e =2.71828 is the base of the system of natural logarithms.  

3.3 Results 

 

3.3.1. Growing Season Weather Conditions 

 

The growing season weather conditions at the plot sites are described in Chapter 2. In brief, the 

2019 and 2020 growing seasons were hotter and much drier than normal at most plot sites (Table 
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2.2). The mean monthly temperatures ranged from 11.9 to 24.7 °C, while total monthly rainfall 

ranged from 7.1 to 197.9 mm across all site years (Table 2.2). 

3.3.2 Disease Indicators 

 

The prevalence of FHB in prairies during the 2019 and 2020 growing seasons is described in 

Chapter 2.  In brief, mean FHBi levels for winter wheat, spring wheat, barley, and durum ranged 

from 7.9 to 9.2, 5.8 to 6.8, and 2.9 to 3.5 and 11.9%, respectively, across FHB resistance categories 

(Figure 2.3c). The mean FDK for winter wheat, spring wheat, barley, and durum ranged from 0.27 

to 0.69, 0.29 to 0.53, 0.03 to 0.04, and 2.4%, respectively, across FHB resistance ratings (Figure 

2.4c). Across FHB resistance categories, the mean DON for winter wheat, spring wheat, barley, 

and durum ranged from 0.21 to 0.64, 0.19 to 0.5, 0.04, and 1.5 mg kg-1, respectively (Figure 2.5c). 

The distribution of the samples for FHBi, FDK, and DON content is shown in Table 3.1. The 

percentage of epidemic cases for FHBi, FDK, and DON across crop type and crop damaged 

thresholds ranged from 7.3 to 45.2, 11.1 to 30.8, and 0.3 to 38.7%, respectively (Table 3.1). The 

optimal epidemic to non-epidemic ratio for ROC curve analyses varies according to the required 

model accuracy. However, to produce valid ROC analyses, the dataset used in the model 

development must generally contain at least 25% of both epidemic and non-epidemic samples. As 

a result, models with disease indicator thresholds of less than 25% of the data set, such as those 

predicting DON ≥ 2 mg kg-1, were rejected (Table 3.1). 

3.4.3 Variable Selection 

 

The Kendall correlation and stepwise regression analyses identified 26, 28, 21, and 20 variables 

that were significantly (p < 0.05) related to FHBi epidemics in winter wheat, spring wheat, barley, 

and durum, respectively (Table A3.1.2). Kendall correlation for selected variables ranged from 
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0.21 to 0.5, 0.23 to 0.56, and 0.24 to 0.53 for FHBi, FDK, and DON across crop types, respectively 

(Table A3.1.2-A3.1.4). Many of these weather variables were highly correlated and could not be 

used together to develop the models. For example, mean daily temperature and duration (h) when 

the temperature is between 15 and 30 °C at 7-day pre-mid-anthesis (T7MA and T15307MA, 

respectively), for most sites, were very similar because there were few hours with temperatures 

above 30 °C during both growing seasons. The variance inflation factors (VIFs) obtained for the 

FHBi regressors in the selected models ranged from 1.3 to 9.3, 1.0 to 2, 1.0 to 1.7, and 1.0 to 1.1 

for winter wheat, spring wheat, barley, and durum, respectively, allaying concerns about 

multicollinearity (Table A3.1.5). In addition, tolerance and VIF in all selected FDK and DON 

model weather predictor variables ranged between 0.28 and 1, and 1.08 and 4.41, respectively, 

indicating no multicollinearity (Table A3.1.6). Daily and hourly RH derivatives were the most 

common predictor variables with FHBi, FDK, and DON epidemics (Table A3.1.2-A3.1.4). 

3.4.4 Logistic Regression Models 

 

3.4.4.1 Fusarium Head Blight Index Models 

 

When the weather variables selected by Kendall correlation and those selected by the stepwise 

procedure were used to develop logistic regression models, 5 FHBi models per crop type with 

prediction accuracy ranging between 55.9 and 87.7% were identified using 5% FHBi as the 

threshold for an epidemic (Table 3.2). Of the five winter wheat models identified, model 

WWFHB5 used a temperature variable that was not selected using a stepwise procedure. There 

was no significant difference (p > 0.05) in the ROC curve of this model from the no information 

line, indicating that it was not better than a random prediction (Table 3.3). Of the remaining four 

models, WWFHB3 and WWFHB4 accurately predicted > 75% of epidemic and non-epidemic 
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cases (Table 3.2). Their Hosmer-Lemeshow test, on the other hand, was significant (p < 0.05), 

indicating a lack of fit for these models (Table 3.3). The best-fitting winter wheat FHBi model 

(WWFHB2) used only RH at 14 days pre-anthesis (RH8014) and was selected for further model 

evaluation. This model had a sensitivity of 96.9% and a specificity of 61.3% (Table 3.2). Its 

Hosmer-Lemeshow test was not significant (p > 0.05), indicating a good fit to the dataset used for 

model development (Table 3.3). Another model (WWFHB1) with three variables also correctly 

predicted both epidemic (73%) and non-epidemic cases (76%). As a result of its accuracy and fit, 

this model was also considered for further model validation. Model fit, in this case, was defined 

as models that met the majority of test statistics rather than passing a single test. 

All selected spring wheat FHBi epidemic models included RH and temperature variations (Table 

3.2). These models were more accurate at predicting cases with FHBi ≥ 5% (sensitivity) than cases 

with FHBi < 5% (specificity). Their Youden’s index ranged from 0.51 to 0.63 (Table 3.3). 

However, there was no significant difference (p > 0.05) between the AUC of models utilizing pre-

anthesis variables, which means that no model clearly outperformed the others. The Hosmer-

Lemeshow tests were insignificant (p < 0.05) for models SWFHB3,4,5. As a result, only models 

SWFHB1 and SWFHB2 were subjected to additional testing (Table 3.3). 

Weather variables at 14 days before mid-anthesis were strongly associated with barley FHBi 

epidemics cases (Table 3.3). However, barley FHBi models had lower optimal predicted 

probability thresholds than durum models, with the exception of model BAFHB3 (Table 3.2). In 

comparison to other barley FHBi models, BAFHB1 model had a low sensitivity of 57% and 

accuracy of 73%. Model BAFHB4, which used only two weather variables (mean daily rainfall 

and duration (h) when temperature is between 25 and 28 oC at 14 days before anthesis), performed 

similarly to all barley FHBi models that used three weather variables and was thus chosen due to 



78  
 

its simplicity. From the remaining models, model BAFHB3 had the highest accuracy, AUC, and 

Youden’s index, and its Hosmer-Lemeshow test was significant (p = 0.09), indicating no lack of 

fit of the model to the data used in its development (Table 3.3) Thus, model BAFHB3 was also 

selected for further evaluation based on these criteria. 

The accuracy of durum FHBi models ranged from 74 to 82%. The AUC of these models was 

significantly (p < 0.0001) different from the no information line. However, there was no significant 

difference between the AUC of these models, indicating that no model outperformed the other in 

terms of accuracy. However, model DUFHB1 had more balanced sensitivity (70%) and (88%) 

specificity and a higher AUC (82%) than other models. Additionally, the Hosmer-Lemeshow test 

of model DUFHB1 was significant (p = 0.06), indicating no lack of fit of the model to the dataset 

on which it was developed. The remaining four models predicted epidemic cases more accurately 

(sensitivity) than non-epidemic cases (specificity). However, the DUFHB3 model, which uses a 

single variable (a combination variable of temperatures between 15 and 30 oC and RH of 80%), 

had the highest accuracy (81%) compared to other models. This model also had the highest 

Youden’s index (0.62) and a non-significant Hosmer-Lemeshow test (p = 0.2). As a result, 

DUFHB1 and DUFHB3 durum FHBi models were selected for further evaluation. 

3.4.4.2 Fusarium Damaged Kernels Models 

 

Winter wheat and barley samples with FDK levels ≥ 0.8 and 0.2, respectively, were less than 25%, 

a minimum level required for valid ROC analyses. As a result, winter wheat and barley FDK 

models were not developed. Spring wheat and durum FDK models were most frequently correlated 

with RH as the disease risk predictor. The sensitivity and specificity for these models tended to 

converge between probabilities of 0.27 and 0.48 and 0.16 and 0.41 for spring wheat and durum, 
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respectively (Table 3.4). Models SWFDK2 and SWFDK4 for spring wheat and models DUFDK2 

and DUFDK5 for durum were the most parsimonious and provided the best fit to the model 

development dataset. Model SWFDK2 that utilized mean daily RH at 7 days pre-anthesis correctly 

classified 84% of epidemic cases (sensitivity) and 73% of non-epidemic cases (specificity) (Table 

3.4). Other important statistical traits associated with this model, such as Youden’s index, and 

Hosmer-Lemeshow, are presented in Table 3.5. The ROC curves of each model are represented in 

Figure 3.1. The ROC curves graphically display the trade-off between the TPR (sensitivity) and 

FPR (one minus specificity) for the entire range of possible cut-off points (model-based 

probabilities). The solid diagonal line (no information line) represents a classifier with no 

predictive power (i.e., random guessing), AUC = 0.5. This line represents a forecasting model that 

is ineffective at distinguishing between epidemic and non-epidemic samples, while one with high 

discriminatory power will curve away from this line with TPP equal to 1 and FPP approaching 0. 

The SWFDK6 model had the lowest AUC (0.566) and was never different from the no information 

line (p > 0.05), indicating a low predictive power of differentiating epidemic and non-epidemic 

samples (Table 3.5). However, the AUC of the remaining spring wheat FDK models were 

significantly different from the no-information line (p < 0.05). The spring wheat FDK model with 

the highest AUC was SWFDK4 (0.882) (Figure 3.1). Other spring wheat FDK models had more 

or less equivalent performances, with AUC ≥ 0.85 (Figure 3.1), and there were no significant 

differences in the AUC between these models (Table 3.5). Models SWFDK2 and SWFDK4 were 

selected for further evaluation due to their simplicity, fit, and high prediction accuracy. 

The durum model DUFDK3 also utilized mean daily RH at 7 days pre-anthesis and correctly 

classified 80% of epidemic cases and 91% of non-epidemic cases (Table 3.4). In addition, the AUC 

of the model was 86% and was significantly different (p < 0.001) from the no information line of 
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ROC curve analyses (Table 3.5). Its Youden’s index was also close to 1 (0.71), showing its utility 

for predicting FDK epidemic and non-epidemic cases in durum. 

3.4.4.3 Deoxynivalenol Model 

 

Evaluation of logistic regression models using ROC analyses requires at least 25% of the epidemic 

or non-epidemic cases. As a result, no DON models for winter wheat, spring wheat, and barley 

were developed since epidemic cases were less than 25% (Table 3.1). Models for durum DON risk 

are summarized and compared in Table 3.6. Overall, 13 out of 84 predictor variables were 

identified as suitable input variables in the models, particularly temperature and RH. Two variable-

driven models had an accuracy range of 76 to 83% but were more accurate at predicting levels of 

DON ≥ 1 mg kg-1 (sensitivity) than DON ≤ 1 mg kg-1 (specificity) (Table 3.6). Models with pre-

and post-anthesis variables had slightly higher accuracy compared to other single variable models, 

but there was no significant difference (p > 0.05) in their AUC (Table 3.7). DUDON4 and 

DUDON6 models were chosen for further evaluation based on several criteria, including 

discriminatory ability, fit, and simplicity. These models correctly classified 75% of epidemic and 

non-epidemic cases based on RH 10 days before mid-anthesis (DUDON4) and RH 14 days before 

mid-anthesis (DUDON6). Both models misclassified six cases as false negatives, 4 of which came 

from the Indian Head 2020 site-year, and 11 cases as false positives, eight of which came from 

Vermillion site-year (Table A3.2.7). 
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Table 3. 1. Percentage of epidemic samples in 2019 and 2020 for different disease indicators 

and crop types. 

Crop type Disease indicator  
Disease indicator 

threshold 

Epidemic 

casesa (%) 

Non-

epidemic 

cases (%) 

Winter wheat FHBi 10% 25.0 (N = 288) 75.0 

Spring Wheat FHBi 10% 16.5 (N = 357) 83.5 

Durum FHBi 10% 30.7 (N =104) 69.3 

Barley FHBi 10% 7.3 (N = 357) 92.7 

Winter wheat FHBi 5% 33.7 66.3 

Spring Wheat FHBi 5% 33.3 66.7 

Durum FHBi 5% 45.2 54.8 

Barley FHBi 5% 25.0 75.0 

     
Winter wheat FDK 0.8% 17.9 (N =291) 82.1 

Spring Wheat FDK 0.3% 30.8 (N = 357) 69.2 

Durum FDK 2.0% 25.2 (N = 119) 74.8 

Barley FDK 0.2% 11.1 (N = 357) 88.9 

     
Winter wheat DON 1 mg kg-1 15.2 (N = 357) 84.8 

Spring Wheat DON 1 mg kg-1 11.8 (N = 289) 88.2 

Durum DON 1 mg kg-1 38.7 (N = 343) 61.4 

Barley DON 1 mg kg-1 0.6 (N = 357) 99.4 

Winter wheat DON 2 mg kg-1 10.4 89.6 

Spring Wheat DON 2 mg kg-1 5.6 94.4 

Durum DON 2 mg kg-1 16.8 75.6 

Barley DON 2 mg kg-1 0.3 99.7 
aCases are number of samples classified as an epidemic (≥ disease threshold value). 
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Table 3. 2.  Winter wheat, spring wheat, durum, and barley Fusarium Head blight index logistic regression models, optimum predicted probability, 

sensitivity, specificity, and prediction accuracy. 

Model Model equation (p =1/1 +exp- (a + bX +…))a OPPb Sensitivityc Specificityd Accuracye 

   %  

Winter Wheat 

WWFHB1  -0.1188+0.0185RH807MA+0.7846Tmin7MA-0.6239T7MA 0.37 73.2 75.9 74.6 

WWFHB2  -5.1095+0.0312RH8014MA 0.17 96.9 61.3 79.1 

WWFHB3  -5.0477+0.0262RH9014MA+0.0167Tmin14MA*R14MA 0.16 96.9 61.3 79.1 

WWFHB4  -10.4574+0.2506RHmin3MAPA-0.0427RH803MAPA 0.45 75.3 86.4 80.8 
fWWFHB5  -0.9329+0.00348T15304MA 0.33 58.8 52.9 55.9 

Spring Wheat 

SWFHB1  -6.1086+0.1267RH804MA+0.2461T252804MA-0.1414TRH904MA 0.25 82.4 68.9 75.6 

SWFHB2  -34.5786+0.3513RHmax14MA+0.0435T252814MA 0.39 79.8 72.7 76.3 

SWFHB3  -3.77241+0.3754RHmax14MA+ 0.2146R14MA+0.0495T252814MA 0.29 89.9 66.4 78.2 

SWFHB4  -2.3537+0.0980TRH903MAPA 0.32 86.6 72.3 79.4 

SWFHB5  -3.0950+0.0942TRH903MAPA+0.1020R033MAPA 0.3 94.1 69.3 81.7 

Barley 

BAFHB1  -1.8438+0.4439Tmin14MH+0.2468R14MH-0.0794RH14MH 0.33 57.3 89.3 73.3 

BAFHB2  -0.6985+0.0201T153014MH+0.3152R14MH-0.0890RH14MH 0.24 74.7 78.3 76.5 

BAFHB3 -6.4679+0.1560RH804MH+0.2981T252804MH-0.1137TRH804MH 0.42 73.8 85.4 79.6 

BAFHB4 -3.77241+0.2146R14MH+0.0495T252814MH 0.27 79.6 70.1 74.9 

BAFHB5  -9.2113+0.3945T3MHPH+0.1461R3MHPH 0.19 78.7 73.7 76.2 

Durum 

DUFHB1  -8.3268+0.5906Tmin4MA+0.2714R4MA 0.59 70.2 87.7 79 

DUFHB2  -16.2024+0.4175T7MA+0.1097RH7MA 0.34 95.7 52.6 74.2 

DUFHB3  -2.0665+0.0326TRH8010MA 0.39 91.5 70.2 80.8 

DUFHB4  -24.7498+0.2246RHmax10MA+0.0105Tmin10MA*Tmax10MA 0.34 89.4 61.4 75.4 

DUFHB5  -12.0384+0.0753RHmin3MAPA+0.6378Tmin3MAPA 0.37 95.7 59.6 77.7 
aLogistic regression models were developed using 2019 and 2020 data collected in western Canada. Variables are defined in Table A3.1.1. P = 

probability of an epidemic event (1), a and b are the model coefficients, and X is the predictor variable. 
bThe optimal predicted probability (OPP) is probability value where sensitivity and specificity for the full range of p-values are high. 
cSensitivity is the percentage of correctly classified epidemics cases (epidemic = FHBi ≥ 5%). 
dSpecificity is the percentage of correctly classified non-epidemic cases. 
eAccuracy is the percentage of correctly classified cases of epidemic and non-epidemic (true positive proportion + true negative proposition /2). 
f Variable utilized by the model was not selected by stepwise procedure but included in the model for comparison.
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Table 3. 3. Youden’s index, lack of fit, and area under receiver operator characteristic (AUC) 

curve of Fusarium Head Blight index models. 

Crop type Model 
Youden’s 

Indexa 
Lack Fitb 

AUC 

(%) 
SEc p-valued 

Winter wheat WWFHB1 0.49 0.054 78.0 0.030b 0.0001 

 WWFHB2 0.58 <.0001 82.2 0.027ab <0.001 

 WWFHB3 0.54 <.0001 84.9 0.025a <0.001 

 WWFHB4 0.62 0.085 85.0 0.027a <0.001 

 WWFHB5 0.12 <.0001 52.6 0.036c 0.392 

       
Spring Wheat SWFHB1 0.51 0.0003 82.3 0.041ab <0.001 

 SWFHB2 0.53 0.0268 79.2 0.013b <0.001 

 SWFHB3 0.56 0.0294 82.4 0.031ab <0.001 

 SWFHB4 0.59 <.0001 81.7 0.028ab <0.001 

 SWFHB5 0.63 <.0001 84.0 0.041a <0.001 

       
Barley BAFHB1 0.47 <.0001 76.0 0.011a <0.001 

 BAFHB2 0.53 0.0001 76.9 0.011a <0.001 

 BAFHB3 0.59 0.0931 79.8 0.018a <0.001 

 BAFHB4 0.49 <.0001 77.4 0.013a <0.001 

 BAFHB5 0.52 0.0013 78.3 0.017a <0.001 

       
Durum DUFHB1 0.58 0.061 82.9 0.039a <0.001 

 DUFHB2 0.48 0.050 76.7 0.020a <0.001 

 DUFHB3 0.62 0.2 78.0 0.030a <0.001 

 DUFHB4 0.51 0.059 79.5 0.029a <0.001 

 DUFHB5 0.55 0.198 79.8 0.030a <0.001 
aYouden’s index, calculated as true positive proportion - false positive proportion. 

bHosmer-Lemeshow lack of fit test. A high p-value (> 0.05) indicates a good fit.  

cStandard error (SE) of the AUC. Letters following numbers indicate differences between the 

AUC of the forecasting models based on ROC contrast.  
dStatistical significance of AUC of model’s difference from 0.5 or line of no-information based on 

the Mann-Whitney U-statistic. 
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Table 3. 4. Spring wheat and durum Fusarium damaged kernels logistic regression models, optimum predicted probability, sensitivity, specificity, 

and prediction accuracy. 

Model Model equation (p =1/1 +exp- (a + bX +…))a OPPb Sensitivityc Specificityd Accuracye 

    %  

Spring wheat 

SWFDK1  -20.9541+0.2683RH4MA-0.0157TRH904MA 0.48 60.9 91.5 76.2 

SWFDK2  -25.27+0.3167RH7MA 0.32 83.6 72.5 78.1 

SWFDK3  -25.1029+0.3309RH7MA-0.00087RH7MA*T7MA 0.27 85.5 71.7 78.6 

SWFDK4 -31.6372+0.4003RH10MA 0.37 86.4 83.4 84.9 

SWFDK5  -36.1580+0.4582RH3MAPA 0.44 73.6 85.8 79.7 

SWFDK6f  -1.0397+0.0617R7MA  0.32 41.8 74.5 58.2 

Durum 

DUFDK1  -49.1961+0.5289RH4MA +0.1518T15304MA-0.2775TRH904MA 0.33 76.7 89.9 83.3 

DUFDK2 -17.9341+0.2185RH4MA 0.28 80.0 83.0 81.5 

DUFDK3  -25.1915+0.3119RH7MA 0.41 80.0 91.0 85.5 

DUFDK4  -27.1334+0.3314RH7MA-0.0474TRH907MA+0.1818R037MA 0.16 93.3 82.0 87.7 

DUFDK5  -20.7748+0.2646RH8010MA 0.57 76.1 85.9 81.0 

DUFDK6  -14.9985+0.0803RH8014MA 0.23 96.7 78.7 87.7 

DUFDK7  9.8192+0.1351TRH803MAPA-1.3457Tmin3MAPA 0.33 80.0 82.0 81.0 
aLogistic regression models were developed using 2019 and 2020 data collected from various sites in Manitoba, Saskatchewan, and Alberta. 

Variables are defined in Table A3.1.1. P = probability of FDK ≥ 0.3, and 2% FDK thresholds for spring wheat and durum, respectively. In the 

equation, a and b are the model coefficients, and X is the predictor variable. 

bThe optimal predicted probability (OPP) of an epidemic case, as determined by the Youden’s index maximum value (where sensitivity and 

specificity are maximized for the full range of p-values). 
cSensitivity is the percentage of correctly classified epidemics cases. 
dSpecificity is the percentage of correctly classified non-epidemic cases. 
eAccuracy is the percentage of correctly classified cases of epidemic and non-epidemic (true positive proportion + true negative proposition). 
fVariable utilized by the model was not selected by stepwise procedure but included in the model for comparison.
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Table 3. 5. Youden’s index, lack of fit, and area under receiver operator characteristic curve 

(AUC) of the spring wheat and durum Fusarium damaged kernels models. 

Crop type Model 
Youden’s 

Indexa 
Lack Fitb AUC SEc p-valued 

Spring wheat SWFDK1 0.52 0.19 0.850 0.0204a <0.001 
 SWFDK2 0.56 0.05 0.854 0.0219a <0.001 
 SWFDK3 0.57 0.22 0.855 0.0213a <0.001 
 SWFDK4 0.70 0.38 0.882 0.213a <0.001 
 SWFDK5 0.59 0.02 0.881 0.0185a <0.001 
 SWFDK6 0.16 0.01 0.566 0.0232b 0.354 
       

Durum DUFDK1 0.67 0.002 0.887 0.0245ab <0.001 
 DUFDK2 0.62 0.05 0.828 0.0458b <0.001 
 DUFDK3 0.71 0.23 0.857 0.0453b <0.001 
 DUFDK4 0.75 0.09 0.92 0.0245a <0.001 
 DUFDK5 0.62 0.05 0.855 0.0543b <0.001 
 DUFDK6 0.75 <.0001 0.898 0.0611ab <0.001 
 DUFDK7 0.62 0.10 0.832 0.0347b <0.001 

aYouden’s index, calculated as true positive proportion-false positive proportion. 
bHosmer-Lemeshow lack of fit test. A high p-value (> 0.05) indicates a good fit.  
cStandard error (SE) of the AUC. Letters following numbers indicate differences between the AUC 

of the forecasting models based on ROC contrast.  
dStatistical significance of AUC of model’s difference from 0.5 or line of no-information based on 

the Mann-Whitney U-statistic. 
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Figure 3. 1. Area under receiver operator characteristic curve for spring wheat (a) and durum 

(b) Fusarium Damaged Kernel models.   
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Table 3. 6. Durum deoxynivalenol logistic regression models, optimum predicted probability, sensitivity, 

specificity, and prediction accuracy. 

Model Model equation (p =1/1 +exp- (a + bX +…))a OPPb  
Sensitivity 

(%)c 

Specificity 

(%)d 

Accuracy 

(%)e 

DUDON1 -15.1371+0.3108T4MA+0.1644RHmin4MA 0.44 82.6 80.8 81.7 

DUDON2 19.6034+0.2090RH7MA+0.00228RH7MA*T7MA 0.24 89.1 68.5 78.8 

DUDON3 -9.3475+0.0714RH8010MA 0.38 87.0 67.1 77.0 

DUDON4 -20.7748+0.2646RH10MA 0.57 71.7 84.9 78.3 

DUDON5 -22.80770.2611RH10MA+0.1241T10MA 0.30 89.1 63.0 76.1 

DUDON6 -24.1039+0.3114RH14MA 0.51 69.6 89.0 79.3 

DUDON7 -22.2386+0.0137TRH8014MA+0.2726RH14MA 0.25 97.8 68.5 83.2 

DUDON8 -13.2809+0.2360RHmin3MAPA 0.42 84.8 76.7 80.7 

DUDON9 -20.5016+0.2632RH3MAPA 0.38 87.0 72.6 79.8 
aLogistic regression models were developed using 2019 and 2020 data collected from various Manitoba, 

Saskatchewan, and Alberta plot sites. Variables are defined in Table A3.1.1. P = probability of DON ≥ 1mg kg-1, 

a and b are the model coefficients, and X is the predictor variable. 

bThe optimal predicted probability (OPP) of an epidemic case, as determined by Youden’s index maximum value 

(where sensitivity and specificity for the full range of p values are high). 
cSensitivity is the percentage of correctly classified epidemics cases (epidemic = DON ≥ 1mg kg-1).   
dSpecificity is the percentage of correctly classified non-epidemic cases. 
eAccuracy is the percentage of correctly classified cases of epidemic and non-epidemic (true positive proportion 

+ true negative proposition/2).    

 

Table 3. 7. Youden’s index, lack of fit, and area under receiver operator characteristic (AUC) curve of the 

durum deoxynivalenol models. 

Model Youden’s Indexa Lack Litb AUC SEc p-valued 

DUDON1 0.63 0.4776 0.84 0.0443a <0.001 

DUDON2 0.58 0.1311 0.823 0.0475a <0.001 

DUDON3 0.54 0.4223 0.817 0.0359a <0.001 

DUDON4 0.57 0.148 0.825 0.0458a <0.001 

DUDON5 0.52 0.1989 0.834 0.0478a <0.001 

DUDON6 0.59 <.0001 0.822 0.0476a <0.001 

DUDON7 0.66 0.0675 0.864 0.0373a <0.001 

DUDON8 0.61 0.3179 0.848 0.0388a <0.001 

DUDON9 0.60 0.1493 0.802 0.0464a <0.001 
aYouden’s index, calculated as true positive proportion - false positive proportion. 
bHosmer-Lemeshow lack of fit test. A high p-value (> 0.05) indicates a good fit.  

cStandard error (SE) of the AUC. Letters following numbers indicate differences between the AUC of the 

forecasting models based on ROC contrast.  
dStatistical significance of AUC of model’s difference from 0.5 or line of no-information based on the Mann-

Whitney U-statistic. 
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3.5 Discussion 

 

Logistic regression has been a common technique for modelling crop fungal diseases and related 

mycotoxins (De Wolf et al., 2003; Hutcheson, 2011; Xu et al., 2013; Shah et al., 2014). This 

technique was used to model outbreaks of FHB in wheat (De Wolf et al., 2003; Xu et al., 2013; 

Shah et al., 2013). Similarly, logistic regression techniques were used in this study to establish 

weather-based models for forecasting FHBi, FDK, and DON in spring wheat and barley in western 

Canada. With environmental variability, the relationship between environmental conditions and 

biology is not always linear or easy to define  (Hollingsworth et al., 2006). Therefore, weather data 

were divided into five critical periods (-4DMA, -7DMA, -10DMA, -14DMA, and ±3DMA). In 

general, FHBi models that used -4DMA appeared to be inferior in explaining epidemics compared 

to models that used -14DMA across crop types. This is logical as short periods might not capture 

any significant biological events occurring concurrently with the weather period (Nicolau and 

Fernandes, 2012).  

All 15 models developed in this study included at least one weather predictor variable based on 

RH, indicating its importance in FHB epidemics. Rainfall and temperature were not significant 

predictors of FHB occurrence in these models when used alone. However, when used jointly, RH, 

temperature, and rainfall produced satisfactory models. These models have been narrowed down 

to two for each crop type. The models will be further evaluated for their reliability to assist 

producers with fungicide application decisions. For the selected spring wheat FHBi model 

(SWFHB2), the positive sign of estimators (RHmax14MA and T252814MA) was consistent with 

the biology of the pathogen, which thrives under humid conditions with optimum temperatures. 

This relationship is also consistent with previous observations of weather conditions associated 

with FHB epidemics (De Wolf et al., 2003; Del Ponte et al., 2005; Shah et al., 2013). The 
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development of Fusarium species perithecia is aided by favorable temperature and RH conditions, 

highlighting the importance of these variables used in the model developed by Brustolin et al., 

2013. One of the selected winter wheat models (model WWFHB2) predicts FHB index events 

using a single variable, the duration in hours when average RH is greater than or equal to 80% for 

14 days before mid-anthesis (RH8014MA). The recent winter and spring wheat risk models in the 

USA predict FHB index epidemics solely based on RH and FHB resistance categories (Shah et al., 

2014, 2021). However, the FHB resistance category in this study was not significant; therefore, it 

was not incorporated into the models. The 2019 and 2020 growing seasons were characterized by 

low disease pressure, likely due to the hot and dry weather, which most likely masked the effect 

of the FHB resistance category. This low disease pressure was also confirmed by the low optimum 

predicted probabilities, ranging between 0.17 and 0.45, 0.25 and 0.39, and 0.19 and 0.42 for the 

selected winter wheat, spring wheat, and barley models. 

The percentages of false positives and negatives in the models used for decision-making by 

producers must be carefully examined. A false-negative prediction by a model would encourage 

producers not to apply fungicides, resulting in fields that are FHB contaminated. In contrast, false 

positives can result in unnecessary fungicide sprays which can be costly to the producer and 

detrimental to the environment. Consequently, producers and the industry require models that can 

accurately predict both epidemic and non-epidemic cases, with few false negatives and positives. 

For example, the SWFHB1 model incorrectly classified the 2020 Roblin location-year as a low 

disease year. The 0.23 FHBi probability obtained using RH and temperature in this model was 

close to its optimal predicted probability threshold of 0.25. Persistent rainfall and high RH after 

anthesis, which these models did not consider, most likely contributed to the high disease levels 

observed that year in that location. Four durum samples from 2020 were misclassified as epidemic 
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by both DUFHB1 and DUFHB3. In addition, seven samples were misclassified as false positives 

by these models. These errors may partly be attributable to differences in disease assessment or 

the influence of field-scale environment and inoculum levels. 

3.5.1 Fusarium Damaged Kernels (FDK) 

 

The evaluation of two USA FHB models (De Wolf A and De Wolf B) and an Argentinean model 

(Moschini et al., 2001) resulted in a poor prediction of FDK levels in wheat but good prediction 

of DON levels under Quebec conditions (Giroux et al., 2016), although these models were not 

developed for predicting FDK or DON. Many studies have shown differences in the correlations 

between FHBi, FDK, and DON in grain (Paul et al., 2005; Miedaner et al., 2016; Schwarz, 2017; 

Góral et al., 2018, 2020), highlighting possible limitations in relying solely on visual FHB disease 

assessment. Similarly, a forecasting model developed to predict FHB would not be used to forecast 

FDK or DON levels. In Canada, FDK is a grading factor used by the Canadian Grain Commission's 

official grading guide and provides a more reliable means of estimating the cost of disease damage 

compared to the cost of fungicide spraying (Chapter 1: Table1.1). The models developed in this 

study utilize the FDK thresholds at which the cereal grains would drop their grade from No. 1 to 

No. 2 (Canadian Grain Commission, 2019) as a trigger for fungicide application. These 

percentages were relatively high to meet the minimum requirement of 25 to 75% epidemic to non-

epidemic ratio for valid ROC curve analysis in winter wheat and barley due to low FDK damage 

in these crop types across all sites and both years. For models SWFDK2 (spring wheat) and 

DUFDK3 (Durum), extended periods of high RH at 7 days before mid-anthesis were associated 

with FDK epidemics at all 30 site-years studied. During this period, using a rainfall variable (model 

SWFDK6) to distinguish between epidemic and non-epidemic cases resulted in poor prediction 
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accuracy. Rainfall may restrict spore dispersal and wash away inoculum reservoirs counteracting 

the positive effect of wetness (Rossi et al., 2003). 

3.5.2 Deoxynivalenol (DON) 

 

Durum DON models with single variables representing RH at 10 and 14 days pre-anthesis (models 

DUDON4 and DUDON6) showed a good model fit and accuracy > 75%. Many models to predict 

DON risk levels have been published (Hooker et al., 2002; Musa et al., 2007; Bondalapati et al., 

2012; Xu et al., 2013; Birr et al., 2019). To date, the most well-known of these is DONcast, which 

was developed to forecast DON risk in eastern Canada. In the DONcast model, weather variables 

included rainfall, temperature, and RH around the time for wheat heading, as well as post-anthesis 

weather conditions (Hooker et al., 2002), which were not included in our models. Additionally, 

the interpretation of temperature and RH differs from that of our models. In our study, models use 

RH compared to rainfall used in the DONcast model. Although we did not use heading and post-

anthesis weather variables, our models predicted DON concentrations with great accuracy in 

durum wheat using only pre-anthesis weather data, indicating their potential value as management 

tools that producers can use to decide on fungicide application during the anthesis period. 

Fungicide application is justified when DON concentrations exceed 1 mg kg-1, as various 

industries reject grain samples containing DON concentrations greater than 1 mg kg-1. As a result, 

producers in western Canada may use maximum levels of 1 mg kg-1 as a trigger to apply a fungicide 

at anthesis for disease suppression to reduce DON concentrations in wheat grain. Producers can 

also use this information to make a no-spray decision if the predicted weather conditions can result 

in DON concentration less than 1 mg kg-1. 
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3.6 Conclusion 

 

Weather-based disease forecasting is a method of targeted pest management in which 

meteorological data such as rainfall, temperature, RH, and wind speed are used to predict the 

likelihood of FHB disease occurrence in wheat and barley and optimize fungicide use. The current 

level of model accuracy reflects significant progress in forecasting FHBi, FDK, and DON 

epidemics in western Canada. To the best of my knowledge, these are the first weather-driven 

FHBi, FDK, and DON risk-assessment models developed for wheat and barley management that 

are intended for use in all 3 prairie provinces. These models are intended to form the basis for a 

prairie-wide FHB risk forecasting system that provides estimates of disease occurrence in wheat 

and barley. This system could, in the future, alert producers of possible weather patterns that could 

lead to FHB epidemics. If the risk of infection is high, producers may take actions such as scouting 

their fields to assess the need to apply fungicides to protect crop yield and quality. Many of the 

models developed here were more than 70% accurate. However, model accuracy can be improved 

by incorporating more site-year data into the model development process. Data from sites where 

the FHB pathogen was confirmed to exist in the environment were used to develop the models in 

this study, and these models assume that there is enough inoculum present for infection. However, 

in Alberta, FHB inoculum is sometimes present at very low levels suggesting that the assumption 

that spores are present in sufficient quantity to cause an epidemic may not always be true. In this 

scenario, it is recommended that the FHB infection models be coupled with either information 

from the local disease scouting or inclusion of variables that provide information about inoculum 

sources such as previous residues and tillage method to minimize model errors. 
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4. ON-FARM VALIDATION OF FUSARIUM HEAD BLIGHT RISK MODELS IN 

WESTERN CANADIAN CEREAL PRODUCTION 

 

4.1 Abstract 

 

Fusarium Head Blight prediction models are increasingly being developed to complement 

fungicides decision-making to prevent disease loss and introduction of mycotoxins into the food 

and feed chain. While prediction models may demonstrate exceptional predictive accuracy using 

the development dataset, their predictive accuracy may decline significantly when applied to a 

different dataset. Thus, models must be tested in validation datasets to ensure their accuracy before 

being used for management purposes. Therefore, the objectives of this study were to validate 

weather-based FHBi (FHB index), Fusarium damaged kernels (FDK), and deoxynivalenol (DON) 

models developed in western Canada and to compare the performance of existing USA models 

used in western Canada to those developed in this study. Weather and disease data were collected 

in western Canada during the 2019 and 2020 growing seasons to validate FHB models. PROC 

LOGISTIC in SAS was used to score the validation data using previously fitted models. The scores 

were summarized in a 2 x 2 matrix to determine the models' sensitivity, specificity, accuracy, and 

errors. The models exhibited high accuracy ranges of 80 to 100% for FHBi, 66 to 89% for FDK, 

and 75 to 82% for DON. However, the models' sensitivity was infinite or low, owing to a small 

number or absence of epidemic fields. FHB pressure was low in both years, most likely due to 

drier than normal weather conditions, which were unfavorable for disease development. Based on 

model performance and error analysis, seven models, each tailored to a specific crop type and 

disease indicator, were identified as the most suitable for forecasting FHBi, FDK, and DON levels 

in western Canada. These models will power an online FHB risk tool that will use real-time 
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weather data to provide early warning of potential FHBi, FDK, and DON epidemics in the 

Canadian prairie’s cereal crops. 

4.2 Introduction 

 

Fusarium Head Blight (FHB) is a devastating disease that affects small cereal crops worldwide, 

including wheat and barley. Since the early 1990s, enormous crop losses ranging from $50 million 

to $300 million per year in Canada have been attributed to FHB (Government of Alberta, 2021). 

Losses occur due to floret bleaching, grain filling disruption, and, most importantly, grain 

contamination with trichothecene mycotoxins, primarily DON (Dexter et al., 1996; Gilbert et al., 

2014). The consensus is that moist and warm conditions during the anthesis period favor FHB 

development (Hooker et al., 2002; De Wolf et al., 2003; Bondalapati et al., 2012; Brustolin et al., 

2013; Shah et al., 2019; Kochiieru et al., 2020; Moreno-Amores et al., 2020). The severity of FHB 

varies from year to year, and this is due to the disease's need for favorable weather conditions 

during critical stages of wheat development (McMullen et al., 1997; Brustolin et al., 2013). FHB 

is currently managed through agronomic practices that limit in-field inoculum, such as crop 

rotation, tillage, and fungicide application during flowering (Gilbert and Tekauz, 2011; Wegulo et 

al., 2015). The need for FHB control varies by location and year, depending on weather conditions 

during the period when the plant is most vulnerable to infection. Given the sporadic occurrence of 

FHB and the dependency of FHB on weather conditions, forecasting models that predict the 

likelihood of FHB outbreaks can provide important information through an early warning system 

for wheat and barley producers in western Canada, allowing producers to implement more 

effective disease management plans.  

Fungicide use is beneficial during Fusarium-epidemic years because it reduces losses due to FHB 

damage. When the weather is not favorable for FHB development, growers can use the forecasts 
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to reduce unnecessary fungicide applications, lowering the monetary and environmental costs 

associated with conventional calendar-based spray programs. Forecasting systems for FHB are 

mainly based on disease development (incidence and/or severity) or DON contamination directly 

or indirectly via FHB severity (Hooker et al., 2002; De Wolf et al., 2003; Rossi et al., 2003; Del 

Ponte et al., 2005). A site-specific DON forecasting system called DONcast, commercialized in 

Ontario, is an example of a DON contamination forecasting system (Hooker et al., 2002; 

Schaafsma and Hooker, 2007). It is driven by a model composed of three regression equations that 

predict DON in wheat grain based on temperature and rainfall during three critical periods 

(Schaafsma and Hooker, 2007).  

Disease risk models described by De Wolf et al. (2003) and Shah et al. (2013) are currently being 

used to forecast FHB risk in western Canada. These models predict the risk of FHB field severity 

greater than 10% based on weather conditions observed 7 days prior to flowering (De Wolf et al., 

2003; Shah et al., 2013). To be valuable, the models used must be tested across the prairies to 

ensure that they provide reliable information about FHB risk. However, there is no information on 

the performance of the existing FHB models in western Canada. In addition, there is variation in 

the distance from the wheat and barley fields to the nearest weather station that provides weather 

data to these models. The effects of distance between the nearest weather station and the field on 

the accuracy of these models are unknown.  

The current FHB maps are primarily for spring wheat, but the risks are also used for barley (ACIS, 

2021a; MARD, 2021a; SWDC, 2021). The models are based on a field severity of more than 10%, 

a disease severity level strongly correlated with FHB yield losses and is generally associated with 

high levels of deoxynivalenol (DON) in harvested grain (De Wolf et al., 2003; Shah et al., 2013). 

However, disease symptoms in the field do not always accurately reflect the amount of FDK and 



99  
 

DON, and recent research has revealed complex relationships between disease symptoms and 

DON accumulation (Miedaner et al., 2016). The reasons stated above prompted the development 

of standardized FHBi, FDK, and DON risk models for spring wheat, winter wheat, barley, and 

durum in western Canada. These models had a high prediction accuracy of more than 75% 

(Chapter 3). While the regression model results on the development data were encouraging, using 

statistical techniques without subsequent performance analysis of the obtained models can result 

in poorly fitting results that incorrectly predict outcomes on new subjects. Evaluating the model's 

predictive performance in datasets that were not used to develop the model (external validation) is 

necessary before implementing prediction models to make management decisions  (Van der Fels-

Klerx, 2014; Giroux et al., 2016). This evaluation is necessary because it will help quantify 

optimism due to model overfitting or deficiencies in statistical modelling during model 

development (Giroux et al., 2016; Hooker et al., 2002). The ability of a model to perform well 

across multiple validations is a good indication of how well it will perform once implemented. 

Thus, the objectives of this study were to i) validate FHBi, FDK, and DON models for spring 

wheat, winter wheat, barley, and durum developed in western Canada; ii) determine the effect of 

distance between the field and the nearest weather station on model accuracy; and iii) compare the 

performance of existing USA models to those developed in western Canada. The models that 

perform the best in the validation dataset will be used in the new online FHB risk management 

tool currently under development in western Canada. 

4.3 Materials and Methods 

 

4.3.1 Sites Location 
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Research trials were conducted in the 2019 and 2020 growing seasons in Manitoba, Saskatchewan, 

and Alberta producer fields (Figure 4.1). The plot sites were located in fields with at least two 

years of FHB data collected through provincial and federal government annual FHB surveys. 

These fields were geographically distributed across western Canada to maximize the expected 

variation in weather conditions and disease occurrence.  

 
Figure 4. 1.  Winter wheat (upper left), spring wheat (upper right), barley (bottom left), and 

durum fields (bottom right) in western Canada for the 2019 (yellow) and 2020 (red) growing 

seasons.  

 

4.3.2 Agronomy Data 

 

A small area measuring about 30 m x 30 m (check area) was left unsprayed with a fungicide at 

each producer field site. Producers followed their own agronomic practices such as fertilizer 

application, seeding depth, and row spacing on their fields. However, no fungicides were used in 
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the check area. Information about each field, including crop rotation history, seeding date, crop 

variety, anthesis date, and pest and stubble management, were collected. Crop growth stages were 

regularly monitored during the growing season. The planting date, along with heat unit 

accumulation was utilized to determine the date of mid-anthesis for each wheat field and mid-boot 

for each barley field (Appendix 5). Just prior to harvest, approximately two square meters of crop 

plants were harvested and bagged from within each check area and later threshed for grain. 

4.3.3 Meteorological Data 

 

Meteorological data were sourced from over 500 provincially (Manitoba Agriculture Weather 

Program and Alberta Climate Information Service) and federally (Environment Canada weather 

stations) monitored weather stations (ACIS, 2021b; ECCC, 2021; MARD, 2021b). Most of the 

stations transmit hourly and daily observations for various weather elements, including rainfall 

(mm), air temperature (oC), relative humidity (RH) (%), wind speed (km h-1), and wind direction. 

Missing data were filled using data from the second or in some cases third nearest weather stations.  

Latitude and longitude coordinates associated with each producer field were used to identify the 

closest reporting weather station with hourly and daily air temperature, RH, and rainfall data. 

Weather data during each growing season (May to August) were downloaded and used to calculate 

the variables of the selected models (Table 4.18).  

4.3.4 Spore Traps 

 

FHB spore trapping was done according to Guo (2008), with slight modifications. In brief, spore 

traps, consisting of a trap head and a supporting rod, were designed to simulate the deposition of 

spores on wheat heads. Two adhesive spore traps were placed at two locations along the edge of 

the check area at the beginning of anthesis (BBCH 61) to capture FHB spores. The traps were 
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retrieved near the soft dough stage (BBCH 85). A rectangular plastic foam prism with four spore 

collection surfaces (6 mm x 90 mm each) was used as the trap head. The spore head surfaces were 

covered with base tape and Melinex tape coated with a thin layer of petroleum jelly to which spores 

adhere. Following the collection of spores, a small piece measuring 5 mm x 19 mm was cut from 

the Melinex tape on one side of the trap head and fixed to a glass slide. Fusarium spores were 

determined under a compound microscope (400x) to confirm the presence of the inoculum in the 

environment. 

4.3.5 Disease Indicators 

 

4.3.5.1 Fusarium Head Blight Index (FHBi) 

 

From 18 to 21 days after 50% anthesis (BBCH 65) between the early milk stage (BBCH 73) and 

the soft dough stage (BBCH 85), disease incidence and severity assessments were performed 

within the unsprayed check area. Five randomly selected spikes at 10 different locations within 

the check area were assessed for FHB infection (a total of 50 heads per field). Each spike was rated 

as infected or not infected to calculate the proportion of infected spikes per plot (disease incidence). 

The percentage of the spikelets infected was determined for each infected head based on the 

proportion of infected spikelets in each spike (disease severity). FHBi was calculated for each 

producer field using the disease incidence and severity as shown in equation 4.1. 

𝐹𝐻𝐵 𝐼𝑛𝑑𝑒𝑥 (%)  = (% 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑎𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑥 𝑚𝑒𝑎𝑛 % 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)/100    [4.1] 

Observations of FHBi were further classified into two groups of epidemics (=1) and non-epidemics 

(=0) using 5 and 10% FHBi thresholds. Thus, for example, observations of FHBi ≥ 10% were 

regarded as an epidemic and FHBi < 10% as non-epidemics. Choosing 5 and 10% FHBi disease 

severity thresholds correspond with previous FHB models developed in the USA (De Wolf et al., 



103  
 

2003; Shah et al., 2013; Giroux et al., 2016) and western Canada, which are being validated in this 

study. 

4.3.5.2 Fusarium Damaged Kernels (FDK) and Deoxynivalenol (DON) 

 

Eight quarter square meter samples were selected randomly from within the unsprayed check area 

and hand-harvested by cutting all the plants within the quarter square meter. The plants were placed 

in mesh bags and taken to a drying facility as soon as possible. Each sample was threshed to 

determine the mass of grain per quarter square meter (Appendix 4). However, harvested grain 

samples were not allowed to pass through a cleaner so that lightweight FDK were retained during 

threshing. All threshing equipment was sterilized after each sample to avoid contamination of 

subsequent samples. Threshed grain was sent to a commercial lab (Intertek Lab) for official 

grading and to assess FDK and DON concentration following procedures outlined in the Canadian 

Grain Commission's Official Grain Grading Guide (Canadian Grain Commission, 2019). In brief, 

samples were divided into a representative portion using a Boerner-type divider. The samples were 

then visually divided into two groups of healthy and infected kernels with different damage levels. 

A 10-power magnifying lens was used to confirm the presence of a chalk-like appearance or 

pinkish mold. Fusarium damaged kernels were then calculated as a percentage of the number of 

grains with FDK divided by the total number of grains in each sample. Samples were then 

classified into epidemic or non-epidemic categories using the 0.2, 0.3, 0.8, and 2% number one 

grade thresholds for barley, spring wheat, winter wheat, and durum, respectively, as was done for 

the development of the FDK models in western Canada (Chapter 3).  

DON concentration (mg kg-1) in all crop types was determined by firstly grinding 50 g of grain 

samples with a laboratory grinder. High sensitivity (HS) and 5/5 Vomitoxin kits from the Neogen 
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ELISA test method were then used with a DON detection limit of 0.5 mg kg-1 (Neogen 

Corporation, 2013). DON thresholds of 1 mg kg-1 were used to distinguish between epidemic and 

non-epidemic cases, and this threshold correspond to DON level that is toxic to  several domestic 

animals and humans (Table1.2) (CFIA, 2015). 

4.3.6 Model Validation and Evaluation 

 

PROC LOGISTIC using SAS 9.4 (SAS Institute, 2021) was used to fit the logistic regression 

models to the producer field samples (scoring technique). The prediction output scores obtained 

from the models were then categorized into epidemic or non-epidemic groups based on the 

optimum predicted probability thresholds of the models. The predicted binary model outcomes 

were compared with actual observations of FHBi, FDK, and DON. All possible combinations of 

predicted outcomes versus observed outcomes were organized in a 2 × 2 contingency table, with 

the following categories: (1) true positives (TP), when the model predicted an epidemic case in 

agreement with observed case; (2) false positives (FP), when the model predicted epidemic case, 

whereas the observed case was non-epidemic; (3) false negatives (FN), when the model predicted 

non-epidemic case, whereas the observed case was epidemic; and (4) true negatives (TN), when 

the model predicted a non-epidemic event in agreement with an observed case (Fienberg, 2005). 

Model sensitivity, specificity, and accuracy were determined based on the contingency matrix 

table. The ability of models to correctly classify epidemic cases (sensitivity) was calculated using 

equation 4.2 (Fienberg, 2005).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)                                                                                    [4.2] 

 Specificity refers to the ability of the model to correctly classify non-epidemic cases and was 

calculated using equation 4.3 (Fienberg, 2005). 
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 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃)                                                                                 [4.3] 

Model accuracy was calculated as the percentage of correctly classified epidemic and non-

epidemic cases using equation 4.4 (Fienberg, 2005). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)                                               [4.4] 

False positives (overprediction) or false negatives (underprediction) errors were also recorded for 

each model failure.  

4.3.6.1 Evaluation of the Existing USA Models 

 

Another objective of the present study was to evaluate the performance of USA models under 

western Canadian conditions. In the USA, De Wolf et al. (2003) developed several empirical 

models for forecasting probabilities of FHB outbreak in wheat (De Wolf et al. 2003). Of the three 

selected models (A, B, and I), the De Wolf I model (equation 4.6) had the highest accuracy of 70% 

(De Wolf et al., 2003; Shah et al., 2013) and was adopted for use in Manitoba and Alberta. This 

model was fitted to wheat fields surveyed in the present study using published regression equation 

coefficients and weather data 7 days prior to flowering. 

𝑃 = 1/ (1 + 𝑒𝑥𝑝 − ( – 8.2175 +  (8.4358𝑇15307)/168 +  (4.7319𝐷𝑃𝑃𝑇7)/39))     [4.6] 

Where T15307 is the duration (h) of temperature between 15 and 30 °C, and DPPT7 is the duration 

of precipitation (h) at 7 days before anthesis (De Wolf et al., 2003). The probabilities (P) of FHB 

epidemics are defined by the chances that field severity reaches 10% or more. The severity 

corresponds to the percentage of infected spikelets, and the probability varies between 0 and 1. To 

use equation 4.6, variables must first be placed on the same scale as the data used to develop the 

models. This is done by dividing T15307 and DPPT7 by 168 and 39, respectively (TRH9010/136; 
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T15307/168) (De Wolf et al., 2003). The critical predicted probability for this forecasting model 

is 0.5 (De Wolf et al., 2003). The performance of the De Wolf I model was evaluated according to 

the criteria described in section 4.3.6.  

The spring wheat FHB model currently being used in Saskatchewan (equation 4.8) was derived 

from the USA. It utilizes an agronomic variable (crop resistant category) and a weather variable 

(relative humidity) 7 days before anthesis and was also validated (Shah et al., 2013). The updated 

winter wheat model equation (4.7) was also evaluated in this study. 

𝑙𝑜𝑔𝑖𝑡 (𝜇)  = – 1.7954 +  0.0245 𝑇𝐻2                                                                 (4.7) 

𝑙𝑜𝑔𝑖𝑡 (𝜇)  = – 11.008 –  0.9578 𝑅𝐸𝑆𝐼𝑆𝑇𝐶 +  0.1516𝐻1                                   (4.8) 

In both equations, μ is the probability of an FHB epidemic ≥ 10%, H1 is the mean hourly RH 7 

days before anthesis, and TH2 is the number of hours during which the following two conditions 

are met simultaneously within a given hour: t is 9 to 30 °C and RH  90% 7 days before anthesis. 

RESISTC is categorical variable of four different levels of disease resistance: very susceptible = 

0; moderately susceptible = 1; moderately resistant = 2; and resistant = 3. The critical predicted 

probability is 0.37 for the spring wheat model (equation 4.8) and 0.23 for the winter wheat model 

(equation 4.7) (Shah et al., 2013). The performance of the models was evaluated according to the 

criteria described in the model evaluation section.  

4.4 Results 

 

4.4.1 Descriptive Analyses   

 

The mean FHBi values for barley, spring wheat, winter wheat, and durum for the 2019 and 2020 

growing seasons ranged from 0 to 0.8, 0 to 4, 0 to 0.1, and 0.3%, respectively, across the three 
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resistance categories (Figure 4.2). Although FHB was detected most frequently in wheat fields, 

only one spring wheat field had FHBi levels greater than the 5% threshold utilized by our models 

(6.8%) (Figure 4.2). While disease pressure was low, it was interesting that the barley crop had 

significantly higher FHBi levels than other crops. The mean FDK percentage was nearly zero 

except for the spring wheat varieties with intermediate resistance (F. RC2) (0.4%) and the durum 

(2.9%), which are all susceptible (F. RC1). Durum fields had the highest DON concentration (11.4 

mg kg-1) (Figure 4.2). Several fields, however, contained DON levels less than 0.5 mg kg-1 (Figure 

4.2). Correlation analyses revealed a non-significant (p > 0.05) relationship between the FHBi and 

the FDK or the DON for all crop types. However, there was a significant (p < 0.05) positive 

correlation between FDK and DON for all crop types except durum (Table 4.1).  

 

4.4.2 Fusarium Head Blight Index Models 

 

Table 4.3 summarizes the validation results for the FHBi, FDK, and DON models. Validation of 

the WWFHB2 model, which uses only RH, achieved an accuracy of 70%. The remaining 30% 

were fields with FHBi less than 5% but predicted to have FHBi ≥ 5% (false positives) (Table 4.11). 

However, model WWFHB1, which utilizes RHmax and a temperature variable, correctly predicted 

all cases (100% accuracy) (Table 4.3). It is important to note that the sensitivity of winter wheat 

FHBi models was infinite because there were no winter wheat fields that exceeded the epidemic 

threshold of ≥ 5% FHBi (epidemics) in both 2019 and 2020 growing seasons (Table 4.3). 

Furthermore, accuracy for winter wheat FHBi model WWFHB1 was not compromised when 

meteorological data were supplied from weather stations more than 40 km away from the field 

(Table 4.4). 
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Model SWFHB1 was more accurate (84%) than model SWFHB2 (80%) in discriminating between 

epidemic and non-epidemic spring wheat fields (Table 4.3). The latter model correctly predicted 

1 of 1 epidemic spring wheat field (100% sensitivity) and 67 of 84 non-epidemic spring wheat 

fields (80% specificity) (Table 4.3). However, both models incorrectly classified two fields in 

Alberta as having FHBi ≥ 5% (Table 4.17).  Accuracy for the SWFHB1 model was highest when 

the distance between the fields and the nearest weather stations was 10 km or less (88%) and 

dropped to 84% when fields utilizing weather data from weather stations 40 km or greater were 

included in the validation (Table 4.5).  

There were no barley fields classified as FHBi epidemic in both the 2019 and 2020 growing 

seasons, implying that no field exceeded the FHBi threshold of 5% (Table 4.2). Model BAFHB1 

correctly predicted 94% of the barley fields as non-epidemic (Table 4.3). The remaining 6% were 

fields with FHBi < 5% but predicted to have FHBi > 5%. These false positives were 2019 fields 

in Alberta. However, model BAFHB2 predicted all fields correctly (100% accuracy) using mean 

daily rainfall (R14MH) and duration in hours when the temperature is between 25 and 28 oC at 14 

days pre-mid-heading (T252814MH) (Table 4.3). Weather data supplied by weather stations more 

than 40 km away from the fields did not affect the accuracy of the barley FHBi models (Table 4.6). 

4.4.2.1 Comparison with USA Models 

 

Table 4.17 shows comparisons of spring wheat (SWFHB1 and SWFHB2) and winter wheat 

(WWFHB1, WWFHB2, WWFHB10 6, and WWFHB10 7) models developed in western Canada 

with USA models. The overall dataset of 86 and 45 for spring wheat and winter wheat fields, 

respectively, were used to compare the models (Table 4.2). The accuracy of models utilizing a 5% 

spring wheat FHBi epidemic threshold ranged from 59 to 87% (Table 4.17). However, only 1 of 

84 epidemic fields could be predicted, so the models' sensitivity was either 0 or 100%. The 
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SWFHB1 model had the highest accuracy (87%), while the De Wolf I model had the lowest (59%). 

SWFHB2 and Shah et al. (2013) models both had an accuracy of 80%. However, SWFHB2 had a 

sensitivity of 100%, while Shah et al. (2013) had a sensitivity of 0% (Table 4.17). When a 10% 

threshold was used, the De Wolf Model I had lower accuracy (77%) than the Shah et al. (2013) 

model (81%). However, the De Wolf model predicted 1 of 1 epidemic spring wheat case (100% 

sensitivity), whereas Shah et al. (2013) had 0% sensitivity (Table 4.17). 

The De Wolf I model is also used to forecast FHB risk in winter wheat in Alberta and Manitoba 

and was compared to the winter wheat models developed in western Canada (Table 4.17). Using 

a 5% epidemic threshold, the most accurate winter model, WWFHB1, accurately predicted all 

winter wheat fields (100% accuracy). It should also be noted that the sensitivity of winter wheat 

models was also infinite because there were no epidemic cases to predict (Table 4.17). The Shah 

et al. 2013 model correctly predicted 87% of the fields using 5 and 10% FHBi epidemic thresholds 

(Table 4.17). It was also interesting that the De Wolf I model correctly predicted 77% of the winter 

wheat fields using both 5 and 10% FHBi epidemic thresholds (Table 4.17). However, models 

WWFHB2, De Wolf I, and Shah et al. 2013 misclassified 6 2019 Alberta similar fields using either 

a 5 or 10% FHBi epidemic threshold. When models with a 10% epidemic threshold were 

compared, the most accurate winter wheat model, WWFHB10 6, correctly predicted 92% of winter 

wheat fields, whereas the De Wolf I had the lowest prediction accuracy of 77% (Table 4.17). 

4.4.3 Fusarium Damaged Kernel (FDK) Models 

 

The validation results of the best-selected spring wheat and durum FDK models are presented in 

Table 4.3. The SWFDK1 model had an accuracy of 84%, while the SWFDK2 model had an 

accuracy of 66%. However, these models had very low sensitivity due to the scarcity of epidemic 

cases to predict. When compared to SWFDK2, SWFDK1 had higher specificity. Figure 4.2 is the 
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graphical representation of spring wheat models and describes the classification of cases for spring 

wheat SWFDK1 (a) and SWFDK2 (b) models. SWFDK1 model uses a probability threshold of 

0.37 to split between fields with FDK ≥ 0.3% (above the line) and fields with FDK < 0.3% (below 

the line), while SWFDK2 uses a probability threshold of 0.32. The figure classifies fields into four 

categories: true positives (TP in blue); true negatives (TN in green); false positives (FP in red); 

and false negatives (FN in black). True positive cases are correctly predicted fields with FDK ≥ 

0.3%; true negatives are correctly predicted fields with FDK < 0.3%; false negatives are fields 

with FDK ≥ 0.3% being predicted to have FDK < 0.3%, and false positives are fields with FDK < 

0.3% being predicted to have FDK ≥ 0.3%. Model SWFDK1 had fewer errors (false positives and 

negatives) compared to SWFDK2. This difference in errors between the models prompted further 

error analysis (Figure 4.3). 

Figure 4.3 shows relative humidity on the y axis and cultivar susceptibility on the horizontal axis. 

The split between FP and FN indicates a different RH threshold required to have an epidemic case. 

This value can be solved by using logistic regression, replacing the desired probability of an 

epidemic case, and solving RH. The RH thresholds were 80 and 74% for SWFDK1 and SWFDK2 

models, respectively. Most of the overpredicted cases had higher RH than the model's RH 

threshold, while underpredicted cases had lower RH. Most false positives were from a moderately 

resistant variety, while most FN cases were from the intermediate variety. 

The means of model error in the validation dataset are compared to the errors in the model 

development dataset (Table 4.14). While the mean RH10MA (model SWFDK1) and RH7MA 

(model SWFDK2) values for TP cases were consistently higher than those for TN cases, they 

remained within one standard deviation of the development dataset's non-epidemics. In contrast, 

in both SWFDK1 and SWFDK2 models, FN cases were consistently lower than TP cases. 
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However, the mean of RH10MA FN cases in the validation dataset was within two standard 

deviations of the mean of TP cases in the model development dataset. 

 The DUFDK2 model demonstrated sensitivity, specificity, and accuracy of 50, 94, and 89%, 

respectively (Table 4.3). This model is based on the mean RH four days before anthesis. The model 

incorrectly classified only two fields, one in Saskatchewan being underestimated and the other 

being overestimated to have FDK of 2%. The total accuracy of the DUFDK1 model was 78%. 

4.4.4 Deoxynivalenol Models 

 

Model DUDON1 correctly classified all durum fields as having DON below 1 mg kg-1 when the 

nearest weather stations were 25 km or less from the fields. The accuracy of this model was 100% 

using a 0.57 optimum predicted threshold (Table 4.10). However, when all data were used, the 

accuracy dropped to 82%. The model failed to predict any of the three durum fields with DON 

levels ≥ 1 mg kg-1 (0% sensitivity) but correctly predicted all durum fields with DON levels < 1 

mg kg-1 (100% specificity) (Table 4.3). The DUDON2 model had an overall accuracy of 75% 

(Table 4.3). Both models incorrectly classified three 2019 Saskatchewan fields as having DON 

levels below 1 mg kg-1, yet DON levels were above 1 mg kg-1 (false negative) (Table 4.16). These 

fields used weather data gathered from stations located 30 km away from the fields. However, the 

specificity of these models was greater than 80% (Table 4.3). Only one field in Alberta, 2019 

growing season was underestimated by DUDON2 (Table 4.16). 
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Figure 4. 2. Prevalence of Fusarium Head Blight (a), Fusarium damaged kernels (b), and deoxynivalenol (c) in 

susceptible/moderately susceptible varieties (F. RC1), intermediate varieties (F. RC2), and resistant/moderately resistant varieties 

(F. RC3) in wheat and barley in western Canada during the 2019 and 2020 growing seasons. 
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Table 4. 1. Correlations between Fusarium Head Blight index (FHBi), Fusarium damaged 

kernels (FDK), and deoxynivalenol (DON) in winter wheat, spring wheat, barley, and durum 

grain samples. 

Crop Type N Variables FHBi FDK  

Winter Wheat 45 FDK 0.080  
  p-value 0.603  
  DON 0.218 0.909 
  p-value 0.150 <.0001 
     

Spring Wheat 84 FDK -0.043  

  p-value 0.699  

  DON -0.009 0.936 
  p-value 0.934 <.0001 
     

Barley 49 FDK -0.090  

  p-value 0.537  

  DON -0.101 0.416 
  p-value 0.492 0.003 
     

Durum 19 FDK 0.064  

  p-value 0.796  

  DON -0.074 0.221 
  p-value 0.764 0.363 

 

 

Table 4. 2. Percentage of epidemic wheat and barley fields during the 2019 and 2020 growing 

season in western Canada.  

Crop Type 
Disease 

Indicator 

Epidemic 

Threshold 
Na 

Epidemic 

samples (%) 

Non-Epidemic 

samples (%) 

Winter Wheat FHB index 5% 47 0 100 

Spring Wheat FHB index 5% 85 1 99 

Durum FHB index 5% 19 0 100 

Barley FHB index 5% 48 0 100 

Spring Wheat FDK 0.3% 84 10 90 

Durum FDK 2% 19 10 90 

Durum DON 1 mg kg-1 18 15 85 

aN is the number of fields 
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Table 4. 3. Validation results of selected Fusarium Head Blight index, Fusarium damaged kernel, and deoxynivalenol models for 

spring wheat, winter wheat, barley, and durum developed in western Canada. 

Crop Type Model   Model equation (p =1/1 +exp-(a + bX +…))a OPPb Sensc Specd Acce 

Winter Wheat WWFHB1 -0.1188+0.0185RH807MA+0.7846Tmin7MA-0.6239T7MA 0.37 *f 100 100 

 WWFHB2 -5.1095+0.0312RH8014MA 0.17 * 70 70 

Spring Wheat SWFHB1 -6.1086+0.1267RH804MA+0.2461T252804MA-0.1414TRH904MA 0.25 0 88 87 

 SWFHB2 -34.5786+0.3513RHmax14MA+0.0435T252814MA 0.39 100 80 80 

Barley BAFHB1 -6.4679+0.1560RH804MH+0.2981T252804MH-0.1137TRH804MH 0.42 * 94 94 

 BAFHB2 -3.77241+0.2146R14MH+0.0495T252814MH 0.27 * 100 100 

Durum DUFHB1 -2.0665+0.0326TRH8010MA 0.39 * 94 94 

 DUFHB2 -8.3268+0.5906Tmin4MA+0.2714R4MA 0.58 * 84 84 

       
Spring Wheat SWFDK1 -31.6372+ 0.40037RH10MA 0.37 22 84 84 

 SWFDK2 -25.27+0.3167RH7MA 0.32 11 72 66 

Durum DUFDK1 -11.9932+0.0847RH8010MA 0.29 0 88 78 

 DUFDK2 -17.9341+0.2185RH4MA 0.28 50 94 89 

       
Durum DUDON1 -20.7748+0.2646RH10MA  0.57 0 100 82 

  DUDON2 -24.1039+0.3114RH14MA 0.51 0 92 75 
        aLogistic regression models were developed using 2019 and 2020 data collected in Manitoba, Saskatchewan, and Alberta. Variables 

are defined in Table 3.1.1. P = probability of an epidemic event (1), a and b are the model coefficients, and X is the predictor 

variable(s). 

        bThe optimal predicted probability of an epidemic case is determined by Youden’s index max (where sensitivity and specificity for the 

full range of p values are high). 
        cSensitivity (Sens) is the percentage of correctly classified epidemics cases. 
        dSpecificity (Spec) is the percentage of correctly classified non-epidemic cases. 
        eAccuracy (Acc) is the percentage of correctly classified cases of epidemic and non-epidemic.  
       fNo fields with FHBi ≥ 5%.
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Table 4. 4. The effect of the distance between the field and the nearest weather station on the 

accuracy of winter wheat Fusarium Head Blight index (FHBi) models. 

 
 Winter wheat WWFHB1 Model   Winter wheat WWFHB2 Model    

Distance 

(km)a 

Nb Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 14 *d 57 57  * 100 100 

15 20 * 50 50  * 100 100 

20 27 * 52 52  * 100 100 

25 27 * 52 52  * 100 100 

30 32 * 56 56  * 100 100 

35 35 * 60 60  * 100 100 

40 37 * 62 62  * 100 100 

All datac 47 * 70 70  * 100 100 
aCumulative distance from producer field to nearest weather station. 
bNumber of winter wheat fields. 
cAll fields, including those with weather stations located more than 40 km away. 
dNo fields with FHBi ≥ 5%. 

 

 

Table 4. 5. The effect of the distance between the field and the nearest weather station on the 

accuracy of spring wheat Fusarium Head Blight index (FHBi) models.  
 Spring wheat SWFHB1 Model 

 
Spring wheat SWFHB2 Model 

Distance 

(km)a Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 40 0 89.7 88 
 

100 76.9 78 

15 59 0 87.9 86 
 

100 75.9 76 

20 65 0 85.9 85 
 

100 75.0 75 

25 68 0 85.1 84 
 

100 74.6 75 

30 72 0 85.1 84 
 

100 74.6 75 

35 75 0 84.5 83 
 

100 76.1 76 

40 79 0 84.7 84 
 

100 76.4 77 

All datac 86 0 84.5 84   100 79.8 80 
aCumulative distance from producer field to nearest weather station. 
bNumber of spring wheat fields. 
cAll fields, including those with weather stations located more than 40 km away. 
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Table 4. 6. The effect of the distance between the field and the nearest weather station on the 

accuracy of barley Fusarium Head Blight index (FHBi) models.  
 Barley BAFHB1 Model 

 
Barley BAFHB2 Model 

Distance 

(km)a Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 17 *d 94.1 94  * 100 100 

15 21 * 95.2 95  * 100 100 

20 28 * 96.4 96  * 100 100 

25 32 * 90.6 91  * 100 100 

30 34 * 91.9 92  * 100 100 

35 37 * 92.3 92  * 100 100 

40 39 * 93.8 94  * 100 100 

All datac 48 * 93.8 94  * 100 100 
aCumulative distance from producer field to nearest weather station. 
bNumber of barley fields. 
cAll fields, including those with weather stations located more than 40 km away. 
dNo fields with FHBi ≥ 5%. 

 

 

 

Table 4. 7. The effect of the distance between the field and the nearest weather station on the 

accuracy of durum Fusarium Head Blight index models. 

   Durum DUFHB1 Model 
 

Durum DUFHB2 Model  

Distance 

(km)a Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 3 *d 66.7 67  * 100 100 

15 4 * 75.0 75  * 100 100 

20 5 * 80.0 80  * 100 100 

25 7 * 85.7 86  * 100 100 

30 9 * 77.8 78  * 100 100 

35 11 * 81.8 82  * 100 100 

40 14 * 83.3 83  * 91.7 91.7 

All datac 19 * 84.2 84  * 94.4 94.4 
aCumulative distance from producer field to nearest weather station. 
bNumber of durum fields. 
cAll fields, including those with weather stations located more than 40 km away. 
dNo fields with FHBi ≥ 5%. 
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Table 4. 8. Influence of distance between field and nearest weather station on the accuracy of durum 

Fusarium damaged kernels (FDK) models. 

   Durum DUFDK1 Model 
 

Durum DUFDK2 Model 

Distance 

(km)a Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 4 *d 100 100  * 100 100 

15 5 * 80.0 80  * 100 100 

20 6 * 83.3 83  * 100 100 

25 7 * 71.4 71  * 100 100 

30 8 0 71.4 63  100 100 100 

35 11 0 80.0 73  100 90.0 91 

40 12 0 83.3 77  100 91.7 92 

All datac 18 0 87.5 78  50 93.8 89 
aCumulative distance from producer field to nearest weather station. 
bNumber of durum fields. 
cAll fields, including those with weather stations located more than 40 km away. 
dNo fields with FDK ≥ 2%. 

 

 

 

 

Table 4. 9. Influence of distance between field and nearest weather station on the accuracy of spring 

wheat Fusarium damaged kernels (FDK) models. 

   Spring wheat SWFDK1 Model 
 

Spring Wheat SWFDK2 Model 

Distance 

(km)a Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 40 25 86 80  25 72 68 

15 59 25 84 80  25 67 64 

20 65 25 84 80  25 69 66 

25 68 25 83 79  25 69 66 

30 71 25 83 79  25 69 66 

35 73 20 82 78  20 71 67 

40 76 20 82 78  20 71 67 

All datac 84 22 84 84  11 72 66 
aCumulative distance from producer field to nearest weather station. 
bNumber of spring wheat fields. 
cAll fields, including those with weather stations located more than 40 km away. 

 



118  
 

Table 4. 10. The effect of distance between the field and the nearest weather station on the accuracy 

of durum deoxynivalenol (DON) models. 

   Durum DUDON1 Model 
 

Durum DUDON2 Model 

Distance 

(km)a 
Nb 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
 Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

10 3 *d 100 100  * 100 100 

15 4 * 100 100  * 100 100 

20 5 * 100 100  * 100 100 

25 7 * 100 100  * 83 71 

30 9 0 100 89  0 88 78 

35 10 0 100 91  0 90 82 

40 12 0 100 92  0 91 77 

All datac 18 0 100 82  0 92 75 

aCumulative distance from producer field to nearest weather station. 
b No fields with DON ≥ 1 mg kg-1. 
c All fields, including those with weather stations located more than 40 km away. 
dNo fields with DON ≥ 1 mg kg-1. 

 

 

Table 4. 11. Winter wheat WWFHB2 Fusarium Head Blight index model errors in the winter wheat 

validation dataset. 

Field Code Province Year FHB 

Ratinga 

Latitude Longitude False 

Positive 

False 

Negative 

MBWW36 Manitoba 2020 I 50.6115 -100.6964 xb -c 

MBWW34 Manitoba 2020 I 50.1530 -98.9000 x - 

MBWW33 Manitoba 2020 R 49.5199 -101.0567 x - 

MBWW32 Manitoba 2019 I 50.3174 -100.2972 x - 

MBWW33 Manitoba 2019 R 50.3163 -100.2973 x - 

MBWW32 Manitoba 2020 MR 49.4558 -101.0563 x - 

MBWW35 Manitoba 2020 I 50.4348 -99.9812 x - 

SKWW07 Saskatchewan 2020 I 50.1641 -105.5408 x - 

ABWW01 Alberta 2019 S 53.0196 -111.1825 x - 

ABWW01 Alberta 2020 I 49.7529 -112.6171 x - 

ABWW03 Alberta 2020 MR 50.2772 -111.9921 x - 

ABWW09 Alberta 2020 MR 49.5123 -112.8687 x - 

ABWW12 Alberta 2020 MR 51.7499 -114.3519 x - 

ABWW05 Alberta 2020 MR 50.5175 -110.2283 x - 

aWinter wheat varieties that are Susceptible (S), Intermediate (I), Moderately Resistant (MR), and 

Resistant (R) to Fusarium Head Blight. 

bPresence of a false positive or false negative case. 

cAbsence of a false positive or false negative case. 
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Table 4. 12. Spring wheat Fusarium Head Blight index model errors in the validation dataset. 

Field 

Code 

Province Year FHB 

Ratinga 

Latitude Longitude False 

Positive 

False 

Negative 

SWFHB1 Model 

MBSW21 Manitoba 2019 MR 49.287 -98.547 -b xc 

MBSW24 Manitoba 2019 MR 50.697 -101.164 x - 

MBSW25 Manitoba 2019 I 50.778 -101.233 x - 

MBSW26 Manitoba 2019 MR 50.874 -101.302 x - 

SKSW01 Manitoba 2019 MR 50.040 -108.297 x - 

SKSW04 Saskatchewan 2019  52.460 -106.850 x - 

SKSW09 Saskatchewan 2019 I 54.155 -108.321 x - 

SKSW11 Saskatchewan 2019 MS 52.737 -109.046 x - 

SKSW01 Saskatchewan 2020 MR 50.140 -105.121 x - 

ABSW04 Alberta 2019 I 51.499 -113.210 x - 

ABSW05 Alberta 2019 S 52.833 -110.604 x - 

ABSW07 Alberta 2019 MR 52.703 -110.167 x - 

ABSW11 Alberta 2019 I 53.488 -111.225 x - 

ABSW04 Alberta 2020 I 53.474 -111.209 x - 

      
 - 

SWFHB2 Model 

MBSW10 Manitoba 2019 MR 50.364 -96.471 x - 

MBSW12 Manitoba 2019 I 49.036 -98.969 x - 

MBSW19 Manitoba 2019 I 49.044 -99.609 x - 

MBSW20 Manitoba 2019 MR 49.903 -100.773 x - 

MBSW27 Manitoba 2019 MR 49.411 -98.692 x - 

MBSW10 Manitoba 2020 I 49.029 -98.767 x - 

MBSW17 Manitoba 2020 I 49.268 -101.141 x - 

MBSW18 Manitoba 2020 MR 49.421 -98.682 x - 

MBSW19 Manitoba 2020 I 49.079 -99.619 x - 

MBSW20 Manitoba 2020 MR 49.800 -100.046 x - 

MBSW29 Manitoba 2020 MR 49.167 -99.304 x - 

ABSW01 Alberta 2019 MR 50.183 -111.830 x - 

ABSW04 Alberta 2019 I 51.499 -113.210 x - 

ABSW02 Alberta 2020 I 53.056 -111.002 x - 

ABSW04 Alberta 2020 I 53.474 -111.209 x - 

ABSW09 Alberta 2020 I 50.448 -110.125 x - 

ABSW11 Alberta 2020 I 54.295 -113.385 x - 
aSpring wheat varieties that are Susceptible (S), Moderately Susceptible (MS), Intermediate(I), and 

Moderately Resistant (MR), to Fusarium Head Blight. 

bAbsence of a false positive or false negative case. 

cPresence of a false positive or false negative case. 
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Table 4. 13. Durum DUFHB1 Fusarium Head Blight index model errors in the validation dataset. 

Field Code Province Year Latitude Longitude False 

Positive 

False 

Negative 

MBDU08 Manitoba 2020 49.296 -101.071 xa -b 

SKDU02 Saskatchewan 2019 50.145 -105.129 x - 

SKDU03 Saskatchewan 2019 49.715 -105.225 x - 
aPresence of a false positive or false negative case. 

bAbsence of a false positive or false negative case. 

 

 

Table 4. 14. Means of variables during spring wheat Fusarium damaged kernels error analysis 

during model validation and development. Standard deviations are presented in parenthesis. 

Model Modelling 

Stage 

Variable False 

Negative 

False 

Positive 

True 

Negative 

True 

Positive 

SWFDK1 Validation RH10MA 72.8 79.4 70.8 81.1 

   (2.7) (0.9) (6.0) (2.4) 

SWFDK1 Development RH10MA 71.1 79.6 71.6 80.6 

   (5.4) (1.2) (10.0) (3.6) 

       
SWFDK2 Validation RH7MA 73.9 79.8 68.9 82.0 

   (1.4) (1.6) (6.2) (3.0) 

SWFDK2 Development RH7MA 72.0 78.0 70.9 83.1 

   (5.6) (2.2) (10.7) (0.0) 

 

 

Table 4. 15. Durum Fusarium damaged kernels model errors in the validation dataset. 

Model Field 

Code 

Province Year Latitude Longitude False 

Positive 

False 

Negative 

DUFDK1 ABDU02 Alberta 2019 51.1943 -110.4642 xa -b 

 ABDU01 Alberta 2019 51.5870 -110.3386 x - 

 SKDU04 Saskatchewan 2019 52.3876 -106.9698 - x 

 SKDU09 Saskatchewan 2019 51.0485 -104.9671 - x 

        

DUFDK2 SKDU09 Saskatchewan 2019 51.0485 -104.9671 - x 

 SKDU05 Saskatchewan 2020 50.1499 -104.2346 x - 
aPresence of a false positive or false negative case. 

bAbsence of a false positive or false negative case. 
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Figure 4. 3. Probability of FDK ≥ 0.3% against relative humidity for SWFDK1 (a), and SWFDK2 (b) models. The dashed line 

shows the optimum probability threshold for discriminating fields with FDK ≥ 0.3% (above the line) from FDK < 0.3% (below the 

line). RH10MA and RH7MA are mean daily relative humidity 10 and 7 days prior to middle anthesis, respectively. 
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Figure 4. 4. Fusarium Head Blight (FHB) rating for spring wheat varieties vs. relative 

humidity (RH) at 10 and 7 days before anthesis for SWFDK1 and SWFDK2 models, 

respectively. 
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Table 4. 16. Durum deoxynivalenol model errors in the validation dataset. 

Model Field 

Code 

Province Year Latitude Longitude False 

Positive 

False 

Negative 

DUDON1 SKDU04 Saskatchewan 2019 52.388 -106.970 - xa 

 SKDU08 Saskatchewan 2019 51.304 -105.095 - x 

 SKDU09 Saskatchewan 2019 51.049 -104.967 - x 

        
DUDON2 SKDU04 Saskatchewan 2019 52.388 -106.970 - x 

 SKDU08 Saskatchewan 2019 51.304 -105.095 - x 

 SKDU09 Saskatchewan 2019 51.049 -104.967 - x 

 ABDU01 Alberta 2019 51.587 -110.339 x -b 
aPresence of a false positive or false negative case. 

bAbsence of a false positive or false negative case. 

 

 

Table 4. 17. Performance of Fusarium Head Blight index models developed in the USA (De 

Wolf I and Shah et al. 2013) and models developed in western Canada using spring wheat 

(N=86) and winter wheat (N=45) validation dataset collected in western Canada. 

Model Epidemic 

Threshold 

OPPa FNb FPc Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Spring Wheat 

SWFHB1 5 0.25 1 10 0 88 87 

SWFHB2 5 0.3 0 17 100 80 80 

De Wolf I 5 0.5 0 32 100 58 59 

De Wolf I 10 0.5 0 33 0 58 58 

Shah et al. 2013 5 0.37 1 16 0 81 80 

Shah et al. 2013 10 0.37 0 16 0 81 81 

        
WinterWheat 

WWFHB1 5 0.37 0 0 *e 100 100 

WWFHB2 5 0.17 0 14 * 70 70 

WWFHB10 6
d 10 0.34 0 4 * 88 92 

WWFHB10 7 10 0.37 0 6 * 81 87 

De Wolf I 5 0.5 0 10 * 77 77 

De Wolf I 10 0.5 0 10 * 77 77 

Shah et al. 2013 5 0.5 0 6 * 87 87 

Shah et al. 2013 10 0.5 0 6 * 87 87 
aOptimum predicted probability of the model determined during model development. 
bFN is false negative cases. 
cFP is false positive cases. 
dWinter wheat models with FHBi epidemic threshold of ≥ 10% (Table A3.11). 
eNo fields with FHBi ≥ 5%. 
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Table 4. 18. Description of selected weather predator variables. 

Variable Variable Description Days Prior to 

Mid-Anthesis 

RH4MA Mean daily relative humidity (%) 4 

RH804MA Duration (h) RH ≥ 80 %   4 

T252804MA Duration (h) air temperature 25 ≤ T ≤ 28 oC 4 

Tmin4MA Mean daily minimum temperature (%) 4 

TRH804MA Duration (h) air temperature 15 ≤ T ≤ 30 oC, and RH ≥ 80 %   4 

TRH904MA Duration (h) air temperature 15 ≤ T ≤ 30 oC, and RH ≥ 90 %   4 

R4MA Mean daily rainfall (mm) 4 

RH7MA Mean daily relative humidity (%) 7 

RH807MA Duration (h) RH ≥ 80 %   7 

T7MA Mean daily temperature (oC)  7 

Tmin7MA Mean daily minimum temperature (%) 7 

RH10MA Mean daily relative humidity (%) 10 

RH8010MA Duration (h) RH ≥ 80 %   10 

TRH8010MA Duration (h) air temperature 15 ≤ T ≤ 30 oC, and RH ≥ 80 %   10 

RH8014MA Duration (h) RH ≥ 80 %   14 

T252814MA Duration (h) air temperature 25 ≤ T ≤ 28 oC 14 

R14MA  Mean daily rainfall (mm) 14 

RHmax14MA  Mean daily maximum relative humidity (%) 14 

 

 

4.5 Discussion 

 

In general, the occurrence of FHBi, FDK, and DON reflects weather conditions that occurred at 

producer fields during the 2019 and 2020 growing seasons. Warm, dry weather was most likely 

unfavorable for FHB epidemics at most fields during the two growing seasons. The low correlation 

between FHBi and FDK and DON in this study suggests that FHBi models can only be rough 

predictors of FDK and DON levels in wheat and barley. Several studies have also found a poor 

association between FHBi, FDK, and DON, which changes year to year (Paul et al., 2005; 

Miedaner et al., 2016; Góral et al., 2018). This poor relationship may be due to less aggressive 

Fusarium strains such as Fusarium poae and Microdochium nivale, which have been reported to 

cause the same FDK symptoms as Fusarium graminearum but do not produce the same amount 
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of mycotoxin (Góral et al., 2018). Furthermore, due to late-season infections, grains with low 

amounts of FDK might nonetheless contain high levels of DON (Cowger et al., 2009; Andersen et 

al., 2015).  

Fusarium Head Blight index models. The overall accuracy of the FHBi model varied between 

70 and 100% across crop types. The high predictive ability of the FHBi models is partly due to the 

diverse weather conditions and disease occurrence on plot sites in the data set used to develop the 

models, which can be extended to many areas of western Canada not included in the model 

development. The temperature and moisture variables used by the FHBi wheat and barley models 

represent field conditions that should be optimal for Fusarium species infection and subsequent 

symptom development that are ≥ 5% FHBi. For example, the RH9014MA weather variable for 

model WWFHB2 measures prolonged periods of high humidity ≥ 80%, 14 days pre-mid-anthesis, 

a condition associated with the development of FHB symptoms in wheat (De Wolf et al., 2003; 

Froment et al., 2011; Shipe et al., 2019).  

In this study, when RH was used alone in the WWFHB2 model, prediction accuracy of 70% was 

obtained using the validation dataset. However, when RH and temperature were used together in 

model WWFHB1, prediction accuracy increased to 100%. It is also critical to take note of the sign 

of the coefficients in the models. For example, the positive sign of daily minimum temperature 

(Tmin) for winter wheat model WWFHB1 indicates that Fusarium species prefer cooler than 

warmer temperatures. This finding can be explained by the humid conditions that often accompany 

low temperatures and provide an ideal environment for fungal infection during the pre-anthesis 

period. 
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The models for spring wheat, barley, and durum likely discriminate epidemic cases less well due 

to the small number of fields with FHB ≥ 5% in the model validation data set. However, this 

validation dataset is typical of the situations the model would experience in the real world and 

indicates how well the model will perform after deployment. Given the low disease pressure in 

both the 2019 and 2020 growing seasons, which was most likely caused by dry conditions, 

producers could largely avoid costly application of fungicides. Furthermore, the fact that the 

models had few errors under diverse conditions demonstrates their general applicability within 

western Canada, as the samples used in the development of these models came from various 

locations in western Canada that were not included in the development of these models. The error 

analysis of the spring wheat FHBi models revealed that both models misclassified two similar 

Alberta fields. These errors could be explained by low FHB spore levels detected in these fields 

near flowering. Even though the weather conditions were favorable for infection, low FHB spore 

levels may have resulted in fewer spores landing on the flowers, thereby reducing disease 

incidence and severity. A lack of epidemic cases in the validation dataset may have resulted in no 

effect of distance between the farm and the nearest weather station. 

Comparison of FHBi Models. The models developed in this study for spring and winter wheat 

were compared to those currently being used in western Canada to predict FHB risk. When applied 

to the western Canadian spring wheat field data, the De Wolf I model performed poorly. The 

differences in prediction performance between the models developed in the current study and the 

USA models may partially be attributed to differences in weather conditions, cultivars, and FHB 

species. The De Wolf I model, when evaluated under Quebec conditions to predict DON levels 

greater than 1 mg kg-1 resulted in a sensitivity of 6.7%, specificity of 64.9%, and prediction 

accuracy less than 50% (Giroux et al., 2016). It is interesting to note that the De Wolf I model 
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performed better in predicting FHB risk in winter wheat. The data set used to develop the De Wolf 

models included more winter wheat site-years (30 of 50) than spring wheat site-years, which may 

account for why winter wheat predictions were better than spring wheat predictions (De Wolf et 

al., 2003). 

Fusarium damaged kernels. Spring wheat models SWFDK1 and SWFDK2 used mean RH 

averaged 10 and 7 days before mid-anthesis, respectively. The accuracy of SWFDK1 was 18% 

greater than SWFDK2, and this difference may have been due to more extended periods of 

favorable humidity captured by SWFDK1 but missed by SWFDK2. The sensitivity of spring wheat 

FDK models during validation decreased dramatically compared to model development because 

there were very few or no epidemic cases to predict. Model sensitivity can only be improved with 

more data collection that balances the dry conditions and low FHB disease levels observed over 

the two growing seasons. Nonetheless, the models correctly predicted most site-years, achieving 

accuracy up to 84%. Therefore, these models can be used as a starting point to identify weather 

conditions that may result in wheat being downgraded during marketing if FDK is greater than 

0.3% in spring wheat. 

While the sensitivity of the two durum FDK models was also low due to a lack of epidemic cases 

to predict, the higher specificity and accuracy of the models indicate that fungicide application 

would not be recommended because conditions in durum were not conducive for FDK. This will 

reduce the use of unnecessary fungicides, lowering the producer's production costs and potential 

environmental damage. However, the accuracy of these models also relies on the distance between 

the field and the nearest weather station. Model DUFDK2, for example, showed reduced accuracy 

when the distance between the field and the nearest weather station was greater than 40 km. The 

error analysis of durum FDK models revealed that model DUFDK1 which uses duration (h) when 
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relative humidity is 80% at 10 days before mid-anthesis had fewer errors (4 errors) than DUFDK2 

which uses mean RH at 4 days before anthesis (2 errors). The differences in errors could be due to 

a combination of factors including the duration of weather conditions considered by the predictor 

variables and the distance between the field and the nearest weather station. Thus, the shorter the 

duration and distance to the nearest weather station, the more accurate the estimate of weather 

conditions in the specific environment/field.  

Deoxynivalenol models. The DON durum models correctly classified a high percentage of fields 

as having less than 1 mg kg-1 DON concentration. The accuracy of DONDU1 was 82%, and the 

remaining 18% were fields classified as having DON levels less than 1 mg kg-1. Post-anthesis 

conditions that favor DON accumulation, but which our models did not consider, may be the cause 

of these false-negative errors. False positives may not be surprising for several reasons. First, DON 

is water-soluble, and delayed rains that occurred during the end of the 2019 growing season could 

have washed down some of the DON contamination in the grain resulting in DON concentration 

less than 1 mg kg-1 not predicted by our models (Nita, 2013; Crippin, 2019). Secondly, mycotoxin 

production is affected by several other factors not considered by our models, including competition 

with other pathogens (Xu et al., 2007).  

In contrast to the DUDON1 model, cross-validation results of durum DON models in the study 

conducted by Gourdain and Rosengarten (2011)  showed that their model predicted more false 

positives (52%) than false negatives (8%) when the DON threshold was > 1,750 µg kg-1. However, 

their model correctly predicted DON content below or above 1,750 µg kg-1in 85% of cases. This 

level of accuracy is comparable to what our models achieved (82% accuracy). Validation of 

DONcast in Ontario, Canada, also resulted in 80 to 85% prediction accuracy using a 1 mg kg-1 

threshold (Schaafsma and Hooker, 2007). However, the sensitivity and specificity of the models 
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are unknown. Furthermore, the DONcast model utilizes weather conditions that extend from 7 

days before heading to 10 days after wheat heading. Compared to previous modelling studies (Del 

Ponte et al., 2005; Schaafsma and Hooker, 2007; Franz et al., 2009), the current study 

demonstrated that DON epidemics in wheat could be accurately predicted using a narrow time 

window around wheat flowering.  

The quality of the data used in the development of predictive models for mycotoxins in wheat 

impacts their prediction performance. For example, the DUDON1 model’s accuracy was 100% 

when weather data were sourced from weather stations within 25 km from the field. However, 

accuracy dropped to 89% when data were sourced from weather stations that were 40 km or more 

from the field. Although various factors can affect the model’s sensitivity, specificity, and overall 

accuracy, some of the model errors are due to variation in the response variable (DON levels) as 

well as the explanatory (meteorological) variables. Improving model performance may thus be 

achieved with higher-quality data, such as data acquired from weather stations as close as possible 

to the fields. 

4.6 Conclusion 

 

The FHBi, FDK, and DON models for wheat and barley were successfully validated using weather 

and disease data collected from producer fields in western Canada during the 2019 and 2020 

growing seasons. The best models for predicting the occurrence of FHBi ≥ 5% in western Canada 

are WWFHB1, SWFHB1, BAFHB1 and DUFHB1 for winter wheat, spring wheat, barley, and 

durum, respectively; SWFDK1 and DUFDK1 for spring wheat, and durum FDK models, 

respectively, and DUDON2 for DON ≥1 mg kg-1 in durum. The models were able to predict mostly 

non-epidemic fields (specificity) correctly. However, it is unclear how accurately the models 

predict high FHBi, FDK, and DON levels because most fields were below epidemic thresholds. 
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Data from years with favorable conditions for FHB occurrence will be required to further evaluate 

these models. For the majority of the models, it was observed that the closer the distance between 

the weather station and the field, the more accurate the prediction, so this will be an important 

factor to consider when selecting weather stations that feed weather data to these models. However, 

it should be noted that there was a lack of data points to fully determine the accuracy of the models 

in the categorized distances between producer fields and nearest weather stations. More data is 

needed to determine the accuracy of the models based on the distance between producer fields and 

nearest weather stations. Spraying fungicides only when necessary and minimizing any adverse 

effects on the environment while maintaining yield and quality can maximize fungicide use. By 

using the newly developed forecasting models, producers in western Canada can better predict the 

need for spraying against FHB. Control agencies and industry could also use the models to help 

predict DON levels and identify high-risk fields, regions, or years to reduce mycotoxins levels in 

the food and feed supply chain. 
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5. OVERALL SYNTHESIS 

 

5.1 Conclusion and Recommendations 

 

Fusarium Head Blight (FHB) disease is a major wheat and barley disease that reduces yield and 

quality, posing a major threat to global food and feed security. FHB epidemics can be managed 

more effectively with the help of decision-support tools based on disease monitoring models and 

weather variables, which can reduce harmful side effects of excessive fungicide applications and 

ensure economic benefits to the producer. The overall goal of this project was to develop and 

validate weather-based FHB risk models in western Canadian cereal production. In Chapter 2, the 

relationship between disease indicators (FHBi, FDK, and DON) was examined, and the effect of 

cultivars on disease indicators used in the development of the FHB models was also evaluated. 

The results of Chapter 2 showed that there was no correlation between FHBi and FDK or FHBi 

and DON in all crop types except durum. Visual estimation-based disease evaluation may have 

limitations due to the variability of estimates from different evaluators. This may also result in 

ineffective disease forecasting and prevention strategies due to the subjectivity of the estimation. 

As a result of the findings in Chapter 2 and the supporting literature, it was recommended that 

FHB modelling not rely exclusively on FHBi. Disease-damage factors such as FDK and DON may 

be more informative because they are currently used by the Canadian grain commission for grading 

(FDK) or cause downgrading or rejection of grain during marketing by some buyers (DON). The 

effect of different levels of FHB resistance by variety was not significant for FHBi and FDK. The 

effect could have been masked by the low disease pressure, likely due to the dry and hot weather 

conditions experienced at most sites during the study period. In the long term, with continuous 

data collection, the cultivar effect on FHB disease resistance will likely become more apparent and 

play a significant role in FHB prediction. 
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The objectives of Chapter 3 were to develop FHBi, FDK, and DON weather-based models for 

wheat and barley in western Canada. The prediction accuracy of the models for FHBi in wheat and 

barley was greater than 70%. Rainfall, relative humidity, and temperature were not significant in 

any FHBi model when used alone but produced satisfactory results when used in combination. 

However, FDK models for spring wheat and durum performed best when relative humidity was 

used as the sole predictor variable. A critical factor to consider was the number of variables 

included in the models and the need to balance simplicity and disease risk prediction accuracy. 

Models with few variables were preferred over models with many variables. The accuracy of FDK 

models varied between 77 and 89%. Similarly, DON models for durum used relative humidity 

values from 10 and 14 days prior to mid-anthesis and had a prediction accuracy of between 75% 

and 82%. In Chapter 4, these selected models were validated using an independent dataset 

collected in the same years as those for model development but from more than 200 producer fields 

in western Canada. These models produced satisfactory results, with prediction accuracy ranging 

from 70 to 100% for the FHBi, 66 to 89% for the FDK, and 75 to 82% for the DON. However, the 

sensitivity of the models was infinite or low because there were no or few epidemic cases to 

predict. More data from high disease pressure years is required to test these models for their 

sensitivity.  

The FHB models developed in this study will be used as a starting point in the customized online 

viewer (FHB risk tool) that is currently under development. This tool will allow producers to select 

crop type, variety, field location, and assessment date that corresponds to 50% anthesis and local 

weather data. Following the selection of these inputs, the FHB risk tool will provide users with the 

probability of FHB epidemic using the models developed in this study and real-time weather data 

from more than 500 weather stations across western Canada. When the probability of FHB 
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epidemic is high (at or above the epidemic threshold), producers can take steps such as field 

scouting to determine the need for a fungicide application to avoid yield or downgrading losses. 

Thus, the FHB epidemic warning system will assist producers to increase wheat and barley 

production, sustainability and profitability by spraying only when needed and avoiding 

unnecessary fungicide expenditures when yield and quality loss are unlikely. 

Several factors may be considered to improve the prediction accuracy of the models and delivery 

of the FHB risk tool. First, accounting for FHB species could improve the model’s prediction 

accuracy. Climate variation currently being experienced may impact the distribution and intensity 

of FHB epidemics. Climate variation can affect pathogen biology directly or indirectly via host 

development and phenology (Hooker et al., 2002; Shah et al., 2019a). The prediction models for 

FHBi and DON in this study did not account for the effect of FHB species or chemotypes, which 

may affect prediction results, particularly for DON levels, due to the difference in DON production 

between the 3-ADON and I5-ADON chemotypes. Additional research may be required to ascertain 

the distribution of Fusarium species within and between provinces, given the observed shift in 

chemotypes in the prairies (Oghenekaro et al., 2021), and to incorporate this information into FHB 

modelling. 

Second, another critical factor in FHB modelling is the date of 50% anthesis, as FHB infects wheat 

and barley mainly during anthesis. Although we are confident that the actual anthesis date that was 

estimated for each field was within a day or two of the actual mid-anthesis date, the model could 

be improved with a more accurate estimate of mid-anthesis date for each field. Several agronomic 

factors influence the timing and duration of the mid-anthesis date within and between fields, 

including cultivar, tillage, planting date, and weather. For this reason, producers need to estimate 

the heading date as accurately as possible to improve FHB prediction and the timing of fungicide 
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application. Additionally, the FHB weather-based prediction tool should incorporate crop growth 

models (thermal models), which will aid producers in estimating heading or anthesis dates based 

on planting date in cases where direct observations are difficult. However, it should be noted that 

the most accurate method for determining 50% anthesis and heading dates is through direct 

observation.  

Thirdly, the defined epidemic thresholds used in this study correspond to the FDK levels that 

downgrades grain from No. 1 grade for each crop or DON thresholds, which result in buyer 

downgrading or rejection during marketing. Using this approach, fungicide treatments should be 

applied only when weather conditions are favorable to exceed these thresholds, which will result 

in loss of revenue for producers. Thus, the FHB risk models have been designed so that when they 

indicate high risk of an epidemic, significant economic losses can be minimized by applying 

fungicide, but when the risk of an epidemic is low, unnecessary costs for fungicide treatment can 

be avoided. In Chapter 4, the De Wolf models utilizing an FHBi ≥ 10% threshold were validated 

using producer field samples collected in western Canada. The De Wolf I model in spring wheat 

had the lowest accuracy of 57%. Errors associated with these models were mainly false positives, 

which may result in the unnecessary application of fungicides. Fungicides are an additional cost 

to growers, and in areas and years with low disease pressure, growers may not derive an increase 

in yields or an economic benefit from fungicide use. The developed FHBi models in this study 

used a 5% FHBi threshold, which has been used by other researchers. The FHBi thresholds are 

linked to yield and DON levels, resulting in economic loss, but this study found no correlation 

between these disease indicators. Therefore, FHBi thresholds need to be used with caution. Further 

studies are required to quantify the percentage of disease damage (yield, FDK, or DON) when 

FHBi is either ≥ 10 or 5%.  
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Fourth, the type of weather variables and the quality of measured data from different weather 

stations are important considerations for these FHB weather-based prediction models. Weather 

station networks in western Canada are diverse, with over 500 stations monitored by ECCC, 

MARD, and ACIS. Temperature, rainfall, and RH are measured at multiple weather stations in 

real-time throughout western Canada and will be utilized in models developed in this study to 

provide a warning system for users. The distance between the producer field and the weather 

station was a related factor influencing the accuracy of the FHB models developed in this study in 

some crop types, notably when the distance exceeded 40 km. Estimation errors for temperature are 

lower than for moisture variables like relative humidity and rainfall, which are more challenging 

to estimate accurately from a long-distance away. Therefore, the distance between fields and 

weather stations should be considered when using weather-based models to estimate FHB risk. In 

conclusion, the models developed and validated in this study are critical to improve the 

management of FHB in western Canada. These models will reduce unnecessary fungicide 

applications and FHB disease-related losses in western Canada. 
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APPENDICES 
 

Appendix 2. FHB occurrences in winter wheat, spring wheat barley, and durum in various 

locations throughout western Canada in 2019 and 2020 (Chapter 2). 

 

Figure A2. 1. Occurrence of Fusarium Head Blight at small-plot research sites for winter 

wheat, spring wheat, barley, and durum in 2019 (a), 2020 (b), and 2019 and 2020 combined 

(c).  Location of research sites is shown in Figure 2.1. 
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Figure A2. 2. Occurrence of Fusarium damaged kernels at small-plot research sites for winter wheat, spring wheat, barley, and 

durum in 2019 (a) 2020 (b) and 2019 and 2020 combined (c). Location of research sites is shown in Figure 2.1.  
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Figure A2. 3. Occurrence of deoxynivalenol at small-plot research sites for winter wheat, spring wheat, barley, and durum in 2019 

(a) 2020 (b) and 2019 and 2020 combined (c) in the prairie. Location of research sites is shown in Figure 2.1. 
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Appendix 3. 1. Description and Selection of Weather Predictors Variables (Chapter 3) 

 

 

Table A3.1. 1. Weather variables of potential importance for FHB infection in different wheat and barley crop types. 

4 days  7 days  10 days  14 days  3 days pre &   

pre-anthesis pre-anthesis pre-anthesis pre-anthesis post-anthesis Description 

R4MAa R57MA R10MA R14MA R3MAPAb Mean daily rainfall (mm) 

R034MA R037MA R0310MA R0314MA R033MAPA Duration (h) rainfall ≥ 0.3mm 

R54MA R7MA R510MA R514MA R53MAPA Duration (h) rainfall ≥ 5mm 

RH4MA RH7MA RH10MA RH14MA RH3MAPA Mean daily relative humidity (%) 

RH804MA RH807MA RH8010MA RH8014MA RH803MAPA Duration (h) RH ≥ 80 %   

RH904MA RH907MA RH9010MA RH9014MA RH903MAPA Duration (h) RH ≥ 90 %   

RHmax4MA RHmax7MA RHmax10MA RHmax14MA RHmax3MAPA Mean daily maximum relative humidity (%) 

RHmin4MA RHmin7MA RHmin10MA RHmin14MA RHmin3MAPA Mean daily minimum relative humidity (%) 

SR4MA SR7MA SR10MA SR14MA SR3MAPA Mean daily Solar Radiation (Wm2) 

T15304MA T15307MA T10MA T14MA T3MAPA Duration (h) air temperature 15 ≤ T ≤ 30 oC 

T252804MA T252807MA T153010MA T153014MA T153003MAPA Duration (h) air temperature 25 ≤ T ≤ 28 oC 

T4MA T7MA T252810MA T252814MA T252803MAPA Mean daily temperature (o C)  

Tmax4MA Tmax7MA Tmax10MA Tmax14MA Tmax3MAPA Mean daily maximum temperature (%) 

Tmin4MA Tmin7MA Tmin10MA Tmin14MA Tmin3MAPA Mean daily minimum temperature (%) 

TRH804MA TRH807MA TRH8010MA TRH8014MA TRH803MAPA Duration (h) air temperature 15 ≤ T ≤ 30oC, and RH ≥ 80 %   

TRH904MA TRH907MA TRH9010MA TRH9014MA TRH903MAPA Duration (h) air temperature 15 ≤ T ≤ 30oC, and RH ≥ 90 %   
aMean daily rainfall 4 days before mid-anthesis (MA). Mid-anthesis is when 50% of the flowers are extruded on the head. 
bMean daily rainfall between 3 days before mid-anthesis and 3 days post mid-anthesis (MAPA). Variables for barley were calculated at 

intervals around mid-heading (MH) and pre-, and post-mid-heading (MHPH).
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Table A3.1. 2. Potential weather variables for Fusarium Head Blight index models. Only 

variables with Kendall values in boldface were selected by stepwise regression procedure. 
 Winter wheat Spring wheat Barley Durum 

 Kendall p-value Kendall p-value Kendall p-value Kendall p-value 

RH4MA 0.29 <.0001 0.32 <.0001 -a - - - 

RH804MA 0.25 <.0001 0.31 <.0001 - - - - 

RH904MA 0.25 <.0001 0.31 <.0001 - - - - 

RHmax4MA - - 0.3 <.0001 - - - - 

RHmin4MA 0.3 <.0001 0.27 <.0001 - - - - 

R034MA - - 0.25 <.0001 - - - - 

R4MA - -  - 0.21 0.0006 - - 

RH804MA  - - 0.21 <.0001 - - - - 

R14MA  0.23 <.0001 0.21 <.0001 - - 0.21 0.0096 

T15304MA - - - - 0.34 <.0001 - - 

T252804MA - - 0.26 <.0001 - - 0.3 <.0001 

T4MA - - - - 0.33 <.0001 0.28 <.0001 

Tmin4MA 0.32 <.0001 0.27 <.0001 0.33 <.0001 0.33 <.0001 

TRH804MA 0.34 <.0001 0.34 <.0001 - - 0.28 <.0001 

TRH904MA 0.36 <.0001 0.28 <.0001 - - 0.36 <.0001 

Tmin4MA  - - - - 0.33 <.0001 - - 

Tmin14MA  0.33 <.0001 - - - - - - 

RH807MA 0.28 <.0001 - - - - - - 

RH907MA 0.28 <.0001 - - - - - - 

RHmax7MA - - 0.3 <.0001 - - 0.25 <.0001 

RH7MA 0.36 <.0001 0.23 <.0001 - - 0.25 0.0002 

RH807MA  0.28 <.0001 - - - - - - 

T15307MA 0.31 <.0001 0.3 <.0001 0.33 <.0001 0.33 <.0001 

T252807MA 0.39 <.0001 0.25 <.0001 - - 0.3 <.0001 

TRH807MA - - 0.4 <.0001 0.34 <.0001 0.4 <.0001 

TRH907MA 0.42 <.0001 0.33 <.0001 0.35 <.0001 - - 

Tmax7MA - - - - 0.26 <.0001 0.3 <.0001 

Tmin7MA 0.36 <.0001 0.34 <.0001 0.28 <.0001 0.39 <.0001 

T7MA 0.24 <.0001 0.26 <.0001 0.31 <.0001 0.36 <.0001 

T7MA  0.24 <.0001 - - 0.31 <.0001 - - 

RHmax10MA  - - - - 0.21 <.0001 - - 

Tmin10MA 0.3 <.0001 0.4 <.0001 0.27 <.0001 - - 

T10MA 0.26 <.0001 0.3 <.0001 0.25 <.0001 - - 

TRH8010MA - - - - 0.33 <.0001 - - 

Tmax10MA - - - - 0.28 <.0001 - - 

Tmin10MA  - - - - 0.27 <.0001 - - 

R14MA 0.23 <.0001 - - - - - - 

RH8014MA 0.42 <.0001 0.32 <.0001 - - - - 

RH9014MA 0.42 <.0001 0.32 <.0001 - - - - 

R0314MA 0.33 <.0001 - - - - - - 

RHmax14MA - - 0.31 <.0001 - - - - 

RH14MA - - - - - - 0.22 0.0015 
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T153014MA 0.26 <.0001 0.32 <.0001 0.3 <.0001 0.4 <.0001 

TRH8014MA 0.43 <.0001 0.42 <.0001 0.32 <.0001 0.42 <.0001 

TRH9014MA 0.44 <.0001 0.41 <.0001 0.34 <.0001 0.45 <.0001 

T252814MA - - 0.24 0.0003 - - 0.23 0.0067 

RH3MAPA 0.38 <.0001 0.36 <.0001 - - 0.24 0.0006 

RH803MAPA 0.31 <.0001 0.29 <.0001 - - - - 

RH903MAPA 0.31 <.0001 0.29 <.0001 - - - - 

RHmax3MAPA 0.29 <.0001 0.36 <.0001 0.38 <.0001 0.24 0.0005 

RHmin3MAPA 0.41 <.0001 0.33 <.0001 - - 0.24 0.0004 

RHmin3MAPA  - - - - 0.23 0.0005 - - 

R033MAPA - - 0.21 <.0001 - - - - 

R3MAPA - - - - - - 0.21 0.0051 

T153003MAPA - - 0.39 <.0001 0.35 <.0001 0.35 <.0001 

Tmin3MAPA - - 0.43 <.0001 0.28 <.0001 0.4 <.0001 

TRH803MAPA 0.32 <.0001 0.49 <.0001 0.36 <.0001 0.35 <.0001 

TRH903MAPA 0.34 <.0001 0.5 <.0001 0.39 <.0001 0.31 <.0001 

T3MAPA  - - - - - - 0.31 - 

TRH903MAPA  - - 0.50 <.0001 - - - - 
aVariables with Kendall correlation less than 0.21. 
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Table A3.1. 3. Weather variables of potential value for Fusarium damaged kernels models for 

spring wheat and durum crop types. Only variables with Kendall values in boldface were 

selected by stepwise regression procedure. 

   SWFDK  DUFDK 

 Variable   Kendall p-value  Kendall p-value    

 RH804MA  0.49 <.0001  0.28 <.0001    

 RH904MA  0.49 <.0001  0.28 <.0001    

 TRH804MA  0.34 <.0001  0.31 <.0001    

 TRH904MA  0.30 <.0001  0.31 <.0001    

 R034MA  0.29 <.0001  - <.0001    

 Tmin4MA  -a -  0.28 <.0001    

 RHmax4MA  0.41 <.0001  0.35 <.0001    

 RHmin4MA  0.41 <.0001  0.44 <.0001    

 RH4MA  0.49 <.0001  0.43 <.0001    

 RH807MA  0.43 <.0001  0.45 <.0001    

 RH907MA  0.43 <.0001  0.45 <.0001    

 TRH807MA  0.42 <.0001  0.30 <.0001    

 TRH907MA  0.39 <.0001  0.28 <.0001    

 RHmax7MA  0.47 <.0001  0.39 <.0001    

 RHmin7MA  0.43 <.0001  0.52 <.0001    

 RH7MA  0.46 <.0001  0.53 <.0001    

 RHmax10MA  0.45 <.0001  0.51 <.0001    

 RHmin10MA  0.41 <.0001  0.43 <.0001    

 RH10MA  0.46 <.0001  0.51 <.0001    

 RH8010MA  0.37 <.0001  0.50 <.0001    

 RH9010MA  0.37 <.0001  0.50 <.0001    

 TRH8010MA  0.43 <.0001  0.36 <.0001    

 TRH9010MA  0.39 <.0001  0.28 <.0001    

 RHmax14MA  0.48 <.0001  0.51 <.0001    

 RHmin14MA  0.40 <.0001  0.44 <.0001    

 RH14MA  0.47 <.0001  0.51 <.0001    

 RH8014MA  0.51 <.0001  0.49 <.0001    

 RH9014MA  0.51 <.0001  0.49 <.0001    

 TRH8014MA  0.45 <.0001  0.38 <.0001    

 TRH9014MA  0.40 <.0001  0.31 <.0001    

 Tmin3MAPA  0.29 <.0001  0.28 <.0001    

 RHmax3MAPA  0.38 <.0001  0.38 <.0001    

 RHmin3MAPA  0.51 <.0001  0.56 <.0001    

 RH3MAPA  0.46 <.0001  0.53 <.0001    

 RH803MAPA  0.34 <.0001  0.47 <.0001    

 RH903MAPA  0.34 <.0001  0.47 <.0001    

 T153003MAPA  - -  0.23 <.0001    

 TRH803MAPA  0.37 <.0001  0.38 <.0001    

 TRH903MAPA  0.43 <.0001  0.34 <.0001    
aVariables with Kendall correlation less than 0.21. 
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Table A3.1. 4. Weather variables of potential value for deoxynivalenol in durum. Only 

variables with Kendall values in boldface were selected by stepwise regression procedure. 

 Variable   Kendall  p-value  

 RH804MA   0.30  <.0001  

 RH904MA   0.30  <.0001  

 T15304MA   0.24  <.0001  

 TRH804MA   0.39  <.0001  

 TRH904MA   0.37  <.0001  

 Tmin4MA   0.26  <.0001  

 RHmax4MA   0.32  <.0001  

 RHmin4MA   0.44  <.0001  

 RH4MA   0.44  <.0001  

 T4MA   0.27  <.0001  

 RH807MA   0.41  <.0001  

 RH907MA   0.41  <.0001  

 TRH807MA   0.37  <.0001  

 TRH907MA   0.35  <.0001  

 RHmax7MA   0.37  <.0001  

 RHmin7MA   0.52  <.0001  

 RH7MA   0.51  <.0001  

 RHmax10MA   0.43  <.0001  

 RHmin10MA   0.43  <.0001  

 RH10MA   0.49  <.0001  

 RH8010MA   0.48  <.0001  

 RH9010MA   0.48  <.0001  

 TRH8010MA   0.45  <.0001  

 TRH9010MA   0.35  <.0001  

 RHmax14MA   0.43  <.0001  

 RHmin14MA   0.45  <.0001  

 RH14MA   0.45  <.0001  

 RH8014MA   0.44  <.0001  

 RH9014MA   0.44  <.0001  

 T153014MA   0.24  <.0001  

 TRH9014MA   0.38  <.0001  

 Tmin3MAPA   0.35  <.0001  

 RHmax3MAPA   0.37  <.0001  

 RHmin3MAPA   0.53  <.0001  

 RH3MAPA   0.49  <.0001  

 RH803MAPA   0.46  <.0001  

 RH903MAPA   0.46  <.0001  

 T153003MAPA   0.29  <.0001  

 TRH803MAPA   0.49  <.0001  

 TRH903MAPA   0.42  <.0001  
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Table A3.1. 5 Multicollinearity diagnosis indexes for predictor variables used in the winter wheat, 

spring wheat, barley, and durum Fusarium Head Blight index models. 

Model Variable Tolerance 

Variance 

Inflation 

Eigen 

value 

winter wheat 

WWFHB1 RH807MA 0.55 1.8 0.08 

 Tmin7MA 0.21 9.3 0.02 

 T7MA 0.31 7.0 0.00 

WWFHB3 RH9014MA 0.78 1.3 0.24 

 Tmin14MAR14MA 0.78 1.3 0.07 

WWFHB4 RHmin3MAPA 0.26 6.4 0.05 

 RH803MAPA 0.26 6.4 0.00 

Spring wheat 

SWFHB1 RH804MA 0.49 2.0 0.59 

 T252804MA 0.57 1.8 0.26 

 TRH904MA 0.38 2.6 0.03 

SWFHB2 RHmax14MA 0.98 1.0 0.53 

 T252814MA 0.98 1.0 0.00 

SWFHB3 RHmax14MA 0.98 1.0 0.62 

 R14MA 0.99 1.0 0.23 

 T252814MA 0.97 1.0 0.00 

SWFHB5 TRH903MAPA 0.95 1.1 0.32 

 R033MAPA 0.95 1.1 0.18 

Barley 

BAFHB1 Tmin14MA 0.99 1.0 0.20 

 R14MA 0.92 1.1 0.02 

 RH14MA 0.91 1.1 0.00 

BAFHB2 T153014MA 0.95 1.0 0.21 

 R14MA 0.88 1.1 0.03 

 RH14MA 0.92 1.1 0.00 

BAFHB3 RH804MA 0.59 1.7 0.79 

 T252804MA 0.68 1.5 0.23 

 TRH804MA 0.72 1.4 0.03 

BAFHB4 R14MA 0.95 1.1 0.64 

 T252814MA 0.95 1.1 0.11 

BAFHB5 T3MAPA 0.98 1.0 0.44 

 R3MAPA 0.98 1.0 0.01 

Durum 

DUFHB1 Tmin4MA 0.96 1.0 0.44 

 R4MA 0.96 1.0 0.01 

DUFHB2 T7MA 1.00 1.0 0.01 

 RH7MA 1.00 1.0 0.00 

DUFHB4 RHmax10MA 0.94 1.1 0.05 

 Tmin10MATmax10MA 0.94 1.1 0.00 

DUFHB5 RHmin3MAPA 0.89 1.1 0.02 

  Tmin3MAPA 0.89 1.1 0.01 



149  
 

Table A3.1. 6. Multicollinearity diagnosis indexes for predictor variables used in the spring 

wheat and durum, Fusarium damaged kernels, and deoxynivalenol models. 

Crop type Model Variable Tolerance 

Variance 

Inflation Eigen value 

Fusarium damaged kernels 

Spring Wheat SWFDK2 RH4MA 0.71 1.41 0.35 

  TRH904MA 0.71 1.41 0.00 

 SWFDK4 RH7MA 0.66 1.51 0.01 

  RH7MAT7MA 0.66 1.51 0.00 

  

    

Durum DUFDK1 RH4MA 0.56 1.80 0.34 

  T15304MA 0.29 3.49 0.02 

  TRH904MA 0.23 4.42 0.00 

 DUFDK4 RH7MA 0.72 1.39 0.39 

  TRH907MA 0.76 1.32 0.17 

  R037MA 0.93 1.08 0.00 

 DUFDK7 TRH803MAPA 0.28 3.51 0.16 

  Tmin3MAPA 0.28 3.51 0.00 

Deoxynivalenol 

Durum DUDON1 T4MA 0.98 1.02 0.03 

  RHmin4MA 0.98 1.02 0.01 

 DUDON2 RH7MA 0.66 1.51 0.01 

  RH7MAT7MA 0.66 1.51 0.00 

 DUDON5 RH10MA 1.00 1.00 0.01 

  T10MA 1.00 1.00 0.00 

 DUDON7 TRH8014MA 0.78 1.28 0.19 

    RH14MA 0.78 1.28 0.00 

 

 

Appendix 3.2. Error Analysis of the Models 
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Table A3.2. 1. Errors in winter wheat Fusarium Head Blight index (FHBi) models’ 

development dataset. 

Model Province Site Year False Negativesa False Negativesb 

        R I S R I S 

WWFHB1 Alberta Medicine Hat 2019 1 1 1 -c - - 

 Manitoba Carberry 2019 3 3 3 - - - 

 Manitoba Roblin 2019 3 2 3 - - - 

 Saskatchewan Indian Head 2019 - - - 3 3 2 

 Saskatchewan Prince Albert 2019 1 1 1 - - - 

 Saskatchewan Scott 2019 1 1 3 - - - 

 Saskatchewan Swift Current 2019 - - - 2 1 1 

 Manitoba Arborg 2020 - - - 4 4 4 

 Saskatchewan Indian Head 2020 - - - 4 4 4 

 Saskatchewan Prince Albert 2020 - - - 3 4 2 

          
WWFHB2 Alberta Medicine Hat 2019 1 1 1 - - - 

 Manitoba Melita 2019 - - - 3 3 3 

 Manitoba Roblin 2019 - - - - 1 - 

 Saskatchewan Indian Head 2019 - - - 3 3 2 

 Saskatchewan Melfort 2019 - - - 3 3 3 

 Saskatchewan Prince Albert 2019 - - - 2 2 2 

 Saskatchewan Scott 2019 - - - 2 2 - 

 Saskatchewan Swift Current 2019 - - - 2 1 1 

 Manitoba Arborg 2020 - - - 4 4 4 

 Saskatchewan Indian Head 2020 - - - 4 4 4 

  Saskatchewan Prince Albert 2020 - - - 4 2 2 

aNumber of samples incorrectly classified as non-epidemic yet epidemic in resistant (R), 

intermediate (I), and susceptible (S) FHB winter wheat varieties. 
bNumber of samples incorrectly classified as epidemic yet non-epidemic in resistant, intermediate, 

and susceptible FHB winter wheat varieties. 
cNo false positive or negative case. 
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Table A3.2. 2. Errors in spring wheat Fusarium Head Blight index models’ development 

dataset. 

Model Province Site Year False Negativesa False Negativesb 

        MR I MS MR I MS 

SWFHB1 Alberta Vermillion 2019 -c - - 4 4 4 

 Manitoba Kelburn 2019 - - - - - 3 

 Manitoba Melita 2019   1 - - - 

 Manitoba Roblin 2019 - - - - - 1 

 Saskatchewan Melfort 2019 - - - 2 4 4 

 Saskatchewan Prince Albert 2019 - - - 1 2 - 

 Saskatchewan Scott 2019 - - - 1 1 - 

 Saskatchewan Swift Current 2019 - - - 4 4 4 

 Manitoba Carberry 2020 3 2 3 - - - 

 Manitoba Melita 2020 - - - 4 3 1 

 Manitoba Roblin 2020 4 4 4 - - - 

 Saskatchewan Indian Head 2020 - - - 4 4 4 

 Saskatchewan Melfort 2020 - - - 1 2 2 

 Saskatchewan Prince Albert 2020 - - - 3 3 - 

 Saskatchewan Swift Current 2020 1 2 1 - - - 

          
SWFHB2 Manitoba Kelburn 2019 - - - - - 3 

 Manitoba Melita 2019 - - - 4 4 3 

 Manitoba Roblin 2019 - - - - - 1 

 Saskatchewan Melfort 2019 2 - - - - - 

 Saskatchewan Prince Albert 2019 - - - 1 2 - 

 Saskatchewan Scott 2019 - - - 1 1 - 

 Alberta Vermillion 2019 - - - 4 4 4 

 Manitoba Arborg 2020 - - - 4 4 4 

 Manitoba Carberry 2020 - - - 1 2 1 

 Manitoba Melita 2020 - - - 3 3 1 

 Saskatchewan Melfort 2020 - - - - - - 

 Saskatchewan Prince Albert 2020 1 1 4 - - - 

 Saskatchewan Scott 2020 4 4 4 - - - 

  Saskatchewan Swift Current 2020 1 2 1 - - - 

aNumber of samples incorrectly classified as non-epidemic yet epidemic in moderately resistant 

(MR), intermediate (I), and moderately susceptible (MS) FHB spring wheat varieties. 
bNumber of samples incorrectly classified as epidemic yet non-epidemic in MR, I, and MS FHB 

spring wheat varieties. 
cNo false positive or negative case. 
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Table A3.2. 3. Barley Errors in barley Fusarium Head Blight index models’ development 

dataset. 

Model Province Site Year 
False 

Negativesa 
 

False 

Negativesb 

        MR I MS   MR I MS 

BAFHB3 Manitoba Arborg 2019 -a - - - 3 1 1  
Manitoba Carberry 2019 - - - - 1 2 2  
Saskatchewan Indian Head 2019 - - - - 4 4 4  
Manitoba Kelburn 2019 - - - - 

 
1 1  

Manitoba Melita 2019 - - - - 4 4 4  
Saskatchewan Prince Albert 2019 - - 1 - - - -  
Manitoba Roblin 2019 3 4 3 - - - -  
Saskatchewan Scott 2019 3 - - - - - -  
Manitoba Arborg 2020 - - - - 4 4 4  
Manitoba Carberry 2020 - - - - 1 3 4  
Saskatchewan Melfort 2020 1 - - - - - -  
Manitoba Melita 2020 - - - - 4 4 4     

    
   

BAFHB4 Manitoba Arborg 2019 - - - - 3 2 1  
Manitoba Carberry 2019 - - - - 1 2 2  
Manitoba Kelburn 2019 - - - - 

 
1 1  

Manitoba Melita 2019 - - - - 4 4 4  
Saskatchewan Prince Albert 2019 - 

 
1 - - - -  

Manitoba Roblin 2019 3 3 4 - - - -  
Manitoba Arborg 2020 - - - - 4 4 4  
Alberta Brooks 2020 - - - - 4 4 4  
Manitoba Carberry 2020 - - - - 1 4 3 

aNo false positive or negative case. 
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Table A3.2. 4. Errors in durum Fusarium Head Blight index models’ development dataset. 

Model Province Site Year False Negative False Positive 

DUFHB1 Manitoba Melita 2019 3 - 

 Saskatchewan Melfort 2019 -a 1 

 Saskatchewan Prince Albert 2019 4 - 

 Manitoba Arborg 2020 - 3 

 Manitoba Carberry 2020 1 - 

 Saskatchewan Indian Head 2020 2 - 

 Saskatchewan Melfort 2020 - 3 

 Saskatchewan Prince Albert 2020 2 - 

 Saskatchewan Swift Current 2020 2 - 

  
 

   
DUFHB3 Manitoba Melita 2019 - 3 

 Saskatchewan Indian Head 2019 - 4 

 Saskatchewan Melfort 2019 - 1 

 Manitoba Arborg 2020 - 3 

 Manitoba Carberry 2020 - 3 

 Saskatchewan Indian Head 2020 2 - 

 Saskatchewan Melfort 2020 - 3 

 Saskatchewan Prince Albert 2020 - 2 

  Saskatchewan Swift Current 2020 2 - 

aNo false positive or negative case. 
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Table A3.2. 5. Errors in spring wheat Fusarium damaged kernels models’ development 

dataset. 

Model Province Site Year False Negativesa False Negativesb 

    MR I MS MR I MS 

SWFDK2 Manitoba Carberry 2019 -c - - 4 4 4 

 Saskatchewan Indian Head 2019 - - - 4 4 4 

 Saskatchewan Melfort 2019 4 4 4 - - - 

 Manitoba Carberry 2020 - - 2 - - - 

 Saskatchewan Indian Head 2020 - - - 4 4 4 

 Alberta Vermillion 2020 - - - 4 4 4 

 Manitoba Melita 2020 - - - 4 3 2 

 Manitoba Roblin 2020 1 1 2 - - - 

 Saskatchewan Scott 2020 - - - 4 2 1 

          

SWFDK4 Saskatchewan Melfort 2019 4 4 4 - - - 

 Manitoba Arborg 2020 - - - 4 4 4 

 Manitoba Carberry 2020 - - 2 - - - 

 Manitoba Melita 2020 - 1 2 - - - 

 Manitoba Roblin 2020 - - - 3 3 2 

 Saskatchewan Scott 2020 - - - 4 2 1 

 Alberta Vermillion 2020 - - - 4 4 4 

aNumber of samples incorrectly classified as non-epidemic yet epidemic in moderately resistant 

(MR), intermediate (I), and moderately susceptible (MS) FHB spring wheat varieties. 
bNumber of samples incorrectly classified as epidemic yet non-epidemic in MR, I, and MS FHB 

spring wheat varieties. 
cNo false positive or negative case. 
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Table A3.2. 6. Errors in durum Fusarium damaged kernels models’ development dataset. 

Model Province Site Year False Negative False Positive 

DUFDK3 Saskatchewan Melfort 2019 4 -a 
 Manitoba Kelburn 2020 1 - 
 Manitoba Roblin 2020 1 - 
 Saskatchewan Melfort 2020 - 3 
 Saskatchewan Scott 2020 - 1 
 Alberta Vermillion 2020 - 4 
      

DUFDK5 Saskatchewan Melfort 2019 4 - 
 Manitoba Carberry 2019 - 4 
 Manitoba Kelburn 2020 1 - 
 Manitoba Roblin 2020 - 3 
 Manitoba Melita 2020 - 4 
 Saskatchewan Swift Current 2020 - 4 
 Saskatchewan Melfort 2020 - 3 
 Saskatchewan Scott 2020 - 1 

  Alberta Vermillion 2020 - 4 

aNo false positive or negative case. 
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Table A3.2. 7. Errors in Durum deoxynivalenol models’ development dataset. 

Model Province Site Year False Negative False Positive 

DUFDK3 Manitoba Carberry 2019 -a 3 
 Saskatchewan Indian Head 2019 - 4 
 Alberta Vermillion 2019 - 4 

 Manitoba Arborg   2020 - 4 
 Manitoba Carberry 2020 1 - 
 Manitoba Kelburn 2020 1 - 
 Manitoba Melita 2020 - 4 
 Saskatchewan Indian Head 2020 4 - 
 Saskatchewan Swift Head 2020 - 4 
 Alberta Vermillion 2020 - 4 

      
DUFDK5 Manitoba Carberry 2019 - 3 

 Saskatchewan Melfort 2019 4 - 
 Alberta Vermillion 2019 - 4 
 Alberta Vermillion 2020 - 4 
 Manitoba Kelburn 2020 1 - 
 Manitoba Carberry 2020 1 - 

  Saskatchewan Indian Head 2020 4 - 

aNo false positive or negative case. 

 

 

 

 

 

Appendix 3.3. Additional Winter Wheat and Durum Models with a 10% FHBi Epidemic 

Threshold 
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Table A3.3. 1. Winter wheat and durum Fusarium Head Blight index logistic regression models, optimum predicted probability, 

sensitivity, specificity, and prediction accuracy. 

Model Equation (1/(1 + exp-(a + bx +…)))a Optimum predicted 

probabilityb 

Sensitivity 

(%)c 

Specificity 

(%)d 

Accuracy 

(%)e 

Winter wheat 

WWFHB10 1 -5.3434+0.3548Tmin7MA 0.31 61.1 85.6 73.4 

WWFHB10 2 -2.0925+0.0294TRH807MA 0.18 93.1 62.5 77.8 

WWFHB10 3 -5.7739+0.3315Tmin7MA+0.1700R7MA 0.23 72.2 78.2 75.2 

WWFHB10 4 -2.0704+0.0233TRH8010MA 0.19 93.1 67.1 80.1 

WWFHB10 5 -8.6829+0.0881RHmin10MA+0.0195T153010MA 0.21 94.4 67.6 81.0 

WWFHB10 6 -8.4018+0.1474RHmin14MA 0.34 83.3 75.9 79.6 

WWFHB10 7 -3.9244+0.0249TRH8014+ 0.0893R0314MA 0.37 73.6 82.9 78.2 

WWFHB10 8 -3.4392+0.0442TRH9014MA+0.0828R0314MA 0.28 73.6 77.3 75.5 

WWFHB10 9 -2.2097+0.0494TRH803MAPA-0.1167T252803MAPA  0.20 95.8 62.5 79.2 
      

Durum 

DUFHB10 1 -2.1791+0.0349TRH807MA 0.26 96.9 54.2 75.5 

DUFHB10 2 -7.9013+0.5056Tmin7MA+0.3143R7MA 0.37 71.9 81.9 76.9 

DUFHB10 3 -12.6912+0.5362T7MA+0.2382R037MA 0.50 59.4 93.1 76.2 

DUFHB10 4 -15.6859+0.6537Tmin7MA+.0661RH7MA+0.2259R037MA 0.42 71.9 81.9 76.9 

DUFHB10 5 -2.6328+0.0291TRH8010MA 0.24 93.8 63.9 78.8 

DUFHB10 6 -4.3451+0.3593R10MA+TRH8010MA  0.27 93.8 80.6 87.2 
aLogistic regression models were developed using 2019 and 2020 data collected in western Canada. Variables are defined in Table 

A3.1.1. P = probability of FHBi ≥ 10%. In the equation, a and b are the model coefficients, and X is the predictor variable(s). 

bThe optimal predicted probability of an epidemic case, as determined by Youden’s index maximum value (where sensitivity and 

specificity for the full range of p values are high). 
cSensitivity is the percentage of correctly classified epidemics cases. 
dSpecificity is the percentage of correctly classified non-epidemic cases. 
dAccuracy is the percentage of correctly classified cases of epidemic and non-epidemic (true positive proportion+ true negative 

proposition).
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Table A3.3. 2. Youden’s index, lack of fit, and area under receiver operator characteristic 

(AUC) curve of the spring wheat and durum Fusarium Head Blight index models. 

   Model Youden’s index Lack of 

fit 

AUCc  

  
 

 

Winter wheat 

  
 

 

 
 WWFHB10 1 0.47 <.0001 0.78b  

 

 
 WWFHB10 2 0.56 <.0001 0.76b  

 

 
 WWFHB10 3 0.50 <.0001 0.79ab  

 

 
 WWFHB10 4 0.61 <.0001 0.76b  

 

 
 WWFHB10 5 0.62 <.0001 0.79ab  

 

 
 WWFHB10 6 0.59 <.0001 0.81a  

 

 
 WWFHB10 7 0.56 <.0001 0.81a  

 

 
 WWFHB10 8 0.51 <.0001 0.79ab  

 

 
 WWFHB10 9 0.58 <.0001 0.77b  

  
 

Durum  

 
 DUFHB10 1 0.51 0.00 0.73c  

 

 
 DUFHB10 2 0.54 0.01 0.79b  

 

 
 DUFHB10 3 0.52 0.02 0.79b  

 

 
 DUFHB10 4 0.54 0.01 0.83ab  

 

 
 DUFHB10 5 0.58 0.00 0.77b  

 

   DUFHB10 6 0.74 <.0001 0.87a  
 

aYouden’s index, calculated as true positive proportion - false positive proportion. 
bHosmer-Lemeshow lack of fit test. A high p-value (> 0.05) indicates a good fit.  

cLetters following numbers indicate differences between the AUC of the forecasting models based 

on ROC contrast.  
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Appendix 4. Wheat and Barley Threshing Procedure (Chapter 4) 

 

To begin, a 2.5 cm diameter hole was cut in the middle of the bucket lid (Figure A4.1a). Following 

that, two rubber straps measuring 15 cm each were attached at 90o to the bottom of a threshing 

shaft measuring 0.5 cm in diameter. Next, the threshing rod (with paddle head diameter of 12.07 

cm; chuck size of 1.11 cm, shaft length of 58 cm) was threaded with a bucket lid, and the drill 

(Makita® 8450) was securely attached to the threshing shaft (Figure 4.4a). A bucket measuring 

22.7 l was half-filled with dried wheat or barley samples, and the samples were threshed until no 

more kernels remained on the stalks (Figure A4.1b-c). Next, the threshed sample was transferred 

from the bucket to an open rectangular container (36 x 24 x 14 cm) with a small rectangular hole 

(20 x 8 cm) cut on one side (Figure A4.1c). The container was allowed to rest on a trapezium pipe 

stand with the uncut open container at the bottom to collect grain (Figure A4.1d). The threshed 

wheat/barley samples were then winnowed by slowly pouring them from the top bucket to the 

bottom in front of a low-speed electric fan (Figure A4.1e). The samples were passed two to three 

times until there was less chaff in the grain (Figure A4.1f). After each wheat/barley sample, aseptic 

techniques such as disinfecting surfaces and equipment using spray nine were employed. 
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Figure A4. 1. Wheat and barley threshing procedures. Assembling the thresher rod (a), sample loaded in the bucket (b), threshing 

the sample (c), transferring the sample to the winnowing container (d), winnowing the sample (e), collected grain (f).
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Appendix 5. Assessments of Methods for Determining the Anthesis Dates of Wheat and 

Barley for the western Canadian FHB Risk Tool 

 

A5.1 Introduction 

Cereal crops are most susceptible to Fusarium Head Blight (FHB) infection during anthesis when 

the anthers are protruding, and the fungus can penetrate the developing spikelet. If weather 

conditions near anthesis are favorable for fungal growth, FHB can significantly affect cereal plants. 

Pre-heading inoculation may be critical in barley because the crop flowers, while still in the boot 

stage and therefore, is highly susceptible even before the heads are exposed (McCallum and 

Tekauz, 2002). If the inoculum comes into contact with host tissues late in the grain's development, 

infection and major visual symptoms may not manifest to the same extent as in early anthesis 

infections. Thus, the stage of growth at which barley is most susceptible to Fusarium infection is 

considered to be when half of the head has emerged, as barley is normally flowering at this stage. 

Applying fungicide during anthesis is one way to suppress the level of FHB infection (Gilbert and 

Tekauz, 2011). A weather-based model for FHB risk can aid in determining whether to apply 

fungicide based on the expected severity of the disease. FHB risk models make estimates of FHB 

severity based on weather conditions near anthesis. Thus, the anthesis date is a critical variable in 

FHB risk models. Although direct observation is considered the most accurate method for 

determining the anthesis date, it is not possible to guarantee the daily observations required to 

witness the date when 50% of the spikes flower. Thus, direct observation is not a practical means 

for widespread anthesis date determination. 

Several different thermal models have been developed and tested for spring wheat phenological 

development in western Canada (e.g., Saiyed et al., 2009; Mkhabela et al., 2016), but none are 

available for winter wheat and durum. However, the linear response of spring wheat phenology 

using the Haun scale compared to accumulated heat reported by Mkhabela et al. (2016) is a useful 

concept that can assist with developing estimates of the date of 50% anthesis in durum. The 

modelled accuracy of anthesis date determination compared to the observed date for spring wheat 

varies, but for the period between planting date and anthesis, phenological model errors are 4 to 6 

days. Hence, the use of daily temperature data and planting date to model the date of anthesis for 

spring wheat at a specific location could exhibit 4 to 6 days difference to an observed date. 

Therefore, the linear response of spring wheat phenology using the Haun scale compared to 
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accumulated heat reported by  Mkhabela et al. (2016) can be used to estimate the date of 50% 

anthesis when it is not directly observed.  For winter wheat, this approach is complicated because 

the crop is planted in late fall, enters a period of dormancy during the winter, and requires 

sufficiently cold temperature duration for vernalization. In spring, the plants break dormancy and 

resume active growth, usually much earlier than the spring-sown crops. Therefore, using planting 

dates for phenological modelling using thermal time is not straightforward. Instead, the growing 

season start (GSS) date in the spring is a more useful benchmark for estimating the anthesis date 

using thermal time. 

In barley, two previously developed thermal models were available to estimate the date of 50% 

anthesis (or 50% head emergence). Juskiw et al. (2001)  developed a barley phenology model 

using GDD0 (base 0 C) based on phenology observations across 12 site-years in Alberta.  The 

North Dakota Agricultural Weather Network (NDAWN, 2005) developed a model for barley 

development using a special formula for GDD (base 32 F) and observations in North Dakota. In 

addition, the linear response of spring wheat phenology using the Haun scale in comparison to 

accumulated heat reported by  Mkhabela et al. (2016) is a useful concept that can facilitate 

estimation of the date of 50% head emergence in situations with observations of other growth 

stages and air temperature data.   

The FHB risk modelling in the present study uses direct observations of wheat and barley 

phenological development to determine the date of 50% anthesis and head emergence, 

respectively. However, this specific stage may not be observed directly at all study locations due 

to the fact that observations were taken once a week. Therefore, an estimate of the date of 50% 

anthesis and head emergence is required at the locations where it is not directly observed. The 

objective of this study was to assess thermal time models using daily temperature and several 

methods for determining the date of 50% anthesis and head emergence.  This assessment will help 

minimize potential errors in anthesis date estimation at locations where it was not observed by 

revealing the most accurate methods. 

A5.2 Materials and Methods 

 

A5.2.1 Site 

 

The description of sites for this study is given in Chapter 2. In brief, small-plot research trials with 

five plot sites per province (15 sites) were conducted in the 2019 and 2020 growing seasons in 
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Manitoba, Saskatchewan, and Alberta (Figure 2.1). These 15 sites were geographically distributed 

across western Canada to maximize the likelihood of each site experiencing various growing-

season weather conditions. Each plot measured approximately 4 m in length and 2 m in width with 

at least 8 rows. 

A5.2.2 Experimental Design  

 

The experimental design of this study is described in Chapter 2. In brief, the experimental design 

was a randomized complete block design (RCBD) with four replications (blocks) for each of the 

separate side by side winter wheat, spring wheat, barley, and durum experiments (Figure 2.2). 

Three different spring wheat, winter wheat, and barley varieties were used in the treatments, 

representing three different FHB resistance categories (F. RC) (Table 2.1). FHB resistance 

categories included F. RC1 (susceptible or moderately susceptible varieties), F. RC2 (intermediate 

varieties), and F. RC3 (moderately resistant or resistant varieties), depending on the crop type. 

Only one durum wheat variety was grown because all durum wheat varieties are FHB susceptible. 

A5.2.3 Meteorological Data 

 

Watchdog® portable weather stations (Spectrum Technologies 2000 Series, Thayer Case, IL, 

USA) were used to record growing-season weather data. At each site, one weather station was 

mounted on a solid post at an average height of 1.80 m within 10 m of the plots. Weather data 

collected hourly included air temperature (°C), relative humidity (RH), rainfall (mm), solar 

radiation (W m-2), and wind speed (km h-1). The weather stations were installed about a month after 

spring crop seeding. Meteorological data before deployment of the weather stations were sourced 

from Manitoba Agriculture Weather Program and Alberta Climate Information Service, and 

Environment and Climate Change Canada weather stations monitored weather stations (ACIS, 

2021b; ECCC, 2021; MARD, 2021b).  

A5.2.4 Agronomy and Phenology Observations 

 

Three winter wheat varieties representing 3 levels of FHB resistance (Table 2.1) were planted in 

the fall of 2018 and 2019, while spring cereals (spring wheat, barley, and durum) were sown in 

spring 2019 and 2020 according to the best management practices at each location. At each site, 

standard agronomic practices such as fertilizer application, seeding depth, row spacing, and 

herbicide application were followed. Planting, maturity, and harvesting dates for each crop were 
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recorded. Phenology observations were collected multiple times at all 15 plot locations using the 

BBCH scale (Meier, 2001), then converted to the Haun scale (Haun 1973) to facilitate the use of 

the thermal models described by  Mkhabela et al. (2016). The Haun scale conversion was based on 

equivalent values between the Haun scale and the Zadoks scale (Zadoks et al., 1974) reported by 

Fowler (2018). The BBCH scale is similar to the Zadoks scale, and the Fowler (2018) comparison 

facilitated a conversion.  The equivalent values reported in Fowler (2018) are highlighted in Table 

A5.1. Fractional Haun scale values were interpolated between the equivalent values to provide a 

complete conversion for all observed BBCH values from 45 (boot just swollen) to 71 (kernel is 

watery). The purpose of the conversion was to exploit the linearity of heat unit accumulation 

(quantitative) in relation to the Haun scale (ordinal) in the period preceding and following the 

anthesis stage as reported by  Mkhabela et al. (2016). 

Table A5. 1.  BBCH Scale to Haun Scale Conversion (bold values are from Fowler, 2018).   

BBCH Haun 
  

BBCH Haun 
 

45 9.2 (boot just swollen) 
 

59 11 (emergence of head complete) 

46 9.425 
  

60 11.4 (beginning of flowering) 

47 9.65 
  

61 11.42 
 

48 9.875 
  

62 11.44 
 

49 10.1 (first awns visible) 
 

63 11.46 
 

50 10.2 (first spikelet visible) 
 

64 11.48 
 

51 10.26 
  

65 11.5 (flowering half complete) 

52 10.32 
  

66 11.525 
 

53 10.38 
  

67 11.55 
 

54 10.44 
  

68 11.575 
 

55 10.5 (1/2 of head emerged) 
 

69 11.6 (flowering complete) 

56 10.6 
  

70 11.85 
 

57 10.7 (3/4 of head emerged) 
 

71 12.1 (kernel is watery) 

58 10.85 
     

 

For each observation date at each plot location, a set of 18 to 24 phenology observations were 

made. The BBCH stage for each observation was converted to the Haun scale using Table A5.1.  

Only observation dates for which at least 90% of the observations were between BBCH 45 and 71 

were included in the analysis. The median Haun scale value on each observation date at each plot 

site was used to determine the stage of crop development on the specific date for all varieties. 

A5.2.5 Spring Wheat Thermal Models 

 

For each plot location, on-site daily temperature data were used to determine three different 

cumulative thermal model measures of heat units, including GDD (base 0 C), GDD (base 5 C) 

and the North Dakota GDD (base 32F) as described by Mkhabela et al. (2016).  These heat units 

were the ones with the closest linear relationship to wheat phenological development in the 
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Mkhabela et al. (2016) study.  The values were accumulated daily throughout the growing season, 

starting the day after planting. Tables AA5.1 and AA5.2 list the Haun scale phenological stage and 

the accumulated values of the three thermal models on the dates of the observations at all plot site 

locations in 2019 and 2020, respectively. 

Figure A5.1 shows the observed Haun scale development for all sites and observation dates 

compared to the three different accumulated thermal models and the regression line reported by  

Mkhabela et al. (2016) for each specific heat unit model. The range of accumulated values near 

the time of 50% anthesis was, in both years, similar to that reported for the same three models by  

Mkhabela et al. (2016), as can be seen by comparing the values in Figure A5.1  to those in Figure 

A5.2. Statistical comparison of the 3 models showed the RMSE in modelled Haun scale varied by 

nearly 2 Haun scale units with a small negative bias and low regression coefficient for all three 

models in both years (Table A5.2). 

 

Figure A5. 1.  Linear relationship between wheat growth stage (planting to anthesis) for three 

spring wheat cultivars and accumulated heat units/growth rates calculated using five different 

thermal time models in (a) 2009, (b) 2010, (c) 2011, and (d) 2009-2011 combined. Note that the 

accumulated growth rate values for the BF and MBF models were multiplied by 100 to be plotted 

on the same graph as the other models. (Mkhabela et al. 2016). 
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Figure A5. 2. Observed phenological development (Haun scale) versus accumulated values 

of (a) and (d) Growing Degree Day  base 0 oC (GDD0), (b) and (e) North Dakota growing 

degree day (NDGDD) base 32F, and (c) and (f) Growing Degree Day  base 5 oC (GDD5) by 

plot location for each observation date in the 2019 (a, b, c) and 2020 (d, e, f) growing seasons 

respectively.
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Table A5. 2.  Performance of the three GDD thermal models described by Mkhabela et al. 

(2016) for the 2019 and 2020 FHB plot study.  RMSE and MBE values are Haun scale units. 

  Year Base 0°C Base 32°F Base 5°C  

 R2 2019 0.301 0.30 0.292  

 RMSE  1.776 1.811 1.858  

 MBE  -0.352 -0.38 -0.435  

       

 R2 2020 0.574 0.579 0.508  

 RMSE  1.384 1.406 1.814  

 MBE  -0.505 -0.474 -0.907  
 

The values illustrated in Figure A5.2 and the statistics in Table A5.2 show variation in the amount 

of accumulated heat to reach a specific growth stage between sites. For example, in 2019, the 

wheat at Medicine Hat reached specific stages of development with fewer heat units than the other 

sites, especially compared to Melfort, but there is no way to know the amount of variation between 

sites based solely on modelled values. Therefore, comparing observed values is the only way to 

discern the differences between sites. It is also important to note that this was not an issue with a 

particular model since all three heat unit models display the same pattern. Therefore, the remainder 

of the analysis used the GDD (base 0 C) method of  Mkhabela et al. (2016) because it provided a 

slightly better statistical comparison to observed phenological development than the other two 

models (Table A5.2). However, it should be noted that the differences were slight, and any of the 

three models could have been selected. 
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A5.2.6. Anthesis Estimation Method: Interpolation in Spring Wheat 

 

The best method of estimating the date of 50% anthesis for spring wheat is an interpolation, which 

can be used in cases such as the Medicine Hat and Melfort 2019 locations, with observations both 

immediately prior to and after the date of anthesis. The date of 50% anthesis (i.e., Haun scale 11.5) 

can be calculated using the rate of Haun scale increase per day between the two dates, as shown in 

equation A5.1.  

x days to anthesis = ((date following 50% anthesis - date preceding 50% anthesis) / (Haun value 

following 50% anthesis - Haun value preceding 50% anthesis)) * (11.5 - Haun value preceding)                                                                             

[A5.1] 

 An example of the calculation for 2019 Medicine Hat plot site is shown below: 

June 26 – Haun scale 11.42, July 4 – Haun scale 11.6,  

x days to anthesis = [(July 4 – June 26) / (11.6 – 11.42)] * (11.5 – 11.42) = 3 days  

June 26 plus 3 days = June 29    

 

A5.2.7. Anthesis Estimation Method: Extrapolation in Spring Wheat 

 

Other methods must be employed for locations where the 50% anthesis date was not directly 

observed, and there are no observations that facilitate interpolation of the date. One approach is to 

use a phenological observation on a given date and extrapolate to the anthesis date by selecting a 

representative slope value for the rate of Haun scale change per heat unit. This analysis tested three 

different representative slope values by comparing their estimated date of 50% anthesis with the 

observed values.  The slope values selected were: 
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i) the slope of the Haun scale-GDD (base 0 C) relationship from observations at the local 

site, 

ii) the mean slope of the Haun scale-GDD (base 0 C) relationship from observations at 

several sites with multiple observations and 

iii) the slope of the Haun scale-GDD (base 0 C) relationship from Mkhabela et al. (2016). 

 

Figure A5.3 shows examples of the Haun scale-GDD (base 0 C) relationship at two individual 

plot locations. The slope of the linear regression line at each site was utilized for analysis (i) above.  

Table A5.3 shows the linear regression equations for all 2019 and 2020 plot sites with at least 3 

phenological observation dates. The mean slope of all the lines in Table A5.3 was utilized for 

analysis (ii) above. The slope of the Haun scale-GDD (base 0 C) relationship from  Mkhabela et 

al. (2016) is 0.0123, which was utilized for analysis (iii) above. 

 

a)   b)  

Figure A5. 3.  Haun scale-GDD (base 0 C) relationship for phenological observations at (a) 

Brooks, Alberta and (b) Carberry, Manitoba, showing the linear regression lines and 

equations. 
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Table A5. 3.  Haun scale-GDD (base 0 C) linear regression equations for all 2019 and 2020 

plot sites with at least 3 spring wheat phenology observations. 

Plot Site 2019 2020 

Bow Island y = 0.0057x + 6.043  

Brooks y = 0.0055x + 5.7014 y = 0.0026x +7.7807 

Carberry y = 0.0033x + 7.6698  

Indian Head y = 0.0054x + 5.9875 y = 0.0017x+9.7909 

Kelburn  y = 0.0012x+10.286 

Lethbridge y = 0.0051x + 6.4739  

Medicine Hat y = 0.0067x + 6.6461  

Melfort y = 0.0058x + 4.0019  

Roblin  y = 0.0048x+7.2227 

Scott y = 0.0053x + 6.6589  
Swift Current  y = 0.0026x+8.7816 

Vermilion y = 0.0031x + 8.289  

Mean slope       0.0051       0.00258 

 

The slope values can be used to extrapolate the accumulated GDD (base 0 C) at 50% anthesis 

from an observation of the Haun scale and its accompanying GDD (base 0C) accumulation from 

the date of planting. The accumulated heat unit value expected for the 50% anthesis stage (Haun 

scale 11.5) can be compared to the daily GDD (base 0 C) accumulation measured for the site to 

find the date closest to when the accumulated value occurred. 

Finally, any of the  Mkhabela et al. (2016) models along with planting date can be utilized to 

estimate the date of 50% anthesis in spring wheat at a specific location by using the measured 

accumulated heat units at the location. For this analysis, the accumulated value of 971.8 GDD 

(base 0 C) model was utilized. The date closest to when the accumulated value occurred was 

selected as the modelled value. 

The plot sites that had the date of 50% anthesis (Haun scale 11.5) specifically observed are shown 

in Tables AA5.1 (2019) and Table AA5.2 (2020).  An estimate of 50% anthesis date was generated 

using extrapolation from the other phenology observations at these plot sites and compared to the 
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observed date.  The extrapolation estimates were calculated using the 3 different slope values 

described previously.  In addition, the GDD (base 0 C) model from  Mkhabela et al. (2016) was 

compared to the observed value at each of the six locations. 

A5.2.8. Anthesis Estimation Method: Extrapolation in Durum 

 

The best method of estimating the date of 50% anthesis for durum is interpolation, which can be 

determined by using equation A5.1. An alternate method is required in locations with insufficient 

phenology observations to provide either direct observation or an interpolated date of 50% 

anthesis. Previous assessment of various thermal heat units for spring wheat showed that the GDD 

(base 0 C) model was the most accurate  (Mkhabela et al., 2016). Therefore, the simplest approach 

for durum would be to utilize the spring wheat model as a proxy for durum phenological 

development estimation. However, simultaneous observations of spring wheat and durum 

development at the same locations showed that durum tended to develop slightly slower than 

spring wheat (Figure A5.4) and that the model would require adjustment. 
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Figure A5. 4.  Comparison of durum and spring wheat observed stage of development made 

on the same date and locations in 2019 and 2020 growing seasons. 

 

The regression equations in Figure A5.4 were used to determine a comparable Haun stage of spring 

wheat on the date that durum reached 50% anthesis at the same location with the same planting 

date. The calculation was done by inserting a value of 11.5 for y in the regression equation and 

solving for x, which yielded an estimated Haun stage of 11.75 for spring wheat in 2019. This 

implied that, on average, the stage of spring wheat at the time of 50% anthesis for durum was Haun 

stage 11.75. This slightly more advanced stage for spring wheat compared to durum was justifiable 

based on observations of phenological development for both crops at multiple locations. 
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A5.2.9. Anthesis estimation method: Extrapolation in Winter Wheat 

 

The best method of estimating the date of 50% anthesis for winter wheat is interpolation, which 

can be determined by using equation A5.1. For locations where neither direct observation nor 

interpolation of 50% anthesis are possible because of limited observed phenology data, an 

alternative method is required. For winter wheat, the method needs to consider the date when the 

crop breaks dormancy to start active growth in the spring plus the rate of phenological development 

after that date. Therefore, the first step for estimating the date of 50% anthesis is to estimate the 

growing season start (GSS) date. Three different methods were investigated. Selirio and Brown 

(1979) described the commencement of forage growth in the spring as the day following a period 

after March 15 when the daily mean temperature exceeded 5 C for 5 days. Bootsma, (1994) 

described a method for calculating GSS for a perennial grass crop as the day the weighted mean 

air temperature (WT) reached 5.5 C for 5 consecutive days (equation A5.2) 

 WT(n) = [T(n-2) + 4T(n-1) + 6T(n) + 4T(n+1) + T(n+2)] / 16   [A5.2] 

Where WT(n) is the weighted mean temperature for day n, and T(n) is the temperature on day n.  

Qian et al. (2010) described the same weighted mean temperature approach for determining GSS 

for overwintering crops as shown in equation A5.2, except that the date was defined when WT 

reached 5.0 C for 5 consecutive days. Air temperature data were compiled for each location 

starting on March 1. The mean temperature for each date was used to determine GSS using each 

of the 3 methods above. The methods of Bootsma, (1994) and Qian et al. (2010) yielded exactly 

the same dates for GSS at all plot sites in both years (Table A5.4). Therefore, the method of Qian 

et al. (2010) was retained, and the method of Bootsma (1994) was not utilized in further analysis. 
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Table A5. 4.  Estimated dates of Growing Season Start (GSS) for winter wheat in 2019 and 

2020 plot sites using the methods of Selirio and Brown (1979), Bootsma (1994), and Qian et 

al. (2010). 

 2019 Growing Season Start  2020 Growing Season Start 

  5 days > 5 days >   5 days > 5 days > 

 5 days Wt Mean Wt Mean  5 days Wt Mean Wt Mean 

Start Methods 5.0°Ca 5.5°Cb 5.0°Cc  5.0°Ca 5.5°Cb 5.0°Cc 

Bow Island 7-Apr 24-Mar 24-Mar  23-Apr 21-Apr 21-Apr 

Brooks 23-Mar 23-Mar 23-Mar  23-Apr 23-Apr 23-Apr 

Lethbridge 23-Mar 23-Mar 23-Mar  23-Apr 21-Apr 21-Apr 

Medicine Hat 7-Apr 24-Mar 24-Mar  23-Apr 22-Apr 22-Apr 

Indian Head 22-Apr 21-Apr 21-Apr  25-Apr 25-Apr 25-Apr 

Melfort 17-Apr 18-Apr 18-Apr  7-May 27-Apr 27-Apr 

Prince Albert 22-Apr 19-Apr 19-Apr  26-Apr 26-Apr 26-Apr 

Scott 11-May 17-Apr 17-Apr  25-Apr 25-Apr 25-Apr 

Swift Current 21-Apr 8-Apr 8-Apr  24-Apr 24-Apr 24-Apr 

Arborg 22-Apr 19-Apr 19-Apr  27-Apr 27-Apr 27-Apr 

Carberry 19-Apr 19-Apr 19-Apr  26-Apr 26-Apr 26-Apr 

Kelburn 19-Apr 19-Apr 19-Apr  - - - 

Melita 19-Apr 18-Apr 18-Apr  25-Apr 25-Apr 25-Apr 

Roblin 22-Apr 19-Apr 19-Apr  27-Apr 27-Apr 27-Apr 
aSelirio and Brown (1979) 
bBootsma (1994) 
cQian et al. (2010) 

 

The cumulative heat unit values were plotted against Haun scale observations for all dates, 

excluding the dates with a Haun value of 11.5 (Figure A5.5). The latter dates were used for model 

testing. Linear regression equations were used to create 6 models of Haun scale value from 

cumulative heat units generated by the 3 thermal time measures for each of the 2 GSS methods. 

The modelled values of cumulative heat for Haun stage 11.5 were then used to estimate the date 

of 50% anthesis for each of the 6 locations with an observed Haun scale of 11.5. The regression 

coefficients, RMSE and MBE, were calculated for each linear regression approach to determine 

which one provided the most accurate 50% anthesis date estimate.
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   a)  b)        

   c)   d)  

Figure A5. 5.  Linear regression models of cumulative heat units versus observed Haun scale at plot sites using growing season 

start defined by 5 consecutive days with daily mean temperature > 5.0 C (a and c in 2019 and 2020, respectively) and growing 

season start defined by 5 consecutive days with weighted mean temperature (see equation A5.2) > 5.0 C (b and d in 2019 and 

2020, respectively).  Note that observation dates with Haun scale = 11.5 were not included but used for model testing. 
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A5.2.10. Anthesis Estimation Method: Extrapolation in Barley 

 

The best method of estimating the date of 50% anthesis for barley is interpolation, which can be 

determined by using equation A5.1. However, other methods must be employed for locations 

where the 50% anthesis date was not directly observed, and there are no observations that facilitate 

interpolation of the date. One approach uses the regression equation for the relationship between 

the observations and accumulated heat units at each location.  Another method is to use a 

phenological observation on a given date and extrapolate to the anthesis date by selecting a 

representative slope value for the rate of Haun scale change per heat unit.  In this analysis, two 

different representative slope values were tested by comparing their estimated date of 50% anthesis 

with the observed and interpolated values from seven of the 2019 plot sites: 

i) the slope of the Haun scale-GDD (base 0 C) relationship from observations at the local 

site and, 

ii) the mean slope of the Haun scale-GDD (base 0 C) relationship from observations at 

several sites with multiple observations. 

 

Figure A5.6 shows examples of the Haun scale-GDD (base 0 C) relationship at two individual 

barley plot locations.  The slope of the linear regression line at each site was utilized for 

analysis (i) above.   
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a)  b)  

Figure A5. 6.  Haun scale-GDD (base 0oC) relationship for 2019 phenological observations 

at (a) Bow Island, AB and (b) Swift Current, SK showing the linear regression lines and 

equations. 

 

The slope values were used to extrapolate the accumulated GDD (base 0 C) at 50% head 

emergence from an observation of the Haun scale and its accompanying GDD (base 0 C) 

accumulation from the date of planting.  As for the local regression approach, the accumulated 

heat unit value expected for the 50% head emergence stage (Haun scale 10.5) can be compared to 

the daily GDD (base 0 C) accumulation measured for the site to find the date closest to when the 

accumulated value occurred. 

Another method for 50% head emergence estimation is to solve the local regression equation for 

a specific site to return an accumulated GDD (base 0 C) at Haun scale 10.5. Then, the accumulated 

heat unit value expected for the 50% head emergence stage (Haun scale 10.5) can be compared to 

the daily GDD (base 0 C) accumulation measured for the site to find the date closest to when the 

accumulated value occurred. 

In addition, the accumulated GDD (base 0 C) and the GDD (base 32 F) can be used to estimate 

the date of 50% head emergence with the models developed by Juskiw et al. (2001) and NDAWN 

(2005), respectively, then compared to observed/interpolated values. This analysis tested the 

accuracy of the date of “anthesis” and “heading” as described by Juskiw et al. (2001) as well as 
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the date of “mid-boot” and “head emerged” as described by NDAWN (2005). Further, the dates 

for each of these stages were determined with 2 slightly different approaches. The first approach 

selected the first date on which the cumulative heat unit value was equal to or greater than that 

specified for the phenological stage. The second approach selected the date on which the 

cumulative heat unit value was numerically closest to that specified for the phenological stage. An 

additional model using a target GDD (base 0 C) cumulative threshold of 905 units was also tested. 

In total, there were 9 different modelled growth stage estimates generated for each site (2 models 

x 2 phenological stages x 2 methods of date selection plus 1 target model). 

A5.3. Results 

 

A5.3.1. Spring Wheat 

 

Table A5.5 shows the estimated dates for 50% anthesis using all three extrapolation methods. In 

the 2019 and 2020 growing seasons, the deviation of the estimated dates varied from 7 days and 9 

prior to the observed date to 8 and 7 days following the observed date, respectively. More than 

40% of the estimated dates were more than 2 days earlier or later than the observed date in both 

years. 
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Table A5. 5.  Extrapolated estimates of spring wheat 50% anthesis date using three different 

Haun scale-GDD (base 0 C) slopes.  

 

The Mkhabela et al. (2016) modelled dates using GDD (base 0 C) are shown in Table A5.6.  The 

deviation of the estimated dates varied from 6 days prior to the observed date to 4 days following 

the observed date. Half of the estimated dates were more than 2 days earlier or later than the 

observed date in both years. 

 

 

  Extrapolated Estimates of 50% Anthesis Date 

Plot Site 

Observation date 

used to Extrapolate 

Local Slope 

Method 

Mean Slope 

Method 

Mkhabela et al. 

(2016) slope 

Lethbridge 21-Jun-19 6-Jul-19 6-Jul-19 27-Jun-19 

Lethbridge 28-Jun-19 5-Jul-19 5-Jul-19 1-Jul-19 

Lethbridge 12-Jul-19 6-Jul-19 6-Jul-19 10-Jul-19 

Vermilion 11-Jul-19 23-Jul-19 19-Jul-19 14-Jul-19 

Vermilion 24-Jul-19 22-Jul-19 23-Jul-19 24-Jul-19 

Indian Head 5-Jul-19 18-Jul-19 19-Jul-19 11-Jul-19 

Indian Head 19-Jul-19 18-Jul-19 18-Jul-19 18-Jul-19 

Scott 9-Jul-19 23-Jul-19 23-Jul-19 15-Jul-19 

Scott 16-Jul-19 17-Jul-19 17-Jul-19 16-Jul-19 

Carberry 8-Jul-19 20-Jul-19 16-Jul-19 11-Jul-19 

Carberry 22-Jul-19 20-Jul-19 21-Jul-19 21-Jul-19 

Roblin 9-Jul-19 16-Jul-19 14-Jul-19 11-Jul-19 
     

Bow Island 29-Jun-20 11-Jul-20 11-Jul-20 4-Jul-20 

Bow Island 13-Jul-20 12-Jul-20 12-Jul-20 12-Jul-20 

Lethbridge 29-Jun-20 10-Jul-20 3-Jul-20 3-Jul-20 

Lethbridge 13-Jul-20 12-Jul-20 12-Jul-20 6-Jul-20 

Prince Albert 9-Jul-20 19-Jul-20 19-Jul-20 13-Jul-20 

Prince Albert 23-Jul-20 22-Jul-20 22-Jul-20 22-Jul-20 

Scott 15-Jul-20 20-Jul-20 20-Jul-20 17-Jul-20 

Scott 29-Jul-20 26-Jul-20 26-Jul-20 27-Jul-20 

Arborg 16-Jul-20 15-Jul-20 15-Jul-20 16-Jul-20 

Carberry 9-Jul-20 14-Jul-20 14-Jul-20 11-Jul-20 

Carberry 23-Jul-20 13-Jul-20 17-Jul-20 16-Jul-20 

Melita 29-Jun-20 12-Jul-20 12-Jul-20 4-Jul-20 

Melita 13-Jul-20 12-Jul-20 13-Jul-20 13-Jul-20 
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Table A5. 6.  Modelled dates of spring wheat 50% anthesis in 2019 and 2020 growing seasons 

using the Mkhabela et al. (2016) GDD (base 0 C) model. 

 Plot Site 

Observed Date 

of 50% Anthesis 

Modeled Date of 

50% Anthesis 

 

 Lethbridge 4-Jul-19 5-Jul-19  

 Vermilion 16-Jul-19 18-Jul-19  

 Indian Head 12-Jul-19 12-Jul-19  

 Scott 23-Jul-19 23-Jul-19  

 Carberry 15-Jul-19 9-Jul-19  

 Roblin 16-Jul-19 20-Jul-19  

     

 Bow Island 6-Jul-20 7-Jul-20  

 Lethbridge 6-Jul-20 4-Jul-20  

 Prince Albert 16-Jul-20 17-Jul-20  

 Scott 22-Jul-20 24-Jul-20  

 Arborg 9-Jul-20 9-Jul-20  

 Carberry 16-Jul-20 6-Jul-20  

 Melita 13-Jul-20 8-Jul-20  

 

A statistical comparison of the different methods for estimating 50% anthesis date is shown in 

Table A5.7.  The Mkhabela et al. (2016) GDD (base 0 C) model returned the highest regression 

coefficient and the lowest RMSE and MBE values in both 2019 and 2020; therefore, it was the 

most accurate method for estimating 50% anthesis date at a location where it was not directly 

observed and could not be interpolated. 

Table A5. 7.  Performance of the three extrapolation methods and the GDD (base 0 C) model 

from Mkhabela et al. (2016) for estimation of spring wheat 50% anthesis date in comparison 

to the observed date in 2019 and 2020 growing seasons.  RMSE and MBE values are in units 

of days. 

 Local slope  Mean Slope  Mkhabela et al (2016)  Mkhabela et al (2016) 

 Method Method Slope Method GDD (Base 0oC) 

2019 

R2 0.706 0.676 0.447 0.765 

RMSE 4.583 4.368 5.694 3.082 

MBE 2.833 2.250 -0.917 0.167 

2020 

R2 0.594 0.674 0.574 0.681 

RMSE 4.780 4.076 4.624 4.071 

MBE 2.692 2.154 -0.462 -1.714 
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A5.3.2. Durum  

 

The Haun value of 11.75 was inserted into the regression equation between Haun scale and GDD 

(base 0 C) developed by Mkhabela et al. (2016, Figure A5.1d).  This yielded a cumulative heat 

unit value of 992 units of GDD (base 0 C) from the day after planting.  Using this value, an 

estimated date of 50% anthesis was generated for each location where the date was either observed 

or interpolated (Table A5.8).  The deviation of the estimated dates varied from 13 days prior to the 

observed date to 17 days following the observed date. The accuracy of this method for 50% 

anthesis date of durum was poorer than those for the other spring crops (Table A5.9). 

Table A5. 8.  Estimated dates of durum 50% Anthesis using 992 cumulative GDD (base 0 C) 

in 2019, compared to observed dates. 

 

 

Plot Site 

Observed Date 

of 50% Anthesis 

Modeled Date of 

50% Anthesis 

 

  Bow Island 4-Jul 3-Jul  

  Brooks 21-Jul 13-Jul  

  Lethbridge 7-Jul 6-Jul  

  Medicine Hat 29-Jun 16-Jul  

  Vermilion 24-Jul 19-Jul  

  Indian Head 15-Jul 14-Jul  

  Melfort 3-Aug 21-Jul  

  Prince Albert 23-Jul 23-Jul  

  Scott 23-Jul 25-Jul  

  Swift Current 22-Jul 18-Jul  

  Carberry 18-Jul 10-Jul  

  Kelburn 10-Jul 8-Jul  

  Roblin 19-Jul 22-Jul  

 

Table A5. 9.  Performance of the durum 50% anthesis date method.  RMSE and MBE values 

are in units of days.  

  R2 0.447     

  RMSE 7.055     

  MBE -1.615     
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A5.3.3. Winter Wheat  

 

Winter wheat phenology observations were sufficient at all 14 sites to provide either an observed 

or interpolated date of 50% anthesis in 2019. (Table A5.10). However, only one site (Arborg) did 

not have enough phenology observations in 2020 to provide either an observed, interpolated, or 

extrapolated date of 50% anthesis. 

Table A5. 10. Observed, interpolated, and modelled dates of winter wheat 50% anthesis in 

2019 and 2020 growing seasons. 

 2019 growing season  2020 growing season 

 

Date of 50% 

Anthesis 

Method of 

Determination  

Date of 50% 

Anthesis 

Method of 

Determination 

Bow Island 21-Jun Interpolation  22-Jun Observed 

Brooks 16-Jun Interpolation  22-Jun Observed 

Lethbridge 25-Jun Interpolation  25-Jun Interpolation 

Medicine Hat 14-Jun Interpolation  24-Jun Interpolation 

Indian Head 12-Jul Observed  03-Jul Observed 

Melfort 17-Jul Observed  20-Jul Observed 

Prince Albert 11-Jul Observed  16-Jul Observed 

Scott 09-Jul Observed  15-Jul Observed 

Swift Current 30-Jun Interpolation  30-Jun Observed 

Arborg 05-Jul Interpolation  04-Jul Modelled 

Carberry 02-Jul Observed  02-Jul Observed 

Kelburn 29-Jun Interpolation  - - 

Melita 25-Jun Observed  22-Jun Interpolation 

Roblin 06-Jul Interpolation  05-Jul Interpolation 

 

Figure A5.5 show linear regression equations that were used to provide estimated cumulative heat 

value for Haun scale 11.5 (Table A5.11) in 2019 and 2020, respectively. The modelled cumulative 

heat values for Haun scale 11.5 were used to determine the date of 50% anthesis for the locations 

where the date had been directly observed (Table A5.12).  Estimated dates of 50% anthesis ranged 

from 13 days prior to the observed date in both years to 5 and 11 days following the observed date 

in 2019 and 2020, respectively. Comparisons of observed versus modelled dates for 50% anthesis 
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showed that the GSS method of Qian et al. (2010 (equation A5.2) 2019 and 2020 yielded higher 

R2 values and lower error than the GSS method of Selirio and Brown (1979) (Table A5.13). 

For the cumulative heat unit methods using the Qian et al. (2010) GSS, the GDD (base 5 C) had 

the highest R2, the GDD (base 0 C) had the lowest RMSE, and the NDAWN (base 32 F) had the 

lowest MBE in 2019. Thus, the method of choice is not completely the best for all 3 statistics.  

However, the GDD (base 0 C), with the lowest RMSE, only slightly higher MBE than NDAWN 

(base 32 F) and a higher R2 than NDAWN (base 32 F) was the recommended procedure since it 

was shown to produce the lowest absolute error in the estimated anthesis date in 2019. In 2020, 

the GDD (base 0 C) had the highest R2 and the lowest RMSE compared to NDAWN (base 32 F) 

and GDD (base 5 C).  However, the MBE of the NDAWN (base 32 F) was the lowest. As a 

result, the GDD (base 0 C) was also recommended in estimating the anthesis date in 2020. 

Table A5. 11.  Cumulative heat values at winter wheat Haun scale 11.5 for each of 3 thermal 

time units and 2 different GSS methods.  

 Thermal Time Accumulations 

  GSS-5 days > 5oC Mean Temp   GSS-5 days > 5oC > W Mn 5.0oC 

 (Selirio and Brown 1997)  (Qin et al. 2010) 

year 

GDD 

(0oC) 

NDAWN 

(32oC) 

GDD 

(5oC)  

GDD 

(0oC) 

NDAWN 

(32oC) 

GDD 

(5oC)         
2019 885.93 881.67 529.58  915.77 911.36 539.54 

2020 898.20 894.80 573.25  916.60 908.18 580.89 
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Table A5. 12.  Modelled dates of winter wheat 50% anthesis for 6 sites in 2019 and 2020 where Haun scale 11.5 was directly 

observed. 

  Modeled date of 50% anthesis 

  GSS-5 days > 5oC Mean Temp  GSS-5 days > 5oC > W Mn 5.0oC   
(Selirio and Brown 1997) 

 
(Qian et al. 2010) 

Plot Site 

Observed Date 

50% Anthesis 

GDD  

(0oC) 

NDAWN 

(32oC) 

GDD 

 (5oC)   

GDD 

 (0oC) 

NDAWN 

(32oC) 

GDD 

 (5oC) 

2019 

Indian Head 12-Jul-19 6-Jul-19 6-Jul-19 3-Jul-19  7-Jul-19 7-Jul-19 4-Jul-19 

Melfort 17-Jul-19 5-Jul-19 5-Jul-19 4-Jul-19  7-Jul-19 7-Jul-19 6-Jul-19 

Prince Albert 11-Jul-19 14-Jul-19 14-Jul-19 10-Jul-19  15-Jul-19 16-Jul-19 10-Jul-19 

Scott 9-Jul-19 13-Jul-19 14-Jul-19 10-Jul-19  8-Jul-19 9-Jul-19 7-Jul-19 

Carberry 2-Jul-19 30-Jun-19 30-Jun-19 29-Jun-19  2-Jul-19 2-Jul-19 30-Jun-19 

Melita 25-Jun-19 29-Jun-19 29-Jun-19 28-Jun-19  30-Jun-19 30-Jun-19 28-Jun-19 

2020 

Bow Island 22-Jun-20 1-Jul-20 1-Jul-20 3-Jul-20  1-Jul-20 1-Jul-20 3-Jul-20 

Brooks 22-Jun-20 1-Jul-20 1-Jul-20 3-Jul-20  2-Jul-20 2-Jul-20 4-Jul-20 

Indian Head 3-Jul-20 2-Jul-20 3-Jul-20 2-Jul-20  3-Jul-20 3-Jul-20 3-Jul-20 

Melfort 20-Jul-20 11-Jul-20 11-Jul-20 10-Jul-20  8-Jul-20 8-Jul-20 9-Jul-20 

Prince Albert 16-Jul-20 6-Jul-20 7-Jul-20 8-Jul-20  9-Jul-20 7-Jul-20 8-Jul-20 

Scott 15-Jul-20 7-Jul-20 7-Jul-20 10-Jul-20  8-Jul-20 8-Jul-20 11-Jul-20 

Swift Current 30-Jun-20 8-Jul-20 8-Jul-20 7-Jul-20  2-Jul-20 3-Jul-20 3-Jul-20 

Carberry 2-Jul-20 29-Jun-20 30-Jun-20 29-Jun-20   1-Jul-20 30-Junl-20 30-Jun-20 
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Table A5. 13.  Comparison of methods for estimation of 50% anthesis date to observed date. 

   GSS-5 days > 5oC Mean Temp  

 GSS-5 days > 5oC > W Mn 

5.0oC 

  (Selirio and Brown 1997)  (Qian et al. 2010) 

  Year 

GDD 

(0oC) 

NDAWN 

(32oC) 

GDD 

(5oC)   

GDD 

(0oC) 

NDAWN 

(32oC) 

GDD 

(5oC) 

R2 2019 0.360 0.342 0.393  0.491 0.453 0.636 

RMSE  6.124 6.245 6.708  5.276 5.401 5.817 

MBE  -1.500 -1.333 -3.667  -1.167 -0.833 -3.500          
R2 2020 0.538 0.617 0.528  0.797 0.796 0.601 

RMSE  7.754 7.550 7.826  7.340 7.649 7.738 

MBE   -0.625 -0.250 0.250   -0.375 -1.000 -0.125 

 

 

 

Figure A5. 7. Linear regression model of cumulative GDD (base 0 C) using growing season start 

defined by 5 consecutive days with weighted mean temperature (see equation A5.2) > 5.0 C versus 

observed Haun scale at plot sites for all observations in 2019 and 2020. 
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A5.3.4. Barley  

 

The estimated dates for 50% head emergence using the 2 extrapolation methods are shown in Table 

A5.14. The deviation of the estimated dates varied from 8 days prior to the observed date to 5 days 

following the observed date.  Less than 20% of the estimated dates were more than 2 days earlier 

or later than the observed date. 

Table A5. 14.  Extrapolated estimates of 50% head emergence (HE) date using two different Haun 

scale-GDD (base 0 C) slopes.  
Observed/ Observed 

 
Estimated Dates of 50% Head  

Interpolated Date 
 

Emergence  
Date of 50% Used to 

 
Local slope Mean slope 

Plot Site HE Extrapolate  Method Method 

Bow Island 04-Jul 21-Jun 
 

04-Jul 28-Jun 

Bow Island 04-Jul 27-Jun 
 

02-Jul 29-Jun 

Brooks 11-Jul 08-Jul 
 

12-Jul 11-Jul 

Brooks 11-Jul 15-Jul 
 

10-Jul 12-Jul 

Lethbridge 29-Jun 28-Jun 
 

30-Jun 01-Jul 

Lethbridge 29-Jun 04-Jul 
 

30-Jun 26-Jun 

Indian Head 13-Jul 12-Jul 
 

14-Jul 14-Jul 

Indian Head 13-Jul 19-Jul 
 

14-Jul 14-Jul 

Swift Current 09-Jul 08-Jul 
 

10-Jul 09-Jul 

Swift Current 09-Jul 15-Jul 
 

10-Jul 14-Jul 

Kelburn 05-Jul 04-Jul 
 

05-Jul 07-Jul 

Kelburn 05-Jul 11-Jul 
 

05-Jul 27-Jun 

Roblin 10-Jul 09-Jul 
 

10-Jul 10-Jul 

Roblin 10-Jul 16-Jul 
 

10-Jul 11-Jul 

 

The local regression estimated dates of 50% head emergence are shown in Table A5.15.  The 

deviation of the estimated dates varied from 1 day prior to the observed date to 1 day following 

the observed date. Therefore, none of the estimates were more than 2 days earlier or later than the 

observed date. 
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Table A5. 15.  Estimated dates of 50% head emergence (HE) using the local regression equation for 

Haun scale versus GDD (base 0 C).   

Observed/Interpolated Modelled Date 

 

 
Plot Site Date of 50% HE of 50% HE 

 

 
Bow Island 04-Jul 03-Jul 

 

 
Brooks 11-Jul 10-Jul 

 

 
Lethbridge 29-Jun 30-Jun 

 

 
Indian Head 13-Jul 14-Jul 

 

 
Swift Current 09-Jul 09-Jul 

 

 
Kelburn 05-Jul 05-Jul 

 

 
Roblin 10-Jul 10-Jul 

 

  

 

The modelled dates for anthesis and heading from Juskiw et al. (2001) and the target model using 

GDD (base 0 C) are shown in Table A5.16 in comparison to the observed/interpolated 50% head 

emergence dates. The deviation of the modelled dates varied from 12 days prior to the observed 

date to 7 days following the observed date.  More than 50% of the estimated dates were more than 

2 days earlier or later than the observed date.  However, the modelled date of heading reflected the 

50% head emergence date more accurately than the modelled date of anthesis.  The deviation of 

the former ranged from 5 days prior to the observed/interpolated date to 7 days following the 

observed/interpolated date.  Over 40% of the modelled dates of heading were more than 2 days 

earlier or later than the observed/interpolated dates. The target model date of 50% head emergence 

varied from 6 days prior to the observed/interpolated date to 6 days following the 

observed/interpolated date, with over 50% of the modelled dates more than 2 days earlier or later. 
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Table A5. 16.  Estimated dates of anthesis and heading using Juskiw et al. (2001) in comparison to 

observed/interpolated date of 50% head emergence.  
Observed/ Juskiw-1a Juskiw-1b Juskiw-2c Juskiw-2d Targete  
Interpolated Modeled Modeled Modeled Modeled Model  
Date of Date of Date of Date of Date of Date of 

Plot Site 50% HE Anthesis Heading Anthesis Heading 50%HE 

Bow Island 04-Jul 23-Jun 29-Jun 22-Jun 29-Jun 28-Jun 

Brooks 11-Jul 03-Jul 10-Jul 03-Jul 10-Jul 09-Jul 

Lethbridge 29-Jun 24-Jun 01-Jul 24-Jun 01-Jul 30-Jun 

Indian Head 13-Jul 06-Jul 11-Jul 05-Jul 11-Jul 10-Jul 

Swift Current 09-Jul 09-Jul 14-Jul 09-Jul 14-Jul 13-Jul 

Kelburn 05-Jul 30-Jun 05-Jul 30-Jun 05-Jul 04-Jul 

Roblin 10-Jul 12-Jul 17-Jul 12-Jul 17-Jul 16-Jul 

aDate on which cumulative GDD (base 0C) from day after planting was ≥ 813. 
bDate on which cumulative GDD (base 0C) from day after planting was ≥ 916. 
cDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

813. 
dDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

916. 
eDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

905. 

 

The modelled dates for mid-boot and head emerged from NDAWN (2005) are shown in Table 

A5.17 compared to the observed/interpolated 50% head emergence dates. The deviation of the 

modelled dates varied from 13 days prior to the observed date to 4 days following the observed 

date. Almost 80% of the estimated dates were more than 2 days earlier or later than the observed 

date. Therefore, neither the mid-boot nor head emerged modelled date accurately reflected the 

observed/interpolated date of 50% head emergence. 
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Table A5. 17. Estimated dates of mid-boot and head emerged using NDAWN (2005) in comparison 

to observed/interpolated date of 50% head emergence (HE). 

  Observed/ NDAWN-1a NDAWN-1b NDAWN-2c NDAWN-2d  
Interpolated Modeled Modeled Modeled Modeled  
Date of Date of Date of Head Date of Date of Head 

Plot Site 50% HE Mid-boot Emerged Mid-boot Emerged 

Bow Island 04-Jul 22-Jun 24-Jun 21-Jun 24-Jun 

Brooks 11-Jul 02-Jul 05-Jul 02-Jul 05-Jul 

Lethbridge 29-Jun 23-Jun 26-Jun 23-Jun 25-Jun 

Indian Head 13-Jul 06-Jul 08-Jul 05-Jul 07-Jul 

Swift Current 09-Jul 09-Jul 11-Jul 09-Jul 11-Jul 

Kelburn 05-Jul 30-Jun 01-Jul 29-Jun 01-Jul 

Roblin 10-Jul 12-Jul 14-Jul 12-Jul 14-Jul 

aDate on which cumulative special GDD (Base 32 F) from day after planting was ≥ 792. 

bDate on which cumulative special GDD (Base 32 F) from day after planting was ≥ 831. 

cDate on which cumulative special GDD (Base 32 F) from day after planting was numerically 

closest to 792. 

dDate on which cumulative special GDD (Base 32 F) from day after planting was numerically 

closest to 831. 

 

 

A statistical comparison of the different methods for estimating 50% anthesis date is shown in 

Table A5.18.  The local regression method was the most accurate method with the highest R2 and 

lowest RMSE and MBE.  The hybrid methods used either the local or average GDD (base 0 C) 

versus Haun scale regressions were the next most accurate methods. Among the different 

modelling approaches, the Juskiw-1 heading and Juskiw-2 heading had the highest R2 and lowest 

RMSE and MBE for estimating 50% head emergence compared to the locations where it was 

directly observed or interpolated. 
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Table A5. 18.  Performance of the local regression, extrapolation, and modelling methods for 

estimating 50% head emergence date compared to the observed/interpolated date.  Root mean square 

error (RMSE) and Mean bias error (MBE) values are in units of days.  
Observed/ Juskiw-1a Juskiw-1b Juskiw-2c Juskiw-2d Targete  
Interpolated Modeled Modeled Modeled Modeled Model  
Date of Date of Date of Date of Date of Date of 

Plot Site 50% HE Anthesis Heading Anthesis Heading 50%HE 

Bow Island 04-Jul 23-Jun 29-Jun 22-Jun 29-Jun 28-Jun 

Brooks 11-Jul 03-Jul 10-Jul 03-Jul 10-Jul 09-Jul 

Lethbridge 29-Jun 24-Jun 01-Jul 24-Jun 01-Jul 30-Jun 

Indian Head 13-Jul 06-Jul 11-Jul 05-Jul 11-Jul 10-Jul 

Swift Current 09-Jul 09-Jul 14-Jul 09-Jul 14-Jul 13-Jul 

Kelburn 05-Jul 30-Jun 05-Jul 30-Jun 05-Jul 04-Jul 

Roblin 10-Jul 12-Jul 17-Jul 12-Jul 17-Jul 16-Jul 

aDate on which cumulative GDD (base 0C) from day after planting was ≥ 813. 
bDate on which cumulative GDD (base 0C) from day after planting was ≥ 916. 
cDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

813. 
dDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

916. 
eDate on which cumulative GDD (base 0C) from day after planting was numerically closest to 

905. 

 

A5.4. Discussion 

 

Spring wheat. Based on the Haun scale-GDD observations in Figure A5.2, the initial expectation 

would be that extrapolation from a measured point would provide the most accurate estimate of 

50% anthesis date because of the site-to-site variation from the Mkhabela et al. (2016) models.  

Essentially, this offset correction should help reflect differences in the Haun scale-GDD 

relationships between locations.  However, it requires an estimate of the slope of the relationship 

to extrapolate an estimated accumulated GDD value for the Haun scale 11.5.  Although several 

different slopes were tested, the results were not as accurate as using the  Mkhabela et al. (2016) 

GDD (base 0 C) model and the planting date.  Extrapolation is clearly very sensitive to the 
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estimated slope of the Haun scale-GDD relationship. The examples in Figure A5.3 illustrate the 

variation in slope between different points of the observed Haun scale versus accumulated GDD. 

Thus, the locally-derived slopes and measured values are a less accurate method for estimating 

GDD than the  Mkhabela et al. (2016) models using planting date. The latter were derived from 

many more observations than those in the 2019 and 2020 plot site study, which may account for 

its higher accuracy for estimation of 50% anthesis dates. It should be noted that the estimated date 

varied by up to 6 days from the observed date with a RMSE of 3 days in 2019.  This was slightly 

better than the results for multiple sites reported by  Mkhabela et al. (2016). 

Durum. The approach for estimating 50% anthesis date in durum by relating it to the spring wheat 

model is a compromise. There is an error associated both with the spring wheat equivalent Haun 

scale 11.75 value at the time of durum reaching Haun scale 11.5 and the error associated with the 

spring wheat thermal time model based on GDD (base 0 C). This is part of why there is a larger 

RMSE for the estimates of 50% anthesis date in durum compared to the other spring-sown crops.  

The fact that, on average, there is a difference of 7 days between the actual and estimated date is 

not encouraging. 

Winter Wheat. Unlike spring-sown crops, estimation of 50% anthesis date for winter wheat 

cannot rely upon models that use cumulative heat units following the planting date. This is because 

the temperature dormancy period during the winter can vary in length, and it is the period following 

the commencement of active growth in spring up to the date of anthesis that is relevant. 

In 2019, the date of 50% anthesis for all 14 plot sites was either directly observed or could be 

interpolated from phenology observations both preceding and following Haun scale 11.5.  

However, for all the producer fields in the FHB study, the date of 50% anthesis must be modelled. 

The modelling method must provide both an estimate of GSS and a target cumulative heat unit 
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value from the day following GSS and thus require a record of daily air temperature from March 

1.  Although the most accurate GSS method was determined to be the one described by Qian et al. 

(2010) and the most accurate cumulative heat unit was GDD (base 0 C), the estimated dates varied 

between 13 days prior and 5 days following the actual observed date.  In addition, the RMSE for 

winter wheat was larger than that for spring crops.  This could impact the accuracy of FHB risk 

models using weather conditions based on the date of anthesis because of the very large 

discrepancy that could occur in defining anthesis date. 

Barley. Unlike the results for spring wheat, the local regression and hybrid extrapolation methods 

were the most accurate for estimating the date of 50% head emergence in barley.  However, these 

methods all require multiple phenology observations at a location or several locations. The 

modelling methods are more attractive because they require only the seeding date and a record of 

daily air temperature throughout the growing season. 

The Juskiw-1 heading, Juskiw-2 heading, and target models, were the most accurate among the 

tested modelling approaches.  The RMSE and absolute value of MBE for the 2 Juskiw models 

were just slightly higher than those for the average slope method of extrapolation.  Likewise, the 

target model RMSE was just slightly higher than that for the average slope extrapolation method, 

and the absolute value of the MBE was half a day less for the target model. However, the Juskiw-

1 anthesis and Juskiw-2 anthesis and all four of the NDAWN models had higher negative bias 

values indicating that their estimated date tended to be too early.  Part of the reason for the 

NDAWN estimates being too early may be related to the fact that the models were developed in 

North Dakota with barley varieties that normally produced 8 leaves (NDAWN, 2005).  Juskiw et 

al. (2001) reported that barley varieties used in their assessment in Alberta usually developed 9 

leaves. 
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A5.5. Conclusion 

 

The most accurate method for determining date of 50% anthesis is direct observation.  However, 

since this requires a high frequency of observations, it is impractical for widespread use.  

Interpolation of the date between two observations that immediately precede and follow the 50% 

anthesis stage offers a reliable and simple method for its estimation.  In cases where neither of the 

above is available: 

i) The most accurate alternative method for spring wheat is to use planting date and an 

accumulated heat model from Mkhabela et al. (2016). The Mkhabela et al. (2016) 

models using planting date and accumulated heat are the best choice for estimating date 

of 50% anthesis at those fields, but the actual date across fields would be expected to 

vary from the estimate by 3 days. 

ii) A conversion of the spring wheat thermal time model to adapt it for durum provides an 

alternative method. It requires only the seeding date and cumulative GDD (base 0 C) 

to find the date on which the value is closest to 992. This is relatively simple, but it 

may not have satisfactory accuracy for modelling purposes. 

iii) The most accurate alternative method for winter wheat is to model the date for GSS 

using the method of Qian et al. (2010) using equation A5.2 and a weighted mean 

temperature of 5.0 C, then accumulate GDD (base 0 C) from the day after GSS to the 

closest day when the total reaches 919. This analysis showed that the above method 

had the lowest RMSE, 2nd lowest MBE, and 2nd highest R2.  This is important for the 

producer fields used in the study for FHB risk model validation.  This method is the 

best choice for estimating the date of 50% anthesis at those fields, but the actual date 
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across all fields would be expected to vary on average from the estimate by more than 

5 days. 

iv) The most accurate alternative method for barley is to use a regression equation for the 

relationship between multiple observations of phenology (Haun scale) and cumulative 

GDD (base 0 C). Again, a lack of observations will likely preclude this method in 

practice. The alternative is to model the 50% head emergence date using planting date 

and cumulative heat units. In this analysis, the closest date at which GDD (base 0 C) 

accumulated to a value of 905 gave the highest R2 and the lowest RMSE and MBE 

values amongst all of the assessed modelling methods. This is important for the 

producer fields used in the study for FHB risk model validation. The target model using 

905 accumulated GDD (base 0 C) and planting date is the best choice for estimating 

the 50% head emergence date at those fields, but the actual date across all fields would 

be expected to vary from the estimate less than 4 days. 
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Table AA5. 1.  Spring wheat crop stage by observation date and location with cumulative 

GDD (base 0 C) in 2019. 

   NDGDD 

Site 

Observed 

Date 

Haun 

Scale 
GDD (0°C) (32°F) GDD (0°C) 

Bow Island 21-Jun-19 10.38 788.75 782.95 472.25 

Bow Island 27-Jun-19 11.42 883.35 877.55 536.85 

Bow Island 4-Jul-19 11.6 996.85 991.05 615.35 

Brooks 2-Jul-19 10.32 802.05 793.05 517.05 

Brooks 8-Jul-19 10.38 894.55 885.55 579.55 

Brooks 15-Jul-19 11.46 1034.6 1025.6 684.6 

Brooks 22-Jul-19 12.1 1148.9 1139.9 763.9 

Lethbridge 21-Jun-19 10.38 770.2 765.1 446 

Lethbridge 28-Jun-19 11 875.65 870.55 516.45 

Lethbridge 4-Jul-19 11.5 964.85 959.75 575.65 

Lethbridge 12-Jul-19 12.1 1105.25 1100.15 676.05 

Medicine Hat 19-Jun-19 9.65 513.75 497.9 343.75 

Medicine Hat 26-Jun-19 11.42 613.95 598.1 408.95 

Medicine Hat 4-Jul-19 11.6 747.85 732 502.85 

Medicine Hat 9-Jul-19 12.1 837.9 822.05 567.9 

Vermilion 11-Jul-19 10.85 862.65 857.15 542.65 

Vermilion 16-Jul-19 11.5 945.75 940.25 600.75 

Vermilion 24-Jul-19 11.6 1082.7 1077.2 697.7 

Indian Head 5-Jul-19 10.18 809.5 796.7 524.9 

Indian Head 12-Jul-19 11.5 942.8 930 623.2 

Indian Head 19-Jul-19 11.6 1072.4 1059.6 717.8 

Melfort 24-Jul-19 10.1 1059.4 1040.1 714.4 

Melfort 31-Jul-19 11 1179.5 1160.2 799.5 

Melfort 7-Aug-19 11.538 1305.8 1286.5 890.8 

Prince Albert 18-Jul-19 11.42 891.25 873 606.25 

Prince Albert 25-Jul-19 11.6 1022.1 1003.85 702.1 

Scott 9-Jul-19 10.26 720 694.4 475 

Scott 16-Jul-19 11.42 835.4 809.8 555.4 

Scott 23-Jul-19 11.5 954.6 929 639.6 

Swift Current 8-Jul-19 10.5 804.5 790.25 529.5 

Swift Current 15-Jul-19 11.46 936.4 922.15 626.4 

Arborg 2-Jul-19 9.875 705.95 699.1 461.7 

Arborg 9-Jul-19 11.4 840.45 833.6 561.2 

Carberry 8-Jul-19 10.7 945.8 942.05 621.5 

Carberry 15-Jul-19 11.5 1091.3 1087.55 732 

Carberry 22-Jul-19 11.6 1221.25 1217.5 826.95 

Kelburn 4-Jul-19 11.48 904.05 899.2 619.05 

Melita 2-Jul-19 10.7 746.75 729.55 501.8 

Roblin 9-Jul-19 11 766 748.9 501 

Roblin 16-Jul-19 11.5 899.1 882 599.1 
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Table AA5. 2.  Spring wheat crop stage by observation date and location with cumulative 

GDD (base 0 C) in 2020. 

   NDGDD 

Site 

Observed 

Date 

Haun 

Scale 
GDD (0°C) (32°F) GDD (0°C) 

Bow Island 29-Jun-20 10.5 839.4 835.4 544.6 

Bow Island 06-Jul-20 11.5 956.25 952.25 626.45 

Bow Island 13-Jul-20 11.6 1071.3 1067.3 706.5 

Brooks 13-Jul-20 11.42 1034.95 1029.95 719.95 

Brooks 20-Jul-20 11.55 1180 1175 825 

Brooks 27-Jul-20 12.1 1317.4 1312.4 927.4 

Lethbridge 29-Jun-20 11 897.1 895.05 567.35 

Lethbridge 06-Jul-20 11.5 1001.6 999.55 636.85 

Lethbridge 13-Jul-20 11.6 1118.7 1116.65 718.95 

Medicine Hat 26-Jun-20 11 885.9 880.8 571.7 

Indian Head 03-Jul-20 9.425 793.7 773.5 530.15 

Indian Head 10-Jul-20 11.4 922.55 902.35 624 

Indian Head 17-Jul-20 11.55 1049.95 1029.75 716.4 

Indian Head 24-Jul-20 11.85 1185.15 1164.95 816.6 

Melfort 20-Jul-20 11 893.45 883.1 603.45 

Prince Albert 09-Jul-20 10.6 831.65 819.6 556.65 

Prince Albert 16-Jul-20 11.5 953.9 941.85 643.9 

Prince Albert 23-Jul-20 11.6 1090.9 1078.85 745.9 

Scott 15-Jul-20 11 809.1 799.85 529.1 

Scott 22-Jul-20 11.5 928.95 919.7 613.95 

Scott 29-Jul-20 11.85 1060.3 1051.05 710.3 

Swift Current 07-Jul-20 11 867.05 859.55 564.1 

Swift Current 14-Jul-20 11.42 976.1 968.6 638.15 

Swift Current 21-Jul-20 11.6 1095.25 1087.75 722.3 

Arborg 09-Jul-20 11.5 970.55 949.05 685.75 

Arborg 16-Jul-20 11.6 1107.85 1086.35 788.05 

Carberry 09-Jul-20 11 1040.6 1023.8 728.95 

Carberry 16-Jul-20 11.5 1176.1 1159.3 829.45 

Carberry 23-Jul-20 12.1 1306.3 1289.5 924.65 

Kelburn 29-Jun-20 10.1 860.3 840.45 615.3 

Kelburn 03-Jul-20 11.42 963.05 943.2 698.05 

Kelburn 06-Jul-20 11.48 1033.1 1013.25 753.1 

Kelburn 10-Jul-20 11.6 1118.2 1098.35 818.2 

Melita 29-Jun-20 10.1 800.2 780.6 556.25 

Melita 06-Jul-20 11.5 953.05 933.45 674.1 

Melita 13-Jul-20 11.6 1091.35 1071.75 777.4 

Roblin 02-Jul-20 10.85 747.95 731.25 507.95 

Roblin 09-Jul-20 11.42 884.2 867.5 609.2 

Roblin 16-Jul-20 12.1 1007.05 990.35 697.05 
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Table AA5. 3. Durum crop stage by observation date and location with cumulative GDD (base 

0 C) in 2019. 

 
Plot site Date Observed Haun Cum GDD0  

 Bow Island 21-Jun 9.425 788.75  

 Bow Island 27-Jun 11 883.35  

 Bow Island 4-Jul 11.5 996.85  

 Brooks 8-Jul 10.26 894.55  

 Brooks 15-Jul 10.7 1034.6  

 Brooks 22-Jul 11.6 1148.9  

 Lethbridge 21-Jun 9.2 770.2  

 Lethbridge 28-Jun 11 875.65  

 Lethbridge 4-Jul 11.42 964.85  

 Lethbridge 12-Jul 11.6 1105.25  

 Medicine Hat 26-Jun 11 613.95  

 Medicine Hat 4-Jul 12.1 747.85  

 Vermilion 11-Jul 10.55 862.65  

 Vermilion 16-Jul 11 945.75  

 Vermilion 24-Jul 11.49 1082.7  

 Indian Head 5-Jul 9.65 809.5  

 Indian Head 12-Jul 11.42 942.8  

 Indian Head 19-Jul 11.6 1072.4  

 Melfort 24-Jul 10.55 1059.4  

 Melfort 31-Jul 11.21 1179.5  

 Melfort 7-Aug 11.85 1305.8  

 Prince Albert 18-Jul 11 891.25  

 Prince Albert 25-Jul 11.6 1022.1  

 Scott 16-Jul 10.6 835.4  

 Scott 23-Jul 11.42 954.6  

 Scott 30-Jul 12.1 1074.8  

 Swift Current 8-Jul 10.6 804.5  

 Swift Current 15-Jul 11 936.4  

 Swift Current 22-Jul 11.5 1053.8  

 Arborg 9-Jul 10.925 840.45  

 Carberry 8-Jul 9.2 945.8  

 Carberry 15-Jul 11.42 1091.3  

 Carberry 22-Jul 11.6 1221.25  

 Kelburn 4-Jul 10.32 904.05  

 Kelburn 11-Jul 11.6 1044.95  

 Kelburn 17-Jul 12.1 1175.1  

 Roblin 9-Jul 10.6 766  

 Roblin 16-Jul 11.42 899.1  

 Roblin 23-Jul 11.6 1016.55  
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Table AA5. 4. Durum crop stage by observation date and location with cumulative GDD (base 

0 C) in 2020. 

   
   

 Location  Date Observed Haun Cum GDD0  

 Bow Island  29-Jun 10.5 839.4  

 Bow Island  6-Jul 11.42 956.25  

 Bow Island  13-Jul 11.6 1071.3  

 Brooks  13-Jul 10.7 1389.75  

 Brooks  20-Jul 11.55 1518.65  

 Brooks  27-Jul 12.1 1656.05  

 Lethbridge  29-Jun 10.7 897.1  

 Lethbridge  6-Jul 11.42 1001.6  

 Lethbridge  13-Jul 11.6 1118.7  

 Indian Head  10-Jul 11 513.4  

 Indian Head  17-Jul 11.46 640.8  

 Indian Head  24-Jul 11.6 776  

 Melfort  20-Jul 10.7 893.45  

 Melfort  27-Jul 11.55 1032.1  

 Prince Albert  9-Jul 10.1 831.65  

 Prince Albert  16-Jul 11 953.9  

 Prince Albert  23-Jul 11.6 1090.9  

 Scott  15-Jul 10.32 809.1  

 Scott  22-Jul 11 928.95  

 Scott  29-Jul 11.6 1060.3  

 Swift 

Current 

 

7-Jul 11 867.05 

 

 Swift 

Current 

 

14-Jul 11.42 976.1 

 

 Swift 

Current 

 

21-Jul 11.6 1095.25 

 

 Arborg  9-Jul-20 11.42 970.3  

 Arborg  16-Jul-20 12.1 1107.6  

 Carberry  9-Jul 9.2 1025.15  

 Carberry  16-Jul 11.42 1160.65  

 Carberry  23-Jul 11.6 1290.85  

 Melita  29-Jun 10.1 800.2  

 Melita  6-Jul 11.42 953.05  

 Melita  13-Jul 11.6 1091.35  

 

Table AA5. 5.  Winter wheat crop stage by observation date and location with thermal time 

model accumulations in 2019. 

        Thermal Time Accumulations 

    

GSS–5 days > 5°C Mean 

Temp  
GSS–5 days > W Mn 5.0°C 

  Observations (Selirio and Brown 1979)  (Qian et al. 2010 

  Haun  GDD NDAWN GDD  GDD NDAWN GDD 
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Plot Site Date Scale   (0°C) (32°F) (5°C)   (0°C) (32°F) (5°C) 

Bow Island 11-Jun 11.38  676.65 674.5 373.2  761 758.85 396.7 

Bow Island 21-Jun 11.42  840.65 838.5 487.2  925 922.85 510.7 

Bow Island 27-Jun 12.1  935.25 933.1 551.8  1020 1017.45 575.3 

Brooks 10-Jun 10.78  692.35 690.8 341.2  692.4 690.8 341.15 

Brooks 17-Jun 11.6  815.9 814.35 429.7  815.9 814.35 429.7 

Brooks 24-Jun 12.1  914.75 913.2 493.6  914.8 913.2 493.55 

Lethbridge 14-Jun 11  763.1 763.1 394.8  763.1 763.1 394.8 

Lethbridge 21-Jun 11.46  870.55 870.55 467.3  870.6 870.55 467.25 

Lethbridge 28-Jun 11.535  976 976 537.7  976 976 537.7 

Lethbridge 4-Jul 11.6  1065.2 1065.2 596.9  1065 1065.2 596.9 

Medicine Hat 11-Jun 11.42  696.6 695.1 389.6  779.8 778.3 413.95 

Medicine Hat 19-Jun 11.6  838.65 837.15 491.6  921.9 920.35 516 

Indian Head 28-Jun 9.88  761.15 755.65 467.3  767.6 762.1 468.75 

Indian Head 5-Jul 11.14  877.95 872.45 549.1  884.4 878.9 550.55 

Indian Head 12-Jul 11.5  1011.25 1005.75 647.4  1018 1012.2 648.85 

Melfort 10-Jul 11.42  973.6 971.1 595.4  965.6 963.05 592.35 

Melfort 17-Jul 11.5  1098 1095.5 684.8  1090 1087.45 681.75 

Melfort 24-Jul 11.6  1221.95 1219.45 773.8  1214 1211.4 770.7 

Prince Albert 4-Jul 10.85  715.1 696.25 460.1  722.9 704 462.85 

Prince Albert 11-Jul 11.5  835.5 816.65 545.5  843.3 824.4 548.25 

Prince Albert 18-Jul 11.6  961.45 942.6 636.5  969.2 950.35 639.2 

Scott 26-Jun 10.26  613.5 597.7 383.5  726.7 710.2 420.05 

Scott 2-Jul 11.42  707.75 691.95 447.8  821 804.45 484.3 

Scott 9-Jul 11.5  815.15 799.35 520.2  928.4 911.85 556.7 

Scott 16-Jul 11.6  930.55 914.75 600.6  1044 1027.25 637.1 

Swift Current 18-Jun 10.7  637.75 633.35 375.5  668.3 663.7 391 

Swift Current 25-Jun 11  731.4 727 434.2  761.9 757.35 449.65 

Swift Current 1-Jul 11.59  835.05 830.65 507.8  865.6 861 523.3 

Arborg 2-Jul 11.42  833.15 830.1 505.7  856.3 853.2 513.75 

Arborg 9-Jul 11.6  967.65 964.6 605.2  990.8 987.7 613.25 

Carberry 17-Jun 9.2  643.6 640.35 370.6  643.6 640.35 370.6 

Carberry 24-Jun 10.47  761.15 757.9 453.2  761.2 757.9 453.15 

Carberry 2-Jul 11.5  919.4 916.15 571.4  919.4 916.15 571.4 

Carberry 8-Jul 11.6  1033.85 1030.6 655.9  1034 1030.6 655.85 

Kelburn 18-Jun 10.26  699.4 695.65 416.9  699.4 695.65 416.9 

Kelburn 25-Jun 11.42  832.5 828.75 515  832.5 828.75 515 

Kelburn 4-Jul 11.6  1021.15 1017.4 658.7  1021 1017.4 658.65 

Melita 11-Jun 9.88  577.7 572.8 331.3  590.9 583.85 339.4 

Melita 18-Jun 10.47  687.25 682.35 405.8  700.4 693.4 413.95 

Melita 25-Jun 11.5  800.5 795.6 484.1  813.7 806.65 492.2 

Melita 2-Jul 11.6  938.25 933.35 586.8  951.4 944.4 594.95 

Roblin 2-Jul 11.42  792.6 790.75 469  819.7 817.8 481.05 

Roblin 9-Jul 11.55  909.2 907.35 550.6  936.3 934.4 562.65 

Roblin 16-Jul 11.6   1042.3 1040.45 648.7   1069 1067.5 660.75 
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Table AA5. 6.  Winter wheat crop stage by observation date and location with thermal time 

model accumulations in 2020. 

     Thermal Time Accumulations 

  

 GSS–5 days > 5°C Mean 

Temp  
GSS–5 days > W Mn 5.0°C 

  Observed (Selirio and Brown 1979)  (Qian et al. 2010 

  Haun GDD NDAWN GDD  GDD NDAWN GDD 

Plot Site Date Scale (0°C) (32°F) (5°C)   (0°C) (32°F) (5°C) 

Bow Island 11-Jun 10.5 556.1 551.85 312.05  579 574.75 324.95 

Bow Island 15-Jun 11.42 628.6 624.35 364.55  651.5 647.25 377.45 

Bow Island 22-Jun 11.5 738.9 734.65 439.85  761.8 757.55 452.75 

Bow Island 29-Jun 11.6 869.2 864.95 535.15  892.1 887.85 548.05 

Brooks 15-Jun 10.26 631.85 627.25 366.95  631.85 627.25 366.95 

Brooks 22-Jun 11.5 739.25 734.65 439.35  739.25 734.65 439.35 

Brooks 29-Jun 11.525 867.95 863.35 533.05  867.95 863.35 533.05 

Brooks 6-Jul 11.575 986.75 982.15 616.85  986.75 982.15 616.85 

Lethbridge 11-Jun 9.2 601.85 598.25 357.3  623.35 619.75 368.8 

Lethbridge 15-Jun 10.5 667.75 664.15 403.2  689.25 685.65 414.7 

Lethbridge 22-Jun 11.42 774.2 770.6 474.65  795.7 792.1 486.15 

Lethbridge 29-Jun 11.6 896.25 892.65 561.7  917.75 914.15 573.2 

Medicine Hat 9-Jun 10.26 594.25 589.15 360.05  605.25 600.15 366.05 

Medicine Hat 26-Jun 11.6 895.65 890.55 576.45  906.65 901.55 582.45 

Indian Head 3-Jul 11.5 915.5 901.1 585.2  915.5 901.1 585.2 

Indian Head 10-Jul 11.6 1044.35 1029.95 679.05  1044.35 1029.95 679.05 

Melfort 20-Jul 11.5 876.65 860.9 569.05  954.1 938.05 596.6 

Melfort 27-Jul 11.5 1048.55 1032.8 690.95  1126 1109.95 718.5 

Prince Albert 9-Jul 11 945.45 939.55 588.95  945.45 939.55 588.95 

Prince Albert 16-Jul 11.5 1067.7 1061.8 676.2  1067.7 1061.8 676.2 

Prince Albert 23-Jul 11.6 1204.7 1198.8 778.2  1204.7 1198.8 778.2 

Scott 2-Jul 10.7 817.75 810.5 489.25  817.75 810.5 489.25 

Scott 7-Jul 11.46 900.55 893.3 547.05  900.55 893.3 547.05 

Scott 15-Jul 11.5 1022.8 1015.55 629.3  1022.8 1015.55 629.3 

Swift Current 23-Jun 10.85 636.7 629.3 393.55  745.5 735 452.35 

Swift Current 30-Jun 11.5 764.65 757.25 486.5  873.45 862.95 545.3 

Swift Current 7-Jul 11.6 888.75 881.35 575.6  997.55 987.05 634.4 

Carberry 25-Jun 10.5 797.3 781.4 517.1  797.3 781.4 517.1 

Carberry 2-Jul 11.5 958.05 942.15 642.85  958.05 942.15 642.85 

Carberry 9-Jul 11.6 1108.95 1093.05 758.75  1108.95 1093.05 758.75 

Melita 22-Jun 11.42 771.9 762.6 492.35  771.9 762.6 492.35 

Melita 29-Jun 12.1 921.8 912.5 607.25  921.8 912.5 607.25 

Roblin 2-Jul 11.42 849.6 835.15 537.6  849.6 835.15 537.6 

Roblin 9-Jul 11.6 985.85 971.4 638.85  985.85 971.4 638.85 

Roblin 16-Jul 12.1 1108.7 1094.25 726.7  1108.7 1094.25 726.7 
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Table AA5. 7.  Barley crop stage by observation date and location with thermal time model 

accumulations in 2019. 

Plot Site 

Location 

Observation 

Date 

Haun  

Scale 

GDD  

(0°C) 

NDAWN 

(32°F) 

GDD  

(5°C) 

Bow Island 21-Jun 10.1 792.95 786.6 476.45 

Bow Island 27-Jun 10.35 887.55 881.2 541.05 

Bow Island 4-Jul 10.5 1001.05 994.7 619.55 

Brooks 2-Jul 10.26 802.05 792.7 517.05 

Brooks 8-Jul 10.32 894.55 885.2 579.55 

Brooks 15-Jul 10.7 1034.6 1025.25 684.6 

Lethbridge 28-Jun 10.38 875.65 870.3 516.45 

Lethbridge 4-Jul 11 964.85 959.5 575.65 

Medicine Hat 26-Jun 10.44 613.95 587.15 408.95 

Vermilion 11-Jul 10.7 862.65 853.6 542.65 

Vermilion 24-Jul 11.85 1082.7 1073.65 697.7 

Indian Head 12-Jul 10.38 942.8 924.25 623.2 

Indian Head 19-Jul 10.85 1072.4 1053.85 717.8 

Melfort 17-Jul 10.7 935.45 912.4 625.45 

Melfort 24-Jul 11 1059.4 1036.35 714.4 

Melfort 31-Jul 12.1 1179.5 1156.45 799.5 

Prince Albert 18-Jul 10.85 891.25 871.75 606.25 

Scott 16-Jul 11.42 835.4 807.4 555.4 

Scott 23-Jul 11.6 954.6 926.6 639.6 

Swift Current 8-Jul 10.44 804.5 779.15 529.5 

Swift Current 15-Jul 10.7 936.4 911.05 626.4 

Arborg 9-Jul 10.32 840.45 832.85 561.2 

Carberry 15-Jul 10.85 1091.3 1084.85 732 

Carberry 22-Jul 11.6 1221.25 1214.8 826.95 

Kelburn 4-Jul 10.26 904.05 893.65 619.05 

Kelburn 11-Jul 11.6 1044.95 1034.55 724.95 

Roblin 9-Jul 10.44 766 742.45 501 

Roblin 16-Jul 10.85 899.1 875.55 599.1 
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Table AA5. 8.  Barley crop stage by observation date and location with thermal time model 

accumulations in 2020. 

Plot Site 

Location 

Observation 

Date 
Haun Scale GDD (0°C) 

NDAWN 

(32°F) 
GDD (5°C) 

Bow Island 29-Jun 10.26 839.4 835.25 544.6 

Bow Island 6-Jul 10.5 956.25 952.1 626.45 

Bow Island 13-Jul 12.1 1071.3 1067.15 706.5 

Brooks 13-Jul 10.5 1389.75 1387.5 937 

Brooks 20-Jul 11.525 1518.65 1516.4 1030.9 

Lethbridge 29-Jun 10.26 897.1 893.55 567.35 

Lethbridge 6-Jul 11 1001.6 998.05 636.85 

Lethbridge 13-Jul 12.1 1118.7 1115.15 718.95 

Medicine Hat 26-Jun 10.1 885.9 878.9 571.7 

Medicine Hat 8-Jul 11.6 1088.4 1081.4 714.2 

Indian Head 10-Jul 10.2 922.55 901.2 624 

Indian Head 17-Jul 10.7 1049.95 1028.6 716.4 

Melfort 20-Jul 10.7 893.45 882.95 603.45 

Melfort 27-Jul 11.55 1032.1 1021.6 707.1 

Prince Albert 9-Jul 10.26 831.65 818 556.65 

Prince Albert 16-Jul 10.85 953.9 940.25 643.9 

Scott 15-Jul 10.6 809.1 799.85 529.1 

Scott 22-Jul 11.4 928.95 919.7 613.95 

Swift Current 7-Jul 10.26 867.05 859.55 564.1 

Swift Current 14-Jul 10.44 976.1 968.6 638.15 

Swift Current 21-Jul 11 1095.25 1087.75 722.3 

Arborg 9-Jul-20 10.1 970.3 948.6 685.75 

Arborg 16-Jul-20 10.7 1107.6 1085.9 788.05 

Carberry 9-Jul 9.65 1040.6 1021.55 728.95 

Carberry 16-Jul 10.85 1176.1 1157.05 829.45 

Carberry 23-Jul 11.6 1306.3 1287.25 924.65 

Kelburn 3-Jul 9.65 860.3 838.25 615.3 

Kelburn 6-Jul 10.44 963.05 941 698.05 

Kelburn 10-Jul 11.42 1033.1 1011.05 753.1 

Melita 29-Jun 10.1 800.2 779.8 556.25 

Melita 6-Jul 10.7 953.05 932.65 674.1 

Roblin 9-Jul 10.6 747.95 726.45 507.95 

Roblin 16-Jul 11.6 884.2 862.7 609.2 

 

 


