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Abstract

In the future, dynamic state estimation (DSE) will be an important function in monitoring

and control of smart power grids. In this context, data communication networks and phasor

measurement units (PMU) that are currently being deployed in smart power grids, will

play a major role. However, very high data rates of PMUs will necessitate event-triggered

multi-area state estimation (MASE) to ease the burden on the communication networks. In

MASE, a large power grid is divided into sectors and local state estimates of each sector

are communicated to a monitoring center for fusion and decision making. Traditional DSE

algorithms such as Kalman filter (KF) are not well suited for event-triggered state estimation

and new approaches will be required.

The goal of this thesis is to investigate the applicability of a lesser-known class of

algorithms known as set membership (SM) filtering to MASE. These algorithms have the

important property known as data selective update. In the context of MASE, this property

will allow the communication of sector-based estimates to the fusion center, only when the

measurements observed by sensors within a sector are informative, that is, indicative of the

existence of an abnormality such as a fault condition.

The contribution of this thesis consists of two parts. In the first part, a simple

to implement SM algorithm incorporating data-selective updates is presented in detailed,

and it’s properties are investigated through a numerical study. It is shown that, despite

sparse updates, the estimation accuracy of the SM algorithm is comparable to the traditional

extended KF (EKF) algorithm. In the second part, a comprehensive case study involving



ii

event-triggered state estimation in a single machine infinite bus system with a synchronous

machine is presented. The simulation results show that, except during transient and fault

conditions, the SM algorithm presented in this thesis rarely performs complete state updates,

thus saving communication burden in a MASE context. The estimation accuracy, however,

remains comparable with the EKF. As an important avenue for future research, methods of

robust initialization of the SM algorithm is identified. It is shown that improper initialization

can affect the ability of the SM algorithm to respond to fault conditions.
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Chapter 1

Introduction

1.1 Overview

The modern power systems are more complex than the conventional power systems due to

ever-increasing demand, integration of renewable energy sources, smart grids, etc. Therefore,

having a near real-time network model of the power system through dynamic state estimation

(DSE) will permit energy management systems (EMS) to perform various important control

and planning tasks more efficiently [1].

Advanced measurement technologies, such as phasor measurement units (PMUs)

can report data at rates as high as 120 frames per second [2] and consequently providing

an opportunity to monitor power system dynamics in near real-time. This is opposed to

conventional measurements such as supervisory control and data acquisition (SCADA) data

measurement which has data rates of 1 frame for 2 − 4 seconds. Particularly during severe

system disturbances to observe transients of the system, PMU measurements will be highly

1
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useful as the measurements are synchronized, i.e. time-stamped by the global positioning

system’s (GPS’s) universal clock. Typically state of a power system changes on a much

larger time-scale compared to the measurement rate. Therefore, higher measurement rates

from PMUs create a huge burden on the communication infrastructure and data processing

facilities of the grid and a growing concern in the field of power system state estimation (SE).

In particular, the conventional approach of a centralized monitoring center with a state es-

timator can become infeasible and multi-area state estimation (MASE) can be used as an

alternative. In MASE, many distributed local state estimators are employed which commu-

nicate their estimates to a centralized monitoring center for fusion and decision making. If

the MASE is equipped with real-time resource-efficient, data selective and event-triggered

SE, this will play a vital role in reducing the communication overhead created by large data

flow in the communication network. [1, 3].

Power system dynamic state estimation (PS-DSE) using Kalman filtering based

methods has been investigated extensively in the literature [4–8]. Kalman filter is a statistical

method that is based on the familiar prediction-correction recursive structure which estimates

the state when the observations are available without considering the information content of

the observations. This thesis investigates an alternative method known as set membership

(SM) filtering which can achieve the same performance as the Kalman filter and is capable

of data selective estimation based on the innovative nature of the observations.

1.2 State-space description of systems

In engineering, it is necessary to model physical systems using mathematical equations as it

is crucial in understanding, analyzing, and controlling the physical system. A mathematical



Chapter 1. Introduction 3

model that is used to describe the relationship between the input and output of a physical

system is simply referred to as a system. In general, systems can be categorized in many

ways, for the purpose of this thesis we can classify the systems into the following categories,

1. continuous-time or discrete-time systems,

2. linear or non-linear systems, and

3. memoryless systems or systems with memory (dynamical systems).

Most of the physical systems are represented by linear models due to their simplicity and the

availability of a rich body of analytical tools. A linear dynamical system can be represented

by several equivalent means, differential equations or difference equations, Laplace or z-

transform, and state-space representation. State-space representation alone possesses many

advantages, for example, it gives an internal description of the system, intuition to the

performance of the system, and in general, allows a better way for designing controllers for

multiple-input and multiple-output (MIMO) systems. [9]. Thus state-space methods play a

vital role in system analysis and control problems.

In the state-space approach, the state of a system at a given time is defined as the

minimal information that is sufficient to describe the system response to an applied input.

The state of a system is described by one or more variables referred to as the state variables.

The set of equations that relate the current state variables to the previous state variables and

the most recent input is called the state equations (system dynamic model). The equations

which relate the output variables to the state variables and the inputs are called the output

equations (system measurement model). The state-space representation of a linear dynamical

system is the collection of state equations and output equations. [9, 10].
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An important problem in analyzing and controlling a system based on a state-space

model is the estimation of the state at a given time from observations. Typically, SE is a

two-step procedure that is repeatedly carried out at each time step. In the prediction step,

the current inputs along with previously estimated state are used to obtain a predicted value

for the current state variables. Subsequently, in the correction-step, the available output

measurements are used to correct the predicted. Figure 1.1 illustrate this idea in pictorial

format.

Figure 1.1: The state estimation process.

The inputs to a physical system as well as the measurements from the system

normally inherit some degree of uncertainty due to noise. Therefore, the true state of any

system is a problem of finding the best value by minimizing or maximizing a cost function

based on some criteria.

The Kalman filter (KF) is the most widely used method for solving state estimation

from the noisy measurements. This algorithm was originally introduced in [11] and further
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investigated in [12]. The KF is a minimum mean square estimator for the unobserved state

variables when all random variables (noise) in the state equations are jointly Gaussian. This

is a two-step procedure which sequentially performs at each time instant, a prediction of

the unknown current state based on the previous state (time update), and followed by a

correction of the predicted state based on the current measurement (measurement update).

The output of the KF is an estimate of the most probable state and the covariance of the

estimation error. While the basic KF algorithm assumes a linear system, the extended

KF (EKF) and the unscented KF (UKF) [13] are generalizations of the KF for non-linear

dynamical systems. [14]. Other methods based on the KF can be found in [10, 15].

1.3 Motivation

A shortcoming of recursive estimation algorithms, such as the KF is that they require the

aforementioned prediction and correction steps at every time step regardless of the value of

the information contained in measurements. Every measurement may or may not contain

any new information about the state being estimated. Therefore correction step may be

an unnecessary computation if the correction of the state is negligible at a higher rate of

measurements. Set membership algorithms are a class of algorithms in parameter estimation

known to possess the capability of data selective updates. [16–18].

The main objective of the thesis is to investigate the SM algorithm to state estima-

tion in dynamical systems and consider the feasibility of an event-triggered DSE in a power

system with high measurement rates provided by PMUs. The key feature in the SM algo-

rithm considered in this thesis is the ability to skip the correction step whenever possible.

Another important feature in the SM algorithm is that the unknown variables are assumed



Chapter 1. Introduction 6

to belong to bounded sets, rather than modeling them as random variables with probability

distributions. As a consequence, the state estimate would also be a set that is consistent

with the system model, and the measurements rather than a single point estimate. The most

common approach is to use ellipsoidal bounds. This is also the approach taken in this thesis.

The logical reasoning for using set-theoretic techniques in estimation is, it will give

more definitive solutions when utilizing known information rather than imposing a subjective

notion of optimality [19]. Given the measurements, the set found by the SM algorithm will

include all attainable states. In the KF based state estimation algorithms, the uncertainties

of the systems are modeled by random variables. But in practical situations, most often

assumptions have to be made regarding the probability distributions of these random vari-

ables, and unless a model such as a Gaussian model is used the optimal solution is difficult

to obtain. Often this can not be rationalized if not for the ease in mathematical tractability

of the underlying optimization problem. Unlike statistical assumptions, bounds for unknown

variables can be easily acquired. Furthermore, in applications where the reliability and safety

are the concerns, an acceptable bound on the state, rather than a point estimate, maybe

adequate [20].

1.4 Literature review

1.4.1 Set-membership approach to state estimation

Background material on the fundamentals of set-theoretic estimation can be found in [19,

21]. The idea of an ellipsoidal set approach to recursive state estimation was originally

introduced by F. C. Schweppe in [22], where a method has been explored for estimating
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the states of a linear dynamical system using noisy observations and unknown but bounded

inputs and observation errors. Furthermore, an algorithm has been developed to calculate

a time-varying ellipsoid in state-space that always contained the system’s true state. A

conceptually similar idea has been presented in [23] as well. SM algorithms for filtering,

prediction, and smoothing in the continuous and discrete-time linear dynamical systems

with uncertain quantities bounded by both energy and instantaneous constraints have been

derived in [20, 24]. While [20, 22–24] use ellipsoids which contain the true state (membership

set), they do not present ways to select an ellipsoid in an optimum manner.

Comprehensive studies on this subject have been carried out by Russian researchers

in the context of parameter estimation. The methods of state estimation using member-

ship sets for both linear and non-linear dynamical systems were explored in [21] by F. L.

Chernousko, and a concise description of the properties of reachable sets and their ap-

proximation using ellipsoids optimal in the sense of minimal volume have been presented.

Application of ellipsoidal SM algorithms in problems of controls and estimation have been

discussed in detail and an algorithm for optimal state estimation together with numerical

examples has been presented in [21]. Furthermore, the comparison of the SM estimation

approach and a probabilistic estimation approach has been given. A summary of [21] can be

found in Chapter 3 of [25].

Traditionally, the geometric size of an ellipsoid is measured by its volume. The

volume of the ellipsoid is proportional to the square of the product of the lengths of its

axes, which is referred to as the determinant criterion. An alternative measure of size is

the sum of the squares of the semi-axis lengths, which is called the trace criterion. Using

these optimal ellipsoid bounds are searched. [26]. SM algorithms that find the optimal

ellipsoids by either minimal determinant or minimal trace criterion have been introduced in
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[27]. Several algorithms for computing ellipsoidal outer bounds for the true state have been

presented in [28]. SM state estimation via hypercubes, polytopes, parallelotopes, intervals,

and zonotopes have been investigated in [29–34].

Whilst most of the aforementioned work is concerned with linear systems, the

implementation of the SM algorithms for parameter estimation in non-linear models has

been considered in [33, 35, 36]. The feasibility of applying set membership algorithms in non-

linear models has been discussed in [21]. In [33] non-linear parameter estimation model has

been formulated as a problem of set inversion and solved using interval analysis techniques

discussed in [37]. The utilization of the SM algorithm for estimating the states of a non-

linear dynamical system has been investigated in [38]. In this case similar to EKF, non-linear

dynamics were linearized about the current estimate, but the linearization errors were used

to bound the membership sets. In [39], the linearization error was bounded using interval

analysis techniques, and incorporated into process and measurement noise bounds. The

real-time version of the same algorithm was established and investigated for a general class

of non-linear systems in [40]. A new method for SE was investigated in [41], which combines

a set-inversion algorithm with forward-backward propagation of intervals.

The SM algorithms which could disregard uninformative measurements were intro-

duced in the context of system identification and adaptive signal processing [16–18]. The

basic idea was to consider the measurement informative only if they reduce the size of the

membership set. A systematic procedure to select the optimal ellipsoid has been presented

and the convergence of the algorithm was discussed in [16]. An optimal observation de-

pendent membership set has been found in [18] by solving a quadratic equation at each

time instant. Unlike reducing the trace or determinate of the ellipsoid which defines the

membership set, an upper bound to the size of the ellipsoid has been minimized using an
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information-dependent forgetting factor in [17]. This algorithm has shown to have lower

computational complexity. References [16–18] consider scaler observation, where each obser-

vation yields two parallel hyperplane bounds instead of ellipsoids, a simpler case than finding

the intersection of two ellipsoids. A method to find outer and inner bounding ellipsoids of

the intersection of two ellipsoids has been presented in [42].

The parameter estimation method described in [17] has been used to estimate states

of linear dynamical system in [43]. In [44], the same concept as in [17] has been used to track

time-varying parameters of a system with incrementally bounded time variations with more

than one observation. The algorithm in [44] shows the potential of using it in SE as well. In

[45] this technique is explained in the context of SE in linear systems and is extended to non-

linear systems in [46] with the linearization error bounded using interval analysis techniques

as in [39]. The shape defining matrix of an ellipsoid should be a symmetric positive definite

matrix. Considering this fact an upper diagonal and diagonal (UD) triangular factorization

based SM algorithm has been developed in [47]. This algorithm can jointly estimate both

time-varying parameters and states in linear and non-linear systems. Further, a relaxed

selective update strategy which sequentially considers measurements is proposed.

1.4.2 Dynamic state estimation in power systems

A power system is a network of electric components deployed to generate, transmit and

consume electric power. A complete understanding of the operating conditions of a power

system at a given instant of time can be established if the network model and complex phasor

voltages at every system bus are known [48]. Voltage magnitudes and phase angles at every

bus are defined as the states of a power system. A power system is operated by system

operators from area control centers. The main objective of a system operator is to maintain
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the power system at a normal secure state which includes identifying the operating state

of the power system by continuous monitoring and take precautionary actions in case the

system state is found to be insecure. [48]. EMS or the SCADA systems are installed at the

area control centers for this task [1]. The first step towards security analysis is monitoring

the current state of the power system. This analysis requires measurements from the power

system and processing of them to determine the system state [48].

F. C. Schweppe .et al [49–51] were the first to propose and develop the idea of SE in

power systems. They showed the necessity of this toward the real-time security assessment

and control of the power system. Debs and Larson in [4] have taken the first step towards

DSE and developed an algorithm using Kalman-Bucy filtering theory for real-time SE of a

power system. DSE allows the power system to know the predicted next state progressively

in a short period. Further, PS-DSE has been investigated in [52–56] as well. The techniques

used in PS-DSE have been reviewed in [1, 3, 48, 57].

The application of EKF in PS-DSE can be found in [5, 6, 8]. An iterated EKF

based on the generalized maximum likelihood approach is proposed in [58]. In [59], two

iterative methods have been suggested to include the dynamic system non-linearities in PS-

DSE oppose to linearization in EKF. Application of UKF in PS-DSE has been discussed

in [7]. Other methods used in PS-DSE can be found in [52–55, 55, 56, 56, 60–63]. PS-

DSE problem has been investigated in [64] by using EKF, UKF, and cubature Kalman filter

(CKF) in a real-time test system environment developed in Real Time Digital Simulator

(RTDS) software, RSCAD. Further, DSE for a existing power system has been developed

and tested in [54].

In [65], set membership method to power system SE has been proposed based

on interval constraint propagation. A DSE method based on an SM algorithm has been
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proposed in [66] for SE in synchronous machines. This method combines an estimation

algorithm discussed in [28] with the linearization error bounding method discussed in [39].

Due to the linearization error bounding methods and the sequential correction step the

method discussed in [39] is more complex.

1.5 Outline of the thesis

This thesis investigates the feasibility of applying an SM algorithm for event-triggered DSE

in power systems. The SM algorithms have been extensively studied in controls and adaptive

signal processing fields but not very widely known in the power system community.

The standard structure of the linear SM algorithm based on ellipsoidal sets and

the important mathematical results are presented in Chapter 2. Furthermore, a selective

correction step update strategy which enables the event-triggered SE is presented. Finally,

an extension of the algorithm to deal with nonlinear dynamical systems has been discussed.

A comparison of the SM algorithms with and without selective updates is presented

in Chapter 3. This also includes a comparison with the conventional KF and EKF. Three

different systems have been considered to investigate the performance and properties of the

algorithm.

The utilization of the SM algorithm with a selective correction step update strategy

in a power system example has been demonstrated in Chapter 4. In this case, the states of

a synchronous machine in a single machine infinite bus system have been estimated and the

feasibility of an event-triggered SE has been investigated.
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Finally, the conclusions and contributions of this study are presented, and future

avenues for further research are suggested in Chapter 5.



Chapter 2

Bounded Ellipsoid Method for State

Estimation

2.1 Introduction

This chapter presents an SM algorithm for state estimation in linear dynamical systems,

based on the ellipsoid bounding of unknown variables. A data selective update strategy that

will be useful for event-triggered state estimation is also described. Finally, an extension to

nonlinear dynamical systems is presented.

13
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2.1.1 Preliminaries

Definition 2.1. An ellipsoidal set E(a, P̃) ⊂ Rn with a vector representing the center

a ∈ Rn is defined by,

E(a, P̃) = {x ∈ Rn : (x− a)T P̃
−1

(x− a) ≤ 1}, (2.1)

where P̃ ∈ Rn×n is a symmetric positive definite matrix that defines the shape of the ellipsoid

(shape-matrix).

2.2 Set membership algorithm

2.2.1 Linear system model

Consider the discrete-time linear dynamical system given by the state-space model,

xk = Fk−1xk−1 + wk, (2.2)

zk = Hkxk + vk, (2.3)

where k is time, xk ∈ Rn is the state vector, zk ∈ Rm is the measurement vector (n is the

number of states, and m is the number of measurements), Fk−1 ∈ Rn×n is the system matrix

or state transition matrix and Hk ∈ Rm×n is the output matrix. It is assumed that both

Fk−1 and Hk are known matrices.
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The random disturbances wk ∈ Rn and vk ∈ Rm in (2.2) and (2.3) are assumed to

be bounded respectively by the ellipsoids,

E(0,Wk) = {w ∈ Rn : (wTW−1
k w) ≤ 1},

E(0,Vk) = {v ∈ Rm : (vTV−1
k v) ≤ 1},

where Wk and Vk are known positive definite matrices with appropriate dimensions which

define the shape of the ellipsoids E(0,Wk) and E(0,Vk). It is assumed that the initial state

of the system is known and given by,

(x̂0, P̃0) = {x ∈ Rn : (x− x̂0)T P̃
−1

0 (x− x̂0) ≤ 1},

where x̂0 is the center of the set and P̃0 is a known symmetric positive definite matrix

defining the shape of the set.

The main problem here is to estimate a bounding ellipsoid containing all the possible

values of the state at time k which is compatible with the state bounding ellipsoid found

at time k − 1, the observations zk, the system model, and the assumptions made above

regarding the sets. The following section describes the basics of the SM algorithm. For more

details, refer to [20, 39, 44–46]

2.2.2 Set membership state estimation

Given the ellipsoid E(x̂k−1, P̃k−1) that contains the previous state xk−1 and the process

disturbance bound, the state transition equation (2.2) dictates that the predicted state at

time k, x̂k|k−1 should lie in the vector sum of transformed ellipsoid Fk−1E(x̂k−1, P̃k−1) which
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contains the set of all states reachable at time k from the set E(x̂k−1, P̃k−1) and disturbance

bound E(0,Wk). Therefore, we have,

x̂k|k−1 ∈ Fk−1E(x̂k−1, P̃k−1)⊕ E(0,Wk−1),

where ⊕ denotes the vector sum.

In general, the vector sum of two ellipsoids is not an ellipsoid. But an ellipsoid

can be used to outer bound the vector sum of ellipsoids. Here, this ellipsoid is called the

predicted state ellipsoid, which is given by,

E(x̂k|k−1, P̃k|k−1) ⊃ Fk−1E(x̂k−1, P̃k−1)⊕ E(0,Wk−1). (2.4)

Therefore, the predicted state x̂k|k−1 ∈ E(x̂k|k−1, P̃k|k−1). Using the measurement zk at the

time step k and the measurement equation (2.3), we can obtain the observation set,

Sk = {xk ∈ Rn : (zk −Hkxk)
TV−1

k (zk −Hkxk) ≤ 1}. (2.5)

The true state xk should lie in the intersection of the observation set Sk and the predicted

state ellipsoid E(x̂k|k−1, P̃k|k−1) and therefore,

xk ∈ E(x̂k|k−1, P̃k|k−1) ∩ Sk.

However, the intersection of two sets is not necessarily an ellipsoid. But for computational

efficiency and ease, we can find an outer bounding ellipsoid which contains this intersection
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as

E(x̂k, P̃k) ⊃ E(x̂k|k−1, P̃k|k−1) ∩ Sk, (2.6)

where x̂k is the center of the estimated set which can be used as a single point estimate. We

will refer to this ellipsoid as the updated state ellipsoid.

Figure 2.1 illustrates the logic behind the SM algorithm. For simplicity of explana-

tion, this diagram considers a two-state system with a single measurement, where one of the

states is taken as the measurement. Figure 2.1 (A) shows E(x̂k−1, P̃k−1) the estimated state

set in the previous time step. Figure 2.1 (B) shows the predicted state set E(x̂k|k−1, P̃k|k−1),

where the state set estimated in the previous time step is transformed and bounded by noise.

In the figure 2.1 (C) the measurement and the uncertainty are represented by two vertical

lines. Finally, figure 2.1 (D) shows the estimated state set E(x̂k, P̃k) which will contain the

true state xk.

2.2.2.1 Prediction step

The predicted state set is a vector sum of two ellipsoids. It can be shown that a class of

ellipsoids which outer-bounds the sum of the two ellipsoids Fk−1E(x̂k−1, P̃k−1) and E(0,Wk)

can be given by,

E(x̂k|k−1, P̃k|k−1) = {xk ∈ Rn : (xk − x̂k|k−1)T P̃
−1

k|k−1(xk − x̂k|k−1) ≤ 1},
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Figure 2.1: The logic behind the SM algorithm with ellipsoidal sets.

where

x̂k|k−1 = Fk−1x̂k−1, (2.7)

P̃k|k−1 =
Fk−1P̃k−1F

T
k−1

1− pk
+

Wk

pk
, (2.8)

and 0 6 pk 6 1 is a scalar parameter that defines the class. It is necessary to find an ellipsoid

that contains the vector sum of the two ellipsoids which is optimal in some sense. In other
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words, we have to find an optimal value for pk. The geometric size of the ellipsoid can be

used as a measure of optimality and can be measured using the volume of the ellipsoid. The

volume of an ellipsoid is proportional to the square of the product of the lengths of its axes,

which is referred to as the determinant criterion. An alternative measure of size is the sum

of the squares of the semi-axis lengths, which is called the trace criterion. [26]. The trace

criterion has certain advantages over the determinant criterion [26] and therefore will be

used here. Various cost functions and criteria that can be used to minimize the size of an

ellipsoid are summarized in Appendix C. An explicit solution to the problem of determining

the optimal ellipsoid which contains the vector sum of ellipsoids can be found as described

in [21, 26]. The optimal pk based on the trace criterion for the predicted state set is given

by,

pk =

√
trace(Wk)√

trace(Fk−1P̃kF
T
k−1) +

√
trace(Wk)

. (2.9)

A complete set of calculations required to obtain the vector sum of two ellipsoids can be

found in Appendix A.

2.2.2.2 Correction step

As mentioned earlier, the estimated state set is the intersection of two ellipsoids E(x̂k|k−1, P̃k|k−1)

and Sk, which will not be an ellipsoid. But an approximate ellipsoid set for the intersection
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is derived in [20, 22]. The estimated state set can be given by [20] (see Appendix B),

E(x̂k, P̃k) = {xk ∈ Rn : (1− λk)(xk − x̂k|k−1)T P̃
−1

k|k−1(xk − x̂k|k−1)

+ λk(zk −Hkxk)
TV−1

k (zk −Hkxk) ≤ 1},

= {xk ∈ Rn : (xk − x̂k)
T P̃
−1

k (xk − x̂k) ≤ 1},

where

x̂k = x̂k|k−1 +
P̃k|k−1

1− λk
HT
k

(
HkP̃k|k−1H

T
k

1− λk
+

Vk

λk

)−1

δδδk, (2.10)

P̃k = γ2
k

[
I−

P̃k|k−1

1− λk
HT
k

(
HkP̃k|k−1H

T
k

1− λk
+

Vk

λk

)−1

Hk

]
P̃k|k−1

1− λk
, (2.11)

γ2
k = 1− δδδTk

(
HkP̃k|k−1H

T
k

1− λk
+

Vk

λk

)−1

δδδk, (2.12)

δδδk = zk −Hkx̂k|k−1, (2.13)

and 0 6 λk 6 1 defines the set of ellipsoids which contains the intersection of ellipsoids found

in the correction step. Finding an optimal ellipsoid for the updated state set is a problem of

finding a proper value for λk. However, there is no known explicit solution to the problem

of determining the optimal ellipsoid which bounds the intersection of two ellipsoids. But

the optimum λk can be found by either minimizing the trace or the determinant of P̃k. An

expression for the minimum trace of P̃k can be found in [21]. Techniques that can be used

to minimize the determinant or the trace of an ellipsoid that contains the intersection of two

ellipsoids are described in [22, 28]. Further, due to computational complexity involved in the

trace and the determinant criteria, a suboptimal but efficient criterion to minimize the size
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of P̃k would be to minimize a bound on γ2
k in (2.12). This leads to [47],

λk =

√
maxeig(Vk)√

maxeig(HkP̃
−1

k|k−1H
T
k ) +

√
maxeig(Vk)

, (2.14)

where maxeig(A) denotes the maximum eigenvalue of the matrix A.

2.2.3 A strategy for data selective updates

Even though the standard structure of the SM algorithm already allows us to incorporate

selective measurement updates in the correction step, it accompanies a significant compu-

tational complexity that can be undesirable in real-time state estimation [28]. However, by

modifying the way ellipsoids are defined in (2.1), it is possible to obtain a low complexity

selective update strategy. This approach, only gives a suboptimal ellipsoid bound for the

intersection of two ellipsoids as required in (2.6). This method was first introduced in [17]

and further studied in [43–45]. Furthermore, the application of the same method for state

estimation in nonlinear dynamical systems has been studied in [46]. In the following, we

describe the method discussed in [44, 45].

The method is based on expressing the shape matrix of the ellipsoid in (2.1) in the

form P̃ = σ2P, so that ellipsoid is defined as,

E(a, σ2P) = {x ∈ Rn : (x− a)T (σ2P)−1(x− a) ≤ 1}, (2.15)

= {x ∈ Rn : (x− a)TP−1(x− a) ≤ σ2},
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where σ2 is a positive scalar which defines a bound on the size of E(a, σ2P) based on the

trace such that,

trace(E(a, σ2P)) = σ2 trace(P).

Also, σ2 will have an effect on the volume of E(a, σ2P) as,

V ol(E(a, σ2P)) = σ2n π
n/2(detP)1/2

Γ(
n

2
+ 1)

,

where Γ is the Eular gamma function [44]. The significance of this modification is that it

allows us to use an alternative simple to use criterion to minimize the size of an ellipsoid.

Based on (2.15) we can express the shape matrix of the ellipsoid which contains

the previous state estimates as P̃k−1 = σ2
k−1Pk−1. The shape matrix of the predicted state

ellipsoid is therefore P̃k|k−1 = σ2
k|k−1Pk|k−1 where σ2

k|k−1 = σ2
k−1. The prediction step equation

(2.8) will be modified by substituting to P̃k−1 = σ2
k−1Pk−1.

In the correction step, the intersection of the predicted state set and observation

set will be contained in the ellipsoid

E(x̂k, σ
2
kPk) ⊃ E(x̂k|k−1, σ

2
k|k−1Pk|k−1) ∩ Sk,

which will be given by,

E(x̂k, σ
2
kPk) = {xk ∈ Rn : (1− λk)(xk − x̂k|k−1)TP−1

k|k−1(xk − x̂k|k−1)

+ λk(zk −Hkxk)
TV−1

k (zk −Hkxk) ≤ (1− λk)σ2
k|k−1 + λk},

= {xk ∈ Rn : (xk − x̂k)
TP−1

k (xk − x̂k) ≤ σ2
k},
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where

x̂k = x̂k|k−1 +
Pk|k−1

1− λk
HT
k

(
HkPk|k−1H

T
k

1− λk
+

Vk

λk

)−1

δδδk, (2.16)

Pk =

[
I −

Pk|k−1

1− λk
HT
k

(
HkPk|k−1H

T
k

1− λk
+

Vk

λk

)−1

Hk

]
Pk|k−1

1− λk
, (2.17)

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTk
(

HkPk|k−1H
T
k

1− λk
+

Vk

λk

)−1

δδδk, (2.18)

δδδk = zk −Hkx̂k|k−1. (2.19)

After some straightforward manipulations we can rewrite (2.16 -2.18) as [45]

x̂k = x̂k|k−1 + Kkδδδk,

Pk =
1

1− λk
(I−KkHk)Pk|k−1,

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTkQ−1
k δδδk,

Kk =
1

1− λk
Pk|k−1H

T
kQ−1

k ,

Qk =
1

1− λk
HkPk|k−1H

T
k +

1

λk
Vk.

A complete set of calculations required to obtain the intersection of two ellipsoids can be

found in Appendix B. The optimum Pk is found by minimizing σ2
k with respect to λk which

is a bound on the size of Pk. Since minimizing σ2
k requires finding derivative of the matrix

Qk which is difficult, we minimize an approximate bound on σ2
k as proposed in [44, 45].

Taking the Cholesky factorization of V−1
k , an upper triangular matrix V̄

T
k can be obtained,
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i.e. V−1
k = V̄

T
k V̄k and (2.18) can be rewritten as,

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTk
(

1

1− λk
HkPk|k−1H

T
k +

1

λk
(V̄

T
k V̄k)

−1

)−1

δδδk,

= (1− λk)σ2
k|k−1 + λk − λk(1− λk)δ̄δδ

T

k (λkGk + (1− λk)I)−1δ̄δδk,

where

Gk = V̄kHkPk|k−1H
T
k V̄

T
k ,

δ̄δδk = V̄kδδδk.

Then, a simplified but approximate bound on σ2
k can be obtained by assigning a scalar value

to the matrix (λkGk + (1 − λk)I). Specifically, by taking ḡk as the norm or the maximum

eigenvalue of Gk we can write

‖λkGk + (1− λk)I‖2 6 λkḡk + 1− λk.

The bound σ̄2
k(λk) is given by,

σ̄2
k(λk) = (1− λk)σ2

k|k−1 + λk − λk(1− λk)
δ̄δδ
T

k δ̄δδk
(1− λk) + λkḡk

, (2.20)

where σ̄2
k(λk) is a convex function and if it has a local minimum for λk ∈ (0, 1). This local

minimum can be found by solving

dσ̄2
k(λk)

dλk
= 1− σ2

k|k−1 − δ̄δδ
T

k δ̄δδ

(
(1− λk)2 − λ2

kḡk
(1− λk + λkḡk)2

)
= 0.
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This will yield

λk =
1

(1− ḡk)

(
1±

√
ḡk

(1 + βk(ḡk − 1))

)
,

where βk =
1− σ2

k|k−1

δ̄δδ
T

k δ̄δδk
. Since λk ∈ (0, 1), the optimum value of λk is

λ∗k =
1

(1− ḡk)

(
1−

√
ḡk

(1 + βk(ḡk − 1))

)
.

But if the function σ̄2
k(λk) is monotonically increasing function in (0,1) or if it has a critical

point at λk = 0, then finding the minimum is not necessary. These conditions can be

straightforwardly detected by considering the sign of the second derivative

dσ̄2
k(λk)

dλk

∣∣∣∣
λk=0

= 1− σ2
k|k−1 − δ̄δδ

T

k δ̄δδ,

The condition occurs if the second derivative is non-negative or equivalently

1− σ2
k|k−1 − δ̄δδ

T

k δ̄δδ > 0,

σ2
k|k−1 + δ̄δδ

T

k δ̄δδ 6 1.
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If this is the case σ2
k will not have a minimum for 0 6 λk 6 1. This yields following values

for optimal λk,

λ∗k =



0 σ2
k|k−1 + δ̄δδ

T

k δ̄δδk ≤ 1,

1− βk
2

ḡk = 1,

1

1− ḡk

[
1−

√
ḡk

1 + βk(ḡk − 1)

]
ḡk 6= 1.

(2.21)

Detailed calculations are presented in Appendix D.

If λ∗k = 0, we will have σ2
k = σ2

k|k−1 and the estimated state ellipsoid will be the

same as the predicted state ellipsoid. Since σ2
k depends on δδδk which is the difference between

actual measurement and the predicted measurement, the value of λk for which the minimum

of σ2
k occur is an indication of the degree of innovation in the measurement observed at time

k.

2.2.4 Extension to nonlinear dynamical systems

Application of the SM algorithms in nonlinear dynamical systems has been discussed in

[21, 33, 35, 38, 39, 46]. In most of the work, non-linear dynamics were linearized about

the current estimate, and the linearization errors were used to bound the membership sets.

This is similar to the approach used in deriving the EKF. Consider the nonlinear dynamical
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system given by the general state-space model

xk = f(xk−1) + wk, (2.22)

zk = h(xk) + vk, (2.23)

where xk ∈ Rn is the state vector and zk ∈ Rm is the measurement vector at time k.

Additionally, it is assumed that both f and h are differentiable nonlinear functions having

continuous first derivatives. To tackle the non-linearity, the same linearization approach

used in EKF is used.

2.2.4.1 Prediction step

As before, the estimated state ellipsoid E(x̂k−1, σ
2
k−1Pk−1) contains the previous state xk−1.

Assuming that the first order nonlinearities in the dynamical model are smooth, expanding

f(xk−1) using Taylor series expansion about the center x̂k−1 will yield

f(xk−1) = f(x̂k−1) + Fk−1ek−1 + εf (ek−1), (2.24)

where Fk−1 =
∂f(x)

∂x

∣∣∣∣
x=x̂k−1

, ek−1 = xk−1− x̂k−1, and εf (ek−1) indicates the terms involving

the higher order derivatives which is considered as noise. Substituting (2.24) in (2.22) we

can obtain a state equation linearized about x̂k−1 and given by,

xk = f(x̂k−1) + Fk−1ek−1 + ŵk, (2.25)
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where ŵk = εf (ek−1)+wk. An ellipsoidal bound for ŵk must be determined by using suitable

bounds for wk in (2.22) as well as εf (ek−1). Let this ellipsoid be defined by,

E(0,Ŵk) = {ŵ ∈ Rn : (ŵTŴ
−1

k ŵ) ≤ 1}.

Given the estimated ellipsoid for xk−1 whose center is x̂k−1, (2.25) can be used to find a

prediction for a membership set for xk. Note that ek−1 = (xk−1− x̂k−1) is the error between

predicted and true state at (k−1)th time step and represented by the ellipsoid E(0, σ2
k−1Pk−1).

In other words the ek−1 can be represented by an ellipsoid with shape matrix σ2
k|k−1Pk|k−1

and origin as the center. This error ellipsoid can be transformed using Fk−1 to obtain the

predicted error ellipsoid at kth time step. Substituting xk−1 = x̂k−1 in (2.25) we obtain the

center of the transformed ellipsoid as x̂k|k−1 = f(xk−1), which is also the center of predicted

state ellipsoid (2.4). This is illustrated in figure 2.2 for a two-state case. Taking the vector

sum of the transformed ellipsoid and the noise ellipsoid E(0,Ŵk) and using (2.7)-(2.8), we

can obtain the predicted state ellipsoid (2.4) with center x̂k|k−1 = f(xk−1).

2.2.4.2 Correction step

Using arguments similar to those in previous section, linearizing (2.23) using Taylor series

about x̂k|k−1 will yield

zk = h(x̂k|k−1) + Hk(xk|k−1 − x̂k|k−1) + εh(x̂k|k−1) + vk,

= h(x̂k|k−1) + Hk(xk|k−1 − x̂k|k−1) + v̂k, (2.26)



Chapter 2. Bounded Ellipsoid Method for State Estimation 29

Figure 2.2: The linearization technique used in the prediction step of the SM
algorithm.

where Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

, εh(x̂k|k−1) is the error due to higher order terms, and v̂k =

εh(x̂k|k−1) + vk. An ellipsoidal bound for v̂k can now be defined as,

E(0, V̂k) = {v̂ ∈ Rm : (v̂T V̂
−1

k v̂) ≤ 1}.

Substituting x̂k|k−1 in (2.26), we can find a prediction for the measurement zk as,

ẑk = h(x̂k|k−1). Then, the measurement prediction error is given by,

δδδk = zk − h(x̂k|k−1). (2.27)

The same equations as in the case of linear SM algorithm can be used in the correction step

with δδδk defined as in (2.27), and using the noise ellipsoid E(0, V̂k), to obtain updated state
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ellipsoid.

Bounding of linearization noise using interval analysis techniques has been discussed

in [39, 46] where εf (x̂k−1) is taken as the Lagrange remainder and an interval to bound the

noise due to higher order terms has been found. This technique requires the calculation of

the Hessians of the nonlinear functions f(.) and h(.). Therefore, the functions f(.) and h(.)

should be twice differenciable with continuous first and second derivatives. This can add a

significant complexity to the algorithm.

In this thesis, we have used estimates for linearization noise εf (x̂k−1) and εh(x̂k|k−1)

obtianed by by trial and error. The interval bounding technique discussed in [21] has been

used to obtain the initial noise ellipsoid E(0,Ŵk) and E(0, V̂k). It has been assumed that

noise ellipsoid do not vary with time.



Chapter 3

Properties of SM Algorithm: A

Numerical Study

3.1 Introduction

The standard SM algorithm requires repeated application of a prediction step based on the

state equations, and a corrections step when the current observations are available at each

time step. A computationally efficient way to update the predicted state based on whether

or not the current observations decrease the size of the state bounding set is discussed in

the previous chapter. This modification can result in significant computational complexity

savings when compared with standard SM algorithms. In this chapter, we will refer to the

SM algorithm with a data-selective correction step update strategy as the SMU algorithm.

The main aim of this chapter is to use numerical examples to investigate the im-

portant properties of the SMU algorithm and evaluate the performance. To this end, we

31
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compare the performance of the SMU algorithm with the standard SM algorithm. We use

the classical KF algorithm as the baseline for evaluating the performance of the SM algo-

rithms. Additionally, we will investigate the SMU algorithm’s performance loss due to the

use of the simplifying approximation given by (2.20) to decide on the data-selective update.

For simplicity, we will refer to various SM algorithms considered in this chapter as follows

• SM 1 - standard SM algorithm where updated state set in correction step is derived

by minimizing the determinant of P̃k,

• SM 2 - standard SM algorithm where updated state set in correction step is derived

by minimizing the trace of P̃k,

• SM 3 - SMU algorithm where updated state set in correction step is derived by mini-

mizing the approximated scaling factor σ2
k as given by (2.20) which minimizes the trace

of Pk, and

• SM 4 - SMU algorithm where updated state set in correction step is derived by min-

imizing the exact scaling factor σ2
k as given by (2.18) which minimizes the trace of

Pk.

3.2 Preliminaries

3.2.1 Performance criterion

The system performance has been evaluated using Monte-Carlo simulations. The estimation

accuracy of each of the algorithm is measured by the time-averaged mean square error (MSE).
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The instantaneous MSE is defined as,

exi(k) =
1

S

S∑
s=1

(xsik − x̂sik)2, (3.1)

and then the time-averaged MSE is defined as,

exi =
1

S

S∑
s=1

1

K

K∑
k=1

(xsik − x̂sik)2,

=
1

K

K∑
k=1

exi(k), (3.2)

where S is the number of trials, K is the number of time steps per trial, xsik is the ith state

variable at time step k in trial s, x̂sik is the ith state estimate at time step k in trial s and

i = 1, 2, 3, ..., n with n being the number of states.

Note that the size of the estimated state set or the updated state ellipsoid (2.6)

in SM 1 and SM 2 will defer from those in SM 3 and SM 4 due to the selective correction

step update strategy. To capture this difference, the volume of the updated state ellipsoid

(E(x̂k, P̃k)) is calculated at each time step (see (C.1) for volume calculation method). The

number of times the SMU algorithms’ perform the complete correction step has been observed

as well.

3.2.2 System models

Two linear discrete-time system models and one non-linear discrete-time system model are

considered to evaluate the performance of the SE algorithms. The two linear system models

have been chosen so that one system is exactly-determined and the other is under-determined.



Chapter 3. Properties of SM Algorithm: A Numerical Study 34

The under-determined system has been selected to evaluate the tracking capability of the

algorithms under a lesser number of observations than the states.

Typically, a system will remain in steady state when there are no external distur-

bances or sudden changes in inputs. If that is the case, an algorithm can smoothly track

the states. But in real world applications systems will be subjected to external disturbances

which can cause sudden changes in the state. In the experiments to be presented below,

we compare the robustness of SMU, SM, and KF algorithms against abrupt state changes

caused by external disturbances. To this end, we investigate the behavior of all algorithms

under steady state conditions (referred to as the steady state case) and in the presence of

sudden disturbances (referred to as external disturbance case).

In most work related to SE, the system model uncertainties and measurement un-

certainties are modeled as random variables with probability distributions. However, often

the noise distributions can only be derived after observing the system for a considerable

period of time. Furthermore, process noise can be represented by intervals easily, and the

measurements obtained through sensors usually have limits. Therefore, in our numerical

experiments, we assume that the uncertainties are uniformly distributed in pre-defined in-

tervals. The noise ellipsoids for SM algorithms have been derived using the bounded interval

methods discussed in [21]. Consider a noise interval vector b = [b−1 , b
+
1 ; b−2 , b

+
2 ]T . An ellipsoid

which bounds the intervals can be obtained by defining a diagonal shape matrix B with

diagonal elements

Bi,i = 2(b−i − b+
i )2,

and center is the origin, where the subscript i represent a row, and the superscript + and −
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denote maximum and minimum values of the interval respectively. The noise covariance ma-

trices for the KF algorithm have been derived by assuming that a noise interval corresponds

to four standard deviations.

All numerical results presented in this section have been obtained by averaging over

100 Monte-Carlo simulations in MATLAB. In each Monte-Carlo trial, 105 time-steps have

been used.

3.3 Numerical results

3.3.1 Linear system I

The linear system used in [43] with an additional measurement equation is considered as the

completely determined linear system. This system has three states and three measurements,

and is given by,

xk =


0 1 1

0 0 0.5

−0.5 0 1

xk−1 + wk,

zk =


1 0 0

2 −0.5 −1

1 −1 2

xk + vk.

Table 3.1 shows the intervals for noise distributions. In the SE algorithms the initial state

ellipsoid has been chosen to be P0 = diag(1, 1, 1), where diag(x, y, z) is a diagonal matrix
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Table 3.1: The intervals for noise distributions in the linear system I.

Variable Interval

w1 (−0.003840, 0.003840)

w2 (−0.001272, 0.001272)

w3 (−0.002365, 0.002365)

v1 (−0.003840, 0.003840)

v2 (−0.006427, 0.006427)

v3 (−0.006427, 0.006427)

having x, y, z as diagonal elements. The initial scaling factor is set to σ2
0 = 1, and the initial

state is selected as x0 = [2, 0.5, 0.8]T , which is the same as that used in the simulation.

3.3.1.1 Steady state case

In this case, all the states, as well as the measurements go to zero as the initial transients

subside. The states estimated by each algorithm for the first 100 times steps are shown in

figure 3.1. Table 3.2 provides the time-averaged MSE variation. It is evident from the results

shown in table 3.2 that there is a trade-off between performing the complete correction step

calculation at every time step and the selective correction step calculation, as the time-

averaged MSE is higher in the SMU algorithms than the SM and the KF algorithms. Recall

that both SM 3 and SM 4 only perform data-selective updates. It was observed that SM 3

performed the full correction step only 22.9% of the time and SM 4 only 23.4% of the time.

Therefore, we can observe that the use of the simplified approximation in (2.20), does not

result in any adverse effect on the complete correction step calculations. Furthermore, the

estimation accuracies of SM 3 and SM 4 are nearly the same.
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Figure 3.1: Steady state case - the estimation results comparison of the linear
system I.

The comparisons of the volume of the updated state ellipsoid, given by (2.6) is

shown in figure 3.2. The updated state sets obtained by the algorithms SM 3 and SM 4 have
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Table 3.2: Steady state case - the time-averaged MSE in each state variable in
the linear system I.

Algorithm ex1(×10−5) ex2(×10−5) ex3(×10−5)

KF 0.1549 0.0845 0.1627

SM 1 0.1666 0.0930 0.1907

SM 2 0.1701 0.0976 0.2029

SM 3 1.4646 0.2186 0.8357

SM 4 1.2980 0.2003 0.7569

larger volumes compared with those obtained by the algorithms SM 1 and SM 2. Also, SM 3

and SM 4 algorithms take a longer time to reach a steady volume. This is another trade-off

due to selective correction step calculations.

3.3.1.2 External disturbance case

A large external disturbance has been introduced to the system by adding an impulse

[0.7714, 0.5498, 0.7332]T , to the process noise vector at the 50000th time step after the system

achieved its steady state.

Figure 3.3 shows the estimates of the states a few time steps before and after the

external disturbance is applied. Note that there are larger deviations in the state estimates

produced by SM 1 and SM 2 algorithms compared to the KF algorithm. However, SM 3

and SM 4 algorithms appear to track the states better than SM 1 and SM 2 algorithms.

This may be due to the fact that SM 1 and SM 2 use the determinant and the trace criteria

respectively to obtain the updated state ellipsoid (2.6).
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Figure 3.2: Steady state case - the comparison of volumes of the updated state
ellipsoid in SM algorithms for the linear system I.

The time-averaged MSE comparison is shown in table 3.3. Both the SM 1 and

SM 2, and the KF show relatively poor time-averaged MSEs for this case compared to the

steady state case. On the other hand, the performance of the SMU algorithms, in this

case, is comparable to the steady state case. As in the external disturbance case, the SMU

algorithms performed corrective updates only for about 24% of the time which is about 1%

higher than that of steady state case.

The comparisons of the volume of the updated state ellipsoid, given by (2.6) is

shown in figure 3.4. The updated state sets obtained by the algorithms SM 3 and SM 4

have larger volumes compared with the volumes of the updated state sets obtained by the

algorithms SM 1 and SM 2, as in the steady state case. Further, the abrupt volume changes
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Figure 3.3: External disturbance case - the estimation results comparison of the
linear system I.

in figure 3.4 are due to re-initializations. The re-initialization is a necessity in SM algorithms

when there is a large disturbance. In this case, the predicted measurement will deviate largely
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Table 3.3: External disturbance case - the time-averaged MSE in each state
variable in the linear system I.

Algorithm ex1(×10−5) ex2(×10−5) ex3(×10−5)

KF 0.2302 0.3093 0.3014

SM 1 2.0052 0.4922 0.8620

SM 2 2.9195 0.5643 0.9473

SM 3 1.4162 0.2718 0.8221

SM 4 1.2970 0.2021 0.7550

from the actual measurement, which will give an observation ellipsoid (2.5) outside of the

predicted state ellipsoid (2.4). Then, the SM algorithms should be re-initialized to meet the

initial assumptions before estimating the states again.

3.3.2 Linear system II

In this experiment, we use the linear discrete-time system considered in [27]. This system

has three states and two measurements and is given by,

xk =


0 1 0

0 0 1

0.2 −0.9 1.3

xk−1 + wk,

zk =

 1.2 1.5 −0.9

−1.0 0.8 1.1

xk + vk.
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Figure 3.4: External disturbance case - the comparison of volumes of the
updated state ellipsoid in SM algorithms for the linear system I.

The process and measurement noise are considered to be uniformly distributed in

the intervals given in table 3.4 for each of the three states and the two measurements. In

the SE algorithms, the initial state ellipsoid has been chosen to be P0 = diag(10, 10, 10).

The initial scaling factor is set to σ2
0 = 1, and the initial state is selected as x0 = [4, 0.8, 1]T ,

which is the same as that used in the simulation.

The performance of the SE algorithms has been evaluated using the same criterion

as in the previous example. Also, as before two scenarios were considered, the steady state

case and the external disturbance case.
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Table 3.4: The intervals for noise distributions in the linear system II.

Variable Interval

w1 (−0.002036, 0.002036)

w2 (−0.001773, 0.001773)

w3 (−0.001431, 0.001431)

v1 (−0.004259, 0.004259)

v2 (−0.002601, 0.002601)

3.3.2.1 Steady state case

In this system, all the states and the measurements go to zero after the initial transients

are subsided. The state estimated by each algorithm for the first 100 times steps, which

show both the transient and steady state behaviors are shown in figure 3.5. Table 3.5 shows

the time-averaged MSE of the algorithms. Here also, it is evident that there is a trade-off

between performing complete correction step at every time step, and at only some time steps.

The time-averaged MSEs of the SMU algorithms are higher than those of the KF and the

standard SM algorithms. Most importantly, the SM 3 and SM 4 algorithms performed the

correction step only 18% and 19% of total time steps respectively. The accuracy of the SM

3 algorithm is still comparable to that of the SM 4 algorithm.

The volume comparison of the updated state ellipsoid given by (2.6) is presented

in figure 3.6. Here also, the updated state ellipsoid obtained by the algorithms SM 3 and

SM 4 have larger volumes compared with those obtained by the algorithms SM 1 and SM 2.

Also, SM 3 and SM 4 algorithms take more time to reach a steady volume.

The updated state ellipsoids (2.6) calculated by the SMU algorithms have larger

volumes than those calculated by the standard SM algorithms, due to selective correction
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Figure 3.5: Steady state case - the estimation results comparison of the linear
system II.

step updates. As mentioned earlier, the complete correction step will be done only if the

observation data contains new information. If this is not the case, then the predicted values
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Table 3.5: Steady state case - the time-averaged MSE in each state variable in
the linear system II.

Algorithm ex1(×10−5) ex2(×10−5) ex3(×10−5)

KF 0.1148 0.0807 0.1142

SM 1 0.1301 0.0976 0.1329

SM 2 0.1253 0.0901 0.1267

SM 3 0.5230 0.4536 0.3828

SM 4 0.4785 0.4180 0.3606

will be taken as the estimate, and the parameter σ2
k will not change until there is a complete

correction step calculation. But the volume of the ellipsoid obtained in the prediction step

will increase in each time step, as it is the sum of the previous state ellipsoid and the process

noise ellipsoid. Also, there is no factor other than σ2
k to limit the volume of the predicted

and the updated state ellipsoids, and therefore, the volume keeps growing until it reaches a

steady volume.

3.3.2.2 External disturbance case

A large disturbance is applied to the system after it achieved its steady state. An impulse

of [1.5427, 1.0995, 1.4664]T is added to the process noise vector at the 50000th time step to

simulate the external disturbance.

Figure 3.7 depicts the effect of the external disturbance on the estimated states,

which shows a few time steps before and after the external disturbance is applied. It can be

seen that SMU algorithms can track the state better than the SM algorithms as well as the

KF algorithm. The time-averaged MSE comparison is shown in table 3.6. Here, the SMU
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Figure 3.6: Steady state case - the comparison of volumes of the updated state
ellipsoid in SM algorithms for the linear system II.

algorithms have a lower time-averaged MSE than the SM and KF algorithms. Both SM 3

and SM 4 algorithms performed the correction step only 18− 20% of the time.

The volume comparison of updated state sets in each SM algorithms is presented in

figure 3.8. Here also, the updated state set volumes are larger in both the SMU algorithms

when compared with the SM 1 and 2.
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Figure 3.7: External disturbance case - the estimation results comparison of the
linear system II.
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Table 3.6: External disturbance case - the time-averaged MSE in each state
variable in the linear system II.

Algorithm ex1(×10−4) ex2(×10−4) ex3(×10−4)

KF 0.2039 0.0372 0.1781

SM 1 0.2662 0.1475 0.2487

SM 2 0.2890 0.1721 0.2622

SM 3 0.1079 0.0466 0.0982

SM 4 0.1042 0.0440 0.0962
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Figure 3.8: External disturbance case - the comparison of volumes of the
updated state ellipsoid in SM algorithms for the linear system II.
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3.3.3 Non-linear system

In order to assess the performance of the SMU algorithm in non-linear systems, a spring-

mass-damper system given in [40] has been considered. The system is shown in figure 3.9

and described by the second-order non-linear differential equation (Duffing’s equation),

d2y

dt2
+ k0y(1 + kdy

2) + c
dy

dt
= 0, (3.3)

where y is the displacement,
dy

dt
is the velocity, c = 1.2 is the damping constant, and the two

constants k0 = 1.5 and kd = 3. Converting (3.3) to a discrete time state-space representation

yields

xk =

 x1,k−1 + ∆t x2,k−1

x2,k−1 + ∆t (−k0x1,k−1(1 + kdx
2
1,k−1)− cx2,k−1)

+ wk,

zk =

(
1 0

)
xk + vk,

Figure 3.9: spring-mass-damper system
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Table 3.7: The intervals for noise distributions in the non-linear system.

Variable Interval

w1 (−0.01010, 0.01010)

w2 (−0.01550, 0.01550)

v1 (−0.01010, 0.00384)

where x1

x2

 =

 y

dy

dt

 .

For each of the two states and measurement, process and measurement noise are considered

to be distributed uniformly in the intervals given in table 3.7. The initial state ellipsoid has

been chosen to be P0 = diag(1, 1), σ2
0 = 1 and the initial state is x0 = [0.8,−0.2]T . The

simulation has also been initialized with the same initial state.

3.3.3.1 Steady state case

In this system, after the initialization of the simulation, all the states as well as the mea-

surements will reach a steady state value of zero.

Figure 3.10 shows the state calculated by each algorithm for the first 2000 times

steps. Both the transient and steady state behaviors are shown here. Table 3.8 shows the

time-averaged MSE of each algorithm. Here also, it is evident that there is a trade-off in

performing selective correction steps, the time-averaged MSEs are relatively higher in SMU

algorithms than in the KF and the standard SM algorithms. It was observed that SM 3
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and SM 4 respectively performed the correction step only 20.1% and 22.6% of the time.

Therefore, we note that the use of the simplifying approximation in (2.20) slightly decrease

the number of complete correction step calculation. Further, the estimation accuracies of

SM 3 and SM 4 are nearly the same.
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Figure 3.10: Steady state case - the estimation results comparison of the
non-linear system.

Figure 3.11 shows the volume comparison of the estimated state set in each time

step. The volume of the updated state sets obtained by the SM 1 algorithm is larger in this

case. Also, the volumes of the updated state sets obtained by SM 3 and SM 4 algorithms

are larger than those obtained by SM 2 as well. Furthermore, SM 3 and SM 4 algorithms
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Table 3.8: Steady state case - the time-averaged MSE in each state variable in
the non-linear system.

Algorithm ex1(×10−4) ex2(×10−3)

KF 0.2109 2.5852

SM 1 0.3397 211.3

SM 2 0.2161 3.1570

SM 3 1.1115 2.7242

SM 4 1.0905 2.7135

take a longer time to reach a steady volume. The time-averaged MSE performance is poor

for state x2 when estimated using the SM 1 algorithm. This is due to the disadvantages of

the determinant criterion used in this algorithm to obtain updated state ellipsoid, which is

discussed in [26].

3.3.3.2 External disturbance case

After the system reached its steady state, a large external disturbance was applied to the

system. An impulse of [0.7419,−0.8527]T is added to the process noise vector at 50000th

time step to create this external disturbance.

Figure 3.12 shows the state estimates a few time steps before and after the external

disturbance. Here, the estimate for x2 produced by SM 1 shows a larger deviation after the

disturbance. The time-averaged MSE comparison is shown in table 3.9. All the algorithms

show almost the same time-averaged MSE for this case compared to the steady state case.

In this case the SMU algorithms performed corrective updates only for about 19.3% of the

time for SM 3 and 22.1 % for SM 4.
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Figure 3.11: Steady state case - the comparison of volumes of the updated state
ellipsoid in SM algorithms for the non-linear system.

Table 3.9: External disturbance case - the time-averaged MSE in each state
variable in the non-linear system.

Algorithm ex1(×10−4) ex2(×10−3)

KF 0.2203 3.1219

SM 1 0.3400 228.5

SM 2 0.2979 3.3853

SM 3 1.2717 3.0459

SM 4 1.2147 3.0109
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Figure 3.12: External disturbance case - the estimation results comparison of the
non-linear system.

A comparison of the volume of the updated ellipsoid given by (2.6) is presented in

figure 3.13. As in the steady state case, the volumes of updated state sets obtained by the

algorithms SM 3 and SM 4 are larger than the volume of updated state sets obtained by the

SM 2 algorithm. Further, the abrupt volume change is due to re-initialization as explained

in section 3.3.1.2.

3.3.4 The effect of σ2k(λk) and σ̄2k(λk) minimization

There is always a difference between the time-averaged MSEs, the volume of the updated

state sets and the number of correction step percentages of the SM 3 and SM 4. This is
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Figure 3.13: External disturbance case - the comparison of volumes of the
updated state ellipsoid in SM algorithms for the non-linear system.

because the SM 3 uses the σ̄2
k(λk) minimization criterion, and the SM 4 uses the σ2

k(λk)

minimization criterion, to obtain the updated state set. To illustrate the difference between

the criteria and to show that σ̄2
k(λk) > σ2

k(λk), linear system I has been used.

Figures 3.14, 3.15 and 3.16 show the σ2
k(λk) curve in (2.18) and σ̄2

k(λk) (App σ2
k(λk),

where app stands for approximate) curve in (2.20) for arbitrary three separate time steps.

The point σ2
k shows the actual value used in the SM 3 algorithm, True min denote the true

minimum of the curve σ2
k(λk) and True app min represent the true minimum of the curve

σ̄2
k(λk) at a particular time step.

Figure 3.14 shows a case where the approximated minimum is very close to the true
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minimum of σ2
k(λk). Figure 3.15 shows the σ2

k(λk) and σ̄2
k(λk) curves when the decision is

made to skip the complete correction step calculation. Figure 3.16 show a situation where

the approximated minimum is deviating considerably from the true minimum of σ2
k(λk).

The difference between the time-averaged MSEs, the updated state set volumes, and the

number of correction step percentages of the SM 3 and the SM 4 are mainly caused by

the deviations between the approximated and true minimums. Further, a large deviation

between the approximated and true minimums at a given time step will affect the next time

step and therefore the deviation will accumulate in time, due to the differences in σ2
k values

calculated. Further, it was observed in this case σ2
k(λk) 6 σ̄2

k(λk).
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Figure 3.14: Case 1 - σ2
k(λk) and σ̄2

k(λk) curves.
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3.4 Discussion

The center of the updated state set can be used as the point estimate when considering the

SM algorithms. Even with selective correction steps, the SMU algorithm achieves estimation

results comparable with those of the standard SM and the KF algorithms. These estimation

results also indicate that not all the measurements contain important information about the

state of a system.

The ellipsoid E(a, σ2P) is defined by a shape matrix (σ2P) which is symmetric

positive definite, and the center a in (2.15). Therefore, in all SM algorithms, the shape

matrices describing the predicted as well estimated ellipsoids at each time step should meet

the symmetric positive definite criterion. Consider a time instant, where the error between

predicted and true measurements are large enough, and that there will be no intersection

between observation set Sk in (2.5) and E(x̂k|k−1, σ
2
kPk|k−1) in (2.4). This will result in an

empty set, which will be indicated by a negative σ2
k even when λk ∈ (0, 1). In this case, the

estimated ellipsoid is undefined. In this thesis, when a negative σ2
k is detected, the algorithm

is re-initialized with an ellipsoid having the shape matrix P0, σ2
0 = 1 and x̂k calculated at

that time instant as the center. The calculated x̂k is used, since it was observed that it is

likely to be a better initialization than a random vector. As explained earlier the abrupt

volume differences shown in figures 3.2, 3.6 and 3.11 were due to this type of re-initialization.

It has been noted that, the initial state ellipsoid σ2
0P0, the process noise ellipsoid

Wk, and the measurement noise ellipsoid Vk will affect the performance of the SMU algo-

rithm. The process noise ellipsoid will affect the predicted state ellipsoid at every time step,

and the measurement noise ellipsoid will affect the estimated state ellipsoid at selective time

steps.



Chapter 4

A Power System Case Study

4.1 Introduction

An electric power system will convert the naturally available energy to the electric form

and transport it to consumers over a transmission network. Since the electricity cannot be

stored conveniently in sufficient quantities, the power system must maintain an appropriate

balance over the generation and transmission due to continually changing demand. In order

to analyze the security of a power system and design appropriate control strategies, the

power systems operating conditions are categorized into five states, namely, normal, alert,

emergency, in extremis, and restorative. If the system can remain in a normal state after

the development of a contingency from a list of critical contingencies, then a normal state is

defined secure. Typically, contingencies will vary from transmission line outages to generator

outages due to unexpected failures of equipment or natural causes like storms. However, if

the system has been disturbed and has entered an insecure state, power system control will

help bring it to a normal state. [48, 67].

59
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The stability of a power system will aid in maintaining a normal operating condi-

tion, after it has been disturbed. As a wide range of devices with different response rates

and characteristics affect the dynamic performance of a power system, the stability problem

has been viewed as one of maintaining synchronous operation. This is mainly influenced

by synchronous machines that generate electrical power. Therefore, tracking the state of

synchronous machines will be useful in deciding the control actions.

In this chapter, the SM algorithm with selective correction step update strategy

(SMU) is tested on a simple power system example. This example deals with the estimation

of the states of a synchronous generator in a single machine infinite bus (SMIB) system.

We first describe the procedure used to model a synchronous generator with six states. The

numerical results obtained by a simulation study is presented next.

4.2 Synchronous generator model with six states

Here, the synchronous generator is represented by a model with one d-axis and two q-axis

amortisseur windings in the d-q frame. The first order differential equations used to represent



Chapter 4. A Power System Case Study 61

the generator are given by [67, (13.22-13.31)],

δ̇ = ω0∆ω,

∆̇ω =
1

2H

(
Tm + Te −D∆ω

)
,

˙ψfd = ω0

[
efd −

Rfdψfd
Xfd

+
RfdX

′′

ad

Xfd

(
− id +

ψfd
Xfd
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ψ1d

X1d

)]
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X1d

+
R1dX

′′

ad

X1d

(
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)]
,

(4.1)

where ȧ denotes the time derivative of a, the time is in seconds, the rotor angle is in electrical

radians, all the other quantities are represented in reciprocal per unit system,

Te = edid + eqiq,

ed = ER sin(δ)− EI cos(δ),

eq = EI sin(δ) + ER cos(δ),

id =
X
′′

ad

X
′′
d

(
ψfd
Xfd

+
ψ1d

X1d

)
− eq
X
′′
d

,

iq =
X
′′
aq

X ′′q

(
ψ1q

X1q

+
ψ2q

X2q

)
+

ed
X ′′q

,

efd =
EfdRfd

Xad

,

and variable definitions are provided in tables 4.1 and 4.2. EI , ER are calculated using

terminal voltage and voltage phase angle with respect to the common reference frame. Note

that the stator resistance, Ra has been neglected in deriving the equation for Te, id and iq,

and therefore Te is assumed to be equal to the instantaneous power output of the machine.
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Table 4.1: Variable definitions of the generator.

Symbol Quantity Value

δ rotor angle (with respect to common reference frame)

∆ω rotor speed variation

ψfd flux linkage in field winding

ψ1d flux linkage in d-axis 1st amortisseur winding

ψ1q flux linkage in q-axis 1st amortisseur winding

ψ2q flux linkage in q-axis 2nd amortisseur winding

Te air-gap torque

Efd supplied field voltage

Tm mechanical torque input

H inertia constant 3.5 MWs/MVA

D damping factor 5 p.u.

f0 base angular frequency 60 Hz

The common R-I reference frame and the machine d-q reference frame are shown in figure

4.1 where Ẽt is the terminal voltage [67, figure 13.10].

By converting the continuous-time differential equations (4.1) to discrete-time equa-

tions (4.2) we can obtain a set of equations as in (2.22). The measurement equation (2.23)

can be written as (4.3). The state vector is xxxk = [δk ∆ωk ψfdk ψ1dk ψ1qk ψ2qk]
T , the mea-

surement vector is zzzk = [Tek ωk]
T , and Efd, Tm, terminal voltage and voltage phase angle

(EI and ER) have been taken as inputs to the estimation algorithm.
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Figure 4.1: The common R-I reference frame and the machine d-q reference
frame.

4.3 Simulation results

4.3.1 Test setup

The experimental set-up is shown in Figure 4.2 [67, figure 5.2]. The SMIB system has been

G

Line 1

Line 2

Line 3
R

R
Infinite Bus

X1

X1

X2

Figure 4.2: The experimental setup - SMIB system

modeled in MATLAB with a transmission system having two lines connected to an infinite
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bus. The second-order Runge-Kutta method has been used to model the generator in the

SMIB system. The line and generator data used here are provided in tables 4.1 and 4.2.

Following are the intervals for noise distributions,

wik ∼ U [−10−5, 10−5],

v1k ∼ U [−0.005, 0.005],

v2k ∼ U [−0.05, 0.05],

where i = 1, 2, ..., 6, represent each of the six states of the synchronous generator. If the

process noise intervals are large, this SMIB system can become unstable. Therefore suitable

values for the process noise intervals were found by trial and error. The measurement noise

intervals were based on 10 dB signal to noise ratio. The SMU and the EKF algorithms have

been implemented in MATLAB. The ellipsoids containing the process and the measurement

noise for the SMU algorithm have been derived using the bounded interval method as de-

scribed in [21]. Process and measurement noise covariance matrices for the EKF have been

derived assuming that a noise interval corresponds to four standard deviations.

The simulation of the system has been conducted with a time step of 1 ms and the

measurements have been collected at 10 ms intervals. As it was assumed that the terminal

voltage, voltage phase angle, and instantaneous power output of the machine are available

at every 0.01 s, which accounts for a PMU sampling rate of 100. The statistical expectations

have been estimated with Monte-Carlo trials over 100 different realizations of noise vectors

in obtaining the experimental results presented below.
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Table 4.2: The generator and the line data.

Symbol Quantity Value in per unit

Ra stator resistance 0.0030

Xl stator leakage reactance 0.1500

Xd d-axis unsaturated synchronous reactance 1.8098

Xq q-axis unsaturated synchronous reactance 1.7599

X
′′

d d-axis unsaturated sub-transient reactance 0.2296

X
′′
q q-axis unsaturated sub-transient reactance 0.2500

Xfd field leakage reactance 0.1634

X1d d-axis 1st damper leakage reactance 0.1713

X1q q-axis 1st damper leakage reactance 0.7252

X2q q-axis 2nd damper leakage reactance 0.1250

Rfd field resistance 5.9938× 10−4

R1d d-axis 1st damper resistance 0.0284

R1q q-axis 1st damper resistance 0.0062

R2q q-axis 2nd damper resistance 0.0237

R line 1, 2 resistance 0.1250

X1 line 1, 2 reactance 0.6250

X2 line 3 reactance 0.1250

4.3.2 Case 1

The SMIB system has been initiated to the steady-state. A balanced fault is then created in

the middle of the line 2 at 5 s, and cleared after 1.5 s by removing that line. The estimation

results are shown in figure 4.3. The time-averaged MSE given by (3.2) was calculated for each

of the states, and is shown in table 4.3. The time-averaged MSE performance of the state

δk is better in the EKF estimation than that of the SMU estimation. But the time-averaged

MSE performance of the other state estimates is better in the SMU estimation than that of
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the EKF estimation.
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Figure 4.3: Case 1 - the estimation results comparison of the generator states.

It was observed that the SMU algorithm commuted the complete correction step

to only 33.5 % of the time. This indicates that 66.5 % of the time the predicted state needs
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Table 4.3: Case 1 - the time-averaged MSEs of the generator states.

Algorithm KF SMF

MSE(×10−4)

eδk 0.1097 0.6152

e∆ωk
0.0007 0.0001

eψfdk
0.7893 0.0180

eψ1dk
0.4909 0.0671

eψ1qk
0.5097 0.1384

eψ2qk
0.6974 0.3808

no update. Still, the estimation result obtained from the SMU algorithm is comparable to

that of EKF, which indicates that not all the measurements contain innovative information.

4.3.3 Case 2

The SMIB system has been disturbed twice (two fault case). First, a fault is created at the

infinite bus and it was cleared and then a second fault is created as before, that is a fault

in the middle of line 2 which is subsequently cleared by removing the line. The first fault

was applied at 25 s and the second fault was applied at 45 s. The estimation results for this

case is shown for the duration of 15 − 60 s in figure 4.4. The time-averaged MSE in (3.2)

was calculated for each of the states during each fault and shown in tables 4.4 and 4.5. As

in case 1, the estimation results of the SMU algorithm is comparable to those of the EKF.

A complete correction step is calculated if the parameter λk 6= 0 (2.21). Therefore,

by recording the time steps at which λk 6= 0, we can track the occurrence of complete

correction steps in each trial. Then, by taking the average over the trials we can obtain the
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Figure 4.4: Case 2 - the estimation results comparison of the generator states.
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Table 4.4: Case 2 - the time-averaged MSEs of the generator states for the first
fault.

Algorithm KF SMF

MSE(×10−4)

eδk 0.1885 0.1613

e∆ωk
0.0001 0.0002

eψfdk
0.0311 0.0374

eψ1dk
0.1236 0.1260

eψ1qk
0.1718 0.1236

eψ2qk
0.5714 0.5286

Table 4.5: Case 2 - the time-averaged MSEs of the generator states for the
second fault.

Algorithm KF SMF

MSE(×10−4)

eδk 0.2430 0.1804

e∆ωk
0.0001 0.0002

eψfdk
0.0251 0.0263

eψ1dk
0.1204 0.1140

eψ1qk
0.2694 0.1874

eψ2qk
0.7326 0.6501
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Figure 4.5: The average correction step variation - case 2

average complete correction step variation. This variation is shown in figure 4.5. Figure 4.5

(A) shows the variation of average complete correction step over the whole period 0− 80 s,

and figure 4.5 (B) shows the variation of average complete correction step over the period

20− 65 s.

It can be observed that after initialization, the SMU algorithm performs the com-

plete correction step until the steady-state is reached, after which no correction steps are

required until a disturbance occurs. This is an important observation that indicates the

possibility of using the SMU algorithm for event-triggered SE.

4.3.3.1 Effects of improper initialization of the SMU algorithm

It has been observed that improper initialization of the algorithm can affect the performance

of the SMU algorithm. This will create an adverse effect on the data selective and event-

triggered capability of the algorithm.
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The SMIB system with two fault case is tested with a different process noise ellipsoid

E(0,Ŵk) which corresponds to noise intervals of wik ∼ U [−10−3, 10−3]. These noise intervals

are larger than the ones used earlier which were wik ∼ U [−10−5, 10−5]. The correction step

variation over the time period 0− 80 s for a single trial is shown in figure 4.6. Unlike before,
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Figure 4.6: Correction step variation over the time period of 80 s for a single
trial - case 2.

it is very hard to distinguish between a steady state condition and a fault condition as the

correction steps occur too frequently.

4.4 Discussion

In power systems, PMUs typically generate measurements at rates much higher than the

rates at which the system states change. Therefore, the measurements will not always

contain useful information about the power system state, hence, it is not always necessary

to communicate the measurements. In this type of situation, if there is a systematic way
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to identify whether the measurement contains useful information, it can aid in reducing the

communication overhead created by large data flows from the PMUs.

The SMU algorithm presented in this thesis will be useful in identifying whether or

not the measurements are informative, by simply checking a condition based on the predicted

and the actual measurement. When the MASE is deployed, the SMU algorithm can be

implemented at the local estimators. In the event of a state change, the SMU algorithm

can identify it based on its data selective capability. This can be used as a criterion to send

the information to the centralized estimator for further processing. Consequently, this will

significantly reduce the communication overhead in power systems with PMUs.

But an important issue to address here would be the initialization of the SMU

algorithm. The experimental results presented in this thesis have shown that improper

initialization of the SM algorithm can degrade the data selective capability of the SMU

algorithm. In particular, robust methods for proper initialization of noise ellipsoids must be

further investigated.



Chapter 5

Conclusion and Future work

This thesis investigated an ellipsoidal SM algorithm that can disregard the uninformative

measurements in DSE and its applicability for PS-DSE. The necessity of updating the pre-

dicted state set is checked by a condition based on the error between the actual and predicted

value of the measurement. This will eliminate the complete correction step calculation if the

measurements are uninformative. However, numerical results show that the accuracy of the

estimates provided by this algorithm is still comparable with that of the conventional KF

algorithm.

5.1 Contributions and conclusions

1. A comprehensive overview of previous work on ellipsoidal SM algorithms for state

estimation in both linear and non-linear dynamical systems has been presented.
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2. In order to show that the selective correction step update strategy does not create any

adverse effect on the estimated state, a detailed comparison with the KF algorithm

and two standard SM algorithms has been carried out. In the numerical examples,

it was found that the complete correction step calculation was required only during a

small fraction of time. The selective correction step update strategy saves considerable

computational cost when compared with the standard SM algorithms.

3. The potential applicability of the data selective SM algorithm to event-triggered SE

in MASE has been demonstrated through a simulation study of a SMIB system. This

study has revealed several important issues that must be addressed in future research,

as outlined below.

5.2 Future work

1. The experimental results in Chapter 4 highlight the importance of using robust ini-

tialization methods in the SMU algorithm. Towards addressing this issue, systematic

methods for selecting the noise ellipsoids must be further investigated. Of particular

interest would be adaptive methods for updating these ellipsoids and the investigation

of the convergence properties of such methods. A good starting point would be interval

analysis-based approach studied in [39, 46].

2. A preliminary investigation of real-time SE using the RTDS simulation software RSCAD

[68] has been undertaken during this research. However, this investigation has not been

completed due to technical difficulties and lack of time. A complete implementation

of a SM state estimator, as considered in this thesis, in the RSCAD environment will

be a very useful step towards investigating the MASE concept for smart power grids.



Appendix A

Vector sum of two ellipsoids

A.1 Support functions of sets

A support function s(ηηη) of a closed convex set Ω ∈ Rn is defined by,

s(ηηη) = max
x∈Ω

xTηηη,

ηηηTηηη = 1, (A.1)

where ηηη is any non-zero vector in Rn satisfying (A.1). The plane with normal ηηη and the

distance (ηηηTηηη)1/2 to s(ηηη) from the origin is a support hyperplane of Ω. In other words,

ηηη touches the boundary of Ω. [22]. Using the support function, the convex set Ω can be

represented as,

Ω = {x : xTηηη ≤ s(ηηη), ∀ ηηη}.
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Theorem A.1. The support function s(ηηη) of an ellipsoidal set E(a,P) is given by,

s(ηηη) = max
x∈E(a,P)

xTηηη,

s(ηηη) = ηηηTa + (ηηηTPηηη)1/2.

Proof. For a closed convex set defined by an ellipsoid E(a,P), solving the constrained prob-

lem

s(ηηη) = max
x∈E(a,P)

xTηηη,

E(a,P) = {x ∈ Rn : (x− a)TP−1(x− a) ≤ 1}.

Define Lagrange multiplier as τ ,

L(x, τ) = xTηηη + τ [(x− a)TP−1(x− a)− 1]. (A.2)

Differentiating equation (A.2) with respect to x and equating it to 0 will give a solution to

x.

∂L

∂x
= ηηη + 2τ P−1(x− a),

x̂ = a− Pηηη

2τ
.

Substituting this x̂ in the boundary of the ellipsoid (x−a)TP−1(x−a) = 1, where x attains

its maximum values, τ will be

ηηηTPηηη = 4τ 2,

τ =
1

2

√
ηηηTPηηη.
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Hence,

xmax = a− Pηηη√
ηηηTPηηη

. (A.3)

Multiplying both sides of equation (A.3) by ηηηT

ηηηTxmax = ηηηTa− ηηηTPηηη√
ηηηTPηηη

.

Therefore,

s(ηηη) = ηηηTa + (ηηηTPηηη)1/2. (A.4)

Remark A.2. A support function of the sum of convex sets is the sum of the support function

of each set [26]. Let Ω1 and Ω2 be two closed convex sets with support functions s1(ηηη) and

s2(ηηη). Let Ω1+2 be the vector sum of Ω1 and Ω2. Then Ω1+2 is convex and its support

function s1+2(ηηη) is given by,

s1+2(ηηη) = s1(ηηη) + s2(ηηη).

Further, Ω1 contains Ω2, only if [22, 26],

s1(ηηη) > s2(ηηη), ∀ ηηη. (A.5)
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A.2 Vector sum of ellipsoids

The existence and uniqueness of the trace criterion and the determinant criterion based

optimal ellipsoids containing a given compact set have been presented in [26]. Set of ellip-

soids containing the vector sum of ellipsoids is derived using support function theory and

Cauchy–Schwarz inequality. An explicit solution for the ellipsoid containing vector sum is

presented based on the trace criterion. Following are the important theorems from [26].

Theorem A.3. Consider a set of K ellipsoids in Rn, Ek(ck,Pk) for k = 1, 2, . . . , K and

their sum

Ωk =
K∑
k=1

Ek(ck,Pk).

The center of the optimal ellipsoid E∗(c∗,P∗), containing the vector sum of ellipsoids based

on both the trace and determinant criteria is,

c∗ =
K∑
k=1

ck, (A.6)

Ωk ⊂ E∗(c∗,P∗).

Remark A.4. The center of the ellipsoids containing the vector sum depends only on the

centers of K ellipsoids.

Theorem A.5. Shape matrix of an ellipsoid E(c∗,P) containing the vector sum of ellipsoids

in theorem A.3, using the determinant and trace criteria is given by,

P =
K∑
k=1

α−1
k Pk, (A.7)
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where vector ααα = [α1 α2 . . . αK ]T ∈ RK belongs to convex set of all vectors with αk ≥ 0 and∑K
k=1 αk = 1.

Theorem A.6. In the family of ellipsoids defined by different selections of ααα in theorem

A.5, the minimal trace ellipsoid containing the vector sum of ellipsoids Ek(ck,Pk) for k =

1, 2, . . . , K is given by,

P∗ =

( K∑
k=1

√
trPk

)( K∑
k=1

Pk√
trPk

)
, (A.8)

where

α∗k =

( K∑
k=1

√
trPk

)−1√
trPk.

A.3 Approximating an optimal ellipsoid containing the

vector sum of ellipsoids in the prediction step

The optimum ellipsoid E(x̂k|k−1, P̃k|k−1), containing vector sum of Fk−1E(x̂k−1, P̃k−1) and

E(0,Wk) is obtained by utilizing theorems A.1, A.3, A.5, and A.6, when K = 2,

E(x̂k|k−1, P̃k|k−1) ⊃ Fk−1E(x̂k−1, P̃k−1)⊕ E(0,Wk−1).

According to (A.5),

sE(x̂k|k−1,P̃k|k−1)(ηηη) ≥ sFk−1E(x̂k−1,P̃k−1)(ηηη) + sE(0,Wk−1)(ηηη),

ηηηT x̂k|k−1 + (ηηηT P̃k|k−1ηηη)1/2 ≥ ηηηTFk−1x̂k−1 + (ηηηTFk−1P̃k−1F
T
k−1ηηη)1/2 + (ηηηTWkηηη)1/2. (A.9)
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From theorem A.3 the center of the predicted state ellipsoid E(x̂k|k−1, P̃k|k−1) will be

xk|k−1 = Fk−1x̂k−1.

Therefore, (A.9) reduces to

(ηηηT P̃k|k−1ηηη)1/2 ≥ (ηηηTFk−1P̃kF
T
k−1ηηη)1/2 + (ηηηTWkηηη)1/2. (A.10)

From theorem A.5 a family of shape matrices can be obtained for predicted state ellipsoid

P̃k|k−1 =
Fk−1P̃kF

T
k−1

1− pk
+

Wk

pk
.

Then, from theorem A.6 pk can be derived as,

pk =

√
trace(Wk)√

trace(Fk−1P̃kF
T
k−1) +

√
trace(Wk)

(A.11)



Appendix B

Intersection of two ellipsoids

Consider two arbitrary ellipsoids,

E1(x1,P1) = {x ∈ R : (x− x1)TP−1
1 (x− x1) 6 1},

E2(x2,P2) = {x ∈ R : (x− x2)TP−1
2 (x− x2) 6 1}.

The intersection of these two ellipsoids can be contained in another ellipsoid E3(x3,P3),

where [20]

E3(x3,P3) = {x ∈ R : (x− x3)TP−1
3 (x− x3) 6 1},

= {x ∈ R : (1− λ)(x− x1)TP−1
1 (x− x1)

+ λ(x− x2)TP−1
2 (x− x2) 6 1}. (B.1)
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Consider the LHS of the inequality in (B.1),

= (1− λ)(x− x1)TP−1
1 (x− x1) + λ(x− x2)TP−1

2 (x− x2),

= (1− λ)(x− x1)TP−1
1 (x− x1) + λ(x− x1 + x1 − x2)TP−1

2 (x− x1 + x1 − x2),

= (x− x1)T
(

(1− λ)P−1
1 + λP−1

2

)
(x− x1) + 2λ(x− x1)TP−1

2 (x1 − x2)

+ λ(x1 − x2)TP−1
2 (x1 − x2).

Adding and subtracting a term λ2(x1 − x2)TP−1
2

(
(1− λ)P−1

1 + ρP−1
2

)−1

P−1
2 (x1 − x2) will

yield

= (x− x1 + λ((1− λ)P−1
1 + λP−1

2 )−1P−1
2 (x1 − x2))T

(
(1− λ)P−1

1 + λP−1
2

)
(x− x1 + λ((1− λ)P−1

1 + λP−1
2 )−1P−1

2 (x1 − x2)) + λ(x1 − x2)TP−1
2 (x1 − x2)

− λ2(x1 − x2)TP−1
2

(
(1− λ)P−1

1 + λP−1
2

)−1

P−1
2 (x1 − x2). (B.2)

Taking the last two terms in (B.2) to the RHS of the inequality given in (B.1), the RHS of

the inequality will yield

= 1− λ(x1 − x2)TP−1
2 (x1 − x2)

+ λ2(x1 − x2)TP−1
2

(
(1− λ)P−1

1 + λP−1
2

)−1

P−1
2 (x1 − x2),

= 1− (x1 − x2)T
(
λP−1

2 − λ2P−1
2

(
(1− λ)P−1

1 + λP−1
2

)−1

P−1
2

)
(x1 − x2),

= 1− (x1 − x2)T
(

P1

(1− λ)
+

P2

λ

)−1

(x1 − x2).
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Finally, the center and the shape matrix of the ellipsoid E3(x3,P3) in (B.1) is obtained

x3 = x1 − λ((1− λ)P−1
1 + λP−1

2 )−1P−1
2 (x1 − x2),

P3 = γ

(
(1− λ)P−1

1 + λP−1
2

)−1

,

γ = 1− (x1 − x2)T
(

P1

(1− λ)
+

P2

λ

)−1

(x1 − x2).

B.1 The intersection of the predicted state set and the

observation set in the SM algorithm with selective

correction step update strategy

An ellipsoid E(x̂k, σ
2
kPk) containing the intersection of the predicted state set E(x̂k|k−1, σ

2
k|k−1Pk|k−1),

and the observation set Sk can be derived. Recall

E(x̂k, σ
2
kPk) = {xk ∈ Rn : (xk − x̂k)

TP−1
k (xk − x̂k) ≤ σ2

k},

E(x̂k|k−1, σ
2
k|k−1Pk|k−1) = {xk ∈ Rn : (xk − x̂k|k−1)TP−1

k|k−1(xk − x̂k|k−1) ≤ σ2
k|k−1},

Sk = {xk ∈ Rn : (zk −Hkxk)
TV−1

k (zk −Hkxk) ≤ 1}.

Then, E(x̂k, σ
2
kPk) can be written as a combination of the two sets E(x̂k|k−1, σ

2
k|k−1Pk|k−1)

and Sk as in (B.1)

E(x̂k, σ
2
kPk) = {xk ∈ Rn : (1− λk)(xk − x̂k|k−1)TP−1

k|k−1(xk − x̂k|k−1)

+ λk(zk −Hkxk)
TV−1

k (zk −Hkxk) ≤ (1− λk)σ2
k|k−1 + λk}.

(B.3)
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The inequality in (B.3) can be simplified as follows,

(1− λk)(xk − x̂k|k−1)TP−1
k|k−1(xk − x̂k|k−1) + λk(zk −Hkxk)

TV−1
k (zk −Hkxk)

≤ (1− λk)σ2
k|k−1 + λk,

(1− λk)(xk − x̂k|k−1)TP−1
k|k−1(xk − x̂k|k−1) + λk

(
(zk −Hkx̂k|k−1)−Hk(xk − x̂k|k−1)

)T
V−1
k

(
(zk −Hkx̂k|k−1)−Hk(xk − x̂k|k−1)

)
≤ (1− λk)σ2

k|k−1 + λk.

Letting δδδk = zk −Hx̂k|k−1,

(xk − x̂k|k−1)T
[
(1− λk)P−1

k|k−1 + λkH
T
kV−1

k Hk

]
(xk − x̂k|k−1) + λkδδδ

T
kV−1

k δδδk

− 2λk(xk − x̂k|k−1)THT
kV−1

k δδδk ≤ (1− λk)σ2
k|k−1 + λk,

(xk − x̂k|k−1)T
[
(1− λk)P−1

k|k−1 + λkH
T
kV−1

k Hk

]
(xk − x̂k|k−1)

− 2λk(xk − x̂k|k−1)THT
kV−1

k δδδk ≤ (1− λk)σ2
k|k−1 + λk − λkδδδTkV−1

k δδδk.

Let P−1
k = (1 − λk)P−1

k|k−1 + λkH
T
kV−1

k Hk and adding a term λ2
k(H

T
kV−1

k δδδk)
TPk(H

T
kV−1

k δδδk)

to both sides will yield

(xk − x̂k|k−1)TP−1
k (xk − x̂k|k−1)− 2λk(xk − x̂k|k−1)THT

kV−1
k δδδk

+ λ2
k(H

T
kV−1

k δδδk)
TPk(H

T
kV−1

k δδδk) ≤ (1− λk)σ2
k|k−1 + λk − λkδδδTkV−1

k δδδk

+ λ2
k(H

T
kV−1

k δδδk)
TPk(H

T
kV−1

k δδδk).

Letting x̂k = x̂k|k−1 + λkPk(H
T
kV−1

k δδδk),

(xk − x̂k)
TP−1

k (xk − x̂k) ≤ (1− λk)σ2
k|k−1 + λk − λkδδδTkV−1

k δδδk

+ λ2
k(H

T
kV−1

k δδδk)
TPk(H

T
kV−1

k δδδk).
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RHS of this inequality can be further simplified using Woodbury matrix identity.

(1− λk)σ2
k|k−1 + λk − δδδTk

(
λkV

−1
k − λ

2
kV
−1
k HkPkH

T
kV−1

k

)
δδδk

= (1− λk)σ2
k|k−1 + λk − δδδTk

[(
Vk

λk

)−1

−
(

Vk

λk

)−1

Hk

[(
Pk|k−1

1− λk

)−1

+ HT
k

(
Vk

λk

)−1

Hk

]−1

HT
k

(
Vk

λk

)−1]
δδδk. (B.4)

Define a matrix,

Qk =

(
Vk

λk

)
+ Hk

(
Pk|k−1

1− λk

)
HT .

Using Woodbury matrix identity Q−1
k is given by,

Q−1
k =

(
Vk

λk

)−1

−
(

Vk

λk

)−1

Hk

[(
Pk|k−1

1− λk

)−1

+ HT
k

(
Vk

λk

)−1

Hk

]−1

HT
k

(
Vk

λk

)−1

.

Therefore, (B.4)

(1− λk)σ2
k|k−1 + λk − δδδTk

(
λkV

−1
k − λ

2
kV
−1
k HkPkH

T
kV−1

k

)
δδδk

= (1− λk)σ2
k|k−1 + λk − δδδTkQ−1

k δδδk.

Further, P−1
k = (1−λk)P−1

k|k−1+λkH
T
kV−1

k Hk, the shape matrix Pk of the ellipsoid E(x̂k, σ
2
kPk)

using Woodbury matrix identity is given by,

Pk =
[
(1− λk)P−1

k|k−1 + λkH
T
kV−1

k Hk

]−1
,

=

(
Pk|k−1

1− λk

)
−
(

Pk|k−1

1− λk

)
HT
k

[(
Vk

λk

)
+ Hk

(
Pk|k−1

1− λk

)
HT
k

]−1

Hk

(
Pk|k−1

1− λk

)
.
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Define

Kk =
1

1− λk
Pk|k−1H

T
kQ−1

k .

Then, Pk can be rewrite

Pk =
1

1− λk
[I−KkHk]Pk|k−1.

Remark B.1. Woodbury matrix identity: Consider different set of matrices A,C,U and V.

The inverse of [A+ UCV ] is given by,

[A + UCV]−1 = A−1 −A−1U(C−1 −VA−1U)−1VA−1. (B.5)

Consider the matrix Kk,

Kk =
1

1− λk
Pk|k−1H

T
kQ−1

k ,

=
1

1− λk
PkP

−1
k Pk|k−1H

T
kQ−1

k ,

=
1

1− λk
Pk[(1− λk)P−1

k|k−1 + λkH
T
kV−1

k Hk]Pk|k−1H
T
kQ−1

k ,

= λkPk

[
P−1
k|k−1

λk
+ HT

k

V−1
k

(1− λk)
Hk

]
Pk|k−1H

T
kQ−1

k ,

= λkPk

[
HT
k

λk
+ HT

k

V−1
k

(1− λk)
HkPk|k−1H

T
k

]
Q−1
k ,

= λkPkH
T
kV−1

k

[
Vk

λk
+ Hk

Pk|k−1

(1− λk)
Hk

]
Q−1
k ,

= λkPkH
T
kV−1

k .
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Thus, x̂k = x̂k|k−1 + λkPkH
T
kV−1

k δδδk can be rewrite as,

x̂k = x̂k|k−1 + Kkδδδk.

Finally, E(x̂k, σ
2
kPk) = {xk ∈ Rn : (xk − x̂k)

TP−1
k (xk − x̂k) ≤ σ2

k} is where

x̂k = x̂k|k−1 + Kkδδδk,

Pk =
1

1− λk
[I−KkHk]Pk|k−1,

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTkQ−1
k δδδk,

Kk =
1

1− λk
Pk|k−1H

T
kQ−1

k ,

Qk =

(
Vk

λk

)
+ Hk

(
Pk|k−1

1− λk

)
HT ,

δδδk = zk −Hx̂k|k−1.



Appendix C

Selection of an bounding ellipsoid for

a set

The performance of the SM algorithm lies in the relative size of the approximation of the state

set. These approximations are optimum in the sense of their volume. But there can be other

optimal approximation criteria as well [25]. When a state set is bounded by an ellipsoid, the

choice of the bounding ellipsoid is not unique, and need to find an optimal ellipsoid based

on some criteria [22]. If an ellipsoid E(a,P) defined as in (2.1) is characterized by a scalar

optimality criterion or a cost function J , which is defined as L(P) a function of shape matrix

of the ellipsoid

J [E(a,P)] = L(P).

For all P, which are symmetric and non-negative definite, L(P) is smooth and monotone

for following generalized optimality criteria. Monotone means, for arbitarary shape matrices

P1 and P2, L(P1) ≥ L(P2) if the difference (P1 − P2) is a nonnegative definite matrix (if

E(a,P1) ⊃ E(a,P2) holds, then L(P1) ≥ L(P2)). [21, 25].
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1. Volume of an ellipsoid E(a,P) is given by,

V ol(E(a,P)) =
πn/2(detP)1/2

Γ(
n

2
+ 1)

, (C.1)

where Γ is the Eular gamma function. Hence, volume of an ellipsoid is proportional to

the square of the product of the lengths of its axes. The cost function, which is also

called the determinant criterion is defined as,

L(P) = (detP)1/2.

Minimization of this cost function might result in a very narrow ellipsoid, which will

impose extremely large uncertainties in some directions even though the volume tends

to zero. Further, calculating the determinant of matrices is cumbersome and inefficient

[26].

2. In some cases, the volume of a set in an n-dimensional subspace is not of interest,

such as when some state coordinates are insignificant and need no estimate. In such a

situation, project the ellipsoid E(a,P) onto the direction of a vector v, where v is a

given nonzero vector with appropriate dimensions. The projection of E(a,P) onto the

direction of the vector v is given by [69],

Πv(E(a,P)) =
2〈Pv,v〉1/2

‖v‖
,

where 〈 . , . 〉 represent the inner product and ‖.‖ represent the norm. Cost function

would be of the following form,

L(P ) = 〈Pv,v〉. (C.2)
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3. Sum of the squared semi-axis of an ellipsoid E(a,P), the trace criterion.

L(P) = Tr (P). (C.3)

4. If C is a symmetric positive definite matrix with same dimensions as P in E(a,P)

(projection of the ellipsoid to a subspace when appropriate C is chosen),

L(P) = Tr (CP). (C.4)

This is a generalization of trace criterion and called a linear optimality criterion [21].

5. Sum of semi-axes of an ellipsoid E(a,P) in the forth power.

L(P) = Tr (P2). (C.5)

First criterion is used extensively in literature casting aside its disadvantages. It is

well established in literature that for first and third criteria there exists “a unique smallest

ellipsoid containing a compact set with non-empty interior”. [26].



Appendix D

A bound on the scalar variable σ2k

Consider the scalar variable σ2
k defined in (2.18)

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTkQ−1
k δδδk,

= (1− λk)σ2
k|k−1 + λk − δδδTk

(
1

1− λk
HkPk|k−1H

T
k +

1

λk
Vk

)−1

δδδk.

Substitute V̄
T
k V̄k to V−1

k , where V̄
T
k is the upper triangular matrix obtained by the Cholesky

factorization of V−1
k . Then,

σ2
k = (1− λk)σ2

k|k−1 + λk − δδδTk
(

1

1− λk
HkPk|k−1H

T
k +

1

λk
(V̄

T
k V̄k)

−1

)−1

δδδk,

= (1− λk)σ2
k|k−1 + λk − λk(1− λk)δ̄δδ

T

k (λkGk + (1− λk)I)−1δ̄δδk.
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where

Gk = V̄kHkPk|k−1H
T
k V̄

T
k ,

δ̄δδk = V̄kδδδk.

A simplified but approximate bound on σ2
k can be obtained by assigning a scalar value to

the matrix (λkGk +(1−λk)I). This will eliminate the complex mathematics to some extent,

when minimizing σ2
k. Taking ḡk as the norm or the maximum eigenvalue of Gk,

‖λkGk + (1− λk)I‖2 6 λkḡk + 1− λk.

Then, the bound σ̄2
k(λk) is given by,

σ̄2
k(λk) = (1− λk)σ2

k|k−1 + λk − λk(1− λk)
δ̄δδ
T

k δ̄δδk
(1− λk) + λkḡk

.

This will define an upper bound to σ2
k due to the consideration of the maximum eigenvalue

or the norm of the matrix Gk. By minimizing σ̄2
k(λk) with respect to λk we can obtain an

optimum solution to λk that minimizes σ2
k.

Since σ̄2
k(λk) is a function of λk, the function σ̄2

k(λk) should be convex in the domain

0 6 λk 6 1 to have a local minimum. The second order conditions [70] state that, a function

is convex if and only if the domain of the function is convex and the hessian or the second

derivative of the function is positive semidefinite. The domain of σ̄2
k(λk) is convex and
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therefore, differentiate σ̄2
k(λk) twice with respect to λk. Taking the first derivative will yield

dσ̄2
k(λk)

dλk
= −σ2

k|k−1 + 1− δ̄δδTk δ̄δδ
(

(1− 2λk)(1− λk + λkḡk)− λk(1− λk)(ḡk − 1)

(1− λk + λkḡk)2

)
,

= −σ2
k|k−1 + 1− δ̄δδTk δ̄δδ

(
1− 2λk + λ2

k − λ2
kḡk

(1− λk + λkḡk)2

)
,

= 1− σ2
k|k−1 − δ̄δδ

T

k δ̄δδ

(
(1− λk)2 − λ2

kḡk
(1− λk + λkḡk)2

)
.

Taking the second derivative of σ̄2
k(λk) with respect to λk will yield

d2σ̄2
k(λk)

dλ2
k

=
2‖δ̄δδ‖2

2ḡk
(1− λk + λkḡk)3

.

Gk is positive definite from matrix properties, ḡk > 0 as it is the norm or the maximum

eigenvalue of Gk and ‖δ̄δδ‖2
2 > 0. Therefore, within 0 6 λk 6 1,

d2σ̄2
k(λk)

dλ2
k

> 0 and σ̄2
k(λk) is

convex.

Remark D.1. Consider the matrix, Gk = V̄kHkPk|k−1H
T
k V̄

T
k . The matrices Vk and Pk|k−1

are positive definite matrices and Hk ∈ Rm×n has rank m. Since Vk is a positive definite

matrix, V̄k is also a positive definite matrix. Therefore, Gk is a positive definite matrix.

By equating the first derivative of σ̄2
k(λk) to zero we can obtain the local minimum

within 0 6 λk 6 1,

dσ̄2
k

dλk
= 0,

0 = 1− σ2
k|k−1 − δ̄δδ

T

k δ̄δδ

(
(1− λk)2 − λ2

kḡk
(1− λk + λkḡk)2

)
.
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Define βk =
1− σ2

k|k−1

δ̄δδ
T

k δ̄δδk
. Then, can rewrite the above equation

0 = βk −
(

(1− λk)2 − λ2
kḡk

1− λk + λkḡk

)
,

= βk(1− λk + λkḡk)
2 − (1− λk)2 + λ2

kḡk,

= βk(1− λk + λkḡk)
2 − (1− λk)2 + λ2

kḡk,

= βk(1− 2λk(1− ḡk) + λ2
k(1− ḡk)2)− 1 + 2λk − λ2

k(1− ḡk),

= βk(1− 2λk(1− ḡk) + λ2
k(1− ḡk)2)− 1 + 2λk − λ2

k(1− ḡk),

= (βk − 1)− 2λk(βk(1− ḡk)− 1) + λ2
k(1− ḡk)(βk(1− ḡk)− 1).

If ḡk = 1, the optimum value of λk is

λ∗k =
1− βk

2
. (D.1)

If ḡk 6= 1

λk =
βk(1− ḡk)− 1)±

√
(βk(1− ḡk)− 1)2 − (βk − 1)(1− ḡk)(βk(1− ḡk)− 1)

(1− ḡk)(βk(1− ḡk)− 1)
,

=
1

(1− ḡk)

(
1±

√
−ḡk

(βk(1− ḡk)− 1)

)
,

=
1

(1− ḡk)

(
1±

√
ḡk

(1 + βk(ḡk − 1))

)
.

Since λk ∈ (0, 1), the optimum value of λk is

λ∗k =
1

(1− ḡk)

(
1−

√
ḡk

(1 + βk(ḡk − 1))

)
.

But if the function σ̄2
k(λk) is increasing function for λk ∈ (0, 1) or has critical point at λk = 0,
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finding the minimum is not necessary. If the first derivative of σ̄2
k(λk) evaluated at λk = 0

is greater than or equal to zero, then, the function σ̄2
k(λk) is an increasing function or has

critical point at λk = 0. Since,

dσ̄2
k(λk)

dλk

∣∣∣∣
λk=0

= 1− σ2
k|k−1 − δ̄δδ

T

k δ̄δδ,

λ∗k = 0 when 1 − σ2
k|k−1 − δ̄δδ

T

k δ̄δδ > 0. This means, if σ2
k|k−1 + δ̄δδ

T

k δ̄δδ 6 1 then λ∗k = 0. There for

the optimum λk is given by,

λ∗k =



0 σ2
k|k−1 + δ̄δδ

T

k δ̄δδk ≤ 1,

1− βk
2

ḡk = 1,

1

1− ḡk

[
1−

√
ḡk

1 + βk(ḡk − 1)

]
ḡk 6= 1.

The complete correction step calculations will be done only if σ2
k < σ2

k−1 when the measure-

ments are available.



Appendix E

Overview of the Kalman filter

In 1960 R. E. Kalman introduced an effective filtering algorithm that is optimal for the

Gaussian noise process. This algorithm solves the conventional Wiener problem combining

two main ideas, the state space representation of dynamical systems and linear filtering

regarded as orthogonal projection in Hilbert space [11]. Also in 1959 R. S. Bucy found

explicit relationships between the optimal weighting functions and the error variances for

an extended version of the Wiener problem. He also provided a rigorous derivation of the

variance equations and those of the optimal filter for a wide class of non-stationary signal

and noise statistics. [12]. Combining the individual approaches in [12] Kalman and Bucy

obtained a major improvement and generalization of the conventional Wiener problem using

time-domain methods, the best linear state estimate and error covariance based on past

data. The two main assumptions were, the process model is sufficiently accurate and given

by a linear time-varying dynamical system excited by white noise, and the system is discrete

or the observed signals contain an additive noise component. [12, 40, 71].

Kalman-Bucy filter techniques incorporate the uncertainty characteristics into the
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calculations using white noise components. As mentioned earlier, this is a two-step proce-

dure, which outputs an estimate of the highest probability state and error covariance. If

the signal and noise are jointly Gaussian, then the KF is an optimal minimum mean square

error estimator and if not it the optimal least minimum mean square error estimator. [71].

In the prediction step, the posterior distribution of the states will be calculated based on

past information. Then in the Correction step, an estimate which minimizes the expectation

of the measurement error under the a posteriori distribution will be calculated. [23].

The KF has been defined for linear systems and for nonlinear systems the KF is

used after using linearization approaches. This modified KF technique is called the EKF.

E.1 The Kalman filter for state estimation in a linear

system

Consider the linear system described in equation (2.2).

xk = Fk−1xk−1 + wk,

zk = Hkxk + vk.

In order to formulate the KF following assumptions are made.

1. Initial state x0 is a random variable with known mean µ0 and covariance of initial

estimation error is P0.

2. Fk−1 and Hk are known at each time step.
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3. wk is a random vector which captures the uncertainties in the model (considered as

process noise).

4. vk is a random vector which denotes the measurement noise.

5. Both vk and wk are white noise processes, zero mean random sequences with known

covariances.

6. Both vk and wk are uncorrelated with x0.

E[wk] = 0 , E[wkw
T
k ] = Qk , E[wkw

T
j ] = 0 ∀ k 6= j,

E[vk] = 0 , E[vkv
T
k ] = Rk , E[vkv

T
j ] = 0 ∀ k 6= j,

E[wkv
T
j ] = 0 ∀ k&j , E[wkx0] = 0 ∀ k , E[vkx0] = 0 ∀ k.

The KF algorithm can be initialized by considering the initial state information. At initial

time step,

x̂0 = E[x0] = µ0

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

Therefore, at time step (k − 1) we have x̂k−1 and Pk−1. The predicted state at time step k

can be calculated as, x̂k|k−1 = Fk−1x̂k−1 the best prediction given the past measurements,
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and the predicted covariance matrix is

Pk|k−1 = E[(xk|k−1 − x̂k|k−1)(xk|k−1 − x̂k|k−1)T ],

= E[(Fk−1xk−1 + wk − Fk−1x̂k−1)(Fk−1xk−1 + wk − Fk−1x̂k−1)T ],

= E[(Fk−1(xk−1 − x̂k−1) + wk)(Fk−1(xk−1 − x̂k−1) + wk)
T ],

= Fk−1E[(xk−1 − x̂k−1)(xk−1 − x̂k−1)T ]FT
k−1 + E[wkw

T
k ],

= Fk−1Pk−1F
T
k−1 + Qk−1.

The prediction step can be summarized as,

x̂k|k−1 = Fk−1x̂k−1,

Pk|k−1 = Fk−1Pk−1F
T
k−1 + Qk−1.

As and when the measurements are available in the time step k the predicted state

can be corrected. Assume that x̂k = x̂k|k−1 + Kkδδδk, where δδδk = zk −Hkx̂k|k−1. To obtain

the covariance of the estimated state, minimize the sum of variances in Pk with respect to

Kk.

Pk = E[(xk − x̂k)(xk − x̂k)
T ],

= E[(xk − (x̂k|k−1 + Kkδδδk))(xk − (x̂k|k−1 + Kkδδδk))
T ],

= E[(xk − (x̂k|k−1 + Kk(zk −Hkx̂k|k−1)))(xk − (x̂k|k−1 + Kk(zk −Hkx̂k|k−1)))T ].
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But zk = Hkxk + vk and

Pk = E[((I −KkHk)(xk − x̂k|k−1) + Kkvk)((I −KkHk)(xk − x̂k|k−1) + Kkvk)
T ],

= (I −KkHk)E[(xk − x̂k|k−1)(xk − x̂k|k−1)T ](I −KkHk)
T + KkE[vkv

T
k ]KT

k ,

= (I −KkHk)Pk|k−1(I −KkHk)
T + KkRkK

T
k , (E.1)

= Pk|k−1 − 2Pk|k−1H
T
kKT

k + Kk(HkPk|k−1H
T
k + Rk)K

T
k .

Minimizing Pk with respect to Kk will yield

∂Pk

∂Kk

= −2Pk|k−1H
T
k + 2Kk(HkPk|k−1H

T
k + Rk).

Therefore,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1.

We can summarize the correction step calculations as,

x̂k = x̂k|k−1 + Kkδδδk,

Pk = (I−KkHk)Pk|k−1,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1,

δδδk = zk −Hkx̂k|k−1.

These two steps, the prediction step and the correction step will be carried out sequentially

for the estimation of states at each time step.
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E.2 The Kalman filter for state estimation in a non-

linear system

Consider the non-linear system given by equations (2.22-2.23),

xk = f(xk−1) + wk, (E.2)

zk = h(xk) + vk, (E.3)

where, functions f(.) and h(.) are assumed to be differentiable functions having continuous

first derivative. Since, the first order non-linearities in the dynamic and the observation

model are continuous, we can expand f(.) and h(.) using Taylor series and neglect the

higher order terms in order to linearize the functions at a given point.

Expanding (E.2) using Taylor series about x̂k−1,

xk = f(x̂k−1) +
∂f(x)

∂x

∣∣∣∣
x=x̂k−1

ek−1 + εprocess(x̂k−1) + wk,

= f(x̂k−1) + Fk−1ek−1 + wk, (E.4)

where Fk−1 =
∂f(x)

∂x

∣∣∣∣
x=x̂k−1

, ek−1 = xk−1 − x̂k−1, and εprocess(x̂k−1) represent the higher

order terms and considered negligible. Taking the expected value of xk given all the previous

observations Zk−1,

E[xk|Zk−1] = E[f(x)|x =x̂k−1
|Zk−1]. (E.5)
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Since E[Fk−1ek−1|Zk−1] = 0 and E[wk|Zk−1] = 0, we have

x̂k|k−1 = f(x̂k−1).

Substituting this result in predicted state error equation,

ek|k−1 = xk|k−1 − x̂k|k−1,

≈ Fk−1ek + wk.

The predicted error covariance is given by,

Pk|k−1 = E[ek|k−1e
T
k|k−1],

= Fk−1Pk−1F
T
k−1 + Qk.

Thus, we have prediction step equations as in linear system.

Using the same argument as above linearize the measurement equation (E.3) about

x̂k|k−1 and neglecting the higher order terms

zk = h(x)|x=x̂k|k−1
+ Hkek|k−1 + vk,

where Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

and ek|k−1 = xk|k−1 − x̂k|k−1. Taking the expected value of zk

given all the observations Zk will yield

ẑk = h(x̂k|k−1),
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as E[Hkek|k−1|Zk] = 0 and E[vk|Zk] = 0. The estimated state can be represented using the

same equation as linear case with this modification,

x̂k = x̂k|k−1 + Kkδδδk,

δδδk = zk − h(x̂k|k−1).

Substituting this result in the error equation ek,

ek = xk − x̂k,

= f(xk−1) + wk − x̂k|k−1 −Kk(zk − h(x̂k|k−1)),

= f(xk−1) + wk − f(x̂k−1)−Kk(h(xk) + vk − h(x̂k|k−1)),

= Fk−1ek−1 + wk −Kk(Hkek + vk),

= Fk−1ek−1 + wk −KkHk(Fk−1ek−1 + wk) + Kkvk,

= (I−KkHk)Fk−1ek−1 + (I−KkHk)wk + Kkvk.

Then the estimated error covariance is given by,

Pk = E[eke
T
k ],

= (I−KkHk)Fk−1Pk−1F
T
k−1(I−KkHk)

T + (I−KkHk)Qk(I−KkHk)
T + KkRKT

k ,

= (I−KkHk)Pk|k−1(I−KkHk)
T + KkRKT

k .

This is same as (E.1) and hence the derivation from here is same as the linear KF. The

prediction and correction step can be summarized as follows.
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Prediction step :

x̂k|k−1 = f(x̂k−1),

Pk|k−1 = Fk−1Pk−1F
T
k−1 + Qk−1,

Fk−1 =
∂f(x)

∂x

∣∣∣∣
x=x̂k−1

.

Correction step:

x̂k = x̂k|k−1 + Kkδδδk,

Pk = (I−KkHk)Pk|k−1,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1,

δδδk = zk − h(x̂k|k−1),

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

.
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