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I AOOOAADOD

Industrial robots used in manufacturing suffer from static friction (stiction) and
backlashin their joints during joint reversals. The dynamic controller response to these
stick-slip and deadband phenomena leads t@rror at the end effector, which is espcially
pronounced and undesirable inprecision applications such aserospace composite drilling.
The tolerance requirements for aerospace components are typicallymaller than 0.2mm,
which is on the boundary of whattypical industrial robots can achieve. During robotic
drilling operations,evensmall errors may result in unacceptable tolerancesFor this reason,
drilling using robots has not been as widely adopted in this sectoMany methods exist to
optimally OOE ££AT A  Qcopedsat® forbrle enGo(p&ell error, or actuate an
independently stabilized drilling tool . But these methods do not address the source of the

error and often do not result in satisfactory performance.

In this thesis, it is shown that by leveraging the functional kinematicredundancy
inherent to drilling, the robot can reduce or even completely eliminate joint reversals while
achieving the same plunge and retract moticnO1T A OEI 1 A ET1 A8 4EA OI O/
redundant work axis is characterized at the start, targetand end positions. The parameter
space is searched using Particle Swarm Optimization to converge on the best combination of
input parameters which minimize reversals. Theproposed methodology is applied to a
KUKA KR 6 R70€ robot with a sampledrilling tool, and the performance is analyzed using
internal joint position and torque measurements as well agool tip position. A reduction in
the envelope of the drilling motion of 40% is observed, and the hysteresis commonly seen in

robotic drilling motions is significantly reduced.



P

AAAT A T £ #1711 O0A1T 00

PN o 1Y 1 = o1 AT
List of Tables

1.1 Background....

1.2 Problem Statemem ..
1.3 Thesis Objectives and Contnbutlons ................................................
Background and Literature ReVIEW ...........oooviiviiiiiiiiieeeeerevvneninninnnnnnennns

2.1 Backlash and Stiction in Industrial Robots...

2.2  Optimization of Robot Pose and Workpiece Placement ...................

2.3 Redundancy Resolution...

2.5 Summary....

Kinematic Modellng and Motlon Plannlng .............................................

3.1 Workspace Definitions...
3.2 Assumptions and Conventlons
3.3 Denavit-Hartenburg Parameter Identlflcatlon

3.4 Forward Kinematics of the KUKA KR 6 RYGQ ...................................................
3.5 Inverse Kinematics of the KUKA KR 6 R7@D.........oouoiniieii e
3.6 Redundancy Resolution in the Drilling MOtIONL............oooviiiiiimmm e

...26

3.7 Summary....

Optimization of Dr|I Ilng Motlon ..............................................................

4.1 Particle Swarm Optimization Algorithm...

4.2  Application of PSO for Minimizing Joint Reversals ...........................

4.3  Objective Function and Optimization Parameters............ccccevvvvieeeees
4.4  Simulation of a Sample Drilling Path................ooiii e
4.5  Performance TUNING........ouuii i e et rmmeeeees e e e e e et e e e emmmnmmmmeeesnnnaa s
4.6  WOrKSPACE MAPPING...ceetturruunnnnssioamaaeaseeeeetin s smmmeems s ees s s smmmmeemssesnnnees
o N e V= L0 11 (= g1 =T ] ] Vo TP

4.8 Summary....

Experimental Valldatlon .........................................................................
5.1 Design of Experlments and Experimental Implementation.................c.vvimmmnnenn.

5.2 Repeatability Studies...
5.3 Experimental Results...

5.5 Discussion of Other Effects..
5.6 Summary....

Conclusion and Future Work ...................................................................
70 R ©X0 1 ¢ [od [ 17 o ] o TP

LISt Of FIQUIES ...t emeeme ettt eememt e e e emmmmme e e
ACKNOWIEAGEMENT ..o eemmma s smmmmme e e e e e e e e e e e e e e e e e e s smmmmme e
INEFOAUCTION et e e e e e e e e rmmmnne e

e 14
S o)
17

....88
................ 90
=90

.................. ii.

................. Vi
Cerrerriireieaa. X..

.................. 5.
ceeeeeeeerreeenans 1...
2.4 LocalandGlobalOptimization.........................................................................._’LZ.
.13

14

109.
19
25

5.4 Alternate Optimization Locatlons ....................................................................... 77...
5.4.1 Workspace Position 200, 400, 600 (POSItion 2).............cuuvvvvuueeas
5.4.2 Workspace Position 200, 200, 1000 (Posmon 3) .........................

77..
83..



B.2  FULUIE WOTK . e et eeme e me e e e e e e

Appendix A
Appendix B
Bibliography



L, EOO 1T £ 4AAT AO

Table 1. Modified DH convention parameters for a KR 6 R7@0.............ccoovvvvviicmceeennnn. 18
Table 2. Standard DH convention parameters fora KR 6 R7@0..................ccc e . 18
Table 3. Summary of PSO parameter values during tuning trials...............cccccccceeeeeen....43
Table 4. Weight scheme used for subsagnt tests...............ccevvviiiiccccceeee e eeeeeeene . D1

Table 5. Map of maximum plunge depth (in mm) still capable of achieving zero reversals on
the X = 500MM PIANE.....oeeiiiii e e eenr s smmmeennns e emeeee DR



, EOO0 T £ &ECO0OAO
Figure 1. Typical 6DOF industrial manipulator robot, the KUKA KR 6 R7@) located atthe

University of Manitoba Intelligent Digital Manufacturing Lab (IDML)..............c.ooiiiiieeeeenn 2
Figure 2. Coordinate systems within the robot workspace;tart, target, and end points of a

sample drilling motion, andther AT C1 A OOAA O1 AAOAOEAA O OAOEIT I

redundant degree of fre@dOM..........oooviiiiiiiiiicce et emmmmmmme e mmmmmmmme e eeee e LD
Figure 3. Frame assignments to a KUKA KR 6 R7B0Oaccording to the modified DH
convention, as well as the TCP offset used for the sample drilling tool.......................... 18

Figure 4. Sample drilling end effector with associated coordinate frame and dimension&2

Figure 5. Visualization of PSO behavior from initial chaotic motion, to searching the
workspace, to finally converging near the global minimum...............cccoo i ieeeeeen e, 28...

Figure 6. Sample visualization of local minimum, global minimum, and poor behavior near
[£=To 0T o) 1] (=T (S SO TRPINN 21 ©

Figure 7. Visualization of particle movement with different weights. A high cognitive factor
G || ) will keep a particle near its personal best, whilea high social factor £ [) will
convince a particle to move to the swarm's best............cccooevivieeeemcciei e .30

Figure 8. Visualization of psi anglevith the sample drilling tool. ... 31

Figure 9. Flow chart of PSO algorithm implemented within the context of minimizing joint
reversalstor a drilling MOTION. ...........uiiii e 30

Figure 10. Location of particles within the PSO algorithm at iterations 0, 10, 25, and 59
Figure 11. Score distribution of 100 particles after 50 iterations of PSO algorithm........ 41

Figure 12. Trial 1 particle convergence and performance.............ooooveeeeeeeeceemcccennneeee A4
Figure 13. Trial 2 particle convergence and performance............ccccccevveeeeeeeemeeeeennnnnn.. 450
Figure 14. Trial 3 particle convergence and performance............ccccceevvceeeeevemeeeeennnnnn. 460
Figure 15. Trial 4 particle convergence and pesfmance............ccooovvveeeeeeeeeeeeecceneeneee L AL
Figure 16. Trial 5 particle convergence and performance............ccccceevvcceeeeeemeeeeevnnnnn L 4800
Figure 17. Trial 6 particle convergence and performance..............cooeeeeeeeeeeeeeecceeneneee . 490
Figure 18. Trial 7 particle convergence and performance............ccooovv v ieeeeeeeevvnnnnnnnenn 50....
Figure 19. Trial 8 particle convergence and performance..............ccoooevieemmmceereceeveeeeennn, 51...
Figure 20. Mapping of maximum plunge depth to &@eve the zercreversal case at

Figure 21. Workspace maps showing a visual representation of the maximum plundepths

still able to achieve zero reversals for planes from X = 100mm to X = 600mm............... 55.

Vi



Figure 22. Workspace map of maximum plunge dép capable of achieving zero reversals
viewed from the underside of the XY plane..............ouviiiiorrccccciiiiececeeeeeeeeeeeeen . DO

Figure 23. Side (XZ) profile of workspace map Wi heights/colors representing the
maximum plunge depth still capable of achieving zero reversals when drilling in the positive
Do 1Yo 1 o TS RUSPPPRRRN - SP

Figure 24. Side (XZ) profile of workspace map at planes X80, 0, and 100, with
heights/colors representing the maximum plunge depth still capable of achieving zero
reversals when drilling in the positive X direction..................uuueiiccccccccveeeeeiiiiiiiiieeeeeeeee .. 08

Figure 25. Location of experimental trial positions within the robot workspace.............. 59

Figure 26. Objective function map at (500, 300, 800) plotted according to start and end psi
angles, with color showing the objective function value achieved.....................ccceeeeeee.. 61

Figure 27. Representation of the objective function with the <parameter +£1.992 [rad].
weeeeee-nn EITOrT Bookmark not defined.

Figure 28. Robot at Position 1 starting location with simple drilling end effector with colored

rectangular prism for rotation visualization..................c.oovvicccceerii e reeeeee ... 661
Figure 29. Joint torque comparison in shorterm repeatability study. ..............ooeeiiiiieeeeed 63
Figure 30. Joint torque comparison in longerm repeatability study.................ccoovvimen.... 69
Figure 31. Robot at POSItioN 1 targel............uueuuuuiicccccceeeeeieviiiinn s smmmmmmmmeeeeennnnnne s smmmmmeed L
Figure 32. Drilling motion of robot at start, target, and end positions...................cccvceeeee il 2

Figure 33. Comparison of joint angles in baselineptimized, and simulated optimized
110} 10 1SRRI 4 S

Figure 34. Visualization of path distance as a function of plunge and retratistance........ 73
Figure 35. Comparison of joint torques in the baseline and optimized motions............. 74.

Figure 36. Horizontal and vertical profile comparison of TCP position between baseline and
optimized MOtioNS at POSItION L.........cccooviiiiiiiiicceemcccece e e emmmeeee e e e e e smmneenneee e e D)

Figure 37. Comparison of contour error from mean in the baseline and optimized case86

Figure 38. Robot at Position 2 target, [200,400,600]............cccuvvrrrimmmmmeeeeeeeeeeiienninnnneaad 8
Figure 39. Position 2 joint angles fothe baseline and optimized motions........................ 79...
Figure 40. Position 2 joint torque for the baseline and optimized motions...................... 8aQ...

Figure 41. Position 2 TCP cartesian position throughout baseline and optimized motio8&.

Figure 42. Robot at Position 3, [200, 200, 100Q].........ccceviiiiiriimmmmmmmmreeeeeeeeeeeeevieeeeeeeee .. O4
Figure 43.Position 3 joint angles for the baseline and optimized motions...................... 85....
Figure 44. Position 3 joint torque for baseline and optimized Motins..............ccooeeevevieeees 86

Vil



Figure 45. Position 3 TCP cartesian position throughout baseline and optimized motio83.

Nomenclature
Symbols

® DH parameter of joint i, angle

0 Boolean, fault detected in joint history

0 Boolean, jump detected in joint history

Boolean, joint limit detected in joint history
Compliance matrix

Cosine of angle—

Translational component of the compliance matrix
DH parameter of joint i, offset

Plunge depth

Wrist position in GCSoordinates

End effector height

End effector length

Objective function

Jacobian matrix

Compliance condition number

Stiffness of joint—

Joint stiffness matrix

Number of steps

Number of particles

Number of reversals in a drilling motion

Point in GCS coordinates

X, Y, or Z coordinate of wrist

Random value between 0 and 1 in particle velocity expression
Plunge depth lower boundary

Plungedepth upper boundary

Random value between 0 and 1 in particle velocity expression
Sin of angle—

Homogenous transformation matrix from i to j

Particle velocity in parameter space
Plunge vector

Retract vector
Drilling motion vector

Inertial weight in particle velocity expression
Social factor (Global Best) in particle velocity expression

Cognitive factor (Personal Best) in particle velocity expression

Oz

A

oo} ,="9880 O S+

=
o

b
G

viii



W Weight ofreversals in objective function
W Weight of joint travel in objective function
L Particle position in parameter space
| DH parameter of jointi, length
T Relative difference for stopping criterion
1 Distance along drilling path
= End effector displacement
— DH parameter of joint i, joint angle
— Total joint travel
%o — wTmJd
r Twist about®  at point i
F Setof R h for some motion
Fo Optimal set of psi angles for some motion
Acronyms
APO.CDIS Approximate Positioningz Cartesian Distance
CAD Computer Aided Design
CNC Computer Numerical Control
DH Denavit-Hartenberg
DOF Degreds) Of Freedom
FK Forward Kinematics
GA Genetic Algorithm
GCS Global Coordinate System
IDML Intelligent Digital Manufacturing Laboratory
IK Inverse Kinematics
KRL KUKA Robot Language
LHS Left Hand Side
PLA Polylactic Acid
PSO Particle Swarm Optimization
PTP Point-To-Point
RHS Right Hand Side
RPM RevolutionsPer Minute
RRT Rapidly Exploring Random Tree
RSI Robot Sensor Interface
SRC Source File
Stiction Static Friction
TCP Tool Center Point
TCS Tool Coordinate System



I AET T xI AACAT AT O
| would like to thank Dr. Matt Khoshdarregi, without whom | would have never
discovered a passion for robotics research. His impeccable work ethic and push for

excellence elevates everyone who has the fortune of calling him an instructor, research

advisor, or friend.

A well-deserved gratitude is due to all of my friends at the Intégent Digital
Manufacturing Lab. Both to those who have patientltaught me, and to those whose probing
guestions cause me to reflect and reassess what | know. Thank ytouall who have built me

up, andto all who kept me grounded.

This research wadinancially supported by theMITACS Entrepreneurship Accelerate
program as well as Natural Sciences and Engineering Research Council (NSERC) of Canada.

Their support ensures students of all stripes have a chance to thrive.

Finally, the most heartfelt appreciation must be extended to my wif&he is steadfast
in her support, optimistic in all her outlooks, and caring in every capacityt is my privilege

to have her by my side in the life we share together.



Chapterl | Introduction

1 Introduction

Industrial robots which perform machining operations suffer from a relatively low
stiffness arising from their structure and internal mechanisms. During drilling specifically,
the motion commands typically executed will cause all joints tetart moving in one direction
then reverse, passing through thestiction region. This in turn excites controller dynamics
andincreases error at the end effector, resulting in &hole which can be off center, oblong, or
have delamination at the edgesWhile research has been done to mitigate the effects that
these errors hawe by increasing the stiffness of the robot, this thesis proposes to avoid the
cause altogether. This is accomplishedsingthe O 1 A TreQuhdnt degree of freedomwith
the drilling tool, and by optimally selectingtool orientations throughout the drilling motion

to accomplish the same task while minimizing individual joint reversals.

Section 1.1 introduces background knowledge related to industrial robots and
machining. Sectionl.2 discusesthe specific problens faced by drilling robots. Section1.3

outlinesthe solution to this problem and the contributions of this thesis to the field.
1.1 Background

Industrial robots are typified by six degree of freedom (DOF) manipulators
comprising revolute or linear axes in a serial kinematic configuration,uch as the one shown
in Figure 1. These robotic arms mimic the functionality of the human arm, and similar
terminology can be applied. The first two joints(starting from the base) constitute the
OOEI 01 AAO6h KEEODAEOEAOOEEBAOEKEA xEOE OEA OAI Al
control the overall position of the robot in its workspace. The last three joints form the
OxOEOO6 xEEAE Al 1 0011 O EEdchof tbdsejdinGik drivek by AT A 1
servo motor coupled to areduction gearbox which can turn some finite amount in either
direction before hitting a mechanical joint limit. The end of the last link of the robot is called
the flange where different tools can be mounted depending on the desiredperation. These
toolsare OUDEAAT 1 U AAT T OL6Ahe pdint b hierdst oh BeEhd @i the
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operation (e.g.the tip of a spindle, the nozzle of a glue gun) is called the Tool Centre Point
(TCP).

Figure 1. Typical 6DOFindustrial manipulator robot, the KUKAKR 6 R7002, located at
the University of Manitoba Intelligent Digital Manufacturing Lab (IDML)

Industrial manipulation robots were initially purposed for pick and place applications
within the manufacturing industry. This required the robot to simply pick up pars from a
known location and movethem to another. However, thanks to their flexibility and cost
effectiveness, theyhave beenadapted to further roles including welding, gluing, inspection,
and most significantly for this thesis, material removal1].

Machining with robots, be it milling, drilling, or other material removal techniques,

has advantages and disadvantages when compared to traditional CNC machining. For their
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cost, industrial robots can operate on a much largexorkpiece since they are placed atome
point and canreach around, rather than needing to fully enclose thavorkpiece like a CNC
machine. The structure of a robot is also much more compact than other machines, allowing
them to be placed in difficult locations or orientations, or bunched tgether in close
proximity. The most significant disadvantagecompared to CNC machineshowever, is their
reducedoverall stiffness[2]. Since they have a serial kinematic configuration, the location of
each joint is dependent on the angle of the previous joints. This means that even a small
deviation at the base of the robot will propagate through theentire structure to result in a
large error at the TCPReduced joint stiffness especially pronounced when excitethy large
forces or controller dynamics, has limited the application of robots in certain industries
most notably aerospace and precision maufacturing. The tight tolerances mean thatobots
are not quite able to achieve the required results. However, witthrilling upwards of a million
holes in a commercial aircraft, the adoption of robots in these sectocould be significantly
increased Beddes improving the stiffness of a robotidentifying and correcting the source

of errors could lead to improved performanceand more widespread adoptionof robots.
1.2 Problem Statement

As automation in the manufacturing sector increases, robots are being called upon to
perform a wider variety of tasks beyond pick and place. Namely material removal tasks such
as milling and drilling have become more popular in recent years. However, thériagent
tolerance requirements of certain industries, especially aerospace, precludes robots from
being more widely adopted in these applications. The most significant barriers are the low
OOEAAI AOGO AT A POT PACAOET T 1 &£ ickkab)s0that dvenlal C A
relatively small deviation at the base joint of the robot results in unacceptably high error at
the end effector. A major source of these joint errors is brought on by static friction and
backlash during joint reversals. This is gzecially prevalent in drilling motions since the
typically programmed instructions will linearly translate the end effector with no change in
orientation of the end effector These commands cause all joints to reverse once the target

depth has been reachedSince the joints must brealstiction and experience backlasteach
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time they reverse, there is a sudden inconsistency in the force profile demanded of the
motors at this point. The controller responsein turn causes deviation at the end effectqr
exacerbaed by the poor overall stiffness of industrial robots when compared to other
machining platforms. Toperform more precise drilling, theerrors associated withthese joint

reversals must be mitigated or avoided.
1.3 Thesis Objectives and Contributions

In this research, theproposed solution to the problem statementis to avoid joint
reversals altogether during the drilling motion. A rotating spindle is usedduring drilling ,
creating aredundant DOF whichallows for infinite possible tool orientations at any int in
the path. Leveraging this kinematic redundancy allows for additional possible end effector
rotation throughout the drilling motion while still drilling in the same location. Particle
Swarm Optimization (PSO)is used to select the best orientationghroughout the drilling
motion with the global objective of minimizing joint reversals.A standard drilling motion
would require all six joints to reverse as the drill bit is removed from the workpiece.
However, strategically picking the orientation of thetool at the start, target, and end points
of the drilling motion will allow the robot to accomplish a drilling task with fewer or even
zero reversals.This does not inherently add stiffness to the robot or change the dynamic
properties, but rather avoidsthe phenomena which lead to forces that excite dynamic errors
in the robot. While stiffness(and many other metrics)could also be included as optimization
goals the objective of this thesis isto demonstrate that the principle of joint reversal
avoidanceis applicable to typical industrialmanipulator robots. The proposedmethodology
allows a robot integrator to find, for arbitrary drilling motions, some rotation about the
redundant degree of freedom which can belanned throughout the motion to reduce jant
reversals. The implementation and implications of this strategy are also explored, showing
a significant improvement in the precision of the drilling motion.The ability of the robot to

achieve a zerereversal drilling profile throughout the workspace is also explored.
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2 Background and Literature Review

This chapter reviewsthe core afflictions causing robotic machining errors and the
different approaches that researchers have proposed to address such errofSection2.1
reviews the detrimental effects of backlash and friction in industrial robots. Sectior2.2
discusses the optimization of robot pose and workpiece placementor enhanced stiffness
and accuracy.Section 2.3 reviews the methods researchershave used to leveragean
additional DOF tofurther optimize for a range of criteria.Section2.4 discussesoptimization

constraints andmethods to highlight the most suitableapproachfor drilling .
2.1 Backlash and Stiction in Industrial Robots

Static fiction, or stiction, represents the resistance that must be overcome to begin
motion of a body at rest against a surface. Once moving, this resistance to motion will sharply
decrease, then follow dinear change as a function of the relative velocity. limndustrial
robots, stiction is encountered when starting the movement of joints from rest, or when
joints reverse and momentarily have an angular velocity of zero. In both cases, the rapidly
changing resistance causes overshoaind undershootof the demancded torque to execute
the desired motion.This, along with backlashgcauses eccentricity or glitches in the motion
at locations corresponding to joint reversalsasdocumented byOh[3]. Backlash was found
to be a significant contribution to the overall error of a robot, along with overall joint

compliance, according to Schneider et 4] .

Friction is notoriously difficult to model [5] . If the friction profile throughout amotion
can be predictedaccurately, the controller may be able to compensatthe resultant errors.
This has been attempted in two ways. The first is to execute the desired motion and record
the positional error, then offseteach point inthe motion path according to this errorin the
opposite direction [6] . While this can significantly improve the accuracy of a robat,is a not
practical approach as it requires extensive measements and trials for any desired path. In

addition, these measurements must be repeated often to account for variations due to
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changes in temperature, lubrication, and wear conditionslhe second methodor mitigating
friction errors is to use an analytial model to predict and compensate such errorg-riction
identification algorithms are run on the robot to identify the friction behaviourin each joint,
then when a new motion isexecuted,the controller will adjust the commanded torque to
better overcomeregions of expected high friction[7]. While the above-mentioned methods
can reduce the errors to some extent, they fail to reliably compensate friction errors in
general arbitrary motions. This is mainly due to the complexity, nonlinearity and
inconsistency of friction. Fiction compensation methods are still highly dependent on the
trajectory and specific task being performed8]. There are alarge number offactors that
affect friction, such as lubrication composition, particulates in the lubricants, wear in
mechanical connections, temperature of all parts in contact, and material propertieBven if
perfectly predicted and compensated friction is not the only cause of error during joint

reversals, and backlash still causes significant problems.

Backlash refers to the space between internal meshingpmponents which must be
eliminated for mating to occur. In a case where a gear must switch direction, its teeth will
not be perfectly meshed with the other gear at the moment of reversal and must traverse
some short distance beforemating begins again. This causes a jerk in theutput motion
which again leads to error at the robot end effector. Many robots ar@eow being designed
with harmonic gear drives, which due to their design can achieve zero or very low backlash
However, not all joints on all robots use this system, with larger robots and certaiint
geometries favoring planetary gear systems or a belt drive. Moreover, additional joint and
metrology components can suffer from wear and assembly errors which wilintroduce
backlash even in an ideal gear drive. Again, techniques have been implemented to anticipate
and compensate for these errors, but as of yet stitannot completely eliminate them.
Because of this, researchers have tried to improve performance ritugh other means,

namely optimization of the robotposeand workpiece placement
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2.2 Optimization of Robot Pose and Workpiece Placement

Industrial robots are laudedfor their adaptability and working range. Asingle robot
can perform multiple operations within awork cell. This also means that when selecting the
placement of a part to be operated on, integrators will typically have a wide array of options
for the placement and orientation of the workpiece within the reach of the robot.everaging
this, reseaichers have proposed techniques to strategically select the best placement of the
workpiece relative to the robot such that performance is enhanceff][10]. This can be, in
the case of drilling operations, for the stiffest overall posture of the robot. The stiffness can
be quantified for any posesimilarly to the dexterity, then the part placed such that any holes
which need to be drilled can be done so wdn the robot is in a relatively stiff posture[11]
[12].This reduces the error caused by mdtning forces, inertial forces, as well as the glitches
introduced by stiction and backlash.The compliance condition number is commonly used
for the inclusion of stiffness as a metric in optimizationhowever there are others which are
preferred depending on the operation[13][14]. While this has the advantageof stiffening
the entire system, thereby reducing the effects of many errors, it does not address the cause

of these errors, only the symptoms.

Optimization of the workpiece placement has also been explorefr operations such
as milling [15]. The stiffness and natural frequenciesof the robot change asa function of
pose, but can be predicted[16] . Optimal workpiece placementcan be selectedo ensure the

robot flexibilities do not contribute to chatter or other undesirable machining harmonics.

Common to bothmilling and drilling operations is a rotating tool whichis mounted
on a spindle at the end effector. Since the exact rotation angle of the tool does not affect the
motion planning, general robotic machining operations require onlyive degrees of freedom
Performing machining operations with commonsix-axis industrial robots introduces a
redundant degree of freedomwhich can be leveraged fofurther optimization of the process.
While well documented inthe literature, this is not something always exploredn industry.
When robots are utilized for machining applications, the initial programming is still carried

out by a human operator. Typically, the robot will be jogged to some position, then a linear
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translation forward then backwards will be commanded. Sametimes, more advanced

software is used which is capable of integrating CAD data into robot work instructions and

AAT Al1iTx A OOAO O CATAOAOGA A OilT1DAOE AAOA/
these methods suffer from the preconceptions and lim#tions in imagination of the
programmer. For a simple drilling motion, the intuitive approach is to maintain the drill in

the same orientation and with the robot at some upright posture. But thanks to the

redundant degree of freedom, this is not necessary evaluating different tool orientations

similarly to how posture stiffness optimization is done,performance differences in the

drilling motion arise and the best can be selected.
2.3 Redundancy Resolution

When the number of degrees of freedom of a kinematic chain is greater than the
degrees of freedom which need to be defined in the workspace, the kinematics are said to be
redundant. The inverse kinematics for a typical six axis robot inhree-dimensional space
require all six degrees of freedom (X, Y, Z, A, B, C) to be defiflad.under certain conditions,
one or more of these degrees of freedom is undefine@his can be the case when an arm is
designed with additional degrees of freedom intentionally to Bow greater flexibility (such
as the KUKA iiwa), or elséor six-axis industrial robots, when the axisymmetric performance
of atool about its work axiscreates theambiguity . For example, anarker will draw the same
line despite any rotation about its Iogitudinal axis. In the same way, mce a drill bit will
rotate during normal operation, there will be no kinematic impact on the operation being
DbAO&I Oi AA AOA OiF OEA O1171860 OI OAOETT AAIT OO ¢
properly calibrated). In both cases, some redundancy resolution technique is required to
decide on theorientation to take, andfully define the inverse kinematics at a given position.
Broadly, redundancy resolution is defining the null space of the robot such that a secondary
task is executed while also executing the primary task (moving the end effector in some way).
Since robot properties can vary dramatically with pose, it follows that resolving the
redundancy can be done strategically to obtain desirable outcomesnuch like the

optimization of workpiece placement
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In early redundancy resolution literature, the focus was on utilizing the weighted
pseudoinverse Jacobian to select the joint velocities at any incremental time step which
would have some beneficial effect on amptimization criterion while still fulfilling the
desired translation of the end effectof17]. This method still sees use in applications where
the redundancyis described asdistributing individual joint motion in the null space [18],
however requires a starting configurationand is not always the most suitable approach
when the system is functionally, rather than intrinsically redundant This technique has the
systembegan from a definedposition and tasked with moving a specifieddistance in some
direction. Snce the instructions do not fully define the final position (or if the robot was
operating in a lower dimensional space than its own degrees of freedom), the robot could
accomplish the task in an infinite number of ways.But by quantifying the overall
performance of the robot with respect to the motion of each jointthe robot could decide on
a method of attaining the new position by the motion of joints whichprovide the best
increase in performance. The most common criterionfor this performance was (and still is
often used alongside other metricspvoiding joint singularities, such as if19]. Singularities
are described in detailby Aboaf and Pau[20], but in generalcan be thought of as multiple
joints (such as joints 4 and 6 in the wrist) aligning in such a way as to make a small end
effector movement require excessive joint motion.A characteristic of singularities is
impossibly high joint velocities (imagine flipping your wrist from a thumbs down to a
thumbs up position instantaneously) and so configurations aimed to minimize the joint
velocities. As secondary criteria, joint or acceleration limits couldlsobe included to ensure
the robot avoided moving any joint near to the angular limits imposed by hardware
limitations or to reduce torque demands[21]. The main disadvantage with this technique,
however, is that it is a local optimization method which only considers the benefits at one
time step ahead of the currenposition. This makes it susceptible to being trapped at local
minima. Always taking a step downhill does not necessarily help you descend a mountain if
you are in the crater of a volcand-or the goal of minimizing reversals throughout the entire

path, a gobal approach must be taken.
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Techniques such as a Rapidly Expanding Random Tr@RT) have been explored to
efficiently search theclosest localoptions to achieve global convergencg22]. However, in
the case of robot manipulators,it often suffers from the computtional requirements
necessary for calculating the pseuddinverse Jacobian which becomes increasingly complex
as additional degrees of freedom are added tbe robot. Furthermore, it is important to make
the distinction between intrinsic and functional redundancy[23]. Anintrinsically redundant
manipulator has more degrees of freedom thacould ever be defined by the space it is iy
for example, a 4 joint planar arm in 2D space, or a 7DOF manipulator in 3D space.
Functionally redundant manipulatocO O A OA OET OA xEEAE AOA OAOOEE
they have a number of degrees of freedom which could be fully defined by their work
dimension but the operation to be executed does not define onea eore of them. This is the
case when drillingin the physical worldwith a 6DOF manipulatorsince the drill bit is already
rotating. When functional, rather than intrinsic, redundancy must be resolved, the Jacobian
becomes nonsingular squarewhich is unsolvable without the use of artificial additions to

resolve thediscrepancies|[24].

Even assuming that the weighted pseudoverse Jacobian could be efficiently
calculated for thefunctionally redundant case at hand and characterized in a meaningful way
throughout the entire path simultaneously, the optimization criteria becomes another
barrier. The optimization criteria, as has beendiscussed, is to avoid joint reversals.
Mathematically, the metric to avoid joint reversals is to apply the limitation that no joint
velocities can equalzero, since slowing to a halt then accelerating from that point would
physically represent a joint faling into the static friction region, with or without a reversal.
Besides the difficulties in setting aninequality constraint through the entire set of
differential equations according to traditional intrinsic redundancy resolution, there are
further mathematical issueslf the constraint is set to maximize the absolute joint velocity
(thereby avoiding joint velocities of zero) this comes in direct conflict with the singularity
avoidance criterion of minimizing absolute joint velocity.Optimizing in this way would push
the robot into a singular position, and while the kinematic path may be valid, it would fail

upon implementation onto a physical robot.Objective functions exist which can moderate
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joint speed between two extremes. However, the upper limitsra variable depending on the

robot, geometry, and specific jointincreasing the complexity of the problem.

In light of all these difficulties, it becomes more straightforwardand efficient to
simply apply a metaheuristic optimization technique to a large number of fully resolved
potential configurations for a given path, then select the best of all the optionsThis is
fundamentally different and should not be confused with the approach detailed by Rokbani
[25], wherein the inverse kinematics themselves are unknown, and solved using a PSO
algorithm. The research presented in this thesis haastead deterministically calculated the
inverse kinematics at any point, but usemetaheuristics to select a globally optimakolution

of inverse kinematicswhich achieve the path motion.

Sudies havealready applied metaheuristic optimization techniques to evaluate and
select the bespossible tool orientation for a given taskaccording to some metris[26] . Now,
beyond just optimizing the positioning of the workpiece within the workspace, the rotation
of the tool about its redundant axis can be included as an additional optimization parameter.
Or, for scenarios where the workpiece must be fixechia certain position relative to the

robot, there still exists a parameter which can be optimized.

However, the studies which take advantage of this additional degree of freedom

typically do so only at one positiorrelative to the workpiece. Some rotationis applied, then

the motion is executed as normalMost (but not all) of these studies focus on optimizing

some aspect of the dynamic propertie®f a robot armat a single point, usually the target.

This is entirely valid, since hese propertieswill change throughoutthe robot workspace,but

there is usually not a significant change throughout the relatively short drilling motionFor

the case of drilling, this means thatth®© 1 TAT6GAOET T AAT OO BeEoAsta@dl 11 8 O
throughout the motion. But these are local optimization methodsthe ideal case for a single

point, and there are relatively few cases of this optimization being applied globaltg a whole

pathh AT A TTTA O OEA AOOET 060 ETT xI AACA 1T £ Al
criterion. In this thesis, it is shown that by taking aglobal optimization approach which

considers the rotation about the redundant degree of freedom at several points through a

11
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motion, the additional optimization criteria of reversal minimization can be appied to
further improve the performance. The optimization methods have been well described and
commonly used for similar tasks in literature. However, the author acknowledges thahé
fields of path planning, optimization and redundancy resolution are extesive, and there

may exist differentmethods for optimizing the task presented.
2.4 Local and Global Optimization

Optimization is a broad topic, and the ideal method to optimize some tasks is highly
dependent on the task itself. The task presented here requisethat the entire motion be
optimized. This implies that the search method used will be global, rather than local. In local
searches, only the next step is considered, and there is a movement in the direction which,
at the current point, leads to the mostesirable score. However, this method is susceptible
to being trapped at local minima. Additionally, these search methods require a continuous
function to evaluate as the objective. This poses a problem in cases when the function should
switch cases or a gscontinuity is imposed (such as with joint limits).Global search methods,
on the other hand, are much more applicable ttasks which require the evaluation of some
combination of input parameters to find the best candidate. In this case, since the
performance of the entire pathis evaluatedsimultaneously, some overall scorés assigned
to the set of parameters which vyield that specific path. By looking at the entire path
holistically, further refinement can be imposed than would be possible for an algorithm

which only evaluates some set of joint positions or velocities.

For example,assumethat some combination of joint velocities is perfectly valid
during the plunging motion solong as they continue to all move in the same direction during
the retract motion. However, that same combination of joint velocities may no longr be
desirable (and therefore should get a worse score) if they require that one or more of the
joints switch direction once the target is reachedA local method cannot look ahead to see
the future implications of a current decision, and so only a statiscore for that combination
of joint velocities can be definedSome method is required to refine the score beyond simply

a function of instantaneous joint angle®r velocities. Sq the method selected must evaluate

12
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the full path, andtherefore must have ®me method to generate a fully defined path from a
combination of input parameters. With this knowledge, it can be seen that this is not a
redundancy resolution technique which aims to specify the inverse kinematics at each point.
Rather, it is a method fo selecting the best way to fully define a functionally redundant path

to achieve some additional goal besides the desired tool path.

These requirements fit the description of a metaheuristic optimization technique.
That is, one which is combinatorial, cheking a set of input parameters then refining the
subsequent selection of parameters to achieve better results. After enough iterations and
with some robust strategy for finding better input parameters, the technique can be
reasonably confident in achievig the goal.Many of these metaheuristic techniques and
variations upon them exist, but PSO was selected for its robustness, efficiency, and ease of
implementation [27][28]. Further details on PSO and comparisons to other metaheuristics

are provided in Sectiord.1.
2.5 Summary

Robotic machining has been plagued by the errors in industrial robots, in part excited
by stiction and backlash during joint reversals. With the additional DOF afforded during
milling and drilling, researchers have optimized thepositioning of the workpiece as well as
the posture of the robot to stiffen the system as much as possibl€his optimization can be
done in a number of ways, but especiallyell-suited for the defined problem is a
metaheuristic optimization technique. This thesis will demonstratethe application of PSO
with the goal of minimizing joint reversals during a drilling motionto avoid their negative

effectsaltogether and as a result improve performance.
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3 Kinematic Modeling and Motion Planning

This chapter derives the mathematical model afobotic drilling motions as a function
of robot kinematics and path parametersSectiors 3.1 and 3.2 define necessary terminology
and assumptions about the robot and workspaceMost industrial robots are comprised of
six revolute joints, and so therotation of each joint propagates throughout the robot until
the final position of the end effector.Kinematically modeling this propagationis done
according to the Denavit-Hartenburg (DH) convention in Section3.3. Likewise, to achieve
some point in spacethe kinematic chain which positions the end effector at the desired
position and orientation must be solved These are the forward(Section 3.4) and inverse
(Section3.5) kinematics of the robot, in this case a KUKA KR 6 R7Q0However, the drilling
motion having a redundant degree of freedom renders itunderdefined. Section 3.6

demonstrates how to resolve a single solution from the infinite options available.

The kinemaic methodology described in Sectior8.3z 3.5is well understood and not
a novel contribution. However, no sufficiently similar model which could be adapted to the
robot in question was found, and so a new model was developed. This is application of
textbook methods to a new platform, and shown here in the hopes that it can be useful to

other researchers using a similar robot.
3.1 Workspace Definitions

Figure 2 showsa schematic of the siaxis KUKA KR6 R70@ robot used in this study.
The origin of the global coordinate system (GCS) is positioned coincident with the origin of
the robot such that® W W rtwith the front of the robot oriented along the
positive @  axis, @ aligned vertically and towards the top of the robot, and®
positioned according tothe right-hand convention as shown irFigure 2. Point coordinates

are given in the GCS agdthd  hwith units of millimeters (mm) throughout this thesis.
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Global Z Position [mm]

Figure 2. Coordinate systems within the robot workspace ; start, target, and end points
of a sample drilling motion, and the + angle used to describe rotation about the
AOEI 1T ET ¢ OPET Al A6O OAAOI AAT O AACOAA

For any drilling motion, 3 points must be defined: the start of the motion, the target
and the end of the motion. These are labeled-h|F A T | respectively and are composed
of the X, Y, and Z coordinates at each point The drilling motion consists of two distinct
motions called the plunge and retract. The plunge denotes movement froﬂq,to ||—<and the
retract denotes movement from || ¢to ||, These motions are defined by plunge and retract

vectors,r| and 1, respectively such that
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™ (3.1)

Qe €
e €

T ”’4 ”’v

and a complete drilling motion consisting of a plungdollowed by aretract is denoted_, ,.

The orientation of the drill is partially defined by fr_which points from |Fyto |F<In
OEEO AAOAKh OEA®Ohddis@lgnes Such Ehat Aagatic@ mBtion along
corresponds to the drill plunging into the material. The ambigaus orientation about® s
the redundant degree of freedomand is labelled ag with an arbitrary definition of [ 11J
when® AT @& are paralleland positive in the same directioras shown inFigure 2. This
aligns the GCS with the TCHBicely for this case of drilling direction. However, for drilling in
any general direction,/, 1T Jnay be designated as the tool orientation which brings the
robot flange closest to the robot base. If a workpiece is being drilled,itay be more helpful
to alignT 1 Jvith some axis of the workpiece coordinate systemin any case, psitive
rotation about @ according to theright-hand rule corresponds to an increase in . A set

of angles which consists of some at each of the start, target, and end pointis denoted as

T T T 8 (32)

This + fully defines the orientation at each of the three points, andy linear interpolation

the orientation at all intermediate points.
3.2 Assumptions and Conventions

The methodology laid out in this thesis is trajectory agnostic; that is, the same results
can be applied regardless of the velocity profile used in the movement of the robot. Since the
velocity profile of a robot is not always known or there s some delay between reatime
sensing and compensationit is not always practical to create methods which rely on precise
timing of a path.The robot controller is responsible for planning the trajectory and following

the ideal input from the programmed instructions. As such, there will be some discrepancy
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between the joint paths caused by theontroller dynamic response, but these are assumed

not to induce any additional reversals (Sectio®.3 verifies this assumption).

The plunge direction for all simulations and experiments was chosen a®
phrtv for visualization purposes However,the proposed methodology isgeneral and

can be appliedo more complexplunge motions which include translation in all the GCS axes.

The performance of tre proposedmethod and ability to achievezero reversalswas
assumed to be symmetrical about thé dplane. This was verified with simulationin Section
4.6, however only to an extent due to the nature of numerical optimization reaching a
minimum. For subsequent mapping of workspace performance, the results were obteid

on one side o  only.

Unless otherwise stated, all units of distance are in the industry standard of
millimeters. Units of angular displacement are in degrees. In all cases, the righdnd rule
applies as the convention when determining frame lacements, which is especially relevant

when identifying the locations and orientatiors of frames for finding DH parameters.
3.3 Denavit -Hartenburg Parameter Identification

The KR 6 R7002 was a new addition to the IDMLat the time of the research being
carried out for this thesis. The kinematics for this robot were not publicly available but were
necessary for the optimization model to examine valid robot pathsffline. Therefore, the
forward and inverse kinematic models were fully derived, troubleshot, anddsted, and will
serve as a resource for future students to carry out kinematic examination of the robot.
Schematics and 3D models of the KR 6 R7Q0are publicly available from KUKAand were
used to assign framsto eachaxisof the robot according to themodified DH convention[29].
The neutral position assumed the robot fully extended horizontally, as shown irFigure 3.
However, the defaultcontroller home position of the KR 6 R702 is with shoulder upright
and the elbow bent atw 1, Jorming a shaped robot posture Table 1 shows the four DH

parameters| , a, d, and—which were found for each of thesix joints.
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Figure 3. Frame assignments to a KUKA KR 6 R70& according to the modified DH
convention, as well as the TCP offset used for the sample drilling tool.

Table 1. Modified DH convention parameters for a KR 6 R700-2.

Joint  Ji1(deg) ai-i(mm) di(mm) [i(deg)

1 180 0 -400 0
2 90 25 0 0
3 0 335 0 -90
4 90 25 -365 0
5 -90 0 0 0
6 90 0 -90 0

I AAEOET T A1 1 Uh A& O OEOOAI EUAOEitsToolbog3@,EA OT A

parameterswere found according to the standardDH convention, and aregivenin Table 2.

Table 2. Standard DH convention parameters for a KR 6 R7002.

Link  [i(deg) di (mm) ai(mm) Ji(deg)

1 0 0 25 90
2 0 0 335 180
3 -90 0 -25 90
4 0 -365 0 90
5 0 0 0 -90
6 180 -90 0 0
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3.4 Forward Kinematics of the KUKA KR 6 R700 -2

Forward kinematics (FK) translate known joint angles to an end effector position and
orientation. Following the DH convention, the FKs can be found by successively multiplying
transform matrices from the base of the robot to the end effector. The resultant matrix has
as unknowns—h—8 h—. The transform matrix associated with the mDH, representinthe

rotation and translation

Al © OE+ Tt ) (3.3)
. OEFLAI IO Ai©6AIIO o=l oY l=1
- 6EL O8I Ai 6081 AT 0 QAT O
Tt Tt TT p

which, when applied for each set of DH parameters yieldbe transformation matrices

Jhdlrdh4h4PAT Al. The product of all these matrices creates the matrix

4

1 3

b4 s (39
which describes the transformation from the base to the flange as a function of the DH
parameters. One additional transformation is usually necessary for practical application@u
relating the geometry of the end effector. The matrid@d| 4 | then gives the position

and orientation of the TCP in the global coordinate frame.

To verify this against the physical robot, the robot was jogged to some ndrivial
poseand the joint angles along with TCP position recorded. When the associated joamigles

were input into ™|, the TCP coordinates agreed.
3.5 Inverse Kinematics of the KUKA KR 6 R700 -2

The inverse kinematics are analytical solutions to the problem which requires the
robot end effector to attain some desired position and orientationThe processes followed
in this section are common for a 6DOF spherical wrist robot, however the equations

presented aresimplified, and not generalized for any robot The equations are derived by
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following the process of successive premultiplication but are uque to the specific

arrangement of axis frames assigned according to the DH conventio

Typically, the inverse kinematics for a spherical wrist robatsuch as the one analyzed
will result in 8 sets of discrete joint angle solutionsarising from the use of dual solution
identities (A.1) to (A.7) shown in Appendix A These cargenerally be categorized as elbow
up or down, elbow left or right, and wrist normal or flipped. Not all solutions are necessarily
feasible in the physical robot due toqint limits, however at this step no solutions are

immediately discarded.

The functions @ £ dndi "Quill be abbreviated asc and srespectively. The subscripti
represents the associated— For example,i denotesO E-- — . To align the frame of
joint 3 with the zero-position marked on the physical robot, an offset ab mwas addedsuch

that %0 — o 1 JThroughoutthis section%. is used for brevity.

An expression relating the end effector position and orientation to each jjat angle
can be found by simply multiplying the forward kinematic transformation matrices
1 4 8 4 and taking the inverse However, this becomegxtremely complicated to
solve analytically for a general case Instead, by taking advantage ofhe spherical wrist
nature of the robot, the problem can be broken into two parts: position and orientation. The
position componentis solved with —h—hA T % while the orientation componentis solved
by —h—PA T A

First, from a known target position and orientation in the workspace ||-
® hd hd ,the location of the wrist can be obtained as a function of the geometry of
the wrist and the end effector Therelative displacementfrom the TCP to the pherical wrist

intersection is constant and known based on the geometry of the end effector.

Thewrist position, or O , are the cartesian coordinates of the intersection of the axes

of joints 4, 5, and 6 in the global coordinate systerithis is denoted &
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| (35)
, n
O A 8
P

From the forward kinematics, this point can be representedasthe translational component

(last, fourth column) of "Y Y

(3.6)
YTy Y
AT & 0ATH — QOE%% — oAl S
OEf & ®AT® — QOB — oATS 4.
»OE%% — &OE+

Q QA% —
p

Then, the technique of successive prmultiplication can be used to increase the number of

available equations. Both"YA T '@ are multiplied by Y , or “Y The first step yields

v T v 7 T \ ’ (37)
0w ow Qi 0w n w n |l
Y'Y oY mn B o N O 8
@i QO Qi Q n
P P
The following pre-multiplication is done with Y |, or "Yto obtain
. R U (38)
O 0w Qi Qi ww n I n ow n o
v Wi Qw Qw N w wi N ol n ii O
L1 n o n i
P P

And finally, pre-multiplying both sides by “Y gives
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These steps provide sufficient equations to solve for-h—hA T %. To solve—h—PA T A
requires a set of equations relating the wrist position to the target. For this, the geometry of
the end effector will have significant impact. The transforration from joint 6 to the TCP of

the end effector is denotedd|. For the end effector used in this thesis

m np O0w (3.10)
r mT p T T
A p T T '0‘03

mT T T P

whereO'O& T ‘@0 ére 65mm and 100mm respectively, as shown iRigure 4.

A

o I
s
EEa = 65mm £J| ]
EEb = 100mm e

Figure 4. Sample drilling e nd effector with associated coordinate frame and
dimensions.
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Now given this transformation, the relationship between the wrist and the target can

be described either ast|, orelse 4 | where

A A

1 1 4

. J| ”ﬁ (3.11)

]

arising from the knowledge that the target point |F must equal to the product of all frame
transformations 4| 4| 8 ™|. A number oftrigonometric identities and simplifications will be

used, they are listed in Appendix A

Givena target matrix ||- the wrist position . of the robot is determined by the

specific geometry of the end effector. there is no end effector, it is giva by

! noQ Frh (3.12)
R Qb
hoon Q |8

With an end effector, the wrist position is determined by the specific geometry in the relative
sliding, approach, and normal directions along with the associated rotations.

Then, fromrow 2 of (3.7) an expression for—in the form of (A4) is found, where

w

~

w

(3.13)

o
5

1
f

o S

Leading to the two known possibilities of—. With this variable solved,—is isolated in rows
1 and 2 of(3.8). Where, aftermanipulation of the equationsthrough the use of(A.8) and

(A9), %o takes the form of—in (A7), while® &, 'Q,and

L QR YO R A n n O b o Q. (314
W % 38

— is then solvedby substituting the corresponding— A T %o into rows 1 and 2 of
(3.8), and applying(A.8) and (A9) where
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6 Q n h (3.15)
w N ®w [ i oh
@ @i Qoh
Q ovw Qi «oh
necessitating the condition
O 08 (3.16)

With this, the wrist position is given for any target as a function of-h—hA T %. The
wrist kinematics are specific to the end effector geometry, so care should be taken if adapting

these results to other applications.
Column 1 of the LHS 0{3.11) takes the form of(A5), solving for — with

c® ¢£ih (3.17)

And the supplementary condition in(A.6) where

~ ~

o &i o € ¢€i ih (3.18)
giving —. Care must betaken to assign the correct configurations with the associated

solutions. The flipped wrist solutions can alternatively be found with— * and —.
Finally, from columns 2 & 3 in row 2 of the LHS ¢f3.11), —is found with (A5) where

G YO Yi oo Yi i

h (3.19)
O OO O O O i8

Note that "Yrepresents the slidingX, X, or Z vector associated with the end effector.

With all joint angles determined, the results can be used as joint commands for the
robot to validate the inverse kinematics. This process may not be what is used by the
controller, as that process is proprietary KUKA information, but the method shown was
successful in predicted the required joint angles which could put a robot at a specific logat

and orientation in the workspace.
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3.6 Redundancy Resolution in the Drilling Motion

The inverse kinematics givethe capability of solving the set of joint angles for any
DI ET O xEOEET OEA i theldridisgnotion iDdhestid tAefohent dtiGnGs
still undefined. Thetool will perform equally well rotated at any angle about the spindle, and
so somestrategy is required for deciding the orientation of the tool throughout the motion.
In this case, there are no additional factorto be concemed with (such as keeping a gravity
fed reservoir relatively upright) and so any orientation about the tool Z axis igsonsidered
viable. Crientations are assignedat three points in the drilling operation: at the start of the
motion, the target position, aad at the end of the motion. These orientationswill be
optimized. As a matter of simplicity, the bounds of each of theswientation angles isset at
p YJrmAs discussed inSection2.3, there are many ways of resolving this redundangyand
more elegant methods which make use of the null space and weightpdeudo inverse
Jacobian may be formulated in the futureAdditionally, if extended to include more degrees
of freedom or additional optimization criteria, more input parameters may be necessary to
reduce the dimension of the null space enough for an optimal solution to be foun@he
method used here involves using a few inguparameters to fully define the path, then
evaluating that path and comparing it to others according to some optimization criteria. In
this sense, the problem ofesolving redundant inverse kinematics is avoided because any
point in the parameterspaceevaluated is fully defined, and it is only the motion itself which

is initially undefined.

The chosen method to fully define all points along the path is as follows: First, identify
+ for some [ A T B, which define the target and plunge depttO T - Then, for

any distancg along the path, the associated is linearly interpolated between| AT [A

(if during the plunge motion) orf AT [A (if during the retract)
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(3.20)

which fully defines the target position and orientation at any point along the drilling path.
3.7 Summary

A model is required before attempting optimization, which has been done inthis
chapter by identifying the DH parameters of the experimental platform to be used, deriving
the forward and inverse kinematics associated with itand finding methods to define the
orientation from an underdefined target at any point within the workspaceHowever,these
steps do not optimally resolve the redundancy, and so requires the use oedmbinatorial

optimization techniques to evaluate and select the best parameters.
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4 Optimization of Drilling Motion

This chapter presents the methodology for the optimization of drilling motions by
leveraging the kinematic redundancies of robotdn this work, Particle Swarm Optimization
(PSQ has been employed to determine theptimal robot pose and motion strategy during a
drilling operation to avoid joint reversals Section4.1, describes the behavioand selection
of the Particle Swarm Optimizationalgorithm. Section4.2 outlines the application of this
optimization to the formulated drilling case. Further detail on the objective function and
optimization parameters is given n Section4.3. The simulated result of the optimization
process to the formulated problem with the rolot model is shown in Section4.4. Then, in
Section4.5, the weights and sdings used in the optimization modelare tweaked to ensure
good performance as tle process is repeated at multiple locations throughout the robot
workspace in Sectio4.6. Finally, Sectiort.7focuseson a single point in the robot workspace
and seels insight into the nature of the objective function by using brute force to map the

output from every set of input parameters.
4.1 Particle Swarm Optimization Algorithm

First and foremost, Particle Swarm Optimization is not being presented here as the
only or best method for solving the problem at hand. It is an efficient, simple, and robust
algorithm which returned good results in this application. However, for more complex
implementations with additional DOF orparameters creating high dimension optimization
PSO may not be the st option.

PSOtakes inspiration from nature and the behavior of organisms (particles) in a
group (swarm). Groups of animals can solve complex behavioral taskery quickly, such as
schools of fish which seem to move as one cohesive unit, even when unextpd events such
as a predator attack occur. In reality, each individual is following some simple set of rules in
response to whatever stimulus it observes or receives. The behavioral task $etPSQs the

optimization problem (getting to the unknown minimum value of some objective function)
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with a specific set ofnput parameters representing the(ositiondof an individual particle

in the parameter spaceHow much, and in which direction, each particle moves from one
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governed by the simple rules(the velocity expression)each particle follows. While these

rules canvary between species and situation in nature, the set of rules which are given to
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global best. After multiple iterations, this results in overall swarm movement tavards the

global minimum. The general steps and motion of particles in PSO is visualizedrigure 5.

Chaotic Local Global
" motion A clusters minimum
®
I d 4-0\ ¢
| °
/:\ \ ™ ': .o O.'}'
A
Initial iterations Searching " Convergence "
(Beginning) (Middle) (End)

Figure 5. Visualization of PSO behavior from initial chaotic motion, to searching the
workspace, to finally converging near the global minimum.

The basic structure of PSO is as follows: generate a population of particles each with

some set of optimization parametes. Then, evaluate their performance at their current

position using the objective function. Apply the velocity expression to determine the

subsequent motion of particles, then move particles to their new positions. Repeat until

some stopping criterion isreached. A detailed description of the application of PS®given

in Section4.2.

PSO and metaheuristic searching algorithms in general are especially well suited f

the task at hand i.e. robotic drilling, due to a number of factors. Firstthey do not require a
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differentiable objective function. Analytical optimization techniques which guarantee
convergence at some minimum typically require the derivative or gradint to be defined for
every point. However, due to theselectedobjective function (see Section4.3), there may be
sudden discontinuities and sharp curvegas shown n Figure 6), rather than a smooth and
well-behaved function. Metaheuristic searching algorithms are a suitable approach for

dealing with discontinuous objective functions such as the one defined in this work

Discontinuous,
poorly behaved
near minimum

Local Minimum —>

Global Minimum

Figure 6. Sample visualization of local minimum, global minimum, and poor behavior
near region of interest.

Second, a populatiorbased optmization model can cover a large region of the
parameter space in initial iterations compared to algorithms which only search using a single
point. Since it is of interest here to better understand the objective function, being able to
map a larger area qickly (and remembering points of interest while doing so)is more
desirable than necessarily zeroing in on the single best point as quickly as possible. Again,
since the objective function behavior is unknown and possibly poorly conditioned, a large
population can more easily avoid being trapped in local minima while searching the

parameter space.

Additionally, while there are a number of thesenetaheuristic population methods,
the selection of PSO was primarily driven by the difficulty in conceptualizinghe objective
function, and the relatively small set of input parameters. A highly random initial search

strategy was desired to broadly identify regions of potential minima. Once certain candidate
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zones are identified, there is no guarantee that they witireate a slope towards the minima,
and there may be regions around them which are discontinuous. Importantly, these
discontinuous regions may be very close to a minimum, and so the region should not be
wholly disregarded if a single invalid point is foundFor this reason, there is not necessarily
an advantage to breeding nearby fit particles, as in Genetic Algorithm (GA). Besides, the
number of input parameters is so small that introducing a single mutation in a GA entity
causes an extremely significant rative deviation from the unmutated versionand including

particle and swarm bests gives the PSO a memory component which GA 184 .

Finally, the population should eventually converge andperform many pseudc
random searches in the best identified region to try and achie zero reversals. So, a method
which can adapt throughout the search or naturally exhibit this convergence behavior
quickly is desirable. However, it could still be beneficial to converge at a number of local
minima, especially when trying toanalyze thebehavior of a newobjective function. At the
outset, it is unknown if there is only a very narrow set of parameters which achieves zero
reversals, or if there are many. PSO achieves this with the help of adjustable weights which
AAT A ££A A Gnerfia (momenfum)Aanditén@ency to favor personal best over the

global best (clustering at local minima). This behavior is illustrated in Figure 7.

1 Wpg LI, Wep 11
Moves towards swarm best

Wpp TT, Wep
Stays near personal best

v

Figure 7. Visualization of particle movement with different weights. A high cognitive
factor (37 | p will keep a particle near its personal best, while a high social factor
(37, P Will convince a particle to move to the swarm's best.
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PSCfits all the aforementioned criteria and is relatively efficient computationwise
compared to othermetaheuristic algorithms [32]. PSO has been used in a number of studies
of posture optimization with good results [33] and proved effective in initial trials of the
process outlined here so was selected tontinue. Countless variations of thePSO algorithm
have been proposed34], most of which claim improvement in some way or another under
certain conditions or with certain objective functions.While a basic implementation of PSO
proved effective for this thesis, @irther refining the processand exploring other models for

this objectiveis an encouraging domain of future study.
4.2 Application of PSO for Minimizing Joint Reversals

Like all metaheuristic optimization algorithms, PSO requires some set ohput
parameters to iterate as well as a objective function to evaluate performance. For thixase,
there are three optimization parametersy I PA T [A, representing the twist about the
work axis at [\l A T i, respectively (seeFigure 8).

P, =P,

Figure 8. Visualization of psi angle with the sample drilling tool.
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The objective function essentially counts the number of reversals during a given
drilling motio n, with the option to include other parameters such as joint travel or stiffness.
Since there are three parameters, it is possible to visualize the movement of the swarm in 3D
space.With more than three parameters visualization becomes difficult as not kinput
parameters can be mappedto an axisinspaceE A AT T OAET A O @f alpadticl®ObDi OE OF
at iteration “(s given by a set of parameters

4.1
= DL (4.1)

=
=
[0}

~ oA N =

The movement ofa particle in the parameter spaceisits OOAT T AEOUS6 AT A AAOAC
change in position; the difference between coordinates from one iteration to the next
(4.2)

™ = £ 8

Random initial velocities are generated and assigned to ela particle. A starting guess
may be used, however since it is still difficult to predict where the zeroeversal case will be
achieved this is not normally accurate. But including a starting guess and limiting the velocity
may prove to be effective at redcing the convergence time of the algorithnin future, when
the location of a minimum for any given position can be reasonably estimated.flowchart

of the PSO algorithm and implementation in this context is shown iRigure 9.
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Define optimization parameters

Optional starting guess l

Generate initial particle
positions and velocities

m—

Y
Update particle positions —|«m—

Yes Check if stopping

criteria reache

For each particle in swarm:
For each of 8 configurations:
Generate path from parameters
Calculate inverse kinematics throughout path
Generate joint angle history
Calculate score using objective function
Compare to particle’s personal best
If better, update
Compare personal best to global best
If better, update
Update particle history

L

Update particle velocities

b{ Output best score

Figure 9. Flow chart of PSO algorithm implemented within the context of minimizing
joint reversals for a drilling motion.

Before the first iteration, the PSO algorithm first defines values to use throughout,

such as term weights () and stopping criteria. Then, a number of particles are generated
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according to the population limit, each somewhere within the parameter spaceefined by

the limits of[ and given random initial velocities.

Each iteration begins by updating the new particle positions according to their
current position and velocity. Two stopping criteria are normally used to limit the search,
the first is a check on the number of iterations which have elapsed’he second is to check if

at least 95% ofthe number particles (0 ) have a less than 1% change in their location from

the previous iteration,

e = s (4.3)

p P'QE wu B

If most particles are relatively stationary, there is a high likelihood that an acceptable
minimum has been found and if not, the subsequent iterations are not likely to find any better
positions. A thrd stopping criteria was used for populating workspace performance maps,
in this case the algorithm stopped as soon as the first zereversal case was found. If any
stopping criteria are reached, the algorithm outputs the current global best score alongth

the associated- .

Provided the stopping criteria is not reached, theobjective function analyzes each

particle in the swarm. For each of these particles, the patf_, , is constructed according to

the particle input parameters. The path is then dvided into O interpolation points . For each

~ ~

interpolation point (¢  plgfB R)), the inverse kinematics yield 8 sets of joint angles
kg —H—B— ih (4.4)

where 'Q plthB hp. For every configuration'Q the set of joint angles fully describing the

drilling motion is concatenated into a joint angle history
L L 0 B = B
g F ghlF @ Al g h (4.5)

This solution 3 g describes a complete drilling motion in the joint space of theobot

and is what will be evaluated with the objective function during optimization.The number
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of discrete points is significant since if they are too widely spaced, there may be an
intermediate point which is invalid and so cannot be executed by a physical robot. If the
number of points is too large, the computation time becomes excessive. In this case 200 steps
were used for the entire motionwhile searching. When the best score is foundcaeck is run
with up to 40,000 steps to ensure convergence. For a 50mm plunge, this corresponds to a
linear resolution of around 1 micron.This is likely far beyond what is necessary to ensure no
intermediate points caused an error, but the added computatin time for a single case, even

with so many steps, is negligible.

After finding the joint angles at each point along the patfthe joint angle history 7 g
showing the movement of each joint throughout the motion is passed into the objective
function. The entire joint angle history is evaluatedo find the number of reversals, the total

travel, and other Boolean conditions, and a score is given between 0 and 1.

Once particles have been assigned a score, it is compared first to their personal best.
If a better score has been achieved, this is saved as thew personal best. If a new personal
best is achieved, that score is also compared against the swasnglobal best, which is
updated to the new score if it is betteWWhen any bests are stored, both the sce and location
within the parameter space is savedr-inally, the velocity of the particles for the subsequent
iteration is determined according to the velocity expressionwhich is given as

v L L : f AL L : R (4.6)
™ 109F) = M  i0=) = W g Ih

where @ ho PAT @ are weights associated with the personal best, global best, and
inertia terms, respectively.® was selected as 0.2p was selected as 0.1, andd was
randomized at each iteration between 0.5 and 1 according to a uniform distribution.
Typically, @ @ ® . However, since the optimization wasonstrained, there was
no concern for particles shooting away todar so a higher inertial weight allowed further

exploration of the parameter spacew @ was done since, after algorithm execution, it
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allowed for better visualization of locations of local minima clusters. For a detailed analysis

of the possible weight distribution sin PSGand their effects see[28]. The variablesi and i

arerandomlygelAR OAOAA AO AAAE EOAOAOQOETT AAOxAAT n AT A

to each influence.This random weight scheme improved the convergence rate, while the
higher personal best weight ensured patrticles clustered at numerous minima as opposed to

all seeking the first global best.

This optimization methodology is trajectory agnostic, which is beneficial since it
allows for the same method to be applied to any robot controller without needing knowledge
or control over the trajectory. Often times, control algorithms which improve perbrmance
require an override of the standard control architecture within a given robot controller. This
makes it difficult to implement in an industry setting where the expertise, resources, and
time required are prohibitive. Instead, the optimization methalology proposed has results
which are easily translated into robot instructions. Apoint-to-point move can locate the
robot at the first position, followed by a linear translationr_of the plunge depth value with
some associated rotation aboufi4| -{porresponding to [ [ followed by another linear

motion along -, of [ [
4.3 Objective Function and Optimization Parameters

The optimization input parameters aref i PAT [A. Since all parameters are
bounded between p Y Tithis creates the parameter space, or the volume which will contain
all the particles. This is the only explicit constraint on the input parametersin addition to
these limits, a velocity restriction can be put in plae which limits the maximum
displacement of a particle between two iterations. This is useful when refining the search
near a specific point (with some initial guess) however was not used when searching the
entire parameter space. The optimization parametes (particle locations) are initially
distributed throughout the parameter space semirandomly. | and[ are randomly
selected, thenn is randomly selected within the remaining volume of the workspace which

will ensure there is no inflection. Thatis,[ throughout the motion is either monotonically
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increasing or decreasing. This was done since a reversal inwas overwhelmingly likely to

introduce a reversal in the robot joints, usually the wrist.

The objective function which evaluatsthe performance of the particles must not only
evaluate some given robot position, but the entire drilling motion constructedrom the set
of + . All positions are known, and only the orientation is undefined. Therefore, when given
the orientation at the three known points, the entire motion is fully defined by assuming a
constant rate of rotation from one position to the next. at any point along the path is given
in (3.20). After the IKs are applied to each point in the path, the resulting joint angles for the

entire motion create six smooth profiles, together called the joint angle history g

As an objective, this thesis aims to minimize joint reversals first. Then, within
solutions with the minimum number of reversals, discriminate between solutions by
minimizing total joint travel. Therefore, the weight on the number of reversalgp , was set
as 6/7 while the weight for joint travel,  , was set as 1/7. This ensured that a solution, no
matter how much joint travel it had, would be favored over any other solion with more

joint reversals.

The final resulting objective function is

. (4.7)
0 b 4 / :
18 (0] @ 00O T:[lﬂ
o) 0 0 :
where 7 g is some generated joint angle historyy)  is the number of reversals— is the

total joint travel in 7 g and the remaining terms are Boolean conditions which excluded
invalid solutions. The maximum possible normalized value of the first twoetrms in (4.7) is
1. Therefore, any Boolean conditions which returnedrue as 1 automatically achieved the
worst possible score and were excludedhese termsare another way of constraining viable
input parameters. It is difficult to predict and relate from just the values of i PA T [A

where the inverse kinematics will be unsolvable violate joint limits, etc. (and of the 8
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solutions somel AU AA OEAAIT A xEEI A T OEAOO AOAT 80Q8 4E
parse the invalid results after evaluating the path generated by § PAT [A than to

determine which combinations to preemptively exclude.6 9] hAT & were

assigned if there were any discontinuities in the generated path, if any joints exceeded their

hardware limits, or if there was no valid inverse kinematic solution found, respectively.

If additional criteria were desired, such as includingstiffness or minimizing torque
(and thereby power consumption), these would simply be added as another term to the
objective function. Whatever metric used should be normalized between 0 and 1, then term

weights adjusted as desired.

In addition, no joints in the plunge motion can be stationary as the goal is to avoid
stiction at the target position. This would not happen if a joint remained stationary during
the plunge then began motion during the retract. Physically, this issue woutdill be present
at very small velocities as well, so for best practice the absolute velocity should be
maintained above the static friction threshold. Since the methodology is trajectory agnostic
(velocity is not included) this cannot be specified as aangular velocity, but a minimum

angular difference between adjacent steps was set ast 1t [stép.
4.4 Simulation of a Sample Drilling Path

A target was selected for trials with thetarget position ||-< v Tthet Tthic T T . This
position in the workspace is one where the manipulator is relatively dexterousand
represented a fairly typical drilling pose and direction Dexterity refers to positions which
are far from potential obstacles, singularitiesjoint limits, edge of the workspace, and can
generally rotate freely about the target point in multiple axes. This metric can be quantified

through use of theJacobian butis not required here.A plunge vectorr_of v i was

selected and0 ¢ T steps were used in thenterpolation over the entire path distance
T > p atd. The optimal solution was verified at 0 1 it 7t Steps to ensure

numerical approximation did not smooth over invalid points. The optimal solutionr , _
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p ® ¢hJudthlo B8 @ Jwas output after 280 seonds on an i5 3.5 GHz CPU. The

convergenceof particles is shown inFigure 10. At iteration 0, all100 particles are distributed

pseudorandomly throughout the paramete space and their initial scores are evaluated.

After 25 iterations, the particles have begun to cluster near regions which have shown good

scores.After 50 iterations the algorithm stopped, and the majority ofparticles are clustered

around a few local minima. The current global best is shown in red, and the rest of the

particles are colored according to their current score (scale ikigure 11).
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Figure 10. Location of particles within the PSO algorithm at iterations 0, 10, 25, and 50.

At iteration O the distribution of particles is not uniform throughout the entire

parameter space. There is a noticeable skew to place particlasar the diagonalf r
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plane. This is because when generating the initial particle positions first is randomized
(explaining the uniform distribution along the[ axis). Then| is also randomly distributed
(again, along the entire axis between the bounds). However, is then generated between

[ and the upper or lower bounds of the parameter spacguch tha
i Qe T i Q& [ h (4.8)

continuing the trend from [ to[ . This ensures the direction of rotation of the tool is
consistent throughout the motion. Initial trials found that solutions which exhibited a
reversal in+ were far more likely to have a joint reversal, especially in the wrist. Therefore,
in the interest of obtaining more feasible initial guessesthese cases were excluded.
However, there is no restriction preventing any particle from moving into a region of the
parameter space where(4.8) is not true in subsequent iterations as is evident from the

distribution of particles at iteration 10 in Figure 10.

Thefinal scoresof all particles are plotted according to ascending scores iRigure 11.
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Figure 11. Score distribution of 100 particles after 50 iterations of PSO algorithm.

The width of a singlecolored bar shows how many particles achieved the numbeaf
reversals corresponding to that score step. In this test, of the 100 particles, 40 were able to
find a set of parameters with zero reversals in the iterations allottedThis figure helps
illustrate the echelons of the objective function as well as thegeneral performance of the
optimization model. The number of reversals corresponds to the large steps, while the
gradual incline in each is thedifferent amount of total joint travel for each particle which
distinguishes solutions within a given strata.This technique of visualizing the swarm at the
beginning, midpoint, and end of algorithm execution then graphing the performance of
particles will be used inSection4.5 to tune the parameters of the optimization to ensure

consistent results could be achieved.
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4.5 Performance Tuning

PSOhas a number of parameters which can be tuned to influence the ability of the
algorithm to obtain the global minimum.This section will detail the tests carried out to find
values for these parameters which ensured efficient convergence of the algorithm for

subsequent tests.

The purpose of this tuning was not to obtain the best possible set of parameters with
respect to convergence rat@and computational efficiency. A much morein-depth evaluation
of parameters and optimization algorithms would be required for that goal. The optimization
methodology presented here is a means tihe result of a drilling motion with zero reversals.
It is not intended to be taken as the exclusive or optimal approach. A sufficiently robust
algorithm will be able to find zeroreversal cases somewhat efficiently, but it is not a real
time control strategy. A faster and more accurate approach may be found with finer
research into the specific objective function, alternative optimization algorithms, and
parameter tuning. Nevertheless, the process of selecting parameter settings is shown to

demonstrate some of the considerations which went into selecting these valsie

During initial testing of the algorithm, it was recognized that a constant inertial
schemewas not suitable for this application. While the implementation of PS@oes not
guarantee convergence, tests with a constant inertial scheme often converged at local
minima with greater than zero reversals. Multiple trials with the same parameters were
required to definitively say that azero-reversal case could not be achied. Furthermore,
particles often became stuck in a repetitive motion from iteration to iteration, either
oscillating about some point or consistently stepping in the same direction at the velocity
limit. There are numerous other inertial weight schemes foPSO detailed by Bans4B5]. As
a conclusion, they recommend that a chaotic inertia weight be selected for improved
accuracy, and a random inertia weight for computational féiciency. Other schemes offered

certain advantages, and so were tested as well against the benchmark implementation of the
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random inertia weight (Figure 12). The trials which were conducted, and the associated

tuned parameters are shown inTable 3.

Table 3. Summary of PSQparameter values during tuning trials.

Trial # Pop. Size lIterations Inertia Scheme T L Tl
1 200 25 . i e Q 0.2 0.1
w ™ c
2 200 25 W 0 T@U ® O ph 0.2 0.1
W T T
1 . i 0weEQ 2 A
3 00 50 o @ - 0 0
4 2 ' i e Q 2 A
50 00 o @ - 0 0
5 100 50 w 0 p8iv ® O ph 0.2 0.1
W T
i 0weEQ . :
6 100 50 & — - 0.1 0.2
i 0weEQ . :
7 100 50 & % x 0.2 0.4
0
8 100 50 O 0 T TR — 0.2 0.1
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Trial 1 yielded promising results, with asignificant number of particles achieving the
zero-reversal case, while having still searched a large overall portion of the workspace.
However, no clear clusters of local minima emerged. The sheer number of individuals meant
that alarge region of the paameter spacewas saturated with particles. This can be seen as
rather computationally inefficient, despite having the potential to find very small regions of

local minima.
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Figure 12. Trial 1 particle convergence and performance.
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Implementing a decaying inertia weight scheméFigure 13) resulted in a similarly
sized portion of the workspace being searched, however most particlesiled to converge in
the allotted number of maximum iterations, with some even failing to find aingle valid
solution even with six reversals(the portion of the six-reversal bar with a score of 1)Again,

no clear local minima emerged and having many pacles close to one another is inefficient.
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Figure 13. Trial 2 particle convergence and performance.
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While a larger population size was desired to search a larger workspace, through
these trials and visualization of theobjective function with set parameters(see Sectio.7)
it became evident that well performing regions were not so small as to necessitate this
population size. It was sufficiently likely that, given the typical size of thezero-reversal
region, fewer numbers were needed to eventually find a minimumTrial 3 (Figure 14)
reverted to a random weight scheme and instead reduced the number of particles to 100 and
increased the maximum number of iterations to 50. With this, the plurality of particles found
a zeroreversal case.
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Figure 14. Trial 3 particle convergence and performance.
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To further stretch this trend, only 25 particles were used over 200 iterations in Trial
4 (Figure 15). In this case, patrticles ¢her found a zeroreversal case or became noticeably
trapped at local minima Also, the initial distribution of the swarm with so few particles
creates a rather sparse coverage of the parameter space. This makes this scheme more
susceptible to unfortunateinitial starting locations which could lead the swarm towardsa
local minimum. The 100 patrticle 50 iteration combination of Trial 3 seemed to strike a good
balance between computation time, area searched, and percentage of particles which found

a zeroreversal case. For subsequent trialthe Trial 3 combination was used.
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Figure 15. Trial 4 particle convergence and performance.
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An unconventional increasing weight scheme was tested in Trial 3igure 16). The
OEAT Ou AAEET A OEEO I AOET A xAO Ol EAOA OEA
initial random positions. Since the particles began distributed throughout the workspace,
eachparticle would spend more iterations searching their local region before converging
towards the best. However, thioffered no significant benefit over the new best performing

candidate.
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Figure 16. Trial 5 particle convergence and performance.
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Trial 6 (Figure 17) tested the results of having a larger social bias than cognitive bias.
This encouraged particles to move towards the global best and predictably resulted in most
of the particles converging mmediately towards the best without significant searching of the
workspace.While the result is promising in this trial, for those cases where the feasible zero
reversal region may be smaller or have additional local minima traps nearby this behavior
could be deleterious.For this reason, it was not favored over those schemes which had a

larger cognitive bias.

Figure 17. Trial 6 particle convergence and performance.
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