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!ÂÓÔÒÁÃÔ 

Industrial robots used in manufacturing suffer from static friction ( stiction) and 

backlash in their joints during joint reversals. The dynamic controller response to these 

stick-slip and dead-band phenomena leads to error at the end effector, which is especially 

pronounced and undesirable in precision applications such as aerospace composite drilling. 

The tolerance requirements for aerospace components are typically smaller than 0.2mm, 

which is on the boundary of what typical industrial robots can achieve. During robotic 

drilling  operations, even small errors may result in unacceptable tolerances. For this reason, 

drilling using robots has not been as widely adopted in this sector. Many methods exist to 

optimally ÓÔÉÆÆÅÎ Á ÒÏÂÏÔȭÓ ÐÏÓÔÕÒÅ, compensate for the anticipated error, or actuate an 

independently stabilized drilling tool . But these methods do not address the source of the 

error  and often do not result in satisfactory performance. 

In this thesis, it is shown that by leveraging the functional kinematic redundancy 

inherent to drilling, the robot can reduce or even completely eliminate joint reversals while 

achieving the same plunge and retract motions ÔÏ ÄÒÉÌÌ Á ÈÏÌÅȢ 4ÈÅ ÒÏÔÁÔÉÏÎ ÁÂÏÕÔ ÔÈÅ ÔÏÏÌȭÓ 

redundant work axis is characterized at the start, target, and end positions. The parameter 

space is searched using Particle Swarm Optimization to converge on the best combination of 

input parameters which minimize reversals. The proposed methodology is applied to a 

KUKA KR 6 R700-2 robot with a sample drilling  tool, and the performance is analyzed using 

internal joint position and torque measurements, as well as tool tip  position. A reduction in 

the envelope of the drilling motion of 40% is observed, and the hysteresis commonly seen in 

robotic drilling  motions is significantly reduced. 
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1 Introduction  

Industrial robots which perform machining operations suffer from a relatively low 

stiffness arising from their structure and internal mechanisms. During drilling specifically, 

the motion commands typically executed will cause all joints to start moving in one direction 

then reverse, passing through the stiction region. This in turn excites controller dynamics 

and increases error at the end effector, resulting in a hole which can be off center, oblong, or 

have delamination at the edges. While research has been done to mitigate the effects that 

these errors have by increasing the stiffness of the robot, this thesis proposes to avoid the 

cause altogether. This is accomplished using the ÒÏÂÏÔȭÓ redundant degree of freedom with  

the drilling tool, and by optimally selecting tool orientations throughout the drilling motion 

to accomplish the same task while minimizing individual joint reversals. 

Section 1.1 introduces background knowledge related to industrial robots and 

machining. Section 1.2 discusses the specific problems faced by drilling robots. Section 1.3 

outlines the solution to this problem and the contributions of this thesis to the field. 

1.1 Background  

Industrial robots are typified by six degree of freedom (DOF) manipulators 

comprising revolute or linear axes in a serial kinematic configuration, such as the one shown 

in Figure 1. These robotic arms mimic the functionality of the human arm, and similar 

terminology can be applied. The first two joints (starting from the base) constitute the 

ȰÓÈÏÕÌÄÅÒȱȟ ×ÈÉÌÅ ÔÈÅ ÔÈÉÒÄ ÊÏÉÎÔ ÉÓ ÁÓÓÏÃÉÁÔÅÄ ×ÉÔÈ ÔÈÅ ȰÅÌÂÏ×ȱȢ 4ÏÇÅÔÈÅÒȟ ÔÈÅÓÅ ÔÈÒÅÅ ÊÏÉÎÔÓ 

control the overall position of the robot in its workspace. The last three joints form the 

Ȱ×ÒÉÓÔȱ ×ÈÉÃÈ ÃÏÎÔÒÏÌÓ ÆÉÎÅ ÐÏÓÉÔÉÏÎÉÎÇ ÁÎÄ ÏÒÉÅÎÔÁÔÉÏÎȢ Each of these joints is driven by a 

servo motor coupled to a reduction gearbox, which can turn some finite amount in either 

direction before hitting a mechanical joint limit. The end of the last link of the robot is called 

the flange, where different tools can be mounted depending on the desired operation. These 

tools are ÔÙÐÉÃÁÌÌÙ ÄÅÎÏÔÅÄ ÁÓ ȰÅÎÄ ÅÆÆÅÃÔÏÒs.ȱ The point of interest on the tool for the 
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operation (e.g. the tip of a spindle, the nozzle of a glue gun) is called the Tool Centre Point 

(TCP).  

 

Figure 1. Typical 6DOF industrial  manipulator  robot, the KUKA KR 6 R700-2, located at 
the University of Manitoba Intelligent Digital Manufacturing Lab (IDML) . 

Industrial manipulation robots were initially purposed for pick and place applications 

within the manufacturing industry. This required the robot to simply pick up parts from a 

known location and move them to another. However, thanks to their flexibility and cost 

effectiveness, they have been adapted to further roles including welding, gluing, inspection, 

and most significantly for this thesis, material removal [1] . 

Machining with robots, be it milling, drilling, or other material removal techniques, 

has advantages and disadvantages when compared to traditional CNC machining. For their 
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cost, industrial robots can operate on a much larger workpiece since they are placed at some 

point and can reach around, rather than needing to fully enclose the workpiece like a CNC 

machine. The structure of a robot is also much more compact than other machines, allowing 

them to be placed in difficult locations or orientations, or bunched together in close 

proximity. The most significant disadvantage compared to CNC machines, however, is their 

reduced overall stiffness [2] . Since they have a serial kinematic configuration, the location of 

each joint is dependent on the angle of the previous joints. This means that even a small 

deviation at the base of the robot will propagate through the entire structure to result in a 

large error at the TCP. Reduced joint stiffness, especially pronounced when excited by large 

forces or controller dynamics, has limited the application of robots in certain industries; 

most notably aerospace and precision manufacturing. The tight tolerances mean that robots 

are not quite able to achieve the required results. However, with drilling upwards of a million 

holes in a commercial aircraft, the adoption of robots in these sectors could be significantly 

increased. Besides improving the stiffness of a robot, identifying and correcting the source 

of errors could lead to improved performance and more widespread adoption of robots. 

1.2 Problem Statement  

As automation in the manufacturing sector increases, robots are being called upon to 

perform a wider variety of tasks beyond pick and place. Namely material removal tasks such 

as milling and drilling have become more popular in recent years. However, the stringent 

tolerance requirements of certain industries, especially aerospace, precludes robots from 

being more widely adopted in these applications. The most significant barriers are the low 

ÓÔÉÆÆÎÅÓÓ ÁÎÄ ÐÒÏÐÁÇÁÔÉÏÎ ÏÆ ÅÒÒÏÒÓ ÁÌÏÎÇ Á ÒÏÂÏÔȭÓ ÓÅÒÉÁÌ ËÉÎÅÍÁÔic chain, so that even a 

relatively small deviation at the base joint of the robot results in unacceptably high error at 

the end effector. A major source of these joint errors is brought on by static friction and 

backlash during joint reversals. This is especially prevalent in drilling motions since the 

typically programmed instructions will linearly translate the end effector with no change in 

orientation  of the end effector. These commands cause all joints to reverse once the target 

depth has been reached. Since the joints must break stiction and experience backlash each 
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time they reverse, there is a sudden inconsistency in the force profile demanded of the 

motors at this point. The controller response in turn causes deviation at the end effector; 

exacerbated by the poor overall stiffness of industrial robots when compared to other 

machining platforms. To perform more precise drilling, the errors associated with these joint 

reversals must be mitigated or avoided.  

1.3 Thesis Objectives and Contributions   

In this research, the proposed solution to the problem statement is to avoid joint 

reversals altogether during the drilling motion. A rotating spindle is used during drilling , 

creating a redundant DOF which allows for infinite possible tool orientations at any point in 

the path. Leveraging this kinematic redundancy allows for additional possible end effector 

rotation  throughout the drilling motion while  still drilling in the same location. Particle 

Swarm Optimization (PSO) is used to select the best orientations throughout the drilling 

motion with the global objective of minimizing joint reversals. A standard drilling motion 

would require all six joints to reverse as the drill bit is removed from the workpiece. 

However, strategically picking the orientation of the tool at the start, target, and end points 

of the drilling motion will allow the robot to accomplish a drilling task with fewer or even 

zero reversals. This does not inherently add stiffness to the robot or change the dynamic 

properties, but rather avoids the phenomena which lead to forces that excite dynamic errors 

in the robot. While stiffness (and many other metrics) could also be included as optimization 

goals, the objective of this thesis is to demonstrate that the principle of joint reversal 

avoidance is applicable to typical industrial manipulator robots. The proposed methodology 

allows a robot integrator to find, for arbitrary drilling motions, some rotation about the 

redundant degree of freedom which can be planned throughout the motion to reduce joint 

reversals. The implementation and implications of this strategy are also explored, showing 

a significant improvement in the precision of the drilling motion. The ability of the robot to 

achieve a zero-reversal drilling profile throughout the workspace is also explored.  
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2 Background and Literature Review  

This chapter reviews the core afflictions causing robotic machining errors and the 

different approaches that researchers have proposed to address such errors. Section 2.1 

reviews the detrimental effects of backlash and friction in industrial robots. Section 2.2 

discusses the optimization of robot pose and workpiece placement for enhanced stiffness 

and accuracy. Section 2.3 reviews the methods researchers have used to leverage an 

additional DOF to further optimize for a range of criteria. Section 2.4 discusses optimization 

constraints and methods to highlight the most suitable approach for drilling . 

2.1 Backlash and Stiction in Industrial Robots  

Static friction, or stiction, represents the resistance that must be overcome to begin 

motion of a body at rest against a surface. Once moving, this resistance to motion will sharply 

decrease, then follow a linear change as a function of the relative velocity. In industrial 

robots, stiction is encountered when starting the movement of joints from rest, or when 

joints reverse and momentarily have an angular velocity of zero. In both cases, the rapidly 

changing resistance causes overshoot and undershoot of the demanded torque to execute 

the desired motion. This, along with backlash, causes eccentricity or glitches in the motion 

at locations corresponding to joint reversals, as documented by Oh [3] . Backlash was found 

to be a significant contribution to the overall error of a robot, along with overall joint 

compliance, according to Schneider et al. [4] .  

Friction is notoriously difficult to model [5] . If the friction profile throughout a motion 

can be predicted accurately, the controller may be able to compensate the resultant errors. 

This has been attempted in two ways. The first is to execute the desired motion and record 

the positional error, then offset each point in the motion path according to this error in the 

opposite direction [6] . While this can significantly improve the accuracy of a robot, it is a not 

practical approach as it requires extensive measurements and trials for any desired path. In 

addition, these measurements must be repeated often to account for variations due to 
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changes in temperature, lubrication, and wear conditions. The second method for mitigating 

friction errors is to use an analytical model to predict and compensate such errors. Friction 

identification algorithms are run on the robot to identify the friction behaviour in each joint, 

then when a new motion is executed, the controller will adjust the commanded torque to 

better overcome regions of expected high friction [7] . While the above-mentioned methods 

can reduce the errors to some extent, they fail to reliably compensate friction errors in 

general arbitrary motions. This is mainly due to the complexity, nonlinearity, and 

inconsistency of friction. Friction compensation methods are still highly dependent on the 

trajectory and specific task being performed [8] . There are a large number of factors that 

affect friction, such as lubrication composition, particulates in the lubricants, wear in 

mechanical connections, temperature of all parts in contact, and material properties. Even if 

perfectly predicted and compensated, friction is not the only cause of error during joint 

reversals, and backlash still causes significant problems. 

Backlash refers to the space between internal meshing components which must be 

eliminated for mating to occur. In a case where a gear must switch direction, its teeth will 

not be perfectly meshed with the other gear at the moment of reversal and must traverse 

some short distance before mating begins again. This causes a jerk in the output motion 

which again leads to error at the robot end effector. Many robots are now being designed 

with harmonic gear drives, which due to their design can achieve zero or very low backlash. 

However, not all joints on all robots use this system, with larger robots and certain joint 

geometries favoring planetary gear systems or a belt drive. Moreover, additional joint and 

metrology components can suffer from wear and assembly errors which will introduce 

backlash even in an ideal gear drive. Again, techniques have been implemented to anticipate 

and compensate for these errors, but as of yet still cannot completely eliminate them. 

Because of this, researchers have tried to improve performance through other means, 

namely optimization of the robot pose and workpiece placement. 
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2.2 Optimization of Robot Pose and Workpiece Placement  

Industrial robots are lauded for their adaptability and working range. A single robot 

can perform multiple operations within a work cell. This also means that when selecting the 

placement of a part to be operated on, integrators will typically have a wide array of options 

for the placement and orientation of the workpiece within the reach of the robot. Leveraging 

this, researchers have proposed techniques to strategically select the best placement of the 

workpiece relative to the robot such that performance is enhanced [9] [10] . This can be, in 

the case of drilling operations, for the stiffest overall posture of the robot. The stiffness can 

be quantified for any pose similarly to the dexterity , then the part placed such that any holes 

which need to be drilled can be done so when the robot is in a relatively stiff posture [11]  

[12] . This reduces the error caused by machining forces, inertial forces, as well as the glitches 

introduced by stiction and backlash. The compliance condition number is commonly used 

for the inclusion of stiffness as a metric in optimization, however there are others which are 

preferred depending on the operation [13] [14] . While this has the advantage of stiffening 

the entire system, thereby reducing the effects of many errors, it does not address the cause 

of these errors, only the symptoms.  

Optimization of the workpiece placement has also been explored for operations such 

as milling [15] . The stiffness and natural frequencies of the robot change as a function of 

pose, but can be predicted [16] . Optimal workpiece placement can be selected to ensure the 

robot flexibilities do not contribute to chatter or other undesirable machining harmonics.  

Common to both milling and drilling operations is a rotating tool which is mounted 

on a spindle at the end effector. Since the exact rotation angle of the tool does not affect the 

motion planning, general robotic machining operations require only five degrees of freedom. 

Performing machining operations with common six-axis industrial robots introduces a 

redundant degree of freedom which can be leveraged for further  optimization of the process. 

While well documented in the literature, this is not something always explored in industry. 

When robots are utilized for machining applications, the initial programming is still carried 

out by a human operator. Typically, the robot will be jogged to some position, then a linear 
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translation forward then backwards will be commanded. Sometimes, more advanced 

software is used which is capable of integrating CAD data into robot work instructions and 

ÃÁÎ ÁÌÌÏ× Á ÕÓÅÒ ÔÏ ÇÅÎÅÒÁÔÅ Á ÔÏÏÌÐÁÔÈ ÂÁÓÅÄ ÏÎ ÔÈÅ ÐÁÒÔȭÓ #!$ ÇÅÏÍÅÔÒÙȢ (Ï×ÅÖÅÒȟ ÂÏÔÈ 

these methods suffer from the preconceptions and limitations in imagination of the 

programmer. For a simple drilling motion, the intuitive approach is to maintain the drill in 

the same orientation and with the robot at some upright posture. But thanks to the 

redundant degree of freedom, this is not necessary. By evaluating different tool orientations 

similarly to how posture stiffness optimization is done, performance differences in the 

drilling motion arise and the best can be selected.  

2.3 Redundancy Resolution  

When the number of degrees of freedom of a kinematic chain is greater than the 

degrees of freedom which need to be defined in the workspace, the kinematics are said to be 

redundant. The inverse kinematics for a typical six axis robot in three-dimensional space 

require all six degrees of freedom (X, Y, Z, A, B, C) to be defined. But under certain conditions, 

one or more of these degrees of freedom is undefined. This can be the case when an arm is 

designed with additional degrees of freedom intentionally to allow greater flexibility (such 

as the KUKA iiwa), or else for six-axis industrial robots, when the axisymmetric performance 

of a tool about its work axis creates the ambiguity . For example, a marker will draw the same 

line despite any rotation about its longitudinal axis.  In the same way, since a drill bit will 

rotate during normal operation, there will be no kinematic impact on the operation being 

ÐÅÒÆÏÒÍÅÄ ÄÕÅ ÔÏ ÔÈÅ ÔÏÏÌȭÓ ÒÏÔÁÔÉÏÎ ÁÂÏÕÔ ÔÈÉÓ ÁØÉÓ ɉÐÒÏÖÉÄÅÄ ÃÏÏÒÄÉÎÁÔÅ ÓÙÓÔÅÍÓ ÁÒÅ 

properly calibrated). In both cases, some redundancy resolution technique is required to 

decide on the orientation to take, and fully define the inverse kinematics at a given position. 

Broadly, redundancy resolution is defining the null space of the robot such that a secondary 

task is executed while also executing the primary task (moving the end effector in some way). 

Since robot properties can vary dramatically with pose, it follows that resolving the 

redundancy can be done strategically to obtain desirable outcomes, much like the 

optimization of workpiece placement.  
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In early redundancy resolution literature, the focus was on utilizing the weighted 

pseudo-inverse Jacobian to select the joint velocities at any incremental time step which 

would have some beneficial effect on an optimization criterion while still fulfilling the 

desired translation of the end effector [17] . This method still sees use in applications where 

the redundancy is described as distributing individual joint motion in the null space [18] , 

however requires a starting configuration and is not always the most suitable approach 

when the system is functionally, rather than intrinsically redundant. This technique has the 

system began from a defined position and tasked with moving a specified distance in some 

direction. Since the instructions do not fully define the final position (or  if the robot was 

operating in a lower dimensional space than its own degrees of freedom), the robot could 

accomplish the task in an infinite number of ways. But by quantifying the overall 

performance of the robot with respect to the motion of each joint, the robot could decide on 

a method of attaining the new position by the motion of joints which provide the best 

increase in performance.  The most common criterion for this performance was (and still is 

often used alongside other metrics) avoiding joint singularities, such as in [19] . Singularities 

are described in detail by Aboaf and Paul [20] , but in general can be thought of as multiple 

joints (such as joints 4 and 6 in the wrist) aligning in such a way as to make a small end 

effector movement require excessive joint motion. A characteristic of singularities is 

impossibly high joint velocities (imagine flipping your wrist from a thumbs down to a 

thumbs up position instantaneously) and so configurations aimed to minimize the joint 

velocities. As secondary criteria, joint or acceleration limits could also be included to ensure 

the robot avoided moving any joint near to the angular limits  imposed by hardware 

limitations or to reduce torque demands [21] . The main disadvantage with this technique, 

however, is that it is a local optimization method which only considers the benefits at one 

time step ahead of the current position. This makes it susceptible to being trapped at local 

minima. Always taking a step downhill does not necessarily help you descend a mountain if 

you are in the crater of a volcano. For the goal of minimizing reversals throughout the entire 

path, a global approach must be taken.  
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Techniques such as a Rapidly Expanding Random Tree (RRT) have been explored to 

efficiently search the closest local options to achieve global convergence [22] . However, in 

the case of robot manipulators, it often suffers from the computational requirements 

necessary for calculating the pseudo-inverse Jacobian which becomes increasingly complex 

as additional degrees of freedom are added to the robot. Furthermore, it is important to make 

the distinction between intrinsic and functional redundancy [23] . An intrinsically  redundant 

manipulator has more degrees of freedom than could ever be defined by the space it is in ɀ 

for example, a 4 joint planar arm in 2D space, or a 7DOF manipulator in 3D space. 

Functionally redundant manipulatoÒÓ ÁÒÅ ÔÈÏÓÅ ×ÈÉÃÈ ÁÒÅ ȰÁÒÔÉÆÉÃÉÁÌÌÙȱ ÒÅÄÕÎÄÁÎÔȟ ÉÎ ÔÈÁÔ 

they have a number of degrees of freedom which could be fully defined by their work 

dimension but the operation to be executed does not define one or more of them. This is the 

case when drilling in the physical world with a 6DOF manipulator since the drill bit is already 

rotating. When functional, rather than intrinsic, redundancy must be resolved, the Jacobian 

becomes nonsingular square which is unsolvable without the use of artificial additions to 

resolve the discrepancies [24] .  

Even assuming that the weighted pseudo-inverse Jacobian could be efficiently 

calculated for the functionally redundant case at hand and characterized in a meaningful way 

throughout the entire path simultaneously, the optimization criteria becomes another 

barrier. The optimization criteria, as has been discussed, is to avoid joint reversals. 

Mathematically, the metric to avoid joint reversals is to apply the limitation that no joint 

velocities can equal zero, since slowing to a halt then accelerating from that point would 

physically represent a joint falling into the static friction region, with or without a reversal. 

Besides the difficulties in setting an inequality constraint through the entire set of 

differential equations according to traditional intrinsic redundancy resolution, there are 

further mathematical issues. If the constraint is set to maximize the absolute joint velocity 

(thereby avoiding joint velocities of zero) this comes in direct conflict with the singularity 

avoidance criterion of minimizing absolute joint velocity. Optimizing in this way would push 

the robot into a singular position, and while the kinematic path may be valid, it would fail 

upon implementation onto a physical robot. Objective functions exist which can moderate 
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joint speed between two extremes. However, the upper limits are variable depending on the 

robot, geometry, and specific joint, increasing the complexity of the problem.  

 In light of all these difficulties, it becomes more straightforward and efficient to 

simply apply a metaheuristic optimization technique to a large number of fully resolved 

potential configurations for a given path, then select the best of all the options. This is 

fundamentally different and should not be confused with the approach detailed by Rokbani 

[25] , wherein the inverse kinematics themselves are unknown, and solved using a PSO 

algorithm. The research presented in this thesis has instead deterministically calculated the 

inverse kinematics at any point, but uses metaheuristics to select a globally optimal solution 

of inverse kinematics which achieve the path motion. 

 Studies have already applied metaheuristic optimization techniques to evaluate and 

select the best possible tool orientation for a given task, according to some metrics [26] . Now, 

beyond just optimizing the positioning of the workpiece within the workspace, the rotation 

of the tool about its redundant axis can be included as an additional optimization parameter. 

Or, for scenarios where the workpiece must be fixed in a certain position relative to the 

robot, there still exists a parameter which can be optimized. 

However, the studies which take advantage of this additional degree of freedom 

typically do so only at one position relative to the workpiece. Some rotation is applied, then 

the motion is executed as normal. Most (but not all) of these studies focus on optimizing 

some aspect of the dynamic properties of a robot arm at a single point, usually the target. 

This is entirely valid, since these properties will change throughout the robot workspace, but 

there is usually not a significant change throughout the relatively short drilling motion. For 

the case of drilling, this means that the ÔÏÏÌȭÓ ÒÏÔÁÔÉÏÎ ÁÂÏÕÔ ÔÈÅ ÔÏÏÌȭÓ ×ÏÒË ÁØÉÓ is constant 

throughout the motion. But these are local optimization methods, the ideal case for a single 

point, and there are relatively few cases of this optimization being applied globally to a whole 

pathȟ ÁÎÄ ÎÏÎÅ ÔÏ ÔÈÅ ÁÕÔÈÏÒȭÓ ËÎÏ×ÌÅÄÇÅ ÏÆ ÁÎÙ ×ÈÉÃÈ ÉÎÃÏÒÐÏÒÁÔÅ ÊÏÉÎÔ ÒÅÖÅÒÓÁÌÓ ÁÓ Á 

criterion. In this thesis, it is shown that by taking a global optimization approach which 

considers the rotation about the redundant degree of freedom at several points through a 
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motion, the additional optimization criteria of reversal minimization can be applied to 

further improve the performance. The optimization methods have been well described and 

commonly used for similar tasks in literature. However, the author acknowledges that the 

fields of path planning, optimization, and redundancy resolution are extensive, and there 

may exist different methods for optimizing the task presented. 

2.4 Local and Global Optimization  

Optimization is a broad topic, and the ideal method to optimize some tasks is highly 

dependent on the task itself. The task presented here requires that the entire motion be 

optimized. This implies that the search method used will be global, rather than local. In local 

searches, only the next step is considered, and there is a movement in the direction which, 

at the current point, leads to the most desirable score. However, this method is susceptible 

to being trapped at local minima. Additionally, these search methods require a continuous 

function to evaluate as the objective. This poses a problem in cases when the function should 

switch cases or a discontinuity is imposed (such as with joint limits). Global search methods, 

on the other hand, are much more applicable to tasks which require the evaluation of some 

combination of input parameters to find the best candidate. In this case, since the 

performance of the entire path is evaluated simultaneously, some overall score is assigned 

to the set of parameters which yield that specific path. By looking at the entire path 

holistically, further refinement can be imposed than would be possible for an algorithm 

which only evaluates some set of joint positions or velocities. 

For example, assume that some combination of joint velocities is perfectly valid 

during the plunging motion so long as they continue to all move in the same direction during 

the retract motion. However, that same combination of joint velocities may no longer be 

desirable (and therefore should get a worse score) if they require that one or more of the 

joints switch direction once the target is reached. A local method cannot look ahead to see 

the future implications of a current decision, and so only a static score for that combination 

of joint velocities can be defined. Some method is required to refine the score beyond simply 

a function of instantaneous joint angles or velocities. So, the method selected must evaluate 
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the full path, and therefore must have some method to generate a fully defined path from a 

combination of input parameters. With this knowledge, it can be seen that this is not a 

redundancy resolution technique which aims to specify the inverse kinematics at each point. 

Rather, it is a method for selecting the best way to fully define a functionally redundant path 

to achieve some additional goal besides the desired tool path. 

These requirements fit the description of a metaheuristic optimization technique. 

That is, one which is combinatorial, checking a set of input parameters then refining the 

subsequent selection of parameters to achieve better results. After enough iterations and 

with some robust strategy for finding better input parameters, the technique can be 

reasonably confident in achieving the goal. Many of these metaheuristic techniques and 

variations upon them exist, but PSO was selected for its robustness, efficiency, and ease of 

implementation [27] [28] . Further details on PSO and comparisons to other metaheuristics 

are provided in Section 4.1. 

2.5 Summary  

Robotic machining has been plagued by the errors in industrial robots, in part excited 

by stiction and backlash during joint reversals. With the additional DOF afforded during 

milling and drilling, researchers have optimized the positioning of the workpiece as well as 

the posture of the robot to stiffen the system as much as possible. This optimization can be 

done in a number of ways, but especially well-suited for the defined problem is a 

metaheuristic optimization technique. This thesis will demonstrate the application of PSO 

with the goal of minimizing joint reversals during a drilling motion to avoid their  negative 

effects altogether and as a result improve performance.
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3 Kinematic Modeling and Motion Planning  

This chapter derives the mathematical model of robotic drilling motions as a function 

of robot kinematics and path parameters. Sections 3.1 and 3.2 define necessary terminology 

and assumptions about the robot and workspace. Most industrial robots are comprised of 

six revolute joints, and so the rotation of each joint propagates throughout the robot until 

the final position of the end effector. Kinematically modeling this propagation is done 

according to the Denavit-Hartenburg (DH) convention in Section 3.3. Likewise, to achieve 

some point in space, the kinematic chain which positions the end effector at the desired 

position and orientation must be solved. These are the forward (Section 3.4) and inverse 

(Section 3.5) kinematics of the robot, in this case a KUKA KR 6 R700-2. However, the drilling 

motion having a redundant degree of freedom renders it underdefined. Section 3.6 

demonstrates how to resolve a single solution from the infinite options available.  

The kinematic methodology described in Section 3.3 ɀ 3.5 is well understood and not 

a novel contribution. However, no sufficiently similar model which could be adapted to the 

robot in question was found, and so a new model was developed. This is an application of 

textbook methods to a new platform, and shown here in the hopes that it can be useful to 

other researchers using a similar robot. 

3.1 Workspace Definitions  

Figure 2 shows a schematic of the six-axis KUKA KR6 R700-2 robot used in this study. 

The origin of the global coordinate system (GCS) is positioned coincident with the origin of 

the robot such that ὢ ὣ ὤ π with the front  of the robot oriented along the 

positive ὢ  axis, ὤ  aligned vertically and towards the top of the robot, and ὣ  

positioned according to the right -hand convention as shown in Figure 2. Point coordinates 

are given in the GCS as ὢȟὣȟὤ ȟ with units of millimeters  (mm) throughout this thesis. 
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Figure 2. Coordinate systems within the robot workspace ; start, target, and end points 
of a sample drilling motion, and the ⱶ angle used to describe rotation about the 

ÄÒÉÌÌÉÎÇ ÓÐÉÎÄÌÅȭÓ ÒÅÄÕÎÄÁÎÔ ÄÅÇÒÅÅ ÏÆ ÆÒÅÅÄÏÍ. 

For any drilling motion, 3 points must be defined: the start of the motion, the target 

and the end of the motion. These are labeled ╟▼ȟ╟◄ȟÁÎÄ ╟▄ respectively and are composed 

of the X, Y, and Z coordinates at each point.  The drilling motion consists of two distinct 

motions called the plunge and retract. The plunge denotes movement from ╟▼ to ╟◄ and the 

retract denotes movement from ╟◄ to ╟▄. These motions are defined by plunge and retract 

vectors, ╥╟ and ╥► respectively such that 
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╥▬ ╟◄ ╟▼

ὼ ὼ
ώ ώ
ᾀ ᾀ

╥►ȟ (3.1) 

and a complete drilling motion consisting of a plunge followed by a retract is denoted ╥▬ ► . 

The orientation of the drill is partially defined by ╥▬ which points from ╟▼ to ╟◄. In 

ÔÈÉÓ ÃÁÓÅȟ ÔÈÅ ÔÏÏÌȭÓ ×ÏÒË ÁØÉÓ ÉÓ ὤ  and is aligned such that negative motion along ὤ  

corresponds to the drill plunging into the material. The ambiguous orientation about ὤ  is 

the redundant degree of freedom and is labelled as ‪ with an arbitrary definition of ‪ πЈ 

when ὣ  ÁÎÄ ὣ  are parallel and positive in the same direction as shown in Figure 2. This 

aligns the GCS with the TCS nicely for this case of drilling direction. However, for drilling in 

any general direction, ‪ πЈ may be designated as the tool orientation which brings the 

robot flange closest to the robot base. If a workpiece is being drilled, it may be more helpful 

to align ‪ πЈ with some axis of the workpiece coordinate system. In any case, positive 

rotation about ὤ  according to the right -hand rule corresponds to an increase in ‪. A set 

of angles which consists of some ‪ at each of the start, target, and end points is denoted as  

 ⱶ ‪ ‪ ‪ Ȣ (3.2) 

This ⱶ fully defines the orientation at each of the three points, and by linear interpolation  

the orientation at all intermediate points. 

3.2 Assumptions and Conventions  

The methodology laid out in this thesis is trajectory agnostic; that is, the same results 

can be applied regardless of the velocity profile used in the movement of the robot. Since the 

velocity profile of a robot is not always known, or there is some delay between real-time 

sensing and compensation, it is not always practical to create methods which rely on precise 

timing of a path. The robot controller is responsible for planning the trajectory and following 

the ideal input from the programmed instructions. As such, there will be some discrepancy 
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between the joint paths caused by the controller  dynamic response, but these are assumed 

not to induce any additional reversals (Section 5.3 verif ies this assumption).  

The plunge direction for all simulations and experiments was chosen as ὠ

ρȟπȟπ  for visualization purposes. However, the proposed methodology is general and 

can be applied to more complex plunge motions which include translation in all the GCS axes.  

The performance of the proposed method and ability to achieve zero reversals was 

assumed to be symmetrical about the ὢὤ plane. This was verified with simulation in Section 

4.6, however only to an extent due to the nature of numerical optimization reaching a 

minimum. For subsequent mapping of workspace performance, the results were obtained 

on one side of ὣ  only. 

Unless otherwise stated, all units of distance are in the industry standard of 

millimeters. Units of angular displacement are in degrees. In all cases, the right-hand rule 

applies as the convention when determining frame placements, which is especially relevant 

when identifying the locations and orientations of frames for finding DH parameters.  

3.3 Denavit -Hartenburg Parameter Identification  

The KR 6 R700-2 was a new addition to the IDML at the time of the research being 

carried out for this thesis. The kinematics for this robot were not publicly available but were 

necessary for the optimization model to examine valid robot paths offline. Therefore, the 

forward and inverse kinematic models were fully derived, troubleshot, and tested, and will 

serve as a resource for future students to carry out kinematic examination of the robot. 

Schematics and 3D models of the KR 6 R700-2 are publicly available from KUKA, and were 

used to assign frames to each axis of the robot according to the modified DH convention [29] . 

The neutral position assumed the robot fully extended horizontally, as shown in Figure 3. 

However, the default controller home position of the KR 6 R700-2 is with shoulder upright 

and the elbow bent at ωπЈ, forming a  shaped robot posture. Table 1 shows the four DH 

parameters ‌, a, d, and — which were found for each of the six joints. 
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Figure 3. Frame assignments to a KUKA KR 6 R700-2 according to the modified DH 
convention , as well as the TCP offset used for the sample drilling tool. 

Table 1. Modified DH convention parameters for a KR 6 R700-2. 

Joint ɻi -1 (deg)  ai -1 (mm)  di (mm)  ʃi (deg)  
1 180 0 -400 0 
2 90 25 0 0 
3 0 335 0 -90 
4 90 25 -365 0 
5 -90 0 0 0 
6 90 0 -90 0 

 !ÄÄÉÔÉÏÎÁÌÌÙȟ ÆÏÒ ÖÉÓÕÁÌÉÚÁÔÉÏÎ ÏÆ ÔÈÅ ÒÏÂÏÔ ÕÓÉÎÇ 0ÅÔÅÒ #ÏÒËÅȭÓ 2ÏÂÏÔics Toolbox [30] , 

parameters were found according to the standard DH convention, and are given in Table 2. 

Table 2. Standard DH convention parameters for a KR 6 R700-2. 

Link  ʃi (deg)  di (mm)  ai (mm)  ɻi (deg)  
1 0 0 25 90 
2 0 0 335 180 
3 -90 0 -25 90 
4 0 -365 0 90 
5 0 0 0 -90 
6 180 -90 0 0 
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3.4 Forward Kinematics of the KUKA KR 6 R700 -2 

Forward kinematics (FK) translate known joint angles to an end effector position and 

orientation. Following the DH convention, the FKs can be found by successively multiplying 

transform matrices from the base of the robot to the end effector. The resultant matrix has 

as unknowns —ȟ—ȟȣȟ—. The transform matrix associated with the mDH, representing the 

rotation and translation   

╣░
░

ÃÏÓ— ÓÉÎ— π ὥ

ÓÉÎ— ÃÏÓ‌ ÃÏÓ— ÃÏÓ‌ ÓÉÎ‌ ὨÓÉÎ‌

ÓÉÎ— ÓÉÎ‌ ÃÏÓ— ÓÉÎ‌ ÃÏÓ‌ ὨÃÏÓ ‌
π π π ρ

ȟ 

(3.3) 

which, when applied for each set of DH parameters yields the transformation matrices 

╣ȟ╣ȟ╣ȟ╣ȟ╣ȟÁÎÄ ╣. The product of all these matrices creates the matrix  

 ╣ ╣ ╣ ȣ ╣ȟ (3.4) 

which describes the transformation from the base to the flange as a function of the DH 

parameters. One additional transformation is usually necessary for practical applications, ╣╔  

relating the geometry of the end effector. The matrix ╣╔ ╣ ╣╔  then gives the position 

and orientation of the TCP in the global coordinate frame. 

To verify this against the physical robot, the robot was jogged to some non-trivial 

pose and the joint angles along with TCP position recorded. When the associated joint angles 

were input into ╣╔ , the TCP coordinates agreed. 

3.5 Inverse Kinematics of the KUKA KR 6 R700 -2 

The inverse kinematics are analytical solutions to the problem which requires the 

robot end effector to attain some desired position and orientation. The processes followed 

in this section are common for a 6DOF spherical wrist robot, however the equations 

presented are simplified, and not generalized for any robot. The equations are derived by 
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following the process of successive premultiplication but are unique to the specific 

arrangement of axis frames assigned according to the DH convention.  

Typically, the inverse kinematics for a spherical wrist robot, such as the one analyzed, 

will result in 8 sets of discrete joint angle solutions arising from the use of dual solution 

identities (A.1) to (A.7) shown in Appendix A. These can generally be categorized as elbow 

up or down, elbow left or right, and wrist normal or flipped. Not all solutions are necessarily 

feasible in the physical robot due to joint limits, however at this step no solutions are 

immediately discarded. 

The functions ὧέί and ίὭὲ will be abbreviated as c and s respectively. The subscript i 

represents the associated —. For example, ί  denotes ÓÉÎ— — . To align the frame of 

joint 3 with the zero-position marked on the physical robot, an offset of ωπЈ was added such 

that ‰ — ωπЈ. Throughout this section ‰  is used for brevity. 

An expression relating the end effector position and orientation to each joint angle 

can be found by simply multiplying the forward kinematic transformation matrices 

╣ ╣ ȣ ╣ and taking the inverse. However, this becomes extremely complicated to 

solve analytically for a general case. Instead, by taking advantage of the spherical wrist 

nature of the robot, the problem can be broken into two parts: position and orientation. The 

position component is solved with —ȟ—ȟÁÎÄ ‰  while the orientation component is solved 

by —ȟ—ȟÁÎÄ —.  

First, from a known target position and orientation in the workspace ╟

ὢ ȟὣ ȟὤ , the location of the wrist can be obtained as a function of the geometry of 

the wrist and the end effector. The relative displacement from the TCP to the spherical wrist 

intersection is constant and known based on the geometry of the end effector. 

The wrist position, or Ὀ , are the cartesian coordinates of the intersection of the axes 

of joints 4, 5, and 6 in the global coordinate system. This is denoted as  
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Ὀ

ὴ
ὴ
ὴ
ρ

Ȣ 

(3.5) 

From the forward kinematics, this point can be represented as the translational component 

(last, fourth column) of Ὕ, Ὕ 

 
ὝὝὝὝ Ὕ

ÃÏÓ ʃ ὥ ὥÃÏÓ‰ — ὨÓÉÎ‰ — ὥÃÏÓ—

ÓÉÎ ʃ ὥ ὥÃÏÓ‰ — ὨÓÉÎ‰ — ὥÃÏÓ—

Ὠ ὨÃÏÓ‰ — ὥÓÉÎ‰ — ὥÓÉÎ—
ρ

ὈȢ 

(3.6) 

Then, the technique of successive pre-multiplication can be used to increase the number of 

available equations. Both Ὕ ÁÎÄ Ὀ  are multiplied by Ὕ , or Ὕ. The first step yields 

 

ὝὝ Ὕ

ὥ ὥὧ Ὠί ὥὧ
π

ὥί Ὠὧ ὥί
ρ

ὴ ὧ ὴ ί
Ð ὧ ὴ ί

Ὠ ὴ
ρ

ὝὈȢ 

(3.7) 

The following pre-multiplication is done with Ὕ , or Ὕ to obtain 

 

Ὕ

ὥ ὥὧ Ὠί
ὥί Ὠὧ

π
ρ

Ὠί ὥὧ ὴ ί ὴ ὧὧ ὴ ὧί

Ὠὧ ὴ ὧ ὥί ὴ ὧί ὴ ίί
ὴ ὧ ὴ ί

ρ

ὝὝὈ . 

(3.8) 

And finally, pre-multiplying both sides by Ὕ  gives 
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Ὕ

ὥ
Ὠ
π
ρ

ὝὝὝὈ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
ὴ

ς
ὧ ὧ

ὴ

ς
ί ί ὥὧ Ὠί ὴ ί ὥὧ

ὴ

ς
ὧ ὧ

ὴ

ς
ί ί ὥί Ὠὧ ὴ ὧ ὥί

ὴ ὧ ὴ ί

ρ Ứ
ủ
ủ
ủ
ủ
Ủ

Ȣ 

(3.9) 

These steps provide sufficient equations to solve for —ȟ—ȟÁÎÄ ‰ . To solve —ȟ—ȟÁÎÄ — 

requires a set of equations relating the wrist position to the target. For this, the geometry of 

the end effector will have significant impact. The transformation from joint 6 to the TCP of 

the end effector is denoted ╣╔ . For the end effector used in this thesis 

 

╣╔

π π ρ ὉὉὥ
π ρ π π
ρ π π ὉὉὦ
π π π ρ

ȟ 

(3.10) 

where ὉὉὥ ÁÎÄ ὉὉὦ are 65mm and 100mm respectively, as shown in Figure 4. 

 

Figure 4. Sample drilling e nd effector with associated coordinate frame  and 
dimensions. 

 

EEb = 100mm 
EEa = 65mm ╧╣╒╢ 

╩╣╒╢ 

╨╣╒╢ 
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Now given this transformation, the relationship between the wrist and the target can 

be described either as ╣╔ , or else ╣ ╟ where 

 ╣╔ ╣╣╣╣╔ ╣╣╣ ╟ȟ (3.11) 

arising from the knowledge that the target point ╟ must equal to the product of all frame 

transformations ╣╣ȣ ╣╔ . A number of trigonometric identities and simplifications will be 

used, they are listed in Appendix A.  

Given a target matrix ╟  the wrist position  ╓◌ of the robot is determined by the 

specific geometry of the end effector. If there is no end effector, it is given by  

 ὴ ὴ Ὠ ╟ȟȟ 
ὴ ὴ Ὠ ╟ȟȟ 

ὴ ὴ Ὠ ╟ȟȢ 

(3.12) 

 
With an end effector, the wrist position is determined by the specific geometry in the relative 
sliding, approach, and normal directions along with the associated rotations. 

Then, from row 2 of (3.7) an expression for — in the form of (A.4) is found, where  

 ὥ ὴ ȟ 

ὦ ὴ Ȣ 

(3.13) 

Leading to the two known possibilities of —. With this variable solved, — is isolated in rows 

1 and 2 of (3.8). Where, after manipulation of the equations through the use of (A.8) and 

(A.9), ‰  takes the form of — in (A.7), while ὥ ὥ, ὦ Ὠ, and  

 
ὧ

Ὠ ὴ ᶸςὥ ὴ ὴ ὴ ὴ ὥ ὥ ὥ Ὠ

ςὥ
Ȣ 

(3.14) 

— is then solved by substituting the corresponding — ÁÎÄ ‰  into rows 1 and 2 of 

(3.8), and applying (A.8) and (A.9) where 
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 ὥ Ὠ ὴ ȟ 
ὦ ὴ ὧ ὴ ί ὥȟ 

ὧ ὥί Ὠὧȟ 
Ὠ ὥὧ Ὠί ὥȟ 

(3.15) 

necessitating the condition 

 ὧ ὥ ὦȢ (3.16) 

With this, the wrist position is given for any target as a function of —ȟ—ȟÁÎÄ ‰ . The 

wrist kinematics are specific to the end effector geometry, so care should be taken if adapting 

these results to other applications. 

Column 1 of the LHS of (3.11) takes the form of (A.5), solving for — with  

 ὥ ὲὧ ὲίȟ 

ὦ  ὲὧὧ ὲί ὲὧίȢ 

(3.17) 

And the supplementary condition in (A.6) where 

 ὧ  ὲίὧ ὲὧ ὲίίȟ (3.18) 

giving —. Care must be taken to assign the correct configurations with the associated 

solutions. The flipped wrist solutions can alternatively be found with — “ and —. 

Finally, from columns 2 & 3 in row 2 of the LHS of (3.11), — is found with (A.5) where 

 ὥ Ὓὧ Ὓί ὧ Ὓίίȟ 

ὦ ὥὧ ὥί ὧ ὥίίȢ 

(3.19) 

Note that Ὓ represents the sliding X, X, or Z vector associated with the end effector.  

With all joint angles determined, the results can be used as joint commands for the 

robot to validate the inverse kinematics. This process may not be what is used by the 

controller, as that process is proprietary KUKA information, but the method shown was 

successful in predicted the required joint angles which could put a robot at a specific location 

and orientation in the workspace. 
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3.6 Redundancy Resolution in the Drilling Motion  

The inverse kinematics give the capability of solving the set of joint angles for any 

ÐÏÉÎÔ ×ÉÔÈÉÎ ÔÈÅ ÒÏÂÏÔȭÓ ×ÏÒËÓÐÁÃÅȟ ÂÕÔ for the drilling motion in question the orientation is 

still undefined. The tool will perform equally well rotated at any angle about the spindle, and 

so some strategy is required for deciding the orientation of the tool throughout the motion. 

In this case, there are no additional factors to be concerned with (such as keeping a gravity-

fed reservoir relatively upright) and so any orientation about the tool Z axis is considered 

viable. Orientations are assigned at three points in the drilling operation: at the start of the 

motion, the target position, and at the end of the motion. These orientations will be 

optimized. As a matter of simplicity, the bounds of each of these orientation  angles is set at 

ρψπЈ. As discussed in Section 2.3, there are many ways of resolving this redundancy, and 

more elegant methods which make use of the null space and weighted-pseudo inverse 

Jacobian may be formulated in the future. Additionally, if extended to include more degrees 

of freedom or additional optimization criteria, more input parameters may be necessary to 

reduce the dimension of the null space enough for an optimal solution to be found. The 

method used here involves using a few input parameters to fully define the path, then 

evaluating that path and comparing it to others according to some optimization criteria. In 

this sense, the problem of resolving redundant inverse kinematics is avoided because any 

point in the parameter space evaluated is fully defined, and it is only the motion itself which 

is initially undefined.   

The chosen method to fully define all points along the path is as follows: First, identify 

ⱶ for some ╟▼ȟ╟◄ȟÁÎÄ ╟▄ which define the target and plunge depth Ὀ ╥▬ . Then, for 

any distance ‏ along the path, the associated ‪  is linearly interpolated between ‪ ÁÎÄ ‪ 

(if during the plunge motion) or ‪ ÁÎÄ ‪  (if during the retract)  



Chapter 3 | Kinematic Modeling and Motion Planning 

 

26 

 

 

‪

ừ
Ử
Ừ

Ử
ứ ‪ ‪ ‪

‏

Ὀ
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‪ ‪ ‪
‏ Ὀ

Ὀ
ȟ  ‏ Ὀȟ

 

(3.20) 

which fully defines the target position and orientation at any point along the drilling path. 

3.7 Summary  

A model is required before attempting optimization, which has been done in this 

chapter by identifying the DH parameters of the experimental platform to be used, deriving 

the forward and inverse kinematics associated with it, and finding methods to define the 

orientation  from an underdefined target at any point within the workspace. However, these 

steps do not optimally resolve the redundancy, and so requires the use of combinatorial 

optimization techniques to evaluate and select the best parameters. 
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4 Optimization  of Drilling Motion  

This chapter presents the methodology for the optimization of drilling motions by 

leveraging the kinematic redundancies of robots. In this work, Particle Swarm Optimization 

(PSO) has been employed to determine the optimal robot pose and motion strategy during a 

drilling operation  to avoid joint reversals. Section 4.1, describes the behavior and selection 

of the Particle Swarm Optimization algorithm. Section 4.2 outlines the application of this 

optimization to the formulated drilling case. Further detail on the objective function and 

optimization parameters is given in Section 4.3. The simulated result of the optimization 

process to the formulated problem with the robot model is shown in Section 4.4. Then, in 

Section 4.5, the weights and settings used in the optimization model are tweaked to ensure 

good performance as the process is repeated at multiple locations throughout the robot 

workspace in Section 4.6. Finally, Section 4.7 focuses on a single point in the robot workspace 

and seeks insight into the nature of the objective function by using brute force to map the 

output from every set of input parameters.  

4.1 Particle Swarm Optimization Algorithm  

First and foremost, Particle Swarm Optimization is not being presented here as the 

only or best method for solving the problem at hand. It is an efficient, simple, and robust 

algorithm which returned good results in this application. However, for more complex 

implementations with additional DOF or parameters creating high dimension optimization, 

PSO may not be the best option.  

PSO takes inspiration from nature and the behavior of organisms (particles) in a 

group (swarm). Groups of animals can solve complex behavioral tasks very quickly, such as 

schools of fish which seem to move as one cohesive unit, even when unexpected events such 

as a predator attack occur. In reality, each individual is following some simple set of rules in 

response to whatever stimulus it observes or receives. The behavioral task set in PSO is the 

optimization problem (getting to the unknown minimum value of some objective function) 
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with a specific set of input parameters representing the Ȱpositionȱ of an individual particle 

in the parameter space. How much, and in which direction, each particle moves from one 

ÉÔÅÒÁÔÉÏÎ ÔÏ ÔÈÅ ÎÅØÔ ÉÓ ÃÁÌÌÅÄ ÔÈÅ ȰÖÅÌÏÃÉÔÙȢȱ 4ÈÉÓ ÖÅÌÏÃÉÔÙ ÉÓ ÃÁÌÃÕÌÁÔÅÄ ÉÎÄÉÖÉÄÕÁÌÌÙ ÆÏÒ ÅÁÃÈ 

ÐÁÒÔÉÃÌÅ ÁÔ ÅÁÃÈ ÉÔÅÒÁÔÉÏÎ ÁÃÃÏÒÄÉÎÇ ÔÏ Á ȰÖÅÌÏÃÉÔÙ ÅØÐÒÅÓÓÉÏÎȢȱ The motion of the particles is 

governed by the simple rules (the velocity expression) each particle follows. While these 

rules can vary between species and situation in nature, the set of rules which are given to 

ÐÁÒÔÉÃÌÅÓ ÉÎ 03/ ÉÓ ÔÏ ÆÁÖÏÒ ÐÏÓÉÔÉÏÎÓ ÃÌÏÓÅÒ ÔÏ ÔÈÅÉÒ ÐÅÒÓÏÎÁÌ ÂÅÓÔ ÁÓ ×ÅÌÌ ÁÓ ÔÈÅ Ó×ÁÒÍȭÓ 

global best. After multiple iterations, this results in overall swarm movement towards the 

global minimum. The general steps and motion of particles in PSO is visualized in Figure 5. 

 

Figure 5. Visualization of PSO behavior from initial chaotic motion, to searching the 
workspace, to finally converging near the global minimum.  

The basic structure of PSO is as follows: generate a population of particles each with 

some set of optimization parameters. Then, evaluate their performance at their current 

position using the objective function. Apply the velocity expression to determine the 

subsequent motion of particles, then move particles to their new positions. Repeat until 

some stopping criterion is reached. A detailed description of the application of PSO is given 

in Section 4.2.  

PSO and metaheuristic searching algorithms in general are especially well suited for 

the task at hand, i.e. robotic drilling, due to a number of factors. First, they do not require a 



Chapter 4 | Optimization of Drilling Motion 

 

29 

 

differentiable objective function. Analytical optimization techniques which guarantee 

convergence at some minimum typically require the derivative or gradient to be defined for 

every point. However, due to the selected objective function (see Section 4.3), there may be 

sudden discontinuities and sharp curves (as shown in Figure 6), rather than a smooth and 

well-behaved function. Metaheuristic searching algorithms are a suitable approach for 

dealing with discontinuous objective functions such as the one defined in this work. 

 

Figure 6. Sample visualization of local minimum, global minimum, and poor behavior 
near region of interest.  

Second, a population-based optimization model can cover a large region of the 

parameter space in initial iterations compared to algorithms which only search using a single 

point. Since it is of interest here to better understand the objective function, being able to 

map a larger area quickly (and remembering points of interest while doing so) is more 

desirable than necessarily zeroing in on the single best point as quickly as possible. Again, 

since the objective function behavior is unknown and possibly poorly conditioned, a large 

population can more easily avoid being trapped in local minima while searching the 

parameter space. 

Additionally, while there are a number of these metaheuristic population methods, 

the selection of PSO was primarily driven by the difficulty in conceptualizing the objective 

function, and the relatively small set of input parameters. A highly random initial search 

strategy was desired to broadly identify regions of potential minima. Once certain candidate 
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zones are identified, there is no guarantee that they will create a slope towards the minima, 

and there may be regions around them which are discontinuous. Importantly, these 

discontinuous regions may be very close to a minimum, and so the region should not be 

wholly disregarded if a single invalid point is found. For this reason, there is not necessarily 

an advantage to breeding nearby fit particles, as in Genetic Algorithm (GA). Besides, the 

number of input parameters is so small that introducing a single mutation in a GA entity 

causes an extremely significant relative deviation from the unmutated version and including 

particle and swarm bests gives the PSO a memory component which GA lacks [31] .  

Finally, the population should eventually converge and perform many pseudo-

random searches in the best identified region to try and achieve zero reversals. So, a method 

which can adapt throughout the search or naturally exhibit this convergence behavior 

quickly is desirable. However, it could still be beneficial to converge at a number of local 

minima, especially when trying to analyze the behavior of a new objective function. At the 

outset, it is unknown if there is only a very narrow set of parameters which achieves zero 

reversals, or if there are many. PSO achieves this with the help of adjustable weights which 

ÃÁÎ ÁÆÆÅÃÔ Á ÐÁÒÔÉÃÌÅȭÓ inertia (momentum) and tendency to favor personal best over the 

global best (clustering at local minima). This behavior is illustrated in Figure 7. 

 

Figure 7. Visualization of particle movement with different weights. A high cognitive 
factor  (╦╟║) will keep a particle near its personal best, while a high social factor  

(╦╖║) will convince a particle to move to the swarm's best.  
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PSO fits all the aforementioned criteria and is relatively efficient computation-wise 

compared to other metaheuristic algorithms [32] . PSO has been used in a number of studies 

of posture optimization with good results [33]  and proved effective in initial trials of the 

process outlined here so was selected to continue. Countless variations of the PSO algorithm 

have been proposed [34] , most of which claim improvement in some way or another under 

certain conditions or with certain objective functions. While a basic implementation of PSO 

proved effective for this thesis, further refining the process and exploring other models for 

this objective is an encouraging domain of future study. 

4.2 Application of PSO for Minimizing Joint Reversals  

Like all metaheuristic optimization algorithms, PSO requires some set of input  

parameters to iterate as well as an objective function to evaluate performance. For this case, 

there are three optimization parameters: ‪ȟ‪ȟÁÎÄ ‪ , representing the twist about the 

work axis at ╟▼ȟ╟◄ȟÁÎÄ ╟▄ respectively (see Figure 8). 

 

Figure 8. Visualization of psi angle with the sample drilling tool.  
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The objective function essentially counts the number of reversals during a given 

drilling motio n, with the option to include other parameters such as joint travel or stiffness. 

Since there are three parameters, it is possible to visualize the movement of the swarm in 3D 

space. With more than three parameters visualization becomes difficult as not all input 

parameters can be mapped to an axis in space. 4ÈÅ ÃÏÏÒÄÉÎÁÔÅÓ ÏÒ ȰÐÏÓÉÔÉÏÎȱ (╧  of a particle 

at iteration Ὥ is given by a set of ⱶ parameters 

 
╧░ ⱶ ‪ȟ‪ȟ‪ Ȣ 

(4.1) 

The movement of a particle in the parameter space is its ȰÖÅÌÏÃÉÔÙȱ ÁÎÄ ÄÅÓÃÒÉÂÅÄ ÁÓ ÔÈÅ 

change in position; the difference between coordinates from one iteration to the next 

 
╥░ ╧░ ╧░ Ȣ 

(4.2) 

Random initial velocities are generated and assigned to each particle. A starting guess 

may be used, however since it is still difficult to predict where the zero-reversal case will be 

achieved this is not normally accurate. But including a starting guess and limiting the velocity 

may prove to be effective at reducing the convergence time of the algorithm in future, when 

the location of a minimum for any given position can be reasonably estimated. A flowchart 

of the PSO algorithm and implementation in this context is shown in Figure 9. 
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Figure 9. Flow chart of PSO algorithm implemented within the context of minimizing 
joint reversals for a drilling motion.  

Before the first iteration, the PSO algorithm first defines values to use throughout, 

such as term weights (ὡ) and stopping criteria.  Then, a number of particles are generated 
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according to the population limit, each somewhere within the parameter space defined by 

the limits of ‪ and given random initial velocities.   

Each iteration begins by updating the new particle positions according to their 

current position and velocity. Two stopping criteria are normally used to limit the search, 

the first is a check on the number of iterations which have elapsed. The second is to check if 

at least 95% of the number particles (ὔ ) have a less than 1% change in their location from 

the previous iteration, 

 ȿ╧░ ╧░ ȿ

╧░
ρϷ Ὢέὶ ὔ ωυϷȢ 

(4.3) 

If most particles are relatively stationary, there is a high likelihood that an acceptable 

minimum has been found and if not, the subsequent iterations are not likely to find any better 

positions. A third stopping criteria was used for populating workspace performance maps, 

in this case the algorithm stopped as soon as the first zero-reversal case was found. If any 

stopping criteria are reached, the algorithm outputs the current global best score along with 

the associated ⱶ.  

Provided the stopping criteria is not reached, the objective function analyzes each 

particle in the swarm. For each of these particles, the path ╥▬ ► is constructed according to 

the particle input parameters. The path is then divided into ὔ interpolation points . For each 

interpolation point (ὲ ρȟςȟȣȟὔ), the inverse kinematics yield 8 sets of joint angles 

 ╠▪ȟ▓ —ȟ—ȟȣ— ȟȟ (4.4) 

where Ὧ ρȟςȟȣȟψ. For every configuration Ὧ, the set of joint angles fully describing the 

drilling motion is concatenated into a joint angle history 

 ╗▓ ╠ȟ▓ȟ╠ȟ▓ȟȣȟ╠ ȟ▓ȟ (4.5) 

This solution ╗▓ describes a complete drilling motion in the joint space of the robot 

and is what will be evaluated with the objective function during optimization. The number 
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of discrete points is significant since if they are too widely spaced, there may be an 

intermediate point which is invalid and so cannot be executed by a physical robot. If the 

number of points is too large, the computation time becomes excessive. In this case 200 steps 

were used for the entire motion while searching. When the best score is found, a check is run 

with up to 40,000 steps to ensure convergence. For a 50mm plunge, this corresponds to a 

linear resolution of around 1 micron. This is likely far beyond what is necessary to ensure no 

intermediate points caused an error, but the added computation time for a single case, even 

with so many steps, is negligible.  

After finding the joint angles at each point along the path, the joint angle history ╗▓ 

showing the movement of each joint throughout the motion is passed into the objective 

function. The entire joint angle history is evaluated to find the number of reversals, the total 

travel, and other Boolean conditions, and a score is given between 0 and 1. 

Once particles have been assigned a score, it is compared first to their personal best. 

If a better score has been achieved, this is saved as the new personal best. If a new personal 

best is achieved, that score is also compared against the swarmȭs global best, which is 

updated to the new score if it is better. When any bests are stored, both the score and location 

within the parameter space is saved. Finally, the velocity of the particles for the subsequent 

iteration is determined according to the velocity expression, which is given as 

 
╥░ ὶϽ╧╟║ ╧░ Ͻὡ ίϽ╧╖║ ╧░ Ͻὡ ╥░Ͻὡ ȟ 

(4.6) 

 

where ὡ ȟὡ ȟÁÎÄ ὡ  are weights associated with the personal best, global best, and 

inertia terms, respectively. ὡ  was selected as 0.2, ὡ  was selected as 0.1, and ὡ  was 

randomized at each iteration between 0.5 and 1 according to a uniform distribution. 

Typically, ὡ ὡ ὡ . However, since the optimization was constrained, there was 

no concern for particles shooting away too far so a higher inertial weight allowed further 

exploration of the parameter space. ὡ ὡ  was done since, after algorithm execution, it 
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allowed for better visualization of locations of local minima clusters. For a detailed analysis 

of the possible weight distribution s in PSO and their effects, see [28] . The variables ὶ and ί 

are randomly genÅÒÁÔÅÄ ÁÔ ÅÁÃÈ ÉÔÅÒÁÔÉÏÎ ÂÅÔ×ÅÅÎ π ÁÎÄ ρ ÔÏ ÒÅÐÒÅÓÅÎÔ Á ÐÁÒÔÉÃÌÅȭÓ ÁÄÈÅÒÅÎÃÅ 

to each influence. This random weight scheme improved the convergence rate, while the 

higher personal best weight ensured particles clustered at numerous minima as opposed to 

all seeking the first global best.  

This optimization methodology is trajectory agnostic, which is beneficial since it 

allows for the same method to be applied to any robot controller without needing knowledge 

or control over the trajectory. Often times, control algorithms which improve performance 

require an override of the standard control architecture within a given robot controller. This 

makes it difficult to implement in an industry setting where the expertise, resources, and 

time required are prohibitive. Instead, the optimization methodology proposed has results 

which are easily translated into robot instructions. A point-to-point  move can locate the 

robot at the first position, followed by a linear translation ╥▬ of the plunge depth value with 

some associated rotation about ╩╣╒╢ corresponding to ‪ ‪ followed by another linear 

motion along ╥► of ‪ ‪.  

4.3 Objective Function and Optimization Parameters  

The optimization input parameters are ‪ȟ‪ȟÁÎÄ ‪ . Since all ‪ parameters are 

bounded between ρψπЈ, this creates the parameter space, or the volume which will contain 

all the particles. This is the only explicit constraint on the input parameters. In addition to 

these limits, a velocity restriction can be put in place which limits the maximum 

displacement of a particle between two iterations. This is useful when refining the search 

near a specific point (with some initial guess) however was not used when searching the 

entire parameter space. The optimization parameters (particle locations) are initially 

distributed throughout the parameter space semi-randomly. ‪ and ‪ are randomly 

selected, then ‪  is randomly selected within the remaining volume of the workspace which 

will ensure there is no inflection. That is, ‪ throughout the motion is either monotonically 
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increasing or decreasing. This was done since a reversal in ‪ was overwhelmingly likely to 

introduce a reversal in the robot joints, usually the wrist.  

The objective function which evaluates the performance of the particles must not only 

evaluate some given robot position, but the entire drilling motion constructed from the set 

of ⱶ. All positions are known, and only the orientation is undefined. Therefore, when given 

the orientation at the three known points, the entire motion is fully defined by assuming a 

constant rate of rotation from one position to the next. ‪ at any point along the path is given 

in (3.20). After the IKs are applied to each point in the path, the resulting joint angles for the 

entire motion create six smooth profiles, together called the joint angle history ╗▓. 

As an objective, this thesis aims to minimize joint reversals first. Then, within 

solutions with the minimum number of reversals, discriminate between solutions by 

minimizing total joint travel. Therefore, the weight on the number of reversals, ὡ , was set 

as 6/7 while the weight for joint travel, ὡ , was set as 1/7. This ensured that a solution, no 

matter how much joint travel it had, would be favored over any other solution with more 

joint reversals. 

The final resulting objective function is 

 

Ὢ╗▓
ὔ

φ
Ͻὡ

ʃ

φ σφπЈ
Ͻὡ      

ὄ ὄ ὄ , 

(4.7) 

where ╗▓ is some generated joint angle history, ὔ  is the number of reversals, —  is the 

total joint travel in ╗▓ and the remaining terms are Boolean conditions which excluded 

invalid solutions. The maximum possible normalized value of the first two terms in (4.7) is 

1. Therefore, any Boolean conditions which returned True as 1 automatically achieved the 

worst possible score and were excluded. These terms are another way of constraining viable 

input parameters. It is difficult to predict and relate from just the values of ‪ȟ‪ȟÁÎÄ ‪  

where the inverse kinematics will be unsolvable, violate joint limits, etc. (and of the 8 
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solutions some ÍÁÙ ÂÅ ÖÉÁÂÌÅ ×ÈÉÌÅ ÏÔÈÅÒÓ ÁÒÅÎȭÔɊȢ 4ÈÅÒÅÆÏÒÅȟ ÉÔ ÂÅÃÏÍÅÓ ÍÏÒÅ ÐÒÁÃÔÉÃÁÌ ÔÏ 

parse the invalid results after evaluating the path generated by ‪ȟ‪ȟÁÎÄ ‪  than to 

determine which combinations to preemptively exclude. ὄ ȟὄ ȟÁÎÄ ὄ  were 

assigned if there were any discontinuities in the generated path, if any joints exceeded their 

hardware limits, or if there was no valid inverse kinematic solution found, respectively. 

If additional criteria were desired, such as including stiffness or minimizing torque 

(and thereby power consumption), these would simply be added as another term to the 

objective function. Whatever metric used should be normalized between 0 and 1, then term 

weights adjusted as desired.  

In addition, no joints in the plunge motion can be stationary as the goal is to avoid 

stiction at the target position. This would not happen if a joint remained stationary during 

the plunge then began motion during the retract. Physically, this issue would still be present 

at very small velocities as well, so for best practice the absolute velocity should be 

maintained above the static friction threshold. Since the methodology is trajectory agnostic 

(velocity is not included) this cannot be specified as an angular velocity, but a minimum 

angular difference between adjacent steps was set as πȢππυЈ/step.  

4.4 Simulation of a Sample Drilling Path  

A target was selected for trials with the target position ╟◄ υππȟσππȟψππ . This 

position in the workspace is one where the manipulator is relatively dexterous, and 

represented a fairly typical drilling pose and direction. Dexterity refers to positions which 

are far from potential obstacles, singularities, joint limits, edge of the workspace, and can 

generally rotate freely about the target point in multiple axes. This metric can be quantified 

through use of the Jacobian but is not required here. A plunge vector ╥▬ of υπȟπȟπ  was 

selected, and ὔ ςππ steps were used in the interpolation over the entire path distance 

╥▬ ► ρππάά. The optimal solution was verified at ὔ τπȟπππ steps to ensure 

numerical approximation did not smooth over invalid points. The optimal solution ⱶ▫▬
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ρτȢρφЈȟυȢωτЈȟσπȢτφЈ was output after 280 seconds on an i5 3.5 GHz CPU. The 

convergence of particles is shown in Figure 10. At iteration 0, all 100 particles are distributed 

pseudo-randomly throughout the parameter space and their initial scores are evaluated. 

After 25 iterations, the particles have begun to cluster near regions which have shown good 

scores. After 50 iterations the algorithm stopped, and the majority of particles are clustered 

around a few local minima. The current global best is shown in red, and the rest of the 

particles are colored according to their current score (scale in Figure 11).      

 

Figure 10. Location of particles within the PSO algorithm at iterations 0,  10, 25, and 50. 

At iteration  0 the distribution of particles is not uniform throughout the entire 

parameter space. There is a noticeable skew to place particles near the diagonal ‪ ‪  

Iteration 1  Iteration 10  

Iteration 25  Iteration 50  
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plane. This is because when generating the initial particle positions first ‪ is randomized 

(explaining the uniform distribution along the ‪ axis). Then, ‪ is also randomly distributed 

(again, along the entire axis between the bounds). However, ‪  is then generated between 

‪ and the upper or lower bounds of the parameter space such that 

 ίὭὫὲ‪ ‪ ίὭὫὲ‪ ‪ ȟ (4.8) 

continuing the trend from ‪ to ‪.  This ensures the direction of rotation of the tool is 

consistent throughout the motion. Initial trials found that solutions which exhibited a 

reversal in ⱶ were far more likely to have a joint reversal, especially in the wrist. Therefore, 

in the interest of obtaining more feasible initial guesses, these cases were excluded. 

However, there is no restriction preventing any particle from moving into a region of the 

parameter space where (4.8) is not true in subsequent iterations, as is evident from the 

distribution of particles at iteration 10 in Figure 10. 

The final scores of all particles are plotted according to ascending scores in Figure 11.  
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Figure 11. Score distribution of 100 particles after 50 iterations  of PSO algorithm. 

The width of a single-colored bar shows how many particles achieved the number of 

reversals corresponding to that score step. In this test, of the 100 particles, 40 were able to 

find a set of parameters with zero reversals in the iterations allotted. This figure helps 

illustrate the echelons of the objective function, as well as the general performance of the 

optimization model. The number of reversals corresponds to the large steps, while the 

gradual incline in each is the different amount of total joint travel for each particle which 

distinguishes solutions within a given strata. This technique of visualizing the swarm at the 

beginning, midpoint, and end of algorithm execution then graphing the performance of 

particles will be used in Section 4.5 to tune the parameters of the optimization to ensure 

consistent results could be achieved.  
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4.5 Performance Tuning  

PSO has a number of parameters which can be tuned to influence the ability of the 

algorithm to obtain the global minimum. This section will detail the tests carried out to find 

values for these parameters which ensured efficient convergence of the algorithm for 

subsequent tests.  

The purpose of this tuning was not to obtain the best possible set of parameters with 

respect to convergence rate and computational efficiency. A much more in-depth evaluation 

of parameters and optimization algorithms would be required for that goal. The optimization 

methodology presented here is a means to the result of a drilling motion with zero reversals. 

It is not intended to be taken as the exclusive or optimal approach. A sufficiently robust 

algorithm will be able to find zero-reversal cases somewhat efficiently, but it is not a real-

time control strategy. A faster and more accurate approach may be found with further 

research into the specific objective function, alternative optimization algorithms, and 

parameter tuning. Nevertheless, the process of selecting parameter settings is shown to 

demonstrate some of the considerations which went into selecting these values.   

During initial testing of the algorithm, it was recognized that a constant inertial 

scheme was not suitable for this application. While the implementation of PSO does not 

guarantee convergence, tests with a constant inertial scheme often converged at local 

minima with greater than zero reversals. Multiple trials with the same parameters were 

required to definitively say that a zero-reversal case could not be achieved. Furthermore, 

particles often became stuck in a repetitive motion from iteration to iteration, either 

oscillating about some point or consistently stepping in the same direction at the velocity 

limit. There are numerous other inertial weight schemes for PSO detailed by Bansal [35] . As 

a conclusion, they recommend that a chaotic inertia weight be selected for improved 

accuracy, and a random inertia weight for computational efficiency. Other schemes offered 

certain advantages, and so were tested as well against the benchmark implementation of the 
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random inertia weight (Figure 12). The trials which were conducted, and the associated 

tuned parameters, are shown in Table 3.  

Table 3. Summary of PSO parameter values during tuning trials.  

Trial #  Pop. Size Iterations  Inertia Scheme  ╦╟║ ╦╖║  
1 200 25 

ὡ πȢυ
ὶὥὲὨ

ς
 

0.2 0.1 

2 200 25 ὡ ὸ πȢωυὡ ὸ ρȟ 

ὡ π πȢχ 

0.2 0.1 

3 100 50 
ὡ πȢυ

ὶὥὲὨ

ς
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Trial 1 yielded promising results, with a significant number of particles achieving the 

zero-reversal case, while having still searched a large overall portion of the workspace. 

However, no clear clusters of local minima emerged. The sheer number of individuals meant 

that a large region of the parameter space was saturated with particles. This can be seen as 

rather computationally inefficient, despite having the potential to find very small regions of 

local minima. 

 

Figure 12. Trial 1 particle convergence and performance.  
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Implementing a decaying inertia weight scheme (Figure 13) resulted in a similarly 

sized portion of the workspace being searched, however most particles failed to converge in 

the allotted number of maximum iterations, with some even failing to find a single valid 

solution even with six reversals (the portion of the six-reversal bar with a score of 1). Again, 

no clear local minima emerged and having many particles close to one another is inefficient.  

 

Figure 13. Trial 2 particle convergence and performance.  
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While a larger population size was desired to search a larger workspace, through 

these trials and visualization of the objective function with set parameters (see Section 4.7) 

it became evident that well performing regions were not so small as to necessitate this 

population size. It was sufficiently likely that, given the typical size of the zero-reversal 

region, fewer numbers were needed to eventually find a minimum. Trial 3 (Figure 14) 

reverted to a random weight scheme and instead reduced the number of particles to 100 and 

increased the maximum number of iterations to 50. With this, the plurality of particles found 

a zero-reversal case.  

 

Figure 14. Trial 3 particle convergence and performance.  
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To further stretch this trend, only 25 particles were used over 200 iterations in Trial 

4 (Figure 15). In this case, particles either found a zero-reversal case or became noticeably 

trapped at local minima. Also, the initial distribution of the swarm with so few particles 

creates a rather sparse coverage of the parameter space. This makes this scheme more 

susceptible to unfortunate initial starting locations which could lead the swarm towards a 

local minimum. The 100 particle 50 iteration combination of Trial 3 seemed to strike a good 

balance between computation time, area searched, and percentage of particles which found 

a zero-reversal case. For subsequent trials, the Trial 3 combination was used. 

 

Figure 15. Trial 4 particle convergence and performance.  
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An unconventional increasing weight scheme was tested in Trial 5 (Figure 16). The 

ÔÈÅÏÒÙ ÂÅÈÉÎÄ ÔÈÉÓ ÍÅÔÈÏÄ ×ÁÓ ÔÏ ÈÁÖÅ ÔÈÅ ÆÉÒÓÔ ÉÔÅÒÁÔÉÏÎÓ ÈÅÁÖÉÌÙ ÁÆÆÅÃÔÅÄ ÂÙ ÔÈÅ ÐÁÒÔÉÃÌÅȭÓ 

initial random positions. Since the particles began distributed throughout the workspace, 

each particle would spend more iterations searching their local region before converging 

towards the best. However, this offered no significant benefit over the new best performing 

candidate.  

 

 

Figure 16. Trial 5 particle convergence  and performance.  
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Trial 6 (Figure 17) tested the results of having a larger social bias than cognitive bias. 

This encouraged particles to move towards the global best and predictably resulted in most 

of the particles converging immediately towards the best without significant searching of the 

workspace. While the result is promising in this trial, for those cases where the feasible zero-

reversal region may be smaller or have additional local minima traps nearby this behavior 

could be deleterious. For this reason, it was not favored over those schemes which had a 

larger cognitive bias. 

 

Figure 17. Trial 6 particle convergence and performance.  

  






































































































