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1 ABSTRACT 

In this research, single phase flow regimes in porous media were studied both numerically 

and experimentally to determine methods to predict the effects of rarefied gas flow and 

inertial flow.  The results of this research were initially compared with the convention 

methods of treating rarefied gas flow, the Klinkenberg equation and inertial flow, the 

Forchheimer equation. In the first section of the research, the slip condition for rarefied gas 

flow in low permeability, two-dimensional simple porous media was studied by the Lattice 

Boltzmann method (LBM) and new corrections to the Klinkenberg model and higher order 

slip models were investigated. To apply LBM, new corrections were introduced to the 

solid-fluid boundary condition and a new relationship was proposed to relate LBM 

viscosity and Knudsen number. To validate the LBM model, the slip flow simulation 

results were compared to analytical methods and experimentation. It was shown that the 

modified LBM simulator was capable of predicting the experimentally observed Knudsen 

minimum. By comparing the numerical simulation results with analytical models extracted 

from the up-to-date literature, the analytical model that most closely matched numerical 

model results was identified.  

In the second section of this research, the apparent permeability reduction due to inertial 

effects in simple and complex porous structures was studied. LBM based simulator was 

developed to model single-phase three-dimensional fluid flow in porous media. The 

simulator was verified by experimental and analytical solution tests and then was 

implemented to study high Reynolds number flow processes in irregular shaped porous 

structures. The effects of inertial on the onset and extent of non-Darcy flow in different 
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geometries was studied. It was shown that the Forchheimer equation does not accurately 

fit the high Reynolds number flow. A new empirical correlation was proposed that 

correlates the scaled permeability and mass flow rate relationship very well and is more 

accurate than the Forchheimer equation. To validate the LBM, a modified experimental 

technique was designed and utilized to analyze permeability and mass flow rate 

relationships in high Reynolds number flows. The experimental results showed that the 

correlation in the present research is far more accurate than the Forchheimer equation.   
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7 NOMENCLATURE  

Lattice Boltzmann (Dimensionless) 

A Area (m2) 

D Number of space dimensions 
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1 CHAPTER 1: INTRODUCTION  

             

            The Darcy law provides a basic linear equation for single-phase fluid flow in porous 

media in idealized conditions. The one-dimensional Darcy equation relates the fluid 

dynamic viscosity µ, the porous medium permeability k, the flow area A, the medium length 

L and the piezometric pressure difference æʌ to the volumetric fluid flow rate through the 

porous sample q, as: 

ή
Ὧὃ

‘

Ўl

ὒ
 (1.1) 

The piezometric pressure difference is caused by the hydrostatic pressure difference æP 

and the elevation difference of the two ends of the sample æz, as: 

Ўl Ўὖ ”ὫЎᾀ (1.2) 

In the above equation, ɟ is the density of the injected fluid and Ὣ is the gravitational 

acceleration.  

It is generally accepted that the validity of the Darcy equation for a porous medium is 

dependent on the size of the pores as compared to the mean-free path of molecules 

characterized by the Knudsen number Kn, and on the flow regime characterized by the 

Reynolds number Re (Dullien 1992).The Knudsen number is a dimensionless number 

representing the ratio of the mean free path of the gas molecules to the width of the flow 

path as:  
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ὑὲ
‗

ὡ
 (1.3) 

where ɚ is the mean free path of the molecules and W is the width of the flow path. The 

Reynolds number is defined as the ratio of the inertial forces to viscous forces as: 

ὙὩ
”όὡ

‘
 (1.4) 

where ɟ is the fluid density, u is the streamwise velocity, W is the flow path width and µ is 

the dynamic viscosity. 

The phenomena that cause invalidity of Darcy equation are typically termed ñnon-Darcy 

effectsò.  Non-Darcy effects occur either at low pressure in rarefied gas flow, where 

molecular slippage at the solid-fluid contact and gas rarefication affects the flow regime, 

or in high Re flow where laminar inertial effects are dominant. The slippage and 

rarefication effects occur mostly in low permeability porous media (e.g. tight gas 

reservoirs) and the inertial effects occur mostly in high permeability porous media (e.g. 

gravel and aggregates). The objective of the present study was to model and simulate these 

two phenomena in porous media and to correct the existing mathematical models that are 

used to characterize these effects. 

Tight gas reservoirs are of prominent importance among unconventional petroleum 

reserves. Due to the complicated flow dynamics of gas in tight porous media, corrections 

have to be applied to the Darcy equation so that it can properly predict gas flow dynamics. 

As the mean pore width of tight rocks (e.g. shales) decreases, the ratio of the mean free 

path to the pore width rises, that is when the Kn increases and gas rarefication effects 
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becomes important ï specifically, the condition of no-slip on the pore surface is violated. 

Proper treatments of these complexities have been attempted by using either classical 

continuum fluid mechanics approaches or by using kinetic theory of gases approaches.  

The continuum fluid dynamics model, characterized by the Navier-Stokes equations 

(NSE), is an important tool used to study fluid hydrodynamics in a wide range of motions 

where the continuity assumption is valid. Going beyond the regime where the NSE are 

valid needs proper treatment of higher order velocity moments and slip condition effects. 

An example of the physical phenomena where the NSE cannot be directly applied is the 

case of rarefied gas flow in microchannels, where Kn approaches to values greater that 

unity (Gad-el-Hak 1999; Lockerby et al. 2005). Effectively, Kn is the parameter which 

determines how closely the flow system conforms to the continuum assumptions. The 

simplest method to correct the Darcy equation for high Kn effects is to use a ñcorrectedò 

permeability. 

The most well-known permeability correction to account for the existence of slip was 

presented by Klinkenberg (1941) as: 

Ὧ Ὧ ρ
ὦ

ὖ
 (1.5) 

Here k is the corrected permeability, ka is the intrinsic permeability (the permeability that 

would obtain if slip did not occur), P is the hydrostatic pressure, and b is a constant related 

to fluid and porous medium properties. 
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In the present research, rarefied gas flow in low permeability porous media was studied by 

the Lattice Boltzmann Method (LBM) and new corrections to the Klinkenberg model were 

investigated. These corrections allow the extension of the Klinkenberg model to higher 

ranges of Kn. 

The Darcy equation has been shown to be valid in flow processes at sufficiently low Re 

(Muljadi et al. 2015). At higher Re, inertial effects cause extra hydrodynamic head losses 

and the Darcy equation becomes invalid. The Forchheimer equation is a semi-empirical 

relationship which accounts for inertial effects. The Forchheimer equation is written as: 

Ὠὖ

Ὠὼ

‘ό

Ὧ
‍”ό (1.6) 

where b is termed the ñForchheimer coefficientò, µ is the dynamic viscosity of the fluid, 

u is the average streamwise velocity of the fluid, k is the permeability and ɟ is the fluid 

density. The Forchheimer equation has been historically the most used model for predicting 

apparent permeability reduction due to inertial effects.  

In the present research, laminar flow in simple porous structures was simulated by LBM to 

evaluate the capability of the Forchheimer equation to model permeability reduction due 

to inertial effects. The porous structures were designed so that the main geometrical effects 

including expansion, contraction and flow direction change were prominent. High Re flow 

was simulated in these structures, the permeabilities for a range of mass flow rate were 

calculated, and the effectiveness of the Forchheimer equation to match the simulation 

results was investigated. Furthermore, the numerical simulation results were used to 

develop a correlation that is more effective than the Forchheimer equation. All the 
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numerical simulations in this work were performed using custom codes developed in 

MATLAB scripts. High velocity flow tests were also performed to test the Forchheimer 

equation and the proposed correlation. The results showed that the proposed model 

correlates the permeability and mass flow rate relationship far more accurate than the 

Forchheimer equation.  

In the following chapter, three sections contain summaries of up-to-date literature reviews 

of rarefied gas flow in porous media, inertial flow in porous media, and unsteady state flow 

tests. In chapter 3 the methods applied in the current research are discussed in two sections. 

In the first section, LBM and the kinetic theory behind it are explained, and the numerical 

simulator development and validation is discussed. In the second section of chapter 3, the 

experimental methods developed to validate the simulation results are explained. In chapter 

4 the LBM results for high Kn flow are presented and discussed. The simulation and 

experimental flow tests for high Re flow are presented and discussed in Chapter 5. Chapter 

6 contains conclusions and recommendations for future studies.  

Parts of this thesis are based on material published in the Journal of Natural Gas Science 

and Engineering (Aabjamaloei et al. 2016). Permission was obtained from the publisher to 

use the contents of these articles in this thesis. 

 

  

 

 



6 

 

2 CHAPTER 2: LIT ERATURE SURVEY  

 

            Non-Darcy effects during fluid flow in porous media have been known and studied 

since the early 1900s. Non-Darcy effects can be classified into two categories; slip effects 

and inertial effects. Slip effects are important for high Kn flow processes. For the purpose 

of the present research, the rarefied-gas flow regimes are categorized, based on Kn, into 

the four different regimes summarized in table 2-1. 

Table 2-1: Rarefied-gas flow regimes characterized by specified Kn range. 

Flow Regime Knudsen number range 

No-slip flow Kn < 0.01 

Slip flow 0.01 < Kn < 0.1 

Transitional flow 0.1 < Kn < 10 

Free molecular flow Kn > 10 

In the no-slip flow regime the continuum assumptions are valid and the NSE with zero 

velocity (no-slip) at the fluid-wall contact is applicable. In the slip flow regime, the 

continuum assumptions are still valid; however the fluid velocity at the solid wall is not 

zero. The NSE with corrected wall condition can be applied in this regime. The transitional 

regime is the zone where neither continuum nor diffusion effects are dominant. As Kn 

approaches to 10, the flow regime gets closer to free molecular diffusion. In the diffusion 

regime, the collision of the molecules with other molecules does not play an important role 

in flow dynamics and viscosity becomes meaningless. Regarding natural porous media in 

petroleum reservoirs, high Kn flow happens in tight gas reservoirs, such as shale gas 
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reservoirs, where the average pore width is so small that even moderate-pressure gas flows 

are associated with high Kn.  

Inertial effects, attributed to high Re fluid flow in porous media, are sometimes confused 

with turbulence effects. However, these two effects are distinct types of phenomena 

happening at different ranges of Re. While the turbulence effect is attributed to very high 

Reynolds numbers (Re > 2000), the inertial effect exists in porous media in low ranges of 

Reynolds number (Reå1), as a result of the complexity of the flow path inside the pore 

throats and the constant change of direction and cross section in the pores. These effects 

cause a hydrodynamic head loss which accounts for a considerable portion of the total head 

loss in flow through porous media processes. 

In this chapter the literature on slip effects and laminar inertial effects are presented in the 

first two sections. In the present thesis, non-Darcy effects are studied predominantly in the 

context of pulse-decay permeability measurements. In the last section of this chapter, a 

brief review of unsteady state pulse-decay tests is provided.  

2.1 Rarefied-Gas Flow and Slip Effects  

For Kn above the no-slip regime, the continuum assumptions becomes invalid and the gas 

is treated as being ñrarefiedò. Rarefied gas flow has been studied extensively. The current 

literature in the field of rarefied gas flow in small channels can be classified into three 

general categories based on the scale of the fluid system. In these categories, rarefied gas 

dynamics is studied in nano-scale, meso-scale and macro-scale. 
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The first category is the works done by using molecular and kinetic theory based methods 

such as the molecular dynamics method (MDM) and Direct Simulation Monte Carlo 

(DSMC) in nano-scale (Oran et al. 1998). In the MDM method, the trace and interaction 

of individual molecules are tracked and calculated by means of Newtonôs laws of the 

motion (Jakobsen 2014). In the DSMC method, the molecule motion is tracked exactly but 

the interaction of molecules are modeled by probabilistic methods (Piekos & Breuer 1996; 

Yan & Farouk 2002). Nano-scale modeling of rarefied gas flow studies the dynamics of 

fluid flow with the largest amount of detail of all the methods. However, because of the 

high computational costs of these nano-scale methods, their application is limited to very 

small scale systems (Fan & Shen 2001; Cai et al. 2000). 

The second category is the works done in the meso-scale. One of the most popular methods 

in this category is the Lattice Boltzmann method (LBM).  The LBM is a method derived 

from the kinetic theory of gasses (Suga et al. 2010). However, unlike the MDM and DSMC 

methods, the LBM does not track the positions and velocities of individual molecules but 

considers only frequency distributions for velocities of molecules at specified locations. 

LBM brings the advantage of validity beyond the flow regimes for which the Navier-Stokes 

equations can be applied (Chikatamarla & Karlin 2006; Shan et al. 2006). LBM has been 

a popular method to study non-equilibrium flow problems such as rarefied gas flow with 

high Kn and it has been shown to be efficient and accurate when compared to experimental 

measurements (Tang et al. 2005a; Tang et al. 2005b; Tang et al. 2007; Zhang et al. 2015). 

Numerous researchers have utilized LBM to simulate high Kn flow and found a good match 

between simulation and experimental results. Nie et al. (2002) showed that LBM can 

capture the fundamental behavior of rarefied gas flow including the slip condition at the 
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wall and nonlinear pressure drop. Lim et al. (2002) showed that LBM predicted velocity 

matches very well with experimental results for Kn up to 0.1. Zhang et al. (2005) applied 

LBM to simulate high Kn flow and found that their method is in good agreement with 

experimental data in the literature. In the present research, LBM was utilized to simulate 

rarefied gas flow associated with high Kn. Another popular kinetic based method of 

rarefied gas flow modeling in meso-scale is direct solution of the linearized Boltzmann 

equation (Aristov 2001; Xu 2001; Ohwada & Kobayashi 2004). In this method the 

Boltzmann equation is directly solved analytically or numerically by assuming a 

Maxwellian-type equilibrium distribution function for particles. This method was not 

utilized in the current research because there is not enough proof in the literature for the 

validity of this method.  

In macro-scale, two approaches are described in the literature. First there are the methods 

that use the Navier-Stokes equations (NSE) with a slip model at the wall 

(Hadjiconstantinou 2003). As mentioned before, the problem with these methods is that for 

high Kn flow processes, the continuity assumptions and the NSE equations are not valid. 

Second there are the methods that assume that adding up diffusion flow rate calculated by 

Fickôs diffusion equation and Darcy flow rate calculated by Darcyôs equation would be the 

proper model for all the flow processes in the high Kn regime (Zhang et al. 2015). The 

problem with these methods is that the assumptions made for the model cannot be 

analytically and fundamentally verified. Harley et al. (1995) ran rarefied gas flow tests in 

microchannels for 0.001<Kn<0.4 and found that the NSE with slip conditions at the wall 

matched the experimental results in very low Kn range very well. Arkilic et al. (1997) 

applied dimensional analysis to the NSE and first order slip condition at the wall and 
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derived analytical solutions for rarefied gas flow in microchannels. They used an 

experimental set-up to measure mass flow rate in a single channel for Kn up to 0.15 and 

found reasonable agreements between the model prediction and experiments. Beskok & 

Karniadakis (1999) proposed a second order slip condition at the wall to be implemented 

with the NSE and developed a second order analytical solution for rarefied gas flow in 

circular pipes. They compared their results with experiments and found a good agreement 

in the slip and free molecular regime. They proposed that the assumption of parabolic 

velocity profile is valid in all ranges of Kn except the transitional flow. Fluid flow in the 

transitional zone cannot be treated as either continuous nor as free molecular flow (Ho & 

Tai 1998).  

The main concern in the rarefied gas flow regime is the wall condition. A comparison of 

the DSMC results with solutions of NSE including the slip condition at the wall show some 

differences (Zheng et al. 2002; Xu & Li 2004; Szalmás et al. 2007), which brings up the 

necessity of using higher order accuracy than that provided by the Navier-Stokes equations.   

In the field of gas flow in tight natural porous media, the Klinkenberg equation has been 

historically used to modify the rock permeability in the slip flow regime (Klinkenberg 

1941). There have been attempts to extend the Klinkenberg correction and derive a higher 

order accurate wall velocity and more accurate permeability corrections (Ashrafi 

Moghadam & Chalaturnyk 2014). Fathi et al. (2012) also modified the Klinkenberg 

equation and proposed a more accurate model. Javadpour et al. (2007) studied gas 

production mechanisms in tight shales with low permeability of less than 150 nano-Darcy 

and found that the gas flow could be predicted by a diffusion model with reasonable 
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accuracy. In their diffusion model the viscous effects were neglected and the flow rate was 

directly related to concentration difference and a constant diffusivity. Their experiments 

were performed in a Kn range corresponding to the free molecular diffusion regime. In the 

diffusion regime, the molecules do not sense much resistance caused by collision with other 

molecules and therefore ignoring viscous forces is reasonable.  

The aim of the current study was to investigate the limits of the Klinkenberg equation and 

its higher order expansions in determining the permeability of a simple structured porous 

medium.  

2.2 Laminar Inertial E ffects 

Laminar inertial effects are expected to become important when the local Re (based on the 

pore width) is greater than unity. These effects are called ñlaminarò because they happen 

at Re that are low when compared to Re that characterize turbulence effects. The 

Forchheimer effect is another name attributed to the laminar inertial effects in porous media 

flow (Forchheimer 1901).  

The quadratic relationship of pressure drop and velocity has been found by numerical 

simulation of incompressible flow through cylinder arrays (Coulaud et al. 1988) and 

through sphere packs (Hill et al. 2001). There have been some research works that 

proposed a cubic relationship for the velocity and pressure gradient (Mei & Auriault 1991; 

Balhoff & Wheeler 2009). However, the range of the applicability of the cubic relationship 

is not wide. 
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Ruth and Ma (Ruth & Ma 1992) proposed an alternative form of representing the inertial 

effects on the permeability as: 

ρ

Ὧ

ρ

Ὧ
ρ
‍Ὧ ”ό

‘
 (2.1) 

where k is the permeability, kabs is the absolute permeability (permeability when inertial 

effects are minimal), ɓ is the Forchheimer coefficient, ɟ is the density of the fluid, and µ is 

the dynamic viscosity. Equation 2.1 could be simplified by defining a scaled permeability 

ks as: 

Ὧ
Ὧ

ὑ

ρ

ρ Ὂά
 (2.2) 

where F is a positive constant. One of the characteristics of equation 2.2 that will be shown 

later in this thesis to be problematic is that the second derivative of ks with ἂ is always 

positive. Historically, the Forchheimer coefficient has been measured experimentally for 

each type of fluid and porous medium by multi-rate flow tests and there is no generally 

accepted theory to predict its value. However, there are empirical correlations relating the 

Forchheimer coefficient to permeability, porosity, and tortuosity.  

Considering a porous medium to be a bead pack, Ergun (1952) derived a correlation for 

the Forchheimer coefficient as:  

 ‍ ὥὦ Ȣ ρπὯ Ȣᶮ Ⱦ (2.3) 

where a and b are constants depending on the porous structure surface, k is the permeability 

and  ʟ is the porosity. Macdonald et al. (1979) tested Ergunôs correlation by 
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experimentation and defined ranges for a and b. There are also other correlations obtained 

for natural porous media. Table 2-2 presents the correlations in the literature.  

All the equations presented in table 2-2 relate the Forchheimer coefficient to permeability 

k, porosity ,ʟ and tortuosity Ű. These correlations are not universal because they are 

obtained for different types of porous materials.  

Flow experiments on regular shaped sphere packs have shown the applicable ranges of the 

Forchheimer equation (Seguin et al. 1998; Dybbs & Edwards 1984; Fand et al. 1987). 

These ranges differ for each type of packing. That means the Forchheimer equation is not 

applicable in all ranges of Re. 

Table 2-2: Correlations relating the Forchheimer coefficient (ɓ) to porous medium 

properties. 

Empirical Correlation  Reference 

‍ ρȢψςρπὯ Ⱦᶮ Ⱦ (Janicek & Katz 1995) 

‍ πȢππυὯ Ⱦᶮ Ⱦ (Geertsma 1974) 

‍ ςȢωτρπὯ ᶮ † (Liu et al. 1995) 

‍ ὦὯ ȟ       ὥǪ ὦ ὧέὲίὸὥὲὸί (Cooke 1973) 

‍ σȢρ ρπὯ † (Thauvin & Mohanty 1998) 

Fourar et al. (2004) solved Navier-Stokes equations by a finite element scheme in 2D and 

3D sphere packs and introduced distinct non-Darcy flow regimes. They investigated the 

validity of the Forchheimer equation and found that the Forchheimer equation is valid in 
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3D flow in the sphere packs that were considered. Lee and Yang (1997) simulated the flow 

process through a bank of cylinders by direct numerical solution of the Navier-Stokes 

equations. They found that below Re of unity, the Darcy effect is dominant, and when the 

Re exceeds unity, the inertial effects account for the major part of the pressure drop. Rojas 

and Koplik (1998) simulated the same process as Lee and Yang (1997) in 2D mode and 

found that Re of unity is the critical point where the Darcy flow changes to Forchheimer 

flow. 

Newman and Yin (2013) utilized the LBM to investigate the possible link between the 

porosity and permeability of 2D artificial porous structure and the Forchheimer coefficient. 

They stated that the change in the flow path is the dominant factor on the flow 

characteristics. Koch and Ladd (1997) applied the LBM to simulate low Re flow in arrays 

of aligned cylinders and studied the pressure gradient and flow rate. They found that a 

quadratic relationship similar to the Forchheimer equation exists between the flow rate and 

the pressure gradient. They also found that the flow rate and the pressure gradient have a 

linear relationship at vanishing Re, quadratic at finite Re, and cubic in the transitional zone 

where Re is much greater than unity. 

Thauvin and Mohanty (1998) developed numerical pore network models with different 

geometrical properties (porosity, tortuosity and permeability) and ran flow tests on the 

networks to study the inertial effects. They provided a relationship between the 

Forchheimer coefficient, permeability and porosity based on the network flow results. 

Wang et al. (1999) developed numerical network models for an anisotropic porous medium 
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and tested the non-Darcy effects. They verified that a tensorial form of the Forchheimer 

equation is valid for anisotropic porous media in a limited range of Re. 

Advancement of technology has made it possible to image a micro porous medium. The 

full structure of the flow paths in a small sample of a porous body can be determined by 

CT scanning. Researchers have tried to simulate the flow process in the imaged porous 

structure using numerical methods. Muljadi et al. (2016) investigated the effect of porous 

medium heterogeneity on the onset of non-Darcy flow by utilizing such direct flow 

simulations. They found that the critical Re that determines the onset of non-Darcy flow 

could differ a few orders of magnitudes for different rocks. Chukwudozie et al. (2012) used 

the LBM to simulate high velocity flow in the imaged porous medium of a sandstone 

sample and to predict Forchheimer coefficient, permeability and tortuosity. Their results 

were in good agreement with the experimentation data of Arns et al. (2004). Sukop et al. 

(2013) implemented the LBM to simulate high velocity flow in high permeability vuggy 

limestone. They found disagreements between the LBM and experimental results and 

linked those disagreements with the incapability of the current standard laboratory 

instruments to conduct flow tests on high permeability  rocks. 

To summarize, the research works presented in the literature suggests that the critical point 

where the Forchheimer effect becomes dominant strongly depends on the porous structure 

and is a value in the order of unity. The flow regimes for inertial flows are divided into 

three sub-regimes based on the critical Reynolds number (Rec) and the transitional 

Reynolds number (Ret) as shown in table 2-3. Rec is the Reynolds number associated to the 
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point where inertial effects begin to cause a noticeable decrease of apparent permeability. 

Ret is the point where the flow regime changes to turbulent.  

Table 2-3: Flow regimes classified by the critical and transitional Reynolds number. 

Sub-Regime Reynolds range 

Creeping (Darcy) Re<Rec 

Forchheimer Rec<Re< Ret 

Transitional to turbulence Re> Ret 

It is obvious in the literature that the Forchheimer coefficient is not determined by a 

universal equation and is generally accepted to depend on the porosity, permeability and 

the tortuosity of the porous medium. Also, the literature contains conflicting evidence that 

the pressure gradient and velocity could have a quadratic (Wang et al. 1999), cubic (Mei 

& Auriault 1991; Balhoff & Wheeler 2009) or linear relationship (Darcy). Different 

relationships are proposed in the literature because the ranges of mass flow rate or 

Reynolds number were limited. One purpose of the current research was to investigate the 

relationship between the mass flow rate and apparent permeability reduction caused by 

inertial effects by studying fluid flow in various 3D porous structures in a wide range of 

mass flow rate. 

2.3 The Pulse-Decay Method 

The characterization and measurement of intrinsic properties of porous rock samples are 

performed by laboratory experimentation. The porous rock samples that are cut in 

cylindrical pieces are called ñcore samplesò. The permeability of a core sample can be 
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measured by one of two methods: the steady-state and the unsteady-state. The steady-state 

method is performed by flowing a fluid with known density and viscosity through the core 

sample and determining the flow rate and pressure drop (Takeuchi et al. 2008). Before 

measuring the flow rate and pressure drop, enough time must be allowed so that the flow 

rate becomes fully developed and steady through the sample. For tight rocks such as shales, 

the time needed to reach the steady state condition might be several days. Furthermore, the 

slip effects in tight rocks need to be studied in a wide range of pressure, while in a single 

steady-state flow test only a narrow range of pressure can be studied.  

The unsteady-state method is performed by connecting the core sample to a vessel 

pressurized with gas and allowing a known volume of the gas to discharge through the core 

sample. The gas flow through the sample is a transient process, because the pressure inside 

the vessel will fall as a result of discharging. The pressure change inside the vessel is 

recorded with time and a numerical simulator is then used to ñhistory matchò the pressure 

record by determining appropriate permeability and Klinkenberg and Forchheimer 

coefficients. New correlations can also be used in this history match.  The unsteady state 

process takes less time compared to the steady state process but still might take a long time 

for tight rock samples. There are a number of unsteady-state test designs based on methods 

to control the pressures at the upstream and downstream ends of the core sample.  

Basically there are four types of unsteady-state core flow test methods with four different 

set-ups. In the first set-up the core sample is connected to two chambers of known finite 

size (Brace et al. 1968). The process is controlled by the volume of the chambers. In the 

second set-up the volume of the downstream chamber is very small comparing to the 
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volume of the upstream chamber so that the assumption of constant upstream pressure is 

valid (Bourbie & Walls 1982). In the third method the downstream pressure is kept constant 

by using a very big chamber as compared to the upstream chamber or by connecting the 

downstream flow line to the atmosphere (Jones 1997). In the fourth set-up both upstream 

and downstream pressure are kept constant so that the process becomes steady after an 

initial transient period. The most well-known unsteady state core flow test is the ñpulse-

decayò method which uses a chamber of known volume upstream of the core sample and 

a known, constant pressure downstream of the sample. 

Comparing the four unsteady-state methods mentioned above, none of them has a clear 

advantage over the others. The application of each of the above methods depends on the 

available laboratory instruments and also the availability of a numerical simulator to 

history match the experimental results. 

In the present research an unsteady state pulse-decay set-up was designed and a series of 

porous samples were tested to study permeability and inertial effects. The designed set-up 

can be adjusted to perform any of the four unsteady-state methods. The constant volume at 

upstream and constant pressure at downstream was set so that the flow process could be 

approximated by the steady state Darcy equation. 
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3 CHAPTER 3: NUMERICAL METHOD AND 

EXPERIMENTAL S ET-UP 

 

            In this chapter the Lattice Boltzmann Method and the kinetic theory behind it are 

briefly introduced in the first section. In the second section, the experimental set-up and 

procedure used to validate the theoretical results is explained. In the following text, vectors 

are indicated by an arrow above the letters and tensors are indicated by bold letters, ὧᴆ is the 

velocity vector, ὺᴆ is the momentum vector, ὼᴆ is the spatial location and the subscripts I and 

J represent the Ith and Jth particles.  

3.1 The Kinetic Theory and the Lattice Boltzmann Method 

A fluid system can be studied at different levels corresponding to different length scales. 

The three well known scales are nano-scale, meso-scale and macro-scale. In this chapter 

the kinetic theory and the Boltzmann Equation, which operate at the nano-scale and the 

Lattice Boltzmann Method, which operates at the meso-scale, are explained. 

3.1.1 The Kinetic Theory and the Boltzmann Equation  

At the nano-scale, the motion and interaction of the molecules are modeled individually 

based on the basic laws of physics and kinetic theory. Kinetic theory provides the link 

between the individual molecular dynamics and thermodynamic properties of dilute gases 

(Jakobsen 2014). Kinetic theory is a sub-division of statistical mechanics dealing with non-

equilibrium systems based on averaging theory (Ferziger & Kaper 1972). Considering an 

isolated fluid system with N particles in a 3D Cartesian space and a corresponding velocity 
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space, the system at a certain time can be represented by a point in the S-dimensional 

(S=6N) phase space: 

ὛḳὛ ὼᴆȟὧᴆȟ    Ὅ ρȟỄ ὔ 

The canonical equations provide the time evolution of a system of particles in S-

dimensional space (Struchtrup 2005). 
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(3.1) 

Here Ὄὼᴆȟὴᴆ is the Hamiltonian defining the total energy of the system in the coordinates 

ὼᴆȟὼᴆȟȣȟὼᴆ  corresponding to location co-ordinates and momenta co-ordinates 

ὴᴆȟὴᴆȟȣȟὴᴆ . The subscript I represents the Ith particle. The simplest Hamiltonian 

describing the energy of a weakly interacting dilute gas is presented in classical kinetic 

theory as (Kardar 2007):  
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 (3.2) 

where U provides the potential energy from the external force and V(2) provides the so 

called two-body interaction force function. In the above representation of the Hamiltonian, 

multi-body interaction effects are ignored.  

The dynamic behavior of the fluid particles follow Newtonôs laws of motion (Bird 1994): 
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Ὠὼᴆ

Ὠὸ
 (3.3) 

where ὼᴆ is the position of particle I, ά  is the mass of particle I, t is the time and Ὂᴆ is the 

net force acting on  particle I. The net force consists of external body forces and molecular 

interaction forces. In principle, it is possible to use equation 3.3 with any given molecular 

interaction model to track all the fluid particles in a finite space. However, due to the huge 

number of molecules in large systems, the computational expenses limit the applicability 

of this method to nano-scale problems. 

To study the thermodynamic properties of fluids, it is not necessary to use all the 

information in the phase space. Introducing particle probability distribution functions in 

the phase space can allow description of a fluid system. Applying the particle probability 

function coarsens the fluid description to the meso-scale. A one particle distribution 

function Ὢὼᴆȟὧᴆȟὸ defines the probability of a single particle happening to be at the 

location ὼᴆ with velocity vector ὧᴆ at time t. 

Following the Liouvilleôs theorem and the Bogoliubov-Born-Green-Kirkwood-Yvon 

hierarchy, and implementing the assumption of molecular chaos, Boltzmann derived the 

following closed form equation for the time evolution of the one-particle distribution 

function due to binary molecular interactions for dilute gases (Kardar 2007): 
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(3.4) 

where ὴᴆ and ὴᴆ are the momenta of two particles before a collision, ὴᴆ and ὴᴆ are the post 

collision momenta, and ὦᴆ is the impact parameter which is related to the size of particles 

and the relative direction of their velocity vectors.  

Equation 3.4 is written in abstract form as (Kardar 2007): 

‬Ὢ

‬ὸ
ὧᴆϽɳ ᴆὪ ὫᴆϽɳᴆὪ ὅὪ (3.5) 

where f represents the one particle distribution function, Ὣᴆ is the acceleration from the 

external body force component and C(f) is the ñcollision functionò that accounts for 

interactions between particles. The collision function is used to represent the whole integral 

on the right side of equation 3.4. Equation 3.5 is derived based on the assumption that the 

potential energy depends only on the external body force so that: 

‬Ὗ

‬ὼᴆ
άὫᴆ (3.6) 

Bhatnagar et al. (1954) presented a model, generally referred to as  the ñBGK 

approximationò, to simplify the collision function resulting in the equation: 
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where feq is the local equilibrium state of the particles and Ű is a relaxation time which 

determines the rate of transformation of the local distribution towards the equilibrium 

distribution. Assuming unity molecular mass for a particle, the probability distribution 

function f provides the mass density distribution of the fluid particles in velocity and 

location spaces. The ultimate goal of kinetic theory is to find this distribution, because the 

most important thermodynamic and hydrodynamic properties (i.e. the fluid density ”ὼᴆȟὸ, 

the momentum density όᴆὼᴆȟὸ, the internal energy density Ὡὼᴆȟὸ and the stress tensor 

Ɑὼᴆȟὸ) can be calculated once  f is known. The first four moments of the distribution 

function provide these entities. 

”ὼᴆȟὸ ὪὼᴆȟὧᴆȟὸὨὧᴆ (3.8) 

”όᴆὼᴆȟὸ ὧᴆὪὼᴆȟὧᴆȟὸὨὧᴆ (3.9) 
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ς
ὧᴆȢὧᴆὪὼᴆȟὧᴆȟὸὨὧᴆ (3.10) 

Ɑὼᴆȟὸ ὧᴆṧὧᴆὪὼᴆȟὧᴆȟὸὨὧᴆ (3.11) 

where the ñpeculiar velocityò ὧᴆ, is defined as the particle velocity ὧᴆ, with respect to the 

bulk velocity όᴆ as: 

ὧᴆ ὧᴆ όᴆ (3.12) 
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The hydrostatic pressure P, is defined as the average of the diagonal components of the 

stress tensor Ɑ (Shan et al. 2006):  

ὖ
„

Ὀ

ς”Ὡ

Ὀ
 (3.13) 

where D is number of space dimensions. The Einstein summation convention is used in the 

above equation. The internal energy and the temperature T, are related as (Rao 2015): 
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where R is the gas constant and kB is the Boltzmann constant (kB=1.38064852 × 10-23 

m2Kgs-2K-1). Combining Equations 3.13 and 3.14, the ideal gas law can be derived as: 

ὴ
”
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ὴ ”ὙὝ (3.16) 

3.1.2 The Lattice Boltzmann Method  

In order to solve equation 3.7, Ὢὼᴆȟὧᴆȟὸ must be represented by a mathematical 

formulation. For the present application of the LBM, this is done by expanding the 

distribution function Ὢὼᴆȟὧᴆȟὸ, on Hermite polynomial bases (Shan et al. 2006). Hermite 

polynomials are classic orthogonal sequences well suited to represent complex functions 

(see Appendix A for a description of Hermite polynomials). The notation for the 

distribution function will be: 
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ρ

ὲȦ
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where H(n) is the rank-n Hermite polynomial, a(n) is the corresponding expansion 

coefficient and -‫ὧᴆ is a weight function. In the above equation Hn and a(n) are both rank

n tensors and the product on the right side of the equation denotes the full contraction of 

these tensors. Because of the orthogonal nature of the Hermite polynomials, the 

coefficients a(n) can be calculated as: 

╪ ὼᴆȟὸ Ὢὼᴆȟὧᴆȟὸ╗ ὧᴆὨὧᴆ (3.18) 

Expanding the distribution function using equation 3.17, the expansion coefficients can be 

obtained as a combination of the moments of the distribution function. The first four 

coefficients are: 

╪ ὪὨὧᴆ ” (3.19) 

╪ ὧᴆὪὨὧᴆ ”όᴆ (3.20) 

╪ ὧᴆṧὧᴆ ♯ὪὨὧᴆ Ɑ ”όᴆṧόᴆ ♯ (3.21) 

╪ ὧᴆṧὧᴆṧὧᴆ ὧᴆ♯ὪὨὧᴆ

╠ όᴆ╪ Ὀ ρ”όᴆṧόᴆṧόᴆ 

(3.22) 

where ŭ is the Kronecker delta tensor and Ɑ and Q are given by 
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Ɑ ╪ ”όᴆṧόᴆ ♯ (3.23) 

╠ ╪ όᴆ╪ Ὀ ρ”όᴆṧόᴆṧόᴆ (3.24) 

In the above notations όᴆ╪  means the sum of all possible permutations of tensor product 

(όᴆ╪ ḳόὥ όὥ όὥ ). The equilibrium distribution function in equation 3.7 

can also be expanded in terms of Hermite polynomials bases: 

Ὢ ὼᴆȟὧᴆȟὸ ‫ὧᴆ
ρ
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In applying the LBM, feq is approximated by preserving only the first few expansion 

polynomials after truncating the above expansion.  

Ὢ ὼᴆȟὧᴆȟὸ ‫ὧᴆ
ρ
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The truncation of the expansion at any order has been shown to not affect the lower order 

moments (Shan et al. 2006). 

Discretization of the velocity space in lattice units is performed by the Gauss-Hermite 

quadrature method. Based on the Gaussian quadrature, integral of a polynomial ▬ὼᴆ can 

be evaluated by the sum of the function value multiplied by some weights as:  

‫ὼᴆ▬ὼᴆὨὼᴆḙ ὼᴆ▬‫  (3.27) 
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Here are a set of weighting constants to be ‫ ‫ὼᴆ is an arbitrary weighting function and 

calculated. The above numerical approximation is said to have an algebraic degree of 

precision m if it is an exact equivalency for any polynomial ▬ὼᴆ up to the degree m. 

Equation 3.27 is used to discretize the velocity space and to calculate the weights by some 

mathematical manipulations which is out of the scope of this thesis (see Chen & Shan 

(2008) and Shan (2010) for more details). The location space is discretized by equidistant 

nodes which are also called voxels. For example, Figure 3-1 depicts a 2D space with nine 

discrete velocity directions at each space point.   

The scheme used to denote different solution implementations is based on the number of 

space dimensions and the number of velocity directions. This velocity set in Figure 3-1 

would be referred to as D2Q9 where D# is the number of space dimensions (two in this 

case) and Q# is the number of velocity directions (nine in this case). The D2Q9, D2Q21, 

D2Q37, D3Q15 velocity sets, associated weights and their algebraic precision are obtained 

by the integral quadrature method.  

 

Figure 3-1: Schematic of D2Q9 velocity set. 

The discretized form of equilibrium distribution function truncated at the 2nd order Hermite 

polynomials reads: 
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In the above equation, cs has the same units as speed.  It is used to non-dimensionalize the 

equilibrium distribution function and is called the ñspeed of sound in lattice spaceò. In the 

above equation όᴆ  is the bulk velocity of the equilibrium state, ɟ is the bulk density, ὧᴆôs 

are the discretized velocities and wiôs are the ñweightsò associated with different lattice 

velocities. The bulk velocity and density are calculated as the moments of distribution 

function as: 

”ὼᴆȟὸ Ὢὼᴆȟὸ 
(3.29) 

”όᴆὼᴆȟὸ ὧᴆὪὼᴆȟὸ 
(3.30) 

and similarly όᴆ  is calculated using 

”όᴆ ὼȟὸ ὧᴆὪ ὼᴆȟὸ (3.31) 

Schemes that are commonly used are D1Q2, D1Q3, D2Q9, D3Q15 and D3Q19. The 

number of discrete points used in the quadrature technique determines the precision of 

numerical evaluation of the integral. In this study the following schemes were used: D2Q9 

and D3Q15 (with precision of 5, that is, five terms in the quadrature technique) using  a 2nd 

order Hermite polynomial expansion; D2Q21 (with precision of 7) using a 3rd order 

Hermite polynomial expansion; and D2Q37 (with precision of 9)  using a  4th order Hermite 

polynomials expansion. Using the notation of Shan et al. (2006), the discretized velocity 

and weight sets of D2Q9, D2Q21, D2Q37 and D3Q15  are listed in tables 3-1, 3-2, 3-3 and 
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3-4. Here FS means ñfull symmetry setò. The full symmetry set of (a,0), with a being a 

constant, is (±a,0) and (0,±a). The value given in the tables therefore applies to all the 

points (a,0), (-a,0), (0,a) and (0,-a). The values for cs for D2Q9, D2Q21, D2Q37 and D3Q15 

are ρȾЍσ, ςȾσ ,0.8354 and ρȾЍσ respectively.  

Table 3-1: Velocity and weight sets for D2Q9. 

Speed Set wi 

(0,0) 4/9 

(1,0)FS 1/9 

(±1, ±1) 1/36 

Table 3-2: Velocity and weight sets for D2Q21. 

Speed Set wi 

(0,0) 91/324 

(1,0)FS 1/12 

(±1, ±1) 2/27 

(2,0)FS 7/360 

(±2, ±2) 1/432 

(3,0)FS 1/1620 

Table 3-3: Velocity and weight sets for D2Q37. 

Velocity Set wi 

(0,0) 0.23315066913235250228650 

(1,0)FS 0.10730609154221900241246 

(±1, ±1) 0.05766785988879488203006 

(2,0)FS 0.01420821615845075026469 

(±2, ±2) 0.00101193759267357547541 

(±2, ±1), (±1, ±2) 0.00535304900051377523273 

(±3, ±1), (±1, ±3) 0.00028341425299419821740 

(3,0)FS 0.00024530102775771734547 
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Table 3-4: Velocity and weight sets for D3Q15. 

Speed Set wi 

(0,0,0) 2/9 

(Ѝσ,0,0)FS 1/9 

( Ѝᴜσ, ᴜЍσ, ᴜЍσ) 1/72 

In figure 3-1, each velocity vector in the D2Q9 model starts at a node and ends at a neighnor 

node. This is termed an ñon-lattice velocity setò. If the velocity vectors start at a node and 

end at the space between some other nodes the set would be termed an ñoff-lattice velocity 

setò. All the velocity sets used in this study were on-lattice sets. Figure 3-2 shows the 

difference between on-lattice and off-lattice velocity vector.  

A 

 

b 

 

 

Figure 3-2: a) The on-lattice velocity component and b) the off-lattice velocity 

component. Here the black dots show the lattice nodes and the arrows show a discrete 

velocity vectors. 

The solution to a thermodynamic process by the Lattice Boltzmann method is conducted 

by the algorithm shown by figure 3-3.  
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Figure 3-3: Flowchart showing the algorithm for applying the Lattice Boltzmann method. 

This algorithm could be modified for various boundary and inlet-outlet coditions. 

Figure 3-3 shows that Equation 3.7 is applied in two discrete steps; ñcollisionò and 

ñstreamingò. In the collision step, a temporary value for the distribution function of the 

discretized velocities is calculated as: 

ὪӶὼᴆȟὸ Ὢὼᴆȟὸ
Ὢὼᴆȟὸ Ὢ ὼᴆȟὸ

†
Ὂᴆ (3.32) 

and in the streaming step, the temporary value is streamed in time and space as : 

Ὢὼᴆ ὧᴆЎὸȟὸ Ўὸ ὪӶὼᴆȟὸ (3.33) 



32 

 

One of the most important aspects of modeling flow in narrow channels is the treatment of 

the interaction between molecules and a wall.  In this study two methods were used to 

model these interactions: ñbouncebackò and ñspecular reflectionò. The bounceback scheme 

is illustrated in Figure 3-4.  

 

Figure 3-4: The bounceback boundary condition. The incoming flux from the lattice 

nodes (black filled circles) towards the wall are reflected in the opposite direction in one 

time step. The fictitious nodes in the solid wall (shown by circles) are placed just for 

clarification. Here the discrete velocities are color coded, the solid lines are the 

incoming flux and the dashed lines are the reflected flux. 

In this scheme the wall reflects the streamwise velocity in the opposite direction to the 

incoming direction while reversing the normal velocity. By applying this scheme the 

incoming flux is reflected in the opposite direction so that the velocity at the wall would 

be zero for dense fluids. This would be a reasonable condition for the case of no-slip at the 

wall. An alternative scheme is the ñhalf-way bouncebackò, which is very similar to the 
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bounceback method. In the half-way bounceback scheme the wall is placed half way 

between two nodes. Figure 3-5 demonstrates the half-way bounceback scheme. 

 

Figure 3-5: The half-way bounceback boundary condition. The incoming flux from the 

lattice nodes (black filled circles) towards the wall are reflected in the opposite direction 

in one time step. The fictitious nodes in the solid wall (shown by circles) are placed just 

for clarification. Here the discrete velocities are color coded, the solid lines are the 

incoming flux and the dashed lines are the reflected flux. 

The specular reflection method is illustrated in Figure 3-6. In this scheme the wall reflects 

the incoming flux like a mirror and therefore conserves the streamwise velocity while it 

reverses the normal velocity.  
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Figure 3-6: The specular boundary condition. The incoming flux from the lattice nodes 

(black circles) towards the wall are reflected like a mirror surface. The fictitious nodes in 

the solid wall are placed just for clarification. Here the discrete velocities are color 

coded, the solid lines are the incoming flux and the dashed lines are the reflected flux. 

This would result in a fully-slip condition at the wall and would cause a plug flow type 

similar to what occurs in molecular diffusion. The collisions of the molecules with the wall 

in both cases are assumed to be fully elastic. The no-slip and fully-slip conditions happen 

at the lower and higher limits of Kn respectively.  

The distribution function at the inlet and outlet of the model should be calculated based on 

the mass, momentum and energy conversation criteria. In this study velocity and pressure 

boundaries were imposed based on the He & Doolen (2002) method. To elaborate on this 

method, figure 3-7 shows a simple schematic of a 2D channel and the discrete velocity 

vectors at one of the inlet nodes and one of the outlet nodes. In this channel, an ideal gas 

enters as a constant velocity stream from the west (left) side of channel and exits from the 
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east (right) side into a constant pressure medium. In the model presented by figure 3-7, the 

discrete velocity vectors in the boundary nodes (inlet and outlet) that are pointed towards 

the outside of the channel and the ones pointed towards the walls are calculated at the 

streaming step while the rest of the velocity vectors are unknown. 

 

Figure 3-7: Schematic of the velocity set at the inlet and the outlet of the channel. 

In the He and Doolen method the difference of the streamwise distribution functions is 

assumed to be the same as the difference of the streamwise equilibrium distribution 

functions and by using equations 3.29 and 3.30 all the components of the distribution 

function can then be calculated. 

In figure 3-7,  f3,  f6 and  f7 at the inlet and f1, f5 and f8 at the outlet are calculated during the 

streaming step, and f1, f5 and f8 at the inlet and f3, f6 and f7 are calculated by the He and 

Doolen method. Assuming known constant velocity at the inlet, the He and Doolen method 

utilizes the following equations: 
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where the index W stands for the west (left) side, uw is the velocity component parallel to 

the channel walls, vw is the velocity component perpendicular to the channel walls and ɟw 

is the density at the inlet. For the outlet, by the assumption of constant density (pressure), 

the unknown distribution function components are calculated using: 
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where the index E stands for the east (right) side. 

3.2 LBM Model Validation 

In this study a 2D LBM simulator was developed to study rarefied gas flow in the high Kn 

range and 3D LBM simulators were developed to study inertial flow effects. In this section 

the procedures used to test the developed simulators against the analytical solutions are 
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described. As an additional validation method, the results for the 3D LBM simulator were 

compared with experimental results. 

3.2.1 2D LBM Model V alidation 

In the first step towards studying rarefied gas flow in porous media, a second order LBM 

simulator was developed to model gas flow in a 2D thin, uniform, long channel at low Re. 

A schematic of the channel is represented by figure 3-8.  

 

Figure 3-8: Schematic of the 2D channel. The parabolic curve and arrows are used to 

display the fully developed velocity profile. 

Before trying to simulate the high Kn flow regimes, it is essential to validate the LBM 

simulator. In the developed simulator, a 2nd order Hermite polynomial expansion of the 

equilibrium distribution function was implemented with D2Q9 scheme. The case studied 

was the flow of an ideal gas in a long 2D channel at low Kn. The inlet condition was set to 
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constant velocity and the outlet condition was set to constant pressure. A mesh size of 

41×1000 voxels was used to represent the channel. The velocity profile generated by the 

LBM model was compared with the analytical solution corresponding to the no-slip 

condition which may be written as (Arkilic et al. 1997): 
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 (3.42) 

Where u(y) is the velocity at distance y from one of the walls, H is the channel width, ɛ is 

the dynamic viscosity, ɟ is the fluid density,  is the hydrostatic pressure gradient along 

the channel, and Ὣ is the body force acceleration along the channel all in SI units.  

Conversion to LBM dimensions from any physical dimensions can be done using the 

characteristic length (L0), time (T0) and mass (M0). Table 3-5 summarizes the needed 

dimension conversions. 

Table 3-5: Physical and LBM dimension conversion relationships. 

Properties Physical LBM  Relationship 

Distance æx Ўὼ ὒ
Ўὼ

Ўὼ
 

time æt ЎὸǶ Ὕ
Ўὸ

ЎὸǶ
 

velocity u ό ὒὝ
ό

ό
 

density ɟ ” ὓὒ
”

”
 

viscosity ɡ ὒ ‮ Ὕ
‮

‮
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The relationship between the LBM viscosity and relaxation time is well accepted as 

(Mohamad 2011): 

‮ ὧ † πȢυ‏ὸ (3.43) 

where ‏ὸ is the lattice time step which is set to 1 for convenience.  

The non-dimensionalized profiles generated by the LBM simulator and calculated by 

equation 3.42 are shown in figure 3-9. The case for this comparison is incompressible flow 

with Knå0 for the continuum equations, and the half-way bounceback wall condition is 

used in the LBM model. 

 

Figure 3-9: Velocity profiles obtained by LBM and analytical solution of NSE. 

As it is observed in figure 3-9, there exists a very close match between the data predicted 

by the NSE and the LBM. 
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3.2.2 3D LBM Model Validation 

A simulator code was developed that solves LBM governing equations in a 3D lattice space 

using the D3Q15 scheme. The velocity set of the D3Q15 model is given in table 3-4. The 

bounceback condition was applied at the contact of fluid and wall to assure a no-slip 

condition and zero velocity at the wall.  

As the first test to verify the developed simulator, the simple process of body force driven 

flow in a 3D straight pipe was simulated and the steady state fully developed velocity 

profile was compared with the analytical solution of the Navier-Stokes equations. The 

analytical solution of the NSE for the body force driven flow of incompressible fluid in a 

long thin pipe at vanishing Re is (Arabjamaloei & Ruth 2016): 

όὶ
Ὣ

τ‡
Ὑ ὶ  (3-44) 

where u(r) is the streamwise velocity component at a distance r from the center of the pipe 

(r=0 to R), R is the pipe radius, Ὣ is the streamwise body force acceleration and ɡ is the 

kinematic viscosity ,all in SI units.    

The LBM model of the pipe utilized a 82×82×82 voxels mesh and the body force driven 

flow in the channel was simulated by applying streamwise periodic boundary condition at 

the open faces and the bounceback condition at the wall. The streamwise periodic boundary 

condition causes the pipe to act like an infinitely long medium. The LBM and physical 

properties of the fluid and pipe are included in table 3-6. 

 



41 

 

Table 3-6: Physical and lattice properties used to test the developed LBM simulator. 

Properties Physical value (SI units) LBM value 

pipe radius 0.1 (m) 40 

body force acceleration (g) 1 (m/s2) 1.95e-11 

fluid density 1 (kg/m3) 1 

dynamic viscosity 0.25 (m2/s) 0.025 

The simulation was performed for a body force driven incompressible flow in the assumed 

circular tube. LBM is generally discretized in a Cartesian coordinate system. Modifications 

to the boundary conditions have been proposed to apply LBM to curved boundaries (Mei 

et al. 2000; Guo et al. 2002). To reduce the complexity of computation while preserving 

the original method, the circular tube was programmed with fine mesh size and the 

boundary was placed exactly on the selected nodes. Figure 3-10 compares the analytical 

and LBM predicted velocity for the fully developed velocity profile on the plane parallel 

to the pipe, cutting the pipe into two halves. 

 

Figure 3-10: Streamwise velocity predicted by LBM and solution of NSE for the body 

force driven flow in circular pipe. Here u(y) shows the velocity at distant y from one of 

the walls towards the center of the pipe. 
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It is seen in figure 3-10 that the LBM simulator output matches the analytical solution 

results very well.  

As the second step, to test the capability of the LBM simulator to model fluid flow in non-

regular porous structures, a simple structure of three connected pipes as shown in figure 3-

11 was designed and built. The diameter of the small and large pipes was set to 0.276cm 

and 0.7493cm respectively and the lengths to 1.27cm and 2.0cm respectively. 

 

Figure 3-11: Schematic of varying diameter circular pipe designed to test the LBM 

simulator. 

The permeability of the structure in figure 3-11 could be estimated by the resistance 

method. The classical solution for laminar flow in a circular pipe combined with the Darcy 

equation reads: 

ή
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 (3.45) 

where q is the volumetric flow rate, L and R are the total length of the pipe and radius 

respectively, ȹP is the pressure difference of inlet and outlet, k is permeability, A is area 

perpendicular to bulk flow, and µ is the viscosity, all in SI units.  
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The equality of the total pressure drop with the sum of the pressure difference of the three 

sections of the pipe will lead to an average permeability for the system as: 

Ўὖ Ўὖᵼ
ὒ

ὑ ὃ

ὒ

Ὧὃ
 (3.46) 

where Liôs, Aiôs and kiôs represent the length, cross sectional area and absolute permeability 

of each section of the pipe respectively. For the designed porous sample the resistance 

method predicts a permeability of 5.69×10-8 m2.  

To test the permeability, the structure in figure 3-11 was built by drilling holes in two 

pieces of a polyvinyl chloride (PVC) rod and gluing the pieces together. To test the 

permeability of the designed structure a simple gravity drainage test was performed using 

the set-up shown by figure 3-12. This method is the classical falling head permeameter that 

Darcy used in the 1800s. The falling head permeameter was first used to test the 

permeability of soil and gravel for agriculture related purposes. Also this method is used 

in todayôs oil and gas industry for on-site permeability analysis of loose sands. 

 

Figure 3-12: Gravity drainage test set-up designed to find the permeability of the sample. 
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The tank at the top of the sample in the cylinder was filled with water that was allowed to 

drain through the porous sample. By mathematical modeling (Appendix B), an equation 

can be derived to find the permeability of the sample as a function of drainage time as: 

ὑ
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 (3.47) 

where k is the permeability, At is the area of the cylinder containing initial water, A is the 

area of the wider hole in the porous sample, V is the volume of the drained water, µ is the 

dynamic viscosity of water, ɟ is the density of water, z is the length of the porous sample 

and t is the draining time, all in SI units. The constants in equation 3.47 come from the 

geometry of the cylinder and sample. The drainage test was done 5 times and an average 

time of 55 seconds was recorded for the water on the top to drain through the hole, which 

results in a permeability of 5.52×10-8 m2. 

To test the LBM simulator, the body force driven flow in the geometry in figure 3-11 was 

simulated in a 200×37×37 voxel mesh by applying a range of body force acceleration (g). 

Streamwise periodic boundary condition at the open faces and bounceback at the solid-

fluid contact were applied in a D3Q15 scheme with viscosity of 0.015 in lattice units. 

Figure 3-13 represents the mass flow rate and permeability plot for the LBM results. 

As it is seen in figure 3-13, the absolute permeability at very low mass flow rate predicted 

by LBM is 5.67×10-8 m2 which is very close to the resistance method and experimental 

results. This shows that the body force driven flow simulated by LBM predicts the 

permeability of a non-regular geometry very well.  These results also show the dependence 
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of the permeability on the mass flow rate, the phenomena that will be explored at length in 

Chapter 5 of the present thesis. 

 

Figure 3-13: LBM predicted scaled permeability and mass flow rate in SI units. 

3.3 Experiment Set-Up  

An experimental apparatus was designed and built for the purpose of performing a 

modified unsteady-state flow test. For this application, chambers were connected to both 

sides of a core holder. Pressure transmitters were set near each side of the core holder. The 

core holder was pressurized to impose an overburden pressure of 120 psi for each test run. 

Connections were built in the system to enable evacuation of the two chambers and the 

pore space in the sample. Pressure readings were recorded by a data acquisition system 

(DAQ) at a maximum frequency of 250 readings per second. To check the temperature 

change, temperature transducers were installed in the connecting tubing of two chambers; 

however, no changes in temperature were observed in any of the experiments. The set-up 

designed for this study is represented by figure 3-14. 
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Figure 3-14: The modified pulse-decay experimentation apparatus. 

For a better understanding of the experimental set-up, figure 3-15 represents the detailed 

diagram of the experimentation system with all the components. 

The difference between the set-up in figure 3-14 and the common pulse-decay instruments 

is that in this set-up the upstream and downstream sections of the core holder could be 

either pressure controlled or volume controlled.  To run the experiment, after the cylindrical 

rock is placed in the core holder, the gas flow test is performed in 5 steps. 

1. The system is disconnected from the nitrogen supply, and all the lines including the 

sample are evacuated. 

2. The upstream chamber is isolated from the pore volume by closing valve V1 and 

pressurized by nitrogen gas coming from the supply. 

3. The DAQ records pressure and temperature at 4 spots starting when the ball valve 

V1 is opened. 
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4. When the pressures in the two chambers equalize, the experiment is stopped and 

V1 is closed. 

5. CH1 is charged to a higher pressure and steps 3 and 4 are repeated.  

 

Figure 3-15: A schematic of the proposed set-up for the modified step-decay gas flow 

test. 
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For a complete pulse-decay test, the gas flow regime can fall in the diffusion, transitional, 

slip flow, Darcy and inertial dominant regions sequentially. In that case the test would be 

an unsteady state process and the results have to be analyzed by numerical history 

matching. An alternative way of performing permeability tests with the designed set-up is 

to set constant ambient pressure in the downstream chamber. This modification will shift 

the test more towards a steady-state process. For this purpose the downstream chamber is 

disconnected from the system and the gas is vented to the ambient through the quick 

discharge line. 

Before running the experiments, the characteristics of the system including volume of 

different parts of the system must be measured and calibration of pressure and temperature 

transmitters must be performed. The calibration of pressure and temperature transmitterôs 

readings which are in the range of 0-5 millivolts is performed by measuring the ambient 

conditions by manual barometers and thermometers with an error band of less than 0.025%. 

The calibration of the transducers was performed by the manufacturing company. 

The volume of the chambers and the line sections from the upstream and downstream 

chambers up to the sample holder was measured by a simple expansion test. The two sides 

of the sample holder were isolated by replacing the sample with an impermeable rigid 

plastic rod and a confining pressure of 120 psi was applied. Two pressure generators with 

a 60 ml volume per stroke were used in the system as CH1 and CH2. The isolated parts of 

the line were evacuated and then pressurized with nitrogen gas. The initial volume of the 

pressure generator was zero. Gradually adding the pressure generator volume to the system, 

pressure was recorded at all stages. The ideal gas law was then used to calculate the initial 
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volume, which is the volume of the connecting line section from chambers to the face of 

the sample. Figure 3-16 shows the experimental readings and fitted ideal gas law equation. 

 a b 

Figure 3-16: the upstream (a) and downsteam (b) pressure change vs. the incremental 

volume (kPa vs. m3). 

As it is seen in figure 3-16, the ideal gas law matches the readings very well. The mean 

squared errors for both plots were in the scale of 10-5. The volume of the flow line section 

from the upstream chamber (CH1) up to the valve V1 was measured using the same 

procedure. Figure 3-17 shows a sample of pressure measurements for a complete three-

stage flow test.  

 

Figure 3-17: A sample of pressure recordings for a 3-stage flow test.  
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For this test the upstream was discharged through the sample 3 consecutive times. As it is 

seen in figure 3-17, after completion of each step the gas pressure in the downstream 

chamber was increased. The pressure recordings can be used for history matching using a 

numerical simulator and the characteristics of the porous rock sample can be calculated. 
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4 CHAPTER 4: SLIP EFFECTS AND THE 

KLINKENB ERG MODEL  

 

            In this chapter the importance of applying models with higher accuracy for 

permeability modeling of rarefied gas flow in low permeability porous media is presented 

in the first section. In the second section the results of rarefied gas flow simulation in 2D 

channels is presented. Both the Klinkenberg model and higher order models are studied.   

4.1 Theoretical Study 

For a 2D channel with high aspect ratio (length divided by height) such as the channel 

shown in figure 4-1, when Re is low, the Navier-Stokes momentum equation can be 

simplified by ignoring the inertial terms and the following equation is obtained (Arkilic et 

al. 1997): 
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where u is the streamwise velocity (the bulk velocity parallel to the driving force) 

component, y is the distance from the lower wall (y=0 to H), µ is the dynamic viscosity, 

Ὣ is the external body force acceleration along the channel direction and  is the pressure 

gradient along the channel (z=0 to L).  
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Figure 4-1: Schematic of the flow channel. The arrows and the parabolic curve represent 

the parabolic velocity profile. 

If the confining walls are stationary, the common assumption is that there is zero velocity 

(ñno-slipò) at the wall. In the present section, the case of rarefied gases will be considered. 

If kinetic theory considerations are included, the velocity boundary condition at the walls 

up to second order accuracy is (Hadjiconstantinou 2003): 

ό ὅᴜ‗
‬ό

‬ώ
ὅ‗

‬ό

‬ώ
 (4.2) 

where ɚ is the mean free path of the fluid molecules, ό  is the fluid velocity at the wall and 

C1 and C2 are positive constants. It is stated in the literature that C1 is the streamwise 

momentum accommodation at the wall as (Arkilic et al. 2001): 

ὅ
ς „

„
    (4.3) 

where „  is the tangential momentum accommodation „  Could have a value between 

zero and unity depending on the flow characteristics. Historically a value of 1 is used for 

C1 in all engineering applications (Arkilic et al. 2001). Ohwada et al. (1989) obtained a 

value of 1.11 for C1 by numerical solutions of the Boltzmann equation. The value of C2 
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can be measured experimentally (Hadjiconstantinou 2003). Furthermore, as the fluid 

becomes denser, the mean free path goes to zero and the ñzero velocity at the wallò 

condition is recovered. Integrating equation 4.1 in the y direction and applying the wall 

velocity boundary conditions (equation 4.2) results in: 

όώ
Ὄ

ς‘

Ὠὖ

Ὠᾀ
”Ὣ

ώ

Ὄ

ώ

Ὄ
ὅὑὲ ςὅὑὲ  (4.4) 

The average streamwise velocity at location z is then: 

ό
ρ

Ὄ
όὨώ

Ὄ

ρς‘

Ὠὖ

Ὠᾀ

”Ὣ ρ φὅὑὲ ρςὅὑὲ  

(4.5) 

The Darcy equation for a one dimensional channel flow in a 2D channel reads: 

Comparing equation 4.4 with the Darcy equation (equation 4.5) yields a Kn dependent 

permeability as:  

ὑ ὑ ρ φὅὑὲ ρςὅὑὲȟ    ὑ
Ὄ

ρς
 (4.6) 

where Kabs is the absolute permeability of the channel derived using the no-slip wall 

condition and low Re, which is recovered by letting Kn go to zero. The dimensionless Kn 

represents the ratio of the mean free path of the gas molecules to the width of the flow path.  

ὑὲ
‗

ὡ

ὯὝ

Ѝς“ὨὖὈ
 (4.7) 
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where ɚ is the mean free path of the molecules, W is the width of the flow path, kB is the 

Boltzmann constant, T is the absolute temperature, d is the effective diameter of the 

molecules and P is the static pressure. For a uniform channel the absolute permeability is 

related to the channel width (ὑ ). Therefore, for a 2D channel, Kn is related to 

permeability and mean pressure as: 

ὑὲ
‗

Ὀ

ὯὝ

Ѝς“Ὠὖ ρςὑ
 (4.8) 

Combining equations 4.6 and 4.8, the permeability can be written as a function of local 

pressure as: 

ὑ ὑ ρ
Ὧ

ὖ

Ὧ

ὖ
ȟ    Ὧ

φὅὯὝ

Ѝς“Ὠ ρςὑ
ȟ     Ὧ

ρςὅ
ὯὝ

Ѝς“Ὠ ρςὑ
  

(4.9) 

where k1 and k2 are constants for a specific flow test, independent of pressure (P). If the 

first order wall velocity boundary conditions (ό ὅᴜ‗ ) is used instead of 

second order, the Klinkenberg equation will be recovered.  

ὑ ὑ ρ
Ὧ

ὖ
ȟ    Ὧ

φὅὯὝ

Ѝς“Ὠ ρςὑ
 (4.10) 

It is seen in equation 4.9 that the permeability is related to the local pressure and wall 

characteristics. Equation 4.9 was derived for a straight uniform channel and its extension 

to natural porous media needs special treatments for complex geometry and tortuosity.  
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Although the above derivation is mathematically consistent, applying the second order Kn 

related boundary condition to the NSE could be considered to be unreasonable because the 

NSE are inherently only accurate up to the first order Kn (Shan et al. 2006). This means 

that the NES are only applicable if Kn is less than approximately 0.1. 

The hydrostatic pressure in underground gas reservoirs is relatively high, and this leads to 

small Kn that suggest that Kn related effects could be typically neglected. However if the 

mean pore radius, and therefore the absolute permeability, of the reservoir rocks is very 

small, such as is the case in shale gas reservoirs, that can lead to relatively high Kn. 

To understand the variation of Kn in natural gas reservoirs and laboratory conditions, Kn 

was calculated for different pressures in the range of natural gas reservoirs and laboratory 

pressure for a typical average size of natural gas molecule diameters (d=3.988 ¡) and a 

temperature of 300 K. Figure 4-2 shows the range of Kn for a few sample pressure values.  

 

Figure 4-2: Kn range for low permeability and different mean hydrostatic pressure. 
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It is seen in figure 4-2 that Kn could reach to high values in the transitional zone (0.1 < Kn 

< 10) in low permeable reservoirs. This raises the necessity of applying a permeability 

correction method with an accuracy higher than the Klinkenberg model.  

In this research a LBM simulator with 2nd order expansion of Hermite polynomials was 

used to simulate rarefied gas flow in 2D channels and estimate the constants in equation 

4.6. In the present work the 2D Cartesian channel flow was studied for the sake of 

simplicity and in order to reduce the computational cost. Application of the LBM to 3D 

cases is straightforward but computationally expensive. 

4.2 Numerical Study 

A combination of half-way bounceback and specular reflection velocity can be used to set 

a limit for the slip behavior of the wall surface at any range of Kn. To check this idea, the 

developed 2D LBM simulator was used and five different ratios (0, 0.6, 0.9, 0.95 and 0.99) 

of the incoming flux towards the wall was set to reflect at the wall based on the specular 

reflection model and the remainder of the flux was set to bounce back in the opposite 

direction based on the half-way bounceback model. The ratios will be referred to as the 

ñreflection coefficients (rf)ò. The fully developed constant velocity entrance and constant 

density at the outlet was set based on the He & Doolen (2002) method. The velocity profiles 

at a distance z=0.75×L from the entrance was studied for different reflection ratios. The 

channel flow was simulated by a 42×1000 voxels mesh. The study was done for four 

different dimensionless kinematic viscosity (tnereffid ruof ot gnidnopserroc srebmun (‮ 

Kn and the results are shown by figures 4-3 to 4-6.  
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Figure 4-3: Velocity profiles and velocity at the wall for different rf and .5200.0=‮ 

 

Figure 4-4: Velocity profiles and velocity at the wall for different rf and .520.0=‮ 

 

Figure 4-5: Velocity profiles and velocity at the wall for different rf and .52.0= ‮ 
































































































































