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ABSTRACT

In this research, single phase flow regimes in porous media tueliedsboth numerically

and experimentally to determine methods to predict the effects of rarefied gas flow and
inertial flow. The results of this research were initially compared with theecdion
methods of treating rafied gas flow, the Klinkenbergquation and inertial flow, the
Forchheimer equation. In the first section of the research, the slip condition for rarefied gas
flow in low pemeability, twadimensionakimple porous media was studied by the Lattice
Boltzmann method (LBM) and new corrawis to the Klinkenberg model and higher order
slip models were investited. To apply LBM new corrections were introduced to the
solid-fluid boundary condition and a new relationship was proposed to relate LBM
viscosity and Knudsen number. To validate tigM model, the slip flow simulation
results were compared to analytical methods and experimentation. It was shown that the
modified LBM simulator was capable of predicting the experimentally observed Knudsen
minimum. By comparing the numerical simulati@sults with analytical models extracted
from the upto-date literature, the analytical model that most closely matched numerical

model results was identified.

In the second section of this research, the apparent permeability reduction due to inertial
effects in simple and complex porous structwes studiedLBM based simulator was
developed to model giyte-phase threglimensionalfluid flow in porous media. The
simulator was verified by experimental and analytical solution tests and then was
implementd to study high Reynolds number flow processes in irregular shaped porous
structures. The effects of inertial on the onset and extent eDacey flow in different



geometries was studied. It was shown that the Forchheimer equation does not accurately
fit the high Reynolds number flonA new empirical correlation was proposed that
correlates the scaled permeability and mass flow rate relationship very well and is more
accurate than the Forchheimer equation. To validatéBhé, a modified experimental
technique was designed and utilized to analyze permeability and mass flow rate
relationships in high Reynolds number flows. The experimental results showed that the

correlation in the present research is fareraecurate thatine Forchheimeequation.
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CHAPTER 1: INTRODUCTION

TheDarcy law providesibasic linear equation for singfghase fluid flow in porous
media in ideaked conditions. The onedimensionalDarcy equation relates the fluid
dynamicviscosityy, the poros medium permeability, the flow ared, the medium length
L and the piezometric pressure differease to thevolumetricfluid flow ratethrough the
poroussampleg, as

Qo

N 3 (1.1)

The piezometric pressure difference is caused by the hydrostatic pressure diffdtence

and the elevation difference of the two ends ofsdn@plesz, as
yo 0 W (1.2)

In the above equation, is the density of the injected fluid ar@Qis the graviational

acceleration.

It is generally accepted thate validity of the Darcy equatiorfor a porous mediuns
dependent on the size of the pores as comptoethe meaifree path of molecules
characterized by thEnudsennumberKn, andon the flow regimecharacterized by the
Reynolds numbeRe (Dullien 1992)The Knudsen number is a dimensionless number
representing the ratio of the mean free path of the gas moleculeswathef the flow

pathas:



(1.3

e

wherea-is themean free path of the molecules afds the width of the flow pathThe
Reynolds number is defined as the ratio of the inertial forces to viscous forces as:
' l ” é (b

YQ — (14)

where} is the fluid densityy is thestreamwise velocitwVis the flow path width ang is

the dynamic viscosity.

The phenomena that cause invalidity of Darcy equation are typicaly mmereDaréy
effect®. Non-Darcy effectsoccur either at low pressure in rarefied gas flowhere
molecuar slippage at the sohfiuid contactand gas rareficatioaffects the flow regime

or in high Re flow where laminar inertial effects are dominant. The slippagd
rarefication effecs occur mostly inlow permeability porous mediae.§. tight gas
reserwirs) and the inertial effecteccur mostlyin high permeaibity porous medige.g.
gravel and aggregated)he objective othe presenstudy was to model and simulate these
two phenomena in porous media daaorrect the existing mathematical modia are

used to chaderize theseffects.

Tight gas reservoirs are of prominent importance among unconventional petroleum
resenes Due to the complicated flow dynamickgas in tight porous medigorrections

have to be applied to the Darcy equationh&t it can properly predict gas flow dynamics.

As the mean porwidth of tight rocks €.9.shales) decreases, the ratio of the mean free

path to the porevidth rises that is when thé&n increasesand gas rarefiation effects
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becomes importarit specificaly, the condition of neslip on the pore surface is violated.
Proper treatments of these complexities have been attempted byeutbiergclassical

continuum fluid mechanicapproaches dvy usingkinetic theory of gases approash

The continuum fluid dgyamics model, characterized by the NaBéokes equations

(NSE), is an important tool used to study fluid hydrodynamicswide range of motios

where the continuity assumption is valid. Going beyondréggme where th&lSE are

valid needs proper treaient of higher order velocitmomens andslip condition effects

An example of the physical phenomena where th& bEhnot be directly applied is the

case of rarefied gas flow in microchanneldiereKn approaches to values greater that

unity (Gadel-Hak 1999; Lockerbyet al. 2005) Effectively, Kn is the parametewhich

determires how closéy the flow system conforms to the continuum assumptidrise

simplest method to correttie Darcy equatiofor highKn effectsistousa fAcod r ect e

permeability.

The most welknown permeabilitycorrectionto account forthe existence of slipvas

presented b¥linkenberg(1941)as
o w
Q Qp = (15)

Herek is the corrected permeabilitly is the intrinsic permeabilit{the permeability that
would obtain if slip did not occurP is the hydrostatic pressy@ndb is a constantelated

to fluid and porous medium properties.



In the present research, rarefied gas flow in low permeabilityugsorediavasstudied by
theLatticeBoltzmannMethod(LBM) and new corrections tbe Klinkenbergnodelwere
investigated. These corrections allow the extensioth@Klinkenberg model tdiigher

ranges oKn.

The Darcy equation has been shown to be valifow processesat sufficiently low Re
(Muljadi et al.2015) At higherRe, inertial effects cause extra hydrodynamic headce®ss
andthe Darcy equationbecomes invalid. Theorchheimer equatiors a semiempirical

relationship which accountsffinertial effects The Forchheimer equation is written as

Qo
Q

0

_ 9 1.6
(b.QTb (1.9

where b is termedhe fiForchheimer coefficient i is the dynamic viscositgf the fluid

u is the averagstreamwisevelocity of thefluid, k is thepermeability and is the fluid
density.The Forchheimer equation has been historically the most used fmgoledicting

apparent permeability reduction due to inertial effects.

In the present researdaminar flow in simple porous sticturesvas simulatedyy LBM to
evaluate the capability of tHeorchheimer equatioto model permeabilityeductiondue

to inertial effects. The porous structunesredesigned so that the main geometrical effects
including expansion, contraction@flow direction chang&ere prominentHigh Reflow

was simulated in thee structure, the permeabilies for a range of mass flow rateene
calculated and the effectiveness of the Forchheimer equation to match the simulation
results was investigated.Furthemore, the numerical simulation results were used to

develop a correlation that is more effective than Boechheimer equatiorAll the
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numerical simulations in this work were performed using custom codes developed in
MATLAB scripts. High velocity flow testsvere also performed to test the Forchheimer
equation and the proposed correlation. The results showed that the proposed model
correlates the permeability and mass flow rate relationship far more accurate than the

Forchheimer equation.

In the following clapter three sections contain summariesipito-date literature reviesy

of rarefied gas flow in porous media, inerfialv in porous mediaand unsteady state flow
tests In chapter 3hemethods applied in the current research are discus$ed sectbns

In the firstsection LBM and the kinetic theory behindateexplained andthe numerical
simulatordevelopment and validation is discusskdthesecondsectionof chapter 3the
experimental methaddeveloped to validate the simulation resukeaplainedIn chapter

4 the LBM resultsfor high Kn flow are presented and discussed. The simulation and
experimental flow test®r high Reflow are preseted and discussed @hapter 5Chapter

6 containsconclusions and recommendatidos future studes.

Parts of this thesiare based on materipublished inthe Journal ofNaturalGas Science
and Engineering (Aabjamaloei al.2016. Permission wsobtained from the publisher to

use the contents of thearticles in this thesis.



CHAPTER 2: LIT ERATURE SURVEY

Non-Darcy effectgduringfluid flow in porous media hee been known and studied
sincetheearly 1900sNon-Darcy effects anbe classified ito two categories;lip effects
and inertial effectsSlip effects are importator high Kn flow processes. For the purpose
of the present research, tteedied-gasflow regimes are categorizedased orKn, into

thefour different regimes summarized in taBi4.

Table2-1: Rardied-gas fow regimes charact&ed by specified Krange.

Flow Regime Knudsen number range
No-dlip flow Kn < 0.01

Slip flow 0.01<Kn<0.1
Transitional flow 0.1<Kn<10

Free molecular flow Kn> 10

In the ro-slip flow regimethe continuum assumptions are valid and the NSE with zero
velocity (no-slip) at the fluidwall contact is applicable. In the slip flow regintée
continuum assumptions are still vallibwever the fluid velocity at the solid wall is not
zero. The NSE with corrected wall condition can be applied in this regime. The transitional
regime is the zonwhereneither continuum nor diffusioeffectsare dominant. A&n
approacheto 10 the flow regime gets closer to free molecular diffusion. &ndtifusion
regime the collision of the moleculasith other molecules does not playiarportant role

in flow dynamicsand viscosity becomes meaninglé2egarding natural porous media in

petroleum eservoirs, highkKn flow happens in tight gas reservgisuch as shale gas



reservoirs, where the average pardth is so small that even modergiressure gas flows

are associated with higfn.

Inertial effects attributed to highRefluid flow in porous mediaare sometimes confused

with turbulence effectsHowever, these two effects are distinct types of phenomena
happening at different rangesiRé& While the turbulence effect is attributedvery high
Reynolds numberdRe > 2000, the inertial effect exists in porous media in low ranges of
Reynolds numbe(Reil), as a result of the complexity of the flow path inside the pore
throats andhe constant change of direction and cross section ipdnes These effects

cause a hydrodynamic head loss which accounts for a considerable portion of the total head

loss n flow through porous mediarocesses.

In this chapter the literature @hip effects and laminar inertial effecise presented in the
first two sectionsln the present thesis, ndarcy effects are studied predominantly in the
context of pulsedecaypemeability measurementdn the last sectiof this chaptera

brief review ofunsteady state pulstecay testis provided.

2.1 Rarefied-Gas Flow and Slip Hfects

For Kn abovethe no-dlip regime the continuum assumptions becomeslidvand the gas
is treded ash e i ramgfied. Rarefied gas flow has been studied extensivEhe current
literature in the field of rarefied gas flow in small channels lze classified ito three

general categoridsased on the scale of the fluid systémthese categoriesarefied gas

dynamicss studiedn nanescale, mesacale and macrscale.



The first category is the works done by using molecular and kinetic theory based methods
such asthe molecular dynamicsnethod (MDM) and Direct Simulation Morg Carlo

(DSMCQC) in nano-scale(Oranet al. 1998) In theMDM method the trace and interaction

of individual moleculesaret r acked and <cal cul ated by mean
motion(Jakobsa 2014) In the DSMC methodhe molecule motion is tracked exactly but
theinteractionof moleculesare modeled by probabilistic methg@sekos & Breuer 1996;

Yan & Farouk 2002)Nancscale modeling forarefied gas flow studies the dynamics of

fluid flow with the largestamount ofdetail of all the methods However, because of the

high computational costs of these nawale methods, their application is limited to very

small scalesystemgFan & Shen 2001; Cait al.2000)

The second category is the wodane in the mesecale One of the most popular methods
in this category ishe Lattice Boltzmann metho(LBM). The LBM isa method derived
from the kinetic theory of gasséSugaet al.2010) However, nlike the MDM and DSMC
methods, the LBM does not track the positions and velocities of individual molecules but
considers only frequency distributions for velocities of moleswt specified locations
LBM brings the advantage of validity beyond the flow regimes for which the N&to&es
equations can be appli¢@hikatamarla & Karlin 2006; Shaet al.2006) LBM has been

a popular method to study nequilibrium flow problems such as rarefied gas flow with
highKnand it has been shown to be efficient and accwhéa compared to experimental
measurement@anget al.2005a; Tangt al.2005b; Tangt al.2007; Zhanget al.2015)
Numerous researchers have utilized LBM to simulate Kigthow and found a good match
between simulation and experimental resultge et al. (2002) showed that LBM can

capture the fundamental behavior of rarefied gas flow incluttieglip conditionat the
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wall and nonlinear pressure drdpm et al. (2002)showved that LBMpredictedvelocity
matches very well with experimental resutis Kn up to 0.1.Zhanget al. (2005)applied
LBM to simulate highKn flow and found that their method is in good agrent with
experimetal data in the literaturdn the present researchBM was utilized to simulate
rarefied gas flow associated with hidgdn. Another popular kinetic based method of
rarefied gas flow modelingh mesescaleis direct solution of the lireized Boltzmann
equation (Aristov 2001; Xu 2001; Ohwada & Kobayashi 2004 this method the
Boltzmann equation igirectly solved analytically or numericallyby assuming a
Maxwelliantype equilibrium distribution function for particle$his method was not
utilized in the current research becatisere is not enough proof in the literature for the

validity of this mehod.

In macraescale two approaches aescribedn the literatureFirst there arehe methods

that use the NavierStokes equations (NSE) with a slip model at the wall
(Hadjiconstantinou 2003As mentioned before, the problem with these methods is that for
high Kn flow processes, the continuity assumptions and the &faiations are not valid.
Secondthere are thenethods thatassume thaadding up diffusiorflow rate calculated by
Fickds diffusion equation and Dwouldlyethd | ow
proper model fomll the flow processes ithe high Kn regime(Zhanget al. 2015) The
problem with these methods is that the assumptions made for the model cannot be
analytically and fundamentally verifieHarleyet al. (1995)ran rarefied gas flow tesin
microchannelgor 0.001Kn<0.4 and found that the NESwith slip conditiors at the wall
matchel the experimental resulia very low Kn rangevery well. Arkilic et al. (1997)

applied dimensional atysis to the NE and first order slip condition at the wall and

9
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derived analytical solutianfor rarefied gas flowin microchannels. They used an
experimental setip to measure mass flow rate in a single chaforen up to 0.15 and
found reasonable agmnents between the model prediction and experimBetskok &
Karniadakis(1999)proposed aecond order slip condition at the wilbe implemented

with the NSE and developed a second order analyticiltsmn for rarefied gas flow in
circular pipe. They compared their results with experiments and found a good agreement
in the slip and e molecular regimeThey proposed that the assumption of parabolic
velocity profile isvalid in all ranges oKn except the transitional flowFluid flow in the
transitional zone cannot be treatecedbercontinuousor as free molecular floyHo &

Tai 1998)

The main concern in thearefied gaslow regimeis the wall condition. A comgrison of
the DSMC results with solutions of E$hcludingtheslip condition at the wall show some
differenceg(Zhenget al. 2002; Xu & Li 2004; Szalmast al. 2007) which brings up the

necessity of using higher order accurdwtthat providetdy the NavietStokes equations.

In the field of gas flow in tighhatural porous medighe Klinkenberg equatiomas been
historically used to modify the rock permeability in the slip flow regiikinkenberg
1941) There have been attempts toeext the Klinkenberg correction and derive a higher
order accurate wall velocity and more accurate permeability correc{ibsisrafi
Moghadam & Chalaturnyk 2014fathi et al. (2012) also modifiedthe Klinkenberg
equation and proposed raore accurate modelJavadpouret al. (2007) studied gas
production mechanisms in tight shales with low permeability of less than 15@aaop

and found that the gas flow could be predictedalyiffusion modelwith reasonable

10



accuracyln their diffusion modelhe viscous effectwereneglected and the flow raieas
directly related to concentration difference and a constant diffusiMitgir experiments
wereperformedn aKn range corresponding thefree molecular diffusionagime In the
diffusion regme, the molecules do not sense much resistance caused by caolligiather

moleculesand therefore ignoring viscous forces is reasonable

The aim of the current studyasto investigate the limits dheKlinkenberg equation and
its higher order expansioms determining the permeability of a simple structured porous

medum.

2.2 Laminar Inertial E ffects

Laminar inertial effects are expected to become important when thélle¢izdsed on the
porewidth) is greater thamnity. These effects are calléthmina because they happen
at Re that are low when compared Re that chaaderize turbulence effects. The
Forchheimer effect is another name attributed to the laminar inertial eff@cious media

flow (Forchheimer 1901)

The quadratic relationship of pressure drop and velocity has been found by numerical
simulation of incompressible flow through cylinder arrd@oulaudet al. 1988) and
through ghere packgHill et al. 2001) There hae been some research works that
proposé acubic relationship for the velocity and pressure gradidei & Auriault 1991;
Balhoff & Wheeler 2009)However, the range of the applicability of the cubic relationship

is not wide.
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Ruth and MgRuth & Ma 1992)roposed an alternative form of representing the aerti

effects on the permeability :as

p p Q"6

o0 o P ‘ 2.9

wherek is the permeabilitykans is the absolutepermeability(permeabiliy when inertial
effects are mimmal), b is the Forchheimer coefficient,is the density of the fluidndp is
the dynamic visaosity. Equation2.1 could be simplifiecdby defining a scaled permeability

ks as:

Q- - (2.2)

whereF is apositiveconstantOne of the characteristics of equation 2.2 that will be shown
later in this thesis to be probleritais that the second derivative lkafwith & is always
positive.Historically, the Forchheimer coefficiemtas beemmeasured experimentally for
eadt type of fluid and porous mediuby multi-rate flow tests and there is no generally
accepted theory to priedl its value. However, there are empirical correlations relating the

Forchheimer coefficient to permeabilifyorosity, and tortuosity

Considering a porous mediuto be a bead packrgun(1952)deriveda correlation for

the Forchheimer coefficient as

I w8 pmQ 8n 7 (2.3)

wherea andb are constants depending on the porous structure sukiadae permeability

and t is the porosity. Macdonald et al. (1979) tested Er gun 6 s chgrrel at
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experimentatiorand defined rages fora andb. There are also other correlations obtained

for natural porous media. Table&2presentshe correlations in the literature.

All the equations presented in tabl@ Zlate the Forchheimer coefficientpgermeability
k, porosityt, and totuosity U These correlations are not universal because they are

obtained for different types @orousmaterials

Flow experiments on regular shaped sphere packs have shown the applicablefrdnmege
Forchheimer equatio(Seguinet al. 1998; Dybbs & Edwrds 1984; Fanet al. 1987)
Theseranges differ for each type phcking. That means the Forchhemequation is not

applicable in all ranges &e

Table2-2: Correlations rehting the Forchheimecoeffidgent ( B9 porous medium

properties
Empirical Correlation Reference
I pc pmQ 70 7 (Janicek & Katz 1995)
I mrma 'r 7 (Geertsma 1974)
I c¢&tT pmQ n f (Liu et al.1995)
I OQ h ot &ti 0WE ¢ (Cooke 1973)
I o pmQ T (Thauvin & Mohanty 1998)

Fouraret al. (2004)solved NavietStokes equations by a finite element schengbDiand
3D sphere packs and introduced distinct #xarcy flow regimes. They investigated the

validity of the Forchheimer equation and found that the Forchheimer equation is valid in
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3D flow in the sphere packbat were consideretlee andyang(1997)simulated the flow
process through a bank of cylinders by direct numerical soluf the NavieiStokes
eguations. They found that beloReof unity, the Darcy effect is dominant, and when the
Reexceedsunity, the inertial effectaccount fothe major parof the pressure drojfRojas
andKoplik (1998)simulated tle same process age andYang(1997)in 2D mode and
found thatReof unity is the critical point where the Darcy flow changes to Forchheimer

flow.

Newmanand Yin (2013)utilized the LBM to investigatehte possible link between the
porosity and permeability @D artificial porous structurandthe Forchheimer coefficient.

They stated that the change in the flow path is the dominant factor on the flo
characteristicsKoch andLadd (1997)appliedthe LBM to simulate lowReflow in arrays

of aligned cylinders and studied the pressure gradient and flow rate. They found that a
guadratic relationship similar to the Forchheiraguatiorexists between the flow rate and

the pressure gradienth&y also found that the flowteaand the pressure gradient have
linear relationship at vanishinge quadratic at finit&ke and cubic in the transitional zone

whereReis much greater than unity.

Thauvin and Mohanty (1998) developednumeical pore network models with different
geometrical properties (porosity, tortuosity and permeability) and ran flow tests on the
networks to study the inertial effects. They prodda relationship between the
Forchheimer coefficient, permeability and psitgp based on the network flow results.

Wanget al.(1999)developedumericahetwork models foananisotropic porous medium
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and tested thaonDarcy effects. They verified that ensorial form of the Forchheimer

equation is valid for anisotropic porous meitia limited range oRe

Advancement of technology has made it possible to iraage&ro porous mediumThe

full structure of the flav paths in a small sample of a porous bathn be determinelly

CT scanning. Researchers have triegimulate the flow process the imaged porous
structureusingnumerical methoddMuljadi et al. (2016)investigated the effé®f porous
medium heterogeneity on the onset of 4#iarcy flow by utilizing such direct flow
simulations. They found that the critidakthat determines the onset of ADarcy flow
could differ a few orders of magnitudes for different ro€dsukwudaieet al.(2012)used

the LBM to simulate high velocity flow in the imaged porous medium of a sandstone
sample and to predict Forchheimer coefficient, permeability and tortuosity. Their results
were in good agreement with the experimentation difans et al. (2004) Sukopet al.
(2013)implementedhe LBM to simulate hidp velocity flow in high permeabilityuggy
limestone. They found disagreements betwgenLBM and exmrimental results and
linked these disagreementwith the incapability of the current standard laboratory

instrumentgo conduct flow tests on highermeabity rocks.

To summarize, the research works presented in the litegtggestshat the critical point
where the Forchheimer effect becomes damirstrongly depends on the porous structure
and is a value in the order of unity. The flow regirfasinertial flowsare divided into
three sukregimes based on the critical Reynolds numbe)(and the transitional

Reynolds numbelRa) as shown in tdb 2-3. Re is the Reynolds number associated to the
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point where inertial effects begino causea noticeable decrease of apparent permeability.

Re is the point where the flow regime changes to turbulent.

Table2-3: Flow regimes classified by the critical and transitional Reynolds number.

Sub-Regime Reynolds range
Creeping (Darcy) Re<Re
Forchheimer Re<Re< Re

Transitionalto turbulence Re> Re

It is obvious in the literature that the Forchheimer comffit is not determined by a
universal equation and generally acceptetb depend on the porosity, permeability and
the tortuosity of the porous mediuAlso, the literatureontains conflicting evidendéat
the pressure gradient and velocity could hawpiadrati¢Wanget al. 1999) cubic(Mei

& Auriault 1991; Balhoff & Wheeler 2009pr linear relationshipDarcy). Different
relationshipsare proposed in the literature because the rarmmfemass flow rate or
Reynolds number arelimited. Onepurpose othe current researchasto investigate the
relationship between the mass flow rate and appg@emeability reduction caused by
inertial effectsby studyingfluid flow in various3D porous structures a wide range of

mass flow rate

2.3 The PulseDecay Method

The characterization and measurement of intrinsic properties of porous rock saraples
performed by laboratory experimentatiofihe porous rocksamples that are cut in

cylindrical piecesar e cal | ed Tihe perneabitityohgdresanplecan be

16



measured by one of two methotize steadystate and the unsteadtate. The steaestate
method is performed by flowingfluid with known density and viscositiairough the core
sample and determining the flow rate and pressure @rakeuchiet al. 2008) Before
measuring the flow rate and pressure drop, enoughrtiost be allowedo that thelbw
ratebecomedully developed and steady through the sample. For tight rocks such as shales,
the time needed to reatie steady state condition mighéseveral days-urthermorethe

slip effects in tight rocks need to beidiedin a wide range of gssure, while in a single

steadystateflow test only anarrowrange of pressureanbe studied.

The unsteadgtate method is performed by connecting the core sample to a vessel
pressurized with gas and allowing a known volume of the gas to dischanggtthinecore

sample. The gas flow through the sample is a transient prbeessise the pressure inside

the vessel will fall as a result of discharging. The pressure change inside the vessel is
recorded with time and a numerical simulator isthenuséditd st or y mat cho tF
record by determinng appropriatepermeability and Klinkenberg and Forchheimer
coefficients New correlations can also be used in this history maidte unsteady state

process takes less time comgaito the steady state pregs but still might take a long time

for tight rock samplesChere are a number of unsteegtygte testlesigndased on methods

to control the pressuredtheupstream and downstreandsof the core sample.

Basically there are four types ofisteadystde core flow testmethods with four different
setups. In the first setip the core sample is connected to two chambers of known finite
size(Braceet al. 1968) The process is controlled by the volume of the chambers. In the

second setip the volume of the downstream chamber is very small comparing to the
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volume of the upstream chamber so that the assumption of constant upstream pressure is
valid (Bourbie & Wals 1982) In the third method the downstream pressure is kept constant

by using a very big chambascomparedto the upstream chamber or by connecting the
downstream flow line to the atmosphédenes 1997)In the fourth setip both upstream

and downstream pressure are kept consarthat the process becomesadieafteran

initial transient periodThe mostwelk nown wunsteady state-core
decay o whehtudeadchamber of known volume upstream of the core sample and

a known, constant pressure downstredrtne sample.

Comparing the four unsteadyate methods mentioned above, none of them has a clear
advantage over the others. The application of each of the above methods depends on the
available laboratory instruments and also the availability of a noalesimulator to

history match the experimental results.

In the presentesearch an unsteady stptdsedecay seup was designed aralseries of
poroussamples were testeéd studypermeability and inertial effect¥he designed setp

can be adjusted fwerform any of the founnsteadystatemethodsThe constant volume at
upstream and constant pressure at downstream was set so that the flow prdddss cou

approximated by the steady state Darcy equation.
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CHAPTER 3: NUMERICAL METHOD AND
EXPERIMENTAL S ET-UP

In this chapter the Lattice Boltzmann Method and the kinetic theory behind it are
briefly introduced in the first section. In tilsecondsection the experimental setp and
procedure used to validate the theoretical remu#tsplained In the following textvectors
are indicated by an arrombove the letterand tensors aiiedicated bybold lettes, @is the
velocityvector, ®is the momenturmector, mis thespatiallocation andhe subscriptband

Jrepresent th&é" andJ" particles.

3.1 The Kinetic Theory and the Lattice Boltzmann Method

A fluid system can be studied at different levels corresponding to different length scales.
The three well known scales are nasuale, mesacale and macrscale. In this chapter
the kindic theory and the Boltzmann Equation, which operate at the-s@ale and the

Lattice Boltzmann Method, which operates at the rsesde are explained.

3.1.1 The Kinetic Theory and the Boltzmann Equation

At the nanescale, the motion and interaction of theleaoles are modeled individually
based on the basic laws of physics and kinetic theory. Kinetic theory provides the link
between the individual molecular dynamics and thermodynamic properties of dilute gases
(Jakobsen 2014Kinetic theory is a suldivision of statistical mechanics dealing with non
equilibrium systems based on averaging th€berziger & Kaper 1972 Considering an
isolated fluid system witN particles in 8D Cartesian space and a corresponding velocity
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space, the system at a certain time can be represented by a pbmSidimensional

(S=6N) phase space:

Yk Y @f®d h 'O pfE ©

The canonical equations provide the time evolution of a system of particles in S

dimensional spacé&(ruchtrup2005).

T@ 1O
Torn
(3.1)
T T 0
To0 Teo

Here O @y is the Hamiltonian defining the total energy of the system in the coordinates
@b M corresponding to location ewdinates and momentao-ordinates
fip ip I8 Mip . The subscriptl represents the™ particle. The simplest Hamiltonian

describing the energy of a weakly interacting dilute gas is presented in classical kinetic

theory agKardar 2007)
” LY r‘ﬂ) 8‘ﬂ) i A p Ll \ \
O — Y® - w ® ® 3.2
ap <G < (3.2)

h

whereU provides the p@ntial energy from the external for@nd V() provides the so
called twebody interaction force function. In the abovpnesentation of the Hamiltonian

multi-body interaction effects are ignored.

The dynamic behavior of the fluid particles follow Newt 6 s | a w {Bir®1994mot i o n
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D ad a (3.3)

@
[9¢]
where is the position oparticlel, & is the mass of particlet is the time and®is the

net forceacting on particlé. The net force consists of external bodyé&s and molecular
interaction forces. In principle, it is possible to use equation 3.3 with any given molecular
interaction model to track all the fluid particles in a finite spblmvever, die to the huge
number of molecules in large systems, the contjmunal expenses limit the applicability

of this method to nanscale problems.

To study the thermodynamic properties of fluids, it is not necessary to use all the
information in the phase space. Introducing particle probability distribution functions in
the phase spacew allowdescrption of a fluid system. Applying the particle probability
function coarsens the fluid description to the mesale. A one particle distribution
function "Q e defines the probability of a single partidi@ppaing to be at the

location@with velocity vectomat timet.

Foll owing the Liouvil | e6BornGrdemKokweodaYvamnd t he
hierarchy, and implementing the assumption of molecular chaos, Boltzmann dbeved
following closed form egation for the time evolution of the oarticle distribution

function due to binary molecular interactgdor dilute gase¢Kardar 2007)
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Qa0dh B Qe Qe (34)

"Q fip hip o "Q @ hip ho

whererp andip are the momenta of two particles before a collisiprandip are the post

collision momenrd, and®@is the impact parameter which is related to the size of particles

and the relative direction of theielocity vectors
Equation 3.4 is written in abstract form(&ardar 2007)

QO
T—‘ @, Q |V, Q 6 Q (3.5)
T 0

wheref representghe one particle distribution functioiis the acceleration fronthe

external body force component a@{f)i s t he fAcol |l ision funct.i
interactions betwegparticles The collision functioms used taepresenthe whole integral

on the right side of equation 3Bquation 3.5s derived based on the assumption that the

potential energy depends only on the external body force so that:

Y |
— p 3.6
= ) (3.6)

—a

Bhatnagaret al. (1954) pr esent ed a model |, generally

appr ox i tmsinplifyotre @ollision function resulting in the equation:
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—+1o
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o)

wheref® s the local equilibrium state of the particles diid a relaxation time which

determines the rate dfansformationof the local distribution towards the equilibrium

distribution. Assuming unity molecular mass for a particle, the probability distribution

function f provides the mass density distribution of the fluid particles in velocity and

location spaces. The ultimate goal of kinetic theory is to find this distributiocaube the
most important thermodynamic and hydrodynamic propeitieghe fluid density & ,

the momentum densitf & , the internal energy densi@ & and the stress tensor
d & ) can be calculated oncé is known. The first four moments of the distribution

function provide these entities.

" @ "Qahed Qb (3.8)
" ® @ OQaEn Qb (3.9)
" R g B8 "QEEd b (3.10)
a & B3 & QD Ob (3.11)

wher e t he # pe®,uddefiaed asvtre Ipasticlé velgcy with respect to the

bulk velocity®as:

0 ® O (3.12)
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The hydrataticpressureP, is defined as the average of the diagonal components of the

stress tensad (Shanet al. 2006)

5 ” C” !Q
A 3.13
U (3.13)
whereD is number of space dimensions. The Einstein summation convention is used in the
above equation. Tie internal energy and the temperaflirare related adRao 2015)
O O .

Q —YY —1Q7Y (3.14)
C cd

whereR is the gasconstant and is the Boltzmann constankgE1.38064852x 1023
mPKgs?K ). Combining Equations 3.18nd 3.4, the ideal gas law can be derived as

Ny (3.15)

nooYryY (3.16)

3.1.2 The Lattice Boltzmann Method

In order to solve equation 73."Q&h&d® must be represented by a mathematical
formulation. For the present application of the LBM, this is doneekyanding the
distribution function'Qa&h& , on Hermite polynomial basegShanet al. 2006) Hermite
polynomials are classic orthogonal sequences well suited to represent ctumpteons
(see AppendixA for a description ofHermite polynomialg. The notation for the

distribution function will be:
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where H® is the rankn Hermite polynomial a™ is the corresponding expansion
coefficientand] @ is a weight functionin the above equath H" anda™ are both rank
n tensos and the product on the right side of the equation dstlegefull contractiorof
these tensorsBecause of the orthogonal nature of thermite polynomials, he

coefficientsa™ canbe calculated as
+ @ Qs 3 @D (3.18)

Expanding the distribution function using equation/3the expansion coefficients can be
obtained as a combination of the moments of the distribution function. The first four

coefficients are

+ e (3.19)
+ O0D "® (3.20)
+ 0 ® £°0® ad " ®5 ® 4 (3.21)
+ 0 @5 @ & 08

(3.22)

wherel is the Kronecker delta&hsor andd andQ are given by
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F + &f O p” ®% ®% @ (3.24)
In the above notatiortb=|= means the sum of all possible permutations of tensor product

@ kod 0w 0 & ). The equilibrium distribution function in equatiorv3.

can also be expandedterms ofHermitepolynomialsbases
»n YT ol p Yy T
Q awd ] @ ‘s_A+ @5 @ (3.25)

In applying the LBM,f*9 is approximated by preserving ontlge first few expansion

polynomialsaftertruncating the above expansion.

Q awp ] ® éBA @og @ (3.26)

The truncation of thexpansion at any ordéras been shown twot affect the lower order

momentgShanet al.2006)

Discretization of the velocity space in lattice units is performed by the Gaeisrite
guadrature method. Based on the Gaussian quadrature, integral of a polwaa@mézn

be evaluated by the sum of the function value multiplied by some weights as:
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Herel @ is an arbitrary weighting function and are a set of weighting constanashte
calculated. The above numerical approximation is said to have an algebraic degree of
precisionm if it is an exactequivalencyfor any polynomiak=@ up to the degreen.
Equation 3.27 is used to discretize the velocity space and to calculateigisby some
mathematical manipulations which is out of the scope of this thesi<{sae & Shan
(2008)andShan (2010jor more details)The location space is discretized by equidistant
nodes which are also called voxdter example, Fige 3-1 depicts a 2D space with nine

discrete velocity directions at each space point.

The scheme used to denote different solution implementatiossési lon the number of
space dimensions and the number of velocity directi®hs velocity set in Fige 31
would be referred to d32Q9 whereD# is the number of space dimensiotwd in this
cas@ andQ# is the number of velocity directiorfaine in this case)lhe D2Q9, D2Q21,
D2Q37, D3Q15 velocity sets, associated weights and their algebraic precesmtained

by the integral quadrature method.

f2

fo u ‘ fs
fi fi
f7 fa . fs

Figure 3-1: Schematic of D2Q9 velocity set.

Thediscretized form oéquilibrium distribution function truncated at tP¥ orderHermite

polynomiak reads
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i (3.29)

6~
18
N|O
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2131) ® 8
W

In the above equatiors has the same units as spedids used to nowlimensionalize the
equilibrium distribut i oofsdundindttice spaoe lathed i s ¢
above equatio® is the bulk velocityof the equilibrium statg is the bulk densityg6 s
are the discretized velocities amgb sre thefii we i gassocgtéd with different lattice

velocities. Thebulk velocity anddensity are calculated as the moments of distribution

function as:
" @ Q@
(3.29
" ® @ ®'Qan
(3.30
and similarly® is calculated using
"® oD ®@Q @ (3.3))

Schemes that areommorty usedare D1Q2, D1Q3, D2Q9, D3Q1%and D3Q19 The
number of discrete poistused inthe quadrature technique determines the precision of
numerical evaluation of the integrat this study the following schersavere used2Q9
andD3Q15(with precision of 5that is, five terms in the quadrature techn)qusing a 2"
order Hermite polynomial expansion;D2Q21 (with precision of 7)using a3 order
Hermitepolynomialexpansion; an®2Q37(with precision of 9)using a4 orderHermite
polynomials expansiorJsing the notation ofhanet al. (2006) the discretized velocity

and weight sets d#2Q9,D2Q21, D2Q37AandD3Q15 are listed in tables-3, 32, 33 and
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3-4. Here FS meangfull symmetry sed. The full symmetry set ofa,0), with a being a
constant, ig+a,0) and (0,xa). The value given in the taldeherefore applies to all the

points (a,0),4a,0), (0,a) and (@a). Thevalues forcsfor D2Q9 D2Q21 D2Q37andD3Q15

arepfVio, c¢fo ,0.8354 angIVio respectively.

Table3-1: Velocity and weight seter D2Q9.

Speed Set Wi

(0,0) 419
(1,0ks 1/9
(£1, £1) 1/36

Table 3-2: Velocity and weight sefsr D2Q21.

Speed Set Wi
(0,0) 91/324
(1,0ks 1/12
(1, 1) 2127
(2,0%s 7/360
(2, £2) 1/432
(3,0Fs 1/1620

Table3-3: Veocity and weight setfor D2Q37.

Velocity Set Wi

(0,0) 0.2331506691323525022864
(1,0ks 0.1073060915422190024124
(1, £1) 0.057667859888794882030(
(2,0ks 0.014208216158450750264¢
(2, £2) 0.0010119375926735754754
(£2, £1), (1, +2) | 0.0053530400051377523273
(3, £1), (1, £3) | 0.0002834142529941982174
(3,0ks 0.0002453010277577173454
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Table3-4: Velocity and weight sefser D3Q15.

Speed Set Wi

(0,0,0) 2/9
(V10,0,0)s 1/9
(Y Vo, Y Vo, Vo) 1/72

In figure 31, each velocity vector itheD2Q9 model starts at a node and endshaighnor

node. Thisistened a-hafibhce velocity seto. I f the v

end at the space between some dattidesgelociimodes |
set 0. Al l t Usedin this $tunlyc wete \oilattice getsFigure 32 shows he

difference between elattice and offlattice velocityvector.

A b

Figure 3-2: a) The onlattice velocity component and b) the-laftice velocity
component. Here the black dots show the lattice nodes and thesatiow a discrete

velocityvectos.

The solution to a thermodynamic process bylthtice Boltzmann method is conducted

by the algorithm show by figure 33.
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Time=0; Initialize density, velocity, f

v

P| Increase time step

\A

Calculate density and velocity from f

V
Calculate f4

Collision

A\
Bounceback

Streaming

4
Time <= Maximum time set

NO
End

YES

Figure 3-3: Flowchart showing the algorithm for applying the Lattice Boltzmann method.
This algorithm could be modified for vatis boundary and inledutlet coditions.

Figure 33 shows thatEquation 37 is applied in two discrete stepg&collisiond and

fistreaming. In the collision stepa temporary value for the distribution function of the

discretized velocities calculated as

~

. . Qald Q@
dad  Qdd : k2 (3:32)

and in the streaming steibhe temporary value is streamed in time and space as

e @Yoo Yo “dao (3.33)
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One of the mosiportant aspects of modeling flow in narrow channels is the treatment of

the interaction between molecules and a watl.this studytwo methodswere used to

mo d e |

t h e s ebouncebaeardispedular meflectiodiT hebounceback scheme

is illustrated in Figure 31

Bulk Flo

—

Solid Wall

w

Flux towards the wall Flux reflected by the wall

@ ® ® . ¢ &
—e o o —— ¢ o
o 0 o o

Figure 3-4: The bounceback boundary condition. The incoming flux from the lattice

nodes (blackilled circles) towards the wall are reflected in the opposite direction in one

time step.

The fictitious nodes in the solid Wsttlownby circles)are placed just for

clarification. Here the discrete velocities are color coded, the solid lines are the

incoming flux and the dashed lines are the reflected flux.

In this scheme the walkflects thestreamwise velocityn the opposite direwn to the

incoming direction while reversing the normal velociBy applying this scheme the

incoming flux is reflected in the opposite direction so that the velocity at the wall would

be zerdor de

wall. A n

nse fluidsThis would be a reasonable condition far dase of nslip at the

alternative-waghdeamanicebtlk&ofihahi ch
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bounceback method. In the hathy bounceback scheme the wall is placed half way

between two nodes. Figures3demonstrates the halfay bouncebck scheme.

Bulk Flow

Flux towards the wall Flux reflected by the wall

& ® ® ®
/N A
/ \ I”I i \\\\
/, : \\
Solid Wall o i ()

Figure 3-5: Thehalf-waybounceback boundary condition. The incoming flux from the
lattice nodes (black filled circles) towards the wall are reflected in the opposite direction
in one time step. The fictitious nodes in the solill (@aown by circles) are placed just

for clarification. Here the discrete velocities are color coded, the solid lines are the
incoming flux and the dashed lines are the reflected flux.
The specular reflection meth@lillustrated in Figure -®. In this £heme the walteflects

the incoming flux like a mirror and therefore conserves the streamwise velocity while it

reverseshe normal velocity
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Bulk Flow

-

Flux towards the wall Flux reflected by the wall
] [ ] o ® ®
A
i
I
1
s

\J
e e

Solid Wall

Figure 3-6: Thespecular boundary condition. The incoming flux from the lattice nodes
(black circles) towards the wall are reflected like a mirror surface. The fictitious nodes in
the solid wall are placed just for clarificatiohlere the discrete velocities are color
coded, the solid lines are the incoming flux and the dashed lines are the reflected flux.
This would result in a fullslip condition at the wall and would cause a plug flow type
similar to what occurs in molecular filiion. The collisions of the molecules with the wall

in both caseareassumed to be fully elastic. The-slip and fullyslip conditions happen

at the lower and higher limits &n respectively.

The distribution function at thalet andoutlet of the nodelshould be calculated based on

the mass, momentum and energy conversation criteria. In this study velocity and pressure
boundaries were iposed based on thite & Doolen(2002)method.To elalorate on this
method, figure & shows a simple schematic o2® channel and the discrete velocity
vectors &one of the inlet nodes and one of the outlet nodes. In this chamigtal gas

entes as a constant velocity stredrom the west (leftside of channel and exits frottne
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east (right) sidento a constant pressure mediumthe model presented bygfire 37, the
discretevelocity vectoran the boundary nodes (inlet and outligtt arepointedtowards
the outside of the channahd the ones pointed towards the walls calculated at the

streaming step while the rest of the velocity vectors areawkn

Inlet Solid Wall
fs ; fz fs ; fs
. I f; fi
. fi fs f7 fi fs
| Solid Wall | Outlet

Figure 3-7: Schematic of the velocity set at the inlet and the outlet of the channel.

In the He and Doolen method the difference of the streamwise distribution functions is
assumed to be the same he difference of the streamwise equilibrium distribution
functons and by using equations 3.29 and 3B80the components of the distribution

functioncanthen becalculated.

In figure 37, f3, fs and f7 at the inlet andk, fs andfs at the outlet arealculated during the
streaming step, anfd, fs andfgs at the inlet ands, fs andf; are calculated by the He and
Doolen method. Assuming known constant velocity at the inlet, the He and Doolen method

utilizes the following equations
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, P (3.34)

P O
Q Q26 (3.%)
o)
o fqam 2 By (3-%)
C ¢ q
o0 fqamn 2 By (3.37)
C ¢ q

where the indeXV stands for the wegleft) side,uw is the velocity component parallel to
the channel walls4y is the velocity component perpendicular to the channel wallg.and
is the density at the inlet. For the outlet,tbg assumption of constant density (pressure),

the unknown distribution function components are calculasauy

, Q0 ¢ QQ (3.38)

O p ”

2 Q26 (3-%)
o)

o a Pa o Py (340
C )

o a Pa o P (3.41)
C )

where the inde¥ stands for the eagtight) side

3.2 LBM Model Validation

In this studya 2D LBM simulator wasdeveloped to study rarefied gas flowthe high Kn
range an@D LBM simulators veredeveloped to study inertial flow effects. In this section

the proceduresised to test thdeveloped simulators against the analytical solutares
36



describedAs an alditionalvalidation method, theesults for he 3 LBM simulatorwere

comparedvith experimental results.

3.2.1 2D LBM Model V alidation
In the first step towards studyingrefied gas flow in porous media,second order L&
simulatorwas developed to model gas flow iR thin, uniform, long channel at lovRe.

A schematic of the chael is represented by figure&

Figure 3-8: Schematic of th2D channel. The parabolic curve and arrows are used to
display the fully developed velocity profile.
Before tryingto simulate the highkn flow regimes, it is essential to validate the LBM
simulator.In the developed simulator, 22 order Hermite polynomial expansion of the
equilibrium distribution functiorwas implemented witlb2Q9 scheme The casestudied

was the fbw of an idealgas in a lon@D channelatlow Kn. The inlet condition was set to
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constant velocity and the outlet condition was setdostant pressuré mesh size of
41x1000 voxels was used to represent the chamhelvelocity profile generated byeh
LBM model was compared with thenaytical solutioncorresponding tahe neslip

condition which may be written darkilic et al. 1997)

12,

0
ra (3.42)

w
)

Q
Q
ol e

Whereu(y) is the velocity at distance y from one of the wallgs the channel widtlg is
the dynamic viscosity, is the fluid density— is the hydrostatic pressugeadient along

the channeland™Q is the body force acceleration along the channel all in Sl units.

Conversionto LBM dimensionsfrom any physical dimensions can be damsngthe
characteristic lengthL), time (To) and massMo). Table 35 summaizes the needed

dimension conversions.

Table3-5: Physical and LBM dimension conversion relationships.

Properties Physical LBM Relationship
Distance ax Yo 0 Y_‘*’
Yw
o Yo
time o ya-u Yo o=
ya-u
- r ”n 14 0
velocity u 0 oY 5
density I " o 5
. . - T
viscosity g T v Y T_

38



The relationship between the LBM viscosity and relaxation time is well accepted as

(Mohamad 2011)

T Ot ™| o (3.43

wherg ds the lattice time step which is set to 1 for convenience.

The nondimensionalized mfiles generated by the LBM simulator and calculated by
equaion 3.42are shown in figure-8. The case for this comparismincompressible flow
with K n afar the continuum equations, atike half-way bounceback wall conditiois

usedin the LBM model.

0.14
0.12 29" %%,,
C.‘ ‘.Q
Q. ..
0.08 o u(y), Analytical 'Y
P e u(y),LBM »
0.06 P V) S
 od @
0.04 44 \
002 P e
o ®
06 »
0 0.2 0.4 0.6 0.8 1
y

Figure 3-9: Velocity profiles obtained by LBM arahalytical solution oN<E.

As itis observed in figure-9, there exists a very close match between the data predicted

by the N& and the LBM.
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3.2.2 3D LBM Model Validation

A simulator code wadevelopedhat solved. BM governing equations in3D lattice space
using theD3Q15scheme The velocity set of thB3Q15model is given in table-3. The
bounceback condition was applied at the contact of fluid and wall to assurslig no

condition and zero velocity at the wall.

As the first test to verify the developed simulator, the simppbeess of body force driven
flow in a 3D straight pipe was simulated and the steady state fully developed velocity
profile was compared with the analyticallgion of the NavieiStokesequations. The
analytical solution of the NSfor the body force dwen flow of incompressible fluid in a

longthin pipe at vanishingeis (Arabjamaloei & Ruth 2016)

61 — Y i (3-44)

whereu(r) is the streamwise velocity component at a distaricem the center of the pipe
(r=0 to R), Ris the pipe radiusQ is the steamwise body force acceleration anid the

kinematicviscosity all in Sl units.

The LBM model of the pipeatilized a 82x82x82 voxels mesh and the body force driven
flow in thechannel was simulated by applying streamwise periodic boundary condition at
the open faces and the bounceback condition at the wall. Thesfissaperiodic boundary
condition causes the pipe to act like an infiyitong medium. The LBM and physical

properties of the fluid anpipeare included in table-8.
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Table3-6: Physical and lattice properties used to test the developed LBM simulator.

Properties Physical value (Sl units) | LBM value
pipe radius 0.1 (m) 40

body force acceleration (g| 1 (m/g) 1.95e11
fluid density 1 (kg/n?) 1

dynamic viscosity 0.25 (mi/s) 0.025

The simulation was performed for a body force driven incompressible flow in the assumed
circulartube LBM is generally discretized in a Cartesian coordinate system. Modifications
to the boundary conditions Ybeen poposed to apply LBM to curved boundar{&4ei

et al. 2000; Guoet al. 2002) To reduce the complexity of computation while preserving
the original mdtod, the circularube was programmed with fine mesh size dmel
boundary was placed exactiy the selected nodeBigure 310 compares the analytical

and LBM predicted velocityor the fully developed velocity profilen the plane parallel

to the pipe, cutting the pipetomtwo halves

0.01
0.008
0.006

u(r) u(y), Analytical
0.004 u(y), LBM

0.002
0

0 0.05 0.1 0.15 0.2

y

Figure 3-10: Streamwise velocity predicted by LBM asadution of NSEor thebody
force driven flow in circular pipe. Here u(y) shows the velocity at distant y from one of

the walls towards the center of the pipe.
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It is seen in yure 310 that the LBM simulator output matches the analytical solution

results very well.

As the second stefo testthe capability of the.BM simulator to model fluid flow in non
regular porous structures, a simple structure of three connected pghes\euin figure 3
11 was designednd built The diameter of the small and large pipes was eRit6cm

and0.7493cnrespectively and the lengthst®7cmand2.0cmrespectively.

Figure 3-11: Schematic of varying diameter circular pipe designed to test the LBM
simulator.
The permeabilig of the structure in figure-31 could be estimated by the resistance
method. The classical solution for laminar flow icircular pipe combined witthe Darcy
equation reads:

“Y YO QY0

T - (3.45)

whereq is the volumetric flow ratel. andR are the total length of the pipe and radius
respectivelymp Fis the pressure difference of inlet andtlet, k is permeability A is area

perpendicular to bulk flonandp is the viscosityall in Sl units.
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The equality of the total pressure drop with the suth@fpressure differenad the three
sections of the pipe will lead to an average permealfityhe system as:
0 0

YO YO - - — 3.4
YO YO t s 05 (3.49

whereLid #\d andkid sepresent the length, cross sectional area and absolute permeability
of each section of the pipe respectively. For the designed porous sampisistence

method predicts a permeability ®69x 108 m?.

To test the permeabilitythe structure in figur&-11 was built by drilling holes in two
pieces of a polyvinyl chloride (PVC) rod and gluing the pieces together. To test the
permeability of the dggned structure a simple gravity drainage test was performed using
the setupshown by figure 3L2. This method is the classical falling head permeameter that
Darcy used inthe 1800s. The falling head permeameter was first used to test the
permeability ofsoil and gravel for agricultunelatedpurposes. Also this method is used

in todayods oi | -site pernpabifity analysisuolaoseysandisor o n

4.45 cm

f—

15.68 cm

4.57 cm

Figure 3-12: Gravity drainage test saip desiged to find the permeability of the sample.
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The tank athetop of thesample in the cylinder was filled with water that was allowed to
drain through the porous sample. Bgtirematical modeling (Appendix)Ban equation
can be derived tbnd the permeabity of the sample as a function of drainage time as:

6‘dio pexpm
6”0 1 lcwapm

(3.47

wherek is the permeabilityA; is the area of the cylinder containing initial watgiis the
area of the wider hole in the porous samples the volume of the drainedater, is the
dynamicviscosity of water} is the density of wategis the length of the porous sample
andt is the draining time, all in SI unit¥he constants in equation 3.4dome from the
geometry of the cylinder and sample. The drainage testwas 5 times and an average
time of 55 seconds was recorded for the water on the top to ttrenghthe hole, which

results in a permeability &.52< 108 n?.

To test the LBM simulator, the body force driveovilin the geometry in figure-B1 was
simulaed in a 20837x37 voxel mesh by applying a range of body force acceleration (
Streamwise periodic boundary condition at the open faces and bounceback at the solid
fluid contact were applied in a D3Q15 scheme with viscosit9.015in lattice units.

Figure 313 represents the mass flow rate and permeability plot for the LBM results.

As it is seen in figure-33, the absolute permeabiligt very low mass flow rateredicted
by LBM is 5.67x 10® n? which is very close to the resistance method and expetaine
results. This shows that the body force driven flow simulated by LBM predicts the

permeability of a nomegular geometry very welllThese results also show the dependence

44



of the permeability on the mass flow rate, the phenomena that will be exatdesdjth in

Chapter 5 of the present thesis.

5.90E-08
5.70E-08
5.50E-08

5.30E-08

K
5.10E-08

4.90E-08
4.70E-08

4.50E-08
0.00 2.00 400 6.00 8.00 10.00

&

Figure 3-13: LBM predicted scaled permeability and mass flow mat8l units

3.3 Experiment SetUp

An experimental apparatus was designed and built for theopairpf performing a
modified unsteadytateflow test For this application, chambers were connected to both
sides of a core holder. Pressure transmitters were set near each side of the core holder. The
core holder was pressurized to impose an overbunedssyre of 12@sifor each test run.
Connections were built in the system to enable evacuation of the two chambers and the
pore space in the sample. Pressure readings were recorded byaaqigs&ionsystem

(DAQ) at a maximum frequency of 250 readings second. To check the temperature
change, temperature transducers were installed in the connecting tubing of two chambers
however, no changes in temperature were observed in any of the experirhergsiup

designed for this study is representedigurie 314.
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Figure 3-14: The modifiecpulsedecay experimentation apparatus.

For a better understanding of the experimentaupefigure 315 represents the detailed

diagram of the experimentation system with all the components.

The differercebetweerthe setupin figure 314 and the common pulskcay instruments
is that in this seup the upstream and downstream sections of the core holder could be
either pressure controlled or volume controll&d.run the experiment, after the cylindxic

rock is placed in the core holder, the gas flow test is performedtaps.

1. The system is disconnected from thigogensupply, and all the lines including the
sample are evacuated.

2. The upstream chamber is isolated from the pore volume by closivng Val and
pressurized by nitrogen gas coming from the supply.

3. The DAQ records pressure and temperature at 4 spots starting when the ball valve

V1 is opened.
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4. When tle pressures in the two chambetpialize, the experiment is stopped and
V1 is closed.

5. CH1 ischargedo a higher pressure and steps 3 and 4egreated.

Downstream Chamber @

Quick Discharge V2 ®

Sample
Vacuum Pump Holder
Quick Discharge @ Vi ® @

Upstream Chamber

Pipe Line ]
——— Wire Line
Quick
Data acquisition system Discharge

Ball Valve

To Supply

Pressure Sensor

Thermocouple

I
® |
® |
@ Needle Valve |

I
v I
T |

Figure 3-15: A schematic of the proposed-sgt for the modified stegecay gas flow
test.
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For a complete pulsdecay test, the gas flow regime da in the diffusion, transitional

slip flow, Darcy and inertial dominant regiossquentiallyln that case theestwould be

an unsteady state process and the results have to be analyzed by numerical history
matching. An alternative way of performing permeabilitygesth the designed seip is

to set constant ambient pressurehie lownstreanchamber This modification will shift

the test more towards a steagtgte process. For this purpose the downstream chamber is
disconnected from the system and the gas is vented to the anfivmngh the quick

discharge line

Before runningthe experimentsthe characteristics of the system including volume of
different parts of the systemust be measurexhd calibration of pressure and temperature
transmitters must bgerformedThe cal i brati on of pressure a
readngs which are in the range offmillivolts is performed by measuring the ambient
conditions by manual barometers and thermometers with an error band of |€s62586.

The calibration of the transducers was performed by the manufacturing company.

The volume of thechambers and thine sectiols from the upstream and downstream
chambers up to the sample holder wesasuredby a simple expansion testhe tvo sides

of the sample holder eve isolated byeplacingthe sample withan impermeable rigid

plasic rod anda confining pressure df20psiwas appliedTwo pressure generatowith

a 60ml volume per stroke @areused in the system as Cldthd CH2 The isolated parts of

the line wereevacuatednd then pressurized with nitrogen gas. The initial volofrtbe

pressure generator was zero. Gradually adding the pressure generator volume to the system,

pressure was recorded at all stages. The ideal gas law was then used to calculate the initial
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volume, which is the volume of the connecting line section ftbambers to the face of

the sample. Figure-B6 shows the experimental readings and fitted ideal gas law equation.

a b
105 105
Fitted Fitted
182* 100 g
X X Experiment 95 1% X Experiment
90 X 90 X
85 K 85 X
P 80 X % P 80 X =
75 X X 75 X X
;2 70 X
65
60 o
0.0E+00L.0E-052.0E-053.0E-054.0E-055.0E-05
v 0.0E+001.OE-052.OE-0\57°>.0E-054.0E-055.0E-05

Figure 3-16: the upstream (a) and downsteam (b) pressure change vs. the incremental
volume (kPa vs. th
As it is seen in figure-36, the ideal gas law matches the readings very well. The mean
squared errafor both plots were ithe scale of.0°. The volume of the flow line section
from the upstream chamber (CH1) up to the valve V1 was measured using the same

procedureFigure 317 shows a sample of pressure measurementa émmplete three

stageflow test.
300
250 — P_Upstream
200 P_Downstream
P (kP&)p
100

50 M

0 10 20 SOTiméKtmin)SO 60 70 80

Figure 3-17: A sampé of pressure recordings for asBage flow test.
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For this test the upstream was discharged through the sample 3 consecutive times. As it is
seen in figure 47, after completion of each step the gas pressurthe downstream
chamber was increasebhe pressure recordings can be used for history matching using a

numerical simulator and the characteristics of the porous rock sample can be calculated.
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CHAPTER 4: SLIP EFFECTS AND THE
KLINKENB ERG MODEL

In this chapter the importance of applyimgodels with higher accurey for
permeability modeling of rarefied gas flowlow permeability porous media presented
in the first section. In the second section the results of rarediedlayv simulation ikD

channels is presenteloth the Klinkenberg model and higher order models are studied.

4.1 Theoretical Study

For a 2Dchannel with high aspect ratio (length divided by heighth aghe channel
shown infigure 41, whenReis low, the NavierStokes momentum equation can be

simplified by ignoring the inertial terms and the following equation is obtgifyddlic et

al. 1997)
1o p QO .
T @

where u is the streamwise velocitgthe bulk velocity parallel to thelriving force

componenty is the dstance from the lower wally€0 to H), p is the dynamic viscosity
"Q is the external body force acceleration along the channel direetb# is the pressure

gradient along the chann@-0 to L).
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Figure 4-1: Schematic of the flow chann&he arrows and the pabalic curve represent

the parabolicvelocity profile.
If the confining walls are stationary, tatemmonassumption is that there is zero velocity
(Awsbi po) at tebeatseston, the case ofafed hases will be considered.
If kinetic theory considerations are included, the velocity boundary condition at ttse wall
up to second order accuracy(4adjiconstantinou 2003)

s vy L0 5 LO 4.2)
T w T '
whereais the mean free path of the fluid molecules is thefluid velocity at the waland
C, and Cz are positiveconstants|t is stated in the literature th@ is the streamwise

momentum accommodation at the wasl(Arkilic et al.2001)

(4.3

where,, is the tangential moantum accommodation Could have a value between
zero and unity depending on the flow characterishistorically a value of 1 is used for
C: in all engineering application@rkilic et al. 2001) Ohwadaet al. (1989) obtained a

value of 1.11 foiC; by numerical solutions of the Boltzmann equatidhe value of C,
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can be measured experimental(fadjiconstantinou 2003 Furthermore, as the fluid
becomes denser, the mean free path goes
condition is recogred.Integrating equation 4.1 in thedirection and applying the wall

velocity boundaryonditions(equation 4.2)esults in:

12,

0
C_‘ OLE COULE (4.9

Q
Q
ol e
J| &

The average streamwise velocity at locatiasithen
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The Darcy equation for a one dimensional channel fioa2D channekeads:

Comparing equation 4.4 with the Darcy equatiequétion 4.5) yields akKn dependent

permeability as:

~

O 0 p GUOE pBUERD (4.6)

O

PCq
where Kaps is the absolute permeability of the channel derived using thdimavall
conditionand lowRe which is recovered by lettingn goto zero The dimensionlessn
represerdthe ratio of the meande path of the gas molecules towhdth of the flow path.

TQ uY

—_ 4.7
N Qo O 4.7)

€1
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whereais the mean free path of the molecuMsis the width of the flow patlkg is the
Boltzmann constant] is the absolute temperaturé,is the effective diameter of the
molecules andP is the static pressure. For a uniform channel the absolute permeability is
related to the channel widifo —). Thereforefor a 2D channelKn is related to
permeability ananeanpressure &

’?’Q "Y
Qb p @

(4.8)

oll

Combining equations 4.6 and 4.8, the permeability can be written as a function of local

pressure as

, N o .. QY .
u U p = =—hQ — h Q
Y N“Q p o
(4.9)
p6 —
Ng“Q p o

wherek; andk. are constants for a specific flow test, independent of presBuré the

first order wall velocity boundary condition® vy _— ) is used instead of

second order, the Klinkenberg equation will be recovered.

hQ — : (4.10

It is seen in equation 4.9 that the permeability is relatetheéddcal pressure and wall
characteristics. Equation 4.9 was derived for a straight uniform channel and its extension

to natural porous media needs special treatments for complex geometry and tortuosity.
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Although the above derivation is mathematicallysistent, applying the second ordar
relaied boundary condition to the NS$Buld be considered to be unreasonable because the
NSE are inherently only accurate up to the first oridar(Shanet al. 2006) This means

that the NES are only applicablekifh is less than approximately 0.1.

The hydrostatic pressure in underground gas reservoirs is relativelyanidgthis leads to
smallKn that suggest thd€n related effects could be typically neglected. However if the
mean pore radius, and therefore the absolute permeabflitige reservoir rocks is very

small, such as is the case in shale gas resertlmtsanlead to elatively highKn.

To understandhe variation ofKn in natural gas reservoirs and laboratory conditiéims
was calculatedor different pressures in the range of natural gas reservoirs and laboratory
pressure for a typical average sizenafural gas molecule diametdd 3 . 98 &1da

temperature 0800 K Figure 42 shows the range & for a few sample pressure values.

10 T T v T v T Y T
—=— P=300 kPa
8 —— P=200 kPa|
—— P=100 kPa
P=50 kPa
6 =
Kn
4 \\\\ o
24— \\‘\ e =
e T _—
| T e T — |
0 13- :‘-«m
0.01 0.1 1
Permeability (md)

Figure 4-2: Kn range for low permeability and different mean hydrostatic pressure.
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It is seen irfigure 42 thatKn could reach to high values in the transitional zdng € Kn
< 10) in low permeable reservoirs. This raises the necessity of applying a permeability

correction method with an accuracy higher than the Klinkenberg model.

In this researcka LBM simulatorwith 2" order expansion of Hermite polynomial&s
used tosimulate rarefied gas flow in 2D channels astimate the constants in equation
4.6. In the present work th2D Cartesian channel flow was studied for the sake of
simplicity andin order toredue the computational cost. Application of the LBM 3®

cases is straightforwatzut computationally expensive.

4.2 Numerical Study

A combination ofhalf-way bounceback and speculaflectionvelocity can be used to set
a limit for the slip bbavior of the wall surfacat any range dkn. To check this idea, the
developed 2D LBM simulator was used and five different ratios (0, 0.6, 0.9, 0.95 and 0.99)
of the incoming flux towards the wall was setrédlect at the wall based on the specular
reflection modeland the rmainder of the fluxwas set tdounce backn the opposite
directionbased on théalf-way bounceback modelhe ratios will be referred to dke
Arefl ect i oMo The fallfy devetoped constant velocity entrance anistant
density at the outlet was set based orHé& Doolen(2002)method Thevelocity profiles

at a distance=0.75xL from the entrance wastudiedfor different reflection ratiosThe
channel flow was simulated by a 42x1000 voxels mé&ske. study was done for four
different dimensionless kinematwscosity { ) numbers corresponding to four different

Kn and theresults are shown by figures34o 4-6.
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Figure 4-3: Velocity profiles and velocity at the wall for differehtand; =0.0025
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Figure 4-4: Velocity profiles and velocity at the wall for differehtandi =0.025.

Figure 4-5: Velocity profiles and velocity at the wall for differehtandi =0.25.
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