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.1ì l-ru'o-1e,.'c, I rlumc ricaL f<¡ r'eci:st nti-:cicl. í-s pr.oi;ost: d iir i,¡hi-cl¡ L.icubic

poìynoní.aì. si:IÍ-nes arr: us,ecl i.r: i:.r tilcr srpa'tia-'l var:ialíons r:1'the derpeLrcl -

en'ú vari¿rl.r j.c f j-el <js oLr a r¡a:: j,¿ibIc arca tel.escoping gi:1cì. 1'lie spline

methcd !Ìencrates spaLial drrir,¿ltiv'eEr r¿hicli:i,nhcrcntl.;v t'epi-',:senr a fotjrû

of siloothilg oi tìre siope eslir:rates g,enilräi-ed b;; finite cìif-tercnce

rueIhoCs; the te1.r.:sco¡.ring gr-i.d is constructcrd to ensure computational

stal'rilir;y at liigli lati.tücles i¿it1:out the necd of high frequencv filte!:s,

-spatí.aJ- staggerirrg of the depencient r¡a-,:j-aroles and comple>l flux calcrrla-

tions.

Thir:ty-s j-x hour numer j-cai. f or:ecas Is trs-i-ng tire propo.eed ¡nc¡del and

usiltg a L969 t¡ersior-i of the }fintz-Arakar^ia model- a-r:e compared be Lr.;een

thelnselves and the real weather. Tire spl.írre method is shor¿n Lo Lrave

ad\¡ania.ges over the fi.níte di-ffererrce method in tel:ms oi: decreased 1:ìiase

lag and loi"er root-mean-square forecast er.ror. Cornput.atj.on lime ís rie-

creased b)'a factor of l/3 due to the telescopir-rg nature of the g:,:ici.

and the re ís no decrease in f orecas t accul:¿lcy j-n the f ine grid region

arising f-rom the surrourrding coarse gria regicn.

Extensions to {-he model are developecl through the derivation of

a gene raLLzed spline based or-l continuity of curvatlrre and a numerical

f o recas t te chn ique us ing rve igh te d ::e s idua I me thods .
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NO}lENCI-ÂTURE

= tíme

= coorclinate to the eas t

= coordinate to the west

= pressuïe

P_. surface pressure
S

Pt = pressure aL the base of the straËosphere, 200 rnb

e - P"-PT

o = (P - PT)/6, normaLLzed pressure

urv = horizontal r,¡ind components in the x and y directíons,
respecti.vely

= Lenperatut:e

= potential ternperatul:e

= mixj-ng ratio (mass of r¿e-ter vapour,/nass of dry a:'-r)

= geopotenLial

0s surface geopotential-

Q = longitude

A0

AÕ

ô

= latíüude

= longítude griC spacíng in the Míntz-Arakar¿a model

= latitude grid spacíng ín Ëhe }{íntz-Arakar.¡a model

= extent of the polar cap, j_n radians of latiLude

A

DrÐ = metrics

= mean radÍu.s of Ëhe earth

= n(u, flux in Ëhe x díreetion

= m6vr f l-ux in the y direction

= nnç

= specific volume

u

v



= density

= silecíf Íc Ïreaf: ¿rt constailt pressrtre-

= gas const¿lnt for dry air

- R/Cñr

= standard pressure, 1000 mb.

= leve1 (altítude) sign parameÈer

F*rF., = x and J' cornponents of the ho::izontal_ frictíon force
' per ulrít mass

= heatíng raÈe per unÍt mass

= evaporation t'al:e

= precipítation rate

{r;Y = represents any dependent varíable

At = Ëj-me step Ínterval

= Ëhe number of time steps betr+een energy source calculations

j.rj = general indexing pair speciflzlnt Ëhe grid point

N = the number of ror^rs of grid points ín the y dj.r:ection

= the number of gríd points ín the x di::ection on latitude
circle j

d. = grid poínt spacing on Ëhe j I th latítude circle
J

V = resultant veJ.ocity

$ = S(x) or S(x,y), the equation for the cubic spline curve
fi-t or the bícubic spline surface fit.

ti,tí,j = S(xr) or S(*í,yj)

p;,pi ¡ = #t"t' or #(x1'Y3) , slope ar rhe grid poínr in rher r ¡J o'n' ox x dírectíon

_ ðË(x,,y") ^.^--'9irj = A*' i"i' , slope at the gri<í poínt in the y direcËion

," (x_.,y*) ^_^^^ _,^_j__^+_._-^
"i, j = fr:ay'--í" i' , cross derivative

\¡l

E

C

l,l .
J
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p.,Ir. . = .ð-S (>r.) ð"S (xn,Yr)
a a:J " i r- ol: ;. 1''J'

ðx- âx-

t
O. . = ô'-S (x-.,Yr)
*i-ri 

^ 2 r J
dy

It

s- i = a'* (xt'rr)
arJ 

ax¿ðy¿

h. = lt *í * >Ii-1

k. - v.,j /¡ _ y¡*l

Ài = ltí-rl / Q^i*hi*t)

ui = hr/(hi*ni*r) =t-Àí
tp,tp rVp,Op = expressj-ons used in defining Ëhe polar boundary

condition for the horízont-al wind components

arbrBírxsrusrD. rciorÀr*ru1*r^r""r,lrio = constants and expressions
used irr defining the general'ized spl:lne based on
continuity of curvatul:e

arbrcrErE,h. = expressions used in inËerpolatíon rnethod Al-

f.trf.),h. = expressions used in interpolation method BL¿]-

RMSE = 36 hour forecast root-mean-square error relative to the. true rveather at 3 6 hou¡:s

R¡lSBi = average of RMSE along longitude line j

RMSEj = average of RMSE around latitude circle j

RMSC = the root-nÌean*sqüare change in Ëhe true weather over
the 36 hour forecast period

RMSCÍ = average of RMSC along longiËurJe line i

Rl'fSCj . average of RMSC around latitude circle j
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Glossar]:

balanceci rvind: Á,pplf ing täe assumption of non-dÍvergent quasí-horizcnie.l
floi^¡ j-n whic.h the horizontal- velccity field Í-s e>ipressecl in terms ojl a
strea.m functj-on, anci oËlier assumptions, the vector eclua.tion of motio¡
may be reduced to the 'obalance equatÍ-onrr. Thj-s eqrration involves the
stream funeËion and geepotenti-al as clepenclerrt tiarj-ables. Under certain
conditions, rvith a lcno¡pn distribution or geopoteniial, the balance
equaticn may be sol.ved for the stream function. The velocÍ-ty field
crbtained fron the stream function is cal-i-ed a baLa.nced wind.

barotropic: A barotropic atmosphere ís on<-: in r,zhich the surfa.ces of constant.
pressure are also surfaces of constant densit¡z and temperature.

computatiorìal- ¡scde: The computational mcde ís the portion of the solution of
the cìiffereÐce equation rvhích has no physical counterpart in tire truesolution of the ciifferential_ eqrration.

filËerecl equatíon mcdels: A numerical forec.ast model in whích Èhe governing
equations are differentiaËed first and ihen numerically solvecl is termed
a filLered equatÍon model.

geopotential: The work done ín moving a unit ¡nass from mean sea le'u'el- to some
elevation above sea lerzel is called the geopotenËÍal of that level.

grid points: These are poÍ-nts on the numerical fcrecast grid at rvhich rzaluesof tlie depetder:t variabies aie esLiuraLed at tiisciece uine ini:ervais
throughout the forecasË.

Latitudína1: The latitudinai- direcËion is the soui-h-north dírection on theearth, perpendicul_ar to the latítude círcLes.

longítudína1: The longitudinal direction is the wesË-east direction on theearËh's surface, perpendicular to the longitucle cÍrc1es.

níne poínt difference operator: This denoËes a finÍte dj-fference expressioninvolving values of the dependenË varial¡les at níne grici poi¡ts.

node point: see grid poinÊ

numerical explosion: A numerical forecast ís said to expi-ode numerica-lly
r¡zheD the magnitudes of the dependent variables.*".."ã the a-llorrable iimitsof computer storage.

mixing ratio: A mea-sure of moisture content, the rnixing raÈio is the mass ofrùeter vapour per unít mass of dry air.

potential temperature: Tf. a parcel of gas at temperature T and pressure p ísbrought adiabatically tc sËandard pressure (1õ00 rnb), the resul_ting
temperature in the parcel is callecl Lhe potential temperature.
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ph¿ise 7.agz l"'ire oosj-iion ín longítucie of the la.rge scele meteoroligic.al r,/eves
in t-hc numc":::;.cal forecast j"s cLriìrpar-eri to tlie posit:i.ttn of i:h¡¿ ir-aves in ihe
Lrr.re r¡eatire::. The dif f el:ence betrveerr the trn'c posi.tions is termecl tire
pha-se lag of ihe nunierj.cal_ for.ecast.

Firvsical ntode: The phys:Lcal rnode::efers to Ehat portíon of the solution of
the difference equation r¿hich has a phys:i-cal corlÐterpart in the true
solrrtÍon of the clif fereniial equation.

prínitive equation models: Ä numer:í-cal forecast model in r¿hich the governing
equaticns are llumerical-ly solved in their usual. form is Er?rmed a primitive
equation ilcdel.

sur-face geopotenti-al: This is the geopotential- at the surface of the earl-h.

llâvê rrunlber n: The nuurber of complete meteorological r,¿aves around a latitude
circle is tire r\7ave rìuinber.



1. INTRODUCTION

I'IeaËher prediction by numerical methods deals with the numerical

solution of the hydrodynamic and thermodynamic equaËions governing

atmospheric florv. such a soluËíon involves an enormous number of

aríËhmetic a¡rd logical operations for which reason electronic computers

are noür used. The basic princíp1es underlying numerical weather

predicËion r,¡ere discovered early in Ëhis century. AË the time, it rvas

recognized that Ëhe non-linear sysËem of equaËíons díd noË possess an

analytic solution. Also, initía1 daËa defining the state of the atmos-

phere vras inadequate. The fírst attempË to solve this sysËem of equa-

tions usíng numeiical methods was made by L.F. Richardson in Ig21. His

resulËs $lere in considerable error and inËerest in numerical weather

predictioü declined. However, rvíËh Ëhe advent of the electroníc computer

in Ëhe 1940rs, numerical forecasti-ng was revived.. The fírsË successful

numerical predictíon r,{as made by J. Charney ín 1949. From this point on,

the scj-ence developed rapidly and models wíËh varying numbers of

restrictions on the florv rvere stud.íed by numerous research groups in

nany countries

IË ís a cotnmon practice t.o classify numerical forecast models inËo

one of two basic categories based on the form of the governíng differ-

ential equatíons (Haltiner and Marrin (1), Haltiner (2)). rn primítíve

equation (PE) modef"f tn" governing equations are numeríca1ly solved in

their usual form, whereas in filtered eguaËion (FE) models, Èhe governing

equaËions are differentíated first and then solved numerically. The

Refer Ëo the Glossary for defínitions of common meteorological
terms.



PE models permit a1l types of wave moËions (both long and short waves),

while the FE models permíË only the long meteorologically significant

wave motions called Rossby \,./aves. The earlíer numerical forecast models

are of Ëhe filtered type since they are the simplíer model form

(containing approximatíons which are only tïue on Ëhe average over long

periods of tíme) and require considerably less computation time. This

shorter compuËation Ëime for FE models compared Lo PE models arises

from the longer time steps and fewer dependenË variables and equaËions

ín PE models. I,lith the increase in computational speed of computers,

iË becomes feasíble to invesËigate Èhe more sophistícaËed PB models.

Nr:merícal forecast models are primarily used for general circula-

tion studies and shorL term \,IeaËher predictíon. In general circulation

studies, the forecasË usually begins rviËh an aËmosphere at rest and

extends over a long period of Ëime (several months). However, ín short,

term rdeather prediction, Ëhe forecast begins r,lith real weather data

defíníng.the initial state of the atmosphere and exËends over a shorË

períod of time (up Ëo a weelc). Three PE general circulation models

which have been ín operat.ion for_ several years are a mu]-Ëi-level

rnodel developed by smagorinsky at the Geophysical Ftuid Dynamies

Laboratory, u.s.A. (smagorínsky (3r4), smagorinsky, Ifanabe and Holloway

(5), and others), a Ëwo 1eve1 mod.el developed by }{intz and Araka\,,ra aË

UCLA (Mintz (6), Langlois and i(rvok (7) , and a multi-level model

developed by Kasahara and l,r7ashingÈon (B) at the National center for

Atmospheric Research, u.s.A. These models are beíng applied only ín

a límited fashion Eo short term forecasËing. The smagorínsky model

shows promisíng results with real rveaËher data for short term forecasts

up to a week in duration (p.77 of ref 2), however the computation time



is too long for operatÍonal purposes. similarly, the Mintz-Arakawa

model ís being applied wiËh some success to short term pred.ictions

(Kesel and L7ínninghoff (9), Price (10)). Two short term forecast

models which have been in use for many years are an operational baro-

tropíc model developed by Shuman and Vanderman (11) and a six 1evel pE

shorË term forecast model developed by shuman and Hovermale (12). rn

additío:; ) many other short term forecast models are in use in various

countries for both operational and experimental purposes.

Three major steps may be identífied in the formulation of a

numerieal weaËher prediction mode1. The fírst step is to choose a

system of hydrodynamic and thermodynauíc equatíons, in Ëerms of a

suiËable coordinaËe system, in order to explain mathemaËically the

motion in the atmosphere. The relevanË equations are Newtonts second

larq of motion, the firsË 1au¡ of Ëhermodynamics, the equation of state

for a perfect gas, and larvs expressíng conservaËion of dry air and

!üateï vapour. Next, it is necessaïy Ëo approxímate the continuous

dependent varíab1e fields by discrete values of the variables at specifíed

nodes or grid points in t,he forecast region. This selection of Ëhe

forecast grid ís of major ímportance ín determing the forecast resolu-

tíon, accuracy, and computation tj:ne. The final st,ep is to obtain an

approximate numerical solution to the governíng equations aË Èhe specífied

grid poi-nt,s, thereby advancing the dependenË variable fields ín Ëime.

In thís thesis, emphasis r,¡ill be placed on Ëhe second and third steps

in tire formulat.ion of the forecast model: the selection of a forecasË

grid and Èhe method used Ëo solve the governing differential equations.



1.1

equations. In the majority of numerical forecast models, finite differ-

ence methods are used Ëo obÈaín an approxímate solution t.o the system

of partía1 differential equations. The basic approximatíon in fínite

difference methods is to replace the continuous variables by discrete

variables whích vary stepruise by finíte íncremenËs in space and time.

Inlhereas the behavior of Ëhe contínuous variables ís governed by the

system of differenËial equatíons, the behavi-or of the discrete variables
is governed by a system of dífference equaËions. Hence, a diffeïence

equation is sirnply the finite difference ïepresenËatíon of a diffeïen-

tial equation; and Ëhe soluËion of the difference equation yield.s an

approximate solutíon Èo the differential equation at specified poinËs

in space and aË discrete íntervals in time. Assoeiated with the

numerícal solutíon of the system of difference equations are a number

of errors, primaríly truncatíon error and discreËizatíon or compuËaËional

error (smiËh (13), ForsyËhe and Lrasow (r4)). .The truncation error in

the dífference equation arises from representlng the spatial derivatives

in the dífferential equation by Ëhe fírst few terms in a Taylor serj-es

expansíon of Èhe derivative, in terms of specífied. values of the vari-

able at adjacenË nodes or gríd points. This error depe4ds on both Ëhe

size of the finite space incremenË and the wavelength of the continuous

fíeld being estimared (Gares (15)). The mosr wíde1y used procedure ís

the central space difference, which may be illustrated in the case of

Ëhe first derivative of a continuous function f as (ref 15, 13)

âf _f(x+Ax)-f(x-Ax) ,

g Differential Esuations

consider fírst the meËhod used to solve the governing differential

âx ¿Lx (1.1)



where x denotes a typícal spare variable and ax is the grid poínt

interval. The Ëruncation error of this approximation is in Ëhe order
t

of (Ax)". OËher frequently used estímates for the fírst d.erivatíve are

the fon¿ard dífference and backward difference,

(f (x + ax) - f (x))/Áx and (f (x) - f (x - Ax))/Ax ,

respectively. The error in Ëhese approximaËions is in the order of Ax.

The difference beËr,¿een the difference equaËion as a whole and the

differential equatíon ruhich ít represents is called the truncation

error of the difference equaËion.

The second error, discretÍ-zatíon error, ís Ëhe erïor in the exacË

nunerícal solutíon of the dífference equation (Srnith (13)). If ó

represents the 
"*t"t solution of the partial differential equatíon,

and {O represents the exacË solution of Ëhe difference equatíon, then

the díscretízatíon error is ó - ó1. The solution method is convergenË

't ôO approaches þ as Ax, Ât. beeome infinitisÍmally small. Here., Ax

and At denote the finite space and tíme increments respectivety. Closely

associated rvith the díscretizaÈion error is Ëhe computational stability

of the difference scheme; that is, the time variat,ion of the discreti-

zatíon eïror (crandal (16), Kuriirara (17)). Fundamentally, whenever

^t/^x 
becomes larger Ehân some critical value, the eomputational mode

ín the numerical sol-ution Ëends to grow in time and eventually destroys

the physical mode. The physical mode refers Ëo that portÍ.on of Ëhe

solution of Ëhe difference equation rvhich has a physical counterparË ín

the Ërue solution of the differentía1 equation; the computational

mode ís the remaining portíon of the solution of the difference equatíon

and has no physical counterpart in the Ërue solution of the differentíal

equaËion. Since there is no analytic solution Ëo the governing partial



differential equations for atmospheric flow, it is customary to

examine Ëhe stability of thís corresponding l-inearized version of the

governing equatíons, rvith constant coefficíenËs (rhe von Neumann

stability condition, I(asahara (18)). To simplify rhe analysís

further, a conmon approximatj-on ís Ëo check the stabilíty of Ëhe differ-

ence equations considering only one facËor at a time (ref 18). For

example, to examine the stabiliLy of the difference scheme for a typical

advectíve Èerm in the Ëhermodynamic equat,ion, one may examine the 1ínear

one dímensional advection equation for temperature, T,

S*.S=o (1. 2)

where c is a consterlË (the zonaL wínd speed) . Haltiner (pp. rB-25

of tef 2) shows that the difference scheme for equatj-on 1.2 usíng cenËral

differences for both time and space, is compuËationally stable províded

cAt/Ax ( 1. Thís means thaË the computational mode in the numerícal

solut.ion approaches o as time increases, províded caË/ax < 1. However,.

if fonvard time and central space differences are used, thís difference

scheme is computationally unstable for al1 values of at/ax. rt is

ínteresting Ëo note thaË Ëhe case of forward lirne and forlard space

differences is computatíonally unstable r¿hen c>O and computatíonally

stable r+hen c<0. This corresponds Ëo the so-called "upstream dífferen-

cing" technique, in which a sËab1e differencing 'scheme is obtained

t¿hen the space differencing ís j-n the opposite direct,ion to t.he wave

motion (Gosman, et.a1. (19)). In additÍon to the computaËíonal stability

of the difference scheme, iË is necessary to consider the degree of

phase lag and arnplitude distortion of the physical rnode of the numerical

solution. For example, although the difference scheme ,r"rrrg central



finite differences ín space and time for the one-dímensional advection

equation 1.3 is computationally stable rvhen car/Ax5l, the physical mode

exhibits a phase lag and smaller amplitude rvhen compared to the true

solution.

The accuracy and stability characteristics of ten different finite

difference schemes are discussed by Grammeltvedt (20) usíng the primitive

equations in a barotropic f1uíd; rvíth primary emphasis on the effects

of the spatial differencíng on Ëhe forecast. I^lith an analytic rvave for

the initial condition, the analysís shows that the quadratic conservative

difference schemes (or schemes which conserve both the first and second

üoments of the dependenÈ variables) and total energy conservative

difference schemes (or schemes ¡"ihich conserve tlie sum of available

potential plus kineËic energy) are more stable than the other second

order conservative schemes. Horvever, the most stable schemes are Èhose

in which Ëhe advective terms are calculated using níne point spatial

fíníËe dífferences and Ëherefore contaj-n a form of smoothi-ng, and the

genetal-ized Arakawa scheme which conserves m.ean vorticity, mean kinetic

energy, and mean square vortíciËy ín nondivergent florv. The most

commonl;' used methods to suppress computational instabilities are to

include artificial viscosity terms in the difference equaËions, or to

w'rite the fínite difference equations in a form which conserves cerËa1n

statistical moments (usually of quadratic form) o, an" dependent

varíables (ref 20). The smagorinsþ general circulatj-on model (ref 3,4,

5) uses fíníte differences rvhich conserve momentum and. tot,al energy.

Therefore, the Smagorinsky model requires lateral eddy rriscosity terms

to suppress the nonlinear computational instabilities inherenË in the

difference scheme, but }lintz (6) feels that this may have the undesirable



side effect of excessively damping the meteorologically significant

wave motions. Hor,rever, the ltfintz-Arakarva general circulation model

(ref 6,7r10) uses finite differences d.ue to Arakarva rvhich are both

quadratic conseïvatíve and Ëota1 energy conseïvatíve schemes. Therefore,

the dífferencing in Èhe MinËz-Arakawa model is inherently nonlinearly

computationally stable without the use of expliciË frictional dissipa-

tion. 0f Èhe short term predictíon models, shumanrs scherne (ref 11)

calculates the advective terms using a nine point dífference operator

which should yield Ëhe most stable forecasË due to íts smoothing effect

(ref 20).

In additior¡ to the space differencing scheme, the form of time

differencing employed has a strong effect on stability. This was men-

tíoned briefly in the diseussion of computational stabilíty, where, for

example, iË rvas noted that forrvard differencing in tÍme is unstable

vrhereas central differencing ín time ís conditionally stable (provided

cAË/Ax(1). The stabilíty characteristics of several iinplicit, explicit

and iterative time differencing schemes vüere examined by Kurihara (17)

using a linear sysÈem of equations. of the methods investigated, Ëhe

tr+o stage leapfrog-trapezoidal method shorvs the most promÍse since it

has liËtle darnping and 1Íttle phase retardat,ion effect on the physical

mode, with sÈrong darnping of the spurious computational mode, for

cht/ Lx<rT. However, bei.ng a t\ùo.stage scheme, it r"q.rires twice Ëhe

computaÈion tíme of the sirnple centered difference time dífferencing

scheme (a1so called the centered leapfrog explícít scheme), which ít-

self has no change in amplitude of both the physicat and compuÈational

modes with only moderate acceleration of the physical mode. Therefore,

the simple centered leapfrog explicit scheme is used in most models.



In the }fintz-Arakar¿a model , a modified Ì'fatsuno tj-me integration (Ifatsuno

(21), pp. 105-110 of ref 10) is employed. The original three stage

l"fatsuno scheme gíves strong darnping of the high frequency \.^/aves (r+hich

are usually spurious). Horvever, the modification used ín the Mintz-

Aralcar.¡a model essentíally reduces the Matsuno method to a Êwo stage

Euler-backrvard scheme díscussed by Kurihara (77). Thís scheme has no

computational mode, with moderaËe selective dampíng and large phase

aeceleraËion of the physical mode.

ln this thesis, a numerícal forecast model j.s proposed ín which

double cubic polynomial splíne functions are used to fit the spat.ial

variation of the dependent variable fields, thereby eliminating the

need for finite differencing in space to estímate the spatial derivatives.

The cubic splíne S (x) of interpolatíon to the ordinates u, at mesh

locations x-, ír...M, is a piecervíse continuous function defined as
L.

a cubíc polynomial in each interval *i_1 ( * -< x1 having continuous

first and second derivaËives (Ahlberg, Nilson and Walsh (22), Greville

(23)). The generalizaËíon to Ëvro dimensions to obtain the double cubíc

(or bicubic) spline is straíghtforr¿ard. There are several reasons for

proposíng that the use of double cubic polynomial splines may be

an Ímprovement over fínite difference meËhods in estímating spaËial

derivatives.

Firstly, cubic polynomial splínes are an effectíve tool in Ëhe

processes of numerical interpolation, differentíation, integratíon, and

curve fitting (pp. 42-5,2 of. ref 22). In particular, the slope estímates

returned by a spline curve fit inherently represent a form of smoothing

of Ëhe slope estimates returned by sËandard forrvard, backroard or central

finite differences. In the numerical forecast models developed up tq
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Lhis point, complex differencing schemes are necessary to obtaín a

smooËhed slope estimat.e. For example, the Shuman model (ref 12) uses

nine point difference estimates (a form of srnoothing) to obtain estimates

for the advective terms; and the Mintz-Arakarva model (Langlois and Krvok

(7), Price (10)) was complex, multí-point difference estimat.es for Ëhe

spatial slopes. These complex and somewhat arbitrary smooËiring schemes

used in finite difference methods are noË required r¿hen the double

cubic spline is used to estimate Èhe first derívatives, due to the

inherent "smooËhedrr nature of the splíne curve fit. It should be

mentíoned that this does noL hold true for the secorrd derivatíve. Rather

the finíËe difference estímate of the second derivative given by Newtonr s

second divided difference (a Ëhree point operaËor in one-dimension)

represenËs a smoothing of Èhe spline esËimates for Ëhe second derivatíve

(p.44 of reÍ.22). In order Èo employ the spline merhod ro obrain good

"smoothed" second derivaËive esËimates, it is necessary to do a spline

fit to the first derivatives, ruith the first derivative itself obËained

from a previous spline fí.t. Ahlberg, Ililson and I,rralsh (p.44 or ref 22)

discuss thís "spline-on-sp1ine" method of obtaining smoothed second

derívatÍves.

A second reason for proposing the use of a spline function Ëo

obtaín slope estimates, in place of finíte dífference meÈhods, is Èhe

mínimum norm property, or Holladayrs theorem, for cul¡ic splines (p.3 of

ref. 22). This Lheorem states that for any function f (x) , c2*""tisfying

í = 1,...M, the inËegral of lt"(*) 12 o.r"r the ínterval

a minimum r+hen f (*) = S(x), provided S"(xr) = S"(5t) = 0.

f (xr) = ti,

(xr, xr) is

f (x) and its firsÈ trvo derivat.ives are continuous.
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Sínce this integral is often a good approximatíon Èo the integral of

Ëhe square of the curvature for a curve y = f. (x), lto[adayts theorem

is often called the minimum curvatuïe property. This follows from the

definition of curvature, f"(*)'/(l * f '(x)\3/2, which is approximately
t

equal to f"(x)- when ft (x)<<1. Therefore, of all Ëhe possible curve

fits having continuous firsË and second derivatives, the smoothest ís

the cubic spline curve fit since iË has the minimum curvature (providing

slopes are not excessivel-y large)

A Ëhird appealing characterisËic of the double cubic spline is its

inherent flexibiliËy in the application Èo a forecasË grid with varying

grid interval. , Providing Ëhe grid er-pansion ís smooth, there are no

difficulties in applying bicubic splínes on an expanding grid. Ahlberg

(24) discusses a problem in curve fitËíng wíth splínes rvhen the physical

spacing betrseen grid poínLs changes significantly in a limíted regíon.

The example cíted is the case of monotonic increasing daËa wiËh alternately

large, then sma11, Ëhen Large grid point spacing. A small local spike

appears in the otherwise monotonj-c spline curve fiË. Although Ëhis

sma1l spilce has little obvious effecË on the curve fit, its effect on

the slope estimate at the node where the gríd poinË spacíng changes

abrubÉly is devastating (since Ëhe spíke is located at Ëhis grid poinË).

It is therefore important to use a smoothly expanding grid íf splínes

are to be used to estimate the spaËial derivatíves.

Fínally, it should be menËioned that Ëhe theory of double cubic

splines d.epends largely on the theory of Ëhe one dimensional cubic

spline. Ahlberg, Nilson and l^la1sh (pp. 235-264 of ref 22), de Boor (25)

and Ahlberg, Nilson and l,Ialsh (26) discuss many properËies of the double

cubic spline, such as the minimum curvature property, best approximation
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property, existence, unÍqueness, and others. fn addition, Ahlberg,

Nilson and I,{alsh (26) present a derivation of the double cubic spline

in terms of nodal values of the second derivative; and d.e Boor (25)

presents a computaËion scheme for the double cubic splíne in terms of

nodal values of the first derivative. The treaËment of the double

cubic spline in terms of nodal values of the fírst derivaËive is

preferred here since the purpose of using bicubic splines ín this applica-

tion to numerical weather predicËíon is to obËain good estimaËes of the

spatial firsË derivatíves for the dependent varÍable fields.

ft is possíble to make a direct comparíson between the different

conservaËive properties of the spatial finite difference schemes and

the corresponding properties of cubic splínes. In decidíng whether or

not a specifíc finite dífference scheme is eíther conservatj-ve or

quadratic conservative, a comparison is made between the spatía1ly

ínËegrated forms of the differenee equation and differential equation

for the property under consideration (momentum, kinetic energy, Ëhermal

energy, and others). If the two íntegraËed forms are similar, then the

difference scheme conserves the property represented by the dífference

equat.ion. Differences between Jn" two integrated forms usually arÍse

from the truncated natuie of Èhe difference expressions. Now, bicubic

splines are pieceruise analytic cubic polynomial functions wíËh contin-

uous first and second derivatíves. The Ëhird derivative is not

contínuous and the fourth and higher derivatives vanisl-r. Despite

conËínuous nature of the cubic spline, the differential equations
:tonly solved at the grid points; and only the nodal values of the

The terms node poinË and grid point are used interchangeably in
this thesís.

the

aIe
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dependent variables are advanced in Ëime. Therefore, similar to a

finite difference meËhod, it i-s possible to wriËe a difference equation

for the dependent variables aË each node usÍng the bicubic splíne

estimates for the slope of the variable fields. By uatrÍx inversíon,

the spline slope at the node may be expressed i-n Ëerns of all the

nodal values of the dependent variable in Èhe rovr or column in Ëhe

direction of the slope (p.42 of. ref.22). For example, if the west-east

slope of the temperaËure field is desired. at nod.e i* on a latitude círcle,

and if the nodes are sepaïated by 5o longitude on this laËitude circle,

then the cubic spline esËimate of this slope becomes

L+] * = i], *,", , (1.3)

where Ëhe values for oi, i = 1r...72 are obÈained by matrix ínversion of

the spline coefficient maËrix. The subsËiËuËíon of equaËion 1.3 into

the difference equaËion and inËegraËion of the resulËing equation over

all the spatial dimensions is a coroplícaËed calculatíon but may be

performecl. IË ís therefore possible to determine the conservaËive

and quad.ratic conservative properËies of the proposed bicubic splíne

method. This analysis will not be performed in this Ëhesís due to the

length of the calculation r¡hen tesËíng for quadratic conservative

properËies. It is felt that Ëhe cubic spline scheme will show energy

and momenËum conservative properties; horvever, iË is doubtful that the

cubic spline r^¡i1l also show quadratíc conservaËive properties,

especially on a variable area grid.
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I.2 The Select,íon of the Forecast Grid

The first factor- to consider in the select.ion of a forecast grid

is the uniformíty of the gridrs resolut.íon over the surface of the earth.

If a forecast r¿ith equal emphasis at all regions of the earth is desired,

then each grid ce1l on Ëhe map proj ectíon should represent approximaËely

the same physícal area on the earth. In the najoriÉy of the numerical

forecast models formulaËed to date, the system of difference equaËions

has been solved on a uniform square or recËangular grid system. Horuever,

cerÈain resolution problems arise r¡hen such a grid ís applied in the

coordinate systems convenienË to numerical weaËher forecasting. For

example, in the frequenË1y used polar stereographic projecËion (used

in models by Srnagorínslty, Manabe and Hollorvay (5), Shurnan and Hovermale

(72), and many others), the map scale factor varies from 1 at t.he pole

to 2 aE the equator.* This means thaË 1 unit of distance on the earthts

surface maps into 1 unit arrð, 2 units at the pole and equator respectively

on the polar stereographic projectíon. Therefore, a square grid on Ëhe

stereographíc projectíon gives double the resolution aË low latitudes

than ít does at high latitudes, represenÈing a marked over-resoluËion

of low latitude regions. The opposite resoluËion problem occurs in Èhe

Mercator map projection used in the models by Smagorinsky (3, 4) and

Shuman and Vanderman (11), as rvell as ín the projection used in Lhe

Míntz-Arakarua rnodel (pp. 31-38 of ref 7, pp. 83-90 of ref 10). Here,

longitude maps linearly inËo the west-easË coordinate on the projection.

This means that 1 unit of distance in the rvest-east dírect.ion on the

earthts surface maps ínËo 1 unit at the equator and 4 units at 76" of

The map scale factor
p.I75 of Haltíner and

is derived on p.774 of Frice (10) and on
MarËin (l).
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latitude on the projection: a sguare or rectangular grid on this

projection constitutes severe over-resolution at high latitudes. One

consequence of this over-resolution in the Mintz-Arakawa model is Ëhe

grorvth of spurious short rnraves traveling in Ëhe longítudinal (rvest-

east) direcËion at high latitudes. These short Ifaves are removed

through the use of an averagíng operation which gradually increases in

strength as latitude increases.

An interesting approach Èo the computational drawback of over-

resolution near the poles is made by Gríruoer and Shaw (27). Two

methods are used: first,ly, Èhe time step Ís varíed latitudínally on a

grid r.rith constant longitudínal grid ínËerval ; and secondly, the

longitudinal grid interval is varied latitudinally in a coristant time

step scheme. Using a barotropic PE model with analytic iníËíal- data

consisting of a r,/ave number four in Ëhe horízontal velocíËy and geo-

poËential fields, Ëhe fírst method ís stable and shot¡s good agreemenË

(except for a slight phase lag) with Ëhe analyËic soluËíon for Ëhe case

of non-diveïgent barotropic flor^¡. The stability of Èhis method may be

in part due Lo a degree of Lime smoothing inherent in the varíable

Èime step meËhod. However, the second method gives a solutÍon which

rapidly departs from the analyËic soluËíon, especially at high latítudes.

Thís is expecËed since for this initial condition (rvave number four at

both high and lor,r latitudes), there are too ferv gríd poínts to adequaËely

resolve the wave at high latitudes (fevrer than nine grid points per

wave length) rvhereas at low latiËudes, the wave is adequately resolved

(greater than nine grid points per rvave length). The forecast results

from the second method sirow neglígible wave motion at high latitudes

rvi-th realistíc wave motion at low latitudes.
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Several researchers are experimentíng wiËh grids gíving uniform

resolution over the entire earth. Kurihara anci Holloway (28) are trying

a general circulation PE model formulated in spherical coordinates by

the "box method"; and the netrvork of grid points used in this model

forms a nearly uníform gríd resoluËion over the entíre earth. Further,

preliminary experinent:; are being performed using triangular or geodesic

grids with uniform resoluËion over the earth. I,Iilliamson (29) and

Sadourny et.al. (30) integrate the barotropic vorticity equation on a

spherical geodesíc grid usíng analytic ínitial data. Their numerical

forecasts are nonlinearly computationally stable, since Ëhe difference

schemes used conserve vorticity, kinetic energy and the square of
t.

vorticity. tr{illiamson (31) and Sadourny and Morel (32) further extend

the use of this grid to a primitive equatíon barotropic model; and

I^Iilliamson finds his results to be superior to the results from

Kuriharars homogeneous spherical grid sysËem (ref 33). Experiments

wiËh non-uniform triangular grids rvhich serve as a transition from fine

grid to coarse grid regions are beíng made also by l^línslow (34) and

I'iilliamson (35).

A second point to considtt-in the selection of a forecast grid is

qrhether or not the grid'resolution should be varíed in order to obtain

hÍgher forecast resolution in regions of primary interest. For example,

if the purpose of perforrníng the numerícal forecast is to obtain a short

term forecast for NorËh America, it would be ineffícienÈ to perform a

global forecast wíth equal gríd resolution over the entíre earth. One

may identify trvo approaches Ëo the problem of obtaining efficient

nrunerícal forecasts in limited regions of interest: either construct

lÍmited area forecast model for Ëhe region of j-nterest, or formulate

d

a
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varÍable area model with increasing grid spacing as dístance from the

regÍon of interest increases (a telescoping grid). The major problern

wiËh tinited area predíction models is the selectíon of boundary

condítions, prímarily for Ëhe east and west boundaries of the region.

Altirough the telescoping grid scheme does not have the boundary condi-

tion problems of the limited area grid, iË does have increased complex-

itíes in the computation scheme due to the expanding grid intervals.

Also, there may be some as yet unforseen díffi-culËies in the form of

spuríous growth of meteorological features due solely to the expanding

grid. Gerrity and McPherson (36) discuss the results from twenty-four

hour numerical forecasts performed wi-th real weaËher initial data on a

limited area fine-mesh PE barotropic model. AlËhough constant lateral

boundary conditions are used over the forecast period, the predictions

compare favorably with those from operational baroËropic and barocliníc

models. The consËanË lateral boundary conditions prohibiË Ëhe running

of much longer forecasts on their l-ímited area gríd. A variable grid

design to obtain increased resolution Ín the center of the forecast

domain is studied by Antires (111. The gríd is applied ín a free

surface moclel of an inviscid, incompressible fluid vortex confined to a

rectangular domain. The resulËs show a slighÈ (1ess than 1%) increase

ín total energy after two thousand tíme steps. A sirnple finite díffer-

ence scheme rvith non-constant intervals is also díscussed by Sundqvist

and Veronis (38). This grid, applied to a feru simple boundary layer

flow problems, shorvs distinct adr¡antages in improved resolution in the

regíons of interest.

A Ëhírd point Ëo consider in the selection of the forecast grid

is whetirer Ëhe grid should be st,aggered or unstaggered. A staggered
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grid is one in rvhich not all the dependent variables are carried at

Ëhe same grid points. Spatial sËaggering is a conmon practice in

finíte dífference models as a technique for reducing the effective

grÍd length. The effecËive grid length Ís the distance betroeen gríd

points entering into a fínite dífference expression. For example,

the effective gríd length of the central finite dífference operatoï

equation 1.1 is 2Ax. IË is desirable to have Ëhe effective gríd length

as smal1 as possible in order Ëo maxímize ielne number of grid points

which resolve the smallest significant meËeorological r+ave (thereby

improving iËs phase speed). Two basíc forms of staggering are possible.

A ppatial staggering occurs r¿hen not all the dependent variables are

carried at the same grid points. The grid in the llínËz-Aralcar'¡a model

is an example of this (p.31 of ref 7, p.B4 of ref 10). Also ít is

possible to have a time staggeri-ng in which the variables are carríed

at dÍfferent grid points depending on whether Ëhe Èime ís an everl or

odd multiple of the time interval At. The grid ín a model by Phí11ips

(39) is an example of ti-me staggering.

In this thesis, a numerical forecast model ís proposed in which

the forecast grid is an expanding grid with basic expansions of trvo

types superimposed on each oËher. The fírst grid expansíon ís required

to maíntain the physical distance betrveen gríd poinls on laËitude

circles approximately equal Ëo some dístance greater than the minímum

dístance required for computaËional stabílity; and the second grid

expansíon ís used to decrease the number of grid points in regíons

¡vhich are not of primary inÈerest (a telescoping gríd)

Consider first the basic expansion of the first type. It was

menËioned earlier that rvhen there are no parEicularly important regions

of interesÈ in Èhe forecast domain, it is desirable Ëo have a uniform
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grid resolution over the enËire forecast region. This basic uniform:í.ty

of resolution is ensured by the grid expansion of Ëhe fírst type. With

grid poínts lying on Ëhe latitude circles, Ëhis expansion essentially

means that as 1aËíËude increases, Ëhe number of grid points on each

laÈitude circle decreases in order Èo maintain a constant physícal

distance between the grid points on the earthts surface. This grid is

an improvement over the square or rectangular grids used on the

Mercator and pol.ar sËereographic map projectíons. Also, this first

grid expansion result,s in a grid very símilar to the grid used by

Kurihara and Hollolay (28) using Ëhe so-called "box method"; and is

similar Ëo the 
,second 

grid used by Grímmer and Sharv (27). Although

Grimmer and Shaw have forecast probl-ems wiËh their grid using a \Arave

number four at all laËitudes as ínitía1 data, it is felt that these

problems r¡í11 noË be apparent here due to the full spectrum of rvave

present aË all latítudes in the real weather initial daËa used.in this

applicaËion.

Consider next the basic grid expansion of the second type, Ëo be

superimposed onto the first grid expansion. It was mentÍoned earlier

that there are two methods of eiphasizing a region of interest in the

forecasË domain: either construct a limited area forecast model or use

a telescoping grid with increasing grid interval- as distance íncreases

from the region of interest. This results in a high resolution fore-

casË in the regíon of inËerest wíËhout. er?ending an unduly large amount

of computatíonal tíme in generaËing a hígh resolutÍon forecast else-

where. Problems with the laËeral boundary conditíons ín límited area

models make them only useful for very short Ëerm predictions, unless a

variable boundary condition ís nraintaíned through a coarse grid global
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model executed simultaneously with the limited area mode1. However,

even when a varíable boundary condition ís maintained, the smaller grid

lengrhs in the limiËed area gríd region will resulÈ in faster phase

speeds of the meteorological r^/aves insíde the lirnited area regíon

compared to the phase speeds ín the external coarse grid region. Hence,

problems in matching at the boundaries will occur as time proceeds.

For Ëhese reasons, the telescopíng grid ís preferred over the limited

area grid and a telescopÍ-ng method is used as the grid expansíon of the

second type ín the model proposed in this thesis. Havíng decided on a

region of interesË and a grid resoLution vithin thís region, the smooth

grid expansíon of type trvo ís applied successively to gríd poinËs out-

síde of the region of inËerest. The most important charact,erístíc of

this telescoping method is the smooth transition between regions of

changing grid size, as well as a smooËh maËching at the poles and

equator. This expansion ís more generalized than the exaansíons used.

by Anthes (37) an¿ SundqvisË and Veronj.s (38). Also, inherent

characËeristics of the bícubic pol;'nomial splínes make them readily

adaptable to an expanding grid, and problems should not occur providing

the expansion ís smooËh.

The final consideration in the formulation of the forecast grj-d

for the proposed model j-s rvhether or noË the dependent varíables should

be spatially sËaggered. I^lith bicubíc sp1ínes, the slope estimates of

Ëhe variable fields are equally accurate r¿hether they are obËained at

the grid points, the center of Èhe grid 1ínes, or the center of the

grid cells. Therefore, there is no reason to stagger the dependent

variables and an unstaggered forecast grid is used ín the proposed

model.
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1.3 The Propo_se_d Fg:ecas.t l.lodel

The use of double cubic polynomial splíne functions in solving Ëhe

system of partÍ-al differential equations and the selection of a

telescopíng forecast grÍd having superimposed grid expansions are the

most important characteristics of the numerícal forecasË model proposed

in this thesís. These characteristics disËinguish this model from Ëhe

currerit forecast models which use convenÈional grid sysËems and finite

dífference meËhods Èo solve Ëhe sysËem of equat,íons. The advantages

of Ëhe polynomial spline meËhod and Ëhe telescoping grid system have

been d.iscussed earlier ín the Introcluctíon. IË remains, however, Ëo

evaluaÈe these,methods in comparison Ëo finite difference and conventional-

grid methods Ëhrough the execution of numerical forecast experiments.

To complete Ëhe definitíon of the proposed forecasË model, it is

necessary Ëo select the following additional model feaËures: a

systern of governing parti.al differential equaËions, a method of extra-

polaËing the dependent variables in Ëime, and a method of generating

the heat, moisLure and fricËion source terms. These features are of

minor importance here since emphasis in Ëhís study ís placed on the

polynomial sp1Íne method 
"n¿ 

ai. telescoping grid system. The selecËion

of Ëhe additj-onal features ís arbítrary, but, is here chosen to be the

same as ín a current model ryhich uses Ëhe finite difference method on

a conventional grid so that effective comparison may be made.

The model selected for comparison purposes is the Ër'ro-level Mintz-

Arakar¡a general circulaLion model (ref 7, 10). This rnodel uses a complex

fíniÈe differencing scheme to solve the system of partial differential

equatíons, with a regular square grid on a map p::ojection similar to

the Mercator projecËion. A1so, in order to obtain compuËational
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stability, this model requires several special technigues, such as hígh

frequency filters, spatial staggering of the dependent varíables, and

complex flux calculations. The }Iintz-Arakawa model Ís convenient to

use as a comparison model for three reasons: it has only two levels

of resolution in the vert.ical and therefore requires less computation

Ëime than some of the mulËi-level models in use today; the finite

differencing and regular square grid used are represenËative of the

differencing schemes and gríds used in modern numerícal rveather predic-

tion models; and this model íllustrat.es several of the special techní-

ques reguired for computatÍonal stabitiËy r¿hen the forecast grid severely

over-resolves the high latitude regíons.
t

The proposed forecastíng model will be applied to a thirty-six

hour northern hemisphere forecast and íts performance r¡i1l be compared

with the }tinÈz-Arakar¿a model and the real weather.
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2. Ther Mi_ntz-Arak_al'a (1969) ì{odgl

A Ëhorough descripËion of the Mintz-Aralcawa (L969) numerical

r,¡eather predictíon model may be found in two earlíer reports by the

author (ref 10 and 40). The fo1lor+ing brief description of the

essenLial f eaËures of the model is based on the tr'ro earlier reports.

2.1 The Basic Equatíon-s ín x, y., o, Ë Coori-i.nates

The two leve1 MinËz-Arakawa.model- uses the hydrodyna:nic and

therrnodynamic equations written in a cartesian xs !, o' t coordinate

system. The x and y axes aïe transformed from t,he s, and s, curvi-

linear coordinate curves r¿hich lie respectively along latitude and

longitude circles on the earÈhrs surface. The vertical Parameter O

is a pressure cooïdinate normalized with respect to surface pressure.

Hence, o Lakes on values betrrreen uniËy aË the earËhrs surface and o

at the two hundred mb 1evel. The fundamenËal geometric nature relatíng

Ëhe orËhogonal curvilinear sl, s, surface (of the earth) to Ëhe carte-

sian x, y plane (map projection ín r,rhich the governing equatíons are

solved) ís described by the meËrj-cs n and n (pp.68, BB, 89 of ref

1-0), given by

d"1
t=F t (2.1a)

ds^
o==! ' (z.Lb)

cy

d"l =AcosÕdO , (2,2a)

d"Z: A dÕ. e.zb)

The elemenËs dsa and ds, rePresent elements of arc length (or physical

distance) along Êhe sI and s, coordinate curves respectively, and Ëhe
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elements dx and dy represent elemental changes in the map coordinates

x and y. In the ìIintz-Arakai¿a model , a linear mapping is used Ëo

relate the coordinates x and y to longitude (0) and 1aÈitude (0).

This applies to all the regions except f or Ëhe polar caps, ín r,¡hich Ëhe

mapping of y ínto Õ is urodified to account for a larger latitude

grid spacing (ô) compared to the latítude grid spacíng in the remainder

of the field (^Õ). This resulËs in the folloi+ing meÈric expressions

for Ëhe Míntz-Arakawa model (p. 89 of ref l0) :

m=AAOcosÕ

n=A^0,90-

: A 6, 90 -

The third independent variable, o, is a

defined by Ëhe relation (p.41 of ref 10)

6 > lol ,

ô < lol < 90.

normalized vertÍcal

(2.3a)

(2.3b)

(2.3c)

parameter

D-Dr r'.
I.(t=-

Ç

7=Þ-Þ, LS -T

(2.4)

(2.5>

Þ - o'trface pressure, variable,-S

P, = pressure aË Ëhe top of the troposhere, 200 mb.

In Ëhis two level model, flow in the upper half of the troposþhere

(O < o < L/2) is represented by conditions at the 1eve1 o = L/4 artd

flow in the lower half of the Ëroposphere (l/2 < o < 1) is represented

by condítíons at 1eve1 o = 3/4. The dependent variables carried at

Ievels one and three are shov¡n in Figure 2.1. Note that Èhe trvo

horizonËal wind component.s (u, v) as well as the temperaËure (T) are

carried at both levels one and three, røhile all the moisture (q) is

assumed to be carried by Èhe lower level on1y. Also, the pressure at

each grid point on any o level is determined from Èhe single dependent



(2.e)

.l c.

\ra.ria'ble E , by e-(iuet.Lor.ì 2. 4.

In Ëhe coordinate systenì cier'j.nerl by equatioris 2,I ta 2.5, the

gorzernirr,g hyd::o<lynarníc and the::rnodynaruic equat-ions become (pp.60-83 of

ref 10):

(a) ttre. tr+o horieo¡rtal ertruations of motíorr,

f; Cr"¡ + fo {.,'r,r) * :t (,ro') + r,urå - Gçrr

-i- n [k ,r*, * (o4a - *) f-] = - zF* , (2.6>

fo Cr"l + fo t.o'b,r) * ït (,r*rr) + Àvrå * Gru

. - [h (s4,) + (oÇa - r, #] = - ,r, , (2.7)

(b) the thermodl'namic equaËion,

fo crr¡ n-!- i,.,*r) * b (-,or) ç lrf * '* # * ". #j
+ À ¡t,/t't¡* a, å = ,¡t/cv , (2. B)

(c) the conËinu.j-ty equat,ion,
.L -r-

ðZ - þu ,- i.'at+a; +'ôy *Às=o 
'

(d) the moísture balance equaËíon,

k,to, nfo {,roc) *b (r,*q) = 2nmg (E-c). (2.10)

Equaticrns 2.6 to 2.9 are applied aü boËh the upper (o = I/tù and lower

(6 = 3/4) levels, artd equation 2.10 ís only applied at the lorver level

(6 = 3/4). The symbols used in these equations are defined in the list

of nornenclaËure at the begínning of the Ëhesis. In additíon, the

fo11owíng. equations are useful in explaining the relatíonships existing

beLween the dependent variables:
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¿,-

u

&

v

mn6

= n6u

= mev

(2. IIa)

(2.11b)

(2.1lc)

(2.11d)

(2.11e)

(2.11f)

indicateThe

the

paraneËer À,

sign of a term

å = z*r,r l'9tìe _ LLLLL, 
ldE.,| Z 

,

G = mnr - "lgll¿vj '
. *. .K0 = T(P /P)

appearing in equatíons

according to

2.6 to 2.9, is used to

The poËential temperature (0) and horizonËaI wind components (u, v) at

level o = 2/ 4 are inËerpolaËed from Ëhe corresponding values aL levels

o = L/4 and 3/4 in a fashíon ensuring conservaËion of the first and

second momenLs of potential ÈemperaËure and conservatíon of horizontal

momentum. The resulting interpolation fornulas are

+ 1 if o = I/4, upper level,
ì=

- 1 if o = 314, lower level.

o, = l/2 (01 + 03)

u, = L/2 (u, + ur)

v, = l/2 (v, + vr)

geopotential of the lor¿er and upper levels is

ensuring conservaËion of toËal energy (kinetíc

the following equations for the geopotentía1:

os + 1/2 cp 02 (r:* raK)/r*K + rlz 6(ora, +

(2.IIe)

(2 . 1Ih)

(2.1Ií)

(2. 1lj )

calculated in

plus potentíal).

Also, the

a fashíon

Thís gíves

or= o1"r) 
'

(2. lik)



03 = ös - rlz cp 0z (rg* nr*)/r"* + r/2 r (og a, * o, ar). (2.11.q,)

2.2 S.p.age. and. Tíme Fínite ,Diff,erencing

In Ëhe Mintz-Arakarva model the differential equations 2.6 to 2.10

are horízontally finite differenced on a rectangular grid (pp.84 of

ref 10) with equispaced grid lines mapped from the latitude and longi-

tude circles. The nappi-ng of longitude inËo x is linear, resulting

in the same number of grid points (lf) around each latitude circle at

all 1aËitudes. Since the circumference of each 1¡-'titude circle decreases

as latítude increases, thís grid severely over-resolves Ëhe high

latitude regions. This over-resolution ís partíally conpensated for

by chosing a piecewise linear mapping of laËilude into y, with the

laËíËudinal- spacing of grid lines aË the poles, ô, taken Ëo be greateï

than the latitudínal spacíng of grid línes at all lorver latiËudes,

^ó. 
This gives equidisËant grid poínts on the rnap projection ín both

longítude and latítude excepË for Èhe polar cap. A1so, this siurplifies

Èhe task of approximatíng the horízontal derivatives in equatíons 2.6

to 2.10 by finite differences. The }fíntz-Arakawa model employs a

complex set of finite difference approximations for these spatial

derivatives. This results in a form of smoothíng of the finíte

dífference slope estimates. To aid Ín the differenci-ng scheme, the

dependenË variables in the l'1int.z-Arakawa model are spaËia11y staggered.

The velocíty components, u and v, are carried at grid poinËs (the

corners of grid cells), the state parameters such as Lr q and T are

carried at the center of grid cells, the flux ,r* is carried at the mid-

poínË of verticat grid sides, and the flux ,ro ," carried at the mid-

point of horizontal grid sídes. The resulting set of difference

27
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equations used in estímating the spatial derivatives in equatíon 2.6

to 2.10 are given by Price (pp.B9-104 of ref 10) and r,¡ill- not be listed

here.

tr{ith suitable finite difference expressÍons approximaËing Ëhe

spatial derivatives, equations 2.6 Eo 2.10 may be used Ëo advance the

dependent variables in t.ime. The t.ime extrapolatíon scheme used Ín ËI're

Míntz-Arakawa model is a nodif ied l"laÈsuno two st.age Ëime dÍfferencíng

scheme (Ifatsuno (2I)' Price (pp.105-110 of ref 10)), and is the same as the

Ëwo-sËage Euler-backr+ard differencing scheme discussed by Kurihara (17).

This scheme may be illustrated by examining a represenËative equation

in the sex 2.6 to 2.10, abreviated as

#r*=Fn*s*. (2. 12)

Here, V takes on the values unity, g, T, u and v; Sn represenËs all

terms arisíng from the heat, moisture and friction source terms H,

(E - C) and F respectívely; and F* represents all the remaíning terms

ín the'equaËion, Since the source terms S* vary slowly wíth Eime, they

are neglected aË roosË Ëíme steps and are only applied at every Brth

time step in one large increment. In the first stage of each Ëine sËep,

a forr¿ard difference approxímation yields the first estimate for Y (t + 
^t)

according Ëo

zv(E) + Fv (r) 
^r

zr'l

(2. r3a)

rvhere S*

erenci-ng,

estímates

has been neglected. In the second sËage of the

a backr'rard difference approximation results in

for Y(t + AË) according Ëo

tirne diff-

the revised
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zv(r) * F ,t(r)nt¡"¡k *:kl. =z(t)+ F*(r)Ar , y =
I

Y (2.13b)

rf the time t + 
^t 

is not an integer multiple of BAt, then Ëhe source

Ëerms are not included ín the differencing, and the dependent variables

aË time t + At are assigned the values

z(t+Ar¡=7** , Y(t+At)=vo"". (2.13c)

llowever, if the time t * at is an int.eger multiple of BAt, then the

source Ëerms are incorporated through a Ehird stage ín the differencing

scheme. Firstly, Ëhe temperatures are adjusted to ensure that Ëhe

atmosphere is dry adiabatícally stable (p.109 of ref l0), Then wirh

Ëhe dry adiabatically stable atmosphere characËerized by Ëhe state
.L &.L

parameters Y ,, the source term conLributions are incorporaËed through

a backward difference approximation using Ëhe extended Ëime interr.al

BAt. This third or source sËage results in the value

v(t + At) = voo + s nolt) str/z(t + At). (2.r3ð,>
Y

2.3 Technisues_ to Aíd Stabílity.

The Mintz-Aralcawa model is a finiËe difference model on a proj ection

whose physical counterpart exþíbits considerable shrinking between grid

points as distance from the pole decreases (the metric m decreases as

laËitude lncreases). rt is riecessary to employ several special tech-

niques in order to avoid computational Ínstabilities on such a grid

using a finiËe difference scheme. One techníque has already been

menËioned, namely carrying the indivídual dependent variables at

different locations ín the grid cells (a space staggered grid).

A second technique used in this model to avoid instabilities is

to estimate the fluxes (,ro, .,r*) and the pressure gradient terms
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ACö/Ax, àÇ4'/Ay, (oea - 0) àe lðx, (or,a - þ) àe lày in rhe momenrum

equation accordíng to different nethods, depending on whether it ís

the first or second stage of the time step, or rvhether the time is an

even or odd multiple of at. rn the first stage of all time steps Ëhe

fluxes and pressure gradient terms are estiroaËed by centered sSrnrnetrical

finite difference approximations. Hor,{ever, ín the second stage of the

time st.eps, Ëhe terms are est j-mated by uncentered non-symmeËric finiËe

dífference estimates (pp.110-113 of ref 10): dornm-left uncentered

estímates are used if tj-me is an odd multiple of At., and up-ríght

uncentered estimaËes are used íf time is an even multiple of at. The

term down-left means the dífference expressÍon uses values of Ëhe

variable to the left and belor¿ the point where the flux or derivative

is being calculaËed. A símilar interpretation applies Ëo the term up-

righÊ.

A third techníque used in Ëhe Mintz-Arakar^ra model to avoid

insËabilities is to employ an averaging operator desígned. to damp out

high frequency I¡Iaves (short waves) travel.líng around laËiËude circles

(ín the longitudinal direcËion) aÈ high latítudes. These spurious

short \{aves arise from the shortening of the physical d.istance betr¿een

grid poinÈs on Ëhe latitude círcles as latitude increases. Subsequently,

computational ínstabilíty develops r+hen the grid spacing becomes too

small ín comparison to the Ëime step interval. The averaging operatíon

is applíed to the flux u't and the pressure gradient terms ôe$/ðx and

(oea - ö) ðe/ðx ín the covariant component (u component) of the

momentum equaËion. The averaging technique (p.1f4 of ref 10) is

illustrated for the flux u*. Define

D(y) = AÕ/(aocos 0) (2.L4a)
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A(y) = f CoCrl - t)/D'o (y) ,

*
where D (y) is the largesË integer not

* (n) ., (n-l) i o {"-r)u (x,y) = u (x,y) + A(y) lu (x+l,y)
t*

Thís averaging expressíon is applied D

values 7 ,2 , .. . ,oo (y) . The term 
"- [1]r,

before any averaging ís performed. On

,k 
(o)

u (x,y) is replaced by

relatively rveak in low

sho¡"¡s a rapid increase

below -60').

greater than D(y). Then,

o (n-1) 
o (n-1) I- 2u (x,y) * u ("-l,v)j Q.L4c)

(V) Ëimes with n taking on Ëhe

denotes the value of r.r*(xry)

the completion of the averaging,
¿

o(D (y))
its averaged va1ue, u (xry) Although

and middle laËitudes, this averaging operator

in strength as latítude íncreases above 60o (or

(2.L41r)

Fina1ly, it is necessary to make addítibnal special consideratíons

at the poles. M cell centers map into each pole in the Mintz-Arakawa

mode1. Since the state parameLers 6: g and T are caxtLed at the cell

centers, unique values for these parameters at each pole may be obtained

by averaging the parameters over Ëhe M cell centers constituting each

pole. A further problem, Ëhe vaníshing of metric m at the poles,

causes Z to vanísh, thereby Ínvalídating equations 2,L3a to d. This is

remedied by artificía11y assigning the value of metric m at, latitudes

north of (90 - ô/2) degrees to be equal to the meËric evaluated at

iaËitude (90 - 6/2), wiÈh a similar ËreatmenÈ at the south pole. It is

also necessary to redefine the flux u* carried at Èhe mid-points of the

M vertical grid sides crossíng each pole, since a lcngitudínal flux aË

the north or south pole is physically meaningless. In the }fintz-Arakawa

model, this is done by applying conservation of mass to Ëhe polar cap

as a rvhole and solvíng for a ficticious set of lr* values for each pole.

Finally, artifÍcial latitudinal fluxes from regions "north of the north
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polerr arise in the finite difference equations for the dependenË

variables in the polar cap. Such artificial fluxes are physically

meaningless and are neglecLed when Ëhey arise.

2.4 Heat-, Mgisture apd Fri_ctíon _So.urcgs

The energy inputs ín the MinËz-Arakawa model ínclude Ëhe heating

function H, moisture source or sink Q, and frictíon dissipation F. Four

contributíons to the heating funcËion are taken ínËo account: incoming

solar radia,tíon, long wave radiation exehange by the different atmos-

phere levels and from the eartl-r Ëo each leve1, upward transport of

sensible heat from the earthts surface into the lower level air, and

the relea"" bf latent heat when precipitation occurs. Evaporation from

oceans is the only source of moísture in the model, and two mechanisms

for condensaËion are accounted for: large scale precípitatíon and

convective precipitaËion. From the amount and Ëype of precipitation,

a fractional cloud cover amounË is calculaËed. The two sources of

friction accounted for in the model- are surface friction acting on the

lower layer, and a horizontal shear stress acting on Ëhe interface

between the upper and lower I-ayers. A detailed description of the

individual heat and.moisËure sources ín Ëhe }fintz-Arakawa rnodel is

given by Price (40), and the frícËion conËributíons are described by

Price (pp.99-103 of ref. 10).
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The Proposed Forecast I'lodel : Bicubic Polynomial Splines on a
Variable Area Telescoping Grid

3.1 The Basic Equations in x. l'. o, t Coorcìinates

The basic equations of thermodynamÍcs and hydrodynamics used in the

MinËz-Arakarva model (equations 2.6 to 2.10) are representative of the

many available classíca1 systems of equations used in modern numerical

weather prediction models. The x, y, o, t coordinate sysËem is

appealing since the entíre earth is readily napped in this coordínate

system (rvith but trvo singularitíes at the poles) and the eart.h's surface

ítse1f becomes the o = 1 coordinaËe surface. For these reasons, as well

as to facilítate the comparison of the polynomial spline method and

telescoping grid of the proposed. model with the fínite dífferencu *.anod

and conventional grid of the Mintz-Arakarua model, the governing

equatíons in the proposed rnodel are chosen to be the same as Ëhose ín

the Mintz-Aralcawa model (equation s 2,6 to 2.10). Further, only a t\,ro-

1evel version of the model is studied in order to save computation time.

A very simple linear mapping is used to relate the cartesian map

coordinates x and y to longiËude 0 and latitude Õ respectively.

Chosing x and y also to denote longitude and latítude, then

x=Ol8O/n , y=0LBO/r ,

where 0 and Õ are in radians, and x and y denote dístance

projectíon expressed in degrees of Iongitude and latitude. Hence

bounds of the norLhern hemisphere forecast regíon are the lj-nes

(3. r¡

on the

, the

x = -180.0, x = *180.0, y = 90.0 and y = YS, corresponding respectively

to the 180" I{est meridian, l-B0o East meridian, north pole and southern

boundary líne located a fer.' degrees (YS) south of the èquator. Havíng

selected suitable uniLs for the x and y coordinates it ís norv.
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possible to solve for the metrics

model. Applying equations 2.1 and

values

m and n in the

2,2 al-ong with 3.

proposed forecast

1, there results the

dx = dO 180/n

ds-Im=-:- = nÂ,dx

ds
ẑ'n

dY 
?'s

Since the flux v ís

have a nonzero value

Ëaking

, dy = d0 180/n )

cosÕ /180 )

(3.2)

(3.3a)

/ßo (3.3b)

required at the north po1e, it is necessary to

for m at the pole (mn). Thís is approximated by

rp=*(y2) , (3.3c)

where y2 is the latitude of the first ror,¡ of grid points lying just

south of the north po1e. Thís artificial value for the metrj-c n at

the pole is in keeping rvith the method used to assign values for the

dependent variables at the pole. This is further discussed in Section

an.J

3.2 The Varíable Area Telescoping Gríd

A double subscript indexing noËation (subscripts i, j) is used to

locate any node (grid poínt) in the forecast region. Subscript j

denotes the latitude circle on which the node is located. This sub-

script talces on Ëhe values betrveen 1 at the north pole and N at the

southern boundary latitude circle y = YS. Subscript i denotes the

posiËíon of the node on the latítude circle. The first node on each

latítude circle (at all latitudes) is at x - - 177.5, and iË is

assigned the subscript i = 1. Subsequent nodes around the latitude

circle in the direction of x increasing are assigned the subscripts

í = 2r3r.J. to ì{., rühere the number of nonrepeating uodes on the ¡tth
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latítude circle is M..
J

3.2.L Two Grid Expansion Forms

The variable area telescoping grid Ín the proposed forecast model

has trvo forms of grid expansion superÍmposed on each other. The fírst

grid expansion Ís required to maj-ntain the physical distance betr¡een

grid poínts on latitude círcles greater than or equal to some minimum

dístance required for computatíonal stability; and the second grid

expansion is used to decrease the number of grid poínts in regions which

are not of prímary interest.

In the first expansion, sÍ-nce the physical length of each latitude

circle decreases as latitude increases, the number of nodes on the

laËitude circle must also decrease. The range of coordinate x on each

1atítude circle remains constant (360.0) at all latitudes. Hence, fer¿er

nodes on the latitude círcle results ín an íncrease (expansion) in

spacing betiveen the nodes *1 
,j, 

*2,j,...fuj,j. ThÍ-s expansion increases

as 1atítud. nj increase.s. The physical distance beËween \ equispaced

nodes on latitude circle V, (1Víne closest to the equator) ís

dN = (2r A cos y*) /5 , (3.4)

where A is the mean radius of the earth. The interval d, ís selected

to be the mÍnimum physÍcal distance betrveen adjacent nodes on any

latitude circle. ln other r.¡ords, the distance d, is used in selectíng

a suitable tíme step for the computationally stable tíme extrapolatíon

scheme. It is therefore necessary to have d.7 dN, rvhere d. ís the

physícal dÍstance betr¿een I'f. equispaced nodes on latitude y.. ülith d.

given by

d. = (2 TT AA, cos fr)/tt. , (3.s)
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then the select.ion

M. = largest integer S \ cos y./cos y* )

M -t.f"l"2',

\ = arbitTary

ensures that d. Z d, for j = 1,...N. The resolution throughout the
J

forecast regíon is very uníform sínce the spacittg dj at any latitude is

less than 100/l'{. % Larger than dNi'. Equation 3.6b is a necessary apProx-
J

imation to accommodate the pole. It rvill be discussed later in thís

chap ter.

The second grid expansion results in an increase in the grid point

spacing as dístance ar{ay from the regi-on of interest íncreases. In this

fashion the amount of computation time spent in generating good

resolution forecasts in regíons of 1iÈtle concern is considerably re-

duced, without sacrificing resolution il the region of primary inËerest.

The method used to generate this expanding or telescoping grid is dis-

cussed in Append ix 2. The most important characteristic of the method

is the smooth transition between regions of increasíng gríd size and

regions of decreasing grid size, as well as a smooth rnatching \,¡ith the

fixed north pole and southern boundary line YS.

ThÍs result may be verífied in the follor.ring fashion:
-t

1et M. = l'\ cos Vr/cos V* )

d. = equation 3.5 ,

:l

\ = 2 r AA cos t j/"j i

[a. - ¿".1

then the 7. dífference betrveen d. and d* becomes 100F\--I'J

oï loo r".'* - *.) s +qq sínce M.* - l'r. < 1.orjlJr"jJJ

(3.6a)

( 3. 6b)

(3.6c)
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3.2.2 Grids Used ín the Numerical Forecasts

The four grids A, B, C and D used in the numerícal forecasts are

given in Fígures 3.1 to 3.4 respecti-r'e1y. Grid A (Figure 3.1) has a

5" latitude, 5" longitude grid, rvith a I2.5" polar cap (the spacing

betr,¡een rows j = 1 and j = 2 is 12.5'). Nodes are índicated by the

symbols x , the nurnbers immediately adjacent to the grid along the

top and right hand side denote longitude and latitude respectively, in

degrees, and the coh¡nn of ni:mbers from 1 to 18 along the right hand

side denotes the ror.r nr¡mbers. In this gríd, N = 18 and M. = 72, j = 1,

...N. The grid interval ín gri-d B, Fígure 3.2, is double that of grid

A. In all other respecËs grid B is of the same nature as grid A. Grid

C, Figure 3.3, is formed by Ímposing the basic expansíon of type one on

grÍd A. In order to maintain a constant physícal distance betrueen nodes

on all latítude circles in this grid, the number of nodes around each

latitude circle must decrease as latitude increases. In inereasing

order, from hig1. to low latitude, the terms lrl . take on the values l"f. =

15r15,27,27,33,38,43,48,53,57,60,63,66,68,70,7r,72,72 as j increases

from 1 Ëo 18. The final grid used in the numerical forecast experiments

is the telescoping grid, grid D (Figure 3.4). This grid is generated by

superimposing the expansion of type tr.7o on grid C, which already had a

basíc expansion of type one. In this second expansion the grid expan-

síon factors in the x and

Appendix 2 and Figure l\2.1)

is centered about the point

I'linnípeg, Canada.

axes directions respectively (see

EX = 1.1 and EY = 1.04. The expansion

, Y?) = (95, 50) located close to

v

aïe

(XP

The region of ínterest corresponds to

mile r,¡ide band extending eleven grid ce11s

a three grid cell or 1000

or 3500 miles across
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hlorth America. I{ithin this region of interest, the grid ce11s are of

the minímum síze requíred for computational- stability at that latitude.

The grid Ëhen expands monotonously as dÍstance away from the region of

interest increases. In increasíng order, from hígh to lotv latitude, the

Ëerms If . take on the values l'1, = 17 rl-7 r22r25r28,30,31 ,33 r34r35r36r37,38,JJ
38,39,39 as j increases from 1 to 16. In Fígure 3.4, the expansion

in the y dírection is shor¿n by a crotoding of latitude línes at high

and 1ow latitudes, rviËh equispaced grid point ro\rs on the figure.

There are no difficulties in applyíng bi-cubíc polynomial splines

on alì expanding grid, provided the grid expansion is smooth. Ahlberg

(24) reports problems in curve fitting v¡hen the physical spacing changes

significantly ín a limited region. Essentially, r^rhen the grid point

spacing in a one-dímensíona1 region contaíning four grid points is

alternately very 1arge, very smal1, then very 1arge, the resultíng

spline fít to a monotonic íncreasíng ordinate shows a 1ocal'maximum

follorued by a 1oca1 minimum. Thís results in a very small local spike

in an otherrvise monotonic spline curve fit. The spike is verl' local

and usually sma11 (barely perceptíble). In the application of splines

ín the proposed forecast model, a good estimate of slopes is desired.

Although a small 1ocal spíice has little obvious effect on the curve fit,

iË has a devastating effect on the derivative at the node rvhere the grid

spacíng changes too abrubtly. Hence a smoothly expanding grid is

essential.

3.2.3 Assigning Dependent Variables at tire Pole and Equator

In the proposed mode1, the dependent variables are advanced in tjme

at nodes on the latítude circles j = 2 to j = N - 1 (see Fígure 3'1, in

lvhich N = 18). This may be compared to the Mintz-Aralcarva modeI, in
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rvhich the dependent variables are advanced in tíme on all the 1atítude

circles j = 1 to j = ¡. Several special Ëechniques are requíred to

ensure a conseïvatj-ve dífferencing scheme at the pole in Ëhe l"fíntz-

Arakar¿a model. These special techniques are not required in the proposed

model sínce the north pole (latitude circle j = 1) is not independently

advanced in tirne. The x-component of the bícubic spline is readily

applied along each of the latítude circles j - 2 to j = N - 1 since the

dependenË variables are períodic in x . Horvever, the y component of

the spline surface must be applied along the longitude lines i = I to

í = Il. from j = I (north pole) to 3 = ¡ (south boundary just south of
J

the equator). It ís therefore necessary Ëo generate values for the

dependent variables aÈ the nodes on the polar and equatorial latitude

circles, j = 1 and j = l{ respectívely.

The latítude circle j = 1 corresponds to the north po1e, a singular

point. Tt is proposed that a suitable set of unique dependent varíables

at the pole may be chosen to be representative of the dependent

variables in the polar cap (carried aL nodes on latitude circle i = 2).

The varíables in question are u, v, T, e, Ç, $ and v'x, of which v:k and

$ depend on the others. Note that since the y derivatives of u'Å' are

absent from tl're difierential equaËíons, it is not necessary to generate

u-* at the pole. This nay be compared to the artifícial u:'t fluxes ín

the I'Iintz-Arakarua model at the pole, required to ensure conservation of

mass and momentum in the differencíng scheme used Èo update the polar

dependent variables. Tn the proposed model, a unique polar value for

variable \r = e, q, T or 0 is obtained by the averaging

y. =+ Ï'r, o , i=r,...I1. (3.7)'í, I M, 1-_1 kr2
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A unique nonzero hort-zontal rvind at Ëhe pole is obtaíned by first

referencing all hori-zontal winds at nodes (i, 2), i = 1,.,.M2 in terms

of horízontal axes v¡íth the y axÍs a1ígned along the Greenrvich

rnerídían (0o longitude), next averaging these rvinds to obtain a unique

horizontal rvind at the pole, and fínally fínding the 1oca1 components

of this rvínd in terms of 1oca1 horizontal axes at nodes (i, 1), i = 1,

...Ml . In t.erms of horizontal axes at the Greent'¡ich meridían, the

uníque polar horizonËa1 wind components are

i- Tz rI
"n = *, i=, 

uu,t "o" tu,, '

tYztÉ = 
", i=t 

uu,, "tt tu,, '

tt7Àrvhere uL,2 = furlr* v.-r)", i = 1,...If2'

'r,r= 
ttt-1 (ur,r/ ur,2)+*í,2 ' i=1'"'ì{2'

Then the 1oc.al components of this polar wind, in terms of local

hori?ontal axes located at nodes (i, 1) i = 1,...M1, become

u. . = V cos(o - x.,), i = 1r...M,,lrfpParr-L
ri,1 = vn sín(oo r *i,1) , i = 1,. ..M1 ,

rvhere V = (r:2 +v2.)Ð.p p' p' '

O =tant(rr/.r)ppP

The flux v'k at the pole is generated usíng equations Z.l-J c, 3.3c

3. 9b.

(3. Ba)

(3. Bb)

(3. 8c)

(3. Bd)

(3.9a)

(3. eb)

(3.9c)

( 3. ed)

and

The pole norv has realistic uníque values of the dependent varíab1es.

It is important to recoglríze that thís data at the pole is not inde-

pendently updated ín time, since no time extrapolation expressions are

rvritten for nodes along the latitude circle j = 1 rnaking up the po1e.
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Rather, the pole depends so1e1y on the average state of the polar cap

as defíned by the dependent variables around latitude circle j = 2. The

polar data ís required only to serve as a realístic boundary condiËíon

on the y component of the bicubic spline data fít.

Values for the dependent variables on the latítude circle j = N,

just south of the equator, are assigned from corresponding data points

on the latitude circle j = N - 1, just. north of the equator. A mirror

ímage slmmetry arrangement is used for the deper-rdenÈ variables V = u, T,

and q, accordíng to

tu - u.f

'irN - 'í rN-l
i = 1,...M1.

An anti-syrmretric boundary condition is

the horízontal rvínd, thereby preventi-ng

(3. 10a)

imposed on Ëhe y componenÈ of

cross equatoríal floiv. Hence,

tirN = - tirN_l , i = 1r...Ml (3.10b)

Agaín, thís equaËorial data ís required only to serve as a realistic

boundary conditíon on the y component of the bicubic spline data fit.

It is not independently advanced in time.

3.3 Bicubic Polynomial Splines

3.3.1 The Spline Based on ContÍnuity of Second Derivative

It ís proposed that bicubic polynorníal splines be used Ëo estimate

the horizontal derivatíves in the system of governing equations 2.6 to

2.I0.ConsidertherecÈangu1armesi-tx,.*2.fu,YL,Y2>...

> y-- ruith prescríbed ordinates u- . at mesh poínts (x_., y=), i = 1r....)f ;,N . rl l_- -J--

j = 1,...N. The double cubic or bícubic spline of ínterpolation to the

ordínates u.. at mesh locations (x,, y,) is a píecervise continuousr-J r- J

function defined as a double cubíc polynomial in each rectangle

*i_1 S x S xi, tj_t, y r. yj, rvith continuous first derivati.ves and
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cross derivatíve at all points in the rectangular mesh. Ahlberg, Nilson

and lrlalsh (26) describe the construction of a periodic trvo-dinensional

cubic sp1Íne S(x, y) over rectangular elements. Thís spline is

expressed in terms of prescribed ordinates u(x., yj) and generated

second and fourrh derivaËives â2s/a*2 a2s/ay2 and,a4s/a*2ay2 ^, 
*., yj.

Since one basic aim of applying double cubic splínes to fit meteor-

ological data fj-elds j-s to obËain best estimates of the fírst derivatÍves

at data poÍnts, it is more convenient to construct the spline S(xry) in

Ëerms of prescribed ordinaËes rrj 
"rd 

generated first and cross deríva-

tives p-,r e,. and s-. representing, respecËívely, AS/Ax, ôS/ay and' r-J - 'r-J 1J
)

ð-S/âxây "t,*i, yj. In Appendíx 1, the double cubic sp1íne S(x,y) is

derived ín terms of rrj, pij, Çíj and sij. In the proposed model, it is

not necessary to generaËe all the coefficients in the double cubic

píecewise continuous spline fÍeld. Rather, only the nodal values of the

first trvo derívatives. p.. and q.. are Êenerated.- 'l-J ^l-J

3.3.2 Boundary Conditions on the Spline

The possible boundary condiËions on the bicubic spline data fit are

discussed in Appendix 1. The boundary conditions on the x-component of

Ëhe bicubic spline .cause no problems sínce the field is periodic in x .

Hor^rever, a certaÍn degree of judgement is requíred in selectíng the

boundar:y conditions on tl're y component of the splíne. Nodal values at

the ends of the spline ín the y direction are lcnorvn, sínce they are

generated from equations 3,7, 3.9a, 3.9b, 3.10a and 3.10b. However, an

additional pÍece of information is required at the ends, generally ín

the forrn of a specifiecl first or second derivative.

This information is straíght fonvard at the equator, rvhere a

symnetry boundary condition is assumed. The equator lies at the center
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of gr:id cel1sbetween l-aLitud"e cj-rci.es j =l.ì- land j =i'1 . Tl-.e slope

on the spi-j-ne surfac:e and the cor:r-espon.jing verl-ure of tl¡e spli.ire betiueeri

tr.;o ncdes are given by ecluati.ons Al-.42-a,c in Àppendix i. For the

synmet::ical dependent variables (equation 3.10a), DS/ðV rnusrt vanish on

the crrlr:ator. Setting equation 1,,L.42c to zero yielcis

{írN = - QirN-l

Fc¡r Lhe:-rriti-s¡;¡1¡¡letlic v compenent of the

3.10b) , S(x,y) rnust vanish on the equator"

ze::o yields

(3. 11a)

ho-¡izolrËa1 ivind (equation

SeLLing equation AL,42a to

QirN = qirN-l (3.1lb)

At the pole-, horøe..¡er, ít is a question of lroi.¡ rigidly should lhe

bicubíc sp11-ne surface be resËraíned by an e-nd condítiorr affectíng the

slope. For example an end condition having little olî no influence on

¡he slope- of the sp-line srr.rface ti..{: at the poJ-e is un.<-lesj.rable. t\rj.th

such an unrestrained end condíEion the-re is no corrplíng beti,¡een the

slopes of t-he spline suLface along the different longitude lines meeting

aË the po1e. Computational stability with anl. particuJ-ar time step

requí::es the slope resoluËion at nodes in the field be less than some

maximum va1ue. ThÍs is a 1ogíca1 corollary of the stability r:equ-i-rement

that the grid interval be greater than some minj.mum value, and the

larger the grid ínLerval, the poorer the slope resolution. Hence, some

couplíng betrveen the slopes along longitucle línes meeting at the pole is

required to decrease the overall polar slope resolution to a value at

least representati.¡e of the slope resoluËíon ín the remainder of the

field. Increasing the coupling is therefore a restrainiug influerìce on

the spline surface fit at the po1e. The possible end condit:Lons rohÍcir

exert Ëhis restraining influence include specifying the slcpe or second
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derivative at the po1e, or specifying the second derivative aL a

fícticíous point "north of the north po1e" (equations 41.25 to 41.28 in

Appendíx 1).

End conditions of the form gírl = e.*,2 ot Qirl = Qírz ^r" ruled

out as having too unrestraíned an influence on the spline surface fit.

Here, Ëhe symbol Q represents azS/Ay2 (similar to having q represent

aS/Ay). The end condition involving a speeífíed second derivative at a

ficticious poínt "north of the north pole" permits some conËrol on the

restraining ínfluence of Ëhe end condition on Èhe spline surface fit.

Horr'ever, at this stage in the analysis, ít is felt that such control is

noL required and this end condition is elíminated. Thís leaves a

selection of one of trvo possible end conditions:

Ç,,=0 , or (3.72a)
lrr

Qi,1 =O . (3.12b)

In the standard atmosphere, the temperature and pressure fields are

radía11y symmetric about the pole, and both end conditions 3.12a and

3.Izb are satisfied. Hor,¡ever, in Ëhe real atmosphere there is generally

a large deviaLion from radiaf symmetry. 0f the two end conditions,

specifying the fírst derivative ís a mòre restrictÍve influence on the

spline surface fit than is specifying the second derívative. Therefore,

equation 3.12b is the preferred end condition, and ít is used in the

proposed forecast model. Tl. oËher end condition is tested in Lhe pre-

liminarl' numerical forecast experiments.

3.3.3 A Generalized 9pline Based on Curvature

It has been mentíoned that the cubic spline based on continuity of

the second derivative exhibits the minimum curvatLlre property rvhen

curve fíttíng data ruíth smal1 slopes. This property does not apply rvhen
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the slope is large. In order to accommodate rapidly changing data rvítir

fev¡ data points, it was decided to derive a generalized cubic spline

based on continuity of Êhe approxj-mate curvature at poÍnts located be-

t\^Ieen the data nodes.

The need for such a generalized spline becomes apparent from an

examination of Ëhe nature of the cubic spline curve fit in cases of

rapidly changíng data. Preliminary experimenÈs v¡ith the cubic spline

based on continuíty of the second derivative have shor,¡n that when there

is a sudden change in Ëhe curvature nature betr,,reen two regi-ons ín the

fie1d, the spline slope esËímates at the nodes oscíllaËe abouË the true

slopes, rvith a decreasing percentage error as distance from the junction

betrveen the truo regions increases. In Table 3.1, six sets of sample

data are given to i11ustïate the consequence of abrubtly changing curva-

ture on the spline data fit. fn data sets one to three, the regíon

* . *4 corresponds to a sinusoidal test function and the region * t *5

corresponds to a straight line of three different slopes. Data sets

four and five are cases of truo straight lines meetÍng at a point betrveen

x, and x-. The sixth and final data set corresponds to a sinusoidal45
test function over the entire interval. The true derivativ" pit i"

obtained by differenËiating the analytic test function u(x); the spline

derivative estimaÈu" pi" are formed by fitting a one-dimensional cubic

sp1íne to the knorvn ordinates u. at nodes x. for all í ; and, tlne "/"

error ir pí" is calculated relative to the true slope p.r. From this

table ít is seen that there are significant oscillatíons ín the spline

curve fít at the junction betrveen regions of abrubtly changing curvature,

while the accuracy of the spline curve fit is very high (1ess ttran 0.lZ

error) in regions of s1or.¡er changing curvature. This illustrates the
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Èype of problem rshicl-r may be encountered v¡hen usíng the cubic spline

based on continuity of the seconcl derÍvatj-ve to curve fit data ru'hÍch has

abrubr changes in curvature. A generalízed spline based on curvature

(rather than Ëhe second derivatíve) is proposed as an alternative to the

problem of curve fitting rapidly changing daÈa.

The general cubic spline based on continuity of the approximate

cuïvaËure is derived in a similar fashion to the cubic spline based on

conËinuity of the second derivative (Appendix 1). The derivations

differ priuraríly in the continuity requirement. Inlhere Èhe simple cubic

spline employs the continuity of second derivative constrâint (equaÈions

41.19 Ëo 41.23 in Appendix 1), the generaLízed cubic spline employs a

continuity of cur..;ature constraint,

1

ß.
l_

5"(xi - ah.) = Uh 5"(xi + bh.+l)

t 3/2ßi = (1 + s'rr") ,

l,-t. - u. ì
¡r -¡r r-tlxs
"fi- I tt. lusLr-)
h.=x,-x-a,a l- l--I

XS, US = nondimensionalizing facËors

ola(1 r o(b(1

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3. 13e)

(3. 13f )

Here, equation 3.13a expresses continuity of the approxímate curvature

betrveen the poinË" *i - ah. and *i * bhi*'. These poínts are generally

not grid points since a and b are generally nonzero. Also, the

curvature is only approximate since Str. is a finite difference

estÍmate for the slope at x. - thi, not the true spline slope' ff the

Ërue spline slope (equation A1 .17) \r:erê used in place of Sr¡1, equatíon

3.13a rvould becone nonlinear. The solutj-on of a nonlinear system of
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algebraic equations is very difficult and therefore not pracEícal in

this applícation. The additional factor XS/US appearing in equation

3.13c is required Lo scale the ordínat.e u and abscíssa x to be

independent of the units used, and to make Stfi of Lhe same order of

magn ii-_ude as the number "1" appearíng ín equation 3.13b. This is

necessary since B, is nonl-inear in Sr¡1, and the numerical value of the

ratio g,/ß,,. in equatíon 3.13a should be independent of the units used.'aa+l

For example. if ri*', ui, ui_1, xi+l, *i, *i_1 have the values 200oK,

196"K, 2O6oY,, 100 ft, 96 ft, 101 fÈ respectívely, then wíth no scalíng

factors (XS/US = 1.0), Ëhere results Ëhe slope= S'fi*l = loK/fË

S'-. = 2"X/f.x sívins ß.,"/ß. - 0.252.
ta " afl l-

However, if the uníts

are changed from feet to inches, then ttfr*1 = L/I2oR/in., t'fí

I/6"K/in. and ß.*r/ß, = 1.0. This is discussed further in the

numerical experíments.

I^iíth Sr'(x) given by equation

becomes

41.1B, the continuity requirement 3.134

t

ofx

2p. .(1 - Sa)- 1--L

ô

4pr(1 - ja) 6(ui
ß.h.

l_ l_

+ ß.h.t1

2p,,.(1 - 3b)
l-¡--L

4p. (1 - *o>-a L

2
þ .l't .l- t_

6(tr*t - ,i_) (1 - 2b)

- u. .)(1 - 2a)
l_- J_

actual

(3.14)

(3.15)

(3. r6a)

(3.16b)

(3. 16c)

or

rvhere

*
À. D- - +r ' a--L

.L

À.
l-

u.'a

2p. *'t-

3)..
]-

t

+ 3u.
a

ßi*thi*t ßi*thi*t

Pi+1 = ti

- u. .)l-- r

ßrnrnr*r'

í = 2r3r...M-1

,."rr (ti+1 - ti)
hi*t

Ii
(u.'t-

1 h.
l_

ß.+1h.+1 (1 -

8.hi (1 - 3b)

3a) /n.

/n.
l-



48

provided at least one of a or b is not 2/3. Since there

advantage in using a differenË from b in this applicalion,

(3. 16d)

(3. 16e)

(3. 16f)

no

and

are assigend the same value. In the discussion which follows, 1et A

denote the coefficient matrix for the left hand side of the system of

equations 3.15 r^¡ritten for the periodic case (OO = p¡1, p1 = plt+l). If

a = 2/3, the multipliers of pi, i = 1r...M, become zeto and the main

diagonal of the coefficienÈ matrix A vanishes. Hence, although the

sysËem of equaÈíons has a unique solution'(since the terms 
".^" "t" 

rrot
I

0 and the det(A) t 0 tox M > 4), rhe solurion may noË be obrained by

conventional pivotal numerical methods because the system of equations

is not diagonally dominant (p.425 of ref 41). A1so, this solution ís

only of minor interest since the zero main diagonal in maÈrix A results

ín double the effectíve grid length, thereby reducing the accuracy of

the pha.se speeds prerji¡:.ted f or Ëhe short meteorological \raves. The role

of the effective grid length is briefly discussed in the Introduction.

In Èhe second case of interest, a = If2, the homogeneous sysËem (c-.* = 0
a

for all i ) rvhich results has a unique soluËion since det(A) # 0; and

the soluËíon is the trivial solutíon pi = 0 for all i (p.384 of ref 42).

This spline cuTve fit \{ith zero slopes at all the grid points represents

the maximum possíble smoothing of Ëhe slope estimates. Values of a

betrveen 2/3 and I/2 represent varying degrees of the characterísËics of

the trvo extremes and are of 1itt1e practical importance. A third case

occurs r,¡hen a = I/3 and XS = 0. The system then reduces to a simple

central fínite dífference scheme

l-

&-L

uí

ßi*rhi*l Q - 2a)/D.

ß,h_. (r - 2b) /D. ,Ll_ r-

D. = (1 -]A ßi*rhi*r+ fr-å¡) ßih,

IS

a
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D. = À.'1 l-

(u. - u. .)t t-r
(u.*, - ur)

h..-
a+1

h.
l_

i= 2r...M, (3.17a)
h.

I

hi*1

*ui

r,¡hef e 1-
I hi- * hi*l I h. + h. -1 r+-L

(3.17b)

Similar Ëo the bícubic sp1ínes in Appendix 1, the factors À. and ¡.r. give

a rveighting of the finite difference estímates to account for the

varyíng grid interval. The values of a between 7/2 and 1/3 gíve

varying degrees of smoothíng or damping of Ëhe slope estimates, with an

increase in smoothíng as a approaches \/2. Final1y, when a = 0 and

XS = 0, the system 3.15 reduces to the system 41.21 in Appendix 1 used

to defíne the original cubíc spline based on contínuity of the second

derivative. Of major interesË in this study ís the inter-relationsf,ip

bet\^/e-',ìn finite differences and cubic splines. Since the forner occurs

r¿hen a = U3, XS = 0 and the latter occurs when a = 0, XS = 0, the

ïange of values of a r¿hich are of most inteïest aïe O S a S 1/3.

3.4 The Forecast Procedure Using Bicubíc Splínes on the Telescoping Grid

The governing partial differenËíal equations (2.6 to 2.LO) are of the

form

â

at z'lt = orr* * u,Jry (3'18)

where the terms Orr* otd U,Jrr t.n..sent al1 terms involving first deriva-

tives in x and y respectively in the { differential equation, iþ

talcing on the values unity, ur v, e, q and T. The tíme extrapolatíon

scheme for Zþ is applíed using equaËion 3.18 at all the nodes i = 2,...

N-1; í = 1r...M.. The dependent variables at the pole (j = 1) and on
J

the latiËude circle just south of the equaËor (j = N) are not extra-

polated in time, since they are generated from data on latitude. circles
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j = 2 and j = N-1. In the proposed forecast model, suitable values for

4.,__ and 8.,__ are generated from a cubíc splíne surface fit to thetlIX vy

dependent varíable fields. There is no pr:lblem in generaËing Aúx in

thís fashion since the varÍab1y spaced grid points lie on latitude

circles. Hor,¡ever a conventional cubic spline data fit ín the y

direction is not possible unless the dependenË variables are aligned

along longitude lines. It ís seen from Figures 3.3 and 3.4 that this

is not the case, sínce one or È\,¡o types of expansion have been imposed

on the gríd. This problem is circumvented in the follorving fashion.

First, the dependenË variables are interpolated from nodes on Èhe

expanding qrid Ëo nodes on an underlyíng rectangular grid having grid

points aligned along longitude circles. Next, the dependent variables

on Èhe underlying grid are fit by cubic splines in the y direcËion,

thereby generatíng B,Þy at all nodes on the underlying grid. Finally'

the B, values on the underlying grid are back interpolated to Ëhe
Vv

expanding grid. With Apx ttd B,Jry knor.¡n at gríd poinLs on the expanding

gríd, ð2,þ/ðt becomes known and the tirne differencing proceeds according

to equations 2.13a,b at nodes on the expanding grid.

Grid A (Figure 3.1) is a suitable underlying grid for the expanding

grid C (Figure 3. i). It is seen from the figures thaÈ gríd A meets the

requirement of having grid poinËs aligned along longitude línes. The

method by which dependent variables at nodes on the expanding grid are

interpolated to nodes on the underlyíng grid rvil1 be referred to as

inËerpolation metirod A. Since the ínterpolation is ín the direction of

finer resolution, a quadratic ínterpolation usíng intermediaËe data

formed by linear interpolation is used. With refeïence Ëo Figure 3.5,

tlre meEhod is to use the ltnown ordinates at nodes *L, *2, x, and xO to
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estimate a value for the ordinate aË point *o lrtrl, betrveen x, and xr.

Linear interpolation is fírst used to assigi-r values to the ordinate at

points *1.5, *2.5.td *3.5 lYitg at the mídpoint of the grid intervals.

úi*.s = å ,*r_ * ùi*r) (3.re)

A quadratic interpolation Ís now possible using Ëhe ordinate values at

*1.5, *2.5 
"rd 

*3.5. The interpolation polynomial is constructed using

Neutonfs ínterpolation formula wiËh divided differences (p.171 of ref

43). Hence,
Jx rã

{r(x ¡ = ú1.5 + (x - *t.s) fL.5,2.5
J. .L

Lr"-x..)(x-x^\c-r \x r.) ¿.5) '1.5,2.513,5

= (Ùi - Ú:)/(x. - xr) ,

,k = (tj,o - tr,¡)/(xu - *i)

interpolation formula results :

) = aùl. s + bùz.s + 
"ù3.5

E+2G - r)/(1 + tr) ,.

where f..a:J

r..arJ

, (3.20a)

(3.20b)

(3.20c)

(3,2La)

(3. 31b)

(3.21c)

(3.21d)

(3.21e)

(3. 3rf)

(3.2re)

Then the follorvíng

where

-å

ú(x

d-

b=

ç-

(Ëh'+ 1)(r - E) ,

E(l + çn)/(1 + ti) ,

x - (xZ + h3/2) 
,

.5rn^ t h,)
J4

f¡ = (hg * h4)/(h3 + h2) ,

h.=x.-x..aar-1

The method by rvhich varíables on the underlying grid are back inter-

polated to the expanding gríd rvill be referred to as interpolation

method B. Since the interpolatíon is ín the direction of coarser

resolution, especially at high latitudes, a r+eighted averaging
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techníque will be used. With refel:ence to Figure

to evaluat" ûr* on the expanding grid usÍng equal

all nodes lying vrithin range R on the underlying

weighted contributíons from nodes *i1_1 ttd 
"i2+l_

of R. The resulting interpolation formula Ís

3. 6 , the method l-s

contríbutions from

grid and using smaller

lying just outside

úirt =

i2
. l, ùt * ftùi1-l + rzùrz*t
k=a-L

í2 - íI + f.I+ f 
2

where ft

h.
l_

dr/nr-, '

x.-x.-a a-l

f 2 = dz/hiz*t

(3.22a)

(3.22b)

(3.22c)

It is important to note that this scheme is only used in generatíng Ëhe

terms in B, (equation 3.18) used in the time extrapolation scheme; Ëhis
W

method is not applied to any of thc dependent variables in the model.

It is also rvorth noting Ëhat both interpolation methods A and B are

numerical quadrature methods. AlÈhough a polynomíal spline method may

be potentially more accurate in interpolaËion, iË is not used here for

several Teasons. FirsË1y, the major reason for using splines in Ëhis

thesis is to obtain best estímates for the slopes of the dependent

variable fields at the grid points. This was discussed in the Intro-

ducËion r.¡here it was pointed out that a spline estimaÈe of Ëhe slope iras

several inherently better characteristics than a finite difference slope

estimate. Secondly, the interpolation methods A and B discussed above

are important but noL critical ín this mode1, since these interpolation

metirods only enter Ínto the calculation ot U,l,, in equation 3.18. The

more crítical calculation of O,lr*, whích strongly determines the meteor-

ological ruave speeds, is performed di-rectly using polynomíal splines

¡sithout -any intermediate interpolatíon. Also, stability problèms are
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prÍmarily concerned \,rith spuïious short r,Taves travelling in the \'/est-

east direction, and the calculation o, u,Jr, has little ínfluence on this.

The thírd reason for tl-re use of the quadratule interpolatíon methods A

and B is the saving in computation Èíme rvithout a marked decrease in

accuracy compared to the sp1íne interpolation method. Essentially, Ëhe

two important characteristics of interpolaÈion methods A and B which

must be realizeð. are thaË the methods be reasonably accurate and fast'
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4.

4.i

Nglle_+*g :1_ El¿el¿tnq_ 
-t*€

and I orecers L iÌestr i. i:s

Real. I¡le¿ri.Ïie r 1.ni';iai ¿rncì. Vc;:i.f icaEícn Datal 0000 GlfT Febluarv 2,1970
an<l 1200 Gi'fT Februa::y 3,1970

using the puoposed modeI and

oÍ the following parante ters

donra in :

Lnput data required to begi;r fnreca.sts

the coüiparison Mintz-Arakarva niodel consists

specif iecl at each grÍd point in the f or:ecas t

1T
oc-

¿. (l) .'s'

Z,J.

ocean temperature required j-n c.alculating the heat sources
II, and H..

surfacc geopotential, determined from land elevations by
equat Lons 2.llk and 2.IL9'.

cle lermined f rorn the surface Pressure P, by equations 2.5
and 2.11a.

g3, mixing ratio at the o = 3/4 level only.

tlr.t3itl,t3, x and y conponents of the hori.zontal wind at the
o = l/4 and o = 3/4 levels.

Tt, T3: :emlerature at the o = L/lt and o = 3/4 lerzels respect-
rve Iy

The mean northern herrrisphere ocean tempei:atures for February tJere obLain-

ed frcm tlre U" S. Navy Marine Climatic Atlas of the l,lorld (ref .44). Values

for tlre tem¡.rerature, height, and 2 horízootal componenis of a balanced tvind

corresL''ondíng to the treigirts, for the 1000, 850, 700, 500, 300, 200 and 100

mb surfaces, and derv point values at 850, 700 and 500 mb r.,¡ere obtained from

the Central Analysis Office of the Can'adían Department of Transport, Dorval,

Quebec. This clata was suppl,ied f or 2BO5 gricl points of a Polar Stereographic

projection of the northern hemisphere for.the month of February, L970. Al-

though surface elevations may be readily obtai-ned from standard toPogra-

phical atlases, the author rvas unable to obEain ground surface Pressures,

making it necessary to obtain an alternative set of data for Ó" and P".

Approxinrations for 0" and P, suitable for s'hort term r¡Teather pre<lictions

were obtained by setring t-þs 1000 mb surface to be the ground surface at

the beginning of the forecast. Therefore,

5.

6.
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1.

t

The surface pressur:e was iniËially 1000 mb at all grid points

The surface elevation was the height of the initial 1OO0 mb

surface.

Tlre o = 3/4 and o = I/4 surfaces initiatly coincided with the
800 and 400 mb surfaces respectively.

Values for T, u and v at the 800 and 400 mb levels, and dew
point at the 800 rnb level were obtained by linear interpolation
from the nearest pressure levels at which this data was known.
The data was then interpolated from grÍd points on the stereo-
graphic projection to grid points on the map projection used
in the proposed model.

4.

5. The mixing ratio g. was obtained from the dew point
steam tables. Altdrnatively, the Clausius-Clapeyron
could have been used to obtain the vapour pressure P

ponding to the dero point, and the mixing ratio would
been calculated from

by using
e quat ion

corre s -vthen 
have

GMT February 2, L970, compiled in the fashion mentioned above. For con-

venience, the termrr0 hour datatris used to refer to this real weather

data for 0000 GMT February 2, 1970. This initial data is presentecl in

Figures 4.1 to 4.8 in the form of contour maps containing the following

information: isotachs for the horizontal wind on the lower (800 rnb)

spacing), isotherms onand upper (400 mb) surfaces (10 m/sec contour

the 800 and 400 mb surfacu"'lr0o K spacing), mixing ratio contours at

the 800 mb level (contour spacing is 3.0, in units of g HrO /g dry aLr

-?x l0 -), surface pressure (mb), and elevation contours for the 800 ancl

400 mb surfaces (200 m contour spacing). In a similar fashion the 36

hour verification data (real weather for 1200 Gl.tT, February 3, f970) is

presented in Figures 4,9 to 4.16.

I

The numerical

As a guide to locating those

the true weather is changing at a

d, is defined:
llJ

93 = 0.622 Pv/ (P - Pv)

forecasts all begin with real weather data for 0000

regions in each variable field where

rapid rate, a \¡/eather change parameter
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d,l, = Úr0 - Úr:O + 1000 , (4. 1)

where V-^ = true value of the variable tJ.r at 0 hours,
TU

Ût36 = true value of the variable r! at 36 hours.

The contour lines labelled 1000 denote regions r¿here there has been no

change in the value of Ú over the 36 hour period. With dü defined by

eguation 4. l, it is possible to generate contour maps for each depend-

ent variable field showing regions where the weather has changed the

Ieast and the most. Inleather change contour maps for the 36 hour period

are given in Figures 4.L7 to 4.22. Actual details of the true weather

change over the 36 hour forecast period are discussed in Chapter 5, in

connection with the evaluation of forecast performance of the proposed

mode 1 .

4. 2 Preliminary Ngmerical Experiments

Several preliminary attempts were made to generate a stable

numerical forecast using the bicubic spline method on a regular rectangu-

lar 50 latitude, 5o lorrgitude grid (gríd A, Figure 3.1), with filters

and averaging operators to remove spurious short vraves at high latitudes.

This moclel will be referred to as model P. It has some characteristics

of the proposed forecast model and some characteristics of the Míntz-

Arakawa model, since the proposed model uses the bicubíc spline method

and the Mintz-Arakawa model uses a regular rectanguLar grid with several

filters and special techniques to obtain stabilíty (see Section 2.3).

The preliminary numerical experiments were performed in order to deter-

mine the nature of the special techniques r:equired on a Mintz-Arakaroa

grid to obrain a stable forecast, and to investigate the effects of

different boundary conditions on the cubic spline at.the north pole.

In the first experinent (Pf), model P was applied with an B.50
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polar cap (8.5o irrÈetval be tr^¡een the pole and latitude circl-e j=2) and

boundary condition 3.LZa at the pole. In this experiment) no averaging

operators or special techniques \.rere used to improve the computational

stability, and the resultíng numerical forecast tzas computationally un-

stable (exploded numerically) in less than L/2 lnour of forecast time.

This indicates a definite need for special techniques to control the

computational stability of the numerical forecast on a lulintz-Arakawa

grid.

In the second experiment (P2), model Pl rvas altered by applying

the Mintz-Arakav¡a averaging operator 2.I4c to the pressule gradient

terms in the x component of the momentum equation. This is but one of

several special techniques used in the }fíntz-Arakawa model to obtain a

stable forecast (see Section 2.3). However, the resulting numerical

forecast \,ras unstable after 20 hours of forecast time. The 20 hour

upper level flow conditions (horizontal wínds, temperatures and sur:face

elevations (geopotential)) and su¡face pressure are given by contour

maps in Figures 4.23 to 4.26. Since the forecast reached 20 hours of

forecast time before exploding numer-ically at the po1e, a considerable

improvement has been realized over model Pl. However, there remains

room for improvement.

A first attempt to improve stabílity aË the pole was made by

using a I2.5o polar cap in place of the B.50 polar cap model P2. This

decrease in grid resolution at the pole is an improvement since the

Mintz-Arakarva grid inherently has the undesirable characteristic of

severely over-resolving the high latitude regions. The results at 26

hours from this third numerical experiment (P3) are given in Figures

4.27 to 4.30. These results show some improvement over model P2 since

the forecast reached 26 hours of forecast time before exploding numeri-
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cally at the pole and over Asia. It is emphasized at this point that

the only special technique used to aid stabitity in the forecast up

to this poinl is the Mintz-Lrakawa averaging operation 2.14c. In the

l"lintz-Arakawa model iEself, seve-À-al other techniques and special con-

siderations are employed at the pole to obtain stability (see Section

2.3) .

In the fourth experiment (P4), additional averaging operations

were imposed on model P3. The one-dimensional 3-point averaging opera-

tor

úrt = þi * L' (Àiúi-r - ùi * uiüi+r) (4.2)

was applied in a fashion limited to the smoothing of all fields re-
¡

quiring the evaluation of x and y derivatives. In all other competitions,

including the time extrapolation scheme 2.13a and 2.I3b, the field was

used in its unsmoothed form. Hence, the averaging operation is a sta-

bilizing influence on the slope calculation, a critic¿¡.l step in the fore-

cast procedure, without unduly influencing the remaining calculations.

The Mintz-Aralcawa averaging operator 2.I4c and the above 3-point averag-

ing operator 4.2 are very similar since equatíon 4.2 may be obËained

from equation 2.14c by replãcing the factor A(y) with I/4, and by using

À* = lt. = L/2 (the .values for a constant grid). Results from thisl_t

numerical forecast after the full 36 hour period are presented in Figules

4.31 to 4.34. There is a considerable improvement in this forecast over

model P3 since the 36 hour forecast vras obtained. However, instabilitfes

still remain in the forecast field over Asia and at the pole.

At this point it rvas decided to improve the boundary conditicrn

for the y component of the bicubic spline at the pole. Prelimínary ex-

periments ¡vith cubic splines have shown that when there is a sudden
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change in the functionrs curvature between two r:egions in the field, the

spline slope estimates at the nodes oscÍIlate about the true slope, with

a decreasing percentage error as distance from the junction between the

two regions increases. This problem in curve fitting l¿Íth the bicubic

spline was discussed in Section 3.3.3 (see TabIe 3.I). Since the state

parameters at the pole are average values for the polar cap, they may

differ significantly fr:om parameters close to the pole on the individual

longitude lines meeting at the pole. fË is possible then to have a data

fit situation similar to the junction regions for the curves tabulated

in Table 3.1. Ther-efore, a fuither raodification to effect a partial de-

coupling of the pole may impr-ove the f orecast.

For the fifth experiment (P5) the pole vras not carried explicitly

as a boundary condition for the spline, thereby partíally decoupling the

pole fr:om the remainder of tire forecast domain. I^Iith the notation yO,

y, and y2 respectively representing the values 90.0, 82.5 and 77.5, the

dependent vari¡.bles serving as boundary conditions on the y cornponent of

the bicubic spline rvere assigned values along the line y, = 82-.5 accord-

ing to

(úi*r 
,2 

* úi,2 + ùt-L,2)1
3

(4. :a¡

for if = 4193,

ú.1,

for ú = urV.

rl','ir 1

T; and

=aú _+bú.^*ctl,.^,
iro Lrl arJ

The following notation is used in the above equat

-I-u(l+E),

= v(t + e) + ekl/k3 ,

(4.3b)

ions:

(4.4a)

(4.4b)

(4.4c)

(4.4d)

and c

a

b

c

'1- 
-¡l'

1

indica tecl

- ekl/k3 ,

t i, 'i-l
values of y0, y1 and y2, the parameters a, bFor the
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take on the values 0.2285, 1.2000 and -0.4285 respectively. Equation

4.3a is a relaxed form of tire old polar boundary condition 3.7, and

equatíon 4.3b is a quadratic estimate for rfi,l r"ing the three nearest

nodal values along a longitude line. The value úi,0 t. equation 4.3b

is the polar value for the horizontal wind given by equations 3.9a and

b. FinalIy, the boundary condítion Al.27,A,L.28 specifying the second

der-ivative at a point yO outside of the spline cui:ve fit region r,ras

used. trrlith this second de''ivative set to zero, the following end condi-

tion r¡las obtained:

(4. s)

The boundary condiLions 4.3a to 4.5 rvere used to replace che previous

boundary conditions 3.7 to 3.Bd and 3.L2a used in the fourth experi-

ment, P4. Results from this fifth experiment (P5) are presented in

Figures 4.35 to 4.38. This forecast was also unstable aL 36 hours,

although to a lesser degree than the prel.rious experiments. In this

case the pole itself appears as the source of the ínstability, and the

instability over Asia is considerably i:educed. Therefor-e, partially

decoupling the pole has some good effects and some bad effects on the

forecas t.

Since both firmly coupled and partially decoupled pole boundary

conditions failed to induce stability at high latitudes, it was necess-

ary to investigate other sources of instabilities.

A sixth nume rical expe,:irnent (P6) roas perf ormed to remove the

possibility thaL the instabiLities are due to the use of bicubic splines.

In this exper-iment a moderately coupled polar boundary condition (3.I2b)

and a simple central finite diffeL-ence scheme (3.f7) were used. This is

similar to tire l.lintz-Arakaroa mode I in that f inite dif f erences are used

# = - 0.8461s, -F + r.8461s, [3+J
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to estinate cieri.vatives cn a. gr:i.d rçith conslanL iatitude arrC longitrrde

grid j-nlerrra1s. lloiçever, mocJel. Fír rloes not Ltse the stagger-ed space

g-,:id, complex fiirite differences, special inerhccis of calculating fJ-u>les,

ancì cther special techiriques to ol:taj,n stabil-it)'used in ibe Mintz-

Aralcawa irodel. The basic ::esr-rlts f rom thís experj-nent at 36 hours are

presentecl in l'igures l',.39 tc¡ ¿¡.42. Again the forecast ís found tc be

unstable at hi-gh Letitudes r¿ith an instabilil-y rlevelopÍng over Asía.

The ti:ne variations of the long'i tudínal mean values of the surfa.ce

pj:esstlre and upper level (/+00 mb) dependent variables for the 36 hour

f oreca.st period are gii¡en in t:igure s 4.43 to 4,46. l'he longitudinal

ro""r, [. f or variab Ie rf - . ís the mean value of V around the lat itudeJTJ
circle y = yj, according to

I
Ivl .

J

(4.6)

wirere yi = 90.û, yZ = 77.5, y3 = 72.5, , y17 = 2.5, ylg = .-2.5.
In the longitudinal mean figures, the numbers along the right hand

side of each figure denote the latitude circle (j) for which rhe longi-

tudinal mean curve r^ras generated. It is seen from these figures that

the forecast ís stable in the most part, since the instabilities at

the pole and over Asia have not appreciably altered the longitudinal

mean cuïves. The oscillations in these curves are present even in

stable forecasts, and they will be discussed in Section 5.1. some in-

dication of the instabilities do begin to appear in the gradual rise

of the longitudiLral means for the upper level velocity at high latitudes

(j = Z to 5 in Fígure 4.43). This effect is not apparent in the remain-

ing Iongitudinal meau curves.

Both the boundary conditions at the pole and the use of bicubic

sp].ines have been ruled out as sources of the instabilities in the

vj=
M.

J
\'

i:1
{'r-,i
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numerical experiments to this point. As a final experiment (P7), the

possibility of computational insl-ability due to Èhe shrinking of the

physicat distance between grid points on the earth as latitude increases

was investigated by repeating the forecasL P6, except using a grid with

double the grid interval (tOo tatitude, 10o longitude grid). The grid

used is shown in Figure 3.2 and is called grid B. Results from this

forecast afte; 36 hours are given in the form of contoLlr maps of the

variable f ields (Figu'r:es 4.47 to 4.54), error contour maps f or the

dependent variables (Figures 4.55 to 4.60), and longitudÍnal mean curves

for the dependent variables ove-¡ the 36 hour forecast per-iod (Figures

4.6I to 4.68). Error contour maps are a comparison of the difference

between the forecast fields and true weather fields at 36 hours, accord-

ing to the defÍnition of local error,

e,=,1)-36-üt¡O+1000',¡, 'rJ6 - üt¡o + looo ' (4'7)

rn¡he re ,lrf 36 = ahu f ore cas t value of the variab le !, at 36 hou.rs ,

,1,t36 = th" true value of the variab Lc rp at 36 hours,

evaiuated at each node in the field. On the error contour map, the lines

labted lO00 denote the lines where the forecast field exactly agrees with

the true 36 hour weather. *In g"rrurul the forecast is poor due to its

large phase lag relative to the phase speed observed in the true weather.

Also there is a str-ong tendency to damp out significant features in the

fields and not resolve features which would appear in a finer grid model.

This is shown ín the comparison of Figure 5.55 with Figure 4.9. Despite

these fIaws, the forecast is definitely stable, a characteristic which

earlier experiments did not have. Since stability was obtained on a

coarse grid and not on a finer grid version of the sane model, the in-

stability problern may be attributed in the most part to the shrinlcing
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af thc ph5,sical. distance bet¡,;,een gr:LC poinis on ¿r constant iatitude,

coiiFjtant loi-rgj-tude interval- grii. Ftrrtire:: discussion of the lesulcs

f rom niod.e L P7 j,s j.nclude¡l Í r: Ctrap iex 5, i.n connect j-on nith the evalua-

tioLr o'i ¡!o-¡r:cas u 1:er:f ornrance f or al j. the numericaJ- ex¡'lerim.ents.

4.3 36 iioyr_ry:_ergåt Res"its Using SLli

A.s dj-scussed in Sectiorr 3, the p::oposed forecast rnoclei uses the

bicubii: polynorí-al spliire nethocl on an expandí-ng or: telesccping grid

having superiraposed basic expansions of t\,Jo types. llei:eaf ter', uhis

modei r;iil be refer:¡e,J to as rnodel ST. All the necessaïy bounclary con-

ditíons as T/el-1 as the prcposed forecast procedure are also discussed

in Section 3. It is emphasize,i hei'e that ¡rioclei ST does not employ any

of the several special teehniques (Sections 2.2 and 2.3) used in the

)iintz-Arakawa rrrociel- to obtain a stable forecast. Severai nunerical

forecasts were performed using rnodí.fied versior-ts of model Sll to il, lus-

trate fundarnental characteri.stics of the method.

The first 36 hour forecast performed \n7as an application of

model ST limited to an expanding grid having only one basic expansion

(grid C, F:'-grrre 3.3) . This forecast model wiil be calle<l S. The f ore-

cast i{as performed to demonstrate that the use of a grid having a basic

exPansi-on of Type L produces a stable 36 hour f orecas t without tl're necess-

ity of ïesorting to the special techniques (averaging, space staggered

grid, complicated flux estimates, and others) used in the Mintz-Arakarva

model. R.esults from this forecast in the fo::m of contour maps, error

maps and variations with tinie of the longitudirral rneans are given in

Fígures 4.69 to û..90. The forecast shor^¡s good resolution and is definite-

ly stable, v¿ithout excessive overclamping of strong features. f'urther

discussion of this forecast Ís given in Section 5, where it is evaluated.
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The second 36 hour forecast performed usíng a modified version

of model ST had a grid with an expansion of Type I (grid C), but used

central finite differences (3.i7) in place of bicubic splines to estÍ-

mate the derivatives. This forecast, to be referred to as model F, \,ras

performed to demonstrate the advantages and disadvantages of bicubic

splines compared to finite differences in estimating derivatives. As

with model S, it was not necessary to resort Ëo special techniques to

obtain stability, since gríd C was used. Results at 36 hours from this

forecast in the form of contour maps of the dependent variable fíelds

are given in Figures 4.91 to 4.98. Model F is símilar to model S in

that the forecast shows good resolution and is definitely stable r¿iLh-

out excessive overdamping of strong features. However, all the fields

shorv a distinct phase lag to lhe forecast from model S. Since both

forecasts lag the real weather(this is shown by the 400 mb geopotential

fields in Figures 5.49 to 5.52), model S using bicubic splines shoros

a distinct advantage over model F using finite differences. Further

discussion is given in Chapte-,: 5.

The third 36 hour forecast performed was to run model ST as it

was designed: using the bicubic polynomial spline method on a tele-

scoping grid having superimposed expansions of two types. The grid

used for this forecast is gríd D, Figure 3.4. Like the previous two

forecasts it was not necessar:y to employ special techniques to obtain

stability. The forecast results in the form of contour and error maps

of the dependent variables, as \.re11 as variations of the longitudínal

means wÍth time during the forecast, are given in Figu::es 4.99 to 4.L20.

Of particular interest in this forecast is the reduction of computer

time (L/3 that of model S) without sacrificíng resolution and accuracy



j-n i:tre r:e¿;Íon of p: ina.t:)¡ j-nterest (ttortl-l funeri.ca f or grid C) . The f r.rre-

casi: sltoivs good resolut:Lon ancl phase speed c.f Elie Large scal-e ìne Lecr-

ological iv:rves c¡vei: Noi:ll: A¡rerj-câ, rrith soner,^¡ba.t poot:er resol-tI tion and

pheLse s¡:eecÌ i.n Lhe expaLrded gricl regions over Europe. This forecas t is

cor0lr¿rí'c{1 i,.¡j-th others in chapEer 5.

f ire fcurih 
. 
f orecasl roas to rlln a niodif l'-ed mode t SI on a glid

r¿Íth ai-r expaÌ)sion of rype 1- (grid C, Figure 3. I ), using the nen bicubic

spiitie -1 . 1.5 based on contínuicy of curvature. The values of parameters

a and XS se iec te<ì ive re

a = 0.222222 ,

XS = 0.0

(4. Ba)

(4. Bb)

In thj-s fasltion the derivative estimates are exactly interrnediate be-

tween central finite dj,fference estimetes (a = L/3) and estimates from

cub ic s¡r l i.nes based on continuÍty of the second deriva.t ive (a = 0) .

Tlris f ollor¡s f rcrm eqLlations 3. 15 and 3,L6f., f or ryhiclr if a = b' ancí XS = 0,

the surn of conLri-butions by Àtk and utt to the s lope at node i is

(1 - 3a)/(L - 1.5a). This must equal unity íJ a = 0 (À+ ¡L= 1 , spline

based on continuity of second derivative) ai-rd must equal zero Lf a = I/3

(central finite <iífferences). The intermediate value is (1 - 3a) /(L - 1.5a)

= L/2; and solving for a yields equation 4.8a. Note that when a I 0 and

XS = 0, equation 3.15 becomes the condition fo:: continuity of second der-

ivative at poi-nts in Lhe elements other than node points. This model is

referred to as mociel Cl. Forecast resuits at 36 hours in the form of con-

tou:: maps of the dependent variables are given in Figures 4.L21 to 4.L28.

On the v¡hole the forecast shorvs characteristícs of both models S and F.

This comparison will be discussed in Chapter 5.

The f inal f o¡:ecas t perf orrned \.^ias to repeat i-he prerrious fore-

cast using splincs based on cLrrvatr-rre, wíth the selection of suitabie
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l-ton-zerc values for the scaì.ing factors. in tlr,j.s

scaiin¡¡ factors XS for the >l di::ectj-on, YS for the

for the dependent variabl-e ror€rê s€lected Lo be

r'r¡ '- ìlmâx - !,lnin ,

)lS = 20.0 ,

YS = 20.0

expe i: j-rren t (C2) ,

y dir:ect Í-on and

the

TTC

(4.e a)

(4, eb)

(4.ec)

This sel,ection ças based on the a¡Lm of lree ping S|. (eluratíon 3. t3b, c)

near unity and independent of the units used. On a latitude cí.rcl.e '¿ith

grid ínterval /r = 5o, the shortest r.dave of meteorological significance

would be appr:oximately B grid intervals lor-rg.* rf this wave extended

between the maxi.mum and the rninimum values of the clependent variable

in the fierd, the approxinate maximum srope to be expected would be

( ,ir*"" - þonL,) /4 Bquating this maximum sJ.ope multiplied by the scale

factors to unity yieids

xs (ú*"* - ú*i.)
-1 (4. ro)

US 4A

This is satisfied by the selection 4.9a,b,c for A = 50. Results f::om

model c2 after 7 hours are given in Figur-es 4.L29 to 4.L32. A strong

nunerical- explosion (or inst-abi-tity) is present iLr each of the depend-

ent r¡ariable fields. The numerical explosion originated at the equator,

and propagated into the field in the form of a broad band. Of particular

Ínterest is the fact that despite a strong, broad explosion band through

the middle of Ehe forecast field, the remaining regions of the forecast

ãL H¿rltiner and lufaltin (f) discuss the dynamics of atmospheric Ílaves on
pp. 308-386. tr{ith n denoting the wave number (the number of complete
waves around a latitude circle), then the longitudinal scale of long
waves and short \raves in míd-latit-udes corresponcls approxímately i:o
n=5 and n=rO respectivell'(p. 335 of ref.l). Therefore, on a 50 gricl,
a r^'ave r.qhich is B gri'l interrzals in length corresponds to a wave number
D=9, repr-esenting approximately ttre shortest T^?ave of meteo;ological
significance.
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are very stable. This is remarkable since the nume¡ical explosion is of

such a strong nature. In the contour plots, whenever V, T or P" are out-

side the ranges V < I00 m/sec, zLO < T < 3Z0o t< or 900 < Ps < llO0 mb,

the plot prints out the extremes of the interval considered. Hence, the

row of numbe-¡:s 100 along the top of the upper level resultant horizontaL

wind contour plot (Figure 4.L29) indicates that at the pole, the winds

exceed 100 m/sec. However, this strong instabilíty does not seem to

affect regions either side of the explosion band. The explanation for

this explosion is based on the reduction of coupling between individual

nodes in the field, produced by the factor ß, in the nunrerator of the

continuity of curvature equation 3.13a. In particular, at the equator,

a frequently occurring natural phenomenon is to have the variables. on

the latitude circLe j = N - I differing substantially from the variables

on the next latitude circle j = N - 2. With the symrnetry boundary con-

dition, there results a situation as in Figure 4.133, with the slope on

one side of yN_l differing substantially from the slope on the other

side. Taking the slope betwee:n yn_I u.d yN_2 ao be a typical large

value, (ú*.* -lþm..n)/z\, then ivith YS = 20 the values of S become

ßN_l = B and ßN = I The effect of these factors is to remove node

yN_l 
"ruy from node yU by a factor 8 times the grid spacing, as far as

the influence of R, on R' or vice versa, ís concerned. This decoupling

effectively prevents the regions from unduly influencing each other.

If R2 begins to rise relatíve to Rl, it will feel little or no resti'ain-

ing influence from the lower values of the varíable aË yN_2, and the

more it rises, the less resl,:aining influence it will feel from Rr.

Similarly, if R2 begins to explode numerically, region R, rvill feel

little bad effects from the explosion adjacent to iE. This accounts for

the slow propagation of the broad expansion band into the rest of the
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field. The explosion began at selected points along the equator, gnd

spread the 16 grid intervals towards the pole at about the same rate as

it fanned out in the east and west directions. It ís therefore apparent

that the use of decoupling in the form of a spline based on curvature,

with non-zero scaling factors XS and YS, results in an unstable fore-

cast due to the influence of the artifícial boundary condition at the

equator. The instability may be lessened or removed by using smaller

scaling factors XS and YS, or preferably by l:emoving the artificial

equator boundar-y condition by performing gIobaI forecasts.
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Evaluation and Comparison of the 36 Hor:'' Numerical Forecasts

The first method used to evaluate the accuracy of models S, F,

ST and Cl, as well as the results from numerical expel:iment P7, is based

on the calculation of the root mean square error in the 36 hour forecast,

denoted RllSE. This ís the forecast error relative to the true 36 hour

weather: the caLculatÍon is performed along latitude circles, longitude

lines, and for the field as a whole. The error of dependent variable

at node Í,j is defined by

uij = (Út¡o - Úr¡o)rj '
where út36 = the true value of the variable

úf36 = the forecast value for the var

Therefore, 'expressions for the Rì,ISE of the

latitude circle i, longitude line j and for

respec t ive 1y,

RMSE.
J

RMSE.
l-

RMSE

(s.1)

at 36 hours,

iable at 36 hours.

rf forecast at 36 hours around

the field as a whole are,

(s .2)

(5.3)

M
d ^z \'2

i=l 
-ij '/ '

NnL
- L :2L e,. ) ,

j=r rJ

HN^1 /zx I el. \"
i=l j=l IJ

In general, the lower the RMSE the better the forecast. It is

ive in the evaluation of model performance to compare the RMSE

the root mean square of the true weather change, denoted Rl"fSC.

weather change at node i J f or dependenL variabl e rl.r is def inecl

.L= (t-t

=(*

_1-\Ifl{ (5.4)

ins truc t-

agains t

The true

by

"ij = (Ú.¡o - üro )ij (s.5)

Values for the RltlSC of the ü f ield around latitude circle i, longitude

line i, and fol tlre fielcl as a whole, denoted r-espectively RliSC., RMSCi,
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and RMSC, are defined in a fashion similar to equations 5.2 to 5.4

When the RMSE > RMSC, the question arises as to r,/hat advantage

has been obtained by performing the forecast, since the error in the 36

hour forecast exceeds the change in the true weather. It is true that

when this happens one cannot have excessive confidence in the forecasË.

It i,¡ould appear that when the error is greater than the true change it

roould be better (less error) to take the initial rdeather and use it as

the forecast at 36 hours. Hor,,7ever, there are other factors to consider,

one being that the forecast data is only interpreted from contour plots.

Since only general trends are apparent from a contour map, the local

forecast deviations from the true weather are of little consequerrce,
I

provided the general trends in the true weather are properly forecast.

Generally the lower the RMSE, the better the numerical forecast predicts

the large scale trends in the real weather: thís comparison holds true

even when RMSE > RMSC. In light of this, the RMSC is used. as the stan-

dard for comparison of the forecast RI'ISE. A forecast will be considered

gooô rohen RMSE < RMSC, and it rvill be considered poor when RMSE > RMSC.

The second method used in this thesis to estimate the forecast

model's performance is to Tollow individual features in the forecast as

they move from the.ir initial position to their 36 hour forecast position.

In this fashion it is possible to evaluate average phase speeds of re-

cognizable portions of the large scale meteorological vTaves. Due to the

human element involved in such a calculation, there is naturally some

error in the analysis. For this reason several features of the wa.ves

are monitored and an average phase speed is calculated, in an attempt

to reduce the error in the mean phase speeds reported. This second

method generally correlates well rvith the comparison of RMSE against
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RMSC, with moderately good phase speeds (greater than 1/2 the observed

true phase speed) occurring when RMSE < RMSC.

For comparÍson purposes, the Mintz-Arakawa modeI, referred to

as model MA, was used to generate a forecast over the same 36 hour period

from the same initial conditions. A detailed description of the accuracy

of this forecast is given in Price (56), and the forecast characteristics

are sunmarized in Section 5.1. It is unnecessary to perforrn detailed

descriptions of this nature for the results from the proposed forecast

model ST, and modified models S, F, and Cl, since they follow immediate-

ly frorn the comparison of these forecasts against the Mintz-Arakawa re-

sults. For convenience, a suntrnary of the syrnbols used to represent each

forecast model is given in Table 5.1

5. I Comparisorl-.Dara: The Minrz-A¡glgyq xglgl

The 1969 version of the Mintz-Arahawa numericãl general cir-

culation model was used to generate a forecast for the northern hemis-

phere for the 36 hour period 0000 GMT February 2, 1970 to 1200 cMT

February 3, Ig7O. A grid spacing of 50 was used for both latitude and

longitude (¿O= Ao = 5o), along v¡ith a 15o polar cap 1ô = 15o). The

number of distinct primary grid points in the x and y directions reere

72 arrd 17 giving a total of. L224 distinct primary grid points. To en-

sure computational stability a time sËep of six minutes rvas used

(At = 360 sec). The results from this forecast are given in Figures

5.1 to 5.20 in the form of contour maps for the dependent variables,

error contour maps, and variations rvith time of the longitudinal (zonal)

means of the dependent variables. The longitudinal mean curves for the

Mintz-Arakar¿a model are indexed wil-h the equator índ.ex = L and the north

pole index = N; however:, the corresponding curves for the proposed model
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have the north pole index = 1 and the eguator index = N. A detailed

description and evaluation of the 36 hour forecast rvas given by Price

(pp. L29 to 168 of, ref .10). In surlmary, the results of this forecast

when compared with the true rveather are listed below.

t. Surface Pressure, PS.
a) PS íncreased as latitude íncreased.
b) The time variation of the zonal mean surface pressure developed

a periodic variation (period of 13 to 14 hours), with low tati-
tude curves antislnrrnetric to high latitude curves (Figure 5.20).

800 and 400 nb Resultant Velocity, Vl and V2 respectively.
a) The time variation of the zonal mean of Vl had very short period

oscillations (Fígure 5. f5) .

b) A fair forecast of the middle latitude V2 rvind belt was obtained
for wind speeds > 20 m/sec.

c) The time variation of the zorral mean of V2 exhibíted regular
oscillatj.ons r¡rith a 13 to 14 hour period (Fígure 5.f6).

800 rnb Temperature, T1 .
a) In the vicinity of strong troughs and ridges, the forecast field

travelled at approximateLy I/2 the speed of the true field and
the troughs and ridges \,rere of similar shape to those in the true
fie ld.

b) In the viciniËy of r^ieak troughs and ridges, the forecast field
r¡7as of the same shape and speed as the true field.

c) Tl was over-estimated in equatorial regions by approximately the
same amount (t 5") it was under-estímated in polar regions.

,

3.

4. 400 mb Temperature,
a) T2 was forecast
b) In the vicíníty

forecast of the
obtained.

c) In the viciníty
at approximately
shape errors.
T2 w4s over-estimated in equatorial regions by small amounts
(, 5o usually).
Fairly constant zonaL mean temperature curves (weak oscillations
only) \,rere oiltained except for the lorv and high latitude curves
which exhíbited slight íncreases and decreases in temperature,
respectively (Figure 5. 17 ) .

800 urb Geopotential, Qf .

a) It is difficult to follow the movement of the individual troughs
and ridges.

b) The positions of the highs and lorvs rvere forecast correctly;
horoever, shapes vere distorted.

c) this is not a useful contour map for analysis due to the use of
a large contour ínterval.

T2.
better than T1..
of medium to rveak troughs and ridges, a good
speed and shape of the temperature field was

of strong troughs, the forecast field travelled
L/2 the speed of the true field and had large

d)

e)

5.
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6 . l¡.C0 rnb Geopotentirr-1, ,þ2 .

a) þZ was forecast l;et'r-er- tha.Lr <f l,
b) llhe fo::eca.st f i,eld gener:a1Iy travellecl ai: appr:oxínnr,e1.y 2/-" the

speeci of the trrre f ielcl and he.d a simiLar shape.
c) the largest forecast shape error and phase lag occurre<.l in the

r¡icinit]' of s trong troughs arrd ridges .

d) The forecast fall ing of highs and rj-sing of loi,¡s rvas gj:eater: t-l-Ian
observed, but the forecast positiorr of the highs and lows ag::eed
with the obserrzed ¡rcsitions.

e) Fairly consta.nt zo:,aL mean geopotential cur\¡es (rveak oscillations
on l-y) v:ere r¡bta.r-ned except f or lor^r and high latitude curves rchich
respectÍ-vely exl-ribited slight increases and decreases j-n el-evation
(Figure 5. r9) .

7 . 800 inb Mix-irrg Ratio, Qi.
a) In most regions the forecast field moved L/2 as fast as the true

f ¡Le.l-d and had larger riciges
b) ltairly constant zonal mean curves having snall oscillatiorls \^Jere

obtainecl ruith a zonaL nean incrcase for curve I (eqrrator) of
0.0005 (Figure 5. l-8).

5.2 Overal. l Performarrce of the }4odels

An overall estimate of the forecast accuracy for models ST,

S, F, Cl and P7 is obËained by comparíng the RMSE for each dependcnt

variable against bc¡th the RI"ISC in ihe true fÍeJci anci the äþISE of rhe

comparison Mint z-Ãrakawa modeL. The Rl'lSE vatues for each dependent

variable in each of the 36 hour forecasts are tabulated ín Table 5.2.

For notation in tl-re table and the discussion hereaf ter Ëhe syrnbols

Vl, T1, 0l and Ql respectivety represent the resultant horizontal wind

speecl, temperâture, geopotential, and moisture content for the 800 rnb

leve1. Similarly, the 400 mb level resultant horízontal wind, tempera-

ture and geopotential are represented by the symbols V2, T2 and þ2,

These may be distinguished from the local values of the variables on

the o = n/ 4 surface, which are denoted by s-, v__: T,_, ó_; n = 1r3i andnnnn
ca.

To facilitate the comparison of RMSE against RMSC, a % díf.f.er-

ence Ís calculatecì according to

R}1SE - R}ÍSC
ð% = Rl",sc -- x loo% ' (s.6)
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The % difference for each Rl'lSE value is also included in TabLe 5.2

A comparison of d% for models S and P7 relative to model

is given Ín Table 5.3a; and a comparison of d% f.or models Cl, F and

relative to model S is gíven ín Table 5.3b. From the tables it is

apparent that all of the models, including 'the comparison model I'fA,

generally have RMSE > RMSC for all fields. The only exceptions are the

T2 fields by models S, Cl, F and ST, and the Vl field by model ST. Model

S shows distinct advantages over model MA, in that d% f.or S is consistent-

ly from L/4 to 3/4 of the corresponding values for I'IA. lhis shows that,

the combination of the bicubic spline method on a grid having a basic

expansion of Type I, with no fílters or special techniques to aid sta-

bility, gives a better 36 hour forecast for the sample day chosen than

does the Mintz-Arakawa modeI, consisting of a complex fínite difference

method on a grid r,¿ith constant latitude and longitude intervals and

numerous techniques to aid stability.

The additional techniques used in model I4A over and above

averaging operations are definitely required for stability, since it

Tdas not possible to obtain a stable forecast when these techniques vrere

omitted (see the preliminary forecast P6). l"Iode1 P7, using finite diff-

erences on a course (I0o) Ifintz-Arakawa grid, with only filters to aid

stabilíty, yields a stable but poorer forecast than both models l"lA and

S. Therefore the solution to the stability problem on a Mintz-Arakawa

grid may be solved by using a coarser grid. However, the corresponding

forecast is of little use due to poor resolution and laclc of accuracy.

An overall estimate of the relative performance of bicubic

splines, finite differences, and the nevr spline based on curvature is

obtained by comparing the Rl'lSE for models S, F and Cl. lvlodel S shorvs

MA

ST
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1-ti.tp::ovcnrei-!1. over Ir í:or q2 anci it'l ; ari,-l moile i F shorvs J.nprorreme rrt- over S

ior T2 an.ì Ql. Boih niodel-s girre ap¡-r'r:crxi.nrátel.y the sarrìe result¡^ fci: \¡i,

V2 and Ç1 . Tl're::efcre, on the r¿hole, it i-s diffícult to deci<ie f::orr

thi.s de.ta. rirhether splíLres are bettel: or worse t-iran. f in.ite di.f fercnces 
"

Since ihe geopoterLtial 0 is often cf more interest than tite other vari-

abJ.es, íl- rr'ould appea:: that model s woulcl be siightly pre:ferabre to F.

It wiil remain to iook at the distributi-on of eir.'or r^ritir latitude and

longitude, as \^relI as tlre rnean phase speeds of the large scale rneteor-

oiogícal- \¡7âves, in order to evalrrate the perf oi:r,rance of the biccrbic spline

nrethod cornpared to fíni_te dlfferences.

l"fodel Cl generally yields results j.rrLermediate to those of

S and F. Thi.s is e>íPected due to the selection of the constants a an<l

xs ii-r equation 3.13 using tlie values given in ecluations 4.Ba,b.

Except for Tl and þ2, model ST shows improveroent over S on

the v¡LloLe. This is not expected sj-nce sr uses a grid r+ith pocreï re-

soluticn in a portion of the forecast domain than cioes S. However, for

this tesC forecast, the coarse grid portion of grid D used in rnodel ST

lies over Europe, a regj-on rvhere the observed true weather change is

vely smatr-l, without strong troughs and ridges. rn such a region it ís

not necessary to harze fine resolution to resol.¡e the meteorological

fiel-ds adeqtiately, and a coarse grid may yiel.ci better results than a

fine glid. This point wilt l-.e further illustrated in the discussion

on the f orecas t error d j.s tribution with longitircl.e .

5 . 3 Diir LI_iÞ11! :on__q€._E9IS-c aq.!__

The distribution of forecast error with latitucle, RMSEj,

j=1,...N, is given in figures 5.21 to 5.34 for the moclels S, F, ST and

ìt\. Also included in the figures is rhe distribution of the true
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v7e a the r

circle j

circle j

change with latitude, RMSC., j=l,...N. The RMSE for latitude

is RI,ÍSE., given by equatíon 5.2; and the RMSC for latitude

is RlfSC,, calculated similarly.

Figures 5.21 to 5.27 gLve the RMSE distribution with lati-

tudes for models MA and S, along r,¡itl-r the RMSC distribution with lati-

tude for the true weather. To facilítate the analysis of these figures,

Table 5.4 gives an evaluation of the mean difference between RMSE and

RMSC in three latitude belts and at the pole and equator. In addition

the adjectives poor (P) and good (G) are used to describe this differ-

ence, with poor implying RMSE > RMSC and good irnplying RI,ISE < RMSC.

It is seen from the figures and table that model S gives a good fore-

cast in gLneral at míddle latitudes, vrith poorer performance at high

and low Ìatítudes. However, model MA yields a poor forecast at all

latitudes, with middle latitudes somewhat better than high and low

latítudes. Both models give very poor estímates at the e.quator, and

model l"lA is somewhat better than model S at the pole.

' More specifi.cally, at high latitudes, S is better than ljA

for all variables except T2, for which both models give approximately

the same results; at roiddle latitudes, S is significantly better than

I,fA for all variaþles; and at low latitudes, S ís better or the same as

lufA for all variables except Ö2, for which S is poorer than I'lA. There-

fore in the rnajority of the field, model S gíves a better forecast than

model IlA. Horvever, at the pole, although S is better than l'{A for V2

and T1, it gives poor results for the remaining variables so that in

general model I'lA gives a better polar forecast than moclel S. Both

models give poor forecasts at the equator, with S better than l"fA for

02 and poorer for T2.
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Figures 5.28 to 5.34 gíve the RMSE distribution with lati-

tude for models S, F and ST. To facilitate the analysis of these figures,

Table 5.5 gives an evaluatÍon of the mean differences between the RMSE.

of models F and ST with the RÌ''ISE. of model S at different latitudes.

Comparing models F and S first, iË is seen that at the pole,

model F forecasts {1 and þ2 better and Tl and V2 rdorse than model S.

Therefore, the previously mentioned dif ferences bet\,Jeen models l"fA and S

at the pole appear in part due to the use of finite differences in the

former and bicubic splines in the latter. For high latitudes, S ís

generalty betler than F for aLl variables except T2 and Ql. This also

correlates well with the generally better performance of model S over

l,{A at high latitudes, as discussed in Section 5.2, and shows that the

use of splines over finite differences is part of the reason why S is

better than MA at high latitudes. In middle latitudes, ó1, {2 and T1

are forecast better by S and the remaining variables are forecast

better by F. Since the geopotential is often of more interest than

thê other variables, the spline method would appear slightly preferable

to finite differences at middle latitudes. At low latitudes and Ëhe

equator, the forecast usihg splines (S) is either the same or poorer

than the forecast using finite differences (F). Therefore it would be

preferable to use finite differences at low latitudes.

This comparison betr¿een models S and F may also be made in-

dividually for each dependent variable field. The best forecasË for

the velocity fields Vl and V2 would be to use splines at high latitudes

and fínite differences at all other latitudes. The lower level tempera-

ture Tl is forecast better using splines for all latitudes except at

the equator. Horvever the upper level temperature T2 and lower level
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moísture Ql are forecast better by finite differences than by splines

at all latitudes. Finally, the geopotential fields gl and þ2 axe fore-

cast better at the pole by finite differences, and better or the same

by splines at all other latitudes. Therefore the use of splínes over

finite differences r,rould depend on r¿hich fÍelds are of most interest.

Comparing models ST and S next, it is seen that the differ-

ences between the two models vary considerable in the different latitude

regions and for the different dependent variables. In general, however,

ST appears better than S at the equator at Iow latitudes. It v¡ill be

shoi¡n that dífferences between ST and S depend more on longitude than

on latÍtude.

The distribution of forecast error with longitude, RÌ,ISlli,

í=1,...M, is given in Figures 5.35 to 5.48. Also included in the fígures

is the distribution with longitude of the true r^¡eather change, RMSCi,

i=1,...M. The Rl'fSE for longítude lÍne i is RMSE., given by equation 5.3;

and the RMSC for longitude líne i is RI,ÍSC. calculated simíIarly. In

these figures, the longitude x. correspondiLrg to longÍtude line i is

given by

x, = - L82.5 + 5i , L=L,...72. (5.7)
I-

This corresponds to Lhe location of the nodes on the latitude circles

in grid A, Figure 3.1

Figures 5.35 to 5.41 gíve the RlvfSB distribution with longi-

tude for models MA and S, along rvith the RMSC distribution with longi-

tude for the true weather. It is seen from the figures that in regions

of fast changing weather (large values of RMSC.), rlodel s gives a good

forecast for VI, T2, Ql and þ2, since RÌ"ISE. < RMSC,, and a poor fore-

cast for V2, TI and ql, sj-nce RMSB. > RMSC.. This may be comÞared Lo
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model l"1A which gives a good forecast for g2 and VI and a poor forecast

for the remaining variables in regions of fast changing weather. Both

models give poor forecasts (RlfSE. > RMSC.) in regions of slower changing

weather (lower values of RMSC.). Generally, the RMSE. curves for model

l4A have larger amplitude oscillations than the corresponcìing curves for

model S. Also, there is less spread between the RMSE. curves of models

lfA and S (no definite pattern, Figures 5.35 to 5.4L) rhan berween the

RMSE. curves of the same models (definite parrern, Figures 5.2L to 5.27).
J

This indicates that the models differ primarily in their error distribu-

tion with latitude.

Figures 5.42 to 5.48 gíve the RMSE distribution with longi-

tudes for'models S, F and ST. Both models S and F have similar dístri-

butions, in that both are híghly oscillatory with alternating regíons

in which they overshoot each other. Generally, TL is forecast better

by splines (s) than by finite differences (F), especiaLly.in the regíons

of fast changing weather, i < 2L; and in the remainder of the field,

both models are approximately the s¿rme. A systematically better fore-

cast is also given by splines over: finite differences for the geo-

potenËials $l and þ2. Hôwever T2 and Ql are forecast better using

finite differences than by splines, especiarty for i > 40. Both models

forecast VI and V2 approximately the same. Therefore, the RI.ISE distri-

bution ruith longitude for models S and F agree well rvith the overall

RMSE values for the forecast field discussecl ín Section 5.2

Comparing the longitudinal RMSE distributions for models S

and sr, it is seen that sr gives the same or slightly poorer a forecast

than S in regions i < (20 to 40), for Tl, T2, Ql and Of. Horvever for

the same fields in regions i , (24 to 40), model sr gives a systematic-

arly better forecast than model s. For vl, v2 and þ2, models sr and s
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have one model better than Ehe other in alternating regíons, the average

being approximately the same RMSE for both models. The region i < (24 to

40) corresponds to a region of fast changing weather on the fine grid

portion of the expandíng grid (Figure 3.4, grid D). Atso rhe region

i > (24 to 40) corresponds to a region of slower changing weather on

the coarser grid portion of the expanding grid. It is seen that on the

fine grid portion of grid D, moders s using grid c and sr using grid D

have similar grid resolutions, and both models give similar RMSE distri-

bution curves rvith longitude. This is a good characteristic of model ST

since it shows that good forecast accuracy is maintained in the region

of primary interest, the fÍne grid portion of the fieLd, despite the

presence df a coarser grid with poorer resolution surrounding the fine

grid region. rn the coarse grid portion of grid D, model sr (usíng grid

D) gives a better forecast than model s (usíng grid c). This is not ex-

pected since usually, the poorer the resolution the poorer the forecast.

However, ín this particular case, the region of poorer resolution on

grid D corresponds to a slow changíng region in the true r¿eather. Under

these conditíons, Poor resolution need not yield a poorer forecast since

fewer grid points are capable of adequately resolving the dependent vari-

ables. This aPpears to be the case since model ST gives a better fore-

cast than model S in the region i > (24 to 4O).

5.4 Phase Speeds of the Numerical Forecasts

The second rnethod used to evaluaËe the numerical forecasts

is to compare average phase speeds of the more easily recognized features

on the large scale meteorological waves, calculated from the initial posi-

tions and 36 hour forecast positions of the features. In order to reduce

the error in the mean phase speecl , several features in eacl-r forecast are
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monitored and an average phase speed is calculated. This analysis is

only performed for the temperature and geopotentíal fields, since the

large scale meteorological \^iaves in these fields have well defined

troughs and ridges which may be easily distinguished in their initial

and final positions. The features are less easily disËinguished in

the moisture and velocity fields and hence the possibility of error

would erase any credence in the comparison between the models. The

evaluation of mean phase speed ís performed along the 45o latiËude

circle, since the forecast at middle latitudes is of greater import-

ance than high and low latitude forecasts. Different phase speeds

would arise from the evaluatÍon of mean phase speed along other lati-

tude linel.

A tabulaËion of the position in longitude of easily dis-

tinguÍshed troughs (T) and ridges (R) along the 45o latitude circle

for the temperature and geopotential fields is given in Tables 5.6 and

5.7 The forecast phase speed expressed as a percentage of the true

phase speed is given in Table 5.8 . It is seen from the tables that

all the forecast models have a phase speed smaller than the correspond-

íng phase speeds in the r-eal weather. This is a frequent characteristic

of numerical roeaËher predicEíon models. Model S has phase speeds closest

to the true phase speed. The upper level speeds for T2 and g2 by model

S exceed those by model l,tA by over 15% of the true weather phase speed,

whereas the differences båtrveen the phase speeds of the two models for

T1 and Ól are under LO% of the true phase speed. Therefore, model S

gives a better forecast than model l'14 at niddle latitudes, in terms of

better phase speeds of the large scale meteorologícal waves. This agrees

rvíth the previously discussed differences in RMSE at rniddle latitudes for

models S and lvfA (Section 5.3, Table 5.4, and Figures 5.23, 5.24- 5.26
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and 5 .27).

Model F consístently has lower phase speeds for the tempera-

ture and geopotential fields than model S. Thís shor^¡s a distinct advan-

tage of the use of bicubic splines (model S) over central finite differ-

ences (model F) for middle latitude forecasting.

It also appears from Table 5.8 that model ST has lower phase

speeds than model S. This is true on the average due to the influence

of the slower phase speed in the coarse grid portion of grid D. However,

for Ëhe majority of the strong troughs and ridges appearing in the fine

grid portion of grid D, models S and ST both yield almost identical phase

speeds at míddle latitudes. Thís ís consistent rvith the earlier result

that models S and ST have símilar variations of RIISE with longituc,le on

the fine grid portion of grid D (i < 24 to 40).

Finally, model P7 is seen to have the largest phase lag of

all the models. This arises from the combínation of using a coarse

(lOo tatitude, l0o longitude gríd interval) version of the Mintz-Arakarva

grid, along wíth simple central finite differences and only averaging

operations to aid stabilíty. This may be compared to model l4A which

uses a fine 15o latitude,50 longitude grid interval) vers:-on of the

ItfínËz-Arakawa grid, along with the compLex finite differences and several

special techniques to aid stability. The phase speeds for model ì,fA are

consíderably better than those for model P7 due to the increased reso-

lution and greater complexity of model l"fA.
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Extensíon of the Forecast Model Usíng Inieighted Residual

Numerical Techni ques

A broad class of numerical methods used in solving propa-

gation problems in applied mechanics is the method of weighted residuals

(abbreviated MrtR). Crandal (pp - T47-I54, 37L-376 of ref . 16) and

Finlayson and Scriven (45) give a good description of the MI^IR technique.

Essentially the method is to construct a trial solution ín the form of

analytic expressions (approximating functions) with either undetermined

parameters or undetermined functions of a single variable. It is possi-

b1e to solve for the undetermined parameters by restricting the trial

soluËion to satisfy the given differential equation over some interval

in space and time. I^Iith this procedure one obtaÍns a fairly uniform

degree of accuracy over an extended interval in time. The basic idea

of Mtr^lR in two dimensions is discussed in Appendix 3. Essentially the

only differences between the different schemes are in the methods of

selecting the weighting functions wO used in solving for the undeter-

mined parameters. Four weighted residual methods corresponding to

different weighting functions are discussed ín Appendix 3. These are

the collocation method, subdomain method, Galerkin method and least-

squares method.

I^Ieighted residual methods leave considerable room for engin-

eering analysis and judgement, primarily in selecting approximating

functions and deciding which solution modes are most probable. The

choice of approximating functions is crucial to the accuracy of the

final solutíon. Usually several sets of approximating functions are

admissable and it is not possible to select one set as the best. One

simplification freqttently used is to exclude time dependence from the
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approximating function. Also any symmetry properties of the system

should be exploited ín the selection, although Finlayson and Scriven

(p. 738 of ref. 45) suggest there are no systematic methods of doÍng

this. For finite regions of ínterest it is conrnon to select the trial

functions ó as the Q lowest members of a polynomial or trigonometric'q

serÍes expansion in the variables Xn and t (Snyder, Spriggs and Stewart

(46), Finlayson and Scriven (p . 738 of ref . 45), Lowe (47) ). If rhe

region of interest is an unbounded domain, Lowe (47) suggests the trial

functions be chosen to exhibÍt the same expotential order as the asymp-

totíc variation of the dependent variables. Whatever the case, select-

íng approximating functions remains dependent on the user's intuition

and experience. This is of ten considered a major disadvantage of I'li,lR.

It is the opíníon of several authors (Snyder, Spriggs and

stervart (46), Johansen (48), Lowe (47) ) that rhe Galerkin merhod is

superior to other iueighted residual methods, primarily because it per-

mits closer contact with the ph1'sical probLem. It is the only MWR

which uses the approxímate solution directly (taking the weighting

functions equal to the approximating functions) in reducing the equa-

tion residual. Furthermore, several proofs of convergence are avail-

able for specific applications of the Galerkin method (p . 7-40 of ref.

45) while convergence proofs for other MWR are lacking. Recently the

Galerkin method has been successfully applied to nonlinear engineering

problems. Lowe (47) applied the Galerkin method with expotential t::ial

functions to boundary layer floiv problems (Blasius flow over a flat

plate, free con\',rction over a flat vertical isothermal plate, and others).

The application of Galerkinrs method to nonlinear ordinary differential

equations is approached in a different manner by Johansen (48). By

choosing tl"re approximating functions to contain terms generally
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associated with solutions of linear equations Johansen effectively uses

the Galerkin method as a linearizatíon technique. One advantage of this

over conventional linearization techniques is that the original nonlinear

equation is unaltered, rather the solution parameters alone are selected

to distribute the linear approximation over the domain of interest.

Partial differential equations similar to those encountered in the meteoro-

logical forecasË problem have been successfully treated by several authors.

Snyder, Spriggs and Stewart (46) apply the GaLerkin method to a transport

process in a finite domain, with the flov¿ governed by equations of motion

and continuity. MacdonaLd (49) considers the steady laminar boundary lay-

er equation for incompressíble flov¡. Fínally, Zienkiewicz and Parekh (50)

make an important contributíon by formulating the transient fielcì. probLem

(o'f the t)rye encountered in heat conduction) in terms of the finite element

approach using the Galerkin method. This is of importance since they chose

to define the approximating functions in a piecewise continuous fashion

over finite elements of the solution domain, and then apply the Galerkin

criteria in selecting the unknov¡n time dependent portion of the trial

function.

In the treatment by Zienkieptícz and Parekh (50) the finite

element approach is combined with the Galerkin criteria for a simple

partial differential equation. In Appendix 3, it is shown how the meteoro-

logical forecast problem may be treated in a similar way: application of

a weighted residual method rvith piecewise continuous double cubic poly-

nomial spline approximating functions defining the spatial variation of

the dependent variables, and undetermined functions of time defining

the behavior in time of the dependent variables. By resorting to spline

functions one is able to obtain high resolution without the need for a

high order- polynomial or trigonometric series fit. Essential features



of this extended model are listed below.

1. The tlial solution is of double cubic spline nature for all t >.0.

2. The degree of approximation of the trial solution to a double cubic
spline may be adjusted as desired.

3. There is a minimum number of undetermined functions per dependent
variable field Per node.

4. The undetermined functions (nodal values of the dependent var:iables)
are expressed in terms of orthogonal polynomials in time.

5. The subdomain weíghted residual method is employed to distríbute
the equation residual (error) over each element in space.

6. The Galerkin weíghted residual method is employed to distribute
the equation residual, weighted by Legendre polynomíals, over an

interval T in time.

7. The final system of equations to be solved numerically is a non-
linear system of simultaneous algebraic equations

B. The method is applied to advance nodal values of the dependent
variables an ínterval T in time.

9. The method may be repeated over and over again to obtain a fore-
cast of any desired length (subject to numerical stability).

Development of a forecast model along the lines of the

above model could prove Ëo be a powerful new approach to the numerical

weather prediction problem.

B6
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7 . Conclusions

A two level numerical forecast model vras proposed (model ST)

in which bicubic polynomial splines are used to fit the spatial varia-

tions of the dependent variable fields on a variable area telescoping

grid. The grid has superimposed basíc expansions of tT¡ro types. The

first expansion is required to maintain the physical distance betrveen

grid points on the latitude circles greater than or equal to some mini-

mum distance required for computational stability. The second grid

expansion is used to decrease the number of grid points in regions

which are not of primary interest thereby reducing the computation time

required to obtain a good resolution forecast in a region of interest.

The model used for comparison purposes to evaluate the per-

formance of model ST ¡vas a L969 version of the Mintr-Arakawa numerical

general circulation model. Comparison of the results of the two models

was facilitated by employing the same governing differential equatíons,

time extrapolation scheme, and heat, moisture and friction source terms

for both models. Several hemispheric numerical forecasts vTere perform-

ed with a single set of real weather initial and ve::ification data for

a 36 hour period, using rrrodified versions of moclel ST in order to illus-

trate basic characteristics of the model.

One fundamental advantage of model ST is the natural compu-

tatÍonal stability of the expanding grid. Complícated special tech-

niques are not requiled tô obtain a stable fo::ecast on this grid, where-

as nurnerous special techniques are required fo:: stability on the. con-

ventional constant latitude, constant longítude interval grid. Prelimin-

ary experiments were performed to illustrate the stability problem on a

'o
cons tant 5 Ínterval grid. When no special techniques \^rere used to im-

prove stability, the forecast was unstable in less than L/2 hour, and
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when filters and averaging operators were used to remove spurious short

waves at high latitucles, the forecast reached 36 hours with several in-

stabilities increasing in strength. The Mintz-Arakawa model achieves

stability on a ccnstant inËervaL grid through the use of filters and

averaging operators to remove spurious short vraves travelling longi-

tudinally at high latitudes, special methods of evaluating the fluxes,

spatial staggering of the dependent variables, and complex finite differ-

ence estímates. No¡ie of these techniques are used Ín model ST.

A second advantage of the telescoping grid used ín model ST

is the reduction in computation tirne by using a coarser grid over regions

of littIe concern, without sacrificing resolution and forecast accuracy

in the fiher grid region of primary interest. It was demonstrated from

the numerical forecasts performed that the forecast accuracy in the fine

grid region of primary interes

either the phase speed of the

t is not in the least part altered, in

large scale meteorological 
.r,Javes 

or in

error (RMSB) due to the presence of athe forecast root-mean-square

coarse grid of poorer resolution surroundíng the region of interest.

However, in the region of littIe interest, in which fewer grid points

are used to resolve the éependent variable fields, the forecast accur-

acy is altered in terms of an increased phase lag and decreased resolu-

tion of fine features in the field. I^lith grid expansion factors of

1.Ì0 and 1.04 for the x and y axes directions respectíve1y, and a region

of interest extending 3500 miles by 1000 miles over North America, the

resulting forecast was performed in 1/3 the computation time of the fore-

cast on a constant grid having the same resolution as in the region of

interest. This saving in computation time is of major economic benefit

in producing practical numerical forecasts.
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The third major advantage of model ST is due to the use of

bicubic polynomial splines in place of central finite dífferences to

estimate the spatial derivatíves. These benefits are manifest ín im-

proved phase speeds of the large scale meteorological waves at middle

and high latitudes. The improvements at low latitudes were marginal

or non-exístant. The geopotential fields and lorver leve1 temperature

forecasts hTere improved on the whole by the use of bicubic splines in

place of central finite differences. For the remaining dependent vari-

ab1es, bicubíc splines \^zere an improvement at the pole and hígh latitudes,

whereas central finite dífferences gave the better forecast at middle

and low 1atítudes. An additional feature of the forecast using splines

l\7as a tower RMSE in regions of fast changing weather.

Finally, model ST was found to give a good forecast ín

general at middle latítudes, with poorer forecast performance at high

and 1ow latitudes. At most latitudes model ST gave a better forecast

in terms of larger phase speeds of the meteorological rvaves and lower

RÉÍSE than the comparison Mintz-Arakawa model. Both models had large

forecast errors at lov latitudes and the eqr-lator, and the MÍntz-Arakawa

forecast \.,tas someuhat better than model ST at the pole. The general

improvement of model ST over the Mintz-Arakawa model was due both to

the use of bicubic splines in place of finite differences, and to the

use of an expanding grid of a nature requíring no special techniques

to obtain stabíIity.

Extensions of the forecast model were also discussed i-n

some detail. A generalized spline based on continuity of curvature

\.,7as derived, and forecasts rvitl-l this spline were perf ormed. One

selectíon of parameters gave a spline theoretically intermediate be-

tween the bicubic spline based on continuity of second derivative and
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central finite differences. Results from thís forecast \dere in general

intermediate bett/een the results from the forecast S using splines based

on second derivative and the forecast F using central finite differences.

A second selection of parameters gave a spline based on curvature for

which the numerical forecast proved to be unstable at 7 hours of forecast

time. It was determined that the instability arose from the interaction

of the ner¡r spline and the artificial equatorial boundary condition. This

generalized spline based on curvature requires further research in order

to determine iËs full potential in numerical veather prediction models.

Further exËensions of the model using weighted resídual m¡meri-

cal techniques were also discussed in detail, but no numerical forecasts

r,uere performed using Ëhem. It is felt that the development of a fore-

cast model with these techniques could prove to be a powerful new approach

to the numerical weaËher prediction problem.
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APPEMIX 1: Single and Double Cubic Polynomial Splínes

Single Cubic Polvnonial Spl'Lnes_

Consider the interval x, ( x ( fur subdivided into l.f-l intervals

by the points *2,*3,...\t_t, with *1 . *2

ated l,rith each point x. ís a prescribed ordinate u.. The single cubic

spline S(x) of Ínterpolation to values u. at mesh locations x. ís a

piecewise continuous function defined as a cubic polynomíal in each

interval *i_1 I x S xí, i = 2,3,...ìf. In addition the cubic spline

S (x) ís defined to have continuous first and second derivatives
ô

(S(x) e C'). Therefore S(x) sarisfies

S (x . -) = S (xr+) =. ,i,
S' (xr-) = Sr (xr*) = pÍ,

S" (xr-) = S" (xr-F) = Pi.

for i = 2,3,...If-l , rvith a prime denoting diff erentiation rviËh respect

to x, Since S(x) is a poll'nomial of degree 3, S'(x) and S"(x) are of

degrees 2 and 1 respectively. fn each interval *i_1 ( * S xi, the

cubic spline S (x) may be expressed in terms of eiËher the nodal values

ti'tÍ_l r P1: Pi_l_ ot the nodal val-ues ri, ri_l , Pi, ti_'. Since one

major purpose of usíng splJ-nes to fit the data field is to obËain good

estimates of the first derivative at daÈa points, it is more convenient

to construct the spline in terms of the slopes pi rather than the second

derivatÍves P-. The first step in constructing s(x) in terms of p. isl- ^ 'i --

Ëo \'rrite a second degree polynomial expression for St (x) or *i_1 ( x (

x-. in a fashíon ensuring continuity of st(x). such an expression is1

(A1.1)

(A1.2)

(A1.3)

S'(x) = pi-l (uL* + a,x + ar) + l, (bt" * brx + b3)

2 * crx * 
"3.

* crx (A1.4)



ContinuiËy of S'(x) requires

2rl*i-*^2*í*ar=0,

)b1*i-*b2*i*br=1,

2

"1*i *"2*í*cr=0,

)tt*i]t*^2*í-L*ar=1,

,br*i-]t*b2*i-1 *br=o'

"r*r1r*t2*i-r*cr=o'
I,.Iith these restricËions on the constants uI, 

^2r..., 
the expressíon for

S'(x) may be simplifíed Ëo

S'(x) = pi_t (x - x.)(arx * aO) +.t, (x - xi_t)(br* + bO)

92

where

*.1 (x - x.)(x - x._r),

tl*í_t * ^4= - I/lnr,

b1*i*b4=I/hr,

(A1.s)

(A1. 6)

(A1 .7 )

(A1.10)

(A1.11)

(A1.12)

and hi = *í - *i_1. (41.8)

Integrating S'(x) r+íth respect to x yields

s (x) = pi-t {rr*3/s + (atr "1*i) *'/, - *iu4* + ar)

* pi (br*3/: * (b+- bt*i-t) *'/, - *i-1b4* + br)

* "t (*3/g - (xi * "r-t) *2/z * *i*i-t* + cr). (41.9)

ContinuiËy of S(x) requires

"1*.3/3 * (a4 - arxr) *.'/, - *r'uo * a, = o,

br*.3/: * (ba - brx.-r) *.'/, - *i*i_tbo * b, = o,

.1 (*.3/: - (xi * *r-t) *.2/z + *.2*.-, + cr) = rí,
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ur*r1r/: * (ba

"1 {*rlr/s - (*,
Equations 41. 6, 41.10

three unknorrns ^I, ^4

"1 =

"5
In a símilar fashion

unknor¡ns b' bO and

bt

b,
4

b-)

Pt-r
s' (x)

h.'-
t_

b- to sive

2= Jln. .
L.

,
= 1/h, - 3x. /h.',l_l-a

2,-2= - x.x, -/h.a l_-_L a

(Ar.13)

(A1. 14)

(A1.1s)

ín

(A1.16)

2(* - x.)),

"r*r3r/3 * (a4 rl*i) *r?r/, - *i*i-lu 4 + 
^5 = o,

br*i-r) *r1r/, - *r1rr,o * b, = o,

.2t* x. .) x.'./Z + *.*.-. * c-) = u.r_-l l_-I 1 a-l_ 5' 1-I

and 41.13 are Èhree simultaneous equations

and ar. Solving for 
^!, 

u4 and ar:

d,
4

,3/h.''
t-

-r/h. - 3x. - ln 2
-' --i ---i-1'"i ,

2 ,-2- x. x. "/n.l- r-I a

e.quations AL.7, A1.11 and Al .L4 are solved for the

Finally solving equations AI.L2 and 41.15 for c, and c, gives

c,--6(u.-ri_t)t 3 tz
x. x. x,í i --i-1

-562

.)

/h.'.
l-'.)

.Ju. h.
t- l-

U (ui - ri_l)'

I^liËh the above expressions for constants 
^L, ^4, â5, bl , b4, b5, c, and

cr, Ëhe equations for s(x) and s'(x) (41.9 and 41.5 respecrively) become

s(x) = + (x - xr)'(* - *i-r) .5 (x - xr-r¡21* - *r)
h .t l_ 1-t_ 

h .¿ l_-1'
r_1

. + (x - x;)2(hi + 2(x - *i-rll + \ (x - xr-l)2(hi -
h-., l_ l_ 1-1 ' 

h.J :

r-i

(x - xr)(3x - x. - 2x.-r) * 

= 

(x - xi-1) (3x - x.-, - 2x.)
r r 

h.'
l_
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6- - . (ri ri_t) (x - xr) (x - x._r).
h.'

l-

S(x) given by equation 41.16 is a pÍecewise continuous

with continuous first derivatíves on x, ( x ( 
"M. The

pi, i = 1,2,... are determined by imposing on S(x) the

of conËínuity of S"(x). Differentiaríng AL.L7 yields

2p , _-, 2p:
S"(x) (3x - 2x. - x. .) + * (3x - 2,.

h.2 
-"i "i-L' 

h.2 
\J'r -"i-1

].

6- --; (u. - ri_t) (2x - x. - xr_r). (41.18)
nr' r

The second derívative at node *i may be rvritten in terms of the spline

from belorn' (x < x,) or above (x > xr).

6 (ui - ri_t)

(Ar.17 )

cubic polynornial

unknorvn slopes

final restrictions

- x.)
I

(A1.1e)

3 (rr*t - ri)

n...1,

(A1.20)

(A1.21)

(ÃL.22)

(A1. 23)

S" (>r.-) =

S" (x.*) =

2P"-t

-¿
h. 

I

]-

- 4o.^a

Ç;-

4r¡ .
-L

h. -
l-

?n-'í+l
Ç;

))h.-
l_

6 (rr*, - ri)

Continuity

1 p. -+2
- 

4 
ì_ |-rrn-

l_

S" (x) at *i
-l.#J o'.

requires

1
r'.- Pi+r

r+1

2
h"i+1

3 (u. - u. .)a a-l.
)

n.
L

of

('
t-
ln,
Ir_

In more convenient notatÍon,

ÀiPi-t + 2p.-* uipl*t = "i, L = 2,3,...M-1,

where
À.

l-

h.._r+l
h. + h..- 'l- a+-L

1
I - À..

I.

(,t, - u- ")c.=3À.- h.--*3uih.
l_

, í = 213r...M-1.
(ur*, - ut)

Lt'i+1

Equation 47.27 forms a systen of M-2 equations in M unlcnorvn slope" pl ,

P2:...P¡4. For the systen'ì to be determinate, addítional end conditions

r¡ust be specif ied
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For the periodic spline (s(p) (*i) t(n) (*rl, p = 0,L,2) equarion

AI.2L may in addition be written for the point i = M. Since the spline

Ís perÍodic then tM = 11 , pl,l = pl , tlf+l = u2, p*+l = p, and the system

of M-l equatÍons in M-1 unknorvns p2, p3r...plf becomes determinate.

For the nonperiodic spline trvo aclditíonal end conditions must be

specified. The end condítions may be wrítten in the form

2nt !1P2 = .1 , at xl ,

lrtP¡t-t + 2PM = cM , "t *M

(A1.25)

(AL.26)

(^7.24)

Provided suiËable values for the coeffícients Þ1, "1, 
ÀM, cM are pre-

scribed, equations 41.2I and A1-.24 form a determinate system (M equations

in the Ii unknor¡n slopes p1tp2,...pM). The end conditions may be speci-
rt

fied slopes (u, and 5, prescríbed), then

ur=Ir=0, cl =2uL, t,f =2rM,

or specíf ied second derivatives (.ri arra 5o ntu""ribed), rhen

. u1 = ÀM = 1'

",=af _?",;,

3 ("* - t¡l-r) \, '!,tr: rh t\r'
A final choice of end conditions for the nonperiodic spline could be to

specify zero second derivatíves at some specified points *0 
"rd \t+1

(outside of the interval x, ( x { 1O over rrhich the spline is constructed.),

rvith Ëhe restrictíon that the curves over xO ( x ( x, and *M ( o. ( \t+f
be cubÍc arcs. The locatíons of points xO and tf+l "ru specified by

assigníng values to the parameters ÀO and !n,,+l """ording 
to

"¡r - \+r^ *r-*o
I 

-+"0 *2-*0 ' !t't+l =
fu-r - * M+l

. (A7.27)



Then the coeff j-cients Ur, "1, 
lll , co, take- on the values

2 (2À0 + 1) 6 (uz - rr) (1 + ÀO)

u1 = 
\+2 ' t1 =W'

(A1. 2B)
(2unr*, + t) 6 ("M - rM_t) (1 + u¡r*t)

not=-u*;*z*' tr*f

In the non;',eriodíc case t.he system of equatíons to be solved (for

the unknorvn slopes p1,...py) is of the form

brtr * 
"1t2 = dl 

'

"2tl * b|rz* 
"2u3 -.1"2t

= dí , (4f.29)a.v. - + b.v. * c-v-.-l- r-I a r- r r+1

an-lvn-2 * b'-ltrr-1 * trr-ltr = drr-l '

av.*bv -dnn-r nn n

There are n equations in n unknol,rns v., i = 1r. ..n. This trídiagonal

system is readily solved by an eff icient Gaussian elírnination algorítl-rm

(p.44L of Carnahan, Luther and l,Iilkes (52) or p.I4 of Ahlberg, Nilson

and Inlalsh (22)). The solution i-s

v , (41.30)n'n-
ri = yi - "iti+l / Bí, i = n-1 ,fl-2,,..2,L,

where the ßts and yts are determíned from the recursíon formulas

96

(A1. 31)

In the periodic case the system of equations to be solved (for the

unlçnorvn slopes p2,p3,...plf) is of the f orm



97

blt1 * "ruz 
*

'zuL* bzYz+ 
"zus

*tltn=dr'

=dzt

= di , (41. 32)a.v. - + b.v. * c.v..-aa-,Laar1+l

an-1vn-2 * brr-1trr-l * trr-ltr, = drr-r 
,

cv- *n1 *av -*bv =dnn-I nn n

n equations in n unknorvns v., i = 1r...n. The algoríthm to solve

this system of equatíons is given by Ahlberg, Nilson and l,{alsh (p.f5

of reference 22). The solution is

d -cô--aôn nl nn-lv'r=6t
n nI nn-I

(A1. 33 )
ri = oitr, * 6., í = 1 r2r...n-1,

¡.,lhere the crts ancl ôts are determined from the recursion formulas

ru:r"íoí+l ,..or,=t, oí=- 
%- 

*ui,i=n-1 ,D-2,...2,1 ,

1 aiÞi-1
U"=-;=rU,=--:;-rí=2r3r...nr(41 .34)t Þ1 t Þí

c* ô*-t
ôr, = 0, ð. = - --*--åi-! * yi, i = n-l, n-2r...ZrL,r_ þi

ßi ' Yi are given bY equation 41.31.

Double Cubíc Polynomíal S_pl_ilnes

The theory of double cubÍc splines depends largely on the theory of

one dimensional cubic splínes. Consider the rectangul-ar mesh

*1' *2

mesh points x.r y¡r i = 1,...M, j = 1,...N. The lines * = *1 , x = Ilf,
y = yL; y = yN correspond respectively to the 1B0o west meridian, 1B0o

east meridian, north pole and southern boundary líne. The double cubic
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spline S(x,y) of interpolatíon to values rij "t mesh locations *i, yj

is a piecer¡ise continuous function defíned as a double cubic poly-

nomial in each recLanglu (*:__1 S x S *i, yj_tèy r,rj), i = 2,,.,11 ,

j = 1,...N. The spline S(x,y) rui1l be c.onstructed periodíc in the

x direction, since meteorological fields repeat after 360o rotation

around Ëhe earËh, and rvíth specífied boundary conditions in the y

direction. Let
h= = X_. - x- " ) 0,t- ]- r-l-
k. = v. - v. - < 0.
J .J -J-I

(A1.3s)

Along Èhe line y

the ordínates u..
r_J

I

5(x,y3) = pi_l,j )h.-
a

I 2(x - x. ")a- _L

.2h.i (A1.36)

')x. ,)'(rr. - 2(x - x.)).l--r l_ a

= Yj'
i:t¡

(x-

the one-dimensional splíne of inËerpolation to

1,...M ma1' be wrítten from equation 41.16 as

*.)2(x - *i-t) )(x - x. .)-(x - x.)
1-,1 a+ p.'arJ

u,
* i+-i (* _ *- ) 21r.,,

h.' -L

I

u.
+ a*J 

1¡. -
h.J

1

S(x,v.) 
J

Y. .))+- "3 (v- J-r k.r
J

The slopes p- r, i = 1r...M are obtained by solving the system of^ ^ a:J -

equations AL.27 wrítten for the periodic spline case. One-dimensional

splínes of the form 41.36 may be wrítten for each líne y = yj, j = 1,

...N. Therefore, at any x (not. necessarily a node point xr: í = 1,

...M), Èhe ordínate S(x,yj) is given by equatíon 41.36 and one may con-

sËruct Èhe follovring one-dimensional cubic spline of i-nËerpolation ín y

to the ordinates S(*,yj), j = 1,...N (equatíon 41.16 rvíth x, p1r u. and

h. replaced by y, Cr(x), S(x,yr) and k. respectively):

(v - v, -r)ztv - ,i)L ^ //.-\ J * J¡ 9r\^/'J' ,- 2k.2 (AI.
)

- y, ,)-(L, - Z(y- J-r- J

(v - v., )2(v - yi-r)
S(x,y)=q,,(x)g.J_r. 

k.2
J

S(x,y;_r) )+ -----;E (y - y,)'(k, + 2(y -
K.J J J

J

In equation A1 .37, it remaiirs to

37)

- vj))

Theevaluate the terns O, (x), Q3_1(x).
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slopes q- !, j = 1 to N are obtained by solving the system of equations
frJ

AJ-2L r,¡ritten for the nonperíodíc splíne case. This process is

repeated at all i girring a matrix of evaluated slopes (Cr,r; i = l,

.. .M; j = 1,...N). One may them form the folloruing expression for t, (x)

by constructÍng a one-dimensÍonal spline of interpolatíon in x to Ëhe

slopes gi,j, i = 1,...M (equation 41.16 rvíth p. and u. replaced by si,j

an<l q= . respectively):'rrJ
)(x - x. ,)-(x - x.)a-_L t

h.2
l_ (A1.38)

- 2(x - x.)).

(A1.39)

ct, ^ q,
* +ú (x - xi)2(hi + 2(x - *í-r)) +:+ (x - xi-1)2(hi

h., r r r-r h.,rl_
In equatíon 41.38 the teïms "r,j are obt.ained by solvíng the system of

equations 
^7.2I 

r¿ritten for the periodíc case ín x , with pi .td tj_

replaced by s- . and q, . respectívely. Finally subsËítuËing 41.38 andarJ 'frJ

41.36 ínto 41.37, the doul:le cubic spline of inËerpolatíon to rrj, i = 1,

...M; j = 1,...N becomes

's(x,y) =r" "i_1, j_l - af s., j_l + "g gi_1,j_1 + "1 or, j_l
- bu "r-l-,j * bf "r,j - bg Qí-l,j - b1 9i,j

* "" pi-r,i-l ¡f pi,i-r + 
"8 ti-1,i-1 + tl tí,i-l

* dt Pirr,i - df nt,j * dg ti-l,i * dl ti,i'

*í-l 5 x s xí, Yj-l s y s yj for i = 2,...M, j = 2,...N,

rvhere the follorving notation has been used:

n=y-Y5-1, m=x-*i-1,

n=r/Lj, E-*/hi,

a = 1f - n)' ,, , e = (1 - E)2 * ,

b=(1 -n)ûrlr f =(1 -E)Em,

1r - n)2 (zn + t), B= (1 - €)2 (2t + 1),
d=n2(3-z¡¡, 1=E2(3-2Ð

(A1.40)
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Equation A1.39 may be differentiated rvith respect to x and y to

yÍeld expressions for the first derívatives and cross derivative of the

spline surface. It is often necessary to have good estimates of a

functíon and its derivatives at the rnid-points of horizontal and vertical

grid sÍdes as well as at the center of the element. Such estimates are

reaclíly obtaíned from the double cubic spline 41.39. At the míd-poínt

of horizontal grid sides, (*,y) = (xi - h./2, tj) or sirnply the point

L - lztJ t

h.
_l_si-%,i = ,= (nr--l,j nr,j) +'¿ (ur-t,j * tí,j) '
as.

-#t = - L+ (pi-r,j + pi,j) * 
4,"t,j 

-'i-l,j),
ôs. , h (41.41)

-#^ = ,= ("r-l,j "r, j) + 1< (tr-1,j * oi,j) ,

ðs. ,.L:4¡J=-h(s. - +s..)+ r ' \
4 \!âxây * '-i-l,j -L,i' 

4 
(qi,j - {i-l,j)'

At the míd-point of vertical grid sídes, (*,y) = (xr,V, - k./2) or simply

the poinË í, j-14,

k.
s = J ¡n , - q. .) +t¿ (u, . , * u. ,) ,"ír3-'¿ - B t"'irj-l -íri' arJ-r rrJ

as. . I k.t¡J-4.: J r-.. a-s_. ,)+r¿ (orri_r+pí,i),âx 8 '"i,j-f i,i' "i,j-l 'í,i' ' (A1.42)

as. . 1

-J# = - r< (q,,, " * e,,) + È (rr,j - ri,5_1),
Ay "a,J-f -arJ' 

J .

a2s. . ,-'j-.i-11',\3/
-l*tr = -'4 ("i,j-l *'i,j, * 

4 
(nr,j - nr,j-r)'

Fínally at the ce11 center, (*,y) = (xi - h./2, Yj - k.l2) or simply the

point i-L'2,i-''i,



(41. 43a)

âs. ,_ , ,- k. 3k.1-'z 1-'z i

-tr: d ("r,j * "i-r,j - "i-1,j-1 "i,j-l) . 16t (or,j-,

l
- 9i-t,j-1 + 9i-1,j - Qi,j) -; (or-r,j-r + Pi,j-r * Pi-l,j * Pi,j)

3 u- 1!, *u,, -u,. .) , (A1.43b)* Zn-, (ti,j-l - ui-1,j-1 * tí,j - ti-l,¡) ' .

ãSr-u l-t- h- I
--=-Ë-=d ("t,j-l "i-1,j-1 * "i,j - "i-l,j) - u 

(qi-r,¡-r

3h.
* qi,i-t * qi-t,j * Qi,j) * 

=q 
(or,j-t - Pi-t,j-r + Pi-r,j - Pi-,j)

J.* oE (ti-t,i * tí,i - ti-1,i-1 ti,i-l) ' (41'43c)
J -"

^2-d ò. r1-'Z 1-'Z I

æ=*a.",-1,j-l*"i,j_1*"í_1,j+"i,j)*#.o,-,,,-,

- q. - + q. 3

'i,j-f i-1,j -9i,j'*q (nr-r,j-r+Pi,j-l -Pi-l,j -P:.,j)

9+ 4lr-\ (tr-r-, j*l ti, j-l - ti-r,j * ti,j ) (^r'43d)
Jr-

101
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A?l?1li'lillX ll :'I'i'ie .Ieles "e¿r¡rg__qËq

In the iruurei:ica.l- f orecast noclel developed in thís thesis, prlece-

r.¡ise bicubic polynomial functions (double cubic splines) are usecl Ëo fit

tlre Lwo-dir¡ensiolaT- ðata fielris. For thi.s reason it is convenient Lo

use eithcr a coûstant area or smoothly expandirrg rectanguJ-ar grid.

A point on the earthts sufface is located by the- coo::dinates (xry),

specifyi-ng longitude and latitude respecËively in degrees. Hence tl-re

forec::¿st region on the x,y plane ís Lhe rectangle - 180.0 I x S 180"0,

YS S y *< 90.0, where YS = 0.0 (equator) for a northe::n hemisphere gr:id

and YS = - 90.0 (soutb. pole) for a fu1l earth grid. To avoid the

problein of ca::rying grid poínt data alcng the line Y = 90.0 (north pole,

a singular poÍnL) , iÈ r+as decidecl to f irst gene-rate a prelimi-nary gríd

havi-ng the noz:th pole as a grid line and then use the centers of grid

cells in the prelíminar:y gríd as gricl poi-nts in the fj-nal grid. The

prelímirrar:y gr:ir-d itself ís determined entirely by the follor.ring set of

adj usEable parameters :

1. y,?, YP = longi-tude, latitude of a center of interest about rvhÍch

Ël-re rectangular grid expands uniformly.

2. lIX, NY = the number of grid rectangles of constant síze centered

abor:t the point of inte.rest, in the x and y dírecÈions respec-

tiveJy. The region containing grid rectangles of constant, size is

termed the regíon of interest, since it locates a region on the

earth in which a forecast of good accura.cy and high resoluiíon ís

des ired.

3. DX, DY = the grl-d spacíng (in degrees) in the region of ínterest,

ín the x and y dírections respectiveJ-y.
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4. EX, EY = the grid expansion factors applying outside the region of

ínterest, in the x and y directions respectively.

The role ¡vhich the above parameters play in generaËíng the preliminary

grid rnay be seen by examining Fígure 42.1. This figure sho¡+s sample

grid lines for both the x and y directÍons. It is seen that both

the x and y gríd lines expand unÍformly as distance from the point

()GrYP) increases. Horuever, special consideration is requíred to ensure

that the x gríd meshes smoothly at the point X)P (located lB0" east or

l80o r,¡esË of poinË )G) and that the y grid meshes smoothly aL both the

north pole and the southern boundary point YS.

Figure 42.1 shorvs the x and y gríd lines correspondíng to the

first generation of the prelimínary grid. The parameter dO determines

the form of special treatment requíred to ensure a smooth x grid ín

in the vicinitl' of point XX?. Four cases may be considered:

d0. d1 - DX/2 The x grid is generated over again using NXrr.ro =

NXold * NN ruhere NN is the largest ínteger S (dO/DX) + 1. In Ëhe

new grid the point" *-1 and x, are set to coincide with XXP. If

dL, d2, then the new gríd expands smoothly up to Xm> from both

sides and is satisfactory. llorvever íf d1 < d, Èhe grid does not

smoothly expand up to XXP and should be regenerated using NXrr.ro =

NXold + NN - 1 to give a satisfacËory grid.

dI - DXlz . d0 dI + DX/2 A satísfactory grid may be obtained by

slight adjustments ín the positi-on of poinËs x_, and xr. Let

*_1 
,-ru,o 

= *_2 * lTf and *1 ,r",o = *Z - )Ol, t,rhere )ß{ = (xZ x_r)/3.

lf d1 , d2, the lerv grid expands smoothly up to X)(P and is satis-

factory. However Íf dt . dZ, then case 1 is applíed.

t.

2.
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3. dL+ DX/z < d0 < 2d1 The grícl is generated over again using

NXr,., = NXold * Ml{ rvhere l'1}4 is the largest integer S (d0 - dl) /

lX * 1¿. This nerv grícl is then adjusted as ín case 2'

4" 2d1 < d0 < (2c11) EX The point )üP is set to be a grid point.

The y gríd must mesh smoothly at both the north pole (y = 90) and the

southern boundary point YS (YS = -90 if rhe gríd is global, 0 if the

gríd ís hernispheríc) . A smooth meshing r,¡it.h the north pole is obtained

by shifting the enËire y grid norËh or south until Ëhe nearest

generatecl y gricl poínt coíncides rvith the pole. This results in a

small shífË in YP, the y coordinate of Ëhe cenËer of interest' Tt

then remaíns to adjust the positíon of poínts Yt and y, (see Figure

A2.L) in order that YS becomes a grid poinr and the grid expands

smoothly up Ëo YS. Let the dístance from y, to YS be denoted by D.

D=a+b*c=y3-YS (42.1)

Two cases may be consídered:

1. Tf D/3 > ð', a > O it is possible to expand a grid frorn y, to YS

using an expansion factor less. than EY but greater than 1. To malce

the expansion smooth the grid expansion factor rvj-ll be decreased

gradually ín proceeding from y3 to YS, rvit,h the grid lengths c, b

and a takíng on the values (EY - 6)d, (EY - zô)(EY - ô)d and

(Ey - 36) (EY - 26) (EY - ô)r1 respecËive1y. SubstiLuting these ex-

pressíons for a, b and c into equatíon 42.1 gives a cubic equation

ín the unlcnorvn ParameËer ô .

6ô3 - (2 + 11EY)02 + (r + 3EY + 6 EY2)ô
(A2.2)

+ (D/d - EY (1 + EY + EY2)) = o

usíng ô gíven by the real root of equation try2.2 (the trvo

' conjugate imaginary roots of equation A2 .2 ate neglected), the



105

grid lengths a, b, c are evaluated and the points Y2, Y1 located

in such a fash-',-on that ti're y grid expands smoothly to mesh rvith

the southern boundarY Point YS.

2. If D/3 < d, a > 0 the y grid is generated over again using

Wr., = Molcl * Nl'l rvhere NN is the largest integer ç (a/ny) + f'

In the new grid the position of points Y1 and y, is adjusted as

in case 1.

Having constructed the prelíminary grid as desci:ibed above, Ëhe

final grid is fornied by using the centers of grid ce1ls in the prelimin-

ary grid as grid points in the final gr:i-d.
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APPENDIX Extension of the Model: Galerkin and Subdornain Methods

The basic idea of the method of weíghted residuals (abbreviated

!lt^iR) may be illustrated by considering a differentía1 equatíon

governing the behaviour of dependent variabl-e Y (X,t) j_n domain S

bounded by curve C. Here, X represents tvJo space dimensions and

deriotes tjme. Following Fínlayson and Scriven (46),

#+D('t')=o ,

A trÍal solutÍon

ímatíng functions

variable C- (t) , q
q

where D denotes a general differentíal operator involving spatíal

derivatives on1y. The initial and boundary conditions respectíve1y are

Y(X'O)=YO : IinS ,
(A3. 2)

Y(X,t) = f"(X,t) : { on C, t > 0

y:t(¡,t) is constructed in terms of prescribed approx-

Q_(X,t) and undetermined functions of a sÍngle
q

= 1,...Q.
a

Y:': (X, t) = _t^ Cq (r) 0O (X, r)
q=u

Often the approximatÍng functions are selected subject Ëo ór(X,t) =

f"(X,t), 0o(x,t) = 0, 
-o 

= 2,...Q, x on s Then Cr(t) i 1, Cq(t)

may take on any values, and the trial function Y'k(X,t) r,rill inherently

saËisfy the bounclary conditÍons. The degree to rvhich the tïíal function

Yr: satisfies the differentía1 equation and initial condítion ís measured

by the qquation residual R and inítial- resÍdua1 RO rvhich are defined as

R(y,k)=+ -D(v,'.¡ , r)O ,
o L a (A3.4)

Ro(\,k) = V0 - _l^ ao(o) 0o(x,0) , x in S .

q=u

If Y'l(X,t) rvas the exact solution to equations A,3.1 and A3.2, the res-

iduals 43.4 rvould be ídentically zero. The method of weighted residuals

approximates tl-ris exact solution case by setting the rveighted integral

(A3.1)

(A3.3)
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of the resi-duals to zero.

<ru'iR(V'å)>=Q )

< rvoi RO(Y'*)¡ = Q ,

(wrvt=/r.ttds

Equatíon 43.5 forms a system of Q fírst order ordinary dífferential

equations in the unknorøn functions CO(t),g = 1,...Q, rvith Q initial

conditions given by 43.6. Solvíng the system 43.5, 43.6 for the co-

efficients C (t) and substituting these coefficíents into equation
q

43.3 yields an approximate solutíon to equations A3.l and 43.2 by the

MI,IR Ëechníque.

The Pfl^lR scheme in rvhich undetermíned functions CO(t), q = 1,...Q

aïe used in forming the approxímate solution is equívalent to replacing

Ëhe contínuous propagation problem by a propagation problem rvith a

finite numbei: of degrees of freedom. As the number Q of approximatíon

functions increases, the number of perrnitted degrees of freedom

íncreases and t.he approximate solution approaches the true solution.

There are numerous nethods of selecting the weighting functions ruO

eaclr giving rise to a specific nunerical method (ref 45,46,49). The

folloiving are examples of numerical methocls arísing from the different

weightíng funitions:

Collocatíon -

Subdomain -

Galerlcin -

Least-squares -

In the collocation method

(A3. s)

(A3. 6)

(A3. 7)

(A3. B)

(A3. e)

(A3. 10)

(A3. 11)

is satisfiecl exactly

Tù
q

I,I
q

f,{
q

TJ
q

\7
q

6(xo - x)

lrXinS

0, Xnot

ó''q

â R (V:'r )
dU

q

tq

inS '

the dífferentíal equation
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at Q collocation points Xq, q = 1,...Q. Hence the weightiirg function is

the unít irnpulse or Dirac delta U(tO X) rvhicl-r vanishes everywhere

excepr ar x = Xo and sarisfies rloCx - ro)dx = 1. The subdornain

criterion 43.9 results in the differentíal equation beíng satisfíed on

the average ín Q subdomains SO, I = 1,...Q in domaín S. The earliest

!fl^lR, the Galerki-n method, t.akes the weighting functíons rvq eQual to the

approximatÍng functions QOr thereby forcing the residual to be ortho-

gonal to the approximating functions. If the set of approximating

functions spans all degrees of freedom of the system (forms a complete

seË of functions) then the residual, orËhogonal to the approximatíng

functions, nust vanÍsh. Iinally the least-squares method 43.11 corres-

ponds to minimizing the mean square residual with respect to coefficients

c
q

In meteorology the system of governing differentíal equations is of

formËhe

ðY n
Ðr

N ðV. âV.
* . ,Ì_, ("1r. vr. ã-i + oT,. tu ã/ . "lr. Y¡ v¡)

J t K-l

N
+ X fl (x,y) tj * gt (*,y) = 0, D = I,2...N'

-ì=1 J J

(A3. 12)

rvhere Xry = spatial coordínates;

\v = v lx-y,t), the nth dependent varíable, D = 1,2...N;
'n ¡Ir\rrt'

n -n n

"ju'oiu,"'8 = known functions of x and y'

Similar to equation 43.3 the trial solution V'* is constructed in terms

of Q prescríbed approxinatíng functions 0^(x,l) and undetermined func-
q

tions of a single varíab1e d-(t). In thís application, hot+ever, the
q

functions0^(x,y) will be polynomials of a splÍne nature, defined to be
r{

píecervise contínuous on al1 elements. Hencet
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element by element, and superscript

I,¡ith E denoting the total number of

then e = L,2,...E. Substituting A3

system of equations

(A3.13)

n denotes the dePendent variable.

elements in the domain of interest

.13 ínto 
^3.L2, 

there results the

n:" = ro. a!'cr> oä'(x,y) ,

q=f

rvhere Ëhe superscripL e implies the terms are defined piecervise,

n!, 
*;"*'') h caf"rt>' * 

,,1=, n,Ï=, 
nïïoo(x'v) ¿j" (r) ¿k.(r) +... = 0,

(A3.14)

(A3. ls)

NQ un-

obtained

(A3. 16)

or Rtt(*,y,t,é(.), å, (4.(t))) = 0, D = 1,...N.

For each element e there are N equations of the form 43.15 in

knor^ms. Suffícíent equatíons to form a determínate system are

by applying the iveighted residual críterion A3'5'

ne _ne..0;- , R"- > = 0, n = 1,...

rvhere <arb>=

N,

a,I = 1r"'

"f .l abdxdy.
e

(A3. 17')

The integration ín the inner product 43.17 ís performed over element e

alone. For each element e there are NQ equatíons of the forrn A3'16,

giving in the enËíre solutíon domaín a total of NQE equations in NQE

unknor,'n functions ¿tu(t), e = 1r...Q; n = 1r...N; e = 1r"'E'
q

At this point it is necessal:y to consider the choice of trial

funcrions ölt(*,y), undetermined functions alu{t) and weighting
'q q

functions r1"(*,y). It is proposed that the approximatíng functíons
q

be double cubic polynomial splines, piecervise continuous element by

element. Equation 41.39 in Appendíx 1 expresses the double cubíc

sp1íne on element e ín terms of sixteen nodal values tij t Pij ' 9ij'

s.., ... and corresPonding polynomial coefficients dl, df, bl, bf,"'
r_J
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In adaptíng the notation of Appendix I to the notation here, the terms
t

ur pr e: s repïesenË ïespectively \'.^, äYt, âYn, â-vn. rt is therefore
" âx ðy ãxây

natural to select the sj-xteen polynomial coefficients dl, df, ... to be

approxi-mating functions, t+ith the nodal values u, P, taken to be

initÍal values of the variable coeffícients dne(t). ltrith reference to
q

equations 41.39 and 41.40 the folloiving expressíons are obtained:

.ne ) 2
ór= = ¿s = (1 - n)-n(l - t)-n ,

:
.ne ? 2.
ó'-'l = dl = n"(3 _ 2n) E-ß _ Ze) ,'rb

(A3. 18 )

al"crl = si-r,j-r(r), ul"(o) = si-I,j-1(0)
:

åi;c'> = u.. (r) uT;(o) = u.. (o)

fn Ëhís fashíon the trial solution Y'tt on element e (given by equation
n

Æ.f3) is defined in terms of Q = 16 tríal function" Ög and undetermined

functions of a síngle variabre ¿le(t). All of the functions dfe(t),qq
q = I ,2r...Q for element e are not unique to tl-rat elemenË since each

corner of e is conmon Ëo three other elements. IrJíth each dependent

variable field having four degrees of freedom per node point (narnely

u(t), p(t), q(t), s(t)) then each element also has four degrees of

freedom on the average, and only four applícations of the rveíghted

residual criterion 43.16 need be performed. This is equivalent to

replacing Q bV Q/4 in 43.16. It now remains to select the four

weighting functions r,,ne, q = 1,...Q/4 (where Q = 16). A straight for-
q

rvard application of the Galerltin meLhocl (-otu(*,Y) = Of"(",V)) is not

possible sínce there are sixteen trial funcLions and only four rveighting

functions. The trial functions are of four types: coefficíents of
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either u(t), p(L), q(t) or s(t) at the nodes. I,Jeighting functions

representative of each type of trial function may be formed by sumníng

the trial functions of each type. This gíves

ne,rrl"(t) = I ,

ne.wr-(t) = n(l - t) (r - 2e) ,
(Æ. re)

vJ-(t) = n(l - n) (1 - 2n) ,

ne.w[-(t) = rnn(l - E) (1 - n) (r - 2E) (r - 2n)

This weighted residual scherne employing trial and undetermined functions

43.18 and weíghtíng funcËions 43.19 vri1l be referred to as nethod A.

This s,chenie reduces equation 43.16 to a nonlinear system of first order

ordinary differential equations of the type

^dArä(é(t))=8, (43.20)

where z = NEQ/4, $ is a z element vector carrying the terms alt{t), e
q

is a zxz band matríx rvÍth band rvidth NQ, and B is a zxz band maËrix with

1ínear and nonlineal' terms involving dte(t).-q
The major drarvback of method A is the difficulty in solving equa-

tion A'3.20. Tt rvould*be impractical to store.matricies A and B due to

theír large order. Hence a matrix algebra solution is impossíble. Tf

A were the identity matrix f a Runge Kutta solution could be used to

solve for the vector g(t). Ilor'rever, A is not I, and it i¿ould be

j-mpractical to employ matríx method.s to replace A by I Ín 43.20. One

must conclude that although a solution to 43.20 could be attenpted in

theory, such a solution r¿ould be impracÈícal. A second characteristic

of method A is that the dependent variable fíelds do not remaín of a

spline nature as time progresses, despite the use of initial values

¿tt(O) generatecl by spline techníques. This aríses from permitting four
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degrees of freedom per node point for each dependent variable field (Ín

other words, for each dependent varíable at each node the values u(t),

p(t), q(t) and s(t) vary independently of each orher for all r > 0).

Therefore a saving in the number of unknor,¡n functions per dependent

variable field per node point could be realízed by forcing p(t), q(t)

and s(t) t.o be some function of u(t), t >- 0. This gives rise to a

second method, to be referred to as method B.

The number of permitted degrees of freedom for each dependent

varíable at each node may be reduced from four to one by forcing the

tri¿j1 solution A'3.13 to be of double cubic spline shape for all t >- 0.

In this case the values p(t), q(t) and s(t) depend on u(t) accordíng ro

equaÈíon .{1.21 (in Appendix 1) written respectively for the periodic,

nonperiodÍc and periocÌic case r^ríth u(t) replaced by C(t¡. An alterna-

tive form of expressing the dependence of p(t), q(t) and s(t) on u(t)

is to write
I

Pij (t) = **Ì., or3r* ti,v3 (t) 
'

-L..--L

J
qij(t) = ,."t, "í¡3,,. ti¡o(t) '

J ^-r
IJ

s 't (t) i*l*ol, 
ut3 i'*j:k uí'*j- (t)

_*J

(43. 21a)

(Æ.2rb)

(43.21c)

In equatÍons 43.21a,b,c, the coefficient vectors Þ, 9, I are obtained by

taking the Ínverse of Èhe coefficient matrix of the system of equations

Al .21 r^rritten for the períodic and nonperíodic cases, and the limits I,

J denote the number of grid poínts in the x and y directions

respectively. Substituting equations A3 .2!a,b,c, along rvith the trial

and undetermined functions 43.18 into tl-re t.ria1 soluÈíon 43.13 yields
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*eaIJ
vr'" (x'Y' t) 

ol, ,1, ¡], rT¡ q v,.,r¡ (.) ôo (x,v) ( 

^3.22)
All of the coefficients 3, b, c, d are characteristíc of the grid and

are generated only once, at the beginníng of the forecast. Further,

these coefficients decrease rapidly as distance from element e increases.

For example, the inverse of the coefficíent matrix of 41.21 for the

períodic case ruith equidisLant grid points results in the values

b-,, = 0.5773504,
1tJ tl

b_. : :, = b- r _.,a - - 0.1547006 ,l_rJ rl_-I l_rf ,1+I

b- ! :. = b= r r,1 = Q.O4L45L9 ,LrJ rL-¿ ]-13 ,L+¿

b- : : . = b, ! !,. = - 0.011-1070 ,l-rJ,l--J l-rJ,l_+J

b,. , = b, ! :,t 0.002976L,l-rJ,l-4 l-rJ,a+4

b, : -. - = b, , ltÉ - - 0.0007974 ,l_rJ,l-) arJ,l_+f

:

b. ^- = b. ..^- = - 0.5935 * 10-20l-rJ rL-J) l_rJ r]-+J5

Therefore if only the seven teras centered around node irj were retained

ín the summatíon A3.ZIa, the derivatÍve pij(t) would be in error by less

tl;,an LZ of the value it ¡vou1d have had if all I terms \{ere retained in

the summation. Restrict.ing the summation overindicies i and j to

less than seven terms each considerably reduces the number of terms in

A3.2Ia,b, c, r.rithout signif icant loss of accuracy. Substítuti-ng A3.22

into 43.12, there results the sysÈem of equations

Rt"(*,y,r, vr.,i¡(.), åE,orrr.(t))) = o : B = 1 Ëo N, (A3.24)

e=1toE,

ín the NE unknormr \rrij r D = 1 to N, í = 1 to I, j = 1 to J (note that

E = IJ). A determínate system of equations formed by applying the

(A3. 23)
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r+eighted residual criterion A3;5 rvith rveighting function ,ot" = 1 (sub-
q

domain method).

<1,Rtt>=0 , n=1ËoN, (43.25)

e=1toE.

This weighted resj-dual scheme consísting of undetermined functions

A3.2I, double cubic spline trial solution A3.22, equation residual A3.24

and subdomain MrrR criteria 43.25 wÍI1 be referred to as method B. The

major advantage of method IJ over meËhod A is the reduced number of

degrees of freedom for each dependent varíable at each node. This

results in fer¿er undetermined functíons to compute. Also, method B

forces the fíeld to retaín a double cubic spline shape at all times, a

desired characteristic sínce the initial data is sp1íne fítted and

splÍnes readily permit the use of a varíable area grid. I,liËh the number

of terms in 43.22 J-eft to the judgement of the user, one may chose to

experiment by initía11y usíng a crude spline fit and i:hen íncreasíng

Ëhe number of terrns to learn the effect of the accuracy of the spline

tTial function on the solutíon obtained. Equatíon 43.25 reduces to a

systern of equations of the forn 43.20, rvith z = NE. Símilar to method

A, Ëhe major dísadvantage of mettLod B is Ëhe difficulty in solvíng the

resulting system of equations. IË ís rvith this drarvbacic in mind that

a third meËhod is constructed by adding a slíght modifícation Ëo method B.

Several characteristics of method B are appealing: the Ëríal

solutÍon is of double cubic spline nature for all t >- 0, the degree of

approximation of the trial solution to a double cubic splÍne may be

adjusted as desired, there is a minimum number of undeternined functÍons

(one degree of freedom per dependent varíable fíeld per node), ancl tire

subdomain rveighted residual method is employed to distribute the
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equaËion resídual (error) over.each element. It norv remains to remove

tl-re drar,¡backs of trying to solve a difficult system of ordinary differ-

ential equations of the form 43.20. Thís may be accomplíshed by

expressing the undetermined functions Yrr..(t) in terms of orthogonal

polynornials in time. Then, using the Galerkin or sorne other IftJR, the

unknotr'n coefficients in the polynomial for vrr..(t) could be generated.

Hence, form
K

V ..(t) = X anl-'l I',ì- k=l tijk Pk(t)

A suitabl-e selecLion for the polynomials pk(t) would be Legendre poly-

nomials. \^Iíth the transformation x = (Zt/T) - 1, Legendre polynomials

P(x)r'orthogonal over -1 I x S 1, are transformed to be orthogonal over

0StSt. Therefore,

PI(t) = 1 ,

P2(t) = 2r -
a

.LPr(t) = bt
â

t¿Í.) = 20t'

1,

6t41,

- 3o'r2 + r2-r - Lr

T
2n-I

(A3. 26)

(A3.27 a)

(A3. 27b )

(A3 .27 c)

ruhere

and

:

= t/r

p(t)P
n

(t) =
m

T

rT,0

=Q

Substitutíng 43.26 and 1t3.22 Lnto

equations

n,

n.

results ín the system of

rffi=

, rnl

A3.t2

Rtt(*ry,tr ani,L) = 0 r D = 1 to N,

e = I to E,

in the NEK unkno,orr ur,r¡r., i = 1 to I, j = I to J, k = I to

n = 1 to N. This system 43.28 is converted to a determinate

equations by applicatíon of the rveigl-rted residual crj-tería

(A3.28)

K and

system of
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. Rte, Pk ,

(A3. 2e)

The inner product is

residual criteria in

in time. This gíves

<arb>*: (A3.30)

IÈ is seen that the orthogonality of Legendrefs polynomÍ-als will lead

to considerable simplification in the system of equaËions 43.29. By

using the linits k = 1 to K in system A3.29, one could obtain K

equatíons for each dependent variable fietd on each elemenL. Holever,

in this case, iuíth Yr.,r, (t) represented by A3.26, it is necessary to add

a restríctíon on the coefficíents anijk in order that vrr..(0) saËisfíes

prescríbed inítia1 conditÍons. Since p,,(0) = (-1)k*l, rhen

= 0 , e = l to E

n=1toN

k=2toK

norv defi-ned to combine

space v¡ith the Galerkin

T
II.f -ab dx dv dto'
c

or 1 to (K-1).

the subdomain weighted

weighted residual method

K
Y-,,(0) = I (-l)U*t "--.,nat nrJK" lc=l

r fl = I to N,

i = I to I,

j = 1 to J.

(A3.31)

Therefore, K equatíons for each depencient. varíable on each element are

obtained by vrriting equatíon r\3. 29 f.or k = 1 to (K - 1) or k = 2 to K

and by imposing the initíal condition 43.31 to supply rhe final

equation. Equations A3.29 and 43.31 together form a determinate system

of NEI( equations in the NEK unknorvn coefficients anijkr D = 1 to N,

i = 1 to I, j = 1 to J, k= 1 to K (where i = 1 to I and j = 1 to J is

equivalent to e = 1 to E). This system ís a nonlinear system of

sinulËaneous algebraic equations. Tr+o contmon methods of obtaining an

approxirnate solution to such a system are the Newton Rapson method and



LT7

the method of steepest descent (for example see Forsythe ancl }loler

(pp.132-136 of ref 53) ancl Hilclebrancl (pp.443-451 of ref 54)). An alter-

naËi-ve solution procedure used successfully by Macdonald (50) in his

solution of the incompressible boundary layer equations via the Galerkín

technique is a method of parameter varíation. Thís method is descríbed

in deÈai1 in a paper by Deist and Sefor (55).

This final rveighted residual method rvi11 be referred to as meËhod C.

It has all the advantages of meËhod B, with the additional ad.vantage of

reducíng to a system of simultaneous nonlinear algebraic equatíons rvhose

solution may be obtained by conventíonal techníques. The essential

features of method C may be summarized as follows:

1. The trial solution is of a double cubic sp1íne nature for
all t >. 0.

2. The degree of approximation of the trial solution to a
double cubic spline may be adjusted as desired.

3. There ís a minirnum number of undetermined functions per
dependent variable field per node.

4. The undetermined functions (nodal values of the dependent
variables) are expressed .in terrns of orthogonal polynomials
in time.

5. The subdomain rveighted residual method is employed to
distribute the equatíon resídual (error) over each elernent
in space.

6, The Galerkin r.'eighted residual neËhod is employed to
dístribute the equaËion residual, rvei-ghted by Legendre
polynomials, over an interval T in time.

7. The final system of equations to be solved numerically is
a nonlinear system of simultaneous algebrai-c equaËions.

B. The method is applied to advance nodal values of the
dependent variables an interval T in time.

g. The method rnay be repeated over and over again to obtain
a forecast of any desired length (subject to numerical
srabiliry).
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The speed of obtaining a solutíon to the system of algebraic

equatíons of method C may be greatl)' jmproved by supplying a good

starting estimate for the coefficíerar "r,i¡L. One method of obtaíning

good starting estimates for these coefficients will be briefly illus-

trated for the K = 3 case. Extension to other values of K may be

(A3.32)

readily performed. From equaËíons A3.26 and Ã3.27,

Y ..(0) = a - a ..^ + a ..^nU nr-J I nLjz nijJ
d*1
dt 'r,i3 (t) t=o = i- Q anij2 - 6 tr,r53) 

'
t

þ 
*"', ctl t=o = 

# 
anij3

ff ínitial values for Vr,íj and iËs first trtzo tíme derívatives were

known, Ëhen the system 43.32 could be solved for starting estímates of

the coeffícients anijk, k = 1 to 3. Thís would then be repeated for

each dependent variable (n = 1 to N) at each node poínt (í = I to I,

j = 1 to J). The value of Yrr. . (0) ís knoiun from prescríbed initial

conditions. An estÍmate of (d Vníj/dt)¡=6 is obtained by solving for

d Y--,/dt at t = 0 in equation 43.12. fn thís equation, the ínitialnaJ

values of all dependerrt varíables are ltnov¡n at the nodes, and spatial

derivatives of the dependent variables are evaluated by a double cubic

spline fit to the ínitial data fíelds. Thís ís símilar to the methods

used to estínate spatial derivatives in the model discussed in the body

of this thesis. TinaLlyr ân estímate of (¿2 Vrrij /dt2)t=0 is obËained

by differentiating equation 43.12 rvJ-Ëh respect to tíme, solving for
,,

d- Y-_.,/dt', and evaluating all tl-re remainíng terms using theír pre-naJ

scríbed or previously generated inítial values. In thís calculation,
â â -dvvalues for;; or:- of fníi are obtainecl by forming a double cubicd>i ðy dt

spline fit to the initial values - dVr of ;¡ij obtained ín the previous step.
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It is recognized that calculating starting estimates of the unknor¿n

coefficíents a--,,- by the method illustrateci above is essentially " Kthnl-J t(

order forrvard differencing scheme in time. If this scheme alone ivere

used to advance the dependent varíable fields the numerical solutj-on

l,¡ould prove unstable in a short tíme. Since thÍs forrvard differencing

r'¡ould be used to return only starting estímaËes of Ëhe undetermined

coeffícíents a__..,_, it should have no effect on the stability of the
nLJ t( -

numerical scheme using the subdomain and Galerkin weighted residual

methods.
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Table 5. I: Summary of Forecast Model Notation and Figures.

Model Description

the proposed forecast model in iËs entire-
ty, using the bicubic spline method on a
telescoping grid having superimposed ex-
pansions of two types (grid D, Figure 3.4)

a modified form of model
cubic spline method on a

expansion of Type I only
3.3)

ST, using the bi-
grid having the
(grid C, Figure

4.99-4. L20

4.69-4.90

4.9L-4.98

4. L2L-4. L2B

4.47 -4.68

5.r-5.20

c1

P7

a modified form of model ST, using central
finite differences in place of bicubic
splínes, on a grid having the expansion of
Type 1 only (grid C, Figure 3.3)

a modified form of model ST, usíng the new
spline based on continuity of curvature
with a = A.222222 and XS = 0.0 in place of
bicubic splínes, on a grid having the ex-
pansion of Type I only (grid C, Figure 3.3)

a preJ-iminary experiment using finite
differences on a IIA grid with l0o grid
interval and smoothing operators (grid B,
Figure 3.2)

the Mintz-Arakawa numerical forecast model:
forecast on a 50 latitude, 50 longitude
grid
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Table 5.2: Overall Forecast Performance

RMSE-MA

d%

RMSE-S

d%

RMSE-CI

d%

RMSE-F

d%

R}.ISE-ST

o,/õ

RMSE-P7

ð%

5. 380

6.t78
14. B

s. sB4

3. B0

s.533

2.84

5.531

2.BL

5.065

-5.8s

5.784

7.50

6.032

8.606

42.6

7.493

24.2

7.5L7

24.6

7.478

24 .0

6.954

L5 .2

8.669

/+3.7

4.493

6.330

41. 0

s.B4s

30.2

5.947

32.4

6.L67

37 .4

5.857

39.4

6.77t
50.7

2.7 54

3.r83

15.5

2.7 28

-0,94

2.605

-s.40

2.584

-6.L7

2.487

-9.70

3.167

15. 0

r. 363

I.833

34. s

L.526

L2. O

L.46s

7.5

L.434

5.2

r.415

3.8

L.462

7.3

68 .4s

95.57

39.6

82.06

L9.9

82.65

20.8

83. OB

2L.4

78.30

L4.4

83.00

2L.2

100. B0

L06.22

s.39

L02.95

2.L4

LO2 -23

L.42

108. 00

7.r5

L02.7 4

r.93

136.49

35 .4

Units: Vl,V2 - m/sec

Tl,T2 - oK

$1,S2 - m

Qi -gHZO/gdrYai-r

RMSE - R-}ISCrlol =::::-:=-- X l00Ttu/o 
RMSC

xl0"
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Table 5.3a: Comparison of d% for I'fodels S and P7 Relatíve to I4A

Factor = the factor which
yield d% for the

d% of model MA must be multiplied by to
indicated mode1.

Var iab Ie

b, 0. 96

w,0'4
wr2'2

b,4.46
b,2 '5
rv, 0. 9

b ,0.7 2

Factor

b, 0. 99

b,O,2

w17 '2
b,5.23

b,6'B
w, 1.5

w, 5. 0l

b,9 .65

b,9.0
w,0.2

b,8.76
b,B '2
b,5'5
b,0.21

VI

v2

T1

T2

Q1

01

ó2

Ll+

Ll2

3/4

neg'

Lls

r/2
2/s

L/2

1

L!+

t
r/4
L/2

7

Table 5.3b:

Difference =

Comparison of d% for I'lodels Cl, F and ST Relative to S

the difference betrveen d% of model S and d% for the
indicated modeL. The adjectives better (b) and worse
(.0) descrii¡e whether the indicated model has a lower
or higher value of d"L compared to that of S.

Diffe rence

Var iab le

V1

v2

TI

T2

Qr

ór

þ2
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TabIe 5.4: Comparison of Models
Mean Differences at

a) Model S

Var iab le Po le

S and l"IA Against the True l,ieather Change:
Different Latitudes

High Lat. MiddIe Lat. Low Lat. Equator

V1

v2

T1

T2

Q1

0r

þz

0.7

2.5

0.7

0.6

0

5

-9

1.0 P

-0.4 c

I.5 P

2.7 VP

0

-15 c

25 VP

-1.3 VG

-o.2 c

-O.B VG

-I.6 VG

-0. 15 c

20P
-25 VG

1.3 P

3.6 VP

4.L VP

2.5 VP

0.39 P

30 VP

57 VP

2.5 VP

4.6 VP
, 4.I VP

3.5 VP

O. 85 VP

31 VP

40 VP

3.1 VP

L.6 VP

7.2 VP

3.9 VP

1.05 VP

45 VP

IO3 VP

2.7 VP

1.6 VP

6.8 VP

4.8 VP

1.05 vP

45 VP

74 VP

P

P

P

P

b), Mode I I,lA

Variab le Po 1e High Lat. Middle Lat. Lorv Lat. Equator

VI

v2

T1

T2

QI

ór
q2

-0.9
0

3.2

2.L

0

-27

-4s

1.3 VP

5.0 VP

L.4 P

0.6 P

o.23 P

20 VP

7P

-O.B G

0.8 P

0.2 P

-1.2 vc

0.14 P

40 VP

-9c

VP

VP

VG

VG

Difference = RMSE.
l

PoIe,
High Latitudes,
I,Iiddle Latitudes,
Low LaËitudes,
Equator,

1- Õ = 9Oo
Z-0. Õ = BO-55o
7-Lí. e = 55-3oo
12-16.Õ = 30-5 o

17,18,O = O 
o

- RMSC.
-l

j=
j=
i=
!_J-
j=

secUnits: Vl,V2
Tl, T2

4tr, þ2
Q1

-m/o-K
-m
-s -?H^O/gdryairxl0"

z

Adiectives: Poor(P), Very Poor(VP), Good(G),
Poor = Slli 191¡ ,

Good = RMSEi RMSC.
JJ

Very Good(VG),
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Table 5.5: Comparison of Models F and ST Against Mean Differences at
Different Latitudes

a) Model F

Var iab Ie Pole High Lat. iddle Lal. Loru Lat. Equator

VL

v2

TI

T2

Q1

ór

þz

0.2

0.4

2.4

0

0

- 15

-40

-1.0
1.0

r.4
-0.7

0

-5

-3

0.5

0.7

0.6

-0.1
0

2

9

0.1

-0.9
0.1

-0. r

0. r

-7

-9

-0.4
-0.6
0.6

-0. L

-0.03
2

10

-0.2

-0.2
0.2

-0.2
-0. r

0

0

-0.4
0.2

-0.5
-0.1
-0.17

-6
)

-1.0
0.4

-0.1
-0.5
-0.5
0

0

b) Model ST

Var iab 1 e Pole Hígh Lat. iddle Lat. Low Lat.

VI

v2

T1

T2

Qr

ör

þz

-0.6
- 0.6

0.1

-0.2

0.02

-rl
10

Equat or

-) )

-2.0
0

-r.0
-0.85

-5

5

Difference =

PoIe,
High Latitudes,
Middle Latitudes,
Low Latitudes,
Equator,

Units: Vl,V2
TL,T2
ö1,ó2
Q1

j=1, o=90o
i=Z-ø,' O=g0-551
1=l-ti, o=55-3ol
i = fl-tø, Õ = 30:5 o

j = 17,lB, Õ = 0

RMSE., specified model - RMSE., model S
JJ

- m/sec
-oK
-m
-ànro/gdryairxl0-3
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Table 5.6: Temperature Phase Speeds at 45o Latitude

a) Lorver Level Temperature (800 mb, Tl), Position in Degrees Longitude

Model Phase Speed

0 Hour

36 Hour
True

MA

S

F

ST

P7

0 Hour

36 Hour
True

MA

s

F

ST

P7

- 135

-r20

-L25

-llB

-t2L

- 120

- l3s

- 103

-93

-93

-93

-93

-95

- 105

- 180

- 155

- 160

- 165

- 170

- 180

-L92

b) Upper LeveI Ternperature (400 mb. T2), Position in Degrees Longitude

Mean
Moclel Phase Speed

- 165

- r30

-r45

-L42

-150

-L43

-162

-162

- 138

- 148

- 140

-L4s

- 138

- 155

-L43

- 1r5

-L24

- 118

-r25

-r1B

- 138

- 105

-BB

-95

-95

-95

-92

-95

-80

-55

-70

-70

-68

-68
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Figure 3.5: InterPolaËion Method A

Figure 3.6: InterPolation Method B
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