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L two-level numerical fovecast model is proposed in which bicubic
polynomial splines ave uveed to ¥it the spatial variations of the depend-
ent variabie fields on a variable area telescoping grid. The spline
method gencrates spatial derivatives which inherently repvesent a form
of smoothing of the siope estimates genavated by finite difference
methods; the telescoping grid is constructed to ensure computational
stability at high latitudes without the need of high frequency filters,
spatial staggering of the dependent variables and complex flux calcula-
tions.

Thirty-six hour numerical forecasts using the proposed model and
using a 1969 version of the Mintz-Arakawa model are compared between
themselves and the real weather. The spline method is shown to have
advantages over the finite difference method in terms of decreased phase
lag and lower root-mean-square forecast error. Computation time is de-
creased by a factor of 1/3 due to the telescoping nature of the grid,
and there is no decrease in forecast accuracy in the fine grid region
arising from the surrounding coarse grid regicn.

Extensions to the model are developed through the derivation of
a generalized spline based on continuity of curvature and a numerical

forecast technique using weighted residual methods.
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NOMENCLATURE
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v

time

coordinate to the east

coordinate to the west

prassure

surface pressure

pressure at the base of the strétosphere, 200 mb
PS - PT

® - PT)/c, normalized pressure

horizontal wind components in the x and y directions,
respectively

Ltemperature
potential temperature

er vapour/massz of dry air)

0N
ct
®

mixing ratio (mass of we
geopotential
surface geopotential

longitude

latitude

longitude grid spacing in the Mintz-Arakawa model
latitude grid spacing in the Mintz-Arakawa model
extent of the polar cap, in radians of latitude
metrics

mean radius of the earth

ngu, flux in the =x direction

mgv, flux in the y direction

mng

specific volume




v,¥

At

‘vi

density
specific heai at constant pressure
gas constant for dry air
R/C
P
standard pressure, 1000 mb.

level (altitude) sign parameter

x and y components of the horizontal friction force
per unit mass

heating rate per unit mass

evaporation rate

precipitation rate

represents any dependent variable

time step interval

the number of time steps between energy scurce calculations
general indexing pair specifying the grid point

the pumber of rows of grid points in the y direction

the number of grid points in the =x direction on latitude
circle j ‘

grid point spacing on the j'th latitude circle
resultant velocity

S(x) or 8(x,y), the equation for the cubic spline curve
fit or the bicubic spline surface fit.

S$(x,;) or S(xi,yj)

o P » slope at the grid point in the

X direction

gi(xi’yj) » slope at the grid point in the y direction
2
§_§.(Xi’yj) , cross derivative
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u ,vﬁ,V 0O = expressions used in defining the polar boundary
PP PP ~condition for the horizontal wind components
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a,b,Bi,XS,US,Di,Ci ’Ai My ,Ai U = constants and expressions
used in defining the generalized spline based on
continuity of curvature
a,b,c,a;ﬁ,hi = expressions used in interpolation method A
fl’fZ’hi = expressions used in interpolation method B
RMSE = 36 hour forecast root-mean-square error relative to the
- true weather at 36 hours
RMSEi = average of RMSE along longitude line 1
RMSEj = average of RMSE arouhd latitude circle j
RMSC = the root-mean-square change in the true weather over
: the 36 hour forecast period
RMSC4 = average of RMSC élong longitude line i
RMSC. = average of RMSC around latitude circle j
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Glossary

balanced wind: Applying the assumption of non~-divergent quasi-horizontal
flow in which the horizontal velocity field is expressed in terms of a
stream function, and other assumptions, the vector equation of motion
may be reduced to the "balance equation". This equation involves the
stream function and gecpotential as dependent variables. Under certain
conditions, with a known distribution of geopotential, the balance
equation may be solved for the stream function. The velocity field
obtained from the stream function is called a balsnced wind.

barotropic: A barotropic atmosphere is one in which the surfaces of constant
pressure are also surfaces of constant density and temperature.

computational mode: The computational mode is the portion of the solution of
the difference equation which has no physical counterpart in the true
solution of the differential equation.

filtered equation models: A numerical forecast model in which the governing
equations are differentiated first and then numerically solved is termed
a filtered equation model,

geopotential: The work dome in moving a unit mass from mean sea level to some
elevation above sea level is called the geopotential of that level.

grid points: These are points on the numerical forecast grid at which values
of the dependent variables ave estimated at discrece Cime intervalis
throughout the forecast.

latitudinal: The latitudinal direction is the south-north direction on the
earth, perpendicular to the latitude circles.

longitudinal: The longitudinal direction is the west~east direction on the
earth's surface, perpendicular to the longitude circles,

nine point difference operator: This denotes a finite difference expression
involving values of the dependent variables at nine grid points.

node point: see grid point

numerical explosion: A numerical forecast is said to explode numerically
when the magnitudes of the dependent variables exceed the allowable limits
of computer storage.

mixing ratio: A measure of moisture content, the mixing ratio is the mass of
water vapour per unit mass of dry air.

potential temperature: If a parcel of gas at temperature T and pressure P is
brought adiabatically to standard pressure (1000 mb), the resulting
temperature in the parcel is called the potential temperature,




phase lag: The position in longitude of the large scale meteorcligical waves
~in the numerical forecast is compared to the position of the waves in the
true weather. The difference between the two positions is termed the
phase lag of the numerical forecast,

physical mode: The physical mode refers to that portion of the solution of
the difference equation which has a physical counterpart in the true
solution of the differential equation,

primitive equation models: A numerical forecast model in which the governing
equaticns are numerically solved in their usual form is termed a primitive
equation medel.

surface geopotential: This is the geopotential at the surface of the earth.

wave number n: The number cf complete meteorological waves around a latitude
circle is the wave number.

ix




1. INTRODUCTION

Weather prediction by numerical methods deals with the numerical
solution of the hydrodynamic and thermodynamic equations governing
atmospheric flow. Such a solution involves an enormous number of
arithmetic and logical operations for which reason electronic computers
are now used. The basic principles underlying numerical weather
prediction were discovered early in this century. At the time, it was
recognized that the non-linear system of equations did not possess an
analytic solution. Also, initial data defining the state of the atmos-
phere was inadequate. The first attempt to solve this system of equa-
tions using numerical methods was made by L.F. Richardson in 1921. His
results were in considerable error and interest in numerical weather
prediction declined. However, with the advent of the electronic computer
in the 1940's, numerical forecasting was revived. The first sucpessful
numerical prediction was made by J. Charney in 1949. From this point on,
the science developed rapidly and models with varying numbers of
restrictions on the flow were studied by numerous research groups in
many countries. ~

It is a common practice to classify numerical forecast models into
one of two basic categories based on the form of the governing differ-
ential equations (Haltiner and Martin (1), Haltiner (2)). In primitive
equation (PE) modelsf the governing equations are numerically solved in
their usual form, whereas in filtered equation (FE) models, the governing

equations are differentiated first and then solved numerically. The

* Refer to the Glossary for definitions of common meteorological
terms. :




PE models permit all types of wave motions (both long and short waves),

while the FE models permit only the long meteorologically significant
wave motions called Rosgby waves. The earlier numerical forecast models
are of the filtered type since they are the simplier model form
(containing approximations which are only true on the average over long
periods of time) and require considerably less computation time. This
shorter computation time fof FE models compared to PE models arises
from the longer time steps and fewer dependent variables and equations
in PE models. With the increase in computational speed of computers,
it becomes feasible to investigate the more sophisticated PE models.
Numerical forecast models are primarily used for general circula-
tion studies and short term weather prediction. 1In general circulation
studies, the forecast usually begins with an atmosphere at rest and
extends over a long period of time (sevefal months). However, in short
term weather prediction, the forecast begins with real weather data
defining the initial state of the atmosphere and extends over a short
period of time (up to a Week). Three PE general circulation models
which have been in operation for several years are a multi-level
model developed by Smagorinsky at the Geophysical Fluid Dynamics
Laboratory, U.S.A. (Smaéorinsky (3,4), Smagorinsky, Manabe and Holloway
(5), and others), a -two level.model developed by Mintz and Arakawa at
UCLA (Mintz (6), Langlois and Kwok (7), and a multi-level model
developed by Kasahara and Washington (8) at the National Center for
Atmospheric Research, U.S.A. These models are being applied only in
a limited fashion to short term forecasting. The Smagorinsky model
shows promising results with real weather data for short term forecasts

up to a week in duration (p.77 of ref 2), however the computation time



is too long for operational purposes. Similarly, the Mintz-Arakawa

model is being applied with some success to short term predictions
(Kesel and Winninghoff (9), Price (10)). Two short term forecast
models which have been in use for many years are an operational baro-
tropic model developed by Shuman and Vanderman (11) and a six level PE
short term forecast model developed by Shuman and Hovermale (12). 1In
additiow, many other short term forecast models are in use in various
countries for both operational and experimental purposes.

Three major steps may be identified in the formulation of a
numerical weather prediction model. The first step is to choose a
system of hydrodynamic and thermodynamic equations, in terms of a
suitable coordinate system, in order to explain mathematically the
motign in the atmosphere. The relevant equations are Newton's second
law of motion, the first law of thermodynamics, the equation of state
for a perfect gas, and laws expressing conservation of dry air and
water vapour. Next, it is necessary to approximate the continuous
dependent variable fields by discrete values of the variables at specified
nodes or grid points in the forecast region. This selection of the
forecast grid is of major importance in determing the forecast resolu-
tion, accuracy, and computation time. The final step is to obtain an
approximate numerical solution to the governing equations at the specified
grid points, thereby advancing the dependent variable fields in time.
In this thesis, emphasis will be placed on the second and third steps
in the formulation of the forecast model: the selection of a forecast

grid and the method used to solve the governing differential equations.



1.1 The Method of Solution of the Governing Differential Equations

Consider first the method used to solve the governing differential
equations. In the majority of numerical forecast models, finite differ-
ence methods are used to obtain an approximate solution to the system
of partial differential equations. The basic approximation in finite
difference methods is to replace the continuous variables by discrete
variables which vary stepwise by finite increments in space and time.
Whereas the behavior of the continuous variables is governed by the
system of differential equations, the behavior of the discrete variables
is governed by a system of difference equations. Hence, a difference
equation is simply the finite difference representation of a differen-
tial equation; and the solution of the differenée equation yields an
approximate solution to the differential equation at specified points
in space and at discrete intervals in time. Associated with the
numerical solution of the system of difference equations are a number
of errors, primarily truncation error and discretization or computational
error (Smith (13), Forsythe and Wasow (14)). - The truncation error in
the difference equation arises from representing the spatial derivatives
in the differential equation by the first few terms in a Taylor series
expansion of the derivative, in terms of specified values of the vari-
able at adjacent nodes or grid points. This error depends on both the
size of the finite space increment and the waveleﬁgth of the continuous
field being estimated (Gates (15)). The most widely used procedure is
the central space difference, which may be illustrated in the case of
the first derivative of a continuous function £ as (ref 15, 13)

gﬁ_: f(x + Ax) - f(x - AX)
ox 20%

’ (1.1)



where x denotes a typical spare variable and Ax is the grid point
interval. The truncation error of this approximation is in the order
of (Ax)z. Other frequently used estimates for the first derivative are
the forward difference and backward difference,

Ex + Ax) - £(x))/0x and (£(x) - f(x - Ax))/ox ,
respectively. The error in these approximations is in the order of Ax.
The difference between the difference equation as a whole and the
differential equation which it represents is called the truncation
error of the difference equation.

The second error, discretization error, is the error in the exact
numerical solution of the difference equation (Smith (13)). If ¢
represents the e;act solution of the partial différential equation,
and ¢D represents the exact solution of the‘difference equation, then
the discretization error is ¢ - ¢D. The solution method is convergent
if ¢D approaches ¢ as Ax, At become infinitisimally small. Here, Ax
and At denote the finite space and time increments respectively. Closely
associated with the discretization error is the computational stability
of the difference scheme; that is, the time variation of the discreti-
zation error (Crandal (16), Kuri%ara (17)). Fundamentally, whenever
At/Ax becomes larger than some critical value, the computational mode
in the numerical solution tends to grow in time and eventually destroys
the physical mode. The physical modé refers to that portion of the
solution of the difference equation which has a physical counterpart in
the true solution of the differential equation; the computational
mode is the remaining portion of the solution of the difference equation

and has no physical counterpart in the true solution of the differential

equation. Since there is no analytic solution to the governing partial




differential equations for atmospheric flow, it is customary to

examine the stability of this corresponding linearized version of the
governing equations, with constant coefficients (the von Neumann
stability condition, Kasahara (18)). To simplify the analysis

further, a common approximation is to check the stability of the differ-
ence equations considering only one factor at a time (ref 18). For
example, to examine the stability of the difference scheme for a typical
advective term in the thermodynamic equation, one may examine the linear
one dimensional advection equation for temperature, T,

T 5T
5t T Cax -9 o

(1.2)
where ¢ is a constant (the zonal wind speed). Haltiner (pp. 18-25

of ref 2) shows that the difference scheme for equation 1.2 using central
differences for both time and space, is computationally stable provided
cht/Ax < 1. Tﬁis means that the computational mode in the numerical'
solution approaches O as time increases, provided cAf/Ax < 1. However,
if forward tiﬁe and central space differences are used, this difference
scheme is computationally unstable for all values of At/Ax. It is
interesting to note that the case of forward time and forward space
differences is computationally unstable when ¢>0 and computationally
stable when c<0. This corresponds to the so-called "upstream differen-
cing" technique, in which a stable differencing 'scheme is obtained

when the space differencing is in the opposite direction to the wave
motion (Gosman, et.al. (19)). 1In addition to the computational stability
of the difference scheme, it is necessary to consider the degree of

phase lag and amplitude distortion of the physical mode of the numerical

solution. For example, although the difference scheme using central



finite differences in space and time for the one-dimensional advection
equation 1.3 is computationally stable when cAt/Ax<l, the physical mode
exhibits a phase lag and smaller amplitude when compared to the true
solution.

The accuracy and stability characteristics of ten different finite
difference.schemes are discussed by Grammeltvedt (20) using the primitive
equations in a barotropic fluid; with primary emphasis on the effects
of the spatial differencing on the forecast. With an analytic wave for
the initial condition, the analysis shows that the quadratic conservative
difference schemes (or schemes which conserve both the first and second
moments of the dependent variables) and total energy conservative
difference schemes (or schemes which conserve the sum of available
potential plus kinetic energy) are more stable than the other second
order conservative schemes. However, the most stable schemes are those
in which the advective terms are calculated using nine point spatial
finite differences;and therefore contain a form of smoothing, and the
generalized Arakawa scheme which conserves mean vorticity, mean kinetic
energy, and mean square vorticity in nondivergent flow. The most
commonly used methods to suppress computational instabilities are to
include artificial viscosity terms in the difference equations, or to
write the finite difference equations in a form which conserves certain
statistical moments (usually of quadratic form) o£ the dependent
variables (ref 20). The Smagorinsky general circulation model (ref 3,4,
5) uses finite differences which conserve momentum and total energy.
Therefore, the Smagorinsky model requires lateral eddy viscosity terms
to suppress the nonlinear computational instabilities inherent in the

difference scheme, but Mintz (6) feels that this may have the undesirable




side effect of excessively damping the meteorologically significant

wave motions. However, the Mintz-Arakawa general circulation model
(refv6,7,10) uses finife differences due to Arakawa which are both
quadratic conservative and total energy conservative schemes. Therefore,
the differencing in the Mintz-Arakawa model is inherently nonlinearly
computationally stable without the use of explicit frictional dissipa-
tion. Of the short term prediction models, Shuman's scheme (ref 11)
calculates the advective terms using a nine point difference operator
which should yield the most stable forecast due to its smoothing effect
(ref 20).

In addition, to the space differencing scheme, the form of time
differencing employed has a strong effect on stability. This was men-
tioned briefly in the discussion of computational stability, where, for
example, it was noted that forward differencing in time is unstable
whereas central differencing in time is conditionally stable (provided
cAt/Axsl}. The stability characteristics of several implicit, explicit
and iterative time differencing schemes were examined by Kurihara (17)
using a linear system of equations. 0f the methods investigated, the
two stage leapfrog-trapezoidal method shows the most promise since it
has little damping and iittle phase retardation effect on the physical
mode, with strong damping of the spurious computational mode, for
cht/hx<V2. However, being a two stage scheme, i; requires twice the
computation time of the simple centered difference time differencing
scheme (also called the centered leapfrog explicit scheme), which it-
self has no change in amplitude of both the physical and computational
modes with only moderate acceleration of the physical mode. Therefore,

the simple centered leapfrog explicit scheme is used in most models.




In the Mintz-Arakawa model, a modified Matsuno time integration (Matsuno
(21), pp. 105-110 of ref 10) is employed. The original three stage
Matsuno scheme gives strong damping of the high frequency waves (which
are usually spurious). However, the modification used in the Mintgz-
Arakawa model essentially reduces the Matsuno method to a two stage
Euler-backward scheme discussed by Kurihara (17). This scheme has no
computational mode, with moderate selective damping and large phase
acceleration of the physical mode.

In this thesis, a numerical forecast model is proposed in which
double cubic polynomial spline functions are used to fit the spatial
variation of the dependent variable fields, thereby eliminating the
need for finite differencing in space to estimate the spatial derivatives.
The cubié spline S(x) of interpolation to the ordinates u, at mesh
10cé£ions xi, i,...M, is a piecewise continuous function defined as
a cubic polynomial in each interval X, g € x.s X, having continuous
first and second derivatives (Ahlberg, Nilson and Walsh (22), Greville
(23)). The generalization to two dimensions to obtain the double cubic
(or bicubic) spline is straightforward. There are several reasons for
proposing that the use of double cubic polynomial splines may be
an improvement over finite difference methods in estimating spatial
derivatives.

Firstly, cubic polynomial splines are an effective tool in the
processes of numerical interpolation, differentiation, integration, and
curve fitting (pp. 42—52 of ref 22). 1In particular, the slope estimates
returned by a spline curve fit inherently represent a form of smoothing
of the slope estimates returned by standard forward, backward or central

finite differences. In the numerical forecast models developed up to
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this point, complex differencing schemes are necessary to obtain a
smoothed slope estimate. For example, the Shuman model (ref 12) uses
nine point difference estimates (a form of smoothing) to obtain estimates
for the advective terms; and the Mintz-Arakawa model (Langlois and Kwok
(7), Price (10)) was complex, mulﬁi—point difference estimates for the
spatial slopes. These complex and somewhat arbitrary smoothing schemes
used in finite difference methods are not required when the double
cubic spline is used to estimate the first derivatives, due to the
inherent "smoothed" nature of the spline curve fit. It should be
mentioned that this does not hold true for the second derivative. Rather,
the finite difference estimate of the second derivative given by Newton's
second divided difference (a three point operator in one-dimension)
represents a smoothing of the spline estimates for the second derivative
(p.44 of ref 22). 1In order to employ the spline method to obtain good
"smoothed" second derivative estimates, it is necessary to do a spline
fit to the first derivatives, with the first derivative itself obtained
from a previous spline fit. Ahlberg, Nilson and Walsh (p.44 or ref 22)
discuss this "spline-on-spline" method of obtaining smoothed second
derivatives.

A second reason for proposing the use of a spline function to
obtain slope estimates,.in place of finite difference methods, is the
minimum norm property, or Holladay's theorem, for cubic splines (p.3 of
ref 22). This theorem states that for any function f(x) € cz*satisfying
f(xi) = u,, i=1,...M, the integral of |f"(x)|2 over the interval

(Xl, XM) is a minimum when f(x) = S(x), provided S”(xl) = S"(XM) = 0.

* f(x) and its first two derivatives are continuous.



