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.1ì l-ru'o-1e,.'c, I rlumc ricaL f<¡ r'eci:st nti-:cicl. í-s pr.oi;ost: d iir i,¡hi-cl¡ L.icubic

poìynoní.aì. si:IÍ-nes arr: us,ecl i.r: i:.r tilcr srpa'tia-'l var:ialíons r:1'the derpeLrcl -

en'ú vari¿rl.r j.c f j-el <js oLr a r¡a:: j,¿ibIc arca tel.escoping gi:1cì. 1'lie spline

methcd !Ìencrates spaLial drrir,¿ltiv'eEr r¿hicli:i,nhcrcntl.;v t'epi-',:senr a fotjrû

of siloothilg oi tìre siope eslir:rates g,enilräi-ed b;; finite cìif-tercnce

rueIhoCs; the te1.r.:sco¡.ring gr-i.d is constructcrd to ensure computational

stal'rilir;y at liigli lati.tücles i¿it1:out the necd of high frequencv filte!:s,

-spatí.aJ- staggerirrg of the depencient r¡a-,:j-aroles and comple>l flux calcrrla-

tions.

Thir:ty-s j-x hour numer j-cai. f or:ecas Is trs-i-ng tire propo.eed ¡nc¡del and

usiltg a L969 t¡ersior-i of the }fintz-Arakar^ia model- a-r:e compared be Lr.;een

thelnselves and the real weather. Tire spl.írre method is shor¿n Lo Lrave

ad\¡ania.ges over the fi.níte di-ffererrce method in tel:ms oi: decreased 1:ìiase

lag and loi"er root-mean-square forecast er.ror. Cornput.atj.on lime ís rie-

creased b)'a factor of l/3 due to the telescopir-rg nature of the g:,:ici.

and the re ís no decrease in f orecas t accul:¿lcy j-n the f ine grid region

arising f-rom the surrourrding coarse gria regicn.

Extensions to {-he model are developecl through the derivation of

a gene raLLzed spline based or-l continuity of curvatlrre and a numerical

f o recas t te chn ique us ing rve igh te d ::e s idua I me thods .
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NO}lENCI-ÂTURE

= tíme

= coorclinate to the eas t

= coordinate to the west

= pressuïe

P_. surface pressure
S

Pt = pressure aL the base of the straËosphere, 200 rnb

e - P"-PT

o = (P - PT)/6, normaLLzed pressure

urv = horizontal r,¡ind components in the x and y directíons,
respecti.vely

= Lenperatut:e

= potential ternperatul:e

= mixj-ng ratio (mass of r¿e-ter vapour,/nass of dry a:'-r)

= geopotenLial

0s surface geopotential-

Q = longitude

A0

AÕ

ô

= latíüude

= longítude griC spacíng in the Míntz-Arakar¿a model

= latitude grid spacíng ín Ëhe }{íntz-Arakar.¡a model

= extent of the polar cap, j_n radians of latiLude

A

DrÐ = metrics

= mean radÍu.s of Ëhe earth

= n(u, flux in Ëhe x díreetion

= m6vr f l-ux in the y direction

= nnç

= specific volume

u

v



= density

= silecíf Íc Ïreaf: ¿rt constailt pressrtre-

= gas const¿lnt for dry air

- R/Cñr

= standard pressure, 1000 mb.

= leve1 (altítude) sign parameÈer

F*rF., = x and J' cornponents of the ho::izontal_ frictíon force
' per ulrít mass

= heatíng raÈe per unÍt mass

= evaporation t'al:e

= precipítation rate

{r;Y = represents any dependent varíable

At = Ëj-me step Ínterval

= Ëhe number of time steps betr+een energy source calculations

j.rj = general indexing pair speciflzlnt Ëhe grid point

N = the number of ror^rs of grid points ín the y dj.r:ection

= the number of gríd points ín the x di::ection on latitude
circle j

d. = grid poínt spacing on Ëhe j I th latítude circle
J

V = resultant veJ.ocity

$ = S(x) or S(x,y), the equation for the cubic spline curve
fi-t or the bícubic spline surface fit.

ti,tí,j = S(xr) or S(*í,yj)

p;,pi ¡ = #t"t' or #(x1'Y3) , slope ar rhe grid poínr in rher r ¡J o'n' ox x dírectíon

_ ðË(x,,y") ^.^--'9irj = A*' i"i' , slope at the gri<í poínt in the y direcËion

," (x_.,y*) ^_^^^ _,^_j__^+_._-^
"i, j = fr:ay'--í" i' , cross derivative

\¡l

E

C

l,l .
J
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p.,Ir. . = .ð-S (>r.) ð"S (xn,Yr)
a a:J " i r- ol: ;. 1''J'

ðx- âx-

t
O. . = ô'-S (x-.,Yr)
*i-ri 

^ 2 r J
dy

It

s- i = a'* (xt'rr)
arJ 

ax¿ðy¿

h. = lt *í * >Ii-1

k. - v.,j /¡ _ y¡*l

Ài = ltí-rl / Q^i*hi*t)

ui = hr/(hi*ni*r) =t-Àí
tp,tp rVp,Op = expressj-ons used in defining Ëhe polar boundary

condition for the horízont-al wind components

arbrBírxsrusrD. rciorÀr*ru1*r^r""r,lrio = constants and expressions
used irr defining the general'ized spl:lne based on
continuity of curvatul:e

arbrcrErE,h. = expressions used in inËerpolatíon rnethod Al-

f.trf.),h. = expressions used in interpolation method BL¿]-

RMSE = 36 hour forecast root-mean-square error relative to the. true rveather at 3 6 hou¡:s

R¡lSBi = average of RMSE along longitude line j

RMSEj = average of RMSE around latitude circle j

RMSC = the root-nÌean*sqüare change in Ëhe true weather over
the 36 hour forecast period

RMSCÍ = average of RMSC along longiËurJe line i

Rl'fSCj . average of RMSC around latitude circle j
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Glossar]:

balanceci rvind: Á,pplf ing täe assumption of non-dÍvergent quasí-horizcnie.l
floi^¡ j-n whic.h the horizontal- velccity field Í-s e>ipressecl in terms ojl a
strea.m functj-on, anci oËlier assumptions, the vector eclua.tion of motio¡
may be reduced to the 'obalance equatÍ-onrr. Thj-s eqrration involves the
stream funeËion and geepotenti-al as clepenclerrt tiarj-ables. Under certain
conditions, rvith a lcno¡pn distribution or geopoteniial, the balance
equaticn may be sol.ved for the stream function. The velocÍ-ty field
crbtained fron the stream function is cal-i-ed a baLa.nced wind.

barotropic: A barotropic atmosphere ís on<-: in r,zhich the surfa.ces of constant.
pressure are also surfaces of constant densit¡z and temperature.

computatiorìal- ¡scde: The computational mcde ís the portion of the solution of
the cìiffereÐce equation rvhích has no physical counterpart in tire truesolution of the ciifferential_ eqrration.

filËerecl equatíon mcdels: A numerical forec.ast model in whích Èhe governing
equations are differentiaËed first and ihen numerically solvecl is termed
a filLered equatÍon model.

geopotential: The work done ín moving a unit ¡nass from mean sea le'u'el- to some
elevation above sea lerzel is called the geopotenËÍal of that level.

grid points: These are poÍ-nts on the numerical fcrecast grid at rvhich rzaluesof tlie depetder:t variabies aie esLiuraLed at tiisciece uine ini:ervais
throughout the forecasË.

Latitudína1: The latitudinai- direcËion is the soui-h-north dírection on theearth, perpendicul_ar to the latítude círcLes.

longítudína1: The longitudinal direction is the wesË-east direction on theearËh's surface, perpendicular to the longitucle cÍrc1es.

níne poínt difference operator: This denoËes a finÍte dj-fference expressioninvolving values of the dependenË varial¡les at níne grici poi¡ts.

node point: see grid poinÊ

numerical explosion: A numerical forecast ís said to expi-ode numerica-lly
r¡zheD the magnitudes of the dependent variables.*".."ã the a-llorrable iimitsof computer storage.

mixing ratio: A mea-sure of moisture content, the rnixing raÈio is the mass ofrùeter vapour per unít mass of dry air.

potential temperature: Tf. a parcel of gas at temperature T and pressure p ísbrought adiabatically tc sËandard pressure (1õ00 rnb), the resul_ting
temperature in the parcel is callecl Lhe potential temperature.
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ph¿ise 7.agz l"'ire oosj-iion ín longítucie of the la.rge scele meteoroligic.al r,/eves
in t-hc numc":::;.cal forecast j"s cLriìrpar-eri to tlie posit:i.ttn of i:h¡¿ ir-aves in ihe
Lrr.re r¡eatire::. The dif f el:ence betrveerr the trn'c posi.tions is termecl tire
pha-se lag of ihe nunierj.cal_ for.ecast.

Firvsical ntode: The phys:Lcal rnode::efers to Ehat portíon of the solution of
the difference equation r¿hich has a phys:i-cal corlÐterpart in the true
solrrtÍon of the clif fereniial equation.

prínitive equation models: Ä numer:í-cal forecast model in r¿hich the governing
equaticns are llumerical-ly solved in their usual. form is Er?rmed a primitive
equation ilcdel.

sur-face geopotenti-al: This is the geopotential- at the surface of the earl-h.

llâvê rrunlber n: The nuurber of complete meteorological r,¿aves around a latitude
circle is tire r\7ave rìuinber.



1. INTRODUCTION

I'IeaËher prediction by numerical methods deals with the numerical

solution of the hydrodynamic and thermodynamic equaËions governing

atmospheric florv. such a soluËíon involves an enormous number of

aríËhmetic a¡rd logical operations for which reason electronic computers

are noür used. The basic princíp1es underlying numerical weather

predicËion r,¡ere discovered early in Ëhis century. AË the time, it rvas

recognized that Ëhe non-linear sysËem of equaËíons díd noË possess an

analytic solution. Also, initía1 daËa defining the state of the atmos-

phere vras inadequate. The fírst attempË to solve this sysËem of equa-

tions usíng numeiical methods was made by L.F. Richardson in Ig21. His

resulËs $lere in considerable error and inËerest in numerical weather

predictioü declined. However, rvíËh Ëhe advent of the electroníc computer

in Ëhe 1940rs, numerical forecasti-ng was revived.. The fírsË successful

numerical predictíon r,{as made by J. Charney ín 1949. From this point on,

the scj-ence developed rapidly and models wíËh varying numbers of

restrictions on the florv rvere stud.íed by numerous research groups in

nany countries

IË ís a cotnmon practice t.o classify numerical forecast models inËo

one of two basic categories based on the form of the governíng differ-

ential equatíons (Haltiner and Marrin (1), Haltiner (2)). rn primítíve

equation (PE) modef"f tn" governing equations are numeríca1ly solved in

their usual form, whereas in filtered eguaËion (FE) models, Èhe governing

equaËions are differentíated first and then solved numerically. The

Refer Ëo the Glossary for defínitions of common meteorological
terms.



PE models permit a1l types of wave moËions (both long and short waves),

while the FE models permíË only the long meteorologically significant

wave motions called Rossby \,./aves. The earlíer numerical forecast models

are of Ëhe filtered type since they are the simplíer model form

(containing approximatíons which are only tïue on Ëhe average over long

periods of tíme) and require considerably less computation time. This

shorter compuËation Ëime for FE models compared Lo PE models arises

from the longer time steps and fewer dependenË variables and equaËions

ín PE models. I,lith the increase in computational speed of computers,

iË becomes feasíble to invesËigate Èhe more sophistícaËed PB models.

Nr:merícal forecast models are primarily used for general circula-

tion studies and shorL term \,IeaËher predictíon. In general circulation

studies, the forecasË usually begins rviËh an aËmosphere at rest and

extends over a long period of Ëime (several months). However, ín short,

term rdeather prediction, Ëhe forecast begins r,lith real weather data

defíníng.the initial state of the atmosphere and exËends over a shorË

períod of time (up Ëo a weelc). Three PE general circulation models

which have been ín operat.ion for_ several years are a mu]-Ëi-level

rnodel developed by smagorinsky at the Geophysical Ftuid Dynamies

Laboratory, u.s.A. (smagorínsky (3r4), smagorinsky, Ifanabe and Holloway

(5), and others), a Ëwo 1eve1 mod.el developed by }{intz and Araka\,,ra aË

UCLA (Mintz (6), Langlois and i(rvok (7) , and a multi-level model

developed by Kasahara and l,r7ashingÈon (B) at the National center for

Atmospheric Research, u.s.A. These models are beíng applied only ín

a límited fashion Eo short term forecasËing. The smagorínsky model

shows promisíng results with real rveaËher data for short term forecasts

up to a week in duration (p.77 of ref 2), however the computation time



is too long for operatÍonal purposes. similarly, the Mintz-Arakawa

model ís being applied wiËh some success to short term pred.ictions

(Kesel and L7ínninghoff (9), Price (10)). Two short term forecast

models which have been in use for many years are an operational baro-

tropíc model developed by Shuman and Vanderman (11) and a six 1evel pE

shorË term forecast model developed by shuman and Hovermale (12). rn

additío:; ) many other short term forecast models are in use in various

countries for both operational and experimental purposes.

Three major steps may be identífied in the formulation of a

numerieal weaËher prediction mode1. The fírst step is to choose a

system of hydrodynamic and thermodynauíc equatíons, in Ëerms of a

suiËable coordinaËe system, in order to explain mathemaËically the

motion in the atmosphere. The relevanË equations are Newtonts second

larq of motion, the firsË 1au¡ of Ëhermodynamics, the equation of state

for a perfect gas, and larvs expressíng conservaËion of dry air and

!üateï vapour. Next, it is necessaïy Ëo approxímate the continuous

dependent varíab1e fields by discrete values of the variables at specifíed

nodes or grid points in t,he forecast region. This selection of Ëhe

forecast grid ís of major ímportance ín determing the forecast resolu-

tíon, accuracy, and computation tj:ne. The final st,ep is to obtain an

approximate numerical solution to the governíng equations aË Èhe specífied

grid poi-nt,s, thereby advancing the dependenË variable fields ín Ëime.

In thís thesis, emphasis r,¡ill be placed on Ëhe second and third steps

in tire formulat.ion of the forecast model: the selection of a forecasË

grid and Èhe method used Ëo solve the governing differential equations.



1.1

equations. In the majority of numerical forecast models, finite differ-

ence methods are used Ëo obÈaín an approxímate solution t.o the system

of partía1 differential equations. The basic approximatíon in fínite

difference methods is to replace the continuous variables by discrete

variables whích vary stepruise by finíte íncremenËs in space and time.

Inlhereas the behavior of Ëhe contínuous variables ís governed by the

system of differenËial equatíons, the behavi-or of the discrete variables
is governed by a system of dífference equaËions. Hence, a diffeïence

equation is sirnply the finite difference ïepresenËatíon of a diffeïen-

tial equation; and Ëhe soluËion of the difference equation yield.s an

approximate solutíon Èo the differential equation at specified poinËs

in space and aË discrete íntervals in time. Assoeiated with the

numerícal solutíon of the system of difference equations are a number

of errors, primaríly truncatíon error and discreËizatíon or compuËaËional

error (smiËh (13), ForsyËhe and Lrasow (r4)). .The truncation error in

the dífference equation arises from representlng the spatial derivatives

in the dífferential equation by Ëhe fírst few terms in a Taylor serj-es

expansíon of Èhe derivative, in terms of specífied. values of the vari-

able at adjacenË nodes or gríd points. This error depe4ds on both Ëhe

size of the finite space incremenË and the wavelength of the continuous

fíeld being estimared (Gares (15)). The mosr wíde1y used procedure ís

the central space difference, which may be illustrated in the case of

Ëhe first derivative of a continuous function f as (ref 15, 13)

âf _f(x+Ax)-f(x-Ax) ,

g Differential Esuations

consider fírst the meËhod used to solve the governing differential

âx ¿Lx (1.1)



where x denotes a typícal spare variable and ax is the grid poínt

interval. The Ëruncation error of this approximation is in Ëhe order
t

of (Ax)". OËher frequently used estímates for the fírst d.erivatíve are

the fon¿ard dífference and backward difference,

(f (x + ax) - f (x))/Áx and (f (x) - f (x - Ax))/Ax ,

respectively. The error in Ëhese approximaËions is in the order of Ax.

The difference beËr,¿een the difference equaËion as a whole and the

differential equatíon ruhich ít represents is called the truncation

error of the difference equaËion.

The second error, discretÍ-zatíon error, ís Ëhe erïor in the exacË

nunerícal solutíon of the dífference equation (Srnith (13)). If ó

represents the 
"*t"t solution of the partial differential equatíon,

and {O represents the exacË solution of Ëhe difference equatíon, then

the díscretízatíon error is ó - ó1. The solution method is convergenË

't ôO approaches þ as Ax, Ât. beeome infinitisÍmally small. Here., Ax

and At denote the finite space and tíme increments respectivety. Closely

associated rvith the díscretizaÈion error is Ëhe computational stability

of the difference scheme; that is, the time variat,ion of the discreti-

zatíon eïror (crandal (16), Kuriirara (17)). Fundamentally, whenever

^t/^x 
becomes larger Ehân some critical value, the eomputational mode

ín the numerical sol-ution Ëends to grow in time and eventually destroys

the physical mode. The physical mode refers Ëo that portÍ.on of Ëhe

solution of Ëhe difference equation rvhich has a physical counterparË ín

the Ërue solution of the differentía1 equation; the computational

mode ís the remaining portíon of the solution of the difference equatíon

and has no physical counterpart in the Ërue solution of the differentíal

equaËion. Since there is no analytic solution Ëo the governing partial



differential equations for atmospheric flow, it is customary to

examine Ëhe stability of thís corresponding l-inearized version of the

governing equatíons, rvith constant coefficíenËs (rhe von Neumann

stability condition, I(asahara (18)). To simplify rhe analysís

further, a conmon approximatj-on ís Ëo check the stabilíty of Ëhe differ-

ence equations considering only one facËor at a time (ref 18). For

example, to examine the stabiliLy of the difference scheme for a typical

advectíve Èerm in the Ëhermodynamic equat,ion, one may examine the 1ínear

one dímensional advection equation for temperature, T,

S*.S=o (1. 2)

where c is a consterlË (the zonaL wínd speed) . Haltiner (pp. rB-25

of tef 2) shows that the difference scheme for equatj-on 1.2 usíng cenËral

differences for both time and space, is compuËationally stable províded

cAt/Ax ( 1. Thís means thaË the computational mode in the numerícal

solut.ion approaches o as time increases, províded caË/ax < 1. However,.

if fonvard time and central space differences are used, thís difference

scheme is computationally unstable for al1 values of at/ax. rt is

ínteresting Ëo note thaË Ëhe case of forward lirne and forlard space

differences is computatíonally unstable r¿hen c>O and computatíonally

stable r+hen c<0. This corresponds Ëo the so-called "upstream dífferen-

cing" technique, in which a sËab1e differencing 'scheme is obtained

t¿hen the space differencing ís j-n the opposite direct,ion to t.he wave

motion (Gosman, et.a1. (19)). In additÍon to the computaËíonal stability

of the difference scheme, iË is necessary to consider the degree of

phase lag and arnplitude distortion of the physical rnode of the numerical

solution. For example, although the difference scheme ,r"rrrg central



finite differences ín space and time for the one-dímensional advection

equation 1.3 is computationally stable rvhen car/Ax5l, the physical mode

exhibits a phase lag and smaller amplitude rvhen compared to the true

solution.

The accuracy and stability characteristics of ten different finite

difference schemes are discussed by Grammeltvedt (20) usíng the primitive

equations in a barotropic f1uíd; rvíth primary emphasis on the effects

of the spatial differencíng on Ëhe forecast. I^lith an analytic rvave for

the initial condition, the analysís shows that the quadratic conservative

difference schemes (or schemes which conserve both the first and second

üoments of the dependenÈ variables) and total energy conservative

difference schemes (or schemes ¡"ihich conserve tlie sum of available

potential plus kineËic energy) are more stable than the other second

order conservative schemes. Horvever, the most stable schemes are Èhose

in which Ëhe advective terms are calculated using níne point spatial

fíníËe dífferences and Ëherefore contaj-n a form of smoothi-ng, and the

genetal-ized Arakawa scheme which conserves m.ean vorticity, mean kinetic

energy, and mean square vortíciËy ín nondivergent florv. The most

commonl;' used methods to suppress computational instabilities are to

include artificial viscosity terms in the difference equaËions, or to

w'rite the fínite difference equations in a form which conserves cerËa1n

statistical moments (usually of quadratic form) o, an" dependent

varíables (ref 20). The smagorinsþ general circulatj-on model (ref 3,4,

5) uses fíníte differences rvhich conserve momentum and. tot,al energy.

Therefore, the Smagorinsky model requires lateral eddy rriscosity terms

to suppress the nonlinear computational instabilities inherenË in the

difference scheme, but }lintz (6) feels that this may have the undesirable



side effect of excessively damping the meteorologically significant

wave motions. Hor,rever, the ltfintz-Arakarva general circulation model

(ref 6,7r10) uses finite differences d.ue to Arakarva rvhich are both

quadratic conseïvatíve and Ëota1 energy conseïvatíve schemes. Therefore,

the dífferencing in Èhe MinËz-Arakawa model is inherently nonlinearly

computationally stable without the use of expliciË frictional dissipa-

tion. 0f Èhe short term predictíon models, shumanrs scherne (ref 11)

calculates the advective terms using a nine point dífference operator

which should yield Ëhe most stable forecasË due to íts smoothing effect

(ref 20).

In additior¡ to the space differencing scheme, the form of time

differencing employed has a strong effect on stability. This was men-

tíoned briefly in the diseussion of computational stabilíty, where, for

example, iË rvas noted that forrvard differencing in tÍme is unstable

vrhereas central differencing ín time ís conditionally stable (provided

cAË/Ax(1). The stabilíty characteristics of several iinplicit, explicit

and iterative time differencing schemes vüere examined by Kurihara (17)

using a linear sysÈem of equations. of the methods investigated, Ëhe

tr+o stage leapfrog-trapezoidal method shorvs the most promÍse since it

has liËtle darnping and 1Íttle phase retardat,ion effect on the physical

mode, with sÈrong darnping of the spurious computational mode, for

cht/ Lx<rT. However, bei.ng a t\ùo.stage scheme, it r"q.rires twice Ëhe

computaÈion tíme of the sirnple centered difference time dífferencing

scheme (a1so called the centered leapfrog explícít scheme), which ít-

self has no change in amplitude of both the physicat and compuÈational

modes with only moderate acceleration of the physical mode. Therefore,

the simple centered leapfrog explicit scheme is used in most models.



In the }fintz-Arakar¿a model , a modified Ì'fatsuno tj-me integration (Ifatsuno

(21), pp. 105-110 of ref 10) is employed. The original three stage

l"fatsuno scheme gíves strong darnping of the high frequency \.^/aves (r+hich

are usually spurious). Horvever, the modification used ín the Mintz-

Aralcar.¡a model essentíally reduces the Matsuno method to a Êwo stage

Euler-backrvard scheme díscussed by Kurihara (77). Thís scheme has no

computational mode, with moderaËe selective dampíng and large phase

aeceleraËion of the physical mode.

ln this thesis, a numerícal forecast model j.s proposed ín which

double cubic polynomial splíne functions are used to fit the spat.ial

variation of the dependent variable fields, thereby eliminating the

need for finite differencing in space to estímate the spatial derivatives.

The cubic splíne S (x) of interpolatíon to the ordinates u, at mesh

locations x-, ír...M, is a piecervíse continuous function defined as
L.

a cubíc polynomial in each interval *i_1 ( * -< x1 having continuous

first and second derivaËives (Ahlberg, Nilson and Walsh (22), Greville

(23)). The generalizaËíon to Ëvro dimensions to obtain the double cubíc

(or bicubic) spline is straíghtforr¿ard. There are several reasons for

proposíng that the use of double cubic polynomial splines may be

an Ímprovement over fínite difference meËhods in estímating spaËial

derivatives.

Firstly, cubic polynomial splínes are an effectíve tool in Ëhe

processes of numerical interpolation, differentíation, integratíon, and

curve fitting (pp. 42-5,2 of. ref 22). In particular, the slope estímates

returned by a spline curve fit inherently represent a form of smoothing

of Ëhe slope estimates returned by sËandard forrvard, backroard or central

finite differences. In the numerical forecast models developed up tq
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Lhis point, complex differencing schemes are necessary to obtaín a

smooËhed slope estimat.e. For example, the Shuman model (ref 12) uses

nine point difference estimates (a form of srnoothing) to obtain estimates

for the advective terms; and the Mintz-Arakarva model (Langlois and Krvok

(7), Price (10)) was complex, multí-point difference estimat.es for Ëhe

spatial slopes. These complex and somewhat arbitrary smooËiring schemes

used in finite difference methods are noË required r¿hen the double

cubic spline is used to estimate Èhe first derívatives, due to the

inherent "smooËhedrr nature of the splíne curve fit. It should be

mentíoned that this does noL hold true for the secorrd derivatíve. Rather

the finíËe difference estímate of the second derivative given by Newtonr s

second divided difference (a Ëhree point operaËor in one-dimension)

represenËs a smoothing of Èhe spline esËimates for Ëhe second derivatíve

(p.44 of reÍ.22). In order Èo employ the spline merhod ro obrain good

"smoothed" second derivaËive esËimates, it is necessary to do a spline

fit to the first derivatives, ruith the first derivative itself obËained

from a previous spline fí.t. Ahlberg, Ililson and I,rralsh (p.44 or ref 22)

discuss thís "spline-on-sp1ine" method of obtaining smoothed second

derívatÍves.

A second reason for proposing the use of a spline function Ëo

obtaín slope estimates, in place of finíte dífference meÈhods, is Èhe

mínimum norm property, or Holladayrs theorem, for cul¡ic splines (p.3 of

ref. 22). This Lheorem states that for any function f (x) , c2*""tisfying

í = 1,...M, the inËegral of lt"(*) 12 o.r"r the ínterval

a minimum r+hen f (*) = S(x), provided S"(xr) = S"(5t) = 0.

f (xr) = ti,

(xr, xr) is

f (x) and its firsÈ trvo derivat.ives are continuous.


