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L two-level numerical fovecast model is proposed in which bicubic
polynomial splines ave uveed to ¥it the spatial variations of the depend-
ent variabie fields on a variable area telescoping grid. The spline
method gencrates spatial derivatives which inherently repvesent a form
of smoothing of the siope estimates genavated by finite difference
methods; the telescoping grid is constructed to ensure computational
stability at high latitudes without the need of high frequency filters,
spatial staggering of the dependent variables and complex flux calcula-
tions.

Thirty-six hour numerical forecasts using the proposed model and
using a 1969 version of the Mintz-Arakawa model are compared between
themselves and the real weather. The spline method is shown to have
advantages over the finite difference method in terms of decreased phase
lag and lower root-mean-square forecast error. Computation time is de-
creased by a factor of 1/3 due to the telescoping nature of the grid,
and there is no decrease in forecast accuracy in the fine grid region
arising from the surrounding coarse grid regicn.

Extensions to the model are developed through the derivation of
a generalized spline based on continuity of curvature and a numerical

forecast technique using weighted residual methods.
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NOMENCLATURE
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time

coordinate to the east

coordinate to the west

prassure

surface pressure

pressure at the base of the strétosphere, 200 mb
PS - PT

® - PT)/c, normalized pressure

horizontal wind components in the x and y directions,
respectively

Ltemperature
potential temperature

er vapour/massz of dry air)

0N
ct
®

mixing ratio (mass of we
geopotential
surface geopotential

longitude

latitude

longitude grid spacing in the Mintz-Arakawa model
latitude grid spacing in the Mintz-Arakawa model
extent of the polar cap, in radians of latitude
metrics

mean radius of the earth

ngu, flux in the =x direction

mgv, flux in the y direction

mng

specific volume




v,¥

At

‘vi

density
specific heai at constant pressure
gas constant for dry air
R/C
P
standard pressure, 1000 mb.

level (altitude) sign parameter

x and y components of the horizontal friction force
per unit mass

heating rate per unit mass

evaporation rate

precipitation rate

represents any dependent variable

time step interval

the number of time steps between energy scurce calculations
general indexing pair specifying the grid point

the pumber of rows of grid points in the y direction

the number of grid points in the =x direction on latitude
circle j ‘

grid point spacing on the j'th latitude circle
resultant velocity

S(x) or 8(x,y), the equation for the cubic spline curve
fit or the bicubic spline surface fit.

S$(x,;) or S(xi,yj)

o P » slope at the grid point in the

X direction

gi(xi’yj) » slope at the grid point in the y direction
2
§_§.(Xi’yj) , cross derivative
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used in defining the generalized spline based on
continuity of curvature
a,b,c,a;ﬁ,hi = expressions used in interpolation method A
fl’fZ’hi = expressions used in interpolation method B
RMSE = 36 hour forecast root-mean-square error relative to the
- true weather at 36 hours
RMSEi = average of RMSE along longitude line 1
RMSEj = average of RMSE arouhd latitude circle j
RMSC = the root-mean-square change in the true weather over
: the 36 hour forecast period
RMSC4 = average of RMSC élong longitude line i
RMSC. = average of RMSC around latitude circle j
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Glossary

balanced wind: Applying the assumption of non~-divergent quasi-horizontal
flow in which the horizontal velocity field is expressed in terms of a
stream function, and other assumptions, the vector equation of motion
may be reduced to the "balance equation". This equation involves the
stream function and gecpotential as dependent variables. Under certain
conditions, with a known distribution of geopotential, the balance
equation may be solved for the stream function. The velocity field
obtained from the stream function is called a balsnced wind.

barotropic: A barotropic atmosphere is one in which the surfaces of constant
pressure are also surfaces of constant density and temperature.

computational mode: The computational mode is the portion of the solution of
the difference equation which has no physical counterpart in the true
solution of the differential equation.

filtered equation models: A numerical forecast model in which the governing
equations are differentiated first and then numerically solved is termed
a filtered equation model,

geopotential: The work dome in moving a unit mass from mean sea level to some
elevation above sea level is called the geopotential of that level.

grid points: These are points on the numerical forecast grid at which values
of the dependent variables ave estimated at discrece Cime intervalis
throughout the forecast.

latitudinal: The latitudinal direction is the south-north direction on the
earth, perpendicular to the latitude circles.

longitudinal: The longitudinal direction is the west~east direction on the
earth's surface, perpendicular to the longitude circles,

nine point difference operator: This denotes a finite difference expression
involving values of the dependent variables at nine grid points.

node point: see grid point

numerical explosion: A numerical forecast is said to explode numerically
when the magnitudes of the dependent variables exceed the allowable limits
of computer storage.

mixing ratio: A measure of moisture content, the mixing ratio is the mass of
water vapour per unit mass of dry air.

potential temperature: If a parcel of gas at temperature T and pressure P is
brought adiabatically to standard pressure (1000 mb), the resulting
temperature in the parcel is called the potential temperature,




phase lag: The position in longitude of the large scale meteorcligical waves
~in the numerical forecast is compared to the position of the waves in the
true weather. The difference between the two positions is termed the
phase lag of the numerical forecast,

physical mode: The physical mode refers to that portion of the solution of
the difference equation which has a physical counterpart in the true
solution of the differential equation,

primitive equation models: A numerical forecast model in which the governing
equaticns are numerically solved in their usual form is termed a primitive
equation medel.

surface geopotential: This is the geopotential at the surface of the earth.

wave number n: The number cf complete meteorological waves around a latitude
circle is the wave number.

ix




1. INTRODUCTION

Weather prediction by numerical methods deals with the numerical
solution of the hydrodynamic and thermodynamic equations governing
atmospheric flow. Such a solution involves an enormous number of
arithmetic and logical operations for which reason electronic computers
are now used. The basic principles underlying numerical weather
prediction were discovered early in this century. At the time, it was
recognized that the non-linear system of equations did not possess an
analytic solution. Also, initial data defining the state of the atmos-
phere was inadequate. The first attempt to solve this system of equa-
tions using numerical methods was made by L.F. Richardson in 1921. His
results were in considerable error and interest in numerical weather
prediction declined. However, with the advent of the electronic computer
in the 1940's, numerical forecasting was revived. The first sucpessful
numerical prediction was made by J. Charney in 1949. From this point on,
the science developed rapidly and models with varying numbers of
restrictions on the flow were studied by numerous research groups in
many countries. ~

It is a common practice to classify numerical forecast models into
one of two basic categories based on the form of the governing differ-
ential equations (Haltiner and Martin (1), Haltiner (2)). In primitive
equation (PE) modelsf the governing equations are numerically solved in
their usual form, whereas in filtered equation (FE) models, the governing

equations are differentiated first and then solved numerically. The

* Refer to the Glossary for definitions of common meteorological
terms. :




PE models permit all types of wave motions (both long and short waves),

while the FE models permit only the long meteorologically significant
wave motions called Rosgby waves. The earlier numerical forecast models
are of the filtered type since they are the simplier model form
(containing approximations which are only true on the average over long
periods of time) and require considerably less computation time. This
shorter computation time fof FE models compared to PE models arises
from the longer time steps and fewer dependent variables and equations
in PE models. With the increase in computational speed of computers,
it becomes feasible to investigate the more sophisticated PE models.
Numerical forecast models are primarily used for general circula-
tion studies and short term weather prediction. 1In general circulation
studies, the forecast usually begins with an atmosphere at rest and
extends over a long period of time (sevefal months). However, in short
term weather prediction, the forecast begins with real weather data
defining the initial state of the atmosphere and extends over a short
period of time (up to a Week). Three PE general circulation models
which have been in operation for several years are a multi-level
model developed by Smagorinsky at the Geophysical Fluid Dynamics
Laboratory, U.S.A. (Smaéorinsky (3,4), Smagorinsky, Manabe and Holloway
(5), and others), a -two level.model developed by Mintz and Arakawa at
UCLA (Mintz (6), Langlois and Kwok (7), and a multi-level model
developed by Kasahara and Washington (8) at the National Center for
Atmospheric Research, U.S.A. These models are being applied only in
a limited fashion to short term forecasting. The Smagorinsky model
shows promising results with real weather data for short term forecasts

up to a week in duration (p.77 of ref 2), however the computation time



is too long for operational purposes. Similarly, the Mintz-Arakawa

model is being applied with some success to short term predictions
(Kesel and Winninghoff (9), Price (10)). Two short term forecast
models which have been in use for many years are an operational baro-
tropic model developed by Shuman and Vanderman (11) and a six level PE
short term forecast model developed by Shuman and Hovermale (12). 1In
additiow, many other short term forecast models are in use in various
countries for both operational and experimental purposes.

Three major steps may be identified in the formulation of a
numerical weather prediction model. The first step is to choose a
system of hydrodynamic and thermodynamic equations, in terms of a
suitable coordinate system, in order to explain mathematically the
motign in the atmosphere. The relevant equations are Newton's second
law of motion, the first law of thermodynamics, the equation of state
for a perfect gas, and laws expressing conservation of dry air and
water vapour. Next, it is necessary to approximate the continuous
dependent variable fields by discrete values of the variables at specified
nodes or grid points in the forecast region. This selection of the
forecast grid is of major importance in determing the forecast resolu-
tion, accuracy, and computation time. The final step is to obtain an
approximate numerical solution to the governing equations at the specified
grid points, thereby advancing the dependent variable fields in time.
In this thesis, emphasis will be placed on the second and third steps
in the formulation of the forecast model: the selection of a forecast

grid and the method used to solve the governing differential equations.



1.1 The Method of Solution of the Governing Differential Equations

Consider first the method used to solve the governing differential
equations. In the majority of numerical forecast models, finite differ-
ence methods are used to obtain an approximate solution to the system
of partial differential equations. The basic approximation in finite
difference methods is to replace the continuous variables by discrete
variables which vary stepwise by finite increments in space and time.
Whereas the behavior of the continuous variables is governed by the
system of differential equations, the behavior of the discrete variables
is governed by a system of difference equations. Hence, a difference
equation is simply the finite difference representation of a differen-
tial equation; and the solution of the differenée equation yields an
approximate solution to the differential equation at specified points
in space and at discrete intervals in time. Associated with the
numerical solution of the system of difference equations are a number
of errors, primarily truncation error and discretization or computational
error (Smith (13), Forsythe and Wasow (14)). - The truncation error in
the difference equation arises from representing the spatial derivatives
in the differential equation by the first few terms in a Taylor series
expansion of the derivative, in terms of specified values of the vari-
able at adjacent nodes or grid points. This error depends on both the
size of the finite space increment and the waveleﬁgth of the continuous
field being estimated (Gates (15)). The most widely used procedure is
the central space difference, which may be illustrated in the case of
the first derivative of a continuous function £ as (ref 15, 13)

gﬁ_: f(x + Ax) - f(x - AX)
ox 20%

’ (1.1)



where x denotes a typical spare variable and Ax is the grid point
interval. The truncation error of this approximation is in the order
of (Ax)z. Other frequently used estimates for the first derivative are
the forward difference and backward difference,

Ex + Ax) - £(x))/0x and (£(x) - f(x - Ax))/ox ,
respectively. The error in these approximations is in the order of Ax.
The difference between the difference equation as a whole and the
differential equation which it represents is called the truncation
error of the difference equation.

The second error, discretization error, is the error in the exact
numerical solution of the difference equation (Smith (13)). If ¢
represents the e;act solution of the partial différential equation,
and ¢D represents the exact solution of the‘difference equation, then
the discretization error is ¢ - ¢D. The solution method is convergent
if ¢D approaches ¢ as Ax, At become infinitisimally small. Here, Ax
and At denote the finite space and time increments respectively. Closely
associated with the discretization error is the computational stability
of the difference scheme; that is, the time variation of the discreti-
zation error (Crandal (16), Kuri%ara (17)). Fundamentally, whenever
At/Ax becomes larger than some critical value, the computational mode
in the numerical solution tends to grow in time and eventually destroys
the physical mode. The physical modé refers to that portion of the
solution of the difference equation which has a physical counterpart in
the true solution of the differential equation; the computational
mode is the remaining portion of the solution of the difference equation

and has no physical counterpart in the true solution of the differential

equation. Since there is no analytic solution to the governing partial




differential equations for atmospheric flow, it is customary to

examine the stability of this corresponding linearized version of the
governing equations, with constant coefficients (the von Neumann
stability condition, Kasahara (18)). To simplify the analysis

further, a common approximation is to check the stability of the differ-
ence equations considering only one factor at a time (ref 18). For
example, to examine the stability of the difference scheme for a typical
advective term in the thermodynamic equation, one may examine the linear
one dimensional advection equation for temperature, T,

T 5T
5t T Cax -9 o

(1.2)
where ¢ is a constant (the zonal wind speed). Haltiner (pp. 18-25

of ref 2) shows that the difference scheme for equation 1.2 using central
differences for both time and space, is computationally stable provided
cht/Ax < 1. Tﬁis means that the computational mode in the numerical'
solution approaches O as time increases, provided cAf/Ax < 1. However,
if forward tiﬁe and central space differences are used, this difference
scheme is computationally unstable for all values of At/Ax. It is
interesting to note that the case of forward time and forward space
differences is computationally unstable when ¢>0 and computationally
stable when c<0. This corresponds to the so-called "upstream differen-
cing" technique, in which a stable differencing 'scheme is obtained

when the space differencing is in the opposite direction to the wave
motion (Gosman, et.al. (19)). 1In addition to the computational stability
of the difference scheme, it is necessary to consider the degree of

phase lag and amplitude distortion of the physical mode of the numerical

solution. For example, although the difference scheme using central



finite differences in space and time for the one-dimensional advection
equation 1.3 is computationally stable when cAt/Ax<l, the physical mode
exhibits a phase lag and smaller amplitude when compared to the true
solution.

The accuracy and stability characteristics of ten different finite
difference.schemes are discussed by Grammeltvedt (20) using the primitive
equations in a barotropic fluid; with primary emphasis on the effects
of the spatial differencing on the forecast. With an analytic wave for
the initial condition, the analysis shows that the quadratic conservative
difference schemes (or schemes which conserve both the first and second
moments of the dependent variables) and total energy conservative
difference schemes (or schemes which conserve the sum of available
potential plus kinetic energy) are more stable than the other second
order conservative schemes. However, the most stable schemes are those
in which the advective terms are calculated using nine point spatial
finite differences;and therefore contain a form of smoothing, and the
generalized Arakawa scheme which conserves mean vorticity, mean kinetic
energy, and mean square vorticity in nondivergent flow. The most
commonly used methods to suppress computational instabilities are to
include artificial viscosity terms in the difference equations, or to
write the finite difference equations in a form which conserves certain
statistical moments (usually of quadratic form) o£ the dependent
variables (ref 20). The Smagorinsky general circulation model (ref 3,4,
5) uses finite differences which conserve momentum and total energy.
Therefore, the Smagorinsky model requires lateral eddy viscosity terms
to suppress the nonlinear computational instabilities inherent in the

difference scheme, but Mintz (6) feels that this may have the undesirable




side effect of excessively damping the meteorologically significant

wave motions. However, the Mintz-Arakawa general circulation model
(refv6,7,10) uses finife differences due to Arakawa which are both
quadratic conservative and total energy conservative schemes. Therefore,
the differencing in the Mintz-Arakawa model is inherently nonlinearly
computationally stable without the use of explicit frictional dissipa-
tion. Of the short term prediction models, Shuman's scheme (ref 11)
calculates the advective terms using a nine point difference operator
which should yield the most stable forecast due to its smoothing effect
(ref 20).

In addition, to the space differencing scheme, the form of time
differencing employed has a strong effect on stability. This was men-
tioned briefly in the discussion of computational stability, where, for
example, it was noted that forward differencing in time is unstable
whereas central differencing in time is conditionally stable (provided
cAt/Axsl}. The stability characteristics of several implicit, explicit
and iterative time differencing schemes were examined by Kurihara (17)
using a linear system of equations. 0f the methods investigated, the
two stage leapfrog-trapezoidal method shows the most promise since it
has little damping and iittle phase retardation effect on the physical
mode, with strong damping of the spurious computational mode, for
cht/hx<V2. However, being a two stage scheme, i; requires twice the
computation time of the simple centered difference time differencing
scheme (also called the centered leapfrog explicit scheme), which it-
self has no change in amplitude of both the physical and computational
modes with only moderate acceleration of the physical mode. Therefore,

the simple centered leapfrog explicit scheme is used in most models.




In the Mintz-Arakawa model, a modified Matsuno time integration (Matsuno
(21), pp. 105-110 of ref 10) is employed. The original three stage
Matsuno scheme gives strong damping of the high frequency waves (which
are usually spurious). However, the modification used in the Mintgz-
Arakawa model essentially reduces the Matsuno method to a two stage
Euler-backward scheme discussed by Kurihara (17). This scheme has no
computational mode, with moderate selective damping and large phase
acceleration of the physical mode.

In this thesis, a numerical forecast model is proposed in which
double cubic polynomial spline functions are used to fit the spatial
variation of the dependent variable fields, thereby eliminating the
need for finite differencing in space to estimate the spatial derivatives.
The cubié spline S(x) of interpolation to the ordinates u, at mesh
10cé£ions xi, i,...M, is a piecewise continuous function defined as
a cubic polynomial in each interval X, g € x.s X, having continuous
first and second derivatives (Ahlberg, Nilson and Walsh (22), Greville
(23)). The generalization to two dimensions to obtain the double cubic
(or bicubic) spline is straightforward. There are several reasons for
proposing that the use of double cubic polynomial splines may be
an improvement over finite difference methods in estimating spatial
derivatives.

Firstly, cubic polynomial splines are an effective tool in the
processes of numerical interpolation, differentiation, integration, and
curve fitting (pp. 42—52 of ref 22). 1In particular, the slope estimates
returned by a spline curve fit inherently represent a form of smoothing
of the slope estimates returned by standard forward, backward or central

finite differences. In the numerical forecast models developed up to
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this point, complex differencing schemes are necessary to obtain a
smoothed slope estimate. For example, the Shuman model (ref 12) uses
nine point difference estimates (a form of smoothing) to obtain estimates
for the advective terms; and the Mintz-Arakawa model (Langlois and Kwok
(7), Price (10)) was complex, mulﬁi—point difference estimates for the
spatial slopes. These complex and somewhat arbitrary smoothing schemes
used in finite difference methods are not required when the double
cubic spline is used to estimate the first derivatives, due to the
inherent "smoothed" nature of the spline curve fit. It should be
mentioned that this does not hold true for the second derivative. Rather,
the finite difference estimate of the second derivative given by Newton's
second divided difference (a three point operator in one-dimension)
represents a smoothing of the spline estimates for the second derivative
(p.44 of ref 22). 1In order to employ the spline method to obtain good
"smoothed" second derivative estimates, it is necessary to do a spline
fit to the first derivatives, with the first derivative itself obtained
from a previous spline fit. Ahlberg, Nilson and Walsh (p.44 or ref 22)
discuss this "spline-on-spline" method of obtaining smoothed second
derivatives.

A second reason for proposing the use of a spline function to
obtain slope estimates,.in place of finite difference methods, is the
minimum norm property, or Holladay's theorem, for cubic splines (p.3 of
ref 22). This theorem states that for any function f(x) € cz*satisfying
f(xi) = u,, i=1,...M, the integral of |f"(x)|2 over the interval

(Xl, XM) is a minimum when f(x) = S(x), provided S”(xl) = S"(XM) = 0.

* f(x) and its first two derivatives are continuous.



Since this integral is often a good approximation to the integral of
the square of the curvature for a curve y = £ (x), Holladay's theorem
is often called the minimum curvature property. This follows from the
definition of curvature, f"(x)z/(l + f'(x)2)3/2, which is approximately
equal to f"(x)2 when f£'(x)<<l. Therefore, of all the possible curve
fits having continuous first and second derivatives, the smoothest is
the cubic spline curve fit since it has the minimum curvature (providing
slopes are not excessively large).

A third appealing characteristic of the double cubic spline is its>
inherent flexibility in the application to a forecast grid with varying
grid interval. Providing the grid expansion is smooth, there are no
difficulties in applying bicubic splines on an expanding grid. Ahlberg

(24) discusses a problem in curve fitting with splines when the physical

spacing between grid points changes significantly in a limited region.

11

The example cited is the case of monotonic increasing data with alternately

large, then small, then large grid point spacing. A small local spike
appears in the otherwise monotonic spline curve fit. Although this
small spike has little obviousveffect on the curve fit, its effect on
the slope estimate at the node where the grid point spacing changes
abrubtly is devastatiné (since the spike is located at this grid point).
It is therefore important to use a smoothly expanding grid if splines
are to be used to estimate the spatial derivatives.

Finally, it should be mentioned that the theory of double cubic
splines depends largely on the theory of the one dimensional cubic
spline. Ahlberg, Nilson and Walsh (pp. 235-264 of ref 22), de Boor (25)

and Ahlberg, Nilson and Walsh (26) discuss many properties of the double

cubic spline, such as the minimum curvature property, best approximation
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property, existence, uniqueness, and others. 1In addition, Ahlberg,

Nilson and Walsh (26) present a derivation of the double cubic spline

in terms of nodal values of the second derivative; and de Boor (25)
presents a computation scheme for the double cubic spiine in terms of
nodal values of the first derivative. The treatment of the double

cubic spline in terms of nodal values of the first derivative is
preferred here since the purpose of using bicubic splines in this applica-
tion to numerical weather prediction is to obtain good estimates of the
spatial first derivatives for the dependent variable fields.

It is possible to make a direct comparison between the different
conservative properties of the spatial finite difference schemes and
the corresponding properties of cubig splines. In deciding whether or
not a specific finite difference scheme is either conservative or
quadratic conservative, a comparison is made between the spatially
integrated forms of the difference equation and differential equation
for the property under consideration (moﬁentum, kinetic energy, thermal
energy, énd others). 1If the two integrated forms are similar, then the
difference scheme conserves the property represented by the difference
equation. Differences between é£e two integrated forms usually arise
from the truncated nature of the difference expressions. Now, bicubic
splines are piecewise analytic cubic polynomial functions with contin-
uous first and second derivatives. The third derivative is not
continuous and the fourth and higher derivatives vanish. Despite the
continuous nature of the cubic spline, the differential equations are

only solved at the grid points; and only the nodal’ values of the

% The terms node point and grid point are used interchangeably in
this thesis,
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dependent variables are advanced in time. Therefore, similar to a
finite difference method, it is possible to write a difference equatioﬁ
for the dependent variables at each node using the bicubic spline
estimates for the slope of the variable fields. By matrix inversion,
the spline slope at the node may be expressed in terms of all the
nodal values of the dependent variable in the row or column in the
direction of the slope (p.42 of ref 22). TFor example, if the west-east
slope of the temperature field is desired at node i* on a latitude circle,
and if the nodes are separated by 5° longitude on this latitude circle,
then the cubic spline estimate of this slope becomes

[?-'-f-} o5 e ' (1.3)

oxj % . i1 3
i i=1

where the values for s i=1,...72 are obtained by matrix inversion of
the spliﬁe coefficient matrix. The substitution of equation 1.3 into
the difference equation and integration of the resulting equation over
all the spatial dimensions is a complicated calculation but may be
performed. It is therefore possible to defermine the conservative

and quadratic conservative properties of the proposed bicubic spline
method. This analysis will not be performed in this thesis due to the
length of the calculation when testing for quadratic conservative
properties. It is felt that the cubic spline scheme will show energy
and momentum conservative properties; however, it is doubtful that the
cubic spline will also show quadratic conservative properties,

especially on a variable area grid.
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1.2 The Selection of the Forecast Grid

The first factor to consider in the selection of a forecast grid
is the uniformity of the grid's resolution over the surface of the earth.
If a forecast with equal emphasis at all regions of the earth is desired,
then each grid cell on the map projection should represent approximately
the same physical area on the earth. Im the majority of the numerical
forecast models formulated to date, the system of difference equations
has been solved on a uniform square or rectangular grid system. However,
. certain resolution problems arise when such a grid is applied in the
coordinate systems convenient to numerical weather forecasting. For
example, in the frequently used polar stereographic projection (used
in models by Smagorimnsky, Manabe and Holloway (5), Shuman and Hovermale
(12), and many others), the map scale factor varies from 1 at the pole
to 2 at the equator.* This means that 1 unit of distance on the earth's
surface maps into 1 unit andv2 units at the pole and equator respectively
on the polar stereographic projection. Therefore, a square grid on the
stereographic projection gives double the resolution at low latitudes
than it does at high latitudes, representing a marked over-resolution
of low latitude regions. The opposite resolution problem occurs in the
Mercator map projection used in the models by Smagorinsky (3, 4) and
Shuﬁan and Vanderman (11), as well as in the projection used'in the
Mintz—~Arakawa model (pp. 31-38 of ref 7, pp. 83-90 of ref 10). Heré,
longitude maps linearly into the west—-east coordinate on the projection.
This means that 1 unit of distance in the west—east direction on the

earth's surface maps into 1 unit at the equator and 4 units at 76° of

* The map scale factor is derived on p.174 of Price (10) and on
p.175 of Haltiner and Martin (1).



latitude on the projection: a square or rectangular grid on this
projection constitutes severe over-resolution at high latitudes. One
consequence of this over-resolution in the Mintz-Arakawa model is the
growth of spurious short waves traveling in the longitudinal (west-
east) direction at high latitudes. These short waves are removed
through the use of an averaging operation which gradually increases in
strength as latitude increases.

An interesting approach to the computational drawback of over-
resolution near the poles is made by Grimmer and Shaw (27). Two
methods are used: firstly, the time step is varied latitudinally on a
grid with constant longitudinal grid interval; and secondly, the
longitudinal grid interval is varied latitudinally in a constant time
step scheme. Using a barotropic PE model with analytic initial data
consisting of a wave number four in the horizontal velocity and geo-
potential fields, the first method is stable and shows good agreement
(except for a slight phase lag) with the‘analytic solution for the case
of non—divergent barotropic flow. The stability of this method may be
in part due to a degree of time smoothing inherent in the variable
time step methoed. However, the‘second method gives a solution which
rapidly departs from the analytic solution, especially at high latitudes.
This is expected since for this initiai condition (wave number four at
both high and low latitudes), there are too few grid points to adequately
resolve the wave at high latitudes (fewer than nine grid points per
wave length) whereas at low latitudes, the wave is adequately resolved
(greater than nine grid points per wave length). The forecast results

from the second method show negligible wave motion at high latitudes

with realistic wave motion at low latitudes.
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Several researchers are experimenting with grids giving uniform

resolution over the entire earth. Xurihara and Holloway (28) are trying
a general circulation PE model formulated in spherical coordinates by
the "box method'"; and the network of grid points used in this model
forms a nearly uniform grid resolution over the entire earth. Further,
preliminary.experiments are being performed using triangular or geodesic
grids with uniform resolution over the earth. Williamson (29) and
Sadourny et.al. (30) integrate the barotropic vorticity equation on a
spherical geodesic grid using analytic initial data. Their numericai
forecasts are nonlinearly computationally stable, since the difference
schemes used conserve vorticity, kinetic energy and the square of
vorticity. Wiliiamson (31) and Sadoﬁrny and Morél (32) further extend
the use of this grid to a primitive equation barotropic model; and
Williamson finds his results to be superior to the results from
Kurihara's homogeneous spherical grid system (ref 33). Experiments

with non-uniform triangular grids which serve as a transition from fine
grid to coarse grid regions are being made also by Winslow (34) and
Williamson (35).

A second point to consider‘in thé selection of a forecast grid is
whether or not the grid resolution should be varied in order to obtain
higher forecast resolution in regions of primary interest. TFor example,
if the purpose of performing the numerical forecast is to obtain a short
term forecast for North America,.it would be inefficient to perform a
global forecast with equal grid resolution over the entire earth. One’
may_identify two approaches to the problem of obtaining efficient

numerical forecasts in limited regions of interest: either construct a

limited area forecast model for the region of interest, or formulate a
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variable area model with increasing grid spacing as distance from the
region of interest increases (a telescoping grid). The major problem
with limited area prediction models is the selection of boundary
conditions, primarily for the east and west boundaries of the region.
Although the telescoping grid scheme does not have the boundary condi-
tion problems of the limited area grid, it does have increased complex-—
ities in the computation scheme due to the expanding grid intervals.
Also, there may be some as yet unforseen difficulties in the form of
spurious growth of meteorological features due solely to the expanding
grid. Gerrity and McPherson (36) discuss the results from twenty;four
hour numerical forecasts performed with real weather initial data on a
limited area fine-mesh PE barotropic model. Although constant lateral |
boundarj conditions are used over thé forecast periqd, the predictions
coﬁpare favorably with those from operational barotropic and baroclinic
models. The constant lateral boundary conditions prohibit the running
of much longer forecasts on their limited area grid. A variable grid
design to obtain increased resolution in the center of the forecast
domain is studied by Anthes (37). The grid is applied in a free
surface model of an inviscid, incompressible fluid &ortex confined to a
rectangular domain. The results show a slight (less than 1%) increase
in total energy after two thousand time steps. A simple finite differ-
ence scheme with non-constant intervals is also discussed by Sundqvist
and Veronis (38). This grid, applied to a few simple boundary layer
flow problems, shows distinct advantages in improved resolution in the
regions of interest.

A third point to consider in the selection of the forecast grid

is whether the grid should be staggered or unstaggered. A staggered



grid is one in which not all the dependent variables are carried at

the same grid points. Spatial staggering is a common practice in
finite difference models as a technique for reducing the effective

grid length. The effective grid length is the distance between grid
points entering into a finite difference expression. For example,

the effective grid length of the central finite differencé operator
equation 1.1 is 2Ax. It is desirable to have the effective grid length
as small as possible in order to maximize the number of grid points
which resolve the smallest significant meteorological wave (thereby
improving its phase speed). Two basic forms of staggering are possible.
A spatial staggering occurs when not all the dependent variables are
carried at the same grid points. The.grid in the Mintz-Arakawa model
is an example of this (p.31 of ref 7, p.84 of ref 10). Also it is
possible to have a time staggering in which the variables are carried
at different grid points depending on whether the time is an even or
odd multiple of the time interval At. The grid in a model by Phillips
(39) is an example of time staggering.

In this thesis, a numerical forecast model is proposed in which
the forecast grid is an expanding grid with basic expansions of two
types superimposed on each other. The first grid expansion is required
to maintain the physical distance between grid points on latitude
circles approximately equal to some distance greater than the minimum
distance required for computational stability; and the second grid
expansion is used to decrease the number of grid points in regions
which are not of primary interest (a telescoping grid).

Consider first the basic expansion of the first type. It was
mentioned earlier that when there are no particularly important regions

of interest in the forecast domain, it is desirable to have a uniform
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grid resolution over the entire forecast region. This basic uniformity
of resolution 1s ensured by the grid expansion of the first type. With
grid points lying on the latitude circles, this expansion essentially
means that as latitude increases, the number of grid‘points on each
latitude circle decreases in order to maintain a constant physical
distance between the grid points on the earth's surface. This grid is
an improvement over the square or rectangular gfids used on the
Mercator and polar stereographic map projections. Also, this first
grid expansion results in a grid very similar to the grid used by
Kurihara and Holloway (28) using the so-called "box method"; and is
similar to the second grid used by Grimmer and Shaw (27). Although
Grimmer and Shaw have forecast problems with their grid using a wave
number four at all latitudes as initial data, it is felt that these
problems will not be apparent here due to the full spectrum of wave
present at all latitudes in the real weather initial data used -in this
application.

Coﬁsider next the basic grid expansion of the second type, to be
superimposed onto the first grid expansion. It was mentioned earlier
that there are two methods of éﬁphasizing a region of interest in the
forecast domain: either comnstruct a limited area forecast model or use
a telescoping grid with increasing grid interval as distance increases
from the region of interest. This results in a high resolution fore-
cast in the region of interest Qithout expending an unduly large amount
of compﬁtational time in generating a high resolution forecast else-
where. Problems with the lateral boundary conditions in limited area

models make them only useful for very short term predictions, unless a

variable boundary condition is maintained through a coarse grid global



model executed simultaneously with the limited area model. However,
even when a variable boundary condition is maintained, the smaller grid
lengths in the limited area grid region will result in faster phase
speeds of the meteorological waves inside the limited area region
compared to the phase speeds in the external coarse grid region. Hence,
problems in matching at the boundaries will occur as time proceeds.

For these reasons, the telescoping grid is preferred over the limited
area grid and a telescoping method is used as the grid expansion of the
second type in the model proposed in this thesis. Having decided on a
region of interest and a gridresolution within this region, the smooth
grid expansion of type two is applied successively to grid points out-
side of the region of interest. The most important characteristic of
this teiescoping method is the smooth transition between regions of
chénging gfid size, as well as a smooth matching at the polés and
equator. This expansion is more generalized than the expansions used
by Anthes (37) and Sundqvist and Veronis (38). Also, inherent
characteristics of the bicubic polynomial splines make them readily
adaptable to an expanding grid, and problems should not occur providing
the expansion is smooth.

The final consideration in the formulation of the forecast grid
for the proposed model is whether or not the dependent variables should
be spatially staggered. With bicubic splines, the slope estimates of
the variable fields are equally accuréte whether they are obtained at
the grid points, the center of the grid lines, or the center of the
grid cells. Therefore, there is no reason to stagger the dependent
variables and an unstaggered forecast grid is used in the proposed

model.
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1.3 The Proposed Forecast Model

The use of double cuEic polynomial spline functions in solving the
system of partial differential equations and the selection of a
telescoping forecast grid having superimposed grid éxpansions are the
most important characteristics of the numerical forecast model proposed
in this thesis. These characteristics distinguish this model from the
current forecast models which use conventional grid systems and finite
difference methods to solve the system of equations. The advantages
of the polynomial spline method and the telescoping grid system have
been discussed earlier in the Inﬁroduction.' It remains, however, to
evaluate these‘methods in comparison to finite difference and conventional
grid methods through the execution of numerical forecast experiments.

To complete the definition of the proposed forecast model, it is
necessary to select the following additional model features: a
system of governing partial differential equations, a method of extra-
polating the dependent variables in timé, and a method of generating
the heaé, moisture and friction source terms. These features are of
minor importance here since emphasis'in this study is placed on the
polynomial spline method and the telescoping grid system. The selection
of the additional features is arbitrary, but is here chosen to be the
same as in a current model which uses the finite difference method on
a conventional grid so that effgctive comparison may be made.

The model selected for comparison purposes is the two-level Mintz-
Arakawa general circulation model (ref 7, 10). This model uses a compiex
finite differencing scheme to solve the system of partial differential
equations, with a regular square grid on a map projection similar to

the Mercator projection. Also, in order to obtain computational
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stability, this model requires several special techniques, such as high
frequency filters, spatial staggering of the dependent variables, and
complex flux calculations. The Mintz-Arakawa model is convenient to
use as a comparison model for three reasons: it has only two levels
of resolution in the vertical and therefore requires less computation
time than sbme of the multi-level models in use today; the finite
differencing and regular square grid used are representative of the
differencing schemes and grids used in modern numerical weather predic-
tion models; and this model illustrates several of the special techni-
ques required for computational stability when the forecast grid severely
over—reéolves the high latitude regions.

The propoéed forecasting model will be applied to a thirty-six

hour northern hemisphere forecast and its performance will be compared

with the Mintz-Arakawa model and the real weather.



2. The Mintz-Arakawa (1969) Model

A thorough description of the Mintz-Arakawa (1969) numerical
weather prediction model may be found in two earlier reports by the
author (ref 10 and 40). The following brief description of the

essential features of the model is based on the two earlier reports.

2.1 The Basic Equations in x, y, o, t Coordinates

The two level Mintz-Arakawa model uses the hydrodynamic and
thermodynamic equations written in a cartesian x, y, o, t coordinate
system. The x and y axes are transformed from the 4 and sy curvi-
linear coordinate curves which lie respectively along latitude and
longitude circles on the earth's surface. The vertical parameter ©
is a pressure coordinate normalized with respect to surface pressure.
Hence, o takes on values between unity at the earth's surface and O
at the two hundred mb level. The fundamental geometric nature relating
the orthogonal curvilinear S5 8y surface (of the earth) to the carte-
sian x, vy plane (map projection in which the governing equations are

solved) is described by the metrics m and n (pp.68, 88, 89 of ref

10), given by

m = E;l , (2.13)
d52 ,

n - (2.1b)

ds1 = A cos®d® , (2.2a)

ds2 = A d9%. (2.2b)

The elements dsl and ds2 represent elements of arc length (or physical

distance) along the Sy and S5 coordinate curves respectively, and the
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elements dx and dy represent elemental changes in the map coordinates

x and y. 1In the Mintz-Arakawa model, a linear mapping is used to
relate the coordinates x and y to longitude (0) and latitude (®).
This applies to all the regions except for the polar caps, in which the
mapping of y dinte ¢ 1is modified to account for a larger latitude
grid spacing (8) compared to the latitude grid spacing in the remainder
of the field (A®). This results in the following mgtric expressions

for the Mintz~Arakawa model (p.89 of ref 10):

m= A AO cosd , (2.3a)
n=AA, 90-6> |0 , (2.3b)
=A &, 90 - § < |&] < 90. (2.3c)

The third independent variable, o, is a normalized vertical parameter

defined by the relation (p.41 of ref 10)

I (2.4
0’_-———-—.————-—
[
PS = surface pressure, variable,
PT = pressure at the top of the troposhere, 200 mb.

In this two level model, flow in the upper half of the troposphere
(0 < 0 < 1/2) is represented by conditions at the level o = 1/4 and
flow in the lower half of the troposphere (1/2 < ¢ < 1) is represented
by conditions at level o = 3/4. The dependent variables carried at
levels one and three are shown in Figure 2.1. Note that the two
horizontal wind components {(u, v) as well as the temperature (T) are
carried at both levels one and three, while all the moisture (q) is
assumed to be carried by the lower level only. Also, the pressure at

each grid point on any o level is determined from the single dependent
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variable 7, by equation Z.4.

In the coordinate system defined by equations 2.1 to 2.5, the
governing hydrodynamic and thermodynamic equations become (pp.60-83 of
ref 10):

(a) the two horizontal equations of motion,

5 y o ® 8, : ]
rys (Zu) A P (u u) + P (v u) + AuZS - Grv
+ 2_ (c9) + (ota - ¢) 25| = - zF (2.6)
ax 9% x
9 2, N 9, % .
Py (Zv) + s (v v) + 5y (v v) + AvZS + Gzu
+m o (z) + (oza - ¢) _E)_g_] == ZF_ (2.7)
Loy 8y y
(b) the thermodynamic equation,
o 2. 3 (yimy . oa .92 . %23 . % 3T
¥ (zT) -+ e (u T) + 5y v 1) Cp [Cat + u " + v ay]
LR K ' : ’
+ A(P/P) @2 S = ZH/CP R ‘ (2.8)
(c) the continuity equation,
K ES
3Z |, du v oo
T + S + 5y + A8 =0 |, (2.9)
(d) the moisture balance equation,
5 5, % 5k o
v (zq) + Py (u q) + 5y (vq)=2amg (E - C). (2.10)

Equations 2.6 to 2.9 are applied at both the upper (o = 1/4) and lower

(c
(o

3/4) levels, and equation 2.10 is only applied at the lower level

3/4). The symbols used in these equations are defined in the list
of nomenclature at the beginning of the thesis. In addition, the
following equations are useful in explaining the relationships existing

between the dependent variables:



Z = mng (2.11a)
u =nzu , (2.11b)
%
v = mgv |, (2.11c)
S = 2mng {QQ} R (2.114d)
dt

2

_ _ . |dm|
G = mnf u[dy] . (2.11e)
o =1 /P~ (2.116)

The parameter A, appearing in equations 2.6 to 2.9, is used to indicate

the sign of a term according to

+ 1 if 0 = 1/4, upper level,
A= . (2.11g)
-1 4if o = 3/4, lower level.

]

The potential temperature (8) and horizontal wind components (u, v) at
level ¢ = 2/4 are interpolated from the corresponding values at levels
o = 1/4 and 3/4 in a fashion ensuring conservation of the first and

second moments of potential temperature and conservation of horizontal

momentum. The resulting interpolation formulas are

6, = 1/2 (8, +0,) (2.11h)
u, = i/2 (u1 + u3) , (2.111)
v, = 1/2 (vl + v3) . (2.113)

Also, the geopotential of the lower and upper levels is calculated in
a fashion ensuring conservation of total energy (kinetic plus potential).
This gives the following equations for the geopotential:

_ K K ,*K
;= bg + 1/2.Cy 8, (By" = Py)/P T+ 1/2 t(ogay +07a)) 5, (2.11K)
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4 - K _ K, %
¢4 = ¢g = 1/2 C, 8, (P, P/ 4+ 1/2 ¢ (0, 8, t o

3 25 1 al). (2.112)

2.2 Space and Time Finite Differencing

In the Mintz-Arakawa model the differential equations 2.6 to 2.10
are horizontally finite differenced on a rectangular grid (pp.84 of
ref 10) with equispaced grid lines mapped from the latitude and longi-
tude circles. The mapping of longitude into x is linear, resulting
in the same number of grid points (M) around each latitude circle at
all latitudes. Since the circumference of each latitude circle decreases
as latitude increases, this grid severely over-resolves the high
latitude regions. This over-resolution is partially compensated for
by chosing a piecewise linear mapping of latitude into vy, with the
latitudinal spacing of grid lines at the poles, &8, taken to be greater
than the latitudinal spacing of grid lines at all lower latitudes,
Ad. This gives equidistant grid points on the map projection in both
longitude and latitude except for the polar cap. Also, this simplifies
the task of approximating the horizontal derivatives in equations 2.6
to 2.10 by finite differences. The Mintz—Arakawa model employs a
complex set of finite difference approximations for these spatial
derivatives. This results in a form of smoothing of the finite
difference slope estimates. To aid in the differencing scheme, the
dependent variables in the Mintz-Arakawa model are spatially staggered.
The velocity components, u and v, are carried at grid points (the
corners of grid cells), the state parameters such as ¢, q and T are
carried at the center of grid cells, the flux u* is carried at the mid-~

Y

% .
point of vertical grid sides, and the flux v is carried at the mid-

point of horizontal grid sides. The resulting set of difference
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equations used in estimating the spatial derivatives in equation 2.6
to 2.10 are given by Price (pp.89-104 of ref 10) and will not be listed
here.

With suitable finite difference expressions apbroximating the
spatial derivatives, equations 2.6 to 2.10 may be used to advance the
dependent variables in time. The time extrapolation scheme used in the
Mintz-Arakawa model is a modified Matsuno two stage time differencing
scheme (Matsuno (21), Price (pp.105-110 of ref 10)), and is the same as the
two-stage Euler-backward differencing scheme discussed by Kurihara (17).
This scheme may be illustrated by examining a representative equation
in the set 2.6 to 2.10, abreviated as

4

)
T Z¥ = Fy + Sy, (2.12)

Here, Y takes on the values unity, q, T, u and v; S, represents all

b4
terms arising from the heat, moisture and friction source terms H,

(E - C) and F respectively; and FW represents all the remaining terms
in the.equation, Since the source terms S‘{I vary slowly with time, they
are neglected at most time steps and are only applied at every B'th
time step in one large increment. In the first stage of each time step,

a forward difference approximation yields the first estimate for ¥(t + At)

according to

o

. 2¥(t) + Fy (t) At

Z = 7(t) + F,o(e) A, ¥ = TR ’

(2.13a)

where SW has been neglected. In the second stage of the time diff-

erencing, a backward difference approximation results in the revised

estimates for Y(t + At) according to
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ZW(t) +F ()it

Rk EX S
27 = Z(t) +F ()t , ¥ = **‘1’ . (2.13b)

1 ' Z

If the time t + At is not an integer multiple of BAt, then the source
terms are not included in the differencing, and the dependent variables
at time t + At are assigned the wvalues

Z(t + At) = Z** s Y(t + At) = W**. (2.13¢)
However, if the time t + At is an integer multiple of BAt, then the
source terms are incorporated through a third stage in the differencing
scheme. Firstly, the temperatures are adjusted to ensure that the
atmosphere is dry adiabatically stable (p.109 of ref 10). Then with
the dry adiabatically stable atmosphere characterized by the state
parameters W*ﬁf the source term contributions are incorporated through

a backward difference approximation using the extended time interval

BAt. This third or source stage results in the value

5

*
Y(t + At) = ¥+ S, (t) BAL/Z(t + At). (2.13d)
v .

2.3 Techniques to Aid Stability

The Mintz-Arakawa model is a finite difference model on a projection
whose physical counterpart exhibits considerable shrinking between grid
points as distance from the pole decreaseé (the metric m decreases as
latitude increases). It is necessary to employ several special tech-
niques in order to avoid computational instabilities on such a grid
using a finite difference écheme. One technique has already been
mentioned, namely carrying the individual dependent variables at
different locations in the grid cells (a space staggered grid).

A second technique used in this model to avoid instabilities is

x %
to estimate the fluxes (u , v ) and the pressure gradient terms



3zd/9x, 95d/dy, (oza — ¢) dz/9x, (cra - ¢) 3¢/0y in the momentum

~ equation according to different methods, depending on whether it is
the first or second stage of the time step, or whether the time is an
even or odd multiple of At. In the first stage of all time steps the
fluxes and pressure gradient terms are estimated by centered symmetrical
finite difference approximations. However, in the second stage of the
time steps, the terms are estimated by uncentered non-symmetric finite
difference estimates (pp.110-113 of ref 10): down-left uncentered
estimates are used if time is an odd multiple of At, and up-right
uncentered estimates are used if time is an even multiple of At. The
term down-left means the difference expression uses values of the
variable to the left and below the point whére the flux or derivative
is being calculated. A similar interpretation applies to the term up-
right..

A third technique used in the Mintz-Arakawa model to avoid
instabilities is to employ an averaging operator designed to damp out
high frequency waves (short waves) travelling around latitude circles
(in the longitudinal direction) at high latitudes. These spurious

short waves arise from the shortening of the physical distance between

grid points on the latitude circles as latitude increases. Subsequently,

computational instability develops when the grid spacing becomes too
small in comparison to the time step interval. The averaging operation
is applied to the flux u* and the pressure gradient terms 3z¢/3x and
(cgza - ¢) 9z/3x in the covariant component (u component) of the
momentum equation. The averaging technique (p.1l4 of ref 10) is
illustrated for the flux u*. Define

D(y) = A®/{(LBcos &) , (2.14a)
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1 *
AG) =35 @O -1/ ) (2.14b)
N _
-where D (y) is the largest integer not greater than D(y). Then,

% @) . (@-1) 5 (m-1) 5 (@-1) 5 (@-1)
u (x,y) = u (%,y) + A(y) |u (xtl,y) - 2u (x,y) +u (x-1,y)| . (2.14c)

%
This averaging expression is applied D (y) times with n taking on the
* (0)
* % *
values 1,2,...,D (y). The term u (x,y) denotes the value of u (x,y)

before any averaging is performed. On the completion of the averaging,

*
L (0) LD ()
u (x,y) is replaced by its averaged value, u (x,y) . Although

relatively weak in low and middle latitudes, this averaging operator
shows a rapid increase in strength as latitude increases above 60° (or
below -60°).

Finally, it is necessary to make additional special‘considerations
at the poles. M cell centers map into each pole in the Mintz-Arakawa
model. Since the state parameters g, q and T are carried at the cell
centers, unique values for these parameters’at each pole may be obtained
by averaging the parameters over the M cell centers constituting each
pole. A further problem, the vanishing of metric m at the poles,
causes Z to vanish, thereby invalidating equations 2.13a to d. This is
remedied by artificially assigning the value of metric m at latitudes
north of (90 - &/2) degrees to be equal to the metric evaluated at
latitude (90 - §/2), with a similar treatment at the south pole. It is
also necessary to redefine the flux u* carried at the mid-points of the
M vertical grid sides crossing each pole, since a longitudinal flux at
the north or south pole is physically meaningless. In the Mintz—-Arakawa
model, this is done by applying conservation of mass to the polar cap

w
as a whole and solving for a ficticious set of u wvalues for each pole.

Finally, artificial latitudinal fluxes from regions '"north of the north
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pole'" arise in the finite difference equations for the dependent
variables in the polar cap. Such artificial fluxes are physically

meaningless and are neglected when they arise.

2.4 Heat, Moisture and Friction Sources

The energy inputs in the Mintz-Arakawa model include the heating
function H, moisture sourée or sink Q, and friction dissipation F. Four
contributions to the heating function are taken into account: incoming
solar radiation, long wave radiation exchange by the different atmos-
phere levels and from the earth to each level, upward transport of
sensible heat from the earth's surface into the lower level air, and
the release of latent heat when precipitation occurs. Evaporation from
oceans is the only source of moisture in the model, and two mechanisms
for condensation are accounted for: large scale precipitation and
convective precipitation. From the amount and type of prec;pitation,

a fractional cloud cover amount is calculated. The two sources of
friction accounted for in the model are surface friction acting on the
lower layer, and a horizontal shear stress acting on the interface
between the upper and lower “layers. A detailed description of the
individual heat and moisture sources in the Mintz-Arakawa model is

given by Price (40), and the friction contributions are described by

Price (pp.99-103 of ref. 10).



3. The Proposed Forecast Model: DBicubic Polynomial Splines on a
Variable Area Telescoping Grid

3.1 The Basic Equations in x, v, 0, t Coordinates

The basic equations of thermodynamics and hydrodynamics used in the
Mintz-Arakawa model (equations 2.6 to 2.10) are representative of the
many available classical systems of equations used in modern numerical
weather prediction models. The x, y, 0, t coordinate system is
appealing since the entire earth is readily mapped in this coordinate
system (with but two singularities at the poles) and the earth's surface
itself becomes the o = 1 coordinate surface. For these reasons, as well
as to facilitate the comparison of the polynomial spline method and
teleséoping grid of the proposed model with the finite difference method
and conventional grid of the Mintz-Arakawa model, the governing
equations in the proposed model are chosen to be the same as those in
the Mintz—Arakawa model (equations 2.6 to 2.10). Further, only a-two—
level version of the model is studied in order to save computation time.

A very simple linear mapping is used to relate the cartesian map
coordinates x and y to longitude © and latitude ¢ respectively.
Chosing x and y also to denote longitude and latitude, then

X = 0 180/7 K y = & 180/ (3.1)
where © and ¢ are in radians, and x and y denote distance on the
projection expressed in degrees of longitude and latitude. Hence, the
bounds of the northern hemisphere forecast region are the lines
x = ~-180.0, x = flS0.0, y = 90.0 and y = YS, corresponding respectively
to the 180° West meridian, 180° East meridian, north pole and southern
boundary line located a few degrees (YS) south of the équator. Having

selected suitable units for the x and y coordinates it is now-
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possible to solve for the metrics m and n in the proposed forecast

model. Applying equations 2.1 and 2.2 along with 3.1, there results the

values
dx = do 180/w , dy = dé 180/m , (3.2)
dsl
m === TA cosd /180 , (3.3a)
d82
n = E§_ = wA /180 . (3.3b)

r.

®
Since the flux v is required at the north pole, it is necessary to

have a nonzero value for m at the pole (mp). This is approximated by
taking

m, = n(y,) (?T-Bc)
wheré v, is the latitude of the first row of grid points lying just
.south of the north pole. This artificial value for the metric m at
the pole is in keeping with the method used to assign values for the
dependent variables at the pole. This is further discussed in Séction

3.2.3.

3.2 The Variable Area Telescoping Grid

A double subscript indexing notation (subscripts i, j) is used to
locate any node (grid point) in the forecast region. Subscript j
denotes the latitude circle on which the node is located. This sub-
script takes on the values between 1 at the north pole and N at the
southern boundary latitude circle y = ¥YS. Subscript i denotes the
position of the node on the latitude circle. The first node on each
latitude circle (at all latitudes) is at x = — 177.5, and it is
assigned the subscript i = 1. Subsequent nodes arounq the latitude
circle in the direction of x increasing are assigned the subscripts

i= 2,3,... to Mj’ where the number of nonrepeating nodes on the j'th
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latitude circle is Mj'

3.2.1 Two Grid Expansion Forms

The variable area telescoping grid in the proposed forecast model
has two forms of grid expansion superimposed on each other. The first
grid expansion is required to maintain the physical distance between
grid points on latitude circles greater than or equal to some minimum
disﬁance required for computational stability; and the second grid
expansion is used to decrease the number of grid points in regions which
are not of primary interest.

In the first expansion, since the physical length of each latitude
circle decreaées as latitude increases, the number of nodes on the
latitude circle must also decrease. The range of coordinate x on each
latitude circle remains constant (360.0) at all latitudes. Hence, fewer
nodes on the latitude circle results in an increase (expansion) in

spacing between the nodes x This expansion increases

1,5 X2,j""xMj,j'
as latitude yj increases. The physical distance between MN equispaced
nodes on latitude circle YN (lying closest to the equator) is

dN =.(2W A cos yN)/MN s (3.4)
where A is the mean radius of the earth. The interval dN is selected
to be the minimum physical distance between adjacent nodes on any
latitude circle. In other words, the distance dN is used in selecting
a suitable time step for the computationally stable time extrapolation
scheme. It is therefore necessary to have dj 2 dN’ where dj is the
physical distance between Mj equispaced nodes on latitude‘yj. With dj

given by

d, = (2 ™ AA cos y.)/M, , (3.5)
N i’ _
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then the selection

= i 3.6a
Mj largest dinteger < MN cos yj/cos Yy ( )
= } 3.6b
M= M, ( )
MN = arbitrary (3.6¢)

ensures that dj > dN for j = 1,...N. The resolution throughout the
forecast region is very uniform since the spacing dj at any latitude is
less than lOO/Mj% larger than dN*. Equation 3.6b is a necessary approx-
imation to accommodate the pole. It will be discussed later in this
chapter.

The second grid expansion results in an increase in the grid point
spacing as distance away from the region of interest increases. In this
fashion the amount of computation time spent in generating good
resolution forecasts in regions of little concern is considerably re-
duced, without sacrificing resolution in the region of primary interest.
The method used to generate this expanding or telescoping grid is dis-
cussed in Appendix 2. The most important characteristic of the methbd
is the smooth transition between regions-of increasing grid size and
regions of decreasing grid size, as well as a smooth matching with the

fixed north pole and southern boundary line YS.

* This result may be verified in the following fashion:

let Mj MN cos yj/cos Yy

it

5 equation 3.5 ,

A

A

kas
2 7 AA cos v, /M, ;
J 3

d, - d
then the % difference between dj and dN becomes 100{—13——3%
N
or 100 (M,% - M.,) < 100 since M.M - M., < 1.
Mj j h| M 5 ] ]
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3.2.2 Grids Used in the Numerical Forecasts

The four grids A, B, C and D used in the numerical forecasts are
given in Figures 3.1 to 3.4 respectively. Grid A (Figure 3.1) has a
5° latitude, 5° longitude grid, with a 12.5° polar cap (the spacing
between rows j = 1 and j = 2 is 12.5°). Nodes are indicated by the
symbols x , the numbers immediately adjacent to the grid along the
top and right hand side denote longitude and latitude respectively, in
degrees, and the column of numbers from 1 to 18 along the right hand
side denotes the row numbers. In this grid, N = 18 and Mj =72, 3 =1,
...N. The grid interval in grid B, Figure 3.2, is double that of grid
A. In all other respects grid B is of the same nature as grid A. Grid
C, Figure 3.3, is formed by imposing the baéic expansion of type one on
grid A. In order to maintain a constant physical distance between nodes
on all latitude circles in this grid, the number of nodes around each
latitude circle must decrease as latitude increases. In increasiﬁg
order, from high to low latitude, the terms Mj take on the values Mj =
15,15,21,27,33,38,43,48,53,57,60,63,66,68,70,71,72,72 as j dincreases
from 1 to 18. The final grid used in the numerical forecast experiments
is the telescoping grid, grid D (Figure 3.4). This grid is generated by
superimposingvthe expansion of type two on grid C, which already had a
basic expansion of type one. In this second expansion the grid expan-
sion factors in the x and y axes directions respectively (see
Appendix 2 and Figure A2.1) are EX = 1.1 and EY = 1.04. The expansion
is centered about the point (XP, YP) = (95, 50) located close to
Winnipeg, Canada.

The region of interest corresponds to a three grid cell or 1000

mile wide band extending eleven grid cells or 3500 miles across
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North America. Within this region of interest, the grid cells are of
the minimum size required for computational stability at that latitude.
The grid then expaﬁds monotonously as distance away from the region of
interest increases. In increasing order, from high to low latitude, the
terms Mj take on the values Mj = 17,17,22,25,28,30,31,33,34,35,36,37,38,
38,39,39 as j dincreases from 1 to 16. 1In Figure 3.4, the expansion
in the y direction is shown by a crowding of latitude lines at high
and low latitudes, with equispaced grid point rows on the figure.

There are no difficulties in applying bicubic polynomial splines
on an expanding grid, provided the grid expansion is smooth. Ahlberg
(24) reports problems in curve fitting when the physical spacing changes
significantly in a limited region. Essentially, when the grid point
spacing in a one-dimensional region containing four grid points is
alternately very large, very small, then very large, the resulting
spline fit to a monotonic increasing ordinate shows a local maximum
followed by a local minimum. This results in a very small local spike
in an otherwise monotonic spline curve fit. The spike is very local
and usually small (barely perceptible). In the application of splines
in the proposed forecast model, a good estimate of slopes is desired.
Although a small l&cal spike has little obvious effect on the curve fit,
it has a devastating effect on the derivative at the node where the grid
spacing changes too abrubtlyf Hence a smoothly expanding grid is

essential.

3.2.3 Assigning Dependent Variables at the Pole and Equator

In the proposed model, the dependent variables are advanced in time
at nodes on the latitude circles j=2toj=N-1 (see Figure 3.1, in

which N = 18). This may be compared to the Mintz-Arakawa model, in




which the dependent variables are advanced in time on all the latitude
circles j = 1 to j = N. Several special techniques are required to
ensure a conservative differencing scheme at the pole in the Mintz-
Arakawa model. These special techniques are not required in the proposed
model since the north pole (latitude circle j = 1) is not independently
advanced in time. The x-component of the bicubic spline is readily
applied along each of the latitude circles j = 2 to j = N ~ 1 since the
dependent variables are periodic in =x . However, the y component of
the spline surface must be applied along the longitude lines i = 1 to
i= Mj from j = 1 (north pole) to j = N (south boundary just south of
the equatorz. It is therefore necessary to generate values for the
dependent variables at the nodes on the polar and equatorial latitude
circles, j = 1 and j = N respectively.

The latitude circle j = 1 corresponds to the north pole, a singular
point. It is proposed that a suitable set of unique dependent variables
at the pole may be chosen to be représentative of the dependent
vari;bles in the polar cap (carried at nodes on latitude circle j = 2).
The variables in question are u, v, T, q, &, ¢ and v¥*, of which v¥* and
¢ depend on the others. Note that since the y derivatives of u* are
absent from the differential equations, it is not necessary to generate
u* at the pole. This may be compared to the artificial u®* fluxes in
the Mintz-Arakawa model at the pole, required to ensure conservation of
mass and momentum in the differencing scheme used to update the polar
dependent variables. In the proposed model, a unique polar value for
variable ¥ = ¢, q, T or ¢ is obtained by the averaging

M
1 2
, = vy ., i=1,...M (3.7)
l,l MZ k=1 1\,2
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A unique nonzero horizontal wind at the pole is obtainéd by first
referencing all horizontal winds at nodes (i, 2), i = l,...M2 in terms
of horizontal axes with the y axis aligned along the Greenwich
meridian (0° longitude), mext averaging these wiﬁds to obtain a unique
horizontal wind at the pole, and finally finding the local components
of this wind in terms of local horizontal axes at nodes (i, 1), i = 1,
"'Ml' In terms of horizontal axes at the Greenwich meridian, the

unique polar horizontal wind components are

1M
up =<ﬁ; ﬁ=1 Vk,2 cos ek,2 s (3.8a)
M
1 .2
v = — 3% \Y sin O s (3.8b)
M, © g k2 k,2
- 2 2 % -
where Vi,2 = (ui’2 + Vi,2) , i=1, ..M2, (3.8c)
- -1 .
@i,Z = tan (vi,Z/ui,Z) + Xi,Z , 1= l""MZ' (3.84)
Then the local components of this polar wind, in terms of lbcal
horizontal axes located at nodes (i, 1) i = l,...Ml, become
ui,l = Vp cos(@p - Xi,l) , 1i=1, Ml s (3.9a)
vi,l = Vp s1n(@p = Xi,l) , 1= 1,...Ml , (3.9b)
1
where vV = (uz. + v2 )/2 (3.9¢)
P P P ?
0 = tan T (v /u) . (3.94)
P P P

The flux v© at the pole is ggnerated using equations 2.11c, 3.3c and
3.9b.

The pole now has realistic unique values of the dependent variables.
It is important to recognize that this data at the pole is not inde-
pendently updated in time, since no time extrapolation expressions are

written for nodes along the latitude circle j = 1 making up the pole.
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Rather, the pole depends solely on the average state of the polar cap
as defined by the dependent variables around latitude circle j = 2. The
polar data is required only to serve as a realistic boundary condition
on the vy component of the bicubic spline data fit.

Values for the dependent variables on the latitude circle j = N,
just south of the equator, are assigned from corresponding data points
on the latitude circle j = N - 1, just north of the equator. A mirror
image symmetry arrangement 1s used for the dependent variables V¥ = u, T, g
and g, according to

Wi,N = wi,N—l , 1= l,...Ml. (3.10a)

An anti-gsymmetric boundary condition is imposed on the y component of

the horizontal wind, thereby preventing cross equatorial flow. Hence,

i=1,...M . (3.10b)

V. = - 1

i,N Vi,N-1
Again, this equatorial data is required only to serve as a realistic
boundary condition on the y component of the bicubic spline data fit.

It is not independently advanced in time.

3.3 Bicubic Polynomial Splines

-

3.3.1 The Spline Based on Continuity of Second Derivative

It is proposed that bicubic polynomial splines be used to estimate
the horizontal derivatives in the system of governing equations 2.6 to
2.10. Consider the rectangular mesh XS Ey S e <X ¥y Y,
> ¥y with prescribed ordinates uij at mesh points (xi, yj), i=1,...M;
j =1,...N. The double cubic or bicubic spline of interpolation to the
ordinates uij at mesh locations (xi, yj) is a piecewise continuous
function defined as a double cubic polynomial in each rectangle
X

£ x £ X,, V. >y 2 yj, with continuous first derivatives and

i-1 i’ 73-1
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cross derivative at all points in the rectangular mesh. Ahlberg, Nilson
and Walsh (26) describe the construction of a periodic two-dimensional
cubic spline S(x, &) over rectangular elements. This spline is
expressed in terms of prescribed ordinates u(xi,‘yj) and generated
second and fourth derivatives 828/8x2 828/3y2 and 848/8x23y2 at x., yj.
Since one basic aim of applying double cubic splines to fit meteor-
ological data fields is to obtain best estimates of the first derivatives
at data points, it is more convenient to construct the spline S(x,y) in
terms of prescribed ordinates uij and generated first and cross deriva-
tives pij’ qij and Sij representing, respectively, 3S/9x, 8S/dy and
BZS/axay at x., yj. In Appendix 1, the double cubic spline S(x,y) is
derived in terms of uij’ pij’ qij and Sij' In the proposed model, it is
not necessary to generate all the coefficients in the double cubic

piecewise continuous spline field. Rather, only the nodal values of the

first two derivatives, pij and qij are generated.

3.3.2 Boundary Conditions on the Spline

The possible boundary conditions on the bicubic spline data fitiare
discussed in Appendix 1. The bouhdaryvconditions on the x-~component of
the bicubic spline cause no problems since the field is periodic in x .
However, a certain degree of judgement is required in selecting the
boundary conditions onvthe y component of the spline. Nodal values at
the ends of the spline in the y direction are known, since they are
generated from equations 3.7, 3.%9a, 3.9b, 3.10a and 3.10b. However, an
additional piece of information is required at the ends, generally in
the form of a specified first or second derivative.

This information is straight forward at the equator, where a

symmetry boundary condition is assumed. The equator lies at the center
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of grid cells between latitude circies j = N - 1 and j = N. The slope
on the spline surface and the corresponding value of the spline between
two nedes are given by equations Al.42a,c in Appendix 1. For the
symmetrical dependent variables (equation 3.10a), 9S/3y must vanish on

the equator. Setting equation Al.42c to zero yields

qi,N = - (3.11a)

94 N-1 -
For the anti-symmetric v compenent of the horizontal wind (equation
3.10b), S{x,y) must vanish on the equator. Setting equation Al.42a to
ZEexro yields
qi,N = qi,N»l . (3.11b)

At the pole, however, it is a question of how rigidly should the
bicubic spline surface be restrained by an end condition affecting the
slope. For example an end condition having little or no influence on
the slope of the spline surface fit at the pole is undecirable. With
such an unrestrained end condition there is no coupling between the
slopes of the spline surface along the different longitude lines meeting
at the pole. Computational stability with any particular time step
requires the slope resolution at nodes in the field be less than some
maximum value. This is a logical corollary of the stability requirement
that the grid interval be greater than some minimum value, and the
larger the grid interval, the poorer the slope resolution. Hence, some
coupling between the slopes along longitﬁde lines meeting at the pole is
required to decrease the overall polar slope resolution to a value at
least representative of the slope resolution in the remainder of the
field. 1Increasing the coupling is therefore a restraining influence on

the spline surface fit at the pole. The possible end conditions which

exert this restraining influence include specifying the slope or second
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derivative at the pole, or specifying the second derivative at a
ficticious point "morth of the north pole'" (equations Al.25 to Al.28 in
Appendix 1).

End conditions of the form qi,l = qi,Z or Qi,l = Qi,2 are ruled
out as having too unrestrained an influence on the spline surface fit.
Here, the symbol Q represents BZS/ay2 (similar to having q represent
38/3y). The end condition involving a specified second derivative at a
ficticious point "north of the north pole' permits some control on the
restraining influence of the end condition on the spline surface fit.
However, at this stage in the analysis, it is felt that such control is
not required and this end condition is eliminated. This leaves a
selection of one of two possible end conditions:

qi’1 =0 , or (3.12a)
Qi,l =0 . (3.12b)
In the standard atmosphere, the temperature and pressure fields are
radially symmetric about the pole, and both end conditions 3.12a and
3.12b are satisfied. However, in the real atmosphere there is generally
a large deviation from radial symmetry. Of the two end conditions,
specifying the first derivative is a more restrictive influence on the
spline surface fit.than is specifying the second derivative. Therefore,
equation 3.12b is the preferred end condition, and it is used in the

proposed forecast model. The other end condition is tested in the pre-

liminary numerical forecast experiments.

3.3.3 A Generalized Spline Based on Curvature

It has been mentioned that the cubic spline based on continuity of
the second derivative exhibits the minimum curvature property when

curve fitting data with small slopes. This property does not apply when




the slope is large. In order to accommodate rapidly changing data with
few data points, it was decided to derive a generalized cubic spline
based on continuity of the approximate curvature at points located be-
tween the data nodes.

The need for such a generalized spline becomes apparent from an
examination of the mature of the cubic spline curve fit in cases of
rapidly changing data. Preliminary experiments with the cubic spline
based on continuity of the second derivative have shown that when there
is a sudden change in the curvature nature between two regions in the
field, the spline slope estimates at the nodes oséillate about the true
slopes, with a decreasing percentage error as distance from the junction
between the two regions increases. In Tabie 3.1, six sets of sample
data are given to illustrate the consequence of abrubtly éhanging curva-
ture on the spline data fit. 1In data sets one to three, the region
x < X, corresponds to a sinusoidal test function and the region x > Xg
corresponds to a straight line of three different slopes. Data sets
four and five are cases of two straight- -lines meeting at a point between
X, and X The sixth and final data set corresponds to a sinusoidal
test function over the entire interval. The true derivative Pit is
obtained by differentiating the analytic test function u(x); the spline
derivative estimates P, are formed by fitting a one-dimensional cubic
spline to the known ordinates u, at nodes X, for all i ; and, the %
error in Pig is calculated relative to the true slope P From this
table it is seen that there are significant oscillations in the spline
curve fit at the junction between regions of abrubtly changing curvature,

while the accuracy of the spline curve fit is very high (less than 0.1%

error) in regions of slower changing curvature., This illustrates the

45
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type of problem which may be encountered when uéing the cubic spline
based on continuity of the second derivative to curve fit data whiéh has
abrubt changes in curvature. A generalized spline based on curvature
(rather than the second derivative) is proposed as an alternative to the
problem of curve fitting rapidly changing data.

The general cubic spline based on continuity of the approximate
curvature is derived in a similar fashion to the cubic spline based on
continuity of the second derivative (Appendix 1). The derivations
differ primarily in the continuity requirement. Where the simple cubic
spline employs the continuity of second derivative constraint (equations
A1.19 to Al.23 in Appendix 1), the generalized cubic spline employs a
cdntinuity of curvature constraint,

1 1

s (x, - ah.,) = s'(x, + bh.,.) , (3.13a)
Bi i i Bi+l i i+l

_ . 2.3/2
Bi = (1 + S £1 ) . (3.13b)

u, - u , :
T b, Us (3.13¢)
i

hi =X, "X, 4 . (3.134)
XS, US = nondimensionalizing factors , (3.13e) ‘*5ﬁ"
o<a<l , og<bgl . (3.13f)

Here, equation 3.13a expresses continuity of the approximate curvature

between the points X, - ahi and X, + bhi+ These points are generally

1°
not grid points since a and b are generally nonzero. Also, the
curvature is only approximate since S'fi is a finite difference
estimate for the slope at X, - ahi, not the true spline slope. If the

true spline slope (equation Al.17) were used in place of S'fi’ equation

3.13a would become nonlinear. The solution of a nonlinear system of



algebraic equations is very difficult and therefore not practical in
this application. The additional factor XS/US appearing in equation
3.13¢c is required to scale the ordinate u and abscissa x to be
independent of the units used, and to make S'fi of the same order of
magn- “ude as the number "1" appearing in equation 3.13b. This is
necessary since Bi is nonlinear in S'fi’ and the numerical value of the
ratio Bi/Bi+1 in equation 3.13a should be independent of the units used.

For example. if U g Uy .y X have the values 200°K,

17 Yi-10 Fiee Fi Fi-n

196°K, 206°K, 100 ft, 96 ft, 101 ft respectively, then with no scaling

factors (XS/US = 1.0), there results the slopes S'fi+1 = 1°K/ft,
1 - o . . — .« r .
S £1 2°K/ft giving Bi+l/8i 0.252. However, if the units of x
s 1 - o /3 1 —
are changed from feet to inches, then S £itl 1/12°K/in., S £i

1/6°K/in. and Bi+l/Bi = 1.0. This is discussed further in the actual
numerical experiments.
With S"(x) given by equation Al.18, the continuity requirement 3.13a

becomes

2p, (1 - 3a) hp (1= 6(u - u_ (- 2a)

i
B.h, TR m B 2 (3.14)
ii i'i B.h,
ii
3
_ 4p, (1 = 5b) i 2p. ., (1 - 3b) . 6(u,,, - u)(1- 2b)
B.,.h, B. . h, 2 ’
ke S R R i+l i+1 Bi+lhi+l
\ * ) %* % .
or A, Pi_q + P + My Pyyq =G , 1i=2,3,...M-1 , (3.15)
1 KA (u- - u, ) L (u- - U.)
%% - S
where c,% = 3A, N S ' 4 + 3u.? xS SO (3.16a)
i i h, i h,
i i+l
Ki = Bi+lhi+l 1 - 3a)/D:.L , (3.16b)
b, = Bihi (1 - 3b)/Di R . (3.16¢)
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Ay = Bighi, (- 22)/D (3.164)
K%

W, o= e (1= 20)/D, (3.16e)

D. = (1-2a) 6. .h... +(1-=b)g.h (3.16f)
i 2 i+1 i+l 2 ii °? *

provided at least one of a or b is not 2/3. Since there is no
advantage in using a different from b in this application, a and b
are assigend the same value. In the discussion which follows, let A
denote the coefficient matrix for the left hand side of the system of

equations 3.15 written for the periodic case (p0 = ). If

Pyr P17 Payr
a = 2/3, the multipliers of P> i=1,...M, become zero and the main
diagonal of the coefficient matrix A vanishes. Hence, although the
system of equations has a unique solution (since the terms ci* are not

0 and the det(A) # O for M > 4), the solution may not be obtained by
convgntional pivotal numerical methods because the system of equations

is not diagonally dominant (p.425 of ref 41). Also, this solution is
only of minor interest since the zero main diagonal in matrix A results
in double the effective grid length, thgreby reducing the accuracy of

the phase speeds predicted for the short meteorological waves. The role
of the effective grid length is briefly discussed in the Introduction.

In the second case of interest, a = 1/2, the homogeneous system (Ci* = 0
- for all i ) which results has a unique solution since det(A) # 0; and
the solution is the trivial solution p; = 0 for all i (p.384 of ref 42).
This spline curve fit with zero slopes at all the grid points represents
the maximum possible smoothing of the slope estimates. Values of a
between 2/3 and 1/2 represent varying degrees of the characteristics of
the two extremes and are of little practical importance. A third case

occurs when a = 1/3 and XS = 0. The system then reduces to a simple

central finite difference scheme
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(u, - u, ) (u,,, = u.)
p, = A, ———2E L, EEL Ay, (3.17a)
i i h, i h,
i i+l
h h
i+1 i
where A, = sy W, = g . (3.17b)
i hi + hi+l i hi + hi+l

Similar to the bicubic splines in Appendix 1, the factors Ai and My give
a weighting of the finite difference estimates to account for the
varying grid interval. The values of a between 1/2 and 1/3 give
varying degrees of smoothing or damping of the slope estimates, with an
increase in smoothing as a approaches 1/2. Finally, when a = 0 and

XS = 0, the system 3.15 reduces to the system Al.21 in Appendix 1 used
to define the original cubic spline based on continuity of the second
derivative. Of major interest in this study is the inter—relationéhip
between finite differences and cubic splines. Since the former occurs
when é = 1/3, XS = 0 and the latter occﬁrs when a = 0, XS = 0, the

range of values of a which are of most interest are 0 < a £ 1/3.

3.4 The Forecast Procedure Using Bicubic Splines on the Telescoping Grid

The governing partial differential equations (2.6 to 2.10) are of the

form

a =
3p Lh = A+ By (3.18)

where the terms wa and Bwy represent all terms involving first deriva-
tives in x and y respectively in the ¢ differential equation, V¥
taking on the values unity, u, v,.C, q and T. The time extrapolation
scheme for Zy is applied using equation 3.18 at all the nodes j = 2,...
N-1; i = l,...Mj. The dependent variables at the pole (j = 1) and on

the latitude circle just south of the equator (j = N) are not extra-

polated in time, since they are generated from data on latitude circles
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3 =2 and j = N-1. In the proposed forecast model, suitable values for
wa and BWY are generated from a cubic spline surface fit to the
depéndent variablé fields. There is no prcblem in generating wa in
this fashion since the variably spaced grid points lie on latitude
circles. However a conventional cubic spline data fit in the vy
direction is not possible unless the dependent variables are aligned
along longitude lines. It is seen from Figures 3.3 and 3.4 that this
is not the case, since one or two types of expansion have been imposed
on the grid. This problem is circumvented in the following fashion.
First, the dependent variables are interpolated from nodes on the
expanding grid to nodes on an underlying regtangular grid having grid
points aligned along longitude circles. Next, the dependent variables
on the underlying grid are fit by cubic splines in the y direction,

thereby generating B at all nodes on the underlying grid. Finally,

vy
the BWY values on the underlying grid are back interpolated to the
expanding grid. With wa and Bwy known at grid points on the expanding

grid, 3Zy/3t becomes known and the time differencing proceeds according
to equations 2.13a,b at nodes on the expanding grid.

Grid A (Figure 3.1) is a suitable underlying grid for the expanding
grid C (Figure 3.5). It is seen from the figures that grid A meets the
requirement of having grid points aligned along longitude lines. The
method by which dependent vgriables at nodes on the expanding grid are
interpolated to nodes on the underlying grid will be referred to as
interpolation method A. Since the interpolation is in the direction of
finer resolution, a quadratic interpolation using intermediate data

formed by linear interpolation is used. With reference to Figure 3.5,

the method is to use the known ordinates at nodes Xy, Xg, Xg and X, to
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o

"
estimate a value for the ordinate at point x lying between X, and Xq

Linear interpolation is first used to assign values to the ordinate at

and x lying at the midpoint of the grid intervals.

points Xy 5, %) g 3.5

0o

Yit.s by + Vi) (3.19)

A quadratic interpolation is now possible using the ordinate values at

and x The interpolation polynomial is constructed using

%1.5° *2.5 3.5°

Neuton's interpolation formula with divided differences (p.171 of ref
43). Hence,

] ¥ = * -
Y ) =y gt & o-xy o) £y g

txmxy & -y 5) £y 5y 5535 5 (3.202)
where fi,j = (¥, - wj)/(xi - xj) , (3.20b)
fi,j,k = (fj,k - fi,j)/(xk - Xi) . (3.20C)

Then the following interpolation formula results:
Y(x ) = ap; o+ Db, o+ cPy g (3.21a)
where a = g.hz(g -1D/@A+m (3.31b)
b=(r+ 1)1 -8 , ) (3.21c)
c=EQ + /A +1) , (3.21d)

N .

X - (x2 + h3/2)
g = ? (3.21e)
.5(h3 + h4)

= (hy + h4)/(h3 + h2) , (3.31f)
hi =%, - X 4 (3.21g)

The method by which variables on the underlying grid are back inter-
polated to the expanding grid will be referred to as interpolation
method B. Since the interpolation is in the direction of coarser

resolution, especially at high latitudes, a weighted averaging
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technique will be used. With reference to Figure 3.6, the method is
to evaluate wi* on the expanding grid using equal contributions from
all nodes lying within range R on the underlying grid and using smaller
weighted contributions from nodes X9 and X041 lying just outside

of R. The resulting interpolation formula is

i2
pooo= o BV R T Ry
i k=41 , (3.222)
i2 - il + f1 + f2
where fl = dl/hil s f2 = d2/h12+1 R (3.22b)
hy =% = x4 - (3.22¢)

It is dmportant to note that this scheme is only used in generating the

terms in B (equation 3.18) used in the time extrapolation scheme; this

vy
. method is not applied to any of the dependent variables in the model.

It is also worth noting that both interpolation methods A and B are
numerical quadrature methods. Although a polynomial spline method may
be potentially more accurate in interpolation, it is not used here for
several reasons. Firstly, the major reason for using splines in this
thesis is to obtain best estimates for the slopes of the dependent
variable fields at the grid points. This was discussed in the Intro-
duction where it was pointed out that a spline estimate of the slope has
several inherently better characteristics than a finite difference slope
estimate. Secondly, the interpolation methods A and B discussed above
are important but mnot critical in this model, since these interpolation

methods only enter into the calculation of B in equation 3.18. The

vy

more critical calculation of A, , which strongly determines the meteor-

Ux

ological wave speeds, is performed directly using pélynomial splines

without any intermediate interpolation. Also, stability problems are




primarily concerned with spurious short waves travelling in the west-
east direction, and the calculation of Bwy has little influence on ﬁhis.
The third reason for the use of the quadrature interpolation methods A
and B is the saving in computation time without a marked decrease in
accuracy compared to the spline interpolation method. Essentially, the
two important characteristics of interpolation methods A and B which

must be realized are that the methods be reasonably accurate and fast.
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4., Numerical Bxperiments and Forecast Resulks

4.1 Real Weather Initial and Verification Data: 0000 GMT February 2,1970
and 1200 GMT February 3,1970

Input data required to begin forecasts using the proposed model and
the comparison Mintz-Arakawa model consists of the following parameters
specified at each grid point in the forecast domain:

1. TO ocean temperature required in calculating the heat sources

Hl and H3.

2. ¢S, surface geopotential, determined from land elevations by
equations 2.11k and 2.11%.

3. Z , determined from the surface pressure PS by equations 2.5
and 2.11a. _ T

4. qq, mixing ratio at the o = 3/4 level only.

5. ul,u3;v1,v3, % and y components of the horizontal wind at the
- o= 1/4 and o = 3/4 levels.

6. Tl’T , temperature at the 0 = 1/4 and o = 3/4 levels respect-
ively.

The mean northern hemisphere ocean temperatures for February were obtain-
ed from the U. S. Navy Marine Climatic Atlas of the World (ref.44). Values
for the temperature, height, and 2 horizontal components of a balanced wind
corresponding to the heights, for the 1000, 850, 700, 500, 300, 200 and 100
mb surfaces, and dew point values at 850, 700 and 500 mb were obtained from
the Central Analysis Office of the Canadiarn Department of Transport, Dorval,
Quebec. This data was supplied for 2805 grid points of a Polar Stereographic
projection of the northern hemisphere for the month of February, 1970. Al-
though surface elevations may be readily obtained from standard topogra-
phical atlases, the author was unable to obtain ground surface pressurés,
making it necessary to obtain an alternative set of data for ¢s and PS.
Approximations for ¢S and PS suitable for short term weather predictions
were obtained by setiting the 1000 mb surface to be the ground surface at

the beginning of the forecast. Therefore,
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1. The surface pressure was initially 1000 mb at all grid points.

2. The surface elevation was the height of the initial 1000 mb
surface.

3. The 0 = 3/4 and 0 = 1/4 surfaces initially coincided with the
800 and 400 mb surfaces respectively.

4. Values for T, u and v at the 800 and 400 mb levels, and dew
point at the 800 mb level were obtained by linear interpolation
from the nearest pressure levels at which this data was known.
The data was then interpolated from grid points on the stereo-
graphic projection to grid points on the map projection used
in the proposed model.

5. The mixing ratio ¢ ‘was obtained from the dew point by using
steam tables. Altérnatively, the Clausius-Clapeyron equation
could have been used to obtain the vapour pressure P_ corres-

. . . . v
ponding to the dew point, and the mixing ratio would then have
been calculated from
! 9 = 0.622 PV/(P - PV) .
The numerical forecasts all begin with real weather data for 0000

GMT February 2, 1970, compiled in the fashion mentioned above. For con-

venience, the term 'O hour data" is used to refer to this real weather

data for 0000 GMT February 2, 1970. This initial data is presented in

Figures 4.1 to 4.8 in the form of contour maps containing the following

information: isotachs for the horizontal wind on the lower (800 mb)

and upper (400 mb) surfaces (10 m/sec contour spacing), isotherms on
the 800 and 400 mb surfaces (10O K spacing), mixing ratio contours at
the 800 mb level (cbntour spacing is 3.0, in units of g HZO /g dry air

X 10—3), surface pressure (mb), and elevation contours for the 800 and

400 mb surfaces (200 m contour spacing). 1In a similar fashion the 36

hour verification data (real weather for 1200 GMT, February 3, 1970) is

presented in Figures 4.9 to 4.16.

As a guide to locating those regions in each variable field where

the true weather is changing at a rapid rate, a weather change parameter

dw is defined:



le = U)to - wt36 + 1000 , (4.1)
where wto = true value of the variable ¥ at O hours,
wt36 = true value of the variable Yy at 36 hours.

The contour lines labelled 1000 denote regions where there has been no
change in the value of ¥ over the 36 hour period. With dw defined by
equation 4.1, it is possible to generate contour maps for each depend-
ent variable field showing regions where the weather has changed the
least and the most. Weather change contour maps for the 36 hour period
are given in Figures 4.17 to 4.22. Actual details of the true weather
change over the 36 hour forecast period are discussed in Chapter 5, in
connection with the evaluation of forecast performance of the proposed

model.

4.2 Preliminary Numerical Experiments

Several preliminary attempts were made to generate a stable
numerical forecast using the bicubic spline method on a regular rectangu-
lar 5° latitude, 5° longitude grid (grid A, Figure 3.1), with filters
and averaging operators to remove spurious short waves at high latitudes.
This médel will be referred to as model P. It has some characteristics
of the proposed forecast model and some characteristicé of the Mintz-
Arakawa model, since the proposed model uses the bicubic spline method
and the Mintz-Arakawa model uses a regular rectangular grid with several
filters and special techniques to obtain stability (see Section 2.3).

The preliminary numerical experiments were performed in order to deter-
mine the nature of the special techniques required on a Mintz-Arakawa
grid to obtain a stable forecast, and to investigate the effects of
different boundary conditions on the cubic spline at the north pole.

In the first experiment (Pl), model P was applied with an 8.50
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polar cap (8.5O interval between the pole and latitude circle j=2) and
boundary condition 3.12a at the pole. In this experiment, no averaging
operators or special techniques were used to improve the computational
stability, and the resulting numerical forecast was computationally un-
stable (exploded numerically) in less than 1/2 hour of forecast time.
This indicates a definite need for special techniques to control the
computational stability of the numerical forecast on a Mintz-Arakawa
grid.

In the second experiment (P2), model Pl was altered by applying
the Mintz-Arakawa averaging operator 2.l4c to the pressure gradient
terms in the x component of the momentum equation. This is but one of
several special techniques used in the Mintz-Arakawa model to obtain a
stable forecast (see Section 2.3). However, the resulting numerical
forecast was unstable after ZO'hours of forecast time. The 20 hour
upper.level flow conditions (horizontal winds, temperatures and surface
elevations (geopotential)) and surface pressure are given by contour
maps in Figures 4.23 to 4.26. Since the forecast reached 20 hours of
forecast time before exploding numericaliy at the pole, a considerable
improvement has been realized over model Pl. However, Ehere remains L
room for improvement,

A first attempt to improve stability at the pole was made by
using a 12.5o polar cap in place of the 8.50 polar cap model P2. This
decrease in grid resolution at the pole is an improvement since the
Mintz-Arakawa grid inherently has the undesirable characteristic of
severely over-resolving the high latitude regions. The results at 26
hours from this third numerical experiment (P3) are given in Figures
4,27 to 4.30. These results show some improvement over model P2 since

the forecast reached 26 hours of forecast time before exploding numeri-
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cally at the pole and over Asia. It is emphasized at this point that
the only special technique used to aid stability in the forecast up
to this point is the Mintz-Arakawa averaging operation 2.l4c. 1In the
Mintz-Arakawa model itself, several other techniques and special con-
siderations are employed at the pole to obtain stability (see Section
2.3).

In the fourth experiment (P4), additional averaging operations
were imposed on model P3. The one-dimensional 3-point averaging opera-
tor

bty R O, -y ) (4.2)
was applied in a fashion limited to the smoothing of all fields re-
quiring the!evaluation of x and y derivatives. 1In all other competitions,
including the time extrapolation scheme 2.13a and 2.13b, the field was
used in its unsmoothed form. Hence, the averaging operation is a sta-
bilizing influence on the slope calculation, a critical step in the fore-
cast procedure, without unduly influencing the remaining calculations.
The Mintz-Arakawa averaging operator 2.l4c and the above 3-point averag-
ing operator 4.2 are very similar since equation 4.2 may be obtained
from equation 2.l4c by replacing the factor A(y) with 1/4, and by using
A= M= 1/2 (the values for a constant grid). Results from this |
numerical forecast after the full 36 hour period are presented in Figures
4.31 to 4.34. There is a considerable improvement in this forecast over
model P3 since the 36 hour forecast was obtained. However, instabilities
still remain in the forecast field over Asia and at the pole.

At this point it was decided to improve the boundary condition
for the y component of the bicubic spline at the pole. Preliminary ex-

periments with cubic splines have shown that when there is a sudden



change in the function's curvature between two regions in the field, the
spline slope estimates at the nodes oscillate about the true slope, with
a decreasing percentage error as distance from the junction between the
two regions increases. This problem in curve fitting with the bicubic
spline was discussed in Section 3.3.3 (see Table 3.1). Since the state
parameters at the pole are average values for the polar cap, they may
differ significantly from parameters close to the pole on the individual
longitude lipes meeting at the pole. It is possible thenvto have a data
fit situation similar to the junction regions for the curves tabulated
in Table 3.1. Therefore, a further modification to effect a partial de-

coupling of the pole may improve the forecast.

For the fifth experiment (P5) the pole was not carried explicitly

as a boundary condition for the spline, thereby partially decoupling the
pole from the remainder of the forecast domain. With the notation Yo

Y, and Yy respectively representing the values 90.0, 82.5 and 77.5, the
dependent variables serving as boundary conditions on the y componenﬁ of

the bicubic spline were assigned values along the line vy = 82.5 accord-

ing to
_1
V3,173 Wi o Ty 5 TV ) (4.3a)
for ¢ = z,q95,T; and
= l
L2 awi,o +hY el g, (4.3b)

for ¥ = u,v. The following notation is used in the above equations:

a=1-9v91l+ g) , (4.4a)
b= v(l+ ¢+ Ekl/k3 s (4.4b)
c = —Ekl/k3 s (4.4¢)
ki = yi - yi_l . (4.4(1)

For the indicated values of Yor Y3 and Yoo the parameters a, b and ¢
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take on the values 0.2285, 1.2000 and -0.4285 respectively. Equation
4.3a is a relaxed form of the old polar boundary condition 3.7, and

equation 4.3b is a quadratic estimate for wi using the three nearest

1
nodal values along a longitude line. The value wi,O in equation 4.3b

is the polar value for the horizontal wind given by equations 3.9a and
b. Finally, the boundary condition Al.27,Al.28 specifying the second

derivative at a point Yo outside of the spline curve fit region was

used. With this second derivative set to zero, the following end condi-

tion was obtained:

;:% - - 0.846153 z-i—z— + 1.846153 %—{_i—i (4.5)
The boundary conditions 4.3a to 4.5 were used to Teplace the previous
boundary conditions 3.7 to 3.8d and 3.12a used in the fourth experi-
ment, P4. Results from this fifth experiment (P5) are presented in
Figures 4.35 to 4.38. This forecast was also unstable at 36 hours,
although to a lesser degree than the previous experiments. In this
case the pole itself appears as the source of the instability, and fhe
instability over Asia is considerably reduced. Therefore, partially
decoupling the pole has some good effects and some bad effects on the
forecast.

Since both firmly coupled and partially decoupled pole boundary
conditions failed to induce stability at high latitudes, it was necess-
ary to investigate other sources of instabilities.

A sixth numerical experiment (P6) was performed to remove the
possibility that the instabilities are due to the use of bicubic splines.
In this experiment a moderately coupled polar boundary condition (3.12b)

and a simple central finite diffevence scheme (3.17) were used. This is

similar to the Mintz-Arakawa model in that finite differences are used




tc estimete derivatives on a grid with constant latitude and longitude
grid intervals. However, model P66 does not use the staggered space
grid, complex finite differences, special methods of calculating fluxes,
and other special techniques to obtain stability used in the Mintz-
Arakawa model. The basic results from this experiment at 36 hours are
presented in Figures 4.39 to 4.42. Again the forecast is found tc ke
unstable at high létitudes with an instability developing over Asia.

The time variations of the longitudinal mean values of the surface
pressure and upper level (400 mb) dependent variables for the 36 hour
forecast period are given in Figures &4.43 to 4.46. The longitudinal

mean Ej for variable wij is the mean value of ¥ around the latitude

circle y = yj , according to

M,
v -1 5y (4.6)
PR /. . s .
IMy oy ]
where v = 90.0, Vo = 77.5, yg = 72.5, ... , Yi7 = 2.5, Yig = -2.5.

In the longitudinal mean figures, the numbers along the right hand
side of each figure denote the latitude circle (j) for which the longi-
tudinal mean curve was generated. It is seen from these figures that
the forecast is stable in the most part, since the instabilities at
the pole and over Asia have not appreciably altered the longitudinal
mean curves. The oscillations in these curves aré present evén in
stable forecasts, and they will be discussed in Section 5.1. Some in-
dication of the instabilities do begin to appear in the gradual rise
of the longitudinal means for the upper level velocity at high latitudes
(j = 2_to 5 in Figure 4.43). This effect is not apparent in the remain-
ing longitudinal mean curves.

Both the boundary conditions at the pole and the use of bicubic

splines have been ruled out as sources of the instabilities in the




numerical experiments to this point. As a final experiment (P7), the
possibility of computational instability due to the shrinking of the
physical distance between grid points on the earth as latitude increases
was investigated by repeating the forecast P6, ekcept using a grid with
double the grid interval (lOO latitude, 10° longitude grid). The grid
used is shown in Figure 3.2 and is called grid B. Results from this
forecast after 36 hours are given in the form of contour maps of the
variable fields (Figures 4.47 to 4.54), error contour maps for the
dependent variables (Figures 4.55 to 4.60), and longitudinal mean curves
for the dependent variables over the 36 hour forecast period (Figures
4.61 to 4.68). Error contour maps are a comparison of the difference
between the!forecast fields and true weather fields at 36 hours, accord-
ing to the definition of local error,

+ 1000 , (4.7)

©p = Y36 T Vese

where = the forecast value of the variable y at 36 hours,

£36

Vegg = the true value of the variable y at 36 hours,

evaluated at each node in the field. On the error contour map, the lines
labled 1000 denote the lines where the forecast field exactly agreeé with
the true 36 hour weather. In geﬁeral the forecast is poor due to its
large phase lag relative to the phase speed observed in the true Qeather.
Also there is a strong tendency to damp out significant features in the
fields and not resolve features which would appear in a finer grid model.
This is shown in the comparison of Figure 5.55 with Figure 4.9. Despite
these flaws, the forecast is definitely stable, a characteristic which
earlier experiments did not have. Since stability was obtained on a

coarse grid and not on a finer grid version of the same model, the in-

stability problem may be attributed in the most part to the shrinking
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of the physical distance betwean grid points on & constant latitude,
constant longitude interval grid. Turther discussion of the results
from model P7 is included in Chapter 5, in copnnection with the evalua-
tion of forecast performange for ali the numerical experiments.

4.3 36 Hour Forecast Results Using Splines on & Telescoping Grid

As discussed in Section 3, the proposed forecast model uses the
bicubic polynomial spline method on an expanding or telescoping grid
having superimposed basic expancions of two types. Hereafter, this
medel wiil be referrved to as model ST. All the necessary bodndary con-
ditions as well as the proposed forecast procedure are also discussed
in Section 3. It is emphasized here that model ST does not employ any
of the several special techniques (Sections 2.2 and 2.3) used in the
Mintz-Arakawa model to obtain a stable forecast. Several numerical
forecasts were performed using modified versions of model ST to illus-
trate fundamental characteristics of the method.

The first 36 hour forecast performed was an application of
model ST limited to an expanding grid having only one basic expansion
(grid C, Figure 3.3). This forecast ﬁodel will be called S. The fore-
cast was performed Lo demonstrate that the use of a grid having a basic
expansion of Type 1 produces a stable 36 hour forecast without the necess-
ity of resorting to the special techniques (averaging, space staggered
grid, complicated flux estimates, and others) used in the Mintz-Arakawa
model. Results from this forecast in the form of contour maps, error
maps and variations with time of the longitudinal means are given in
Figures 4.69 to 4.90. The forecast shows good resolution and is definite-
ly stable, without excessi&e overdémping of strong features. Further

discussion of this forecast is given in Section 5, where it is evaluated.




The second 36 hour forecast performed using a modified version
of model ST had a grid with an expansion of Type 1 (grid C), but used
central finite differences (3.17) in place of bicubic splines to esti-
mate the derivatives. This forecast, to be referred to as model F, was
performed to demonstrate the advantages and disadvantages of bicubic
splines compared to finite differences in estimating derivatives. As
with model S, it was not necessary to resort to special techniques to
obtain stability, since grid C was used. Results at 36 hours from this
forecast in the form of contour maps of the dependent variable fields
are given in Figures 4.91 to 4.98. Model F is similar to model S in
that the forecast shows good resolution and is definitely stable with-
out excessive overdamping of strong features. However, all the fields
show a distinct phase lag to the forecast from model S. Since both
forecasts lag the real weather(this is shown by the 400 mb geopotential
fields in Figures 5.49 to 5.52), model S using bicubic splines shows
a distinct advantage over model F using finite differences. Further
discussion is given in Chapter 5.

The third 36 hour forecast performed was to run model ST as it
was designed: using the bicubic polynomial spline method on a tele-
scoping grid having superimposed expansions of two types. The grid
" used for this forecast is grid D, Figure 3.4. Like the previous two
forecasts it was not necessary to employ special techniques to obtain
stability. The forecast results in the form of contour and error maps

of the dependent variables, as well as variations of the longitudinal

means with time during the forecast, are given in Figures 4.99 to 4.120.

Of particular interest in this forecast is the reduction of computer

time (1/3 that of model S) without sacrificing resolution and accuracy
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in the regicn of primary interest {(Worth America for grid C).

The fore-

cast shows good resolution and phase speed of the large scale meteor-

ological waves over North America, with somewhat pocrer resolution and

phase

on

compared with others in Chapter 5.

peed in the expanded grid regions over Eurcpe. This forecast

The fourth forecast was to run 8 modified model ST on a grid

18

with an expansion of Type 1 (grid C, Figure 3.1), using the new bicubic

gpline 3.15 based on continuity of curvature. The values of parameters

a and X5 selected were

]

a 0.222222

0.0

XS

(4.8a)

(4.8b)

In this fashion the derivative estimates are exactly intermediate be-

tween central finite difference estimates (a = 1/3) and estimates from

cubic splines based on continuity of the second derivative (a

This follows from equations 3.15 and 3.16f, for which if a

the sum of contributions by A and u* to the slope at node i is

(1 - 3a)/(1 -~ 1l.5a). This must equal unity if a = 0 (A+ u= 1, spline
based on conﬁinuity of second derivative) and must equal zero if a = 1/3
(central finite differences). The intermediate value is (1 - 3a)/(l - 1.5a)

= 1/2; and solving for a yields equation 4.8a. Note that when a # 0 and

b.

0).

h

and XS

0

XS = 0, equation 3.15 becomes the condition for continuity of second der-

ivative at points in the elements other than node points.

referred to as model Cl. TForecast results at 36 hours in the form of con-

This model is

tour maps of the dependent variables are given in Figures 4.121 to 4.128.

On the whole the forecast shows characteristics of both models § and F.

This comparison will be discussed in Chapter 5.

The final forecast performed was to repeat the previous fore-

cast using splincs based on curvature, with the selection of suitable

b




non-zere values for the scaling factors. In this experiment (C2), the
scaling factors X§ for the x direction, ¥S for the y direction and US

for the dependent variable were selected to be

= - ) { Q 3
Us wmax ¢min ’ (4.9a)
XS = 20.0 , ' (4.9b)
YS = 20.0 . (4.9¢)

1 (equation 3.13b,c)

This selection was based on the aim of keeping S
near unity and independent of the units used. On a latitude circle with

grid interval A = 5, the shortest wave of meteorological significance

L

would be approximately 8 grid intervals long.a If this wave extended
between the maximum and the minimum values of the dependent variable

in the field, the approximate maximum slope to be expected would be

(qhay - qbin)/h . Equating this maximum slope multiplied by the scale

factors to unity yields

XS (% - ¥ )
—eEEEEIR o (4.10)
Us 44

This is satisfied by the selecticn 4.9a,b,c for A= 5°. Results from

model C2 after 7 hours are given in Figures 4.129 to 4.132. A strong
numerical explpsion (or instability) is present in each of the depend-
ent variable fields. The numerical explosion originated at the equator,
and propagated into the field in the form of a broad band. Of particular
interest is the fact that despite a strong, broad explosion band through

the middle of the forecast field, the remaining regions of the forecast

b

*# Haltiner and Martin (1) discuss the dynamics of atmospheric waves on
pp. 308-386. With n denoting the wave number (the number of complete
waves around a latitude circle), then the longitudinal scale of long
waves and short waves in mid-latitudes corresponds approximately to

n=5 and n=10 respectively (p. 335 of ref.l). Therefore, on a 5° grid,
a wave which is 8 grid intervals in length corresponds to a wave number
n=9, representing approximately the shortest wave of meteorological
significance.




are very stable. This is remarkable since the numevical explosion is of
such a strong nature. 1In the contour plots, whenever V, T or Ps a?e out~
side the ranges V < 100 m/sec, 210 < T < 320o K or 900 < PS < 1100 mb,
the plot prints out the extremes of the interval considered. Hence, the
row 0f numbers 100 along the top of the upper level resultant horizontal
wind contour plot (Figure 4.129) indicates that at the pole, the winds
exceed 100 m/sec. However, this strong instability does not seem to
affect regions either side of the explosion band. The explanation for
this explosion is based on the reduction of coupling between individual
nodes in the field, produced by the factor Bi in the numerator of the
continuity of curvature equation 3.13a. 1In particular, at the equator,

a frequently occurring natural phenomenon is to have the variables, on

the latitude circle j = N - 1 differing substantially from the variables
on the next latitude circle j = N - 2., With the symmetry boundary con-
dition, there results a situation as in Figure 4.133, with the slope on
one side of V-1 differing substantially from the slope on the other
side. Taking the slope between YN-1 and Yy 2 to be a typical large
value, (wmax - wmin)/ZA, then with ¥S = 20 the values of B become

B

N-1 = 8 and BN = 1 . The effect of these factors is to remove node

V-1 avay from node Y by a factor 8 times the grid spacing, as far as

the influence of R, on R

1 95 ©OF vice versa, is concerned. This decoupling

effectively prevents the regions from unduly influencing each other.
1f R2 begins to rise relative to Rl’ it will feel little or no restrain-

ing influence from the lower values of the variable at Yy-2° and the
more it rises, the less restiraining influence it will feel from Rl'
Similarly, if R2 begins to explode numerically, region Rl will feel

little bad effects from the explosion adjacent to it. This accounts for

the slow propagation of the broad expansion band into the rest of the
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field. The explosion began at selected points along the equator, and
spread the 16 grid intervals towards the pole at about the same rate as
it fanned out in the east and west directions. It is therefore apparent
that the use of decoupling in the form of a spline based on curvature,
with non-zero scaling factors XS and YS, results in an unstable fore-
cast due to the influence of the artificial boundary condition at the
equator. The instability may be lessened or removed by using smaller
scaling factors XS and YS, or preferably by removing the artificial

equator boundary condition by performing global forecasts.
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5. Evaluation and Comparison of the 36 Hou+ Numerical Forecasts

The first method used to évaluate the accuracy of models §, F,
ST and Cl, as well as the results from numerical experiment P7, is based
on the calculation of the root mean square error in the 36 hour forecast,
denoted RMSE. This is the forecast error relative to the true 36 hour
weather: the calculation is performed along latitude circles, longitude
lines, and for the field as a whole. The error of dependent variable

at node i,j is defined by

i35 = (g = Ve3g)yy o (5.1)
where wt36 = the true value of the variable at 36 hours,
beag = the forecast value for the variable at 36 hours.

Therefore, ‘expressions for the RMSE of the ¢ forecast at 36 hours around
latitude circle i, longitude line j and for the field as a whole are,

respectively,

- L 2 % .
RMSEj = ( I 151 ey Y2, (5.2)
N 5
RMSE, = ( % z ei. )2, (5.3)
=1 *
L5 o2y (5.4)
RMSE = ( = T e, )%, 5.
M g g

In general, the lower the RMSE the better the forecast. It is instruct-
ive in the evaluation of model performance to compare the RMSE against
the root mean square of the true weather change, denoted RMSC. The true

weather change at node ij for dependent variable iy is defined by

i3 = Wese ~ Yo iy - (5.5)

Values for the RMSC of the ¢ field around latitude circle j, longitude

line i; and for the field as a whole, denoted respectively RMSCj, RMSCi,
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and RMSC, are defined in a fashion similar to equations 5.2 to 5.4 .
When the RMSE > RMSC, the'question arises as to what advantage
has been obtained by performing the forecast, since the error in the 36
hour forecast exceeds the change in the true weather. It is true that
when this happens one cannot have excessive confidence in the forecast.
It would appear that when the error is greater than the true change it
would be better (less error) to take the initial weather and use it as
the forecast at 36 hours. However, there are other factors to consider,
one being that the forecast data is only interpreted from contour plots.
Since only general trends are apparent from a contour map, the local
forecast deviations from the true weather are of little consequence,
provided tﬁe general trends in the true weather are properly forecast.
Generally the lower the RMSE, the better the numerical forecast predicts
the large scale trends in the real weather: this comparison holds true
even when RMSE > RMSC. In light of this, the RMSC is used.as the stan-
dard for comparison of the forecast RMSE. A forecast will be considered
good when RMSE < RMSC, and it will be considered poor when RMSE > RMSC.
The second method used in this thesis to estimate the forécast
model's performance is to follOW'indiVidual features in the forecast as
they move from their initial position to their 36 hour forecast position.
In this fashion it is possible to evaluate average phase speeds of re~
cognizable portions of the large scale meteorological waves. Due to the
human element involved in such a calculation, there is naturally some
error in the analysis. For this reason several features of the waves
are monitored and an average phase speed is calculated, in an attempt
to reduce the error in the mean phase speeds reported. This second

method generally correlates well with the comparison of RMSE against



71

RMSC, with moderately good phase speeds (greater than 1/2 the obse?ved
true phase speed) occurring when RMSE < RMSC.

For comparison purposes, the Mintz-Arakawa model, referred to
as model MA, was used to generate a forecast over the same 36 hour period
from the same initial conditions. A detailed description of the accuracy
of this forecast is given in Price (56), and the forecast characteristics
are summarized in Section 5.1. It is unnecessary to perform detailed
deécriptions of this nature for the results from the proposed forecast
model ST, and modified models S, F, and Cl, since they follow immediate-
ly from the comparison of these forecasts against the Mintz-Arakawa re-
sults. For convenience, a summary of the symbols used to represent each
forecast model is given in Table 5.1

5.1 Comparison Data: The Mintz-Arakawa Model

The 1969 version of the Mintz-Arakawa numerical general cir-
culation model was used to generate a férecast for the northern hemis-
phere for the 36 hour period 0000 GMT February 2, 1970 to 1200 GMT
February 3, 1970. A grid spacing of 5O was used for both latitude and
longitude (AQ= A® = 50), along with a 15° polar cap (8§ = 150). The
number of distinct primary grid points in the x and y directions were
72 and 17 giving a total of 1224 distinct primary grid points. To en-
sure computational stability a time step of six minutes was used
(At = 360 sec). The results from this forecast are given in Figures
5.1 to 5.20 in the form of contour maps for the dependent variables,
error contour maps, and variations with time of the longitudinal (zonal)
means of the dependent variables. The longitudinal mean curves for the
Mintz-Arakawa model are indexed with the equator indgx = 1 and the north

pole index = N; however, the corresponding curves for the proposed model



have the north pole index = 1 and the equator index = N. A detailed
description and evaluation of the 36 hour forecast was given by Price
(pp. 129 to 168 of ref.10). 1In summary, the results of this forecast
when compared with the true weather are listed below.

1. Surface Pressure, PS.
a) PS increased as latitude increased.
b) The time variation of the zonal mean surface pressure developed
a periodic variation (period of 13 to 14 hours), with low lati-
tude curves antisymmetric to high latitude curves (Figure 5.20).

2. 800 and 400 mb Resultant Velocity, V1 and V2 respectively.
a) The time variation of the zonal mean of V1 had very short period
oscillations (Figure 5.15).
b) A fair forecast of the middle latitude V2 wind belt was obtained
for wind speeds > 20 m/sec.
c) The time variation of the zonal mean of V2 exhibited regular
oscillations with a 13 to 14 hour periocd (Figure 5.16).

3. 800 mb Temperature, TI1.

a) In the vicinity of strong troughs and ridges, the forecast field
travelled at approximately 1/2 the speed of the true field and
the troughs and ridges were of similar shape to those in the true
field.

‘b) In the vicinity of weak troughs and ridges, the forecast field
was of the same shape and speed as the true field.

c) Tl was over-estimated in equatorial regions by approximately the
same amount (> 5°) it was under-estimated in polar regions,

4, 400 mb Temperature, T2.

a) T2 was forecast better than T1.-

b) In the vicinity of medium to weak troughs and ridges, a good
forecast of the speed and shape of the temperature field was
obtained.

c¢) In the vicinity of strong troughs, the forecast field travelled
at approximately 1/2 the speed of the true field and had large
shape errors,

d) T2 was over- -estimated in equatorial regicns by small amounts
(> 5° usually).

e) Fairly constant zonal mean temperature curves (weak oscillations
only) were obtained except for the low and high latitude curves
which exhibited slight increases and decreases in temperature,
respectively (Figure 5.17).

5. 800 mb Geopotential, ¢1.
a) It is difficult to follow the movement of the individual troughs
and ridges. :
b) The positions of the highs and lows were forecast correctly;
- however, shapes were distorted.
c) This is not a useful contour map for analysis due to the use of
a large contour interval.




6. 400 wb Geopotential, ¢2.

a) $2 was forecast better than ¢1.

b) The forecast field generally travelled at approximately 2/3 the
speed of the true field and had a similar shape.

¢) The largest forecast shape error and phase lag occurred in the
vicinity of strong troughs and ridges.

d) The forecast falling of highs and rising of lows was greater than
observed, but the forecast position of the highs and lows agreed
with the observed positions.

e) Fairly constant zonal mean geopotential curves (weak oscillations
only) were obtained except for low and high latitude curves which
respectively exhibited slight increases and decreases in elevation
(Figure 5.19).

7. 8060 mb Mixing Ratio, QL.
a) In most regions the forecast field moved 1/2 as fast as the true
field and had larger ridges.
b) Fairly constant zonal mean curves having small oscillations were
obtained with a zonal mean increase for curve 1 (equator) of
0.0005 (Figure 5.18).

5.2 Overall Performance of the Models

An overall estimate of the forecast accuracy for models ST,
S, F, Cl and P7 is obtained by comparing the RMSE for each dependent
variable against both the RMSC in the true field and the RMSE of the
comparison Mintz-Arakawa model. The RMSE values for each depeﬁdent
variable in each of the 36 hour forecasts are tabulated in Table 5.2.
For notation in the table and the discussion hereafter the symbols
V1, Tl, ¢L and Ql respectively represent the resultant horizontal wind
speed, temperature, geopétential, and moisture content for the 800 mb
level. Similarly, the 400 mb level resultant horizontal wind, tempera-
ture and geopotential are represented by the symbols V2, T2 and ¢2.
These may be distinguished from the local values of the variables on
the ¢ = n/4 surface, which are denoted by U Vo Tn’ ¢n; n = 1,3; and

q

3
To facilitate the comparison of RMSE against RMSC, a % differ-

ence is calculated according to

., . RMSE - RMSC
d% = “mme . % 100% . (5.6)




The % difference for each RMSE value is also included in Table 5.2

A comparison of d7 for models S and P7 relative to model MA
is given in Table 5.3a; and a comparison of d% for models Cl, F and ST
relative to model S is given in Table 5.3b. Froﬁ the tables it is
apparent that all of the models, including the comparison model MA,
generally have RMSE > RMSC for all fields., The only exceptions are the

T2 fields by models 8, Cl, F and ST, and the V1 field by model ST. Model

S shows distinct advantages over model MA, in that d% for S is consistent-

ly from 1/4 to 3/4 of the corresponding values for MA. This shows that
the combination of the bicubic spline method on a grid having a basic
expansion of Type 1, with no filters or special techniques to aid sta-
bility, gives a better 36 hour forecast for the sample day chosen than
does the Mintz-Arakawa model, consisting of a complex finite difference
method on a grid with comnstant latitude and longitude intervals and
numérous techniques to aid stability.

The additional techniques used in model MA over and above
averaging operations are definitely required for stability, since it
was not possible to obtain a stable fofecast when these techniques were
omitted (see the preliminary forecast P6). Model P7, using finite diff-
erences on a course (100) Mintz~Arakawa grid, with only filters to aid
stability, yields a stable but poorer forecast than both models MA and
S. Therefore the solution to the stability problem on a Mintz-Arakawa
grid may be solved by using a coarser grid. However, the corresponding
forecast is of little use due to poor resolution and lack of accuracy.

An overall estimate of the relative performance of bicubic
éplines, finite differences, and the new spline based on cur&ature is

obtained by comparing the RMSE for models S, F and Cl. Model S shows
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improvemant over F for ¢2 and Tl; and model F shows improvement over §

for T2 and Ql. Both models give approximately the same results for VI,

VZ and ¢1. Therefore, on ﬁhe whole, it is difficult to decide from

this data whether splines are better or worse than Ffinite differcnces.
Since the geopotential ¢ is often of more interest than the other vari-
ables, it would appear that model S would be slightly preferable to F.

It will remaiﬁ te look at the distribution of error with latitude and
longitude, as well as the mean phase speeds of the large scale meteor-
ological waves, in order to evaluate the performance of the bicubic spline
method compared to finite differences.

Model Cl generally yields results intermediate to those of
S and F. This is expected due to the selection of the constants a and
XS in equation 3.13 using the values given in equations 4.8a,b.

Except for Tl and ¢2, model ST shows improvement over S on
the whole. This is not expected since ST uses a grid with poorer re-
soluticn in a portion of the forecast domain than does S. However, for
this test forecast, the coarse grid portion of grid D used in model ST
lies over Europe, a region where the observed true weather change is
very small, without strong troughs and ridges. In such a region it is
not necessary to have fine resolution to resolve the meteorological
fields adequately, and a coarse grid may yield better results than a
fine grid. This point will be further illustrated in the discussion
on the forecast error distribution with longitude.

5.3 Distribution of Forecast Error with Latitude and Longitude

The distribution of forecast error with latitude, RMSEj,
j=1,...N, is given in figures 5.21 to 5.34 for the models S, F, ST and

MA., Alsc included in the figures is the distribution of the true




weather change with latitude, RMSCj, j=1,...N. The RMSE for latitude
circle j is RMSEj, given by equatién 5.2; and the RMSC for latitude
circle j is RMSCj, calculated similarly.

Figures 5.21 to 5.27 give the RMSE distribution with lati-

tudes for models MA and S, along with the RMSC distribution with lati-

tude for the true weather. To facilitate the analysis of these figures,

Table 5.4 gives an evaluation of the mean difference between RMSE and
RMSC in three latitude belts and at the pole and equator. In addition
the adjectives poor (P) and good (G) are used to describe this differ-
ence, with poor implying RMSE > RMSC and good implying RMSE < RMSC.

It is seen from the figures and table that model S gives a good fore-
cast in géneral at middle latitudes, with poorer performance at high
and low latitudes. However, model MA yields a poor forecast at all
latitudes, with middle latitudes somewhat better than high and low
latitudes. Both models give very poor estimates at the gquator, and
model MA is somewhat better than model S at the pole.

More specifically, at high latitudes, S is better than MNA
for all variables except T2, for which both models give approximafely
the same results; at middle latitudes, S is significantly better than
MA for all variables; and at low latitudes, S is better or the same as
MA for all variables except ¢2, for which S is poorer than MA. There-
fore in the majority of the field, model S gives a better forecast than
model MA. However, at the pole, although S is better than MA for V2
and Tl, it gives poor results for the remaining variables so that in
general model MA gives a better polar forecast than model S. Both
models give poor forecasts at the equator, with S better than MA for

¢2 and poorer for T2.
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Figures 5.28 to 5.34 give the RMSE distribution with lati-
tude for models S, F and ST. To facilitate the analysis of these figures,
Table 5.5 gives an evaluation of the mean differences between the RMSEj
of models F and ST with the RMSEj of model S at different latitudes.

Comparing models F and S first, it is seen that at the pole,
model F forecasts ¢l and ¢$2 better and Il and V2 worse than model S.
Therefore, the previously mentioned differences between models MA and S
at the pole appear in part due to the use of finite differences in the
former and bicubic splines in the latter. For high latitudes, S is
generally better than F for all variables except T2 and Ql. This also
correlates well with the generally better performance of model S over
MA at higﬁ latitudes, as discussed in Section 5.2, and shows that the
use of splines over finite differences is part of the reason why S is
better than MA at high latitudes. 1In middle latitudes, ¢1, ¢2 and Tl
are forecast better by S and the remaining variables are ﬁorecast
better by F. Since the geopotential is often of more interest than
the other variables, the spline method would appear slightly preferable
to finite differences at middle latitudes. At low latitudes and the
equator, the forecast usihg splines (8) is either the same or poorer
than the forecast using finite diffefences (F). Therefore it would be
preferable to use finite differences at low latitudes.

This comparison between models S and F may also be made in-
dividually for each dependent variable field. The best forecast for
the velocity fields V1 and V2 would be to use splines at high latitudes
and finite differences at all other latitudes. The lower level tempera-
ture Tl is forecast better using splines for all latitudes except at

the equator. However the upper level temperature TZ and lower level
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moisture Ql are forecast better by finite differences than by splines

at all latitudes. Finally, the geopotential fields ¢1 and ¢2 are fore-
cast better at the pole by finite differences, and better or the same
by splines at all other latitudes. Therefore the use of splines over
finite differences would depend on which fields are of most interest.

Comparing models ST and S next, it is seen that the differ-
ences between the two models vary considerable in the different latitude
regions and for the different dependent variables. In general, however,
ST appears better than S at the equator at low latitudes. It will be
shown that differences between ST and S depend more on longitude than
on latitude.

The distribution of forecast error with longitude, RMSEi,
iﬁl,...M, is given in Figures 5.35 to 5.48. Also included in the figures
is the distribution with longitude of the true weathef change, RMSCi,
i=l,...M. The RMSE for longitude line i is RMSEi, given by equation 5.3;
and the RMSC for longitude line i is RMSCi calculated similarly. 1In
these figures, the longitude X corresponding to longitude line i is
given by

X, = - 182.5 + 51 , i=;,...72 . (5.7)
This corresponds to the location of the nodes on the latitude circles
in grid A, Figure 3.1

Figures 5.35 to 5.41 give the RMSE distribution with longi-
tude for models MA and S, along with the RMSC distribution with longi-
tude for the true weather. It is seen from the figures that in regions
of fast changing weather (large values of RMSCi), model S gives a good
forecast for V1, T2, Ql and ¢2, since RMSEi < RMSCi, and a poor fore-

cast for VZ, Tl and ¢l, since RMSEi > RMSCi. This may be compared to
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model MA which gives a good forecast for ¢2 and V1 and a poor forecast
for the remaining variables in regions of fast changing weather. Both
models give poor forecasts (RMSE.l > RMSCi) in regions of slower changing
weather (lower values of RMSCi). Generally, the RMSEi curves for model
MA have larger amplitude oscillations than the corresponding curves for
model S. Also, there is less spread between the RMSEi curves of models
MA and S (no definite pattern, Figures 5.35 to 5.41) than between the
RMSEj curves of the same models (definite pattern, Figures 5.21 to 5.27).
This indicates that the models differ primarily in their error distribu-
tion with latitude.

Figures 5.42 to 5.48 give the RMSE distribution with longi-
tudes for models S, F and ST. Both models S and F have similar distri-
butions, in that both are highly oscillatory with alternating regions
in which they overshoot each other. Generally, Tl is forecast better
by splines (S) than by finite differences (F), especially in the regions
of fast changing weather, i < 21; and in the remainder of the field,
both models are approximately the same. A systematically better fore-
cast is also given by splines over finite differences for the geo—.
potentials ¢l and ¢2. HOwever T2 and Ql are forecast better using
finite differences than by splines, especially for i > 40. Both models
forecast V1 and V2 approximately the same. Therefore, the RMSE distri-
bution with longitude for models S and F agree well with the overall
RMSE values for the forecast field discussed in Section 5.2

Comparing the léngitudinal RMSE distributions for models S
and ST, it is seen that ST gives the same or slightly poorer a forecast
than S in regions i < (20 to 40), for Tl, T2, Ql and ¢l. However for
the séme fields in regions i > (24 to 40), model ST gives a systematic-

ally better forecast than model S. For V1, V2 and ¢2, models ST and S
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have one model better than the other in alternating regions, the average
being épproximately the same RMSE for both models. The region i < (24 to
40) corresponds to a region of fast changing weather on the fine grid
portion of the expanding grid (Figure 3.4, grid D). Also the region

i > (24 to 40) corresponds to a region of slower changing weather on

the coarser grid portion of the expanding grid. It is seen that on the
fine grid portion of grid D, models S using grid C and ST using grid D
have similar grid resolutions, and both models give similar RMSE distri-
bution curves with longitude. This is a good characteristic of model ST
since it shows that good forecast accuracy is maintained in the region
of primary interest, the fine grid portion of the field, despite the
presence Jdf a coarser grid with poorer resolution surrounding the fine
grid region. In the coarse grid portion of grid D, model ST (using grid
D) gives a better forecast than model S (using grid C). This is not ex-
pected since usually, the poorer the resolution the poorer the forecast.
However, in this particular case, the region of poorer resolution on
grid D corresponds to a slow changing region in the true weather. Under
these conditions, poor resolution need not yield a poorer forecast since
fewer grid points are capable of adequately resolving the dependent vari- .
ables. This appears to be the case since model ST gives a better fore-

cast than model S in the region i > (24 to 40).

5.4 Phase Speeds of the Numerical Forecasts

The second method used to evaluate the numerical forecasts
is to compare average phase speeds of the more easily recognized features
on the large scale meteorological waves, calculated from the initial posi-
tions and 36 hour forecast positions of the features. In order to reduce

the error in the mean phase speed, several features in each forecast are
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monito;ed and an average phase speed is calculated. This analysis is
only performed for the temperature.and geopotential fields, since the
large scale meteorological waves in these fields have well defined
troughs and ridges which may be easily distinguished in their initial
and final positions. The features are less easily distinguished in
the moisture and velocity fields and hence the possibility of error
would erase any credence in the comparison between the models. The
evaluation of mean phase speed is performed along the 450 latitude
circle, since the forecast at middle latitudes is of greater import-
ance than high and low latitude forecasts. Different phase speeds
would arise from the evaluation of mean phase speed along other lati-
tude lines.

A tabulation of the position in longitude of easily dis-
tinguished troughs (T) and ridges (R) along the 450 latitude circle
for the temperature and geopotential fields is given in Iables 5.6 and
5.7 . The forecast phase speed expressed as a percentage of the true
phase speed is given in Table 5.8 . 1t is seen from the tables that
all the forecast models have a phase speed smaller than the correspond-
ing phase speeds in the feal wéather, This is a frequent characteristic
of numerical weather prediction models. Model S has phase speeds closest
to the true phase speed. The upper level speeds for T2 and ¢2 by model
S exceed those by model MA by over 15% of the true weather phase speed,
whereas the differences between the phase speeds of the two models for
Tl and ¢1 are under 10% of the true phase speed. Therefore, model $
gives a better forecast than model MA at middle latitudes, in terms of
better phase speeds of the large scale meteorological waves. This agrees
withlthe previously discussed differences in RMSE at middle latitudes for

models S and MA (Section 5.3, Table 5.4, and Figures 5.23, 5.24. 5.26
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and 5.27).

Model F consistently has lower phase speeds for the tempera-
ture and geopotential fields than model S. This shows a distinct advan-
tage of the use of bicubic splines (model S) over central finite differ-
ences (model F) for middle latitude forecasting.

It also appears from Table 5.8 that model ST has lower phase
speeds than model S. This is true on the average due to the influence
of the slower phase speed in the coarse grid portion of grid D. However,
for the majority of the strong troughs and ridges appearing in the fine
grid portion of grid D, models S and ST both yield almost identical phase
speeds at middle latitudes. This is consistent with the earlier result
that models S and ST have similar variations of RMSE with longitude on
the fine grid portion of grid D (i < 24 to 40).

Finally, model P7 is seen to have the largest phase lag of
all the models. This arises from the combination of using a coarse
(10O latitude, 10° longitude grid interval) version of the Mintz-Arakawa
grid, along with simple central finite differences and only averaging
operations to aid stability. This may be compared to model MA which
uses a fine (5o latitude, 50 longitude grid interval) version of the
Mintz-Arakawa grid, along with the compleé finite differences and several
special techniques to aid stability. The phase speeds for model MA are
considerably better than those for model P7 due to the increased reso-

lution and greater complexity of model MA.




6. Extension of the Forecast Model Using Weighted Residual

Numerical Techniques

A broad class of numerical methods used in solving propa-
gation problems in applied mechanics is the method of weighted residuals
(abbreviated MWR). Crandal (pp. 147-~154, 371-376 of ref. 16) and
Finlayson and Scriven (45) give a good description of the MWR technique.
Essentially the method is to construct a trial solution in the form of
ahalytic expressions (approximating functions) with either undetermined
parameters or undetermined functions of a single variable. It is possi-
ble to solve for the undetermined parameters by restricting the trial
solution to satisfy the given differential equation over some interval
in space and time. With this procedure one obtains a fairly uniform
degree of accuracy over an extended interval in time. The basic idea
of MWR in two dimensions is discussed in Appendix 3. Essentially the
only differences between the different schemes are in the methods of
selecting the weighting functions wq used in solving for the undgter—
mined parameters. Four weighted residual methods corresponding to
different weighting functions are discussed in Appendix 3. These are
the collocation method, subdomain method, Galerkin method and least-
squares method.

Weighted residual methods leave considerable room for engin-
eering analysis and judgement, primarily in selecting approximating
functions and deciding which solution modes are most probable. The
choice of approximating functions is crucial to the accuracy of the
final solution. Usually several sets of approximating functions are
admissable and it is not possible to select one set as the best. One

simplification frequently used is to exclude time dependence from the
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approximating function. Also any symmetry properties of the system
should be exploited in the selection, although Finlayson and Scriven
(p. 738 of ref. 45) suggest there are no systematic methods of doing
this. For finite regions of interest it is common to select the trial
functions ¢q as the Q lowest members of a polynomial or trigonometric
series expansion in the variables Xq and t (Snyder, Spriggs and Stewart
(46), Finlayson and Scriven (p. 738 of ref. 45), Lowe (47) ). 1If the
fegion of interest is an unbounded domain, Lowe (47) suggests the trial
functions be chosen to exhibit the same expotential order as the asymp-
totic variation of the dependent variables. Whatever the case, select-
ing approximating functions remains dependent on the user's intuition
and experiénce. This is often considered a major disadvantage of MWR.
It is the opinion of several authors (Snyder, Spriggs and
Stewart (46), Johansen (48), Lowe (47) ) that the Galerkin method is
superior to other weighted residual methods, primarily because it per-
mits closer contact with the physical problem. It is the only MWR
which uses the approximate solution directly (taking the weighting
functions equal to the approximating functions) in reducing the equa-
tion residual. Furthermore, several proofs of convergence are avail-
able for specific applications of the Galerkin method (p. 7@0 of ref,
45) while convergence proofs for other MWR are lacking. Recently the
Galerkin method has been successfully applied to nonlinear engineering
problems. ZLowe (47) applied the Galerkin method with expotential trial
functions to boundary layer flow problems (Blasius flow over a flat
plate, free convection over a flat vertical isothermal plate, and others).
The application of Galerkin's method to nonlinear ordinary differential
equations is approached in a different manner by Johansen (48). By

choosing the approximating functions to contain terms generally
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associated with solutions of linear equations Johansen effectively uses

the Galerkin method as a linearization technique. One advantage of this
over conventional linearization techniques is that the original nonlinear
equation is unaltered, rather the solution parameters alone are selected

to distribute the linear approximation over the domain of interest.

Partial differential equations similar to those encountered in the meteoro-
logical forecast problem have been successfully treated by several authors.
Sﬁyder, Spriggs and Stewart (46) apply the Galerkin method to a transport
process in a finite domain, with the flow governed by equations of motion
and continuity. Macdonald (49) considers the steady laminar boundary lay-
er equation for incompressible flow. Finally, Zienkiewicz and Parekh (50)
make an iméortant contribution by formulating the transient field. problem
(of the type encountered in heat conduction) in terms of the finite element
approach using the Galerkin method. This is of importance since they chose
to define the approximating functions in a piecewise continuous fashion
over finite elements of the solution domain, and then apply the Galerkin
criteria in selecting the unknown time dependent portion of the trial
function,

In the treatment by Zienkiewicz and Parekh (50) the finite
element approach is combined with the Galérkin criteria for a simple
partial differential equation. 1In Appendix 3, it is shown how the meteoro-
logical forecast problem may be treated in a similar way: application of
a weighted residual method with piecewise continuous double cubic poly-
nomial spline approximating functions defining the spatial variation of
the dependent variables, and undetermined functions of time defining
the behavior in time of the dependent variables. By resorting to spline
functions one is able to obtain high resolution without the need for a

high order polynomial or trigonometric series fit. Essential features
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of this extended model are listed below.

The trial solution is of double cubic spline nature for all t = 0.

The degree of approximation of the trial solution to a double cubic
spline may be adjusted as desired.

There is a minimum number of undetermined functions per dependent
variable field per node.

The undetermined functions (nodal values of the dependent variables)
are expressed in terms of orthogonal polynomials in time.

The subdomain weighted residual method is employed to distribute
the equation residual (error) over each element in space.

The Galerkin weighted residual method is employed to distribute
the equation residual, weighted by Legendre polynomials, over an

interval T in time.

The final system of equations to be solved numerically is a non-
linear system of simultaneous algebraic equations.

The method is applied to advance nodal values of the dependent
variables an interval T in time.

The method may be repeated over and over again to obtain a fore-
cast of any desired length (subject to numerical stability).

Development of a forecast model along the lines of the

above model could prove to be a powerful new approach to the numerical

weather prediction problem.



7. Conclusions

A two level numerical forecast model was proposed (model ST)
in which bicubic polynomial splines are used to fit the spatial varia-
tions of the dependent variable fields on a variable area telescoping
grid. The grid has superimposed basic expansions of two types. The
first expansion is required to maintain the physical distance between
grid points on the latitude circles greater than or equal to some mini-
mum distance required for computational stability. The second grid
expansion is used to decrease the number of grid points in regions
which are not of primary interest thereby reducing the computation time
required to obtain a good resolution forecast in a region of interest.

The model used for comparison purposes to evaluate the per-
formance of model ST was a 1969 version of the Mintz-Arakawa numerical
general circulation model. Comparison of the results of the two models
was facilitated by employing the same governing differential equations,
time extrapolation scheme, and heat, moisture and friction source terms
for both models. Several hemispheric numerical forecasts were perform-
ed with a single set of real weather initial and verification daté for
a 36 hour period, using modified versions of model ST in order to illus-
trate basic characteristics of the model.

One fundamental advantage of model ST is the natural compu-
tational stability of the expanding grid. Complicated special tech-
niques are not required to obtain a stable forecast on this grid, where-

as numerous special techniques are required for stability on the. con-

ventional constant latitude, constant longitude interval grid. Prelimin-

ary experiments were performed to illustrate the stability problem on a
- o
constant 5 interval grid. When no special techniques were used to im-

prove stability, the forecast was unstable in less than 1/2 hour, and
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when filters and averaging operators were used to remove spurious short
waves at high latitudes, the forecast reached 36 hours with several in-
stabilities increasing in strength. The Mintz-Arakawa model achieves
stability on a constant interval grid through the use of filters and
averaging operators to remove spurious short waves travelling longi-
tudinally at high latitudes, special methods of evaluating the fluxes,
spatial staggering of the dependent variables, and complex finite differ-
ence estimates, None of these techniques are used in model ST.

A second advantage of the telescoping grid used in model ST
is the reduction in computation time by using a coarser grid over regions
of little concern, without sacrificing resolution and forecast accuracy
in the finer grid region of primary interest. It was demonstrated from
the numerical forecasts performed that the forecast accuracy in the fine
grid region of primary interest is not in the least part altered, in
either the phase speed of the large scale meteorological waves or in
the forecast root-mean-square error (RMSE) due to the presence of a
coarse grid of poorer resolution surrounding the region of interest.
However, in the region of little interest, in which fewer grid points
are used to resolve the dependent va;iable fields, the forecast accur-
acy is altered in terms of an increased phase lag and decreased resolu-
tion of fine features in the field. With grid expansion factors of
1.10 and 1.04 for the x and y axes airections respectively, and a region
of interest extending 3500 miles by 1000 miles over North America, the
resulting forecast was performed in 1/3 the computation time of the fore-
cast on a constant grid having the same resolution as in the region of
interest. This saving in computation time is of major economic benefit

in producing practical numerical forecasts.
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The third major advantage of model ST is due to the use of
bicubic polynomial splines in place of central finite differences to
estimate the spatial derivatives. These benefits are manifest in im-
proved phase speeds of the large scale meteorological waves at middle
and high latitudes. The improvements at low latitudes were marginal
or non-existant. The geopotential fields and lower level temperature
forecasts were improved on the whole by the use of bicubic splines in
place of central finite differences. For the remaining dependent vari-
ables, bicubic splines were an improvement at the pole and high latitudes,
whereas central finite differences gave the better forecast at middle
and low latitudes. An additional feature of the forecast using splines
was a loder RMSE in regions of fast changing weather.

Finally, model ST was found to give a good forecast in
general at middle latitudes, with poorer forecast performance at high
and low latitudes. At most latitudes model ST gave a be@ter forecast
in terms of larger phase speeds of the meteorological waves and lower
RMSE than the comparison Mintz-Arakawa model. Both models had large
forecast errors at low latitudes and the equator, and the Mintz~A£akawa
forecast was somewhat beflter than model ST at the pole. The general
improvement of model ST over the Mintz~Arakawa model was due both to
the use of bicubic splines in place of finite differences, and to the
use of an expanding grid of a nature requiring no special techniques
to obtain stability.

Extensions of the forecast model were also discussed in
some detail. A generalized spline based on continuity of curvature
was derived, and forecasts with this spline were performed. One
seleétion of parameters gave a spline theoretically intermediate be-

tween the bicubic spline based on continuity of second derivative and
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central finite differences. Results from this forecast were in general
intermediate between the results from the forecast S using splines based
on second derivative and the forecast F using central finite differences.
A second selection of parameters gave a spline based on curvature for
which the numerical forecast proved to be unstable at 7 hours of forecast
time. Tt was determined that the instability arose from the interaction
of the new spline and the artificial equatorial boundary condition. This
generalized spline based on curvature requires further research in order
to determine its full potential in numerical weather prediction models.
Further extensions of the model using weighted residual numeri-
cal techniques were also discussed in detail, but no numerical forecasts
were performed using them. Tt is felt that the development of a fore-
cast model with these techniques could prove to be a powerful new approach

to the numerical weather prediction problem.
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APPENDIX 1: Single and Double Cubic Polynomial Splines

Single Cubic Polynomial Splines

Consider the interval %y < x < ENT subdivided into M-1 intervals
i .o i < L. < < . :
by the points Xy 1Xg, Xy with X X, < X1 Xy Assogl
ated with each point Xi is a prescribed ordinate ug The single cubic
spline S(x) of interpolation to values u, at mesh locations X, is a

piecewise continuous function defined as a cubic polynomial in each

interval x, £ xX <X

i-1 T i=2,3,...M. In addition the cubic spline

S(x) is defined to have continuous first and second derivatives

(8(x) ¢ C2). Therefore S(x) satisfies

S(xi—) = S(xi+) = u,, (Al.1)
S'(xi—) = S'(Xi+) =Py (Al.2)
S"(xi-—) = s"(xi+) =P.. (AL.3)

for i = 2,3,...M~1, with a prime denoting differentiation with respect
to x. Since S(x) is a polynomial of degree 3, S'(x) and S"(x) are of

degrees 2 and 1 respectively. In each interval X1 £ x £ X5 the

cubic spline S(x) may be expressed in terms of either the nodal values

P . Since one

P
ui, ui—l’ pi, pi—l or the nodal values ui, ui—l’ 0 Pig

major purpose of using splines to fit the data field is to obtain good
estimates of the first derivative at data points, it is more convenient
to construct the spline in terms of the slopes Py rather than the second
derivatives Pi' The first step in constructing S(x) in terms of Py is
to write a second degree polynomial expression for S'(x) on X, ; €£x¢

i-1

X, in a fashion ensuring continuity of S'(x). Such an expression is

. _ 2, 2
S'(x) = Py (alx +a,x + a3) + 1 (blx + b2x + b3)

2
+ X + c X + Cqe (Al1.4)



Continuity of S'(x) requires

With these restrictions on the constants a;, a

2
a|x; + a X, + ag = 0,

blxi + b2xi + b3 =1,

2
c.X, + ¢, X, +c, =0,
i i

3

2
D%

X 2 + X +
€1¥i-1 7 2%

2,...

S'(x) may be simplified to

S'(x) =

where

and

Integrating

S (x)

-+

4

Pi (x - xi)(alx + aa) +.pi (x - Xi_l)(blx + b4)

+ ¢y x - Xi)(x - xi—l)’

ajx; 1 + a, = - l/hi’
blxi + b4 = 1/hi,
hi = xi - Xi_l.

S'(x) with respect to % yields
D (a X3/3 + (a, - a,x.) x2/2 - x.,a,x +a_)
i-1 1 4 171 i4 5

3 2
Py (blx /3 + (b4_ blxi—l) x7/2 - x, .b,x + b5)

Continuity of S(x) requires

3
a X, /3 + (a4 - a

i-174
c (x3/3 - (x, +x ) x2/2 + x.x, ,x +c_).
1 i i-1 iTi-1 5
2 2 _
lxi) Xy /2 - x,"a, + ag = 0,

3 2 _
byx,7/3 4+ (b, = byx, 1) x,7/2 - xx, b +Db. =0,

‘1

3
(xi

i-174 5

2 2
/3 - (xi + Xi—l) X, /2 + xx g f c5) i

i
=1

(Al.

(Al.

(Al

(Al

(Al.

(al.

(Al.

(Al

, the expression for

5)

6)

.7)

.8)

9

10)

11)

.12)
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3 2 .
alxi_l/B + (a4 - alxi) xi_l/Z - X%, 8, + ag = 0, (A1.13)
b.x 3 /3 + (b, = b.x, .) x 2 /2 - x 2 b, +b_ =0 (A1.14)

17i-1 4 174i-1 i-1 i-174 5 i :
c, (% 3 /3 - (x, +x ) x 2 /2 + x.x 2 +c. ) =u . (A1.15)
1 i-1 i i-1 i-1 i7i-1 5 i-1 ’

Equations Al.6, A1.10 and Al.13 are three simultaneous equations in

three unknowns als 34 and a5. Solving for ajs a4 and a5:
2
a; = 3/hi ,
a, = -1/h, - 3x, ,/h.°
4 i 1774 2
_ 2 2
S xi_l/hi .

In a similar fashion equations Al.7, Al1.11 and Al.l4 are solved for the

unknowns b,, b, and b5 to give

1’ 74
2
b, = 3/h.",
2
b, = 1/h, - 3x./h.",
4 i i i
_ 2 2
by = - x.;x.7,/h.".
Finally solving equations Al.12 and Al.15 for cq and g gives
c, =-6 (u, -u Y /h 3
1 i i-1 i?
3 2 3
X, X, X, u.,h,
e =+ _ % i-1 id i
5 6 2 6_(ui - ui_l)

With the above expressions for constants a;, s ags bl’ b4, b5, 1 and

Css the equations for S(x) and S'(x) (Al.9 and Al.5 respectively) become

P. P,
o _i-l 200 - i P 20— x
S{x) = 5 (x xi) (x Xi—l) + 5 (x Xi—l) (x xi)
h, h,
1 1
Yi-1 2 Yy 2 (4116
+ =3 = - Xi) (hi + 2(xx - xi_l))‘+-;—§-(x - Xi—l) (hi - 2(x - xi)),
i i
ST ) = 2 =) (- x, - 2x,_ ) b - x, ) (x - %, - 2x)
O S R T O L 2o T AR T R Ty

i i



- —-——5-(11i - ui_l)(x - xi)(x - Xi~l)' . (AL.17)

S(x) given by equation Al.16 is a piecewise continuous cubic polynomial

with continuous first derivatives on xl < x < XM. The unknown slopes

P> i=1,2,... are determined by imposing on S(x) the final restrictions

of continuity of S"(x). Differentiating Al.17 yields

2p. 2p.
121 (3x - in - Xi—l) + -%’(3x - 2xi_
hi hi

6
- (u, - u, )
h 3 i i-1

i

8" (x) = - x,)

1

(22 = %, - %, ). (A1.18)

The second derivative at node x; may be written in terms of the spline

from below (x < Xi) or above (x > xi).

S (x-) = P51 . 4py _ 6 (u; - uy ;)
i h, h, 2 ?
i i h,
1 (A1.19)
" - 4Py 2Pyyy 6 (uyy moug)
870, ) = 5 "R + 2
i+1 i+l hi+l
Continuity of S§"(x) at X requires
1 op. 4+ 24 I S =3(ui"“i—1)+3(ui+1‘u')
R, il by o hyyg| 3 by, TIM h. 2 n, 2
i i i+l
(A1.20)
In more convenient notation,
Aipi—l + 2pi + WPy = c;p 1= 2,3,...M-1, (A1.21)
where h
_ i+l _ _
MR R M TR (AL.22)
i i+1
(u, = u, ) (u, - u,)
c. =3, — ATty g JERL ST Lo g M-, (A1.23)
i i h, i h,
i i+l

Equation Al.21 forms a system of M-2 equations in M unknown slopes Py
Py« Py For the system to be determinate, additional end conditions

must be specified.



For the periodic spline (S(p)(xi) = S(p)(xM), p = 0,1,2) equation
Al.21 may in addition be written for the point i = M. Since the spline

is periodic then u = P, and the system

M- Y1 Pv T Pre Ywe1 T Y20 Pugr
of M-1 equations in M-1 unknowns Pys p3,.,.pM becomes determinate.
For the nonperiodic spline two additional end conditions must be
specified. The end conditions may be written in the form
2pl + ulpz ¢y at X

(A1.24)

lMpM—l + 2pM = CM , at XM .

Provided suitable values for the coefficients A are pre-

17 %12 M M

scribed, equations Al.21 and Al.24 form a determinate system (M equations
in the M unknown slopes pl,pz,...pM). The end conditions may be speci-

) |
fied slopes (ul and uy prescribed), then

yy = AM =0, ¢y = 2ul s Oy = 2uM R (Al1.25)

U = M

.(Al.26)

A final choice of end conditions for the nonperiodic spline could be to
specify zero second derivatives at some specified points X and el

(outside of the interval.xl < x € X, over which the spline is constructed),

with the restrictio hat the curves over £ x € x, and < X <
! ction t 0 1 Xy A1

be cubic arcs. The locations of points x, and Xy are specified by

0

assigning values to the parameters A, and yp according to

0 M+1
*1 7 %o T

= , u = — (A1.27)
0 x,-x ML X " Xy



Then the coefficients ul, Cl’ AM’ Sy take on the values
2@0rn ey upa iy
] Agt 2 1 h, (2+ 1) ’
(A1.28)
o 2 oy 1) . - 6 (o = Uy )@+ )
M uM+l + 2 M hM (2 + uM+l)

In the nonzeriodic

the unknown slopes Pys-e

blvl + clv2

a2vl + b2v2 + c2v3

There are n equations

system is readily solve

(p.441 of Carnahan, Lut

and Walsh (22)). The s

V =
n Y o

V. .
1 Yl

where the B's and v's a

By =Py » By =by
Y :-c—ll- Y ::dl
1 Bl i

In the periodic ca

unknown slopes PysPgsee

case the system of equations to be solved (for

.pM) is of the form

= dl ,
= d2 ,
bivi + CiViig = d1 , (A1.29)
n-1Vn-2 T Ppno1Vno1 F Cu1Vn T dpo o
av +bPbv =4 .
n n-1 nn n

in n unknowns Vi’ i=1,...n. This tridiagonal
d by an efficient Gaussian elimination algorithm

her and Wilkes (52) or p.l4 of Ahlberg, Nilson

se the system of equations to be solved (for the

‘pM) is of the form

96

olution is
(A1.30)

CiViiq / Bi’ i=np1l,n~2,...2,1,
re determined from the recursion formulas

a.c,

S S S R T
i-1 (A1.31)

-ay. _

: ii-l o930,

i




blvl + C1V2 + : + alvn = dl 5
a2vl + bzyz + C2V3 = d2 .
aivi—l + bivi + c,vi+1 = di s (A1.32)

an-—lvn—Z + bn—lvn-—l + Cn—lvn - dn—l s
cnvl + + anvn__1 + bnvn = dn s

n equations in n unknowns Vis i=1,...n. The algorithm to solve
this system of equations is given by Ahlberg, Nilson and Walsh (p.15
of reference 22). The solution is

d -¢ 6, —aé

, ¢ =2 n 1 n n-1
= s
n bn + Cnal + anan—l
(A1.33)
v, =o.v. +6, , i=1,2,...n-1,
i i'n i
where the o's and §'s are determined from the recursion formulas
C.OL._'_l
a =1, o, = - L u, , i =n-1,n-2,...2,1,
n i B. i
1 .
a a.u,
ul=--él,u. =———1-8~1——l—, i=2,3,...n, (A1.34)
1 + i ,
c.5.+l
§ =0, 6, =—-—"q4 vy , i=n-1, n-2,...2,1,
n i Bi i’

B. , Y, are given by equation Al.31.

Double Cubic Polynomial Splines

The theory of double cubic splines depends largely on the theory of
one dimensional cubic splines. Consider the rectangular mesh
x]‘< X, < vee < X Yy > 2 > . > YN with prescribed ordinates uij at
mesh points X yj, i=1,...M, j=1,...N. The lines x = X5 X T Xy,
Y =¥y Y=y correspond respectively to the 180° west meridian, 180°

east meridian, north pole and southern boundary line. The double cubic

97



98

spline S(x,y) of interpolation to values uij at mesh locations X/ yj

is a piecewise continuous function defined as a double cubic poly-

nomial in each rectangle (xi_l £ X < X5 yj—l >y 2 yj), i=2,...M,

j=1,...N. The spline S(x,y) will be constructed periodic in the
x direction, since meteorological fields repeat after 360° rotation
around the earth, and with specified boundary conditions in the vy

direction. Let
by =% -%.4,>0
(A1l.35)

k < 0.

3777
Along the line y = yj, the one~dimensional spline of interpolation to

the ordinates uij’ i=1,...M may be written from equation Al.16 as

2 2
. (x - xi) (x - Xi—l) (x - Xi—l) (x - xi)
S(Xayj) = Pi_l’j N 2 + pi,j N 2
i i (Al. 36)

u, . u, .
l—l,! I 2 R 1, - 2 - -
+ 3 (x ki) (hi + 2(x xi_l) + 3 (x Xi—l) (hi 2(x xi)).
h. h,

i i
The slopes Py e i=1,...M are obtained by solving the system of

equations Al.21 written for the periodic spline case. One-dimensional

splines of the form Al.36 may be written for each line y = yj, j =1,

...N. Therefore, at any x (not necessarily a node point L i=1,
...M), the ordinate S(x,yj) is given by equation Al.36 and one may con-
struct the foliowing one-dimensional cubic spline of interpolation in ¥y

to the ordinates S(x,yj), j=1,...N (equation Al.16 with x, Pys Uy and

hi replaced by vy, qj(x), S(X,yj) and kj respectively):

2 2
(v - yj) (y - yj_l) (y - yj_l) (v - yj)
S(x,y)=q._, &) + q, (%)
j-1 K 2 3 K 2
3 3 (A1.37)
S(x,y. ) S(x,v.)
j-1 2 j 2
+ — (y - v, k, + 2(y -y, N+ -y, k, - 2(y - y.)).
3 (y YJ) (J (y yj_l) 3 (y yj_l) (3 (v yJ))
J J
In equation Al.37, it remains to evaluate the terms qj(x), qj_l(x). The




slopes qi,j’ j = 1 to N are obtained by solving the system of equations
Al.21 written for the nonperiodic spline case. This process is
repeated at all i giving a matrix of evaluated slopes (qi,,; i=1,
..My 3 =1,...N). One may them form the foilowing expression for qj(x)

by constructing a one-dimensional spline of interpolation in x to the

slopes 9 i i=1,...M (equation Al.16 with 1 and u, replaced by Si
b

sJ
and 4 i respectively):
(x - x )z(x - X, _4) (x - x )2(x - x.)
i i-1 i-1 i
q.(x) = s, . + s, |
j i-1,j h 2 i,] h 2
i i (Al.38)
s L3 20 b 2 - w0 2L -k, )P, - 20 - %)
IR TR L 3 i-17 V4 i’’"
i i
In equation Al.38 the terms S, , are obtained by solving the system of

b

equations Al.2]1 written for the periodic case in x , with 1 and u,

replaced by s; j and 4y i respectively. Finally substituting Al.38 and
3 14

Al.36 into Al.37, the double cubic spline of interpolation to uij’ i=1,

M3 3 =1,...N becomes
S(x,y) =ae Si—l,j—l - af Si,j-l + ag qi—l,j—l + al qi,j—l
Tbe S,y TPE Sy T by 5 7 DLy
- of A1.3
+ ce Pi—l,j—l cf pi,j—l + cg ui—l,j—l + cl ui,j-l ( 9)
+ de Pi4l,j ~ df Pi,j + dg ui—l,j + d1 ui,j’
X q <£x L Xi’ yj—l £y £ yj for i = 2,...M, j = 2,...N,
where the following notation has been used:
n=y—yj_l> mzx—xi__ls
n=mn/ kj R E=m/ hi R
a=@-m’n, e=1-8"n,
(Al1.40)
b=(1l-n)nn, f=(0-8 €t¢m,
2 2
c=@A-m" (2n+ 1, g=(1-287"+1,

d = n2 (3 - 2n) , 1 52 (3 - 28).

fl



Equation Al.39 may be differentiated with respect to x and y to
yield expressions for the first derivatives and cross derivative of the
spline surface. It is often necessary to have good estimates of a
function and its derivatives at the mid-points of horizontal and vertical
grid sides as well as at the center of the element. Such estimates are
readily obtained from the double cubic spline Al.39. At the mid-point
- of horizonta; grid sides, (x,y) = (xi - hi/2, yj) or simply the point

. 1 =
1 - 73,7 »

h.

S35 " 5 (Py_q g = Py g) ¥ (g 5 +uy 3) s

e R +p, )+ (u, - )
9% 2 P31, 7 Pig 2h, Yi,5 7 %i-1,57

385 1, ; =.Ei . ey e . - (AL.4D)
3y g8 ‘“Ti-1,j i3 2 Qg5 79,4 o

isi‘féa_i - - L 3 - '
3%y G (s5 1,57 85,9 ¥ oh, @,5 7 94-1,3)

At the mid-point of vertical grid sides, (x,y) = (xi,yj - kj/Z) or simply

the point i, j-%,

k,
_ 4 i )
8,47 T8 (i3m0 7 4, T (g g )
asi .1 Ei
%
2 = (S.. - 8, )+1/2(P + p. -)s
9x 8 i, j-1 i,] i,j-1 1,3 (AL.42)
asi3.!—1/2 1 _.___.3
By 7 G T ) g (T )
0°S, . 1 3
21778 _ 1 = -
Bcby gt o) g Bay T Py

-Finally at the cell center, (x,y) = (xi -~ hi/2, yj - kj/2) or simply the

1

point i - %, j - %,



Si%,5-% = 16 i-1,3-1 7 %5,5-1 " ®i-1,5 T 81,50 T 16 i-1,54
]
*ay,5-1 7 %4-1,5 T 94,50 Y16 Pioq,5-1 T PiLio1 T Pio1,y T PiLy)

+u, ) , (Al.43a)

3,4 4 Ky 3k,
23 2 - - ——J—
9% 32 5,5 ¥ Sio1,5 7 851,501 T Sy 5o T6h, (9 5.1

L oL) = . . + p. . + p. .+ p, .
qlsJ> 8 (pl_laj”l plaj—l pl—lsj plaJ)

3
+ iy Q501 7 %er,g-1 YUy T e,y . (41.43b)
9, .3 b,
4% i _ 1
3y 32 451 7 Sia1,4-1 T Si5 T Sie1,3) T (i1,941

* 4kj i-1,5 © U4,7 ui—l,j—l R 5 > (Al.43c)
2
878 1 ;3

== 2o ( s + s )+ 3

+ + —
®i-1,5-1 © ®1i,5-1 " %i-1,3 1,57 7 Bh (4 7 4-1

3
+ - —— — -—
9y,5-1 ¥ 94-1,5 ~ 94,50 T B, ®i_q,5-1 ¥ Py 51 " Pi_1,5 " Py y)

u + u ) . (Al.434d)

. . - u, . ..
i,j-1 i-1,3 i,]
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APPENDIX 2: The Telescoping Grid

In the numerical forecast model developed in this thesis, piece-
wise bicubic polynomial functions (double cubic splines) are used to fit
the two-dimensional data fields. For this reason it is convenient to
use either a constant area or smoothly expanding rectangular grid.

A point on the earth's surface is located by the coordinates (x,y),
specifying longitude and latitude respectively in degrees. Hence the
forecast region on the x,y plane is the rectangle — 180.0 g x g 180.0,
¥S £y £ 90.0, where YS = 0.0 (equator) for a northern hemisphere grid
and YS = — 90.0 (south pole) for a full earth grid. To avoid the
problem of carrying grid point data aleng the line ¥ = 90.0 (north pole,
a singular point), it was decided to first generate a preliminary grid
having the north pole as a grid line and then use the centers of grid
cells in the preliminary grid as grid points in the final grid. The
preliminary grid itself is determined entirely by the following set of
adjustable parameters:

1. ¥XP, YP = longitude, latitude of a center of interest about which
the rectangular grid expands uniformly.

2. NX, NY = the number of grid rectangles of constant size centered
about the point of interest, in the x and y directions res?ec—
tiveiy. The region containing grid rectangles of constant size is
termed the region of interest, since it lcocates a region on the
earth in which a forecast of good accuracy and high resolution is
desired.

3. DX, DY = the grid spacing (in degrees) in the region of interest,

in the x and y directions respectively.




4, EX, EY = the grid expansion factors applying outside the region of
interest, in the x and y directions respectively.

The role which the above parameters play in generating the preliminary
grid may be seen by examining Figure A2.1. This figure shows sample
grid lines for both the x and y directions. It is seen that both
the x and y grid lines expand uniformly as distance from the point
(XP,YP) increases. However, special consideration is required to ensure
that the x grid meshes smoothly at the point XXP (located 180° east or
180° west of point XP) and that the y grid meshes smoothly at both the
north pole and the southern boundary point YS.

Figure A2.1 shows the x and vy grid lines corresponding to the
first generation of the preliminary grid. The parameter dO deﬁermines
the form of special treatment required to ensure a smooth x grid in
iﬁ the vicinity of point XXP. Four cases may be coﬁsidered:

1. dO < dl - DX/2 The x grid is generated over again using NXnew =

NXold + NN where NN is the largest integer < (dO/DX) + 1. 1In the

new grid the points X 4 and x, are set to coincide with XXP. If

dl > d2, then the new grid expands smoothly up to XXP from both

sides and is satisfactory. However if dl < d2 the grid does not

smoothly expand up to XXP and should be regenerated using NXnew =

NXold + NN - 1 to give a satisfactory grid.

2. d, - DX/2 < @

1 < dl + DX/2 A satisfactory grid may be obtained by

0

slight adjustments in the position of points X 4 and Xy Let

~ XM, where XM = (x2 - x ,)/3.

= X + XM and x = X 9

%1 new -2 1 new 2

If dl > d2’ the new grid expands smoothly up to XXP and is satis-

factory. However if dl < d2, then case 1 is applied.
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3. dl + DX/2 < dO < 2dl The grid is generated over again using

+ MM where MM is the largest integer < (d -4 )/

= N
NX kXO 0 1

new 1d

DX + %. This new grid is then adjusted as in case 2.

4, 2dl < dO < (Zdl) EX The point XXP is set to be a grid point.

The y grid must mesh smoothly at both the north pole (y = 90) and the
southern boundary point YS (YS = -90 if the grid is global, 0 if the
grid is hemispheric). A smooth meshing with the north pole is obtained
by shifting the entire y grid north or south until the nearest
generated y grid point coincides with the pole. This results in a
small shift in YP, the y coordinate of the center of interest. It
then remains to adjust the position of points vy and Y (see Figure
A2.1) in order that YS becomes a grid point and the grid expands
smoothly up to YS. Let the distance from Y3 to YS be denoted by D.

D=a+b+c= Y3 - YSs . (A2.1)
Two cases may be considered:

1. If D/3 > d, a > 0 it is possible to expand a grid from V3 to YS
using an expansion factor less than EY but greater than 1. To make
the expansion smooth the grid expansion factor will be decreased
gradually in proceeding from Vs to YS, with the grid lengths c, b
and a taking on the values (EY - §)d, (EY - 28)(EY - 6)d and
(EY - 38)(EY - 28)(EY - 8)d respectively. Substituting these ex-
pressions for a, b and c into equation A2.1 gives a cubic equation
in the unknown parameter &

663 - (2 + 11EY)6% + (1 + 3EY + 6 EY)3
2 (A2.2)
+ (D/d -~ EY (1 + EY+EY)) =0
Using & given by the real root of equation A2.2 (the two

- conjugate imaginary roots of equation A2.2 are neglected), the
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grid lengths a, b, ¢ are evaluated and the points Yor ¥q located

in such a fashion that the vy grid expands smoothly to mesh with

the southern boundary point YS.

If D/3 < d, a > 0 the y grid is generated over again using

NY = NY + NN where NN is the largest integer g (a/DY) + 1.
new old

In the new grid the position of points vy and Yy is adjusted as

in case 1.

Having constructed the preliminary grid as described above, the

final grid is formed by using the centers of grid cells in the prelimin-

ary grid as grid points in the final grid.
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APPENDIX 3: Extension of the Model: Galerkin and Subdomain Methods

The basic idea of the method of weighted residuals (abbreviated
MWR) may be illustrated by considering a differential equation
governing the behaviour of dependent variéble ¥ (x,t) in domain S
bounded by curve C. Here, Y represents two space dimensions and t
denotes time. Following Finlayson and Scriven (46),

oY _
o +D (W =0 (A3.1)

where D denotes a general differential operator involving spatial

derivatives only. The initial and boundary conditions respectively are

¥(x,0) WO s x in S
\ (A3.2)
Y(x,t) = £ (xst) » xonC, t 20

Il

A trial solution VY#(x,t) is comstructed in terms of prescribed approx-
imating functions ¢q(x,t) and undetermined functions of a single
variable Cq(t), qg=1,...Q.

Q
Ye(x,t) = L C (£) ¢  (x,t) . (A3.3)
¢=0 @ q

Often the approximating functions are selected subject to ¢l(x,t) =
fs(x,t), ¢q(x,t) = 0, ? = 2,7..Q, x on S . Then Cl(t) =1, Cq(t)

may take on any values, and the trial function ¥#*(y,t) will inherently\
satisfy the boundary conditions. The degree to which the trial function
Y% gatisfies the differential equation and initial condition is measured

by the gqquation residual R and initial residual R, which are defined as

% 0
ROS) =55 - DEH) , t>0
Q (A3.4)
&3 = - i
Ry (¥%) =¥, z Cq(O) ¢q(x,0) » X in S .

q=0

If ¥#(x,t) was the exact solution to equations A3.1 and A3.2, the res-
iduals A3.4 would be identically zero. The method of weighted residuals

approximates this exact solution case by setting the weighted integral




of the residuals to zero.

< wq; R¥*) > =0 , (A3.5)
< wq; RO(W*)> =0 , (A3.6)
< w,v > = fswvdS . . (A3.7)

Equation A3.5 forms a system of Q first order ordinary differential
equations in the unknown functions Cq(t),q = 1,...Q, with Q initial
conditions given by A3.6. Solving the system A3.5, A3.6 for the co-
efficients Cq(t) and substituting these coefficients into equation
A3.3 yields an approximate solution to equations A3.1 and A3.2 by the
MWR technique.

TPe MWR scheme in which undetermined functions Cq(t), q=1,...Q
are used in forming the approximate solution is equivalent to replacing
the continuous propagation problem by a propagation problem with a
finite number of degrees of freedom. As the number Q of approximation
functions increases, the number of permitted degrees of freedom
increases and the approximate éolution approaches the true solution.

There are numerous methods of selecting the weighting functions wq,
each giving rise to a specific numerical method (ref 45,46,49). The
following are examples‘of numerical methods arising from the different

weighting functions:

Collocation - wq = G(Xq -x) (A3.8)
Subdomain - w =1, x in S s
: 4 (A3.9)
w =0, Xnot in S s
q q
Galerkin - w =6 s . (A3.10)
q q
Least-squares - AR(¥*) (A3.11)

W=

q aC °
q

In the collocation method the differential equation is satisfied exactly
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at Q collocation points Xq’ g =1,...Q. Hence the weighting function is
the unit impulse or Dirac delta 6(Xq - x) which vanishes everywhere
except at x = Xq and satisfies ff:é(x - xq)dx = 1, The subdomain
eriterion A3.9 results in the differential equation being satisfied on
the average in Q subdomains Sq, q=1,...Q in domain S. The earliest
MWR, the Galerkin method, takes the weighting functions wq equal to the
approximating functions ¢q, thereby forcing the residual to be ortho-
gonal to the approximating functions. 'If the set of approximating
functions spans all degrees of freedom of the system (forms a complete
set of functions) then the residual, orthogonal to the approximating
functions, must vanish. Finally the least-squares method A3.11 corres-

ponds to minimizing the mean square residual with respect to coefficients

C .
q
In meteorology the system of governing differential equations is of
the formv
BWH N 0 oY, oY 0
TR A A B
N (A3.12)
+ T £ (x,vy) Wj + gn (x,y) = 0, n = 1,2...N,
j=1

where x,y = spatial coordinates;

voo= Wn(x,y,t), the nth dependent variable, n = 1,2...N;

n n n

ajk’bjk""g = known functions of x and y.

Similar to equation A3.3 the trial solution Wg is constructed in terms
of Q prescribed approximating functions ¢q(x,y) and undetermined func-
tions of a single variable dq(t). In this application, however, the

functions¢q(x,y) will be polynomials of a spline nature, defined to be

piecewise continuous on all elements. Hence,
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dne
1 ¢

v =
n
q

Q
*
€ =3

(t) ¢2e ,y) (A3.13)

whefe the superscript e implies the terms are defined piecewise,
element by element, and superscript n denotes the dependent variable.
With E denoting the total number of elements in the domain of interest
then e = 1,2,...E. Substituting A3.13 into A3.12, there results the

system of equations

Q ne d ne N Q ne je ke
L o¢ (X,y)-aE @ ()y) + = z h.k (x,y) & (t) d_(£) +... = 0,
q=1 q q i,k=1 p,q=1 Jxpq q p
(A3.14)
ne d
or R (x,y,t,d(t), EE—(@(t))) =0, n=1,...N. (A3.15)

For each element e there are N equations of the form A3.15 in NQ un-—
-~ knowns. Sufficient equations to form a determinate system are obtained

by applying the weighted residual criterion A3.5.

ne ne

< Wq , R~ >=0,n=1,...N, , (A3.16)
q=1,...Q,
where < a,b > = [/ abdxdy. (A3.17)

e

The integration in the inner product A3.17 is performed over element e
alone. TFor each element e there are NQ equations of the form A3.16,
giving in the entire solution domain a total of NQE equations in NQE
unknown functions dge(t), g=1,...Q; n=1,...N; e=1,...E.

At this point it is necessary to consider the choice of trial
functions ¢2e(x,y), undetermined functions dze(t) and weighting
functions wze(x,y). Tt is proposed that the approximating functions
be double cubic polynomial splines, piecewise continuous element by
element. Equation A1.39 in Appendix 1 expresses the double cubic
spline on element e in terms of sixteen nodal values uij’ pij’ qij’

sij; ... and corresponding polynomial coefficients dl, df, bl, bf,...




In adapting the

u, p, 9, 8 represent respectively Wn’ n,

natural to select the sixteen polynomial coefficients dl, df,
approximating functions, with the nodal values u, p,

. e . ne
initial values of the variable coefficients d ~(t).

equations Al. 39

notation of Appendix 1 to the notation here, the terms

oY QY 82?
n, n.

0x0y

It is therefore

Ix Jy
to be
taken to be
With reference to

and Al.40 the following expressions are obtained:

$0° = ae = (1 - W’a@ - O,
$28 = dl = n*(3 - 2m) E°Q - 28)
(A3.18)
ne _ ne _
dl (t) - Si_l,j"‘l(t> H dl (O) - Si"l,j_l(O) H
:ne N ne _

' . . . . *e ‘ . .
In this fashion the trial solution Wn on element e (given by equation

A3.13) is defined in terms of Q = 16 trial functions ¢ and undetermined
functions of a single variable dne(t). All of the functions dze(t),
qg=1,2,...Q for element e are not unique to that element since each
corner of e is common to three other elements. With each dependent
variable field having four degrees of freedom per node point (namely
u(t), p(t), q(t), s(t)) then each element also has four degrees of
freedom on the average, and only four applications of the weighted
residual criterion A3.16 need be performed. This is equivalent to
replacing Q by Q/4 in A3.16. It now remains to select the four

weighting functions wne, q=1,...Q/4 (where Q = 16). A straight for-

ward application of the Galerkin method (wze(x,y) = ¢Ze(x,y)) is not
possible since there are sixteen trial functions and only four weighting
functions.

The trial functions are of four types: coefficients of
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either u(t), p(t), q(t) or s(t) at the nodes. Weighting functions
representative of each type of trial function may be formed by summing

the trial functions of each type. This gives

w?e(t) =1 |
w§e<t> =m(l - E)(Q - 28) ,
(A3.19)
wge(t) =n(l - - 2n) ,
w, () =ma( - ) - A= 250 - 2n) .

This weighted residual scheme employing trial and undetermined functions
A3.18 and weighting functions A3.19 will be referred to as method A.
This scheme reduces equation A3.16 to a nonlinear system of first order

ordinary differential equations of the type
A @ =8 (A3.20)
z dt * ’

where z = NEQ/4, d is al z element vector carrying the terms dze(t), A
is a zxz band matrix with band width NQ, and B is a zxz band matrix with
linear and nonlinear terms involving dze(t).

The major drawback of method A is the difficulty in solviﬁg equa-
tion A3.20. It would be impractical to store matricies A and B due to
their large order. Hence a matrix algebra solution is impossible. TIf
A were the identity matrix I a Runge Kutta scolution could be used to
solve for the vector d(t). However, A is not I, and it would be
impractical to employ matrix methods to replace A by I in A3.20. One
must conclude that although a solution to A3.20 could be attempted in
theory, such a solution would be impractical. A second characteristic
of method A is that the dependent variable fields do not remain of a
sbline nature as time progresses, despite the use of initial values

dge(o) gencrated by spline techniques. This arises from permitting four
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degrees of freedom per node point for each dependent variable field (in
other words, for each dependent variable at each node the valﬁes u(t),
p(t), q(t) and s(t) vary independently of each other for all t > 0).
Therefore a saving in the number of unknown functions per dependent
variable field per node point could be realized by forcing p(t), q(t)
and s(t) to be some function of u(t), t > 0. This gives rise to a
second method, to be referred to as method B.

The number of permitted degrees of freedom for each dependent
variable at each node may be reduced from four to one by forcing the
trial solution A3.13 to be of double cubic spline shape for all t > O.
In this case the values p(t), q(t) and s(t) depend on u(t) according to
equation Al.21 (in Appendix 1) writteﬁ respectively for the periodic,
nonperiodic and periodic case with u(t) replaced by q(t). An alterna-
‘tive form of expressing the dependence of p(t), q(t) and s(t) on u(t)

is to write

I
Py (v) = Lz biji* lkJ(t) , (A3.21a)
i*=1

J
q,.(t) = I ), (A3.21b)
ij gw=y 3% A3

I J
s..(t) = % Tod, L. u,,., (&) . (A3.21c)
1] jh=] ju=3 TITTIT 17

In equations A3.2la,b,c, the coefficient vectors b, ¢, d are obtained by
taking the inverse of the coefficient matrix of the system of equations
Al.21 written for the periodic and nonperiodic cases, and the limits I,
J denote the number of grid points in the x and y directions
respectively. Substituting equations A3.2l1a,b,c, along with the trial

and undetermined functions A3.18 into the trial solution A3.13 yields




f:e Q I J
Y T(x,y,t) = T I I e :
i 4=1 i=1 3=1 21jq Tniy () 0qG¥) - (43.22)

All of the coefficients a, b, ¢, d are characteristic of the grid and

are generated only once, at the beginning of the forecast. Further,
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these coefficients decrease rapidly as distance from element e increases.

For example, the inverse of the coefficient matrix of Al.21 for the

periodic case with equidistant grid points results in the values

. . . = 0.5773504 ,
l’J Dl
bi’j,i_l = bi’j’i+1 = - 0.1547006 ,
b, . . ,=Db, . ., o= 0.0414519 ,
i,j,i-2 i,j,i+2 (A3.23)
bi’j,i_3 = bi’j’i+3 = - 0.0111070 ,
bi’j,i_4 = bi’j’i+4 = 0.0029761 ,

by s 405 = Py g g45 = = 0-0007974

- 0.5935 x 10720 |

by 5,i-35 = Pig, 1435
Therefore if only the seven terms centered around node i,j were retained
in the summation A3.2la, the derivative pij(t) would be in error by less
than 17 of the value it would have had if all I terms were retained in
the summation. Restricting the summation overindicies i and j to
less than seven terms each considerably reduces the number of terms in
A3.21a,b,c, without significant loss of accuracy. Substituting A3.22

into A3.12, there results the system of equations

it

ne d . _
R (XQYat, \ynij (t)a dt (ynlj(t))) - 0 H n

Il

e 1 to E,
in the NE unknowns‘%ij, n=1toN, i=1+¢toI, j=1toJ (note that

E = 1J). A determinate system of equations formed by applying the

1 to N, (A3.24)



weighted residual criterion A3.5 with weighting function wne = 1 (sub-

domain method).

=}
Il

1 to N, (A3.25)

1l to E.

e
This weighted residual scheme consisting of undetermined functions
A3.21, double cubic spline trial solution A3.22, equation residual A3.24
and subdomain MWR criteria A3.25 wiil be referred to as method B. The
major advantage of method B over method A is the reduced number of
degrees of freedom for each dependent variable at each node. This
results in fewer undetermined functions to compute. Also, method B
forces the field to retain a double cubic spline shape at all times, a
desired characteristic since the initial data is spline fitted and
splines readily permit the use of a variable area grid. With the number
of terms in A3.22 left to the judgement of the user, one may chose to
experiment by dinitially using a crude spline fit and then increasing
the number of terms to learn the effect of the accuracy of the spline
trial function on the solution obtained. Equation A3.25 reduces to a
system of equations of the form A3.20, with z = NE. Similar to method
A, the major disadvantage of method B is the difficulty in solving the

resulting system of equations. Tt is with this drawback in mind that
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a third method is constructed by adding a slight modification to method B.

Several characteristics of method B are appealing: the trial
solution is of double cubic spline nature for all t > 0, the degree of
approximation of the trial solution to a double cubic spline ﬁay be
adjusted as desired, there is a minimum number of undetermined functions
(one degree of freedom per dependent variable field per node), and the

subdomain weighted residual method is employed to distribute the



equation residual (error) over each element. It now remains to remove
the drawbacks of trying to solve a difficult system of ordinary differ-
ential equations of the form A3.20. This may be accomplished by
expressing the undetermined functions Wnij(t) in terms of orthogonal
polynomials in time. Then, using the Galerkin or some other MWR, the
unknown coefficients in the polynomial for Wnij(t) could be generated.
Hence, form

K

\Pnij (£) = %

Pk(t) . (A3.26)
k=1

#nijk
A suitable selection for the polynomials Pk(t) would be Legendre poly-
nomials. With the transformation x = (2t/T) - 1, Legendre polynomials

P(x), orthogonal over -1 € x € 1, are transformed to be orthogonal over

0 <t g T. Therefore,

P, () =1,
Pz(t) = 2t - 1,
2 (A3.27a)
p3(t) = 61 =~ 6T+ 1,
3 2
P4(t) = 20t - 307" + 127 - 11 ,
where T = t/T (A3.27b)
T T
and JoP () P (t) = — , m=n,
0'n m 2n-1 (A3.27¢)

Substituting A3.26 and A3.22 into A3.12 results in the system of

equations

Rne(x,y,t, a )=0 , n=1to N, (A3.28)

nijk

e 1 to E,

in the NEK unknowns a i=1tol, j=1¢toJ, k=1 toXK and

nijk’

n.= 1 to N. This system A3.28 is converted to a determinate system of

equations by application of the weighted residual criteria
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< R 7, Pk > =0 , e =1 to E,
n =1 to N, (A3.29)
k=2 toXK orl to (X-1).

The inner product is now defined to combine the subdomain weighted
residual criteria in space with the Galerkin weighted residual method
in time. This gives

T
< a,b > %= /ff ab dx dy dt . (A3.30)
e

It is seen that the orthogonality of Legendre's polynomials will lead
to considerable simplification in the system of equations A3.29. By
using the limits k = 1 to K in system A3.29, one could obtain K
equations for each dependent variable field on each element. However,
in this case, with Wnij(t) represented by A3.26, it is necessary to add
a restriction on the coefficients anijk

prescribed initial conditions. Since Pk(O)

in order that ¥ _.(0) satisfies
nij

(—l)k+l, then

K
Yy ..(0) = & (—l)k+l a .. , n=1rtoN,
nij k=1 nijk
i=1+tol1I, . (A3.31)
j=1to J.

o

Therefore, K equations for each dependent variable on each element are
obtained by w%iting equation A3.29 for k =1 to (K- 1) or k = 2 to K
and by imposing the initial condition A3.31 to supply the final
equation. Equations A3.29 and A3.31 together form a determinate system

of NEK equations in the NEK unknown coefficients a = 1 to N,

nijk’ n
i=1tol, j=1toJ, k=1+to K (wherei=1toIand j=1toJis
equivalent to e = 1 to E). This system is a nonlinear system of

simultaneous algebraic equations. Two common methods of obtaining an

approximate solution to such a system are the Newton Rapson method and
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the method of steepest descent (for example see Forsythe and Moler
(pp.132-136 of ref 53) and Hildebrand (pp.443-451 of ref 54)); An alter-
native solution procedure used successfully by Macdonald (50) in his
solution of the incompressible boundary layer equations via the Galerkin
technique is a method of parameter variation. This method is described
in detail in a paper by Deist and Sefor (55).

This final weighted residual method will be referred to as method C.
It has all the advantages of method B, with the additional advantage of
reducing to a system of simultaneous nonlinear algebraic equations whose
solution may be obtained by conventional techniques. The essential
features of method C may be summarized as follows;

1. The trial solution is of a double cubic spline nature for
all t > 0.

2. The degree of approximation of the trial solution to a
double cubic spline may be adjusted as desired.

3. There is a minimum number of undetermined functions per
dependent variable field per node.

4. The undetermined functions (nodal values of the dependent
variables) are expressed .in terms of orthogonal polynomials
in time.

5. The subdomain weighted residual method is employed to
distribute the equation residual (error) over each element
in space.

6. The Galerkin weighted residual method is employed to
distribute the equation residual, weighted by Legendre
polynomials, over an interval T in time.

7. The final system of equations to be solved numerically is
a nonlinear system of simultaneous algebraic equations.

8. The method is applied to advance nodal values of the
dependent variables an interval T in time.

9., The method may be repeated over and over again to obtain
a forecast of any desired length (subject to numerical
stability).




The speed of obtaining a solution to the system of algebraic
equations of method C may be greatly improved by supplying a good

starting estimate for the coefficients a One method of obtaining

nijk’
good starting estimates for these coefficients will be briefly illus-

trated for the K = 3 case. Extension to other values of K may be

readily performed. TFrom equations A3.26 and A3.27,

Wnlj(o) - anljl nij2 nij3 °?

d -1

it Ynij (t) (=7 C 3452 anij3) , (A3.32)
2

d 12

—5 VY ..(t) _ =5 a__..

dt2 nij t=0 T nij3

If initial values for Wnij and its first two time derivatives were
known, then the system A3.32 could be solved for starting estimates of
the coefficients anijk’ k =1 to 3. This would then be repeated for
each dependent variable (n = 1 to N) at each node point (i = 1 to I,
j =1 to J). The value of Wnij(O) is known from preséribed initial
conditions. An estimate of (d \Pnij/dt)t=0 is obtained by solving for
d Wnij/dt at t = 0 in equation A3.12. 1In this equation, the initial
values of all dependent variables are known at the nodes, and spatial
derivatives of the dependent variables are evaluated by a double cubic
spline fit to the initial data fields. This is similar to the methods
used to estimate spatial derivatives in the model discussed in the body
of this thesis. Tinally, an estimate of (d2 Wnij/dtz)t=0 is obtained
by differentiating equation A3.12 with respect to time, solving for

2.

d Wnij/dt% and evaluating all the remaining terms using their pre-

scribed or previously generated initial values. In this calculation,

values for g;-or g;-of %%nij are obtained by forming a double cubic

v o.. . . .
spline fit to the dinitial values of %Enlj obtained in the previous step.
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It is recognized that calculating starting estimates of the unknown

coefficients a s by the method illustrated above is essentially a Kth

ijk
order forward differencing scheme in time, If this scheme alone were
used to advance the dependent variable fields the numerical sclution
would prove unstable in a short time. Since this forward differencing
would be used to return only starting estimates of the undetermined
coefficients anijk’ it should have no effect on the stability of the

numerical scheme using the subdomain and Galerkin weighted residual

methods.
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Table 3.1: Spline Curve Fitting Between Regions of Abruptly Changing Curvaturea
i 1 2 3 4 5 6 7 8
X 0 5 10 15 20 25 30 35

1. uy ~7.483 -10.88 5.434 9.458 10.00 10.00 10.00 10.00
Py 1.066 1.391 1.128 0.42% ¢.0 0.0 0.0 0.0
P 1.065 1.388 1.133 0.407 -0.022 0.006 -0.002 0.000
% error 0.059 0.188 -0.458 5.205 - - - -

2. u, ~-7.483 -10.88 5.434 9.458 5.000 15.00 25.00 35.00
P, ¢ 1.066 1.391 1.128 0.429 2.000 2.000 2.000 2.000
Pl 1.082 1.323 1.375 -0.494 0.344 2,444 1.881 2.032
% error -1.569 4,845 -21.88 215.2 82.80 -22.19 5.945 -1.593

3. ug -7.483 -10.88 5.434 9.458 -1.250 | -3.750 | -6.250 -8.750
P;¢ 1.066 1.391 1.128 0.429 -0.500 | -0.500 | -0.500 -0.500
P;q 1.091 1,290 1.497 -0.952 -1.698 -0.179 -0.586 ~-0.477
7. error -2.395 7.206 -32.75 | 321.8 -239.7 64.23 -17.2 4,611

4, u, 145.0 155.0 165.U 175.0 175.0 165.0 155.0 145.0 -
P, 2.000 2.000 2.000 2.000 -2.000 } -2,.600 | -2.000 -2.000
P, 2.014 1.947 2.196 1.268 -1.268 -2.196 -1.947 -2.014
% error -0.704 2.628 -9.808 | 36.60 36.60 -0.808 2.628 -0.704

5. u, -36.25 ~38.75 -41.25 -43.75 -43.75 -41.25 -38.75 -36.25
Py -0.500 ~-0.500 -0.500 | -0.500 | 0.500 0.500 0.500 0.500
P, ~0.504 -0.487 -0.549 -0.317 0.317 ~0.549 -0.487 0.504
% error -0.704 2.628 -9.808 | 36.60 36.60 -9.808 2.628 -0.704

6. v, 96.62 53.05 5.311 -37.32 -67.35 —80.30‘ -75.42 | -55.45
P ~7.665 -9.453 -9.329 -7.472 ~4.386 -0.771 2.629 5.176
Pis -7.662 -9.451 -9.327 -7.471 -4,386 -0.772 2.628 5.174
% error 0.031 0.024 0.020 0.017 0.009 ~0.081 0.055 0.346
1 Sinuscid (x < x4) meets with a straight line (x = XS, slope = 0.0).

2. Sinusoid (x g xq) meets with a straight line (x 3 Xes slope = 2.0).
3. Sinusoid (x g Xq) meets with a straight line (x 3 Xe s slope = -0.5).
4 Straight line (% ¢ %x,, slope = 2.0) meets with a straight line

(x 3 X5 slope = -2.6).
5. Straight line (x € x,, slope = -0.5) meets with a straight line

(x5 x, slope = 0.53

s J

6. Sinusoid, xl < X <X



Table 5.1:

Model

Summary of Forecast Model Notation and Figures.

Description
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Figures

ST

Cl

P7

the proposed forecast model in its entire-
ty, using the bicubic spline method on a
telescoping grid having superimposed ex-
pansions of two types (grid D, Figure 3.4)

a modified form of model ST, using the bi-
cubic spline method on a grid having the
expansion of Type 1 only (grid C, Figure
3.3) '

a modified form of model ST, using central
finite differences in place of bicubic
splines, on a grid having the expansion of
Type 1 only (grid C, Figure 3.3)

a modified form of model ST, using the new
spline based on continuity of curvature
with a = (0.222222 and XS = 0.0 in place of
bicubic splines, on a grid having the ex-
pansion of Type 1 only (grid C, Figure 3.3)

a preliminary experiment using f%nite
differences on a MA grid with 10 grid
interval and smoothing operators (grid B,
Figure 3.2)

the Mintz—Arakaga numerical gorecast model:
forecast on a 5 latitude, 5 longitude
grid

4.99-4.120

4.69-4.90

4.91-4.98

4.121-4.128

4,.47-4.68

5.1-5.20



Table 5.2:

Overall Forecast Performance

a7

RMSC

x 100%

V1 V2 T1 T2 Ql 61 2
RMSC 5.380 6.032 4.493 2.754 1.363 68.45 100.80
RMSE-MA 6.178 8.606 6.330 3.183 1.833 95.57 106.22
a% 14.8 42.6 41.0 15.5 34.5 39.6 5.39
RMSE-S 5.584 7.493 5.845 2.728 1.526 82.06 102.95
VA 3.80 24,2 30.2 -0.94 12.0 19.9 2.14
RMSE-C1 5.533 7.517 5.947 2.605 1.465 82.65 102.23
dz 2.84 24.6 32.4 -5.40 7.5 20.8 1.42
RMSE-F 5.531 7.478 6.167 2.584 1.434 | 83.08 108.00
a7, 2.81 24.0 37.4 -6.17 5.2 21.4 7.15
RMSE-ST 5.065 6.954 5.857 2.487 1.415 78.30 102.74
dz, -5.85 15.2 30.4 -9.70 3.8 14.4 1.93
RMSE-P7 5.784 8.669 6.771 3.167 1.462 83.00 136.49
dz, 7.50 43.7 50.7 15.0 7.3 21.2 35.4
Units: V1,V2 - m/sec
T1,T2 - °K
oL, 42 - m
Ql - g HZO / g dry air x 10-3
_ RMSE - RMSC




Table 5.3a: Comparison of d% for Models S and P7 Relative to MA

Factor = the factor which d% of model MA must be multiplied by to

yield d% for the indicated model.

Factor
Variable S P7
V1 1/4 1/2
V2 1/2 1
TL 3/4 1%
T2 neg. 1
Ql 1/3 1/4
$1 1/2 1/2
$2 2/5 7

Table 5.3b: Comparison of d% for Models Cl, F and ST Relative to S

Difference = the difference between d% of model § and d% for the
The adjectives better (b) and worse
(w) describe whether the indicated model has a lower

indicated model.

or higher value of d% compared to that of S§.

Difference

Variable Cl F ST
vl b,0.96 b,0.99 b,9.65
V2 w,0.4 b,0.2 b,9.0
Tl w,2.2 w,7.2 w,0.2
T2 b,4.46 b,5.23 b,8.76
Ql b,2.5 b,6.8 b,8.2
$1 w,0.9 w,1.5 b,5.5
$2 b,0.72 w,5.01 b,0.21
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Adjectives:

Poor(P), Very Poor(VP), Good(G), Very Good(VG),
Poor = RMSE,
Good = RMSEg

RMSC
RMSC;

3

Table 5.4: Comparison of Models S and MA Against the True Weather Change:
Mean Differences at Different Latitudes
a) Model S
Variable Pole High Lat. |Middle Lat. Low Lat. Equator
V1 1.0 P 0.7 P -1.3 VG 1.3 P 3.1 VP
V2 -0.4 G 2.5 P -0.2 G 3.6 VP 1.6 VP
T1 1.5 P 0.7 P -0.8 VG 4.1 VP 7.2 VP
T2 2.7 VP 0.6 P -1.6 VG 2.5 VP 3.9 vp
Q1 0 0 -0.15 G 0.39 P 1.05 VP
$1 ~15 G 5 20 P 30 vp 45 VP
62 25 VP -9 -25 VG 57 VP 103 VP
b) Model MA
Variable Pole High Lat. |Middle Lat. Low Lat. Equator
V1 -0.9 G 1.3 vp -0.8 G 2.5 VP 2.7 VP
V2 0 5.0 VP 0.8 P 4,6 VP 1.6 VP
T1 3.2 VP 1.4 P 0.2 P ‘4.1 VP 6.8 VP
T2 2.1 VP 0.6 P -1.2 VG 3.5 VP 4.8 VP
QL 0 0.23 P 0.14 P 0.85 vp 1.05 vp
$1 -27 VG 20 VP 40 VP 31 VP 45 VP
62 -45 VG 7 P -9 G 40 VP 74 VP
Difference RMSEj - RMSCj
: o
Pole, j=1, o = 90 o
High Latitudes, j=2-6, &= 80—550
Middle Latitudes, j = 7-11, ¢ = 55-—30O
Low Latitudes, j = 12-16,0 = 3055
Equator, j=17,18,6 = 0
Units: V1,V2 - g/sec
T1,T72 - K
¢l,¢2 - m -3
Q1 - g HZO / g dry air x 10
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Table 5.5: Comparison of Models F and ST Against S: Mean Differences at
Different Latitudes

a) Model F
Variable Pole High Lat. [Middle Lat. Low Lat. Equator
V1 0.2 0.5 -0.4 -0.2 -1.0
V2 0.4 0.7 -0.6 -0.2 0.4
Tl 2.4 0.6 0.6 0.2 -0.1
T2 0 -0.1 -0.1 -0.2 -0.5
Q1 0 0 -0.03 -0.1 -0.5
%1 -15 2 2 0 0
$2 -40 9 10 0 0
b) Model ST
Variable Pole High Lat. [Middle Lat. Low Lat: Equator
Vi -1.0 0.1 -0.6 -0.4 -2.2
V2 1.0 -0.9 -0.6 0.2 -2.0
T1 1.4 0.1 0.1 -0.5 0
T2 -0.7 -0.1 ~0.2 -0.1- -1.0
Q1 0 0.1 0.02 -0.17 -0.85
$1 -5 -7 -11 -6 -5
$2 -3 -9 10 -3 5

Difference = RMSEj,

specified model - RMSEj, model S

Q1

Pole, j =1, s = 90°
High Latitudes, j = 2-6," @ = 80-55_
Middle Latitudes, j = 7-11, ¢ = 55-30
Low Latitudes, j = 12-16, ® = 30-5 °
Equator, j=17,18, 2 =0 ©
Units: V1,V2 - g/sec

T1,T2 - K

¢1>¢2 - m -3

- g HO/ gdry air x 10




Table 5.6: Temperature Phase Speeds at 45° Latitude

a) Lower level Temperature (800 mb, Tl), Position in Degrees Longitude
Mean

Model T R T R T R T R Phase Speed

0 Hour -165 1] -143 | -105 | -80 -55 -15 25 132 -185

36 Hour | -130 | -115 | -88 -55 -35 -5 30 132 -155| 18.9

True

MA -145 | -124 | -95 -70 ~40 -5 18 138 -170| 10.9

S -142 | -118 | -95 -70 | -48 0 18 135 -168| 11.5

F ~-150 § -125 | =95 -68 -50 -5 24 140 -180¢ 9.1

ST =143 [ -118 | -92 -68 -48 -12 22 135 -180( 9.7

P7 -162 | -138 | -95 =75 -52 -6 32 145 -180] 6.8

b) Upper Level Temperature (400 mb, T2), Position in Degrees Longitude

. Mean

Model T R T R T R R | Phase Speed

0 Hour -162 | -135 | -103 | -82 -58 -18 9 -180

36 Hour | -138 | -120 | -93 -63 -43 -4 23 -1551| 17.0

True

MA -148 | -125 | -93 -65 -45 -5 19 -1601} 13.3

S -140 { -118 | -93 -60 -40 -5 21 -165] 16.1

F -145 {1 -121 | -93 -65 -45 5 20 -170| 14.3

ST -138 §-120 | -95 -60 -45 0 18 -1801¢ 13.6

P7 -155 | -135 1 -105 | -75 -55 5 15 -19241 4.0

T = Trough

R = Ridge

Phase Speed = Longitude position of the feature at 36 hours -

Longitude position of the feature at O hours
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Iable 5.7:

e )
Geopotential Phase Speeds at 45 Latitude
2 P

172N
LR

a) Lower Level Geopotential (800 mb, ¢1), Position in Degrees Longitude

£
Model R T R T R R T T Phai gpeed
0 Hour ~173 | -153 | ~1281} -95 ~65 -18 62 154
36 Hour| ~-140] -130 -108} -82 -48 -8 68 175 17.
True |
MA -170 ¢ -148 ) ~123 ¢ -92 -63 -13 72 157 4.5
S -170 [ -148 | =120 -92 ~-55 -14 75 156 6.0
F -170) -149 [ -124 | -92 -55 ~10 72 158 5.7
ST =170} -148 | -122 | -92 -55 -13 70 163 6.1
P7 -170| ~153 | -128 | -90 | -58 -15 80 161 5.4

b) Upper Level Geopotential (400 mb, ¢2),

Position in Degrees Longitude

F

Mean
Model R T R T R T R T R T Phase Speed
0 Hour -180| -163 | -131| -100] -73 -50 ~-15 28 98 148
36 Hour|{ -148| -130| ~113 | -87 -52 -35 -5 30 105 157 16.0
True
MA -162| -1451 -122 | -91 -58 -37 -5 22 106 145 9.1
S -162| -138 | -119 | -87 -51 ~41 -3 25 107 150 11.7
~168 | ~-146 | -123 | -88 -62 -42 -7 25 104 143 7.4
ST -163} -138 ] -117 | -88 ~53 ~41 -10 25 100 146 9.9
P7 -165| -156 | -135 | -95 -54 -33 2 15 116 154 8.7
T = Trough
R = Ridge

Phase Speed = Longitude position
Longitude position

of the feature at 36 hours -
of the feature at

0 hours



Table 5.8: Comparison of Phase Speeds at 450 Latitude:
% of True Phase Speed

Model T1 T2 sl $2
MA 58 78 25 57
s 61 95 34 73
F 48 84 32 46
ST 51 80 34 62
P7 36 24 30 54

% of True Phase Speed =

Forecast Phase Speed

True Phase Speed




Py = Py = 200 mwb ,
P, = .25C + P ,
P, = .500 + P, ,
Py = .75% + P s
B, =P, = S+ B,

Figure 2.1: Vertical Resolution
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Figure 3.5: Interpolation Method A
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Figure 4.12: 400 mb Temperature (OK), 36 hour true
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Figure 4.16: 400 mb Geopotential (m), 36 hour true
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Figure 4.21b: 400 mb Geopotential (m), 0-36 hour change




iguag

1000
tog2

1000

398

1000

188

149

180 DEG WEST NORTH POLE {80 DEG EAST

10Qg

1000

1000

1004

1008

1000

1000

1000

839

1000
1000
856
898
838

Figure 4.22: 800 mb Moisture (g Hzo/g dry air x 10—3), 0-36 hour change



10
£Q

10
30

%Q
L)

[y

10

<zy

g3t

240

150

180 DEG HEST NORTH POLE 180 DEG EAST

AW ~h
L L
(//‘H~\h\; L L L HLH

- - -

20
20
10

Figure 4.23: 400 mb Resultant Velocity Isotachs (m/sec), model P2, 20 hour

180 DEG WEST ' NGRTH POLE 180 DEG ERST

esq

z4a

H HH LH L H L

\v«w %”“Q%“ W

N

250
250
250
250
250
250
250
250
250
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Figure 4.26: 400 mb Geopotential (m), model P2, 20 hour
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Figure 4.27: 400 mb Resultant Velocity Isotachs (m/sec), model P3, 26 hour
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Figure 4.29: Surface Pressure (mb), model P3, 26 hour
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Figure 4.34: 400 mb Geopotential (m), model P4, 36 hoﬁr
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Figure 4.39: 400 mb Resultant Velocity Tsotachs (m/sec), model P6, 36 hour
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Figure 4.42: 400 mb Geopotential (m), model P6, 36 hour
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Figure 4.47: 800 mb Resultant Velocity Isotachs ‘(m/sec), model P7, 36 hour
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Figure 4.51: 800 mb Moisture (g H20/g dry air x 10-3),mode1 P7, 36 hour
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Figure 4.52: Surface Pressure (mb), model P7, 36 hour
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Figure 4.54: 400 mb Geopotential (m), model P7, 36 hour
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Figure 4,56: 400 mb Resultant Velocity Isotachs (m/seé),‘mddel P7,
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Figure 4.69: 800 mb Resultant Velocity Isotachs (m/sec), model S, 36 hour

180 DEG NEST NORTH POLE : 180 DEG EAST

10

(l

o o O o o o o o
- e L I T o T =

10
10
10

o o
- -

10

o o
N e M

Figure 4,70: 400 mb Resultant Velocity Isotachs (m/séc),'mddgl S, 36 hour
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Figure 4.75: 800 mb Geopotential (m), model S, 36 hour
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Figure 4.76: 400 mb Geopotential (m), model S, 36 hour
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Figure 4.77: 800 mb Resultant Velocity Isotachs (m/sec), model S,
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Figure 4.78: 400 mb Resultant Velocity Isotachs (m/sec), model S,
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Figure 4.79: 800 mb Temperature (OK), model S, 36 hour error, 1000 represents
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Figure 4.80: 400 mb Temperature (OK), model S, 36 hour error, 1000 represents
zero error
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Figure 4.82: 400 mb Geopotential (m), model S, 36 hour error, 1000 represents
‘ Zero error :
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Figure 4.94: 400 mb Temperature (°K), model F, 36 hour
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Figure 5.50: 400 mb Geopotential (m), model S, 36 hour
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Figure 5.51: 400 mb Geopotential (m), 36 hour true
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Figure 5.52: 400 mb Geopotential (m), model F, 36 hour
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Figure 5.53: 400 mb Geopotential (m), 36 hour true
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Figure 5.54:

400 mb Geopotential (m), model ST, 36 hour
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