Show simple item record

dc.contributor.authorSun, Wenhao
dc.contributor.authorLozada, Issiah B.
dc.contributor.authorvan Wijngaarden, Jennifer
dc.date.accessioned2021-10-12T15:48:55Z
dc.date.available2021-10-12T15:48:55Z
dc.date.issued2018-02-06
dc.date.submitted2021-10-12T14:57:39Zen_US
dc.identifier.citationSun, W.; Lozada, I. B.; van Wijngaarden, J. Fourier Transform Microwave Spectroscopic and ab Initio Study of the Rotamers of 2-Fluorobenzaldehyde and 3-Fluorobenzaldehyde. J. Phys. Chem. A 2018, 122, 8, 2060–2068en_US
dc.identifier.urihttp://hdl.handle.net/1993/36037
dc.description.abstractThe rotational spectra of 2-fluorobenzaldehyde (2-FBD) and 3-fluorobenzaldehyde (3-FBD) were recorded using Fourier transform microwave (FTMW) spectroscopy from 4 to 26 GHz. Two planar rotamers were observed for each species which correspond to structures in which the carbonyl bond is directed toward (O-cis) or away from (O-trans) the C1-C2 bond. Observation of transitions due to heavy atom isotopes (13C, 18O) in natural abundance allowed derivation of the ground state effective (r0) structures and mass dependence (rm) structures for the lowest energy rotamer of 2-FBD (O-trans) and both rotamers of 3-FBD which compare favourably with ab initio estimates of the equilibrium (re) geometries at the MP2/aug-cc-pVTZ level. The resultant parameters are consistent with the introduction of bond length alternation in the benzene ring which is dependent on the orientation of the aldehyde group. Careful study of the experimental structure and results of natural bond orbital (NBO) analysis do not support the presence of intramolecular hydrogen bonding as the source of its stabilization of O-trans 2-FBD over its cis counterpart. Furthermore, calculations of the interconversion pathways between rotamers suggest that despite being 9.39 kJ/mol higher in energy, the O-cis 2-FBD moiety is metastable in the molecular beam which has allowed the observation of its microwave spectrum for the first time.en_US
dc.description.sponsorshipNSERC RGPIN/0653-2016en_US
dc.language.isoengen_US
dc.publisherThe Journal of Physical Chemistry Aen_US
dc.rightsopen accessen_US
dc.subjectmicrowave spectroscopyen_US
dc.subjectab initio calculationsen_US
dc.subjectstructure determinationen_US
dc.subjectfluorobenzaldehydesen_US
dc.titleFourier Transform Microwave Spectroscopic and ab Initio Study of the Rotamers of 2-Fluorobenzaldehyde and 3-Fluorobenzaldehydeen_US
dc.typePreprinten_US
dc.identifier.doi10.1021/acs.jpca.7b11673
local.author.affiliationFaculty of Scienceen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record