Show simple item record

dc.contributor.supervisor Cowan, Craig (Mathematics) en_US
dc.contributor.author Zaherparandaz, Aidin
dc.contributor.author Zaherparandaz, Aidin
dc.date.accessioned 2020-09-09T12:23:54Z
dc.date.available 2020-09-09T12:23:54Z
dc.date.copyright 2020-08-23
dc.date.issued 2020 en_US
dc.date.submitted 2020-08-23T08:54:49Z en_US
dc.identifier.citation Aghajani, A., and Cowan, C. Some elliptic problems involving the gradient on general bounded and exterior domains. en_US
dc.identifier.citation Agmon, S., Douglis, A., and Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12 (1959), 623–727. en_US
dc.identifier.citation Agmon, S., Douglis, A., and Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions ii. Communications on Pure and Applied Mathematics 17, 1 (1964), 35–92. en_US
dc.identifier.citation Ai, S., and Cowan, C. Perturbations of lane–emden and hamilton–jacobi equations ii: Exterior domains. Journal of Differential Equations 260, 11 (2016), 8025–8050. en_US
dc.identifier.citation Ai, S., and Cowan, C. Perturbations of lane–emden and hamilton–jacobi equations: The full space case. Nonlinear Analysis 151 (2017), 227–251. en_US
dc.identifier.citation Boggio, T. Sulle funzioni di Green d’ordine m: memorie. Tip. Matematica, 1905. en_US
dc.identifier.citation Bozhkov, Y. The group classification of lane–emden systems. Journal of Mathematical Analysis and Applications 426, 1 (2015), 89–104. en_US
dc.identifier.citation Brezis, H., and Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents en_US
dc.identifier.citation Caffarelli, L. A., Gidas, B., and Spruck, J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth. en_US
dc.identifier.citation Cajori, F. The early history of partial differential equations and of partial differentiation and integration. The American Mathematical Monthly 35, 9 (1928), 459–467. en_US
dc.identifier.citation Chen, W., and Li, C. Classification of solutions of some nonlinear elliptic equations. Duke Mathematical Journal 63, 3 (1991), 615–622. en_US
dc.identifier.citation Chung, W.-J., and Nelson, L. Bose-einstein condensate & degenerate fermi cored dark matter halos. Journal of Cosmology and Astroparticle Physics 2018, 06 (Jun 2018), 010–010. en_US
dc.identifier.citation Clément, P., de Figueiredo, D. G., and Mitidieri, E. Positive splutions of semilinear elliptic systems. Communications in Partial Differential Equations 17, 5-6 (1992), 923–940. en_US
dc.identifier.citation Cowan, C. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. en_US
dc.identifier.citation Cowan, C. Liouville theorems for stable lane–emden systems and biharmonic problems. Nonlinearity 26, 8 (2013), 2357–2371. en_US
dc.identifier.citation Cowan, C. Stability of entire solutions to supercritical elliptic problems involving advection. Nonlinear Analysis 104 (2014), 1–11. en_US
dc.identifier.citation Cowan, C. A short remark regarding pohozaev-type results on general domains assuming finite morse index. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 147, 2 (2017), 293–297. en_US
dc.identifier.citation Cowan, C., and Fazly, M. On stable entire solutions of semi-linear elliptic equations with weights. Proceedings of the American Mathematical Society 140, 6 (2012), 2003–2012. en_US
dc.identifier.citation Dacorogna, B. Direct Methods in the Calculus of Variations, 2nd ed. ed. Applied Mathematical Sciences, 78. Springer New York, New York, NY, 2008. en_US
dc.identifier.citation Dalmasso, R. Problème de dirichlet homogène pour une équation biharmonique semi- linéaire dans une boule. (homogeneous dirichlet problem for a semilinear biharmonic equation in a ball). Bulletin des Sciences Mathématiques. Deuxième Série 114 (01 1990). en_US
dc.identifier.citation Dancer, E. N., and Wei, J. Sign-changing solutions for supercritical elliptic problems in domains with small holes. manuscripta mathematica 123, 4 (2007), 493–511. en_US
dc.identifier.citation del Pino, M., Dolbeault, J., and Musso, M. A phase plane analysis of the “multi-bubbling” phenomenon in some slightly supercritical equations. Monatshefte für Mathematik 142, 1 (2004), 57–79. en_US
dc.identifier.citation del Pino, M., Felmer, P., and Musso, M. Multi-peak solutions for supercritical elliptic problems in domains with small holes. Journal of Differential Equations 182, 2 (2002), 511–540. en_US
dc.identifier.citation del Pino, M., and Wei, J. Supercritical elliptic problems in domains with small holes. Annales de l’Institut Henri Poincare / Analyse non lineaire 24, 4 (2007), 507–520. en_US
dc.identifier.citation Douglas, R. G. Banach Algebra Techniques in Operator Theory, second edition. ed., vol. 179 of Graduate Texts in Mathematics. Springer New York, New York, NY, 1998. en_US
dc.identifier.citation Duong, A. T. A liouville type theorem for non-linear elliptic systems involving advection terms. Complex Variables and Elliptic Equations 63, 12 (2018), 1704– 1720. en_US
dc.identifier.citation Dávila, J., Dupaigne, L., Wang, K., and Wei, J. A monotonicity formula and a liouville-type theorem for a fourth order supercritical problem. Advances in Mathematics 258 (Jun 2014), 240–285. en_US
dc.identifier.citation Emden, R. J. Gaskugeln: Anwendungen der Mechanischen Warmetheorie auf Kosmologische und Meteorologische Probleme. Teubner, Berlin, Germany. en_US
dc.identifier.citation Evans, L., and of the Mathematical Sciences, C. B. Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series. Conference Board of the Mathematical Sciences, 1990. en_US
dc.identifier.citation Evans, L. C. Partial differential equations. Graduate studies in mathematics v. 19. American Mathematical Society, Providence, R.I, 1998. en_US
dc.identifier.citation Farina, A. On the classification of solutions of the lane-emden equation on unbounded domains of rn. Journal des Mathematiques Pures et Appliquees 87, 5 (2007), 537–561. en_US
dc.identifier.citation García-Huidobro, M., Manásevich, R., Mitidieri, E., and Yarur, C. S. Existence and nonexistence of positive singular solutions for a class of semilinear elliptic systems. Archive for Rational Mechanics and Analysis 140, 3 (1997), 253–284. en_US
dc.identifier.citation Gazzola, F., Grunau, H.-C., and Sweers, G. Polyharmonic Boundary Value Problems. Springer Berlin Heidelberg, Berlin/Heidelberg, 2010. en_US
dc.identifier.citation Gidas, B., ming Ni, W., and Nirenberg, L. Symmetry and related properties via the maximum principle, 1979. en_US
dc.identifier.citation Gidas, B., and Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics 34, 4 (1981), 525–598. en_US
dc.identifier.citation Gohberg, I., Goldberg, S., and Kaashoek, M. A. Classes of Linear Operators Vol. I. Birkhäuser Basel, 1990. en_US
dc.identifier.citation Grafakos, L. Modern Fourier Analysis, 3rd ed. 2014 ed., vol. 250 of Graduate Texts in Mathematics. Springer, New York, NY, 2014. en_US
dc.identifier.citation Guerra, I. A. Asymptotic behaviour of a semilinear elliptic system with a large exponent. Journal of Dynamics and Differential Equations 19, 1 (2007), 243–263. en_US
dc.identifier.citation Higson, N., and Roe, J. Analytic K-Homology. Oxford Mathematical Monographs. OUP Oxford, 2000. en_US
dc.identifier.citation LANE, J. H. Art. ix.–on the theoretical temperature of the sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. American Journal of Science and Arts (1820-1879) 50, 148 (1870), 57–74. en_US
dc.identifier.citation Lui, S. H. S. H. Numerical analysis of partial differential equations. Pure and applied mathematics, a Wiley-Interscience series of texts, monographs, and tracts. Wiley, Hoboken, N.J. en_US
dc.identifier.citation Mazzeo, R., and Pacard, F. A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. en_US
dc.identifier.citation Melrose, R. Introduction to functional analysis, Spring 2009. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. en_US
dc.identifier.citation Mitidieri, E. A rellich type identity and applications. Communications in Partial Differential Equations 18 (01 1993), 125–151. en_US
dc.identifier.citation Mitidieri, E. Nonexistence of positive solutions of semilinear elliptic systems in Rn. Differential Integral Equations 9, 3 (1996), 465–479. en_US
dc.identifier.citation Oswald, P. On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. Commentationes Mathematicae Universitatis Carolinae 026, 3 (1985), 565–577. en_US
dc.identifier.citation Passaseo, D. Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains. Journal of Functional Analysis 114, 1 (1993), 97–105. en_US
dc.identifier.citation Pokhozhaev, S. I. Eigenfunctions of the equation u + λf(u) = 0. Sov. Math., Dokl. 6 (1965), 1408–1411. en_US
dc.identifier.citation Salsa, S. Partial Differential Equations in Action From Modelling to Theory. Universitext. Springer Milan, Milan, 2008. en_US
dc.identifier.citation Soranzo, R. A priori estimates and existence of positive solutions of a superlinear polyharmonic equation. Dynamic Systems and Applications 3 (01 1994). en_US
dc.identifier.citation Struwe, M. Variational Methods. Springer Berlin Heidelberg, Berlin/Heidelberg, 1990. en_US
dc.identifier.citation Thomson, B. S. Elementary real analysis, 2nd edition. ed. Www.classicalrealanalysis.com, S.l, 2008. en_US
dc.identifier.citation van der Vorst, R. Variational identities and applications to differential systems. Archive for Rational Mechanics and Analysis 116, 4 (1992), 375–398. en_US
dc.identifier.citation VAN DER VORST, R. C. A. M. Best constant for the embedding of the space h2 ∩ h10 (ω) into l 2n n−4 (ω). Differ. Integral Equ. Appl. 6 (1993), 259–276. en_US
dc.identifier.citation von Wahl, W., and McLeod, J. Semilinear elliptic and parabolic equations of arbitrary order. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 78, 3-4 (1978), 193–207. en_US
dc.identifier.uri http://hdl.handle.net/1993/35009
dc.description.abstract n this thesis some Lane-Emden problems of different order are studied. Tackling the issue of existence of a positive solution and regularity of the solutions are of paramount importance for each instance. In addition to discussing the general Lane-Emden equation, the cases of having an advection term to the original problem and investigating some fourth order nonlinear Dirichlet and Navier problems are of considerable interest. While the well-studied general equation points out that for p≥N+2/N−2 and Ω a star-shaped domain in RN there would be no non-trivial solution, some advantageous results regarding the existence of a positive solution and regularity of the solutions on a general bounded domain inRNare addressed for the equations where an advection is involved, as well as some nonlinear fourth order problem with given Dirichlet and Navier boundary conditions. en_US
dc.rights info:eu-repo/semantics/openAccess
dc.subject Elliptic partial differential equations en_US
dc.title On Lane-Emden equation and some variations en_US
dc.type info:eu-repo/semantics/masterThesis
dc.degree.discipline Mathematics en_US
dc.contributor.examiningcommittee Lui, Shaun (Mathematics) en_US
dc.contributor.examiningcommittee Slevinsky, Richard (Mathematics) en_US
dc.degree.level Master of Science (M.Sc.) en_US
dc.description.note October 2020 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics