
hlulti-Version Timest amp Certification for

Disconnection Protocol in Mobile Computing

b_v

Yiu Leung Lee

presented to the University of Manitoba

in partial fuifilment of the

requirements for the degree of

hlaster of Science

in

Comput er Science

Winnpeg, hlanitoba. Canada. 1998

@Y. L. Lee 1998

National Library u*m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 W e t l i i Street 395. me Wellington
OttawaON K 1 A W OttawâûN K1A ON4
canada canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence ailowing the exclusive permettant à la
National L h q of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distriilmer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de rnicrofiche/nlm, de

reproduction sur papier ou sur fomiat
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

MJLTI-VKRSIOH TRfESTAWP CERTXPICATZOIP FOR

D I S C O ~ C T I O R J PEOTOCOL MOBILE CûHPUTING

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements o f the degree of

Yiu Leung Lee 19 1998

Permission has been granted to the LIBRARY OF THE UNTVERSITY OF MASITOBA
to Iend or sell copies of this thesis, to the NATI0N.U L I B M Y OF CAi.;IDA to microfdm this
thesis and to lend or sel1 copies of the film, and LIBRmY FIICROFILMS to publish an
abstract of this thesis.

The author resecves other publication rights, and neither the ttiesis nor extensive
extracts from it ma): be printed or other-wise reproduced without the author's written
permission.

Acknowledgement

First of all. 1 must thank you my supervisor Professor Ken Barker for guiding me

through this t hesis. He inspired me in many ways so 1 codd corne up with the ideas.

My thanks also go to my family for supporting me in Hong Kong. Lan JO for food

and care-taking, and Kevin for proof-reading. Without them. 1 wouldn't have made

this thesis possible. T h d you.

Abstract

Wireless technology inspires many neew thovghts to the traditional distn'buted database

systems. w*Disconnection" 2s a standard operation of the mobile computing which the

traditional distributed systems usually treat as a Jaihre. A mobile unit inforrns the

jked servers pnor to disconnectzon. During the time of disconnectzon. the mobile unit

operates by ztseIfwith no network support. L'pon r-econnection. the fized servers shoz~ld

be able tu synchronize the updates and commit the transactions made by the mobile

unit during the disconnecting pen'od. .-Lllouing the disconnected mobile units to op-

e n t e alone may generate sc me conflicts upon reconnection. This thesis presents the

kfulti- çérsion Tzmestamp Certification for Disconnection Protocol in Mobile Com-

puting to resolve the data inconsistency caused by the disconnection protocol. The

objectives of this new protocol includes: (1) to solve data consistency problem between

the distributed static seruers and mouing mobile units and (2) to nmximize transaction

concurrency for transactions.

Contents

1 Introduction 1

1.1 Architecture . 2

1.2 Operation .\Iodes . 3

1.3 Probleni Domâin . 6

. 1.4 hloti\ations 8

1.1.1 Mult i-Version Timest amp Ordering hlgorit hm 10

. 1.4.2 Optirnistic Certificat ion Scheme 11

. 1.5 Contributions 13

. 1.6 Assumptions 14

. 1.7 Thesis Organization 15

2 Related Work 17

. 2.1 Introduction 17

. 2.2 Mobile File Systern 17

. 2.2.1 Disconnection Protocol in Coda 18

. 3-22 Disconnection Protocol in AFS 20

. 2.3 Mobile Transaction Management 20

2.3.1 Isolation-Only Transaction for Mobile Computing 21

2.3.2 Optimistic Two Phase Locking for Mobile Transaction 22

. 5.3 Partial Re-execution Module 61

. 5.4 Data Structure for Re-execution Algorithm 62

. 5.5 Detail Implementation 65

. 5.5.1 ConAict Solver 65

. 5 - 5 2 VerificationProcessor 67

. 5.5.3 Global Transaction Manager 67

. 5.6 GCPgs Complexity 67

. 5.7 Sumrnary 71

6 Demonstration in Mobile Computing 79

. 6.1 Re-execution Rate 79

. 6.1.1 Data Overlap 80

. 6.1.2 Intra-Dependency of Transaction 81

. 6.2 Time Compiesity 84

. 6.2.1 Size of Transaction 84

. 6.2.2 Intra-Dependency 85

. 6.3 Su~nmary 86

7 Conclusions and Future Work 89

. 7.1 Conclusions 89

. 7.1.1 User Transparency 90

. 7.1.2 Partial Re-execution 90

. 7.2 Future Work 91

. 7.2.1 Reliability 91

. 7.2.2 Failure Detection 91

. 7.2.3 Formal Sleasurement of Intra-dependency 92

. 7.2.4 The GCP for Peer-to-Peer Service 92

COIVTE~VTS

7-25 The GCP for llultiple Disconnected Mobile ünits 92

List of Figures

. 1.1 Nodel of a System to Support SIobility 3

. 1.2 States of Operation of a Mobile Unit 4

. 1.3 General Mode1 of Re-integration 7

1.4 Phases of Transâct ion Execut ion . 12

2.1 Venus States and Transaction . 19

2.2 A State Transition Diagram for IOT Execution 21

2.3 A Mobile Transaction Esample . 23

2.4 Reconciliat ion of Object-Base System 37

4.1 Ovemiew of 'VIVTC . 40

4.2 Architecture of LTCS . 46

5.1 The Main Components of GCP . 60

5.2 Re-executing Operations caused by GCP 62

5.3 RSet and %'Set based upon Figure 5.2 64

5.4 Six Cases for Partial Re-execution . 72

6.1 Running 10 Transactions . 81

6.2 Running 100 Transactions . 83

vii

...
vlu LIST OF FIGURES

6.3 Running 2000 Operations in Each Transaction 85

6.4 A Transaction wit h Zero Intra-Dependency 86

6.5 The Graph for Sumber of Operations vs Sumber of Operations . . . 87

7.1 Architecture of GCP-PP . 93

7.2 Architecture of GCP-MU . 94

List of Tables

. 6.1 GCP's Result for 10 Transactions 80

. 6.2 GCP's Result for 100 Transactions 82

. 6.3 GCP's Result for 2000 Operations 84

6.4 GCP"s Execution Time for Different Sumber of Operations 87

Chapter 1

Introduction

Rapid technological improvements in wireless communication and the increased func-

tionalities found on small portable notebook computers opens new research oppor-

tunities in distributed systerns [BAI93. Duc92. IB93. IB94 PB93]. -4 goal of mobile

computing is to provide the geatest mobility possible to the users [BAI93. Duc92.

IB93. IB9-11. Mobile units are able to move between different locations while re-

maining connected to a nireless network. ‘\labile computers frequently operate in a

disconnected or doze niodel. Thiis. mobile computing is a dynamic distributed system

in contrast to traditional distributed systems which are considered static.

Powerful light weight laptop compiiters have become cornmonplace recently [HH94.

IB93. IB941. Modern laptop computers can provide the same functionality as desktop

computers and. at the same time. provide mobility to mers. Users can communicate

with LAS. WAX. and Internet throiigh a laptop cornputer. The large disks now found

on laptop computers are able to riinofice sized applications such as word processing

and mail program without any network support (BAI93. HH931. We define office

sized applications as those t hat do not require network support to operate. However.

a mobile unit does not work as a file semer for both security and availability reasons.

'Energy saving mode.

-? - Introduction

In a sense, a mobile unit is a moving client in client-semer environment. Thus. a

mobile client functions exactly as any client. and it can move and operate in partly

or fully disconnected modes.

Sfobile computing hm created a new application area for existing distributed

systems. Several vertical applications' of mobile wireless comput ing including: taxi

dispatch. mail tracking. car alarm systems. etc. The most frequently mentioned

applications for horizontal applications are mail enabled and information services to

mobile users.

Mail enabled services dlow mobile users to send or receive electronic mails. An-

other common application of mail enabled services is electronic news senn'ces. Elec-

tronic news services can deliver current information to mobile iisers based on indi-

vidual profiles or preferences. For example: a stock broker may want to know the

current status in the stock market whiie traveling to meet a custorner. The broker

c m connect via a ~iotebook cornputer and a cellular phone to retrieve the appropriate

informat ion.

1.1 Architecture

Two mobility models eldst in the current research papers. The first model consists

of a fully dynamic environment where everything is mobile in the system [Chr93].

Thus clients and file servers are expected to change locations from time to time.

The second model consists of trio distinct sets of entities: fked hosts and mobile

units. Some h e d hosts (called mobile support stations (MSSs)) are augmented with

wireless interfaces to enable communication with mobile hosts and are located within

a coverage unit cailed a cell. A mobile unit can then move within a ce11 or between

'Horizontal applications are domain independent. a s opposed to the vertical applications which

are written for a specific application domain [BAI931

htrod uction 3

two cells while retaining its network connection. Fked hosts are statically connected

by nires and maintain a high-speed connection al1 the time. The second model is

more realistic so most research has focused on that paradiop. Figure 1.1 shows the

second model [EJB95. IB94. JBE95. KS92. PB93. PB94aI.

Wmfus Ccll W i r r l ~ Ccll
. - - . .

. - -.

mSfH .-MH MHI
MH WH

.ML' - Mobile Cnit

VSS - Mobile Suppon Suuon

Figure 1.1: Slodel of a System to Support Slobility

1.2 Operation Modes

For tradit ional distribut ed systems. a host operates eit her in connected or discon-

nected mode. Disconnection may be caused by either network failure or server fail-

ure. !dobile environment has additional operating modes not typically found on fixed

4 Introduction

networks. Pitoura and B haragava [PB93. PBS-Ia] summarized the different modes.

(see Figure 1.2).

Figure 1.2: States of Operation of a Mobile Unit

In Figure 1.2. there are four states representing the different modes in which

a mobile unit can operate. The mobile unit switches its operation mode between

them depending on need. The transactions in Figure 1.2 represent the conditions

and protocols of snitching modes. For example: if a mobile unit is disconnected

from a fixed network. it will switch from fully connected mode to disconnected mode

by executing a disconnectzon protocol. M e r a while. when the disconnected mobile

unit wants to Save battery life. it switches from disconnected mode to doze mode.

Subsequent iy. when the disconnected mobile unit wants to reconnect to the fixed

servers, it is reactivated back from doze mode to disconnected mode, then it executes

Introduction 5

a re-integration protocol and switches from disconnected mode to connected mode-

When switching modes. the mobile unit is required to execute some protocols.

These protocols are used to maintain the smooth transition from one mode to another.

For example: when a mobile unit wants to disconnect from the fixed network. the

disconnection protocol will operate and dondoad al1 the necessary files and data to

the mobile cache. While disconnect ing. the disconnection pro toc01 keeps running and

monitors the transactions running on the disconnected mobile unit. The condit ions

and responsibilities of the protocols are as follows:

A hand-oflprotocol is used when the mobile unit wants to cross the boundaries

of a cell.

A partly-disconnection protocol is executed nhen very limited network services

are available. A mobile unit should restrict communication as much as possible

to the fked network.

A disconnection protocol is executed before physically detaching the mobile unit

from the fked servers. The disconnected mobile unit can t hen continue to work

using the data in its cache. When the unit reconnects to the L ~ e d servers.

the updates made while it is disconnected is then passed to an agent that re-

integrates the updates to the fked servers.

A re-integration protocol is execut ed when a disconnected mobile unit wants

to reconnect to the fixed sen-ers. It heips the system to verify and merge the

transactions run on the disconnected mobile unit to the fked seniers. If conflicts

are ident ified. the re-integration protocol will at tempt to resolve the conflicts.

Although cornputational power improves rapidly. energy technology improves more

slowly. Battery consuniption is still a major problern for mobile units [IB93, IB94].

6 ln trod uction

Doze mode operation reduces energy waste on notebook cornputers because it avoids

transmissions until absolut ely necessary.

A mobile unit cannot maintain full network connectivity as it must function in

Partly Connected or Disconnected modes. Partly-Disconnection and Disconnection

protocols are developed to handle t hese situations. The key idea of t hese two prot oc01

is allowing the mobile unit to continue working while isolated.

1.3 Problem Domain

Several issues differentiate mobile syst ems from tradit ional dist ribut ed syst

include:

ems. The

1. Mobility during the course of a transaction [Chr93. EJB95. GBH96. HH95.

IB93. IB94. JBE95. P893. PB94a. PB9lb. PB95].

2. Communication speeds are slower ni th mobile units [BAI93. IB93. IBS-I].

3. Transactions are typically long-lived [Chr93. PB931.

4 Maintaining consistency of data over al1 distributed sites is estrernely difficult

in a mobile computing environment [HH95. LS9-I. PBS-la. PB94bI.

These paradigms introduce new technical issues in the area of distributed database

systems [BAI93. Duc92. HH91. HH95. IB93. IB9.1. PB931. For example: when a

site cannot be reached. traditional distributed database management systems assume

that the site is failed. In contrat , the disconnection protocol [Hei92. HH93. HH94.

HH95. KS921 is a basic function of mobile computing. so mobile database management

systems do not make the same failure assumption. For example: Unit A copies al1

the necessary files to its cache, and then disconnects from the main office to travel to

a branch office. During the journey. a file on the laptop computer is updated. At the

Introduction 7

sarne time. Unit B updates the same file on the h e d sen-er. When Unit A reconnects

to the kued network. a conflict occurs. This scenario does not happen in traditional

distributed systems because the disconnected unit would be considered failed.

Current ly. almost al1 researches concentrate on hIobiZzty and Scale. Location Man-

agement. Bandwidth and Energy Management. Disconnection Protocol. Mobile File

Systems [TD9 1. ZD93] and Mobile Transaction Management [Chr93. EJB95. JBE95.

LS94. PB951. However. very little work has been done on concurrent data access

and its impact when disconnect ion protocol is permitted. The disconnect ion protocol

must be invest igated to revise the distributed transaction management algorit hms.

Figure 1.3 prokldes an overview of t his t hesis's goal.

1 T '
Consistent i

Daubase 1 i
1 i

L 1 1

Figure 1.3: General Slodel of Re-integrat ion

In Figure 1.3. there are four components: (1) a set of transactions running on a

k e d server. (2) a set of transactions running on a disconnected mobile unit. (3) a

re-integration agent. and (4) a set of transactions running on a consistent database.

IVhen a mobile unit is disconnected from a L ~ e d server. it continues its work based

8 Introduction

upon the data in its cache, so we have a set of transactions running on the disconnected

mobile unit. Concurrent 1- the Lxed server executes its normal daily transactions

which creates anot her set of transactions. When the disconnected mobile unit wants

to reconnect. n-e need a re-integration agent to verify and merge those transactions

running on the mobile unit to the Lsed server. After the re-integration. the system

should return a consistent database. The re-integration agent is the heart of the

whole process. It should be able to identi- and resolve any potential conflict and

guarantee serializat ion after merging the transactions on the mobile unit to the £ked

server.

1.4 Motivations

Slany modern proposed solutions to the conflict problem involve some user input [Hei92.

HH93. HH94. KS92. LS9-41. For example: suppose that a travel company downloads

al1 the information such as airlines' schedules and hoteis' resewation once a day.

A11 the travel agents in the company share the data locally instead of connecting

to different networkç. In this particular case. al1 of the travel agents are working

with "disconnected data*'. Suppose that an agent helped a customer to schedule a

vacation in !diami. The agent asked the customer his favourite airlines. hotel and

local tours he wants to join in Sliami. The customer might choose to take United

Airlines to Sliami. stay in Holiday Inn and join a local tour to Disney World. For this

transaction. there are three operations: opl: book an air-ticket. op2: reserve a hotel

room. and op3: reserve a space in the tour to Disney World. Unfortunately, when

the system reconnected back to the server, d l seats from United Airlines have been

already booked so the transaction must be aborted. This thesis argues that the agent

could submit one more alternative transaction. If the master transaction contains

confiicts, the alternative transaction will substitute it. In this example. the rnaster

Introduction 9

transaction is to book a ticket from United Airlines: the alternative transaction could

be to book a ticket from American -4irlines. This thesis shows that the transaction

manager can automat ically replace the codicting transaction using the alternat ive

transaction and commit it .

Furt hermore. during the time of disconnect ion. the database showed 100 empty

rooms left in Holiday Inn. However. the Holiday Inn's database shows that only

90 rooms are left when connected. In the agent's point of view. 90 or 100 empty

rooms make no difference as long as he can reserve a room for his customer. In

the transaction management's point of view. op2 violates the serializability because

it read stale data. Traditional approaches mil1 abort and roll back this transaction

even though only ap2 generates conflict. But. this thesis argues that using static

analpis [GB95]. we can avoid re-esecuting the rvhole transaction.

Let us consider another case: A medical company o n two hospitals. In order

to reduce operational espenses. only one accountant is employed so he is responsible

for both hospitals. The accountant spends only one day in each hospital monthly.

and the rest of the month in the headquarter. Each time he travels to one of the

hospitals. he downloads the financial information from the hospital's database in his

notebook and audit it in the headquarter. In this case. the accountant is working with

a "disconnected data". In the end of each month. the accountant travels back to the

hospitals. reconnects his notebook and submits the transactions he did in the head-

quarter back to the hospital's database. Since the information such as employees'

salaries and maintenance fee does not change frequently. we c m expect that most of

the transactions can be commit ted successfully. But. suppose that the management of

the medical company agreed to increase one of the doctor's s a l q in hospital A. this

change does not reflect on the accountant's notebook immediately. If the accountant

submits a transaction which pays salaries to al1 200 ernployees in hoûpital A, this

10 Introduction

transaction must be aborted and rolled back even though only one s a l q is changeci.

This scenario is inefficient and undesirable.

This thesis argues t hat previous approaches need to re-execute the whole conflict-

ing transaction which is not always n e c e s s q [PB95]. A Multz-uersion Tirnestamp

Certification for Disconnecfion Protocol in Mobile Computing is presented to address

the new transaction paradigms found in mobile comput ing environment. The primary

objectives of the algorit hm are:

1. solving data consistency problem between the distributed static servers and

moving mobile units. and

2. maximizing transaction concurrency for transactions.

Before explicit ly discussing Our approach. the ,\fulti- Version Tirnestamp Ordering

Algorithm and Optimistic Certification Scheme are required. Our model is based

upon t hese two algori t hms.

1 A.1 Multi-Version Timestarnp Ordering Algorithm

Times tamp Ordenng algorit hm (TO) [BG80. OV901 ensures serializability using a

non-atomically increasing logical timestamp. A basic TO algorithm never causes

transactions to wait. but may require them to start. To restart transactions is un-

desirable. so rnulti-verszon timestamp ordering algorithm (SIVTO) [P a p a . Tho781

attempts to eliminate the restart overhead. AIVTO does not modify the database us-

ing a m i t e operation. Instead. it creates a new version of that data item marked by

the timestamp. If a read operation (read(z)) is issued, the system Nil1 fetch a version

of x where ts(z,) is the largest timestamp less than ts(read(x)) to the operation. For

exampie: Ti wants to read x. However, T, = { w j (z) } has been committed where

ts(T,) < ts(T,). In basic TO, Ti must be aborted and restarted. But, in hIVTO, TT;

Introduction 11

can still commit because T, c m read the latest version of x where ts(r,) < ts(S,).

The SIVTO trades space for time because it requires e-xtra storage to keep the old

version of data.

1.4.2 Optimistic Certification Scheme

Kung and Robinson [KR811 designecl an optimistic concurrency control algorithm for

a centralized database of low concurrency Sinha. Sanadilm and Slehndiratta [SSS185]

moved one step further and introduced a timestamp based certification algorithm for

distributed database systems. An optimistic concurrency control algorithm assumes

that concurrent transactions are infreqiient. so it will not check for any conflicting

operat ion until the End- Transaction is issued. The algorit hm commits the trans-

action if no conflict occurs. or aborts and restarts it othemise. Thus. a consistent

database is alaays maint ained. This algorit hm is more efficient for most ly-read-only

database such as query-dornain database because there is no locking involved. thereby

eliminat ing the associated delays.

Pushing the validate phase after compute phase reduces the overhead time be-

cause the transaction manager allons transactions to compute first nithout checking

any cod ic t among thern. This scheme reduces the time spending on predicting p*

tent ial confticts during the esecut ion of transactions. A transaction is validsted by

the transaction manager nhen a commit signal is received. If no conflict occiirs.

the transaction is committed: othemise. it is aborted. In a lightly-shared system.

confiicts are rare. Using optimistic certification scheme can Save the overhead time

of predicting conflicts. However. if a system shares its files heavily, the optimistic

approach is not appropriate because many transactions must be aborted and redone.

Figure 1.4 shows the sequence of phases of pessimistic and optimistic transaction

esecut ions.

Introduction

i

Vaiidrue R e d Compute Write

a. Pessiniist ic Concurrency Protocol

R e d Cornpute Validate Write

b. Opt irnist ic Concurrency Protocol

Figure 1 A: Phases of Transaction Execut ion

.LIVTO is suitable for a mobile computing environment because it does not abort

read operations which are mostly used in mobile computing environment. A stand-

alone disconnected mobile unit is operated in isolation: hence simultaneous sharing

of data should happen raxely which suggests the certification scheme be used.

This t hesis develops a new transaction mode1 similar to [GBH96]. The new

mode1 is able to record the modifications in a transaction at execution time in the

disconnected mobile unit and provide information to analyze and resolve conflicts

using stat ic analysis [GB95] upon reconnect ion.

A locally committed mobile transaction ail1 result in a conflict if stale data is

read during the time of disconnection. Traditional approaches can only base on the

dynamic readlwrite operations or transaction submission order alone to roll back the

transaction. Such approaches are based 011 exact but extremely limited inforrnat ion.

Applying the static analysis can derive more extensive but inexact information to

resolve the conflict at compile time and guide the transaction manager to commit the

transaction at run-time [GB95]. Thus, concurrency cont rol overhead is reduced by

shifting some of the effort to compile time.

Unlike run-t ime scheduling method to detect the confiict at run time and roll back

lntrod uction 13

conflicting transactions. a static andysis retrieves and analyzes the static information

of a transaction to predict and resolve conflicts prior to the execution of commit a t

run time. In ot her words. a mechanism is developed to analyze the static information

of a transaction to predict where conflicts a i s e and attempt to resolve them prior

to committing the transaction. The consequences of using static analysk c m remove

any overhead associated with scheduling and guarantee a successful commit at run

t ime.

During the esecution time. we allow the fked servers and disconnected mobile

units to run t heir transactions concurrent ly. Upon reconnect ion. we apply Partial

Re-ezecutzon [HBG97] using static analysis to analyze and reconcile the conflicting

transactions at compile t ime before commit ting the transactions at run t ime.

1.5 Contributions

This thesis at tempts to achieve the following:

1. Invest igate the propert ies of a mobile computing environment. Furt hermore.

identi- the problems and difficulties t o allow concurrent. data access in both

the fked servers and disconnected mobile units.

2. Review the existing research literature and determine their limitations in solving

data inconsistency caused by the disconnection protocol in a mobile computing

environment.

3. Revise the t radit iond distributed transaction model and introduce an improved

mobile transaction model suit able for the disconnected mobile unit.

4. Combine Sinha. Sanadikar and Slehndirtta's [SNM85] and Hadaegh. Barker

and Graham's [HBG97] work to develop a new transaction management for the

Introduction

disconnec t ion protocol.

5. Implement . demonstrate and analyze the results of the new transaction model.

From the results of the e.xperiment. we discuss its performance and limitations.

1.6 Assumptions

Based upon the obsenxtion [KSE. SE(W931. the authors conclude that laptop users

are very aware of the operations they use while traveling [HH93]. Sloreover. they

will eventually connect their laptop cornputers back to the k e d servers and report

their updates during the time of disconnection. Furthermore. to prevent the lost of

crit ical data items from the fised network. nie do riot aHow the moving disconnected

unit to hoId any p r i m q data. Al1 data in the mobile cache is replicated from the

h e d servers. To reduce the overhead time and coniplexity of re-integration. ive do not

allow any direct comrnunicat ion between disconnected mobile units. The assumpt ions

are summarized below:

Since people are able to operate for extended period in isolation. they are quite

good at predicting t heir needs for future file access.

The workload of engineering/office applications generally consists of sequentid

read-wite sharing. but little simultaneous sharing [HH93. SK41+93].

The disconnection period is short. and the disconnected mobile unit will even-

tually reconnect back to the servers [Hei92. HH93. HH94. SKM + 951.

The data in the k e d servers is the prirnary one. The data in the disconnected

mobile is replicated from the fived servers.

Mobile units do not directly communicate with each other. Any inter-mobile

data exchange occurs through connection to the fixed network.

Introduction

1.7 Thesis Organization

This thesis is organized a s follows: Chapter 2 discusses the related work to imple-

ment the disconnect ion prot ocol. and designinp the mobile transaction rnodel and

management system. Chapter 3 presents a new mobile transaction model. Chapter 4

presents the general model and overview of the Multi- Version Tzmestamp Certifica-

tion for Disconnection Protocol ln i2ïobzle Computing. The detailed implementation

of the Local Transaction Certzfication Scheme ni11 also be presented in Chapter 4.

Chapter 5 discusses and presents the oven-iew and detailed implementation of the

Global Commit Protocol. The demonst rat ion of mobile comput ing is presented in

Chapter 6. Finally. conclusions and future work are given in Chapter 7.

Chapter 2

Related Work

2.1 Introduction

Sluch work has been done on the mobile computing environment [ChrSS. EJB95.

GBH96. Hei9P. HH93. HH94. JBE95. KS92. LS9-4. PB95. TD91. ZD93]. We can

divide them into two categories: (1) Mobile File Systems and (2) Mobile Transaction

Llanagers. First. we discuss the effects of adding mobility to the distributed file

systems and some related work that solves their problems. Then. we discuss the

mobile transaction managers and provide some new methods to revise the traditional

distribirted transaction managers to meet the needs of a mobile transaction manager.

2.2 Mobile File System

Several issues have been addressed when adding mobility t O dist ributed syst ems [Hei92.

HH93. HH95. KS92. TD91. ZD931. This thesis concentrates on the effect of allow-

ing the disconnection protocol. The disconnect ion protocol in mobile comput ing is

different from failure. The mobile units can inform the h e d network of an impend-

ing disconnection prior to its occurrence and execute a disconnection protocol. A

18 Rela t ed &rk

disconnected mobile unit can continue working using data in its cache. When the

unit reconnects. it passes the updates made while disconnected to an agent that

re-integrates t hose updates to the servers.

Generally. a mobile unit copies files from a network. works on the files when it k

disconnected. and then restores the updated information to the network. The sys-

tem should prevent the user hom accidentdly overn~iting another user's work in an

automatic way [HH93]. M t hough the strength of the disconnection protocol is it per-

mits mobile units to continue working when the network is inaccessible. inconsistency

of the shared data in the disconnected mobile units and servers rnust be carefully

avoided.

2.2.1 Disconnection Protocol in Coda

Kistler and Satyanarayanan [KS92] implement the disconnection protocol in the Coda

file system' . They implement the disconnect ion protocol as a user-level process called

Venus. Venus uses opt iniist ic replicat ion. The assumpt ion is t hat simult aneous mite-

sharing happens rarely in the USIX SFS so an optimistic approach will yield better

performance in a lightly-shared system. Venus operates in one of the three states:

hoardzng. emulation. and re-integration Figure 2.1 illustrates transaction states found

in a Venus process.

Venus is in a hoarding state while the mobile unit is connected. It replicates

server's data. executes transactions in the mobile unit. and reports updates to the

semer. Venus moves from a hoarding state to an emulation state while it is discon-

nected. Venus emulat es server's operations when the network connect ion is inacces-

sible. During the emulation state. the cache manager logs al1 the accessed objects

and reports to the user if a cache miss occurs. During reconnection. Venus enters the

'Coda file system is a distributed systern developed on INX.

Rela ted Ubrk

Figure '2.1: Venus States and Transaction

re-integration state. resynchronizes its cache wit h the server. and returns to hoarding

state. In the re-integration state. t hey propose a replag algorithm to re-integrate the

data in the local cache and the data in server together.

The replay algorit hm consists of four phases. In phase 1. the log in the discon-

nected mobile unit is esamined. a transaction is begun. and al1 objects referenced in

the log are Iocked. In phase 2. each operation in the log is vahdated and then ese-

cuted. The validation contains conflict detection and integrity protection. In phase

3. the actual data transfer process is done. In phase 4. the transaction is committed

and al1 loch are released. Venus's optirnistic algorithm means conflict is possible at

re-integration. The authors only consider write/utn'te conflicts because they claim

r e a d / m t e conflicts are irrelevant to the U N X file system because it has no notion

of atomicity beyond the boundary of a single system d l . The conflict detection is

straightfomard. Each data item has its onn storeid t hat uniquely identifies the 1 s t

update to it. During phase 2 of the replay algorithm. a server compares the storeid

of every data item in the log of the mobile unit with the storeid of its own replica of

20 Related bbrk

the data item. If the comparison indicates equality for ail data items. the operation

is perforrned and the mutated data items are tagged with a new storeid specified in

the log e n t . If a storezd comparison fails. the entire re-integration is aborted.

Venus attempts to provide the disconnection protocol for the Coda file system. It

modifies the exist ing distributed file system and cache manager to guarantee availabil-

ity and consistency of data items. Unfortunately it does not automatically solve the

problern of data inconçistency caused by conflicting transactions during the time of

re-integration. The replay algorithrn on& logs and reports to the user where codic ts

occur. Users are required to resolve coriflicts manually.

2.2.2 Disconnection Protocol in AFS

Similar to Venus. Huston and Honeyman [HH93] present the disconnected operation

in AFS2 which also modifies the existing distributed file system and cache manager

to make the disconnection protocol possible. The remote cache manager logs al1 the

accessed data items during the time of disconnection. and compares the logs to the

file server upon reconnection. The disconnected operation in AFS resolves codic ts

by copying the codicting object in the mobile unit to a new object in the file seners

and informs the user. The user t hen decides which objects he urants to discard. Once

again. the disconnected operat ion in -4FS concentrates on the effect of the distributed

file system. The transaction management issues are not addressed esplicitly.

2.3 Mobile Transaction Management

Adding rnobility to the distributed transaction managements creates new problerns

that need to be researched. There are two major issues: (1) Relocation Problem.
- -

2,4ndrew File System (-4FS) is a distributed fiie system built on UMX.

Rela ted Work 21

and (2) Frequent Disconnection. hluch work [GBHSG. JBE95. LS9-1. PB951 has been

undertaken. The work focuses on maintaining serializability and minimizing message

exchange in the network.

2.3.1 Isolation-Only Transaction for Mobile Comput ing

Lu and Satyanarayanan [LS94] develop the Isolation-Only Transactions (IOT) for

mobile computing. An IOT is a flat sequence of file access operations bracketed by

a begin-iot and an end-iot. The IOT execution mode1 uses an optimistic concurrency

control mechanism so the client's local cache is a priwte workspace for transaction

processing. There are two classes of transactions for the IOTs: (1) First class trans-

action whose esecution does not contain any partitioned file access. and (2) Second

ctass transaction whose esecution contains partit ioned file access. Part itioned file ac-

cess means that a file is shared by both the fked senrer and the disconnected mobile

unit. A first class transaction's results are visible on the servers once it commits. A

commit ting second class transaction enters the pending state so it can be wlidated

later. Figure 2.2 depicts the state transition diagram for IOT execution.

comrnined

i/i
Figure 2.2: A State Transition Diagram for IOT Execution

22 Related Ltbrk

In the diagram. t here are three cases where a transaction c m be committed. The

IOT execution guarantees that a first class transaction is always serializable because

no partitioned data item is accessed. A second class transaction is always serializable

locally but may not be serializable globally. If a second class transaction is not in

confiict during global validation. the transaction will leave the pending state and be

committed globally. If this option fails. the system ni11 suggest 4 options: (1) re-

execut ing the transaction. (2) invoking the transaction's application specific resolver .

(3) abort ing the transaction. and (1) not iking the users and wait for furt her decision.

For example: if a transaction is used for editing the files of a cc>-authored paper

on a disconnected laptop. this option is useful for coordinating possible concurrent

updates. Unlike the disconnection protocols in Coda and AFS. IOT attempts to

maintain transaction serializability. However. it cannot resolve conflicts at the system

level so the user must decide what to do.

2.3.2 Optimist ic Two Phase Locking for Mobile Transaction

Jing, Bukhres and Elmagarmid [JBESj] adapt the optirnistic two phase locking

(02PL) algorit hm to the mobile environment and cal1 it the optimistic two phase lock-

ing algorithm for mobile transaction (02PL-MT). The O2PL algorithm is developed

for distributed replicated database systerns and uses a read-one wite-al1 concurrency

control algorithm. The word optimistic is used because w ~ i t e l o c k s are obtained just

before the commit phase begins. but read-loch are obtained immediately from the

local or nearest copy site when the read operation is issued. A read operation is

very inexpensive within its local site when it is compared to the message-intensive

approach when site boundaries are crossed.

However, the aut hors show t hat mobility results in extra messaging for the 02PL

algorithm. For example, suppose that a transaction Ti = { r (x) r (~) w (z) } is executed

Related Work 33

in a moving mobile unit. So. it issues r(q) in site 1. r(y2) in site 2 and ~ 4 2 ~) in site

3. and x and y are replicated in sites 1. 2, and 3. When T, is committed in site 3.

it must send unlock(xl) to site 1 and unlock(y2) to site 2. Thus. the system sends

extra messages. Figure 2.3 depicts the example.

Figure 2 3: .A 1 lobile Transaction Example

In this traditional distributed systems. this scenario ail1 not happen because the

positions of transactions are assumed to be fked. The aut hors daim that these extra

message transmissions can be avoided in mobile comput ing.

Consider the earlier example. Instead of sending unlock(xi) to site 1 and unlock(y2)

to site 2. T, sends unlock(x3) and unlock(y3) to site 3 at commit time. The algorithm

itself is not sufficient to guarantee the correctness of read-one mite-all criteria. so
e

some additional issues have to be explored: (1) readlocks must remain at remote

sites until the coordinator decides to release the locks and commit a transaction 10-

24 Related NOrk

cally. (2) An update transaction m u t be able to determine that the item to be

updated has not been locked by other transactions for reading if the r e a d h c l ; and

unlock are esecuted at different sites. Such a check should have a low message cost.

(3) A mechanism much be providecl to remove the pending read-locks at remote sites

at proper time if the continuation of such locks ni11 affect the esecution of other

transactions.

In the traditional 02PL algorit hm. when a transaction requests a w r i t e l m k . the

systern will boardcast to al1 remote sites. If no pending read-lock is in effect. the

transaction grants the u~ritelocl i: ot liemise. it is blocked. This process requires only

one round of message eschange. However. if the r e a d h c k and unlock are executed in

different sites. we need two rounds of message exchange to ensure the read-al1 write-

one approach. In the first round. the system collects unlock information from al1 the

copy sites involved. In the second round. while al1 sites indicate that the unlock has

been esecuted. the system can send a message to allow the wri te lock request to be

grant ed.

The 02PLSIT algorithm is designed for a mostly-read-only mobile system. As

we can see. granting a ~ ~ 2 t d o c k requires two-round of message transmissions so

a heavily n~ite-shared systeni will increase the number of message transmissions.

lloreover. it addresses only the mobile relocation problem. it does not support the

disconnect ion protocois explicit 1 .

2.3.3 Mobile Transaction in Clustering Mobile System

Pitoura and Bhargava [PB94a. PBNb. PB951 describe a transaction mode1 for mobile

computing. They partition the mobile system into several clusters which are smaller

in size and the clustered data is closely related. Transactions muçt maintain strict

consistency within its cluster, but not necessarily across other clusters. The mobile

Related Work

unit and fk~ed servers can issue either weak hnsactions or str ict transactions. For

crit ical transactions. users issue strict transactions which guarantee global consistency

when the transaction commits. t \ l e n a strict transaction wants to commit globally.

the system sends a commit request message to every participating site including

mobile units and waits for their replies. This may be quite costly for mobile units

because they may not be easily located. Moreover. some mobile units may operate

in isolation so the system must either discard the transaction or wait for the mobile

units' replies.

On the ot her hand. a weak transaction on- requires strict consistency Mt hin its

local cluster so it avoids the overhead of long network accesses. The authors argue that

data clusters requiring shared access is rare across cluster boundaries. For esample:

in a university community the Department of Computer Science does not share its

data heavily with the Department of Statistic. Thus cornputer science users issue

weak transactions within its local cluster. as do the statistics users. If a user does not

require data consistency across two clusters. it ni11 never reIease strict transaction.

Dividing mobile systems into clusters is an extension of network partitioning.

However. two or more separated clusters may eventually need to rnerge their data.

This merging can iead to conflict between the two clusters. A weak transaction

issued in a cluster may contain inconsistent data that must be resolved when a strict

transaction is issued. Resolut ion of inter-cluster serializability is accomplished with

roll back transactions whose weak mites codict wit h strict transactions [PB95]. Care

must be taken to correctly rnerge cascading aborts that occur when the transaction

manager re-does a transaction.

26 Related Nbrk

2.3.4 Reconciliation in a Nested Ob ject Transaction Envi-

ronrnent

Graham. Barker and Reza-Hadaegh [GBH96] extend the disconnect ion protocol to an

object-base system. They argue that the property of encapsulation in objects helps

the re-integrat ing agent to reconcile confiicting transactions. In an object-based sys-

tem. every object is encapsulated. If an operation wants to access any information in

a particular object. it must go through the public protocols of the object. It imme-

diately tells us that the system knows exactly what data items the operation wants

to access and what behaviour the transaction espected from the object. Based upon

these definitions. a new concept of optimistic re-integration algorithm is described in

the paper. A mobile unit downloads al1 the critical objects from the object-based sys-

tem prior to disconnect ion. While the mobile unit is disconnected. the cache manager

is responsible for logging d l the object's behaviours at execution time. Since every

object is encapsulated. the transaction manager knows what and how the changes

occur. At the same time. the transaction manager in the k e d file server logs al1 the

modifications to the critical objects. During the reconnection. if there is any con-

flict ing transaction reported, the re-integrating agent andyze the behaviour of the

critical objects before executing global commit. It examines the changes logged on

both objects in the mobile unit and the server during execution time, and determines

whet her the changes should be integrated or not. An object ob can be replicated. We

use SL to represent i replication of ob. An object ob moves from state Sd to qz using

method rn, as Sd G'. According to the authors [GBH96]. s:''~' is equal t o

~d> '* ' so the execution sequence of two methods does not affect the final result. For

esample: a mobile unit replicated an object S i in its cache. While the mobile unit

is disconnected. it updated Sh to Gt using mi. At the same time. the fixed server

updated its replica of S i to ~2 using m,. Upon reconnection. the re-integrating

Related Ubrk

agent merges Ge and S? to S r .

Figures 2.4 depicts the proces of object re-integration and illustrates two cases

to re-integrate two conflicting objects to a new consistent object. The system can

integrate SA and S& to 92' in two cases.

w h m

S, i s t h c b ~ o b j c c t . S> is ihc new objerr in the disconnmcd mobile unit aftcr pcrforrning methad rn

S: is the o b j ~ t chc cd by the disconnccted mobile unit. 5:. is the ncw objoct in the fired file m e r after pcrfonning merhod m,

S, is Lhe m e object which m i d a on the server. S- is the new object rftcr the r.-integntion of S-. md S:
m "e

5: ands: arc identid.

m , and ml arc the rnethods opcntcd in S ' and S' corrcspondingIy.

Figure 2.4: Reconciliation of Ob ject-Base Syst em

Sg'" can be obtained either from SA with method sequence mi and mj or from

S$ with method sequence mj and mi. Since the re-integrating agent knonrs what,

and how the objects have changed. the replay algorithm reconciles two methods t o

28 Related Nbrk

produce a nen consistent object. The worst case is discarding one of the critical

objects and re-execut ing the c o d i c t ing transaction.

The authors present a reconciliation rnechanism suitable for a close nested object

transaction environment. However. their whole idea is based upon the property of

ob ject-orientation. For ot her database models such as relational and network models.

this method is not appropriate.

Chapter 3

Mobile Transaction Mode1

Transactions are used to ensure consistent and reliable data management in addit ion

to atomic and isolated user interaction. In t radit ional database systems. a consis-

tent and reliable transaction has to satisk the ACID properties [OVgO]. Recent

research [Chr93. HBG97. PBg-lb] has pointed out t hat advanced applications em-

ploying comples data structures such as CAD and object base systems may require

a relaxation of those properties. The invention of wireless medium and the discon-

nect ion protocol has changed the concept of transaction management in distributed

systems [EJB95. GBH96. HH95. IB93. IB94. JBE95. LS9.1. PB951. For example. in

the t radi tional transaction management. disconnection means failure. but the dis-

connection protocol in mobile computing environment is also a standard operation.

This t hesis int roduces a new mobile transaction mode1 suit able for the disconnect ion

protocol and shows that it is sufficient to maintain correct data. The correctness

criterion used in this thesis is codict-serializability.

Mo bile Transaction Model

3.1 Transaction Properties

Transactions ensure that the database remains consistent even when concurrent ac-

cesses and failures occur. In t radit ional dat abase systenis. the consistency and relia-

bility aspects of transactions are due to four properties (XCID):

a .-Itomicity states that al1 or none of the operations are executed.

0 Consistency states that a transaction niust take the database from one consis-

tent state to another.

Isolation means that no partial result is seen. It guarantees a consistent tien:

of the database at al1 times.

Durabditg means that once a transaction cominits. its results are permanent.

In mobile comput ing environment. protect ing the ACID properties requires new

research. For esample: mobile units frequently work in disconnected mode. If we al-

low concurrent data access in botli the fixed server and the disconnected mobile unit.

a new meclianism is required to guarantee data consistency. Furtherrnore. wireless

communication is not as stable and, as reliable when compared to eiired communi-

cation. We should expect more frequent errors in a mobile transaction so a differ-

ent recovery method is required to guarantee durability. In our model. we develop

a new iCiulti- Version Tirnestamp C e r t i b t i o n for Disconnection Protocol in Ilfobile

Computing (I IVTC) to ensure consistency optimistically. MVTC consists of two

phases: (1) Local Timestamp Certification Scheme (LTCS) runs on the disconnected

mobile unit and guarantees only serialization among local transactions, and (2) the

Global Commit Protocol (GCP) ensures global seriaiization upon reconnection. We

use codlict-serializability for correctness. The generd idea of the CCP is shown in

Figure 3.1.

Mo bile Transaction Xlodel

Fixed Server Mobile Unit

Figure 3.1: Mode1 of MVTC

f \ r

In Figure 3.1. t here are two sets of locally serializable transactions: one set is run-

ning on the disconnected mobile unit and the other set is running on the fked server.

Upon reconnect ion. the GCP ni11 examine every transaction in the disconnected mo-

bile unit and identify any potential conflict. If there is no conflict. the transaction wïll

be committed and merged to the fked server. Othemise. the system will attempt to

resolve the conflicts. In Our model. n-e provide three methods to resolve conflicts. (1)

execute and commit the alternative transaction. (2) partially re-execute [HBG97] the

cod ic t ing transaction. and (3) abort the transaction. After resolving conflicts. the

system commits the resolved transaction globally. The detail of these resolutions is

presented in Section 3.5.

T,, Tc,............. Tm

Local Serializible T m

T T ...,...............
l PZ

Local Serializible Trans
L \ /

f

Globd Commit
Pm toc01

Y

No conflict Alternative Method
or ' Panid Re-exccution 1

Global Seridizible Tnns i
J

32 ~ I l o bile Transaction Model

3.2 Mobile Transaction

A mobile transaction cont ains sever al sub-transact ions execut ed on mobile and fked

units. Given the high cost and Iow bandnidth of mobile communication. mers are

often willing to temporarily work Nith 'stale' data if correctness is guaranteed [HH93.

HH9-1. IB93. IB94 LS9-l. PB95]. Consider a disconnected mobile unit requesting a

hotel reservation. The mobile unit may show 100 rooms are available even though 95

rooms are left based upon data on the Lued servers. Clearly. it makes no difference

to the mobile user since only one room is required. In our model. we allow the

room reservation to be comrnitted locally and confirm it with the GCP to veri-

this committed mobile transaction later. Although d l 100 rooms may be unavailable

when the mobile unit reconnects. this scenario is unlikely t o happen for a short

disconnect ion typical in mobile computing. S trictly speaking the transaction has

violated serializability because the transaction has read stale data locally.

The GCP examines every locally committed transaction. If there is any conflict.

the GCP d l either submit an alternative transaction or re-execute the transaction

partially. If the GCP fails to resolve confiicts, it will abort the transaction. Without

loss of generality. Ive assume that at any given time. a mobile unit c m directly

communicate with only one mobile support station which is responsible for the logical

or geographical area in which the mobile unit moves.

3.2.1 Transaction Structure

Traditionally. a transaction is composed of a sequence of readlwrite operations on

database items bracketed by Begin-Tkansaction and End statements. A Be-

gin-Transaction statement results in a cd1 of the transaction manager at the user's

site which processes al1 user's requests following it. This is a fiut model for transaction

with only one Begin-Transaction and End statement.

Mobile Transaction Model 33

Suppose that a stock broker (user A) helps a new client (user B) t o invest. First.

user A checks the curent price. then the credit history of user B. and only if both

results are satisfactory will user A help user B place the order. This transaction

involves accessing several different databases and requires dependencies between sub-

transactions. The transaction manager first divides the transaction into a number

of sub-transactions. They run concurrently perhaps on different dat abase systems

and report the results back to the transaction manager. This mode1 is a nested

transaction model. To make the case more complicated. user A may disconnect

from the network temporarily and transfer to a nen- physical location. During the

period of disconnection. user A may access and modi- some of its cached data items.

This t hesis concentrates on resolving the serialization of transactions affected by the

disconnect ion prot ocol.

We could lock al1 the data items while a mobile unit disconnects from the rest of

the network to maintain serialization. However. it is v e l inefficient and unnecessarily

restrictive. Our mode1 allows the disconnected mobile units to operate and commit

locally using cached local data items. and commit globally upon reconnection. No

locking is involved during the transaction execution in this model. However. when the

disconnected mobile unit reconnects to the network. some mechanisms are required to

detect and resolve potential conflicts between fked and mobile units. When conflict

occurs. the system can prompt the user to determine if a conflicting transaction

needs t o be discarded. By providing a reconciliation methology. human interaction is

minimized [HH93. HH94. KS921.

3.3 Definition of Conflict

We define an operation r of transaction i as op,., . We define a boolean function called

c m f lict which accepts two operations and returns true if at l e s t one of them is a

34 Mo bile Transaction ~ifodel

wrzte operation. We define that op,., proceeds before op;., as q i . r -r op,,. We Say

that a transaction T, must be serialized before Tl if

3.4 Data Consistency

Mobile units are only connected to the fked network intermittently. so mobile trans-

action management must reflect increased concern for bandwidth consurnption and

disconnect ion const raints. Disconnect ion sonstraints are caused if the systern allows

concurrent access of data between the fked semer and the disconnected mobile unit.

because conflicts are possible.

Since pessimist ic approaches induce unacceptably high costs. t his t hesis attempts

to attain consistency after the mobile unit reconnects to the network. When a 1+

cal transaction issues Begin-Trançact ion in the disconnected mobile unit. the local

transaction manager (LT'il) is called. The LTM logs al1 information such as tirnes-

tamp and Pags data items accessed by the transaction. Upon reconnection. the GCP

merges the transactions in the disconnected mobile unit to the fixed server and forms

a consistent database.

In our model. transactions are allowed to run concurrent ly in both the discon-

nected mobile unit and the fked servers which results in a substantially higher con-

currency than the locking method [KRU. OV90. SSS1851. Transactions are classified

into two categories: a local transaction is one whose execution guarantees local serial-

izability; a global tramaction is one whose execution guarantees global serializability.

The global transaction is very different from the local transaction. It can only be

verified for global conflicts when the disconnected mobile unit reconnects to the fixed

server. In order to parantee the serializability of the global transactions, we must

M o bile Transaction J fodel

specify how the systern n11l respond if those transactions generate contiicts. This

t hesis proposes t hree options t O resolve confiicts.

Alternative Thmiaction

A disconnected mobile unit issues an alternative transaction on the top of the

master transaction while it is disconnected. \\%en conflict occurs and the sys-

tem fails to commit the master transaction. the alternative transaction is sub-

mitted to the GCP. For esample: a mobile user downloaded the airline ticket

information before disconnecting from the network. While it is disconnected.

it w-ants to reseme an airline ticket to Toronto from Air Canada. The local

database indicates that there were only two seats left on -4ir Canada. Those

tn-O seats may be gone when the user reconnects to the k e d network so the

systern will ask the mobile user to hold an alternative ticket from Canadian

Airlines. If al1 of the seats from Air Canada have gone during the period of

disconnection. the alternative transaction n-ill replace the master transaction.

Partial Re-execution

In a traditional opt imist ic concurrency control. the system aborts al1 conflict ing

transactions and re-esecutes them. However. we can apply compiler technology

to analyze the commit t ed mobile transactions before execut ing global commit.

If a conflict is detected. the GCP niIl re-esecute only the conflicting opera-

tions in the conflicting transactions. In the n-orst case. we re-esecute al1 the

operat ions of the conflict ing transaction. We argue that re-executing the whole

conflict ing transaction in a lightl-shared systern is often unnecessary and is

the worst case scenario. For example: suppose that a sdesman sold 100 item A

and 100 item B to a customer in a remote area using the disconnected laptop

computer. The salesman's laptop showed that he had enough items in stock to

commit this invoice. We can treat this invoice as a transaction which consists

36 Mobile Transaction Model

of two operations (opl: sold 100 item -4: op2 sold 100 item B). When the sales-

man reconnects back to the network. the database shows that other salesmen

soid some item A to another customer during the time at which the salesman

was disconnected so there are not enough item A left . Thus. op1 generates con-

Bict . In t radit ional transaction model. even t hough oniy op1 generates conflict .
bot h op1 and op2 in the conflicting transaction Nil1 be re-esecuted. However.

op2 does not generate any c o d i c t and needs not be re-executed. m e n only

two operations are involved. the re-execution costs are not onerous. but Iet us

consider an extreme case. If the salesman sold 1000 items and only op1 gen-

erates conflicts. the system must re-execute 1000 operations in the transaction

because of one codicting operation. This scenario is inefficient. Using partial

re-execution. only op1 needs to be re-executed JO ot her operations consistent ly

affect the database.

Aborting the transaction

In some cases. the GCP must abort the locally committed transactions. and

inform the user of the abortion because of the application's constraints. For

example: suppose that a mobile user wants an airline ticket to Toronto on a

specific d a . Before traveling. the user downloaded the airline ticket information

to the laptop cornputer. Whiie he is traveling, he makes a booking and the

LTSI commit ted the transaction locally because the system had shown that

there were seats available. However. upon reconnecting to the fixed semer, the

system shows that al1 seats have been taken and no more seats are available in

a.ny airline Company for that day. Even though the mobile user may submit two

or more alternative transactions. the GCP must abort the transaction.

For the first two options. the system resolves the cod ic t s automatically. Users

are not required to respond when the c o d i c t is detected. Thus. the new model

1\10 bile Transaction Model 37

supports user transparent- in that the user needs not know specifics about database

management to resolve conflicts. Moreover. it is not required to re-execute every

codicting operations in a transaction. Applying t his new transaction mode1 gives us

a higher concurrency without violating serializability.

For the t hird opinion. performance depends on the application's constraints. .A

transaction must be aborted if it attempts to operate illegally. (For example: a

user wants to use a credit card over lirnit.) These constraints are pre-defined in the

application so it does not require special care in Our transaction model.

M o bile Transaction ModeI

Chapter 4

Mult i-Version Timestamp

Certificat ion for Disconnect ion

Protocol in Mobile Computing

Multi- Version Timestamp Certifiation for Disconnection Protocol in Mobile Com-

puting (IIVTC) is specifically designed for the disconnection protocol. The goal is

to provide the highest concurrency and mobility to both disconnected mobile units

and fked sen-ers while maintaining data consistency UVTC consists of two phases.

The 1st phase runs independently in the disconnected mobile unit. and the 2nd phase

runs when the disconnected mobile unit reconnects to the fked servers. 1st phase is

called Local Timestamp Certificate Scheme (LTCS) . LTCS is based upon [SNM85].

which is a distributed certification algorithm. LTCS is responsible for local serial-

izable transactions and guarantees t heir consist ency propert ies. 2nd phase is called

Global Commit Protocol (GCP) . GCP is responsible for identifying conflicts between

the disconnected mobile unit and the fked servers. and merging the transactions

running on them toget her. Figure 4.1 provides an ovenriew of hIVTC.

MVTC

MVTC

Figure 4.1: Overview of NVTC

4.1 Design Overview

MVTC is designed for an environment consistirig of a large collection of fixed file

servers and connected clients. and a much smaller number of disconnected moving

mobile units. The design is optimized for transaction concurrency typical of lightly-

shared mobile systems. It is specificdly not intended for applications that exhibit

highly concurrent. fine granularity. and heavily-shared system.

Each mobile unit has a local disk and is able to communicate with the fixed

network over a higti bandwidth network such as lOh1 Ethernet while it is wire con-

nected, or over a low bandwidth network such as X R ' s wavelan. ?vlotorola's AL-

TAIR. Proxim's Range LAS and Telesystem's ARLAN (IB9.11 while it is moving.

Nobile units may ternporarily disconnect from the network and operate automat-

ically +th local data in cache. Mobile units view the fked netn-ork as a single.

location-transparent shared file system. The Lued network supports global naming

and file replication. The mobile units need to know nothing about the distributed

operat ing system underneat h. Generally speaking. the mobile unit should t reat the

whole network as one Iogical file ser-ver.

4.1.1 Fixed Network

The fixed network consists of a number of file servers connected with a high bandwidth

network. These file servers run 24 hours a day and reachable at any time through

the network. An unreachable file server implies failure. and no d i d transaction wilt

be run on that failed machine. Cornpared to the mobile client. the file semer is more

powerful in term of computational pou-er and storage capacit . It is relat ively more

durable and secure than mobile units since laptops are more fragile and vulnerable.

There are several distributed operating systems in both academic and commercial

markets. Coda. Ficus and AFS [Hei92. HH93. KS921 are some esamples. The ultimate

goal for a distributed operat ing system is ensuring location transparency so clients

view the n-hole distributed system as one large file server regardless of ahere they

connect to the network. To achieve this goal. it involves persistent global naming.

concurrency control among sites. server failure and recovery. file replication. smart

caching, security. etc.

4.1.2 Mobile Client

Compared to a file server. the mobile client is less powerful in term of storage capacity

and cornputational power. A mobile unit is equipped with a fixed disk and a com-

Af VTC

munication device. It can work in both connected and disconnected modes. Without

network support. it is able to run transactions using the data in its cache. Users

find no apparent difference in working in the disconnected mobile unit if they have

previously down-loaded d l the data i t e m they need while traveling. Users require no

special knowledge about how the database management system handles re-integration

or how the database management systeni resolres and reconciles codicting transac-

tions.

4.2 LTCS Design Overview

The cache manager of the disconnected mobile unit arts as a pseudo-server and the

cache acts as a local database. A local database executes a transaction as a process.

For each process. there is a corresponding Local Transaction .&fanager (LTLI). The

LTM is divided into two phases. 1st phase called the certzfication phase. the LTlI asks

its Certification Module (CM) to certify each of its transactions. Several transactions

are permitted to run concurrently without blocking before the commit phase. When

a transaction wants to commit. its LTIrI will go into the critical section to test the

serializability Mth respect to the other transactions running at the database. The

LTM issues certificatzon request to its CM and ivaits for a reply. After the CM certifies

the transaction and responds. the LT'rl enters 2nd phase called the Update il.lodule

(UM) and installs the tentative updates of the data items permanently in its local

database.

Since the LTCS guarantees only the serializability of local transactions, we rnust

keep in mind that a set of locally certified transactions will merge to the fked servers

upon reconnection. Thus. even if a transaction gets local certification. it does not

guarantee that the same transaction can commit globally. Two sets of locally certi-

fied but globally conflicting transactions may get interleaved. To resolw the global

MVTC

serializability problem. the system-nlde unique t imestamp Rrill be used.

4.3 LTCS Design Detail and Implementation

4.3.1 Setting a Global Clock

Since we must maintain the global serializability of transactions after reconnection.

we need s ystem-wide unique t imest amps for comparing and merging transactions.

Before disconnection. the mobile unit and the fkved semer m u t synchronize their

clocks using the "happened before" relation [Lam781 so there is no ambiguity about

the time.

In distributecl systems. the physical clock is not reliable because each site has its

own clock which is difficult to synchronize globally. Lamport introduces a logicai

clock to synchronize time in distributed systems. The logical clock uses a "happened

before' relation to distinguish the time. Né define a process as a sequence of events.

An event can be a subprogram or an execution of a system call.

The '-happened before" relation denoted by .*-" must satisfy the folloning t hree

condit ions:

1. If x and y are events in the same process. and x cornes before y. then x -, y.

2. If x is the sending of a message by one process and y is the receipt of the same

message by another process. t hen x + y.

3. I f s + yand y + z. t henx -r z .

Two distinct events x and y are said to be concurrent if x 4 y and y -H z.

A synchronized clock. C. is a way of assigning an order number to a n event. The

order number is used to indicate the sequence of rvhich the event occurred- Lamport

defines that C, is a function to assign an order nurnber to an event of process 2 .

The order number indicates the process sequence of an event . Ci [XI ret urns an order

number corresponding to an event s in process P,. For example: events r and y

belong to process Pt. If x proceeds y. t hen Ci (x] < C, [y]. The entire system of clocks

is represented by the function C. There is no direct relation of the order number to

physical time. The idea of synchronized clocks in distributed systems is based upon

the order in which everits occur.

Larnport formally defines the Clock Condition as follows:

For each event x and y. we say that event r proceeds event y if

There are two Clock Conditions in distributed systems:

Cl: For event r and y in process P,. if x cornes before y. then C [x] < C'[y].

C2: If event x is the sending of a message by process Pz and event y is the receipt of

that message by process Pj. t hen C, [r] < C, [y].

To establish Cl. each process P, increments Ci between any two successive events.

To establish C2. a timestamp Tm is used on each message m. Tm equals the time

at which the message was sent. Upon receiving a message timestarnp Tm, a process

must advance its dock to be later than Tm. For example: if event x is the sending

of a message rn by process Pi. t hen the message rn contains a timestamp Tm = C*[x].

Upon receiving a message rn? process P, sets Cj greater than or equal to its present

value and geater than Tm.

Unfortunately, ties are still possible for two concurrent events from two different

processes. To break ties, the relation "4 is used. Before defining "S , a relation

"4'' is defined. For any two processes Pi and Pj, P, + Pj means f i has a higher

45 31 VTC

process priority than P,. The definition of relation "=+" is as follows: If x is an event

in process Pi and y is an event in process Pj. then x + y if and only if either

(i): Ci [XI < Cj [Y] or.

With the help of relation "+". we can extend the "happened before-' relation to

total ordering relation and synchronize the global timestamp in distributed systems.

Therefore. both the disconnected mobile unit and fked servers issue a getAimestamp()

operation to obtain the systernside unique timestamp. Note that transaction Ti is

older than transaction Tj if ts(Ti) < ts(Tj).

Global synchronization is an open problem and other researches appear in the

research literature. For examples: Beguelin and Seligman [BSS3] discuss the com-

bination of the logical and physical clocks to achieve the global synchronization.

Schneider [SchSG] discusses the fault-tolerant property of synchronizing global clock.

and Srikanth and Toueg [STW] present the optimal clock synchronization. Global

synchronizat ion is non-trivial to solve and how to solve it is b e o n d the scope of t his

t hesis .

4.3.2 Data Mode1

A data item is < name. t~ersionid. attrib > where nttrib is < val. t s (r) . ts(u.) >.

Suppose we have a data item x. r d is the curent value of x: ts(x,) is the timestamp

of the last transaction who reads x : t s (x ,) is the timestamp of the last transaction who

modifies x: ttersionid = t s (x .) is used to indicate x's version. LVe define that data x,

is older t han x, if verisonidi < versionid, (ts,(x,) < ts, (x,)). For each data item

x. there are two queues corresponding to it: (1) rend repest queue (RR,) and (2)

request queue (LVR,). These two queues are used to store al1 certified requests

(r r i and W T J . rr, is created and stored in RR, upon a successful read certification of

transaction T,. wr, is created and stored in CIvRz upon a successful vn'te certification

of transaction T,. The structure of rr, and UrTj is < cal. t s (r) . ts(u7) > where rr,.ual

(wu;.val) is the value of the certified data item and rr,.ts(r) (wr , . t s (r)) is the tirne

when it is certified for read operation. Furthermore. rri . ts(w) (icrJ.ts(w)) is the tirne

when it is certified for wri te operation.

4.3.3 Architecture of LTCS

Figure 4.2 illustrates the architecture of LTCS.

LTCS

Figure 4.2: Architecture of LSCS

The LTCS is composed of three parts: (1) Local transaction manager (LTM). (2)

certification module (CM). and (3) update module (UM). For each data item x, there

are two queues corresponding to it (RR, and WR,). A transaction Ti can execute

any operation before the commit time. During the execution of Ti, an activity-table

A l VTC 47

will be created and log d l the information of al1 the data used in T,. The structure

of the activity-table is an array of records. The structure of the record entry is

< name. cur-zdue. verzonid . certi f y id . R f lag . 1.t- f Eag >. Every distinct data item

x used in T, has an entry in actizitydable where n a m e is the name of x. cur-value is

the most recent value of r. cerszonid is the version x which has been read in read

operat ion. certi f i e d i d is the timestamp when x got certified. R f lag indicates x has

been read. and I V f lng indicates x has been written. When Tl wants to commit. the

LTSI mil1 first pass the actzuity-table of T, to the CM. The CS1 certifies each data

item x by calling cert2ficacation jùnctionî. There are t hree certificat ion functions: (1)

Certzh-Read. (2) Cert2jj.j- Write. and (3) Cert t fyX W. CertifZ-Read is used to cert iS

read operations: Certify- CVde is used to certify urrite operations. and Certzfg-R W

is used to cert i& readlcrrite operations. A successfiil certificat ion creat es a certified

request. There are two different certified requests. certified read and certzfied m t e

requests (rr , and UT,). There are two queues read request queue (RR,) and -te

request queue (IIDRz) corresponding to every data item x. which stores al1 rr, and

wr, respectively. These requests are used to detect conflict in the C M For example:

suppose t hat T, gains a read certification of data x from the CS1 and it creates and

installs rr, in RR,. but Tt has not yet been comrnitted. This scenario occurs if Ti is still

active. Consider anot her transaction Tj where Tj is older than Tt (ts(T,) > t s (T ,)) .

TJ asks the CS1 to certify its -mite operation on x. The CM first checks RR, and

discovers that an active Tl has a read certification on x. Since Tl is younger than T,.

CM will reject TJ because T, Ml1 ovemi t e the current value of x.

If CS1 reports a successful certification. the LTSI informs the US1 to update the

corresponding value executed by T, on the database permanently. Otherwise. the

LTSI informs the US1 to abort Ti. In both cases. the USI will erase al1 the certified

requests of Ti because T, is terminated.

48 &f VTC

A data item s can be in either normal or active state. If both RR, and W R , are

empty. x is in normal state: otherwise. it is in active state. The active state means

there is a t least one active transaction accessing that particular data item before

commit. In the mobile client. there are separate storages for stable and unstable

databases. The US1 will not modify the stable database until it gains permission

from its LT'LI.

Since the LTCS is an optimistic concunency control mechanism. there is no locking

involved in t hese funct ions escept Certi f y R e a d . C e r t i f y-CVrite and C e r t i f y R W .

At any time. the CM will permit a ReadData operation. It returns the current

value regardless of the state of the data item. Al1 three certification functions are

issued by the LT'YI to veriSf its transaction before commit. When the LTM issues

these certification functions to the CM. it will pasç its t imestamp along with other

parameters to verify its request. Sext. the CM compares the input timestamp to

the certified requests in the queues. If there is no conflict. the CM will send the

requestapprmed to the LTM othenvise. it sends notnpprored.

4.3.4 Execution of Transaction

When a transaction issues Begin-Transaction. the LTlI init ializes its adivi t y-table

and logs al1 data items accessed during the esecution until End-Tkansaction is

issued. When the LT'II submits a Read(r) operation. it ni11 check its adiv i t ydab le .

If entry x does not exist. the LTSI will create an entry. and issue r e a d (x) to its

C M If x exists. it will set R f lag to true and return the curr-value. Similarly, for

Wr2te (x . new-value) operation. if x does not exist in the table, the LTM will create

an entry and fil1 it accordingly If x exists. it will overwrite the curr-value with the

new-value and set the CV f lag to true. Algorithm 4.1 and Algorithm 1.2 show the

Read and Write operations.

AIgorithm 4.1 Read Operation

Read(x. cur~_value)
Input x: data
Output curr-z~alue: current value of x
if x exists in activity-table {

set R flag to TRUE:
re turn(cur~a lue) :

}
else {

create a table entry for x:
name = x: fetch the value of x from the database:
fit it in activity-table:
issue read(z) :

1
End of Algorithm

The Read and W r i t e operations of transaction Tl do not modify the actual

database. They only update the actiz~ity_table and indicate to the LTSI that a rend

or write operation has been performed. They Ieave the actual consistent database

untouched until Ti commits. The CS1 is responsible for the certification process be-

fore Ti commits. The advantage of using the LTCS over the SIVTO is the optimism.

In general. rend and write operations are never blocked before commit. so several

transactions can run concurrent ly.

4.3.5 Certification Module

The following set of certification functions are issued by the LTSI to the CM. Detailed

implementat ion and e q l a n a t ions are given below.

Function Set 4.1 Certification fitnctions

Certi f y- Read(data. versirnid. timestamp)
ret urn (certi f ied : boolean. cerf i f y i d)

Certi f y-FVrite(data. new-ttalue. timestamp)
return (certi f ied : boolean. certi f y-id)

$1 VTC

Algorithm 4.2 LVrite Operation

LVrite(z. ne w-value)
Input x: data

new-val ue: nenr value of x

if x e-xisis in adivity-table

{
ovemrite curr-value to neuv-calue:
set I.V f h g to true:

1
else {

create a table entry for x:
name = x:
set bVjlag to TRUE;
curr,~wl ue = new-val ue:

1
End of Algorithm

Certi f y,RbkP(data. new-ualue. uerslonid. tirnestamp)
return (certi f ied : boolean. certi f y-id)

End of Function

When the LTlI wants to certib a read operation of Ti on data r. it orders the

CS1 to issue Certi f y R e a d . Certi f y R e a d first ensure that the x read before by

T, is a current version. This is done by comparing the ver s ia id (ts,(x,)) of x in

the adizGty_table to the ueriodid of r !tsd(r,)) in database. Subscript 'a' indicates

t imestamp used in the adiv i ty lable . and subscript *d' indicates t imestamp used in

the database. If the current version of x in the database is younger than Ti. the Cbl

will fetch a version of x where it contains the largest tsd(x.) less than t s (T i) to the

LTM. The only time when a certified request fails is if there exists a wr, in the CV Rz

where wr,.ts(w) > ts(Ti) because a transaction T,. where t s (T ,) > ts(T,), has already

gained the mite certification and waits to commit. This means that the value read

by T, earlier is stale because Tj runs concurrently with T, and will perform a certified

mite operation on x when it is committed. So the C'rl refuses to certi& T,'s read

operation. Algorithm 4.3 shows the pseudo-code of Certi f y R e a d .

Algorithm 4.3 CertifyRead

Certi f y-Read(x. versionid. timestamp)
Input x: data to be certified

version-id of the input data
timestamp of calling Certi f y-Read

Output request ~ p p r o z ~ e d
certi f y-id

if (tsd(w,) # verionid) {
find a version of x such that tsd(z,) is the Iargest timestamp less than t s (Ti) :
update curr-value in the adivity_table:
certi f ied =T'RUE:

} else
if (Fl'R, == 0)

certi f ied = TRUE:
else {

find UT, with oldest ts(u1) from It,'R,
if (timestamp < ~ l r ~ . t s (u l))

certi f ied = TRUE:
else certi f ied = FALSE: /*due to esisting certified ,uv-ite request */

1:
if (certi f ied == TRUE)
{

create a cert ified R request. rrj where
rr,.ts(r,) = timestamp:

set x to active status:

}

End of Aigorithm

When the LTSI wants to certi- a mi te operation of Tt on data x. it orders the CM

to issue Certi f y-Write. First . it makes sure that no ounger transaction performed

any read operation and committed before Ti wants to certify its mi te operation.

Second. it scans through the RR, and finds the youngest T r i . If ts(T,) < rri.ts(r).

then the CM rejects T, because a Young transaction T, has gained a certified read

operation on x and not yet committed. If the CS1 certified T,'s m i t e operation on x.

T, would read stale data when it commits.

In Algorithm -1.4. there are two situations when the certified m i t e request of Ti

will be rejected.

case 1: a younger transaction TJ has read 2 and been commit ted before Ti requests

the m i t e certification on x.

case 2: a o u n g transaction T, has certified its read operation but has not committed

yet. Thus. a u*rite operation of T* cannot be certified.

Algorithm 4.4 Certifg- Wn'te

Certi f y-CVrite(r. new-value. timestamp)
Input x: data to be certified

new value of the input data
timestamp of calling Certi f y-LVrite

Output request-approved
certi f y-id

if (RR, == 0) {
if (f s d (r T) < timestamp)

certi f ied = TRUE:
else certi f ied = FALSE; /*case 1: due to committed transaction*/

1
else {

find rri with youngest t s (r) £rom RR,
if (rri.ts(r) < timestamp)

certi f ied = TRUE:
else ceri f ied = FALSE: /*case 2: due to existing certified read request .*/

}
if (certi f ied == TRUE)
{

create a certified W request. ww,. where
wwj.val = new-value.
wwj.ts(r) = t sd(rZ) ,
u v , .ts(w) = timestamp;

set x to a d i v e status;

1
End of Algorithm

Algorithm 4.5 is the combination of a Cert i f y R e a d and a Certi fy-Write calls.

On successful certification on data r. the CSI creates tn-O identical requests (rri and

ET,) queued in both RR, and CVR, according to the timestamp recorded in the

transaction. Certi f y R W refuses to cert ify S, if:

case 1: the transaction would overn-rite a younger commit ted transaction.

case 2: there exists rr, where rrj .ts(r) is older t han ts(Ti) . or t here exists UT, where

u~r,.ts(w) is younger than ts(T,)).

4.3.6 Update Module

The following set of functions are issued by the LT'rI to the UM. These two func-

tions are used to update the database permanentl. Detailed implementation and

esplanations Ml1 be given belon..

Function Set 4.2 Update f7mctions

UpdateRequest (da ta. certi f y-id)
return Acknowtedge

DeleteRequest (data. certi f y-id)
ret urn Acknmdedge

End of Function

After the CM verified Ti. the LTSI decides to commit or abort Ti. If the CM fails to

verifj- Ti. the LTSI aborts T, . It calls Abort Request to erase al1 Ti's certzjîed requests

because Ti causes conflict. If the CS1 verifies Ti successfully. the LTM commits

T*. It calls UpdateReques t to update the database based on Ti's certified requests.

Algorit hm 1.6 and Algorit hm 4.7 provide the pseudecode.

Since Ti is aborted. Algorithm 4.6 erases al1 its certified repes t s from the RR and

W R queues according to the input data name and the certi f y i d .

Algorithm 4.7 Update-Request

Update Request (x. certi f i e d i d)
Input x: data narne

Certi fg-id belong to x
Output Acknowledge to LThI

{
if (rr i E RR, and rr , . ts(r) = certi f i ed id)

if (r ~ , is not outdated) {
t s d (x r) := rr, . t s (r) :
mark dl rrJ ahead of rri in RR, as outdated:
remove rri fiom RR,:

1
else reniove rr, from RR,:

if (wr, E IFRI and upr, . t s (w) = certi f i e d i d)

i f (U T] is not an outdated) {
t sd(xr) = max(tsd(xr) , wrI . t s (r)) :
tsd (x ,) = 'UT, .~s(u');
mark al1 w r k ahead of wr, in IVR, as outdated:

else reniove Url froni II'R,:

i f (no rr and uir is left in RR, and t.t'R,)
state = normal:

Send acknodedgment to LThL:
1

End of AIgorithm

4.3.7 Local Transaction Scheme

After the End-Transact ion is issued. the LTSI verifies each entry in the adiv i ty _table.

There are tnTo phases for the scheme: (1) Certification phase and (2) Update phase.

In the certification phase. the LTM sends a certi f icationsequest to its CM and waits

for a response. If the CS1 acknowledge certification. it ni11 signal the LTM with an

certi f i e d i d . If the CM refuses to acknowledge. it d l signal the LTM to abort the

transaction. In the update phase. the LThI issues a UpdateRequest to the UM upon

successful certification: ot herwise. it issues -4bortRequest to the USI. Algorit hm 1.8

and Algorithm -1.9 show the detailed pseudecodes of certification and update phases.

Algorithm 4.8 Verification Phase

Input activitydable
Output adivty-table

state: boolean to indicate successful certificat ion

For each entry in its adivityltable {
if (R f lag and Wf lag)

send Cert i f y-RTt' to CM:
else if (R f lag)

send Certi f y R e a d to CM:
else

send Certi f y-Ft'rite to Chl:

Wai t - fo r Ch1 responses:
CM will return boolean request-approved &L certi f ied-id:

if (request-apprmed == FALSE)
EXIT:

else
Save certi f ied-id in the a d i r i t y f able:

if (request-apprmed == TRUE)
{

signal certi f icationsuccess to LThl:
set state = certi f ied:

1
else

signal certi f ication-f d u r e to LT3I:
set state = abort:

End of Algorithm

Only the verijication phase is in critical section. so the algorithm avoids certi-

ficat ion deadlock. l i e have shon-n t hat LTCS môuimizes opt imism and guarant ees

synchronization and serializabilit. The LTCS remains functiond in the mobile unit

until network access is regained.

AIgorithm 4.9 Update Phase

Input adivityAable
Output Acknowkdge to LThl

For each entry in its activity-table {
fetch the certi f iedid of the entry i:
if it is a commit signal

send update-request(da ta. certi f i e d i d)) to Uhl:
else

send delete-request(data. certi f iedid) to Uhl:
Acknowledge to the LTM:
End the transaction.

1
End of Algorithm

When the disconnected mobile unit reconnects to the netn-ork. the global commit

protocol (GCP) applies. The major duty of the GCP is re-integrating the locally

committed transactions in the mobile unit to the Lved servers. Upon reconnection,

each committed transaction calls the GCP. Tlius. we must provide a concurrency

control mechanism to protect the consktency of the system. The GCP is able to

synchronize the locally commit ted transactions and maintain the strict consistent

state of the database at ail tirne.

Certi f y,Rlt'(z. new-illalue. uer s imid . timestamp)
Input x: data wanted to be certified

new-value of the input data
version-id of the input data
timestamp of calling Certi f y,RW

Output request-approved
certi f y-id

find a version of x such t hat tsd (x,) is the largest t s less t han t s (T i) :
if (JVR, == 0 and RR, == 0)

if (t s d (x ,) < timestamp)
certi f ied = T R U E :

else certi f ied = F'ALSE: /*Case I*/
else {

find UV-i with the oldest u*r,.ts(r) from F,VR,
find rrj aith the youngest rr,.ts(u9) from i i vR,
if (t imestamp > rr,.ts(r) and fimestamp > < L . T ~ . ~ s (w))

certi f ied = T R U E :
else certi f ied = FALSE: /*Case 2*/

1 :

if (certi f ied == TRUE)
{

create a rrk and wrk n-here
rrX; .~ul = ~ v - ~ . t l a l = new-value.
rrk.ts(r) = u.rk.ts(r) = timestamp.
uqrk.ts(w) = t l ~ r ~ . t s (u ~) = timestamp:

1
End of Algorithm

Algorithm 4.6 A bort-Request

AbortRequest(x. certi f i e d i d)
Input x: data name

Certi f y-id belong to x
Output Acknowledge to LThI

I
if (T r i E RR, and rr,.ts(r) = certl f ied-id)

delete al1 rri from RR,:
if (u7rj E iVRZ and wr, . ts (w) = cer t i f i ed id)

delete dl wr, from RIVz:
if (no rr and uTr is lefi in RR, and LC'R,)

state = normal:
send acknowledgment to LThl;

}

End of AIgorithm

Chapter 5

Global Commit Protocol

5.1 Overview of Global Commit Protocol

Upon reconnect ion. the GCP applies and commits the commit ted mobile transactions

globally. The re-integrat ion process requires: (1) Each transaction has a globally

unique timest amp ahich eliminates ambiguity of the timestamp of transaction: (2)

Each transaction has its on-n actiz~zty- table which recorded al1 the accessed data items

used during the execution of the mobile transaction. When reintegrat ion begins. each

transaction nill be submittecl to the GCP serially. The GCP schedules the cornmitted

mobile transactions to commit globally. For esample: suppose t hat transaction Tt

wants to commit globally. The GCP attempts to verifj- Ti and detect any conflicts. If

there are no conflicts between Tz and other globally committed transactions. T, will

commit. Othenvise the GCP will try to resolve the conflicts introduced by Ti. Only

if the GCP resolves the conflicts successfully ni11 Tt be committed.

5.2 Architecture of GCP

Figure 5.1 shows the main GCP components.

59

Globd Commit Protocol

Upon Reconnection
.

Upd;id
Dau Item Global Transaction Manager 1

Mobile I
l
I or

Tr;uis3ction j Abon

(Verification Processor 1

Conflict
Tr~isaaion

Version 1 1 Ln,
Conflict Solver

pp - -

Figure 5.1: The Alain Components of GCP

Three major components compose the GCP. They are: Global fiansaction Man-

ager (GTS1) . Verification Processor (VP) and Confiict Solver (CS). The GTM is called

when a commit ted mobile transaction is submitted to the GCP. It schedules the trans-

action wit h its unique timestamp. Since the GCP is an optimistic mechanism. the

GTM ensures the correctness of the transactionk execution. Therefore. the GTM

calls the VP to verify the transaction. The VP first scans the activity-table of the

transaction and compares the timestamp of each data entry to the global database.

If there is no conflict, it returns to the GTSI. However, if any cordicts are detected.

the transaction is sent to the CS to resolve the conflict. There are three possibil-

ities to resolve the conflict : (1) execute alternative transaction. (2) perform partial

re-execution [HBG97] and, (3) abort the transaction. Chapter 3 discussed these three

Global Commit Pro toc01

options in our new mobile transaction model. This chapter concent.rates on imple-

menting the partial re-ezecution method. Xfter solving conflicts. the CS returns the

transaction to the VP which will commit the transaction. The VP is t hen responsible

for making the effects of committing transactions permanent.

5.3 Partial Re-execution Module

W l e n the VP detects a confiict . it has two options. If the mobile user has an alterna-

t ive transaction. the VP will at tempt to commit the alternat ive transaction globally.

If the alternative transaction fails to commit. the VP ni11 submit the conflicting trans-

action to the CS. The CS is able to re-esecute only the conflicting operations in the

transaction. Thus. the system is not required to re-esecute every single operation

in the conflicting transaction. We argue that reesecutinp al1 operat ions in the con-

Ricting transaction is not necessary in a lightl-shared database system. The reason

is that only a small portion of the operations in the transaction act ually generates

conflicts. Thus. re-esecuting the whole conflicting transaction is very inefficient and

ineffect ive. The CS has been developed to analyze and identify al1 the conflict ing o p

erat ions in a conflict ing transaction. Shen the syst em re-executes only the conflict ing

operations to maintain the serializability. Hon-ever. identi-ing al1 the conflicting o p

erations is not a simple task. It reqiiires the CS analyze the stat ic dependency of each

variable used in the transaction before the execution of global commit. We define t hat

the compile time is the moment that the set of locally comrnitted mobile transactions

are being verified before the execution of global commit. For example: suppose that

transaction Ti generates conflicts nhen it tries to commit globally. Furt hermore. the

VP detects that data item A is stale. the VP analyzes T, and finds out that d l the

direct and indirect operat ions using -4 must be re-executed. Figure 5.2 dernonstrates

the effect of the partial re-execut ion.

Global Commit Protocol

S i n e 'A' hm ken R-read h m
Ihe gIoM &tabase. op6 musc
be reixtcuitd to
undo thr: cffects. \
Sincc the vdue o f '6' is chmgrd
due to rr-cxecutinp op3. so op7
m u t be ririxecuted /

-
1

:$ k~ i*:D If variable 'A' is srale. only op3. op6 op7 and op9
op?: C = E * C are required to re-exrcuated. The other 6 opemcions
op3: B = A * B do no1 nuse conflict.

o@:D=D-8
op5 A = E * E
op6: A = D - 1

r 0p7: B = E - 3 rcad the new vdue of 'A' fmm the globd &tabase
op8: E = C - 4 md rrtxecute.
op9: c = c + A

Figure 5.2: Re-esecut ing Operat ions caused by GCP

The heart of the conflict solver is the mechanism of analyzing the stat ic informa-

tion of a conflicting transaction. LVe cal1 it the Partial Re-execution Algorithm.

5.4 Data Structure for Re-execution Algorithm

Before discussing the algorit hm. t here are several data structures associated wit h the

algorit hms. They are as fo1Ion.s:

m: number of data variables in T,.

rn n: nuniber of operations in T,.

StateArray: is a one-dimensional array of records. Each record consists of

four fields. < result. argl. op. arg2 >. For example: : E = 9 * C. result is

E. argl is 9. op is * and. arg2 is C. The size of StateArray is n.

0 RSet [i,j]: is a 2D-array of integer. RSet[i. j] = k means that read üarj

from opk The size of RSet [ij] is n x m.

0 WSetb]: is a one-dimensional array of integer. It records the la& operation

that modified Varin&. The size of WSet Ü] is m.

Global Commit Protocol 63

ReStateSet: is a queue to keep a set of operations for re-execution in trans-

action Ti.

To perform partial re-execution. the following set of functions is performed by the

CS. Each is discussed in more detail below.

Function Set 5.1 CS'S finctions

Generate_RTabie(s : state-array)
return (R S e t)

Generate-U7Table(s : state-array)
return (%t 'Set)

F ina lS ta ie ,Var(x : data. s : state-array)
return (R e S t a t e S e t)

FinaLRelatedSfate,inRset(op : state. rs : R e S t a t e S e t
s : state-array. RSe t . CI.'Set)

return (R e S t a t e S e t)

End of Function

Functions Generate-RTable and Generate- WTable generate RSet and RWet. re-

spectively. Based upon the information of RSet and tt-Set. the GTM passes each

comrnitted mobile transaction to the VP. The VP calls functions Final-State- Var and

FinaLRelated-State-ihRset to identifj- al1 the n e c e s s - operations to be re-esecuted.

The execution sequence is as follows: the VP scans and compares al1 the data item

in the actiuity-table one by one to the same data item in the global database. If a

stale data item r is found. the VP passes that stale variable to FznaLState- Var. This

function returns al1 the operations which dirertly used x in its argument and stores

them in R e s t a t e - S e t . The VP investigates each operation in the Re-State-Set and

calls function FznalRelated-State-in-Rset recursively to search out al1 the related op-

erations that used x indirectly and inserts t hem in the ReState-Set . If the conflict ing

transaction cannot be re-executed. the VP returns abort to the GT-LI: othemise. it

64 Global Commit Protocol

returns commit to the G T l I which commits or aborts the transaction accordingly.

Figure 5.3 illustrates RSet and CVSet generated by functions GenerateRTable and

Generate-WTable based upon the transaction s h o m in Figure 5.2.

O 1 2 3 4 5 6 7 8 9

i RSet[i,j] \ the kt opencion W ~ W S SE-.

WSet[El= 8 means that op8 is

1 RSer[C.91= f m c m bat op9 r d 'C'

RSrt[E,OI = mruis hi opû docs not use 'E' from op?.

Figure 5.3: RSet and WSet based upon Figure 5.2

Entry RSet (2 . j] = k represents that operation op, reads variable j from operation

opk. For esample: in Figure 5.3. RSet [S. A] = 6 means ops reads '-4' from m. Entry

W S e t [il = k represents t hat operations opk is the last operatiori that modifies variable

i. In Figure 5.3. IVSet[.4] = 6 mean op6 is the last operation which modifies 'A'.

Suppose the VP detects that T, generates confiicts. Furthermore. the VP identifies

that operation op, read stale data and caused codicts. There are six cases to consider

when opi is being reexecuted. Suppose that transaction Ti has read stale data item

B. Figure 5.4 show these siu cases.

Case 1: opi is not related to any other operation in Ti, so only is re-executed.

Case 2: opi used B to compute A and op, reads A. After the re-execution of T i , A

becomes stale. so op, must be reexecuted.

GIo bal Cornmi t Protocol 65

Case 3: qi read stable data B so the system refreshes B from the fixed servers and

re-executes spi. However. at some later time of the transaction. op, cornputes

B. Since B is refreshed. the CS must re-execute op, to compute the correct

result of B. Thus. both op* and op, must be re-executed to guarantee correct.

serializat ion.

Case 1: op/ used B to compute -4. opi iised the -4 computed by- op1 to compute C. and

op, used the C computed by op, to compute D. When op/ is re-executed. opi

must be re-esecuted because -4 becornes stale after re-execut ing op/. When

op, is re-executed. op, must be re-executed because C becomes stale after

re-esecut ing qi. This case is recursive.

Case 5: %%en B is stale. B d l be refreshed from the fixeci semer. However. qi used

the B produced by op! to compute -4. so the CS should re-execute opf to

undo the effect. Thus. bot h op: and must be re-executed.

Case 6: When op* is re-executed. -4 ni11 be ovem-ritten. so the CS must re-esecute

op, to compute the correct value of -4. Thus. both qi and op, must be

re-exec ut ed.

5.5 Detail Implementation

5.5.1 Conflict Solver

Algorithm 5.1 is iised to generate array RSet. It scans the S ta t eArray to determine

the read dependency of the variables among the operations. Algorit hm 5.1 is divided

into two parts. Part 1 determines the read dependency of the first argument of the

operation. and Part II determines the read dependency of the second argument. For

exarnple: in Figure 5.2. we want to determine the read dependency of ap, : C =

66 GIo bai Commit Protocol

C + -4. Part 1 of Algorithm 5.1 determines where op, reads 'C' from. It scans

through State-Array and finds out that opr is the last operation to modify C . so

the algorithm Ri11 insert 2 in RSet [S. Cl. Similarly. Part II of Algorithm 5.1 finds out

t hat op^ modified .4 before op, read it . It ni11 insert 6 in RSet [S. -41.

Algorithm 5.2 generates &'Set from Sta teArray . It gets a variable r and starts

scanning from the last operation. Once it finds Stated4r~ay[i] .resuZt = x. it =-il1

stop and fil1 the operation number in the corresponding e n t ~ in WSet. For example:

in Figure 5.2. we want to find out which operation is the last to modib A'. The

algorithm scans through S t a t e A r r a y from the bottom to the top. It finds op6 is the

last to modify -4. so it inserts 6 CO [VSet[d].

Given a stale wriable x. Algorithm 5.3 identifies four re-execution cases (case 1.

case 3. case 5 and case 6) shown in Figure 5.4. The algorithm is divided into four

parts: (1) The first if-statement is responsible for identifying a- operation using

r in its arguments directly (case 1 in Figure 5.4) and keeps it in R e S t a t e S e t . (2)

Once a conflicting operation is identified (siil). the algorithm r d 1 identib the last

operation modifying s[i].result from WSet (case 6 in Figure 3.4) and keeps it in

R e S t a t e S e t . (3) The algorithni identifies the 1 s t operation to modify x from W S e t

(case 3 in Figure 5.4) and keeps it in R e S t a t e S e t . (4) The last for-loopstatement

finally identifies the operation s[i] read x from (case 5 in Figure 5.4) and keeps it in

R e S t a t e S e t .

Given the re-execution of operation op i . Algorithm 5.4 c m identify three re-

execution cases (case 2, case 4 and case 6) shown in Figure 5.4. Algorithm 5.4 first

scans t hough RSet. If there is an operation (op,) t hat read a stale result produced by

wi, Algorithm 5.1 Ml1 cal1 itself with input op, recursively. The algorit hm compares

q ' s result (s[j] .result) to CVSet. If op, is not the last operation that modified the

variable (x) kept in s[i] .resul t , the operation stored in WSet [X I must be re-executed

Global Commit Protocol 67

(case 6 in Figure 5.4). Thus. when Algorithm 5.4 is terminated. it returns al1 the

re-execut ing operat ions when op* is re-executed.

5.5.2 Verificat ion Processor

The VP is a module to identify any potential conflicts in T,. It first checks every

nriable x used in T,. If x is stale. the VP cdls FinalStale-Var to determine al1

the operations that used x. The VP then calls F i n n l R e l a t e d S t a t e i n R s e t to find

al1 the re-executing operations in RSet and Fina lMr i t eS ta t e to find al1 the re-

executing operations in CC-Set. Finally. VP gets a set of re-executing operations and

acknowledge the GTM if the re-execut ion is successful.

Algorit hm 5 -6 examines every re-execut ing operat ion (opi) t O ensure t hat re-

executing op, does not violate the application predefined constraints such as over-sel]

a product. The algorithm signals the VP 'succeed' if opi performs no illegal operation

or ' f ail' if Ti performs an illegal operation.

5.5.3 Global Transaction Manager

Suppose transaction Ti n-ants to commit. the GTlI calls the VP to veri- Ti. If

the VP returns i leri fy = TRUE. the GTM commits Tt; othernise. T, is aborted.

Algorit hm 5.7 shows the reqiiired pseudcxode.

5.6 GCP's Complexity

Given that m is the number of data variables in transaction Ti and n is the number

of the operations in Ti. the comple-xity of the GCP's algorithms are as follows:

Algorithm 5.1 is 0(n2m):

Algorithm 5.1 contains a 3-level nested for-loop. The outer most loop takes n

Global Commit Protocol

times. the second loop takes n times. and the third loop takes m times. Thus.

the complexity is 0 (n 2 m) . The computation is shown in Equation 5.1.

Algorithm 5.2 is O(mn):

Algorithm 5.2 contains a 2-level nested for-loop. The outer loop takes m tirnes

and the inner loop takes n times. Thus. the complesity is O(mn).

Algoritlm 5.3 is O(nm):

Algorit hm 5.3 contains a %level nested for-loop. The outer loop takes n times

and the inner loop takes m times. Thus. the complexity is O(nm).

Algorithm 5.4 is O(rnn%"):

Algorithm 5.4 contains a 2-level nested for-loop. The outer loop takes m time

and the inner loop takes n times. Inside the inner loop. a n-level recursion is

used. Thus, the complexity is O(mn-Ln*). Equation 5.2 shows the recursive

computation.

Global Commit Pro toc01

-Algorithm -5.5 is 0(mn+Lnn+2):

Algorithm 5.5 contains a 2-level for-loop. The outer loop takes rn times.

Fina lS ta l -Var inside the outer loop takes mn times. the inner loop takes

n times. and F i n a l R e l a t e d i n R s e t inside the inner loop takes mn-lnn times

so the complexity is:

Algorithm 5.6 is O(n) :

Algorithm 5.6 contains on- 1 for-loop whicli takes n times. Thus. the com-

plexity is O(n) .

0 Algorithm 5.7 is 0(tmn+1nn+2):

Given than t is the number of transactions. Algorithm 5.7 calls Algorithm 5.5

t times. Thus. the complexity is 0(tmn+'nni2 1 -

The overall complesity of the GCP is equal to the complexity of Algorithm 5.7

which is O(tmn"nn+*). Thus. the complesity of the GCP is exponential.

An exponential complexity is not desirable and may not be optimal. However,

the exponential complexity is only provoked by Algorithm 5.4. The main function

70 Global Commit Protocol

of Algorithm 5.4 is to find out al1 the dependent operations of the input operation.

In a highly intra-dependent envuonment. -4lgorit hm 5.4 niIl be called frequently and

result ing in an exponent i d complexity. We define t hat the Intra-dependency indicates

the level of data dependency of a transaction. A highly intra-dependent transaction

means that the variables in the transaction are highly dependent to each other. We

argue that the GCP performs well in a low intra-deprndency because it reduces the

chances of calling Algorithm 5.4.

In the real world. a light ly-shared and low int ra-dependent environment does exist .

For example. a traveling salesman traveled to a remote site to help his client. Before

the salesman left the head office. he had downloaded d l the necessary files in his

laptop. When he finished discussing nitli his client. the client placed him a sales

order. The order contains a list of items to be purchased. The salesman took the

order and committed it in his laptop locally. Consider the data overlap problem:

In the real world. it is unlikely that other salesrnen in the head office would modiS:

the same client's informat ion concurrent ly Consider the intra-dependency: When a

client places ari order. it is reasonable to assume that the intra-dependency of that

order is low. For instance: operation 1 (opl) sells 100 item x and operation 2 (oh)

sells 100 item y. In this case. t here is no direct nor indirect relationship between op1

and Thus. the intra-dependency is zera Suppose that op, generates conflicts

when the salesman reconnected his laptop to the network. Using the static analysis.

the transaction manager knows t hat only op, must be re-esecuted and the rest of the

operations consistently affect t lie database. Thus, the rate of calling Algorit hm 5.4

to andyze operation dependency is minimal.

Using the static analysis is feasible because once the analysis is done. the transac-

tion manager requires no overhead nor re-scheduling to solve any conflict at run time.

The transaction manager can commit the transaction without worrying about any

Global Commit Protocol 71

dynamic information such as the sequence of readl uyrite operat ions of transactions

to maintain serializability.

5.7 Summary

This chapter shows that the GCP is able to synchronize the mobile transactions

to the semer optimistically and resoives conflicts just before commit time. Thus.

this new mechanisrn allows the disconnected mobile unit to operate mithout concern

for data inconsistency. lloreover. the GCP can identify and re-execute only the

conflicting operations. This reduces unnecessan re-execution and thereby increasing

concurrency and performance.

GIo bal Commit Protocol

I I . . .

<-

,- b
I I . .

9

Figure 5.4: S k Cases for Partial Re-execution

Global Commit Protocol

Algorithm 5.1 GenemteRTable

GenerateRTable(s) : RSet:
Input s:statearray
Output RSet:ReadSet

for i = n to 1 do
for j = i-l to 1 do

ch1 = s[i].argl:
ch2 = sb].result:
if (ch1 == ch2)

for k = 1 to rn d o
if (ch1 == k)

(RSet[i. k] == j):
endfor

endfor

for j = i-1 to 1 do
ch1 = s[i].arg3:
ch2 = s ~] . r e s u l t :
if (ch l == ch2)

for k = 1 to rn do
if (ch1 == k)

(RSet[i. k] == j) :
end for

endfor
endfor
return(RSet):

End of Algorithm

Algorithm 5.2 Genemte, WTable

Generat-lt7Table(s : state-array) : \t'Set:
Input: state-array
0utput:IVSet

for i = 1 to rn do
for j = n to 1 do

if (s[i] . resul t == r)
W S e t = \t'Set U j :

endfor
endfor
return(WSet):

End of Algorithm

Global Commit Protocol

Algorit hm 5.3 FinalStale- Var

FinalStale-Var(x : data. s : state-array. RSet . W S e t) : R e S t a t e S e t :
Input x: stale data

state-arra y: al1 operat ions of a transaction
RSet: 2D array storing the read dependency
WSet : f D array storing the finai write operation

Output R e S t a t e S e t : a set keeps the re-executing operations

for i = 1 to n do
if (s[i].argl == x or s[i].arg2 == x) {

R e S t a t e S e t = R e S t a t e S e t U s t ~ t e i : /*case 1*/
R e S t a t e S e t = R e S t a t e S e t u LVSet [s[i] .result]: /*case 6*/
R e S t a t e S e t = R e S t a t e S e t u LVSet [r] : /*case 3*/
for j = 1 to rn do

if (R S e t b . i] not E-UPTY)
R e S t a t e S e t = R e S t a t e S e t u RSetb. il: /*case 5*/

endfor
}

endfor
r e t u r n (R e S t a t e 3 e t) :

End of Algorithm

Global Commit Protocol

Algorithm 5.4 Final_RelatedState-in-Rset

FinalRelatedState-in_Rset(op : d a t e . r s : R e S t a t e S e t .
s : state-array. RSet . IVSe t) : R e S t a t e S e t :

Input qp: re-execut ing operat ion
rs: a set keeps the re-execut ing operations
s t a t e ~ r r a y : al1 operations of a transaction
RSet : 2D array storing the read dependency
CVSet: 1D array storing the finai mite operation

Output rs: a set keeps the re-executing operations

for i = 1 to m do
for j = 1 to ndo

if (R S e t [i. j] == o p) {
if (W S e t [s ~] . r e s u Z t] != op)

r s = r s u Ii~Set[s(j].resrrZt]: /*case 6*/
rs = rs U state] : /*case 2*/
rs = rs u FinalRelatedStatein_Rset(RSet[i. j]. rs.

S. RSet. t t 'Se t) : /*case 4*/

1 :
endfor

endfor
return(r s)

End of Algorithm

Global Commit Protocol

Algorit hm 5.5 VerificationProcessor

Veri f ication_Processor(acti~itî~-table of Ti)
Input adivity-table of Ti
O u t p u t ueri f y: a boolean Aag to indicate succe~~ful verificat ion

for each ent ry x in acti vit y-table of Ti d o
if (Rf lag == TRUE) {

if (version-id(x) < ~ ~ e r s i o r t - i d ~ ~ ~ ~ (x)) {
if (alternative transaction fails to coninlit) {

R e S t a t e S e t = Final S ta l e -Var (x . s t a t e ~ r r a y) :
for every opi E R e S t a t e S e t do

R e S t a t e S e t = Final Re la tedSta te- in Rset(opi .
R e S t a t e S e t . RSet) :

end for
}:
else

submit the alternative transaction:

if (R e S t a t e S e t # 0)
Reaxecute(ReSta teSe t . dane):
if (done == succeed)

return(veri f g = TRUE);
e lse

return(veri f y = FALSE):
eIse

return(t .er i fy = TRUE); /*no re-execut ion is required*/
e n d f o r

End of A l g o r i t h m

Global Commit Pro toc01

Algorithm 5.6 Re-ezemte

Re-execute(Restateset . succeeded):
Input ReStateSet: a set of re-execut ing operat ions
Output dme: a boolean to indicate a successful re-execution

for every element op E ReSfateSet do
if (opi is not illegal)

execute(opi):
else {

end for
return(done = succeed):

End of Algorithm

Algorit hm 5.7 Global Transaction Management

Globai-Transaction-llanager(T,)
Input Transaction Ti

for every Ti enters to the GCP do
Cal1 Ver2 f icationProcesso7(activity_table of TL. cei i f y):
if (tleri f y == TRUE)

globalçommit(Ti)
else

abort(T,):
end for

End of Algorithm

Global Commit Protocd

Chapter 6

Demonstration in Mobile

Computing

The GCP has been simulated osing Cf+. The mode1 is able to generate a random

number of operations and variables. The variables are limited to 52 letters (-a' - -z'

and 'A' - 2'). so a transaction can access at most 52 variables. lforeover. we cari input

the percentage of the data overlap between mobile and fked servers. The simulation

can generate transactions and ident ifit which operat ions in a mobile transaction are

required to be re-executed. From the simulation. ive measiire the GCP's performance

in two aspects: (1) Re-execution Rate. and (2) Time Complexity.

6.1 Re-execution Rate

\\%en we analyze the re-esecution rate of the GCP. we conclude t hat there are two

factors affecting the performance: (i) percentage of the data overlap between mobile

and fmed servers. and (ii) intra-dependency of the operations in a transaction.

80 Demonstra tion in Mobile Conip u t ing

6.1.1 Data Overlap

The GCP is an optimistic concurrency control scheme. so it will not work well in a

heavily-shared system. If the data items are shared heavily between the fixed servers

and the disconnected mobile unit. nre can expect a lot of confficts. In our experiments.

n-e set up three different sets of data. Each set of data represents a different number

of operations in each transaction: Set 1 contains at most 10 operations. Set 2 contains

a t most 20 operations. and Set 3 contains a t most 50 operations. Table 6.1 shows

the results. In Table 6.1. Overlap7c is the percentage of data overlap between the

disconnected mobile unit 's aiid fked servers' transactions: O P is the average number

of operations generated for 10 transactions: R E is the average number of operations

re-executed for 10 transactions. and 5% is the overall percentage of re-execution.

GCP's Performance for 10 Transactions

Set 1 (10) Set 2 (20) Set 3 (50)

Table 6.1: GCP's Result for 10 Transactions

Figure 6.1 plots the results of Table 6.1. As we cm see from Figure 6.1, when the

Demonstra tion in Mo bile Comp u ting

Re-execution % vs Data Overiap % for 10 Transactions

Figure 6.1: Running 10 Transactions

overlap rate is 10%. about 20% of the operations are re-esecuted. Honiever. n-heri the

overlap rate increases to 50%. more t han half of the operations are re-executed. Xote

also that when the overlap rate is set to 100%. not every operation is required to be

re-executed. For example: a mobile transaction T, contains ap, : A = 100 + 200 and

T, does not contain any operation reading A. Although A is stale. opr is not required

to be re-executed. When nte increase the number of transactions from 10 to 100. we

generate very similar results. ResiiIts are shom in Table 6.2. In Table 6.2. Set I

contains at most 10 operations per transaction. Set 2 contains at most 20 operations.

and Set 3 contains at most 50 operations. Figure 6.2 plots the results of Table 6.2.

6.1.2 Intra-Dependency of Transaction

The intra-dependency represents the operat ion dependency inside a transaction. A

highly intra-dependent transaction means t hat the variables in the transaction are

82 Demonstra tion in Mo bile Comp u ting

I GCP's Performance for 100 Tkansactions
.- 1 Overlap% (Set 1 (10) [Set 2 (20) Set 3 (50)

Table 6.2: GCP's Result for 100 Transactions

highly dependent to each other. The intra-dependency plays a critical rule in the

re-esecution rate. If the variables used in a transaction are highly related. n-e can

expect the rate of re-execution to be high because a re-esecution of one operation

will result an eidiaustive searcli for al1 other affected operations. This search will go

recursively and take esponential time to cornpute. \Ve have shown the complesity in

Section 5.6.

For example: we generate 5 transactions nith a t most 2.000 operations in each

transaction and limit the number of variables to 10. Therefore. the operations are

closely related to each other. The result is a very high re-execution rate even in a

low data overlap environment. Thus. we conclude that the percentage of data overlap

alone cannot determine the re-execution rate of the GCP. The GCP does not perform

better in a low percentage of data overlap but closely related transaction. In contrast .

Demonstration in il10 bile Cornpu ting

Re-execution % vs Data Overfap % for 100 Transactions

Figure 6.3: Running 100 Transactions

the level of intra-dependency between operations affects the rate of re-esecution. Ta-

ble 6.3 shows the result of the simulation.

Figure 6.3 plots the results of Table 6.3. Even in a low overlap scenario (10%)

the re-execution rate is v e l high (90.28%) (see Figure 6.3). This result shows that

a transaction n i th high intra-dependency will result a high re-esecution rate. So.

the GCP does not work well in highly intra-dependent transactions. In contrast. if a

transaction is lon- in int ra-dependency. the re-esecut ion rate d l be lower. Consider

an estreme case shomn in Figure 6.4. In Figure 6.4. T, has zero intra-dependency

because no variable in Ti is related. If a7e set 10% of data to stale (2 variables are

stale), the maximum number of re-executing operations is two because the worst case

will be two different operations read these two stale variables in their arguments.

Except for t hese two operations. no ot her operations will be affected.

Demonstration in Alo bile Comp u ting

Time

- -- -- -

GCP's Performance for 2000 Operations

Table 6.3: GCP's Result for 2000 Operations

Complexity

Siniilarly. we conclude that tliere are also two factors affecting the time complexity:

(i) size of the mobile transaction. and (ii) intra-dependency of a transaction.

6.2.1 Size of Transaction

The longer the transaction. the more tinie the GCP takes to compute the result.

However. the size of a transaction only plays a minor factor to the time performance

of the GCP. W have shown in section 5.6, the complexity of the GCP is exponen-

tial. This exponential growth is contributed by the intra-dependency but not by the

transaction's length. If we fi?< the data overlap percentage to a constant. a long tram-

action with low intra-dependency will run faster t han a long transaction Mth high

intra-dependency. Thus. we concentrate on analyzing the Intra-dependency.

Demons tra tion in Mo bile Comp u ting

Re-execution % vs Data Overlap % for 2000 Operations

Figure 6.3: Running 2000 Operations in Each Transaction

6.2.2 Intra-Dependency

L h e n we mesu re the time complexity of the GCP. the intra-dependency must be

considered becaiise it dominates the running time in the long run of the GCP. When

a transaction wit h litt le intra-dependency exists arnong its operat ions. the GCP can

compute the result rapidly. In contrast . if a transaction has a hiph intra-dependency

among its operations. the GCP miist spend a lot of time finding al1 the direct and

indirect operat ions for re-execut ion. In a highly int ra-dependent environment. the

task will result in many recursive calls of Algorithm 5.4 that lowers the GCP's per-

formance.

In Table 6.4. we simiilate the GCP Mth different nurnbers of operations. Figure 6.5

plots the result of Table 6.4. From the experiment's results. the GCP's performance

drops significantly when the number of operat,ions in a transaction is over 7000. Since

our simulation only allows at most 52 variables in a transaction, a long transaction

Demonstra tion in JIo bile Comp u ting

In this example. no operation is reIated to
each other because al1 varibles are using
only 1 time. so the Intra-dependency is
zero.

Figure 6.4: A Transaction wit h Zero Intra-Dependency

will result very high intra-dependency Thus. the GCP requires much more time to

compute the results.

Summary

There are two aspects to mesure the perforniance of the GCP: (1) Re-execution

Rate, and (2) Time Complexity. In a lightly-shared system with short transactions.

our simulation shows t tiat the GCP performs very well. We argue that the cut-off

point for using the GCP approach is 30% of data overlap. Sloreover. Our simulation

shows that the *'Intra-dependency' among a transaction is an important factor to

be considered. -4 transaction with high intra-dependency results in a high rate of

re-esecution and requires a long time to finish.

Demonstra tion in Alobile Comp u ting

Size of Transaction Time

31 sec

102 sec

217 sec

360 sec

766 sec

1603 sec

3420 sec

6012 sec

12561 sec

50569 sec

Table 6.4: GCP's Esecution Tirne for Different h m b e r of Operations

Number of Operations vs Execution Time

t 2 3 4 5 6 7 8 9 10
Number of Operations (XI 63)

Figure 6.5: The Graph for Sumber of Operations vs Xumber of Operations

Demonstra tion in .\Io bile Comp u ting

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has presented a new method for concurrency control for the disconnection

protocol in mobile computing. The main property of the proposed method is t o p r u

vide the highest concurrency. mobility and user transparency. as opposed to methods

which lirnit the concurrency level and require human interaction to resolve conflicts.

This thesis is divided into five parts:

1. Chapter 1 identifies the propert ies of mobile comput ing environment and presents

the problem domain of alloning concurrent data access between the fked servers

and disconnected mobile unit.

2. Chapter 2 reviews the research literature and discusses briefly about t heir work

and limitations which mot ivate t his t hesis.

3. Chapter 3 revises the traditional distributed transaction model and presents a

new mobile transaction model for the disconnect ion prot ocol.

4. Chapter 1 and 5 present the detailed design and implementation of the MVTC.

89

90 Conclusions and Future Ubrk

5. Chapter 6 shows the actual results of the new model. From the results. we

analyze and show its performance and limitations.

Performance of the GCP has been tested and presented. From the results, Ive

argue t hat SIVTC is feasible iii a lightly-stiared system. There are two advantages of

SIVTC over other methods: (1) user transparency. and (2) partial reexecution.

7.1.1 User Transparency

Al1 the existing methods require some human interaction to resolve codicts. In

contrast. 'IIVTC is fully automatic. The only time it fails to commit a transaction

is when a user's transaction is illegal baseci on application's pre-defined constraints.

For example: an attempt to withdraw money exceeding an account's limit. If conflict

occurs in a transaction. the SIVTC can identifj- it locally and globally. subsequently

resolves the conflicts automaticall. Users are not required to have special knowledge

to use the SIVTC. so it provides user transparency. For example: the travel agent

in Chapter 1 needs not know hon- to solve the air-ticket's probleni. If there is no

more space in United Airlines. the transaction manager Ml1 submit the alternat ive

transaction (to book a ticket from American Airlines) and commit the transaction.

The transaction manager handles the conflict by itself alone.

7.1.2 Partial Re-execution

When concurrent data access between the fked servers and disconnected mobile unit

is permitted. past work has resolved conAict,s by re-executing the whole conflicting

transaction. This t hesis has shown that this is suboptimal. Ure have presented the

GCP to detect and partially re-esecute only the conflicting operations in a codicting

transaction. This thesis shows how to apply compiler technology to analyze the static

information and reconcile committed mobile transactions to the f i e d servers. In Our

Conclusions and Future Mkrk 91

experiments. only half of the operat ions are required to be re-executed when a system

shares 30% of its data with both the L'ted servers and disconnected mobile unit during

re-int egrat ion.

7.2 Future Work

There are five areas not covered in this thesis. (1)Reliability (3) Failure detection.

(3) Formal Sleasurement of Intra-dependency. (4) the GCP for peer-tepeer service.

and (5) the GCP for multiple disconnected mobile units.

7.2.1 Reliability

Our mode1 does not discuss any issue related to the reliability of the system. A

recovery technique should be developed to ensure reliability. Recovery from transac-

tion failure usually means that the database is restored to a consistent state after a

failure. An obvious way to achieve this is to roll back and redo al1 the uncommitted

transactions during failure. Hon-ever. it is wry costly. so a recovery algorithm can be

developed which logs the transaction information in the GCP to minimize cascading

roll back during failure.

7.2.2 Failure Detection

This thesis assumes that an unreachable mobile unit is working in the disconnected

mode. However. if a mobile unit is actually failed. the system should be able to

determine it. The system alone cannot tell whether a mobile unit is working in the

disconnected mode or fails to operate because the system cannot reach the unit.

The mobile unit should inform the fked system when it expects to travel prior to

disconnection. If the mobile unit is unable to reconnect back to the fixed servers on

Conclusions and Future Nork

schedule. the spstem NiIl consider it as failure.

7.2.3 Forma1 Measurement of Intra-dependency

In t,he simulation of the GCP. we identify tliat the intra-dependency is one of the fac-

tors to determine the GCP's performance. The result shows that increasing the intra-

dependency d l lower the GCPws performance. but we do not explicit,ly and formally

state the relationship between the intra-dependency and the GCP's performance.

A forma1 mesurernent can be developed to indicate the level of intra-dependency

affecting t lie GCP's performance.

7.2.4 The GCP for Peer-to-Peer Service

In Our model. we do not allow two disconnected mobile units to exchange t heir infor-

mation. Nowever. t his requirement is too restrictive when two ciisconnected mobile

units wants to share some critical data in an isolated area. .A rnodified version of

the GCP (GCP for Peer-to-Peer service (CCP-PP)) c m be developed to allow two

disconnected mobiles to share their data without the fked servers' present . Upon

reconnection. the GCP-PP should be able to reconcile the transactions. Figure 7.1

illustrates the architecture of the GCP-PP.

In Figure 7.1. a disconnected mobile unit JIU; shares data with another discon-

nected mobile unit l\ILT2. Upon reconnection. the GTM of the GCP-PP should be

able to identify those shared data and reconcile the committed mobile transactions

globally.

7.2.5 The GCP for Multiple Disconnected Mobile Units

In our model. we only address the problem of reconcile one disconnected mobile unit

to the fixed servers at a time. However, two or more disconnected mobile units may

Conclusions and Future Work

Ur, ML' * -
'?, VP *

Fiowe 7.1: Architecture of GCP-PP

want to reconnect back to the iîsed servers at the same time. In oi ir model. v ;e only

allow t hem to re-integrate back to the fked servers serially. Thus. no concurrency is

involved. So. a modified version of the GCP. GCP for iW~ltiple Disconnected Mobile

Unit (GCP-MU). can be developed to handle the concurrency control of multiple

re-integration. The architecture of the GCP-MU is shonn in Figure 7.2.

In Figure 7.2. the GTSI of the GCP-LIU accepts and reconciles several transactions

from different disconnected mobile units at the same time. These eommit.ted mobile

transactions might access the same set of data. so conflicts may occur among them.

The GCP-!du' is responsible for det ect ing conflicts and reconcile t hose transactions

concurrently. 1Ioreover. it should guarantee the serializability among t hem. Main-

taining serializability involves transaction scheduling and conflict detection among

those disconnected mobile transactions. In addition. the GCP-MU should be able to

detect and avoid deadIock.

Conclusions and Fu t ure bbrk

GCP-MU
I

Cs, CS;

Figure 7.2: Architecture of GCP-SIU

Bibliography

[BAI931 B. Badrinath. A. Xcharya. and T. Imielinksi. Impact of llobility on

Dist ribut ed Comput a t ions. Operating System Review. 2 (X) : 15-20. April

1993.

[BG80] P. Bernstein and S. Goodman. Timestamp based Algorithrns for Concur-

rency in Distributed Dat abase Systems. In Proceedings 6th Intern~tzonal

Very Large Database. pages 285-300. October 1980.

A. Beguelin and E. Seligman. Causalit-Preserving Timestamps in Dis-

tributed Programs. Technical Report C'r IU-CS-93- 167. Carnegie '\ lellon

University. June 1993.

[Chr93] P. Chrysanthis. Transaction Processing in Mobile Computing Environ-

ment. In Proceedings of the IEEE Worhhop on Adtvances in Parallel and

Distnbuted System. pages 77-83, October 1993.

[Duc921 D. Duchamp. Issues in Wireless Mobile Computing. In IEEE International

Proceeding 3rd Worhhop on Worhtat ion Operating System. pages 1-7.

Key Biscayne. FL. April 1992.

[EJB95] A. Elmagarmid. J. Jing. and O Bukhres. An Efficient and Reliable Reser-

vation Algorithm for Alobile Transactions. In Pioceedzngs of 4th Inter-

Bi bliograhy

national Conference on Inforamtion and Kno.wledge Management, pages

90-95. Vancouver. B.C.. 1995.

P. Graham and K.;. Barker. Improved Scheduling in Object Bases Using

Statically Derived Information. The International Journal of hlicrocom-

puter rlpplicationî. lJ(3) : 114-122. 1995.

P. Graham. K. Barker. and A. Hadaegh. Disconnected Objects: Rec-

onciliat ion in a Sested Object Transaction Environment. In ECOOP'96

Worhhop on Mobiiity and Replication (CVMR). Linz. Austria. July 1996.

A. Hadaegh. K. Barker. and P. Graham. Partial Re-Esecution: Cornplex

Reconciliation of Transactions to increase Concurrency in Objectbases. In

(submztted to) Pnnczples of Database Sgstems. 11- 1997.

J. Heidemann. Primarily Disconnected Operat ion: Esperiences Mt h Fi-

cus. In Proceedings of the 2nd IEEE Workshop on the Management of

Replicated Data. pages 2-5. l\lonterey. Sovember 1993.

L. Huston and P. Honeyman. Disconnected Operation for AFS. In Proceed-

ings of the 1993 uL;EYIX Symposium on Mobzle and Location-Independent

Computing. pages 1-10. Cambridge. MA. .\ugust 1993.

D. Huizinga and K. Heflinger. Esperience with Connected and Discon-

nected Operations of Portable Sotebook Cornputer Systems. In Proceed-

ings of the IEEE Workshop on Mobile Computing Systems and Applica-

tions. pages llg-I03. Santa Cruz, December 1994.

P. Honeyman and L. Huston. Communications and Consistency in Mobile

File Systems. In IEEE Persona1 Communications, Special Issue on Mobile

Computing, December 1995.

[1 B93]

[IB94]

[JBE95]

[KR811

[KS92]

[Lam 781

[LS94]

[OV90]

P P ~

T. Imielinski and B. Badrinat h. Data M anagement for Mobile Computing.

SIGMOD Record. 1(23):3-39. Slarch 1993.

S. Imielinksi and B. Badrinat h. Mobile Wireless Comput ing: Challenges

in Data Management. Communication of A CM. 3?(lO). 1994.

J. Jing. O. Bukhres. and A. Elmagumid. Distributed Lock Management

for Mobile Transactions. In Proceedings of the 15th International Confer-

ence on D ~ s ~ b u t e d Computing System. pages 118-125. Vancouver. BC.

June 1995.

H. Kung and J Robinson. On Optimistic Sfethods for Concurrency Con-

trol. ACM Transaction Databme System. 2(6) . June 1981.

J. Kist ler and SI. Satyanarayanan. Disconnected Operat ion in the Coda

File System. ACM Transactions on Computer System. 10(1):3-25. Febru-

ary 1992.

L. Lamport. Time. Clock. and Ordering of Event in a Distributed System.

Communications of the A Chf. 2 1 (7):358-563. July 1978.

Q. Lu and 11. Satyanarayanan. Isolation-Only Transactions for Mobile

Comput ing. Operating System Review. pages 8 1-87. April 1994.

SI. 0zsu and P. Valduriez Principles of Distributcd Database System.

Prent ice Hall. 1990.

Papadimitriou. On Concurrency Control by SIult iple Versions. A CM

Transactions on Database Systems. 9(1):89-99, March 1984.

E. Pitoura and B. Bhargava. Dealing with Ilobility: Issues and Research

Challenges. Technical Report CSD-TR-93-070. Purdue University. Yovem-

ber 1993.

E. Pitoura and B. Bhargava. Building Information System for Mobile En-

vironment. In Proceeding of the International Conference on Information

and Knowledge. pages 371378. Gaithesburg, MD. Soveniber 1994.

E. Pitoura and B. Bhargava. Revising Transaction Concepts for SIobile

Coniputing. In Proceedings of the IEEE CVorhhop on ibiobile Systems and

Applications. pages 16-1-168. San Cruz. CA. December 1994.

E. Pitoura and B. Bharagava. Slaintaining Consistency of Data in Mobile

Distributed Environment. In Proceedings of 15th International Conference

on Dzstrib~uting Compu ting System. pages 404413. Vancouver. BC. May

1995.

F. Schneider. -4 Paradigm for Reliable Clock Synclironization. Technical

Report TR86-735. Coriiell University. February 1986.

[SKSf'93] SI. Satyanarayanan. J. Kistler. L. Slummert. I l . Ebling. P . Kumar. and

Q. Lu. Experience with Disconnected Operation in a Mobile Computing

Environment. In Proceedings of the 1993 USENIX Symposium on Mo-

bile and Location Independent Computing. pages 11-38. Cambridge. SIA.

August 1993.

[SNX185] M. Sinha P. Nanadikar. and S. Slehndirtta. Timestarnp based Certi-

fication Schemes for Transaction in Distributed Database Systems. In

Proceedings AChd SIGMOD International Conference on Management of

Data. pages 402411. May 1985.

T. Srikanth and S. Toueg. Optimal clock synchronization. Technical Re-

port TR-û4-656. Corne11 University. December 1984.

C. Tait and D. Duchamp. Service Interface and Replica Slanagement

Algorithm for Mobile File System Clients. In Proceedings of the 1st In-

ternational Conference on Parallel and Distributed Information System.

pages 19&197. 1991.

R. Thomas. -4 Solution to the Concurrency Control Problem for Multiple

Copy Dat abases. In Proceedings COMPCON Conference. pages 56-62.

,\;.Y.. 1978.

E. Zadok and D. Duchamp. Discovery and Hot Replacement of Repli-

cated Read-Only File Systems. ni th Application to llobile Computing.

In Proceedings of the 199.3 Summer CrSELYI,Y. pages 69-85. Cincinnati.

June 1993.

l MAGE EVALUATION
TEST TARGET (QA-3)

APPLIED A I M G E . lric - = 1653 East Main Street - -. , , Rochester. NY 14609 USA -- -- - - Phone: i l 6/482-O3OO -- -- - - Fax: 716t288-5989

