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Abstract 

Wireless technology inspires many neew thovghts to the traditional distn'buted database 

systems. w*Disconnection" 2s a standard operation of the mobile computing which the 

traditional distributed systems usually treat as a Jaihre. A mobile unit inforrns the 

jked servers pnor  to disconnectzon. During the time of disconnectzon. the mobile unit 

operates by ztseIfwith no network support. L'pon r-econnection. the fized servers shoz~ld 

be able tu synchronize the updates and commit the transactions made by the mobile 

unit during the disconnecting pen'od. .-Lllouing the disconnected mobile units to  op- 

e n t e  alone may generate sc me conflicts upon reconnection. This thesis presents the 

kfulti- çérsion Tzmestamp Certification for Disconnection Protocol in Mobile Com- 

puting to resolve the data inconsistency caused by the disconnection protocol. The 

objectives of this new protocol includes: (1)  to solve data consistency problem between 

the distributed static seruers and mouing mobile units and (2) to nmximize transaction 

concurrency for transactions. 
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Chapter 1 

Introduction 

Rapid technological improvements in wireless communication and the increased func- 

tionalities found on small portable notebook computers opens new research oppor- 

tunities in distributed systerns [BAI93. Duc92. IB93. IB94 PB93]. -4 goal of mobile 

computing is to provide the geatest  mobility possible to the  users [BAI93. Duc92. 

IB93. IB9-11. Mobile units are able to move between different locations while re- 

maining connected to a nireless network. ‘\labile computers frequently operate in a 

disconnected or doze niodel. Thiis. mobile computing is a dynamic distributed system 

in contrast to traditional distributed systems which are considered static. 

Powerful light weight laptop compiiters have become cornmonplace recently [HH94. 

IB93. IB941. Modern laptop computers can provide the same functionality as desktop 

computers and. at the same time. provide mobility to mers. Users can communicate 

with LAS. WAX. and Internet throiigh a laptop cornputer. The large disks now found 

on laptop computers are able to riinofice sized applications such as word processing 

and mail program without any network support (BAI93. HH931. We define office 

sized applications as  those t hat do not require network support to operate. However. 

a mobile unit does not work as a file semer for both security and availability reasons. 

'Energy saving mode. 
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In a sense, a mobile unit is a moving client in client-semer environment. Thus. a 

mobile client functions exactly as any client. and it can move and operate in partly 

or fully disconnected modes. 

Sfobile computing hm created a new application area for existing distributed 

systems. Several vertical applications' of mobile wireless comput ing including: taxi 

dispatch. mail tracking. car alarm systems. etc. The most frequently mentioned 

applications for horizontal applications are mail enabled and information services to 

mobile users. 

Mail enabled services dlow mobile users to send or receive electronic mails. An- 

other common application of mail enabled services is electronic news senn'ces. Elec- 

tronic news services can deliver current information to mobile iisers based on indi- 

vidual profiles or preferences. For example: a stock broker may want to know the 

current status in the stock market whiie traveling to meet a custorner. The broker 

c m  connect via a ~iotebook cornputer and a cellular phone to retrieve the appropriate 

informat ion. 

1.1 Architecture 

Two mobility models eldst in the current research papers. The first model consists 

of a fully dynamic environment where everything is mobile in the system [Chr93]. 

Thus clients and file servers are expected to change locations from time to time. 

The second model consists of trio distinct sets of entities: fked hosts and mobile 

units. Some h e d  hosts (called mobile support stations (MSSs)) are augmented with 

wireless interfaces to enable communication with mobile hosts and are located within 

a coverage unit cailed a cell. A mobile unit can then move within a ce11 or between 

'Horizontal applications are domain independent. a s  opposed to the vertical applications which 

are written for a specific application domain [BAI931 
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two cells while retaining its network connection. Fked hosts are statically connected 

by nires and maintain a high-speed connection al1 the time. The second model is 

more realistic so most research has focused on that paradiop. Figure 1.1 shows the 

second model [EJB95. IB94. JBE95. KS92. PB93. PB94aI. 

Wmfus Ccll W i r r l ~  Ccll 
. - - .  . 

. - -. 

mSfH .-MH MHI 
MH WH 

.ML' - Mobile Cnit 

VSS - Mobile Suppon Suuon 

Figure 1.1: Slodel of a System to Support Slobility 

1.2 Operation Modes 

For tradit ional distribut ed systems. a host operates eit her in connected or discon- 

nected mode. Disconnection may be caused by either network failure or server fail- 

ure. !dobile environment has additional operating modes not typically found on fixed 
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networks. Pitoura and B haragava [PB93. PBS-Ia] summarized the different modes. 

(see Figure 1.2). 

Figure 1.2: States of Operation of a Mobile Unit 

In Figure 1.2. there are four states representing the different modes in which 

a mobile unit can operate. The mobile unit switches its operation mode between 

them depending on need. The transactions in Figure 1.2 represent the conditions 

and protocols of snitching modes. For example: if a mobile unit is disconnected 

from a fixed network. it will switch from fully connected mode to disconnected mode 

by executing a disconnectzon protocol. M e r  a while. when the disconnected mobile 

unit wants to Save battery life. it switches from disconnected mode to doze mode. 

Subsequent iy. when the disconnected mobile unit wants to reconnect to  the fixed 

servers, it is reactivated back from doze mode to disconnected mode, then it executes 
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a re-integration protocol and switches from disconnected mode to connected mode- 

When switching modes. the mobile unit is required to execute some protocols. 

These protocols are used to maintain the smooth transition from one mode to another. 

For example: when a mobile unit wants to disconnect from the fixed network. the 

disconnection protocol will operate and dondoad al1 the necessary files and data  to 

the mobile cache. While disconnect ing. the disconnection pro toc01 keeps running and 

monitors the transactions running on the disconnected mobile unit. The condit ions 

and responsibilities of the protocols are as follows: 

A hand-oflprotocol is used when the mobile unit wants to cross the boundaries 

of a cell. 

A partly-disconnection protocol is executed nhen very limited network services 

are available. A mobile unit should restrict communication as much as possible 

to  the fked network. 

A disconnection protocol is executed before physically detaching the mobile unit 

from the fked servers. The disconnected mobile unit can t hen continue to  work 

using the data in its cache. When the unit reconnects to the L ~ e d  servers. 

the updates made while it is disconnected is then passed to an agent that re- 

integrates the updates to the fked servers. 

A re-integration protocol is execut ed when a disconnected mobile unit wants 

to  reconnect to the fixed sen-ers. It heips the system to verify and merge the 

transactions run on the disconnected mobile unit to the fked seniers. If conflicts 

are ident ified. the re-integration protocol will at tempt to resolve the conflicts. 

Although cornputational power improves rapidly. energy technology improves more 

slowly. Battery consuniption is still a major problern for mobile units [IB93, IB94]. 
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Doze mode operation reduces energy waste on notebook cornputers because it avoids 

transmissions until absolut ely necessary. 

A mobile unit cannot maintain full network connectivity as it must function in 

Partly Connected or Disconnected modes. Partly-Disconnection and Disconnection 

protocols are developed to handle t hese situations. The key idea of t hese two prot oc01 

is allowing the mobile unit to continue working while isolated. 

1.3 Problem Domain 

Several issues differentiate mobile syst ems from tradit ional dist ribut ed syst 

include: 

ems. The 

1. Mobility during the course of a transaction [Chr93. EJB95. GBH96. HH95. 

IB93. IB94. JBE95. P893. PB94a. PB9lb. PB95]. 

2. Communication speeds are slower ni th  mobile units [BAI93. IB93. IBS-I]. 

3. Transactions are typically long-lived [Chr93. PB931. 

4 Maintaining consistency of data over al1 distributed sites is estrernely difficult 

in a mobile computing environment [HH95. LS9-I. PBS-la. PB94bI. 

These paradigms introduce new technical issues in the area of distributed database 

systems [BAI93. Duc92. HH91. HH95. IB93. IB9.1. PB931. For example: when a 

site cannot be reached. traditional distributed database management systems assume 

that the site is failed. In contrat ,  the disconnection protocol [Hei92. HH93. HH94. 

HH95. KS921 is a basic function of mobile computing. so mobile database management 

systems do not make the same failure assumption. For example: Unit A copies al1 

the necessary files to its cache, and then disconnects from the main office to  travel to  

a branch office. During the journey. a file on the laptop computer is updated. At the 
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sarne time. Unit B updates the same file on the h e d  sen-er. When Unit A reconnects 

to the kued network. a conflict occurs. This scenario does not happen in traditional 

distributed systems because the disconnected unit would be considered failed. 

Current ly. almost al1 researches concentrate on hIobiZzty and Scale. Location Man- 

agement. Bandwidth and Energy Management. Disconnection Protocol. Mobile File 

Systems [TD9 1. ZD93] and Mobile Transaction Management [Chr93. EJB95. JBE95. 

LS94. PB951. However. very little work has been done on concurrent data access 

and its impact when disconnect ion protocol is permitted. The disconnect ion protocol 

must be invest igated to revise the distributed transaction management algorit hms. 

Figure 1.3 prokldes an overview of t his t hesis's goal. 

1 T '  
Consistent i 

Daubase 1 i 
1 i 

L 1 1  

Figure 1.3: General Slodel of Re-integrat ion 

In Figure 1.3. there are four components: (1) a set of transactions running on a 

k e d  server. (2) a set of transactions running on a disconnected mobile unit. (3) a 

re-integration agent. and (4) a set of transactions running on a consistent database. 

IVhen a mobile unit is disconnected from a L ~ e d  server. it continues its work based 
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upon the data in its cache, so we have a set of transactions running on the disconnected 

mobile unit. Concurrent 1- the Lxed server executes its normal daily transactions 

which creates anot her set of transactions. When the disconnected mobile unit wants 

to reconnect. n-e need a re-integration agent to  verify and merge those transactions 

running on the mobile unit to the Lsed server. After the re-integration. the system 

should return a consistent database. The re-integration agent is the heart of the 

whole process. It should be able to identi- and resolve any potential conflict and 

guarantee serializat ion after merging the transactions on the mobile unit to the £ked 

server. 

1.4 Motivations 

Slany modern proposed solutions to the conflict problem involve some user input [Hei92. 

HH93. HH94. KS92. LS9-41. For example: suppose that a travel company downloads 

al1 the information such as airlines' schedules and hoteis' resewation once a day. 

A11 the travel agents in the company share the data locally instead of connecting 

to different networkç. In this particular case. al1 of the travel agents are working 

with "disconnected data*'. Suppose that an agent helped a customer to schedule a 

vacation in !diami. The agent asked the customer his favourite airlines. hotel and 

local tours he wants to join in Sliami. The customer might choose to take United 

Airlines to Sliami. stay in Holiday Inn and join a local tour to Disney World. For this 

transaction. there are three operations: opl: book an air-ticket. op2: reserve a hotel 

room. and op3: reserve a space in the tour to Disney World. Unfortunately, when 

the system reconnected back to the server, d l  seats from United Airlines have been 

already booked so the transaction must be aborted. This thesis argues that the agent 

could submit one more alternative transaction. If the master transaction contains 

confiicts, the alternative transaction will substitute it. In this example. the rnaster 
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transaction is to book a ticket from United Airlines: the alternative transaction could 

be to  book a ticket from American -4irlines. This thesis shows that the transaction 

manager can automat ically replace the codicting transaction using the alternat ive 

transaction and commit it . 

Furt hermore. during the time of disconnect ion. the database showed 100 empty 

rooms left in Holiday Inn. However. the Holiday Inn's database shows that only 

90 rooms are left when connected. In the agent's point of view. 90 or 100 empty 

rooms make no difference as long as he can reserve a room for his customer. In 

the transaction management's point of view. op2 violates the serializability because 

it read stale data. Traditional approaches mil1 abort and roll back this transaction 

even though only ap2 generates conflict. But. this thesis argues that using static 

analpis [GB95]. we can avoid re-esecuting the rvhole transaction. 

Let us consider another case: A medical company o n  two hospitals. In order 

to reduce operational espenses. only one accountant is employed so he is responsible 

for both hospitals. The accountant spends only one day in each hospital monthly. 

and the rest of the month in the headquarter. Each time he travels to  one of the 

hospitals. he downloads the financial information from the hospital's database in his 

notebook and audit it in the headquarter. In this case. the accountant is working with 

a "disconnected data". In the end of each month. the accountant travels back to  the 

hospitals. reconnects his notebook and submits the transactions he did in the head- 

quarter back to the hospital's database. Since the information such as employees' 

salaries and maintenance fee does not change frequently. we c m  expect that most of 

the transactions can be commit ted successfully. But. suppose that the management of 

the medical company agreed to increase one of the doctor's s a l q  in hospital A. this 

change does not reflect on the accountant's notebook immediately. If the accountant 

submits a transaction which pays salaries to al1 200 ernployees in hoûpital A, this 
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transaction must be aborted and rolled back even though only one s a l q  is changeci. 

This scenario is inefficient and undesirable. 

This thesis argues t hat previous approaches need to re-execute the whole conflict- 

ing transaction which is not always n e c e s s q  [PB95]. A Multz-uersion Tirnestamp 

Certification for Disconnecfion Protocol in Mobile Computing is presented to address 

the new transaction paradigms found in mobile comput ing environment. The primary 

objectives of the algorit hm are: 

1. solving data consistency problem between the distributed static servers and 

moving mobile units. and 

2. maximizing transaction concurrency for transactions. 

Before explicit ly discussing Our approach. the ,\fulti- Version Tirnestamp Ordering 

Algorithm and Optimistic Certification Scheme are required. Our model is based 

upon t hese two algori t hms. 

1 A.1 Multi-Version Timestarnp Ordering Algorithm 

Times tamp Ordenng algorit hm (TO) [BG80. OV901 ensures serializability using a 

non-atomically increasing logical timestamp. A basic TO algorithm never causes 

transactions to wait. but may require them to start. To restart transactions is un- 

desirable. so rnulti-verszon timestamp ordering algorithm (SIVTO) [ P a p a .  Tho781 

attempts to eliminate the restart overhead. AIVTO does not modify the database us- 

ing a m i t e  operation. Instead. it creates a new version of that data item marked by 

the timestamp. If a read operation (read(z) )  is issued, the system Nil1 fetch a version 

of x where ts(z,) is the largest timestamp less than ts(read(x))  to the operation. For 

exampie: Ti wants to read x. However, T, = { w j ( z ) }  has been committed where 

ts(T,) < ts(T,).  In basic TO, Ti must be aborted and restarted. But, in hIVTO, TT; 
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can still commit because T, c m  read the latest version of x where ts(r,) < ts(S,).  

The SIVTO trades space for time because it requires e-xtra storage to keep the old 

version of data. 

1.4.2 Optimistic Certification Scheme 

Kung and Robinson [KR811 designecl an optimistic concurrency control algorithm for 

a centralized database of low concurrency Sinha. Sanadilm and Slehndiratta [SSS185] 

moved one step further and introduced a timestamp based certification algorithm for 

distributed database systems. An optimistic concurrency control algorithm assumes 

that  concurrent transactions are infreqiient. so it will not check for any conflicting 

operat ion until the End- Transaction is issued. The algorit hm commits the trans- 

action if no conflict occurs. or aborts and restarts it othemise. Thus. a consistent 

database is alaays maint ained. This algorit hm is more efficient for most ly-read-only 

database such as query-dornain database because there is no locking involved. thereby 

eliminat ing the associated delays. 

Pushing the validate phase after compute phase reduces the overhead time be- 

cause the transaction manager allons transactions to compute first nithout checking 

any cod ic t  among thern. This scheme reduces the time spending on predicting p* 

tent ial confticts during the esecut ion of transactions. A transaction is validsted by 

the transaction manager nhen a commit signal is received. If no conflict occiirs. 

the  transaction is committed: othemise. it is aborted. In a lightly-shared system. 

confiicts are rare. Using optimistic certification scheme can Save the overhead time 

of predicting conflicts. However. if a system shares its files heavily, the optimistic 

approach is not appropriate because many transactions must be aborted and redone. 

Figure 1.4 shows the sequence of phases of pessimistic and optimistic transaction 

esecut ions. 
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i 

Vaiidrue R e d  Compute Write 

a. Pessiniist ic Concurrency Protocol 

R e d  Cornpute Validate Write 

b. Opt irnist ic Concurrency Protocol 

Figure 1 A: Phases of Transaction Execut ion 

.LIVTO is suitable for a mobile computing environment because it does not abort 

read operations which are mostly used in mobile computing environment. A stand- 

alone disconnected mobile unit is operated in isolation: hence simultaneous sharing 

of data should happen raxely which suggests the certification scheme be used. 

This t hesis develops a new transaction mode1 similar to  [GBH96]. The new 

mode1 is able to record the modifications in a transaction at execution time in the 

disconnected mobile unit and provide information to analyze and resolve conflicts 

using stat ic analysis [GB95] upon reconnect ion. 

A locally committed mobile transaction ail1 result in a conflict if stale data is 

read during the time of disconnection. Traditional approaches can only base on the 

dynamic readlwrite operations or transaction submission order alone to roll back the 

transaction. Such approaches are based 011 exact but extremely limited inforrnat ion. 

Applying the static analysis can derive more extensive but inexact information to  

resolve the conflict at compile time and guide the transaction manager to commit the 

transaction at run-time [GB95]. Thus, concurrency cont rol overhead is reduced by 

shifting some of the effort to  compile time. 

Unlike run-t ime scheduling method to detect the confiict at run time and roll back 
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conflicting transactions. a static andysis retrieves and analyzes the static information 

of a transaction to predict and resolve conflicts prior to the execution of commit a t  

run time. In ot her words. a mechanism is developed to analyze the  static information 

of a transaction to predict where conflicts a i s e  and attempt to resolve them prior 

to committing the transaction. The consequences of using static analysk c m  remove 

any overhead associated with scheduling and guarantee a successful commit at run 

t ime. 

During the esecution time. we allow the fked servers and disconnected mobile 

units to run t heir transactions concurrent ly. Upon reconnect ion. we apply Partial 

Re-ezecutzon [HBG97] using static analysis to analyze and reconcile the conflicting 

transactions at compile t ime before commit ting the transactions at run t ime. 

1.5 Contributions 

This thesis at tempts to achieve the following: 

1. Invest igate the propert ies of a mobile computing environment. Furt hermore. 

identi- the problems and difficulties t o  allow concurrent. data access in both 

the fked servers and disconnected mobile units. 

2. Review the existing research literature and determine their limitations in solving 

data inconsistency caused by the disconnection protocol in a mobile computing 

environment. 

3. Revise the t radit iond distributed transaction model and introduce an improved 

mobile transaction model suit able for the disconnected mobile unit. 

4. Combine Sinha. Sanadikar and Slehndirtta's [SNM85] and Hadaegh. Barker 

and Graham's [HBG97] work to develop a new transaction management for the 
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disconnec t ion protocol. 

5. Implement . demonstrate and analyze the results of the new transaction model. 

From the results of the e.xperiment. we discuss its performance and limitations. 

1.6 Assumptions 

Based upon the obsenxtion [KSE.  SE(W931. the authors conclude that laptop users 

are very aware of the operations they use while traveling [HH93]. Sloreover. they 

will eventually connect their laptop cornputers back to the k e d  servers and report 

their updates during the time of disconnection. Furthermore. to prevent the lost of 

crit ical data items from the fised network. nie do riot aHow the moving disconnected 

unit to hoId any p r i m q  data. Al1 data in the mobile cache is replicated from the 

h e d  servers. To reduce the overhead time and coniplexity of re-integration. ive do not 

allow any direct comrnunicat ion between disconnected mobile units. The assumpt ions 

are summarized below: 

Since people are able to operate for extended period in isolation. they are quite 

good at predicting t heir needs for future file access. 

The workload of engineering/office applications generally consists of sequentid 

read-wite sharing. but little simultaneous sharing [HH93. SK41+93]. 

The disconnection period is short. and the disconnected mobile unit will even- 

tually reconnect back to the servers [Hei92. HH93. HH94. SKM + 951. 

The data in the k e d  servers is the prirnary one. The data in the disconnected 

mobile is replicated from the fived servers. 

Mobile units do not directly communicate with each other. Any inter-mobile 

data exchange occurs through connection to the fixed network. 
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1.7 Thesis Organization 

This thesis is organized a s  follows: Chapter 2 discusses the related work to  imple- 

ment the disconnect ion prot ocol. and designinp the mobile transaction rnodel and 

management system. Chapter 3 presents a new mobile transaction model. Chapter 4 

presents the general model and overview of the Multi- Version Tzmestamp Certifica- 

tion for Disconnection Protocol ln i2ïobzle Computing. The detailed implementation 

of the Local Transaction Certzfication Scheme ni11 also be presented in Chapter 4. 

Chapter 5 discusses and presents the oven-iew and detailed implementation of the 

Global Commit Protocol. The demonst rat ion of mobile comput ing is presented in 

Chapter 6. Finally. conclusions and future work are given in Chapter 7. 





Chapter 2 

Related Work 

2.1 Introduction 

Sluch work has been done on the mobile computing environment [ChrSS. EJB95. 

GBH96. Hei9P. HH93. HH94. JBE95. KS92. LS9-4. PB95. TD91. ZD93]. We can 

divide them into two categories: (1) Mobile File Systems and (2)  Mobile Transaction 

Llanagers. First. we discuss the effects of adding mobility to the distributed file 

systems and some related work that solves their problems. Then. we discuss the 

mobile transaction managers and provide some new methods to revise the traditional 

distribirted transaction managers to meet the needs of a mobile transaction manager. 

2.2 Mobile File System 

Several issues have been addressed when adding mobility t O dist ributed syst ems [Hei92. 

HH93. HH95. KS92. TD91. ZD931. This thesis concentrates on the effect of allow- 

ing the disconnection protocol. The disconnect ion protocol in mobile comput ing is 

different from failure. The mobile units can inform the h e d  network of an impend- 

ing disconnection prior to its occurrence and execute a disconnection protocol. A 
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disconnected mobile unit can continue working using data in its cache. When the 

unit reconnects. it passes the updates made while disconnected to an agent that 

re-integrates t hose updates to the servers. 

Generally. a mobile unit copies files from a network. works on the files when it k 

disconnected. and then restores the updated information to the network. The sys- 

tem should prevent the user hom accidentdly overn~iting another user's work in an 

automatic way [HH93]. M t  hough the strength of the disconnection protocol is it per- 

mits mobile units to continue working when the network is inaccessible. inconsistency 

of the shared data in the disconnected mobile units and servers rnust be carefully 

avoided. 

2.2.1 Disconnection Protocol in Coda 

Kistler and Satyanarayanan [KS92] implement the disconnection protocol in the Coda 

file system' . They implement the disconnect ion protocol as a user-level process called 

Venus. Venus uses opt iniist ic replicat ion. The assumpt ion is t hat simult aneous mite- 

sharing happens rarely in the USIX SFS so an optimistic approach will yield better 

performance in a lightly-shared system. Venus operates in one of the three states: 

hoardzng. emulation. and re-integration Figure 2.1 illustrates transaction states found 

in a Venus process. 

Venus is in a hoarding state while the mobile unit is connected. It replicates 

server's data. executes transactions in the mobile unit. and reports updates to the 

semer. Venus moves from a hoarding state to an emulation state while it is discon- 

nected. Venus emulat es server's operations when the network connect ion is inacces- 

sible. During the emulation state. the cache manager logs al1 the accessed objects 

and reports to the user if a cache miss occurs. During reconnection. Venus enters the 

'Coda file system is a distributed systern developed on INX. 
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Figure '2.1: Venus States and Transaction 

re-integration state. resynchronizes its cache wit h the server. and returns to hoarding 

state. In the re-integration state. t hey propose a replag algorithm to re-integrate the 

data in the local cache and the data in server together. 

The replay algorit hm consists of four phases. In phase 1. the log in the discon- 

nected mobile unit is esamined. a transaction is begun. and al1 objects referenced in 

the log are Iocked. In phase 2. each operation in the log is vahdated and then ese- 

cuted. The validation contains conflict detection and integrity protection. In phase 

3. the actual data transfer process is done. In phase 4. the transaction is committed 

and al1 loch  are released. Venus's optirnistic algorithm means conflict is possible at  

re-integration. The authors only consider write/utn'te conflicts because they claim 

r e a d / m t e  conflicts are irrelevant to the U N X  file system because it has no notion 

of atomicity beyond the boundary of a single system d l .  The conflict detection is 

straightfomard. Each data item has its onn storeid t hat uniquely identifies the 1 s t  

update to it. During phase 2 of the replay algorithm. a server compares the storeid 

of every data item in the log of the mobile unit with the storeid of its own replica of 
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the data  item. If the comparison indicates equality for ail data items. the operation 

is perforrned and the mutated data items are tagged with a new storeid specified in 

the log e n t .  If a storezd comparison fails. the entire re-integration is aborted. 

Venus attempts to provide the disconnection protocol for the Coda file system. It 

modifies the exist ing distributed file system and cache manager to guarantee availabil- 

ity and consistency of data items. Unfortunately it does not automatically solve the 

problern of data inconçistency caused by conflicting transactions during the time of 

re-integration. The replay algorithrn on& logs and reports to the user where codic ts  

occur. Users are required to resolve coriflicts manually. 

2.2.2 Disconnection Protocol in AFS 

Similar to Venus. Huston and Honeyman [HH93] present the disconnected operation 

in AFS2 which also modifies the existing distributed file system and cache manager 

to make the disconnection protocol possible. The remote cache manager logs al1 the 

accessed data items during the time of disconnection. and compares the logs to the 

file server upon reconnection. The disconnected operation in AFS resolves codic ts  

by copying the codicting object in the mobile unit to a new object in the file seners  

and informs the user. The user t hen decides which objects he urants to discard. Once 

again. the disconnected operat ion in -4FS concentrates on the effect of the distributed 

file system. The transaction management issues are not addressed esplicitly. 

2.3 Mobile Transaction Management 

Adding rnobility to the distributed transaction managements creates new problerns 

that need to be researched. There are two major issues: (1) Relocation Problem. 
- -  

2,4ndrew File System (-4FS) is a distributed fiie system built on UMX. 
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and (2) Frequent Disconnection. hluch work [GBHSG. JBE95. LS9-1. PB951 has been 

undertaken. The work focuses on maintaining serializability and minimizing message 

exchange in the network. 

2.3.1 Isolation-Only Transaction for Mobile Comput ing 

Lu and Satyanarayanan [LS94] develop the Isolation-Only Transactions (IOT) for 

mobile computing. An IOT is a flat sequence of file access operations bracketed by 

a begin-iot and an end-iot. The IOT execution mode1 uses an optimistic concurrency 

control mechanism so the client's local cache is a priwte workspace for transaction 

processing. There are two classes of transactions for the IOTs: (1) First class trans- 

action whose esecution does not contain any partitioned file access. and (2) Second 

ctass transaction whose esecution contains partit ioned file access. Part itioned file ac- 

cess means that a file is shared by both the fked senrer and the disconnected mobile 

unit. A first class transaction's results are visible on the servers once it commits. A 

commit ting second class transaction enters the pending state so it can be wlidated 

later. Figure 2.2 depicts the state transition diagram for IOT execution. 

comrnined 

i/i 
Figure 2.2: A State Transition Diagram for IOT Execution 
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In the diagram. t here are three cases where a transaction c m  be committed. The 

IOT execution guarantees that a first class transaction is always serializable because 

no partitioned data item is accessed. A second class transaction is always serializable 

locally but may not be serializable globally. If a second class transaction is not in 

confiict during global validation. the transaction will leave the pending state and be 

committed globally. If this option fails. the system ni11 suggest 4 options: (1) re- 

execut ing the transaction. (2) invoking the transaction's application specific resolver . 

(3) abort ing the transaction. and (1) not iking the users and wait for furt her decision. 

For example: if a transaction is used for editing the files of a cc>-authored paper 

on a disconnected laptop. this option is useful for coordinating possible concurrent 

updates. Unlike the disconnection protocols in Coda and AFS. IOT attempts to 

maintain transaction serializability. However. it cannot resolve conflicts at the system 

level so the user must decide what to do. 

2.3.2 Optimist ic Two Phase Locking for Mobile Transaction 

Jing, Bukhres and Elmagarmid [JBESj] adapt the optirnistic two phase locking 

(02PL)  algorit hm to the mobile environment and cal1 it the optimistic two phase lock- 

ing algorithm for mobile transaction (02PL-MT). The O2PL algorithm is developed 

for distributed replicated database systerns and uses a read-one wite-al1 concurrency 

control algorithm. The word optimistic is used because w ~ i t e l o c k s  are obtained just 

before the commit phase begins. but read-loch are obtained immediately from the 

local or nearest copy site when the read operation is issued. A read operation is 

very inexpensive within its local site when it is compared to the message-intensive 

approach when site boundaries are crossed. 

However, the aut hors show t hat mobility results in extra messaging for the 02PL 

algorithm. For example, suppose that a transaction Ti = { r ( x ) r ( ~ ) w ( z ) }  is executed 
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in a moving mobile unit. So. it issues r(q) in site 1. r(y2) in site 2 and ~ 4 2 ~ )  in site 

3. and x and y are replicated in sites 1. 2, and 3. When T, is committed in site 3. 

it must send unlock(xl) to site 1 and unlock(y2) to site 2. Thus. the system sends 

extra messages. Figure 2.3 depicts the example. 

Figure 2 3: .A 1 lobile Transaction Example 

In this traditional distributed systems. this scenario ail1 not happen because the 

positions of transactions are assumed to be fked. The aut hors daim that these extra 

message transmissions can be avoided in mobile comput ing. 

Consider the earlier example. Instead of sending unlock(xi) to site 1 and unlock( y2) 

to site 2. T, sends unlock(x3) and unlock(y3) to site 3 at commit time. The algorithm 

itself is not sufficient to guarantee the correctness of read-one mite-all criteria. so 
e 

some additional issues have to be explored: (1) readlocks must remain at remote 

sites until the coordinator decides to release the locks and commit a transaction 10- 
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cally. (2) An update transaction m u t  be able to determine that  the item to be 

updated has not been locked by other transactions for reading if the r e a d h c l ;  and 

unlock are esecuted at different sites. Such a check should have a low message cost. 

(3) A mechanism much be providecl to remove the pending read-locks at remote sites 

at proper time if the continuation of such locks ni11 affect the esecution of other 

transactions. 

In the traditional 02PL algorit hm. when a transaction requests a w r i t e l m k .  the 

systern will boardcast to al1 remote sites. If no pending read-lock is in effect. the 

transaction grants the u~ritelocl i:  ot liemise. it is blocked. This process requires only 

one round of message eschange. However. if the r e a d h c k  and unlock are executed in 

different sites. we need two rounds of message exchange to ensure the read-al1 write- 

one approach. In the first round. the system collects unlock information from al1 the 

copy sites involved. In the second round. while al1 sites indicate that the unlock has 

been esecuted. the system can send a message to allow the wri te lock  request to  be 

grant ed. 

The 02PLSIT algorithm is designed for a mostly-read-only mobile system. As 

we can see. granting a ~ ~ 2 t d o c k  requires two-round of message transmissions so 

a heavily n~ite-shared systeni will increase the number of message transmissions. 

lloreover. it addresses only the mobile relocation problem. it does not support the 

disconnect ion protocois explicit 1 .  

2.3.3 Mobile Transaction in Clustering Mobile System 

Pitoura and Bhargava [PB94a. PBNb. PB951 describe a transaction mode1 for mobile 

computing. They partition the mobile system into several clusters which are smaller 

in size and the clustered data is closely related. Transactions muçt maintain strict 

consistency within its cluster, but not necessarily across other clusters. The mobile 



Related Work 

unit and fk~ed servers can issue either weak hnsactions or str ict  transactions. For 

crit ical transactions. users issue strict transactions which guarantee global consistency 

when the transaction commits. t \ l e n  a strict transaction wants to commit globally. 

the system sends a commit request message to every participating site including 

mobile units and waits for their replies. This may be quite costly for mobile units 

because they may not be easily located. Moreover. some mobile units may operate 

in isolation so the system must either discard the transaction or wait for the mobile 

units' replies. 

On the ot her hand. a weak transaction on- requires strict consistency Mt hin its 

local cluster so it avoids the overhead of long network accesses. The authors argue that 

data clusters requiring shared access is rare across cluster boundaries. For esample: 

in a university community the Department of Computer Science does not share its 

data heavily with the Department of Statistic. Thus cornputer science users issue 

weak transactions within its local cluster. as do the statistics users. If a user does not 

require data consistency across two clusters. it ni11 never reIease strict transaction. 

Dividing mobile systems into clusters is an extension of network partitioning. 

However. two or more separated clusters may eventually need to rnerge their data. 

This merging can iead to conflict between the two clusters. A weak transaction 

issued in a cluster may contain inconsistent data that must be resolved when a strict 

transaction is issued. Resolut ion of inter-cluster serializability is accomplished with 

roll back transactions whose weak mites codict  wit h strict transactions [PB95]. Care 

must be taken to correctly rnerge cascading aborts that occur when the transaction 

manager re-does a transaction. 
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2.3.4 Reconciliation in a Nested Ob ject Transaction Envi- 

ronrnent 

Graham. Barker and Reza-Hadaegh [GBH96] extend the disconnect ion protocol to  an 

object-base system. They argue that the property of encapsulation in objects helps 

the re-integrat ing agent to reconcile confiicting transactions. In an object-based sys- 

tem. every object is encapsulated. If an operation wants to access any information in 

a particular object. it must go through the public protocols of the object. It imme- 

diately tells us that the system knows exactly what data items the operation wants 

to  access and what behaviour the transaction espected from the object. Based upon 

these definitions. a new concept of optimistic re-integration algorithm is described in 

the paper. A mobile unit downloads al1 the critical objects from the object-based sys- 

tem prior to disconnect ion. While the mobile unit is disconnected. the cache manager 

is responsible for logging d l  the object's behaviours at execution time. Since every 

object is encapsulated. the transaction manager knows what and how the changes 

occur. At the same time. the transaction manager in the k e d  file server logs al1 the 

modifications to the critical objects. During the reconnection. if there is any con- 

flict ing transaction reported, the re-integrating agent andyze the behaviour of the 

critical objects before executing global commit. It examines the changes logged on 

both objects in the mobile unit and the server during execution time, and determines 

whet her the changes should be integrated or not. An object ob can be replicated. We 

use SL to represent i replication of ob. An object ob moves from state Sd to qz using 

method rn, as Sd G'. According to the authors [GBH96]. s:''~' is equal t o  

~d> '* '  so the execution sequence of two methods does not affect the final result. For 

esample: a mobile unit replicated an object S i  in its cache. While the mobile unit 

is disconnected. it updated Sh to Gt using mi. At the same time. the fixed server 

updated its replica of S i  to ~2 using m,. Upon reconnection. the re-integrating 
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agent merges Ge and S? to S r .  

Figures 2.4 depicts the proces of object re-integration and illustrates two cases 

to re-integrate two conflicting objects to a new consistent object. The system can 

integrate SA and S& to 92' in two cases. 

w h m  

S, i s t h c b ~ o b j c c t .  S> is ihc new objerr in the disconnmcd mobile unit aftcr pcrforrning methad rn 

S: is the o b j ~ t   chc cd by the disconnccted mobile unit. 5:. is the ncw objoct in the fired file m e r  after pcrfonning merhod m, 

S, is Lhe m e  object which m i d a  on the server. S- is the new object rftcr the r.-integntion of S-. md S: 
m "e 

5: ands: arc identid. 

m , and ml arc the rnethods opcntcd in S ' and S' corrcspondingIy. 

Figure 2.4: Reconciliation of Ob ject-Base Syst em 

Sg'" can be obtained either from SA with method sequence mi and mj or from 

S$ with method sequence mj and mi. Since the re-integrating agent knonrs what, 

and how the objects have changed. the replay algorithm reconciles two methods t o  
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produce a nen consistent object. The worst case is discarding one of the critical 

objects and re-execut ing the c o d i c t  ing transaction. 

The authors present a reconciliation rnechanism suitable for a close nested object 

transaction environment. However. their whole idea is based upon the property of 

ob ject-orientation. For ot her database models such as relational and network models. 

this method is not appropriate. 
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Mobile Transaction Mode1 

Transactions are used to ensure consistent and reliable data management in addit ion 

to atomic and isolated user interaction. In t radit ional database systems. a consis- 

tent and reliable transaction has to satisk the ACID properties [OVgO]. Recent 

research [Chr93. HBG97. PBg-lb] has pointed out t hat advanced applications em- 

ploying comples data structures such as CAD and object base systems may require 

a relaxation of those properties. The invention of wireless medium and the discon- 

nect ion protocol has changed the concept of transaction management in distributed 

systems [EJB95. GBH96. HH95. IB93. IB94. JBE95. LS9.1. PB951. For example. in 

the t radi tional transaction management. disconnection means failure. but the dis- 

connection protocol in mobile computing environment is also a standard operation. 

This t hesis int roduces a new mobile transaction mode1 suit able for the disconnect ion 

protocol and shows that it is sufficient to maintain correct data. The correctness 

criterion used in this thesis is codict-serializability. 
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3.1 Transaction Properties 

Transactions ensure that the database remains consistent even when concurrent ac- 

cesses and failures occur. In t radit ional dat abase systenis. the consistency and relia- 

bility aspects of transactions are due to four properties (XCID): 

a .-Itomicity states that al1 or none of the operations are executed. 

0 Consistency states that a transaction niust take the database from one consis- 

tent state to  another. 

Isolation means that no partial result is seen. It guarantees a consistent tien: 

of the database at al1 times. 

Durabditg means that once a transaction cominits. its results are permanent. 

In mobile comput ing environment. protect ing the ACID properties requires new 

research. For esample: mobile units frequently work in disconnected mode. If we al- 

low concurrent data access in botli the fixed server and the disconnected mobile unit. 

a new meclianism is required to guarantee data consistency. Furtherrnore. wireless 

communication is not as stable and, as reliable when compared to eiired communi- 

cation. We should expect more frequent errors in a mobile transaction so a differ- 

ent recovery method is required to guarantee durability. In our model. we develop 

a new iCiulti- Version Tirnestamp C e r t i b t i o n  for Disconnection Protocol in Ilfobile 

Computing ( I IVTC) to ensure consistency optimistically. MVTC consists of two 

phases: (1) Local Timestamp Certification Scheme (LTCS) runs on the disconnected 

mobile unit and guarantees only serialization among local transactions, and (2) the 

Global Commit Protocol (GCP) ensures global seriaiization upon reconnection. We 

use codlict-serializability for correctness. The generd idea of the CCP is shown in 

Figure 3.1. 
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Fixed Server Mobile Unit 

Figure 3.1: Mode1 of MVTC 

f \ r 

In Figure 3.1. t here are two sets of locally serializable transactions: one set is run- 

ning on the disconnected mobile unit and the other set is running on the fked server. 

Upon reconnect ion. the GCP ni11 examine every transaction in the disconnected mo- 

bile unit and identify any potential conflict. If there is no conflict. the transaction wïll 

be committed and merged to the fked server. Othemise. the system will attempt to 

resolve the  conflicts. In Our model. n-e provide three methods to resolve conflicts. (1) 

execute and commit the alternative transaction. (2) partially re-execute [HBG97] the 

cod ic t  ing transaction. and (3) abort the transaction. After resolving conflicts. the 

system commits the resolved transaction globally. The detail of these resolutions is 

presented in Section 3.5. 
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3.2 Mobile Transaction 

A mobile transaction cont ains sever al sub-transact ions execut ed on mobile and fked 

units. Given the high cost and Iow bandnidth of mobile communication. mers are 

often willing to temporarily work Nith 'stale' data if correctness is guaranteed [HH93. 

HH9-1. IB93. IB94 LS9-l. PB95]. Consider a disconnected mobile unit requesting a 

hotel reservation. The mobile unit may show 100 rooms are available even though 95 

rooms are left based upon data on the Lued servers. Clearly. it makes no difference 

to the mobile user since only one room is required. In our model. we allow the 

room reservation to be comrnitted locally and confirm it with the GCP to veri- 

this committed mobile transaction later. Although d l  100 rooms may be unavailable 

when the mobile unit reconnects. this scenario is unlikely t o  happen for a short 

disconnect ion typical in mobile computing. S trictly speaking the transaction has 

violated serializability because the transaction has read stale data locally. 

The GCP examines every locally committed transaction. If there is any conflict. 

the GCP d l  either submit an alternative transaction or re-execute the transaction 

partially. If the GCP fails to  resolve confiicts, it will abort the transaction. Without 

loss of generality. Ive assume that at any given time. a mobile unit c m  directly 

communicate with only one mobile support station which is responsible for the logical 

or geographical area in which the mobile unit moves. 

3.2.1 Transaction Structure 

Traditionally. a transaction is composed of a sequence of readlwrite operations on 

database items bracketed by Begin-Tkansaction and End statements. A Be- 

gin-Transaction statement results in a cd1 of the transaction manager at the user's 

site which processes al1 user's requests following it. This is a fiut model for transaction 

with only one Begin-Transaction and End statement. 
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Suppose that a stock broker (user A) helps a new client (user B) t o  invest. First. 

user A checks the curent  price. then the credit history of user B. and only if both 

results are satisfactory will user A help user B place the order. This transaction 

involves accessing several different databases and requires dependencies between sub- 

transactions. The transaction manager first divides the transaction into a number 

of sub-transactions. They run concurrently perhaps on different dat  abase systems 

and report the results back to the transaction manager. This mode1 is a nested 

transaction model. To make the case more complicated. user A may disconnect 

from the network temporarily and transfer to  a nen- physical location. During the 

period of disconnection. user A may access and modi- some of its cached data items. 

This t hesis concentrates on resolving the serialization of transactions affected by the 

disconnect ion prot ocol. 

We could lock al1 the data items while a mobile unit disconnects from the rest of 

the network to maintain serialization. However. it is v e l  inefficient and unnecessarily 

restrictive. Our mode1 allows the disconnected mobile units to operate and commit 

locally using cached local data items. and commit globally upon reconnection. No 

locking is involved during the transaction execution in this model. However. when the 

disconnected mobile unit reconnects to the network. some mechanisms are required to 

detect and resolve potential conflicts between fked and mobile units. When conflict 

occurs. the system can prompt the user to determine if a conflicting transaction 

needs t o  be discarded. By providing a reconciliation methology. human interaction is 

minimized [HH93. HH94. KS921. 

3.3 Definition of Conflict 

We define an operation r of transaction i as op,., . We define a boolean function called 

c m  f lict which accepts two operations and returns true if at l e s t  one of them is a 
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wrzte operation. We define that op,., proceeds before op;., as q i . r  -r op,,. We Say 

that a transaction T, must be serialized before Tl if 

3.4 Data Consistency 

Mobile units are only connected to the fked network intermittently. so mobile trans- 

action management must reflect increased concern for bandwidth consurnption and 

disconnect ion const raints. Disconnect ion sonstraints are caused if the systern allows 

concurrent access of data between the fked semer and the disconnected mobile unit. 

because conflicts are possible. 

Since pessimist ic approaches induce unacceptably high costs. t his t hesis attempts 

to  attain consistency after the mobile unit reconnects to  the network. When a 1+ 

cal transaction issues Begin-Trançact ion in the disconnected mobile unit. the local 

transaction manager (LT'il) is called. The LTM logs al1 information such as tirnes- 

tamp and Pags data items accessed by the transaction. Upon reconnection. the GCP 

merges the transactions in the disconnected mobile unit to the fixed server and forms 

a consistent database. 

In our model. transactions are allowed to run concurrent ly in both the discon- 

nected mobile unit and the fked servers which results in a substantially higher con- 

currency than the locking method [KRU. OV90. SSS1851. Transactions are classified 

into two categories: a local transaction is one whose execution guarantees local serial- 

izability; a global tramaction is one whose execution guarantees global serializability. 

The global transaction is very different from the local transaction. It can only be 

verified for global conflicts when the disconnected mobile unit reconnects to the fixed 

server. In order to parantee  the serializability of the global transactions, we must 
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specify how the systern n11l respond if those transactions generate contiicts. This 

t hesis proposes t hree options t O resolve confiicts. 

Alternative Thmiaction 

A disconnected mobile unit issues an alternative transaction on the top of the 

master transaction while it is disconnected. \\%en conflict occurs and the sys- 

tem fails to commit the master transaction. the alternative transaction is sub- 

mitted to the GCP. For esample: a mobile user downloaded the airline ticket 

information before disconnecting from the network. While it is disconnected. 

it w-ants to reseme an airline ticket to Toronto from Air Canada. The local 

database indicates that there were only two seats left on -4ir Canada. Those 

tn-O seats may be gone when the user reconnects to the k e d  network so the 

systern will ask the mobile user to hold an alternative ticket from Canadian 

Airlines. If al1 of the seats from Air Canada have gone during the period of 

disconnection. the alternative transaction n-ill replace the master transaction. 

Partial Re-execution 

In a traditional opt imist ic concurrency control. the system aborts al1 conflict ing 

transactions and re-esecutes them. However. we can apply compiler technology 

to  analyze the commit t ed mobile transactions before execut ing global commit. 

If a conflict is detected. the GCP niIl re-esecute only the conflicting opera- 

tions in the conflicting transactions. In the n-orst case. we re-esecute al1 the 

operat ions of the conflict ing transaction. We argue that re-executing the whole 

conflict ing transaction in a lightl-shared systern is often unnecessary and is 

the worst case scenario. For example: suppose that a sdesman sold 100 item A 

and 100 item B to a customer in a remote area using the disconnected laptop 

computer. The salesman's laptop showed that he had enough items in stock to 

commit this invoice. We can treat this invoice as  a transaction which consists 
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of two operations (opl: sold 100 item -4: op2 sold 100 item B). When the sales- 

man reconnects back to the network. the database shows that  other salesmen 

soid some item A to another customer during the time at  which the salesman 

was disconnected so there are not enough item A left . Thus. op1 generates con- 

Bict . In t radit ional transaction model. even t hough oniy op1 generates conflict . 
bot h op1 and op2 in the conflicting transaction Nil1 be re-esecuted. However. 

op2 does not generate any c o d i c t  and needs not be re-executed. m e n  only 

two operations are involved. the re-execution costs are not onerous. but Iet us 

consider an extreme case. If the salesman sold 1000 items and only op1 gen- 

erates conflicts. the system must re-execute 1000 operations in the transaction 

because of one codicting operation. This scenario is inefficient. Using partial 

re-execution. only op1 needs to be re-executed JO ot her operations consistent ly 

affect the database. 

Aborting the transaction 

In some cases. the GCP must abort the locally committed transactions. and 

inform the user of the abortion because of the application's constraints. For 

example: suppose that a mobile user wants an airline ticket to  Toronto on a 

specific d a .  Before traveling. the user downloaded the airline ticket information 

to the laptop cornputer. Whiie he is traveling, he makes a booking and the 

LTSI commit ted the transaction locally because the system had shown that 

there were seats available. However. upon reconnecting to the fixed semer, the 

system shows that al1 seats have been taken and no more seats are available in 

a.ny airline Company for that day. Even though the mobile user may submit two 

or more alternative transactions. the GCP must abort the transaction. 

For the first two options. the system resolves the cod ic t s  automatically. Users 

are not required to  respond when the c o d i c t  is detected. Thus. the new model 
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supports user transparent- in that the user needs not know specifics about database 

management to resolve conflicts. Moreover. it is not required to re-execute every 

codicting operations in a transaction. Applying t his new transaction mode1 gives us 

a higher concurrency without violating serializability. 

For the t hird opinion. performance depends on the application's constraints. .A 

transaction must be aborted if it attempts to operate illegally. (For example: a 

user wants to use a credit card over lirnit.) These constraints are pre-defined in the 

application so it does not require special care in Our transaction model. 
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Chapter 4 

Mult i-Version Timestamp 

Certificat ion for Disconnect ion 

Protocol in Mobile Computing 

Multi- Version Timestamp Certifiation for Disconnection Protocol in Mobile Com- 

puting (IIVTC) is specifically designed for the disconnection protocol. The goal is 

to provide the highest concurrency and mobility to both disconnected mobile units 

and fked sen-ers while maintaining data consistency UVTC consists of two phases. 

The 1st phase runs independently in the disconnected mobile unit. and the 2nd phase 

runs when the disconnected mobile unit reconnects to the fked servers. 1st phase is 

called Local Timestamp Certificate Scheme (LTCS) .  LTCS is based upon [SNM85]. 

which is a distributed certification algorithm. LTCS is responsible for local serial- 

izable transactions and guarantees t heir consist ency propert ies. 2nd phase is called 

Global Commit  Protocol (GCP) .  GCP is responsible for identifying conflicts between 

the disconnected mobile unit and the fked servers. and merging the transactions 

running on them toget her. Figure 4.1 provides an ovenriew of hIVTC. 
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Figure 4.1: Overview of NVTC 

4.1 Design Overview 

MVTC is designed for an environment consistirig of a large collection of fixed file 

servers and connected clients. and a much smaller number of disconnected moving 

mobile units. The design is optimized for transaction concurrency typical of lightly- 

shared mobile systems. It is specificdly not intended for applications that exhibit 

highly concurrent. fine granularity. and heavily-shared system. 

Each mobile unit has a local disk and is able to communicate with the fixed 

network over a higti bandwidth network such as lOh1 Ethernet while it is wire con- 

nected, or over a low bandwidth network such as X R ' s  wavelan. ?vlotorola's AL- 
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Nobile units may ternporarily disconnect from the network and operate automat- 

ically +th local data in cache. Mobile units view the fked netn-ork as a single. 

location-transparent shared file system. The Lued network supports global naming 

and file replication. The mobile units need to know nothing about the distributed 

operat ing system underneat h. Generally speaking. the mobile unit should t reat the 

whole network as one Iogical file ser-ver. 

4.1.1 Fixed Network 

The fixed network consists of a number of file servers connected with a high bandwidth 

network. These file servers run 24 hours a day and reachable at  any time through 

the network. An unreachable file server implies failure. and no d i d  transaction wilt 

be run on that failed machine. Cornpared to the mobile client. the file semer is more 

powerful in term of computational pou-er and storage capacit .  It is relat ively more 

durable and secure than mobile units since laptops are more fragile and vulnerable. 

There are several distributed operating systems in both academic and commercial 

markets. Coda. Ficus and AFS [Hei92. HH93. KS921 are some esamples. The ultimate 

goal for a distributed operat ing system is ensuring location transparency so clients 

view the n-hole distributed system as one large file server regardless of ahere they 

connect to the network. To achieve this goal. it involves persistent global naming. 

concurrency control among sites. server failure and recovery. file replication. smart 

caching, security. etc. 

4.1.2 Mobile Client 

Compared to  a file server. the mobile client is less powerful in term of storage capacity 

and cornputational power. A mobile unit is equipped with a fixed disk and a com- 
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munication device. It can work in both connected and disconnected modes. Without 

network support. it is able to run transactions using the data in its cache. Users 

find no apparent difference in working in the disconnected mobile unit if they have 

previously down-loaded d l  the data i t e m  they need while traveling. Users require no 

special knowledge about how the database management system handles re-integration 

or how the database management systeni resolres and reconciles codicting transac- 

tions. 

4.2 LTCS Design Overview 

The cache manager of the disconnected mobile unit arts as a pseudo-server and the 

cache acts as a local database. A local database executes a transaction as a process. 

For each process. there is a corresponding Local Transaction .&fanager (LTLI). The 

LTM is divided into two phases. 1st phase called the certzfication phase. the LTlI  asks 

its Certification Module (CM) to certify each of its transactions. Several transactions 

are permitted to run concurrently without blocking before the commit phase. When 

a transaction wants to commit. its LTIrI will go into the critical section to test the 

serializability Mth respect to the other transactions running at the database. The 

LTM issues certificatzon request to its CM and ivaits for a reply. After the CM certifies 

the transaction and responds. the LT'rl enters 2nd phase called the Update il.lodule 

(UM)  and installs the tentative updates of the data items permanently in its local 

database. 

Since the LTCS guarantees only the serializability of local transactions, we rnust 

keep in mind that a set of locally certified transactions will merge to the fked servers 

upon reconnection. Thus. even if a transaction gets local certification. it does not 

guarantee that the same transaction can commit globally. Two sets of locally certi- 

fied but globally conflicting transactions may get interleaved. To resolw the global 
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serializability problem. the system-nlde unique t imestamp Rrill be used. 

4.3 LTCS Design Detail and Implementation 

4.3.1 Setting a Global Clock 

Since we must maintain the global serializability of transactions after reconnection. 

we need s ystem-wide unique t imest amps for comparing and merging transactions. 

Before disconnection. the mobile unit and the fkved semer m u t  synchronize their 

clocks using the "happened before" relation [Lam781 so there is no ambiguity about 

the time. 

In distributecl systems. the physical clock is not reliable because each site has its 

own clock which is difficult to synchronize globally. Lamport introduces a logicai 

clock to synchronize time in distributed systems. The logical clock uses a "happened 

before' relation to distinguish the time. Né define a process as a sequence of events. 

An event can be a subprogram or an execution of a system call. 

The '-happened before" relation denoted by .*-" must satisfy the folloning t hree 

condit ions: 

1. If x and y are events in the same process. and x cornes before y. then x -, y. 

2. If x is the sending of a message by one process and y is the receipt of the same 

message by another process. t hen x + y. 

3. I f s  + yand y +  z. t henx  -r z .  

Two distinct events x and y are said to be concurrent if x 4 y and y -H z. 

A synchronized clock. C. is a way of assigning an order number to  a n  event. The 

order number is used to indicate the sequence of rvhich the event occurred- Lamport 



defines that C, is a function to assign an order nurnber to an event of process 2 .  

The order number indicates the process sequence of an event . Ci [XI ret urns an order 

number corresponding to an event s in process P,. For example: events r and y 

belong to process Pt. If x proceeds y. t hen Ci (x] < C, [y]. The entire system of clocks 

is represented by the function C. There is no direct relation of the order number to 

physical time. The idea of synchronized clocks in distributed systems is based upon 

the order in which everits occur. 

Larnport formally defines the Clock Condition as follows: 

For each event x and y. we say that event r proceeds event y if 

There are two Clock Conditions in distributed systems: 

Cl: For event r and y in process P,.  if x cornes before y. then C [ x ]  < C'[y]. 

C2: If event x is the sending of a message by process Pz and event y is the receipt of 

that message by process Pj.  t hen C, [r] < C, [y]. 

To establish Cl.  each process P, increments Ci between any two successive events. 

To establish C2. a timestamp Tm is used on each message m. Tm equals the time 

at  which the message was sent. Upon receiving a message timestarnp Tm, a process 

must advance its dock to be later than Tm. For example: if event x is the sending 

of a message rn by process Pi. t hen the message rn contains a timestamp Tm = C*[x]. 

Upon receiving a message rn? process P, sets Cj greater than or equal to its present 

value and geater than Tm. 

Unfortunately, ties are still possible for two concurrent events from two different 

processes. To break ties, the relation "4 is used. Before defining "S , a relation 

"4'' is defined. For any two processes Pi and Pj, P, + Pj means f i  has a higher 
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process priority than P,. The definition of relation "=+" is as follows: If x is an event 

in process Pi and y is an event in process Pj. then x + y if and only if either 

(i): Ci [XI < Cj [Y]  or. 

With the help of relation "+". we can extend the "happened before-' relation to 

total ordering relation and synchronize the global timestamp in distributed systems. 

Therefore. both the disconnected mobile unit and fked servers issue a getAimestamp() 

operation to  obtain the systernside unique timestamp. Note that transaction Ti is 

older than transaction Tj if ts(Ti)  < ts(Tj).  

Global synchronization is an open problem and other researches appear in the 

research literature. For examples: Beguelin and Seligman [BSS3] discuss the com- 

bination of the logical and physical clocks to achieve the global synchronization. 

Schneider [SchSG] discusses the fault-tolerant property of synchronizing global clock. 

and Srikanth and Toueg [STW] present the optimal clock synchronization. Global 

synchronizat ion is non-trivial to solve and how to solve it is b e o n d  the scope of t his 

t hesis . 

4.3.2 Data Mode1 

A data item is < name. t~ersionid. attrib > where nttrib is < val. t s (r) .  ts(u.) >. 

Suppose we have a data item x. r d  is the curent value of x: ts(x,) is the  timestamp 

of the last transaction who reads x :  t s ( x , )  is the timestamp of the last transaction who 

modifies x: ttersionid = t s ( x . )  is used to indicate x's version. LVe define that data x, 

is older t han x, if verisonidi < versionid, (ts,(x,) < ts, (x,)). For each data item 

x. there are two queues corresponding to it: (1) rend repest queue (RR,) and ( 2 )  

request queue (LVR,). These two queues are used to store al1 certified requests 



( r r i  and W T J .  rr, is created and stored in RR, upon a successful read certification of 

transaction T,. wr, is created and stored in CIvRz upon a successful vn'te certification 

of transaction T,. The structure of rr, and UrTj is < cal. t s ( r ) .  ts(u7) > where rr,.ual 

(wu;.val) is the value of the certified data item and rr,.ts(r) (wr , . t s ( r ) )  is the tirne 

when it is certified for read operation. Furthermore. rri . ts(w) (icrJ.ts( w))  is the tirne 

when it is certified for wri te  operation. 

4.3.3 Architecture of LTCS 

Figure 4.2 illustrates the architecture of LTCS. 

LTCS 

Figure 4.2: Architecture of LSCS 

The LTCS is composed of three parts: (1) Local transaction manager (LTM). (2) 

certification module (CM). and (3) update module (UM). For each data item x, there 

are two queues corresponding to it (RR, and WR,). A transaction Ti can execute 

any operation before the commit time. During the execution of Ti, an activity-table 
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will be created and log d l  the information of al1 the data used in T,. The structure 

of the activity-table is an array of records. The structure of the record entry is 

< name.  cur-zdue. verzonid .  certi f y id .  R f lag .  1.t- f Eag >. Every distinct data item 

x used in T, has an entry in actizitydable where n a m e  is the name of x. cur-value is 

the most recent value of r. cerszonid  is the version x which has been read in read 

operat ion. certi  f i e d i d  is the timestamp when x got certified. R f lag indicates x has 

been read. and I V  f lng indicates x has been written. When Tl wants to commit. the 

LTSI mil1 first pass the actzuity-table of T, to the CM. The CS1 certifies each data 

item x by calling cert2ficacation jùnctionî. There are t hree certificat ion functions: ( 1) 

Certzh-Read. (2) Cert2jj.j- Write. and (3) Cert t fyX W. CertifZ-Read is used to  cert iS 

read operations: Certify- CVde is used to certify urrite operations. and Certzfg-R W 

is used to cert i& readlcrrite operations. A successfiil certificat ion creat es a certified 

request. There are two different certified requests. certified read and certzfied m t e  

requests (rr ,  and UT,). There are two queues read request queue (RR,) and -te 

request queue (IIDRz) corresponding to every data item x. which stores al1 rr, and 

wr, respectively. These requests are used to detect conflict in the C M  For example: 

suppose t hat T, gains a read certification of data x from the CS1 and it creates and 

installs rr, in RR,. but Tt has not yet been comrnitted. This scenario occurs if Ti is still 

active. Consider anot her transaction Tj where Tj is older than Tt ( ts(T,)  > t s (T , ) ) .  

TJ asks the CS1 to certify its -mite operation on x. The CM first checks RR, and 

discovers that an active Tl has a read certification on x. Since Tl is younger than T,. 

CM will reject TJ because T, Ml1 ovemi t e  the current value of x. 

If CS1 reports a successful certification. the LTSI informs the US1 to update the 

corresponding value executed by T, on the database permanently. Otherwise. the 

LTSI informs the US1 to abort Ti. In both cases. the USI will erase al1 the certified 

requests of Ti because T, is terminated. 
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A data item s can be in either normal or active state. If both RR, and W R ,  are 

empty. x is in normal state: otherwise. it is in active state. The active state means 

there is a t  least one active transaction accessing that particular data item before 

commit. In the mobile client. there are separate storages for stable and unstable 

databases. The US1 will not modify the stable database until it gains permission 

from its LT'LI. 

Since the LTCS is an  optimistic concunency control mechanism. there is no locking 

involved in t hese funct ions escept Certi  f y R e a d .  C e r t i  f y-CVrite and C e r t i  f y R W .  

At any time. the CM will permit a ReadData operation. It returns the current 

value regardless of the state of the data item. Al1 three certification functions are 

issued by the LT'YI to veriSf its transaction before commit. When the LTM issues 

these certification functions to the CM. it will pasç its t imestamp along with other 

parameters to verify its request. Sext. the CM compares the input timestamp to 

the certified requests in the queues. If there is no conflict. the CM will send the  

requestapprmed to the LTM othenvise. it sends notnpprored. 

4.3.4 Execution of Transaction 

When a transaction issues Begin-Transaction. the LTlI init ializes its adivi t  y-table 

and logs al1 data items accessed during the esecution until End-Tkansaction is 

issued. When the LT'II submits a Read(r)  operation. it ni11 check its adiv i t ydab le .  

If entry x does not exist. the LTSI will create an entry. and issue r e a d ( x )  to its 

C M  If x exists. it will set R f lag to true and return the curr-value. Similarly, for 

Wr2te (x .  new-value) operation. if x does not exist in the table, the LTM will create 

an entry and fil1 it accordingly If x exists. it will overwrite the curr-value with the 

new-value and set the CV f lag to true. Algorithm 4.1 and Algorithm 1.2 show the 

Read and Write operations. 
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Read(x. cur~_value) 
Input x: data 
Output curr-z~alue: current value of x 
if x exists in activity-table { 

set R flag to  TRUE: 
re turn(cur~a lue) :  

} 
else { 

create a table entry for x: 
name = x: fetch the value of x from the database: 
fit it in activity-table: 
issue read(z)  : 

1 
End of Algorithm 

The Read and W r i t e  operations of transaction Tl do not modify the actual 

database. They only update the actiz~ity_table and indicate to  the LTSI that a rend 

or write  operation has been performed. They Ieave the actual consistent database 

untouched until Ti commits. The CS1 is responsible for the certification process be- 

fore Ti commits. The advantage of using the LTCS over the SIVTO is the optimism. 

In general. rend and write operations are never blocked before commit. so several 

transactions can run concurrent ly. 

4.3.5 Certification Module 

The following set of certification functions are issued by the LTSI to  the CM. Detailed 

implementat ion and e q l a n a t  ions are given below. 

Function Set 4.1 Certification fitnctions 

Certi f y- Read(data. versirnid. timestamp) 
ret urn (certi f ied : boolean. cerf i f y i d )  

Certi f y-FVrite(data. new-ttalue. timestamp) 
return (certi f ied : boolean. certi f y-id) 
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Algorithm 4.2 LVrite Operation 

LVrite(z. ne w-value) 
Input x: data 

new-val ue: nenr value of x 

if x e-xisis in adivity-table 

{ 
ovemrite curr-value to neuv-calue: 
set I.V f h g  to true:  

1 
else { 

create a table entry for x: 
name = x: 
set bVjlag to TRUE; 
curr,~wl ue = new-val ue: 

1 
End of Algorithm 

Certi f y,RbkP(data. new-ualue. uerslonid. tirnestamp) 
return (certi f ied : boolean. certi f y-id) 

End of Function 

When the LTlI wants to certib a read operation of Ti on data r. it orders the 

CS1 to issue Certi f y R e a d .  Certi f y R e a d  first ensure that the x read before by 

T, is a current version. This is done by comparing the ver s ia id  (ts,(x,)) of x in 

the adizGty_table to the ueriodid of r !tsd(r,)) in database. Subscript 'a' indicates 

t imestamp used in the adiv i ty lable .  and subscript *d' indicates t imestamp used in 

the database. If the current version of x in the database is younger than Ti. the Cbl 

will fetch a version of x where it contains the largest tsd(x.) less than t s (T i )  to the 

LTM. The only time when a certified request fails is if there exists a wr, in the CV Rz 

where wr,.ts(w) > ts(Ti)  because a transaction T,. where t s (T , )  > ts(T,), has already 

gained the mite certification and waits to commit. This means that the value read 

by T, earlier is stale because Tj runs concurrently with T, and will perform a certified 



mite  operation on x when it is committed. So the C'rl refuses to certi& T,'s read 

operation. Algorithm 4.3 shows the pseudo-code of Certi f y R e a d .  

Algorithm 4.3 CertifyRead 

Certi f y-Read(x. versionid. timestamp) 
Input x: data to be certified 

version-id of the input data 
timestamp of calling Certi f y-Read 

Output request ~ p p r o z ~ e d  
certi f y-id 

if (tsd(w,) # verionid)  { 
find a version of x such that tsd(z,) is the Iargest timestamp less than t s (Ti ) :  
update curr-value in the adivity_table: 
certi f ied =T'RUE: 

} else 
if (Fl'R, == 0) 

certi f ied = TRUE: 
else { 

find UT, with oldest ts(u1) from It,'R, 
if (timestamp < ~ l r ~ . t s ( u l ) )  

certi f ied = TRUE: 
else certi f ied = FALSE: /*due to esisting certified ,uv-ite request */ 

1: 
if (certi f ied == TRUE) 
{ 

create a cert ified R request. rrj  where 
rr,.ts(r,) = timestamp: 

set x to active status: 

} 

End of Aigorithm 

When the LTSI wants to certi- a mi te  operation of Tt on data x. it orders the CM 

to issue Certi f y-Write. First . it makes sure that no ounger  transaction performed 

any read operation and committed before Ti wants to certify its mi te  operation. 

Second. it scans through the RR, and finds the youngest T r i .  If ts(T,) < rri.ts(r). 

then the CM rejects T, because a Young transaction T, has gained a certified read 

operation on x and not yet committed. If the CS1 certified T,'s m i t e  operation on x. 



T, would read stale data when it commits. 

In Algorithm -1.4. there are two situations when the certified m i t e  request of Ti 

will be rejected. 

case 1: a younger transaction TJ has read 2 and been commit ted before Ti requests 

the m i t e  certification on x. 

case 2: a o u n g  transaction T,  has certified its read operation but has not committed 

yet. Thus. a u*rite operation of T* cannot be certified. 

Algorithm 4.4 Certifg- Wn'te 

Certi f y-CVrite(r. new-value. timestamp) 
Input x: data to be certified 

new value of the input data 
timestamp of calling Certi f y-LVrite 

Output request-approved 
certi f y-id 

if (RR, == 0) { 
if ( f s d ( r T )  < timestamp) 

certi f ied = TRUE: 
else certi f ied = FALSE; /*case 1: due to committed transaction*/ 

1 
else { 

find rri with youngest t s ( r )  £rom RR, 
if (rri.ts(r) < timestamp) 

certi f ied = TRUE: 
else ceri f ied = FALSE: /*case 2: due to existing certified read request .*/ 

} 
if (certi f ied == TRUE) 
{ 

create a certified W request. ww,. where 
wwj.val = new-value. 
wwj.ts(r) = t sd(rZ) ,  
u v ,  .ts(w) = timestamp; 

set x to a d i v e  status; 

1 
End of Algorithm 



Algorithm 4.5 is the combination of a Cert i  f y R e a d  and a Certi fy-Write calls. 

On successful certification on data r. the CSI creates tn-O identical requests (rri and 

ET,) queued in both RR, and CVR, according to the timestamp recorded in the 

transaction. Certi f y R W  refuses to cert ify S, if: 

case 1: the transaction would overn-rite a younger commit ted transaction. 

case 2: there exists rr, where rrj .ts(r) is older t han ts(Ti) .  or t here exists UT, where 

u~r,.ts(w) is younger than ts(T,)). 

4.3.6 Update Module 

The following set of functions are issued by the LT'rI to  the UM. These two func- 

tions are used to update the database permanentl. Detailed implementation and 

esplanations Ml1 be given belon.. 

Function Set 4.2 Update f7mctions 

UpdateRequest (da ta. certi f y-id) 
return Acknowtedge 

DeleteRequest  (data. certi f y-id) 
ret urn Acknmdedge 

End of Function 

After the CM verified Ti. the LTSI decides to commit or abort Ti. If the CM fails to 

verifj- Ti. the LTSI aborts T, . It calls Abort Request to erase al1 Ti's certzjîed requests 

because Ti causes conflict. If the CS1 verifies Ti successfully. the LTM commits 

T*. It calls UpdateReques t  to update the database based on Ti's certified requests. 

Algorit hm 1.6 and Algorit hm 4.7 provide the pseudecode. 

Since Ti is aborted. Algorithm 4.6 erases al1 its certified repes t s  from the RR and 

W R  queues according to the input data name and the certi f y i d .  



Algorithm 4.7 Update-Request 

Update Request (x. certi f i e d i d )  
Input x: data narne 

Certi  fg-id belong to x 
Output Acknowledge to LThI 

{ 
if ( rr i  E RR, and rr , . ts(r)  = certi f i ed id )  

if ( r ~ ,  is not outdated) { 
t s d ( x r )  := rr, .  t s ( r ) :  
mark dl rrJ ahead of rri in RR, as outdated: 
remove rri fiom RR,: 

1 
else reniove rr, from RR,: 

if ( wr, E IFRI and upr, . t s ( w )  = certi f i e d i d )  

i f  ( U T ]  is not an outdated) { 
t sd(xr)  = max( tsd(xr) ,  wrI . t s ( r ) ) :  
tsd ( x , )  = 'UT, .~s(u'); 
mark al1 w r k  ahead of wr, in IVR, as outdated: 

else reniove Url froni II'R,: 

i f  (no rr and uir is left in RR, and t.t'R,) 
state = normal: 

Send acknodedgment to LThL: 
1 

End of AIgorithm 

4.3.7 Local Transaction Scheme 

After the End-Transact ion is issued. the LTSI verifies each entry in the adiv i ty  _table. 

There are tnTo phases for the scheme: (1) Certification phase and (2) Update phase. 

In the certification phase. the LTM sends a certi f icationsequest to  its CM and waits 

for a response. If the CS1 acknowledge certification. it ni11 signal the LTM with an 

certi f i e d i d .  If the CM refuses to  acknowledge. it d l  signal the LTM to abort the 

transaction. In the update phase. the LThI issues a UpdateRequest to the UM upon 



successful certification: ot herwise. it issues -4bortRequest to the  USI. Algorit hm 1.8 

and Algorithm -1.9 show the detailed pseudecodes of certification and update phases. 

Algorithm 4.8 Verification Phase 

Input activitydable 
Output adivty-table 

state: boolean to indicate successful certificat ion 

For each entry in its adivityltable { 
if (R f lag and Wf lag) 

send Cert i  f y-RTt' to CM: 
else if (R f lag)  

send Certi f y R e a d  to CM: 
else 

send Certi f y-Ft'rite to Chl: 

Wai t - fo r  Ch1 responses: 
CM will return boolean request-approved &L certi f ied-id: 

if (request-apprmed == FALSE) 
EXIT: 

else 
Save certi f ied-id in the a d i r i t y f  able: 

if (request-apprmed == TRUE) 
{ 

signal certi f icationsuccess to LThl: 
set state = certi f ied: 

1 
else 

signal certi f ication-f d u r e  to LT3I: 
set state = abort: 

End of Algorithm 

Only the verijication phase is in critical section. so the algorithm avoids certi- 

ficat ion deadlock. l i e  have shon-n t hat LTCS môuimizes opt imism and guarant ees 

synchronization and serializabilit. The LTCS remains functiond in the mobile unit 

until network access is regained. 



AIgorithm 4.9 Update Phase 

Input adivityAable 
Output Acknowkdge to LThl 

For each entry in its activity-table { 
fetch the certi f iedid of the entry i: 
if it is a commit signal 

send update-request(da ta. certi f i e d i d )  ) to Uhl: 
else 

send delete-request(data. certi f iedid) to Uhl: 
Acknowledge to the LTM: 
End the transaction. 

1 
End of Algorithm 

When the disconnected mobile unit reconnects to the netn-ork. the global commit 

protocol (GCP) applies. The major duty of the GCP is re-integrating the locally 

committed transactions in the mobile unit to the Lved servers. Upon reconnection, 

each committed transaction calls the GCP. Tlius. we must provide a concurrency 

control mechanism to protect the consktency of the system. The GCP is able to  

synchronize the locally commit ted transactions and maintain the strict consistent 

state of the database at ail tirne. 



Certi  f y,Rlt'(z. new-illalue. uer s imid .  timestamp) 
Input x: data wanted to be certified 

new-value of the input data 
version-id of the input data 
timestamp of calling Certi  f y,RW 

Output request-approved 
certi f y-id 

find a version of x such t hat tsd (x,) is the largest t s  less t han t s (T i ) :  
if (JVR, == 0 and RR, == 0) 

if ( t s d ( x , )  < timestamp) 
certi f ied = T R U E :  

else certi f ied = F'ALSE: /*Case I*/ 
else { 

find UV-i with the oldest u*r,.ts(r) from F,VR, 
find rrj aith the youngest rr,.ts(u9) from i i vR,  
if (t imestamp > rr,.ts(r) and fimestamp > < L . T ~ . ~ s ( w ) )  

certi f ied = T R U E :  
else certi f ied = FALSE: /*Case 2*/ 

1 : 

if (certi f ied == TRUE) 
{ 

create a rrk and wrk n-here 
rrX; .~ul  = ~ v - ~ . t l a l  = new-value. 
rrk.ts(r) = u.rk.ts(r) = timestamp. 
uqrk.ts(w) = t l ~ r ~ . t s ( u ~ )  = timestamp: 

1 
End of Algorithm 



Algorithm 4.6 A bort-Request 

AbortRequest(x.  certi f i e d i d )  
Input x: data name 

Certi f y-id belong to x 
Output Acknowledge to LThI 

I 
if ( T r i  E RR, and rr,.ts(r) = certl f ied-id) 

delete al1 rri from RR,: 
if (u7rj E iVRZ and wr, . ts (w)  = cer t i f i ed id )  

delete dl wr, from RIVz: 
if (no rr and uTr is lefi in RR, and LC'R,) 

state = normal: 
send acknowledgment to LThl; 

} 

End of AIgorithm 



Chapter 5 

Global Commit Protocol 

5.1 Overview of Global Commit Protocol 

Upon reconnect ion. the GCP applies and commits the commit ted mobile transactions 

globally. The re-integrat ion process requires: ( 1) Each transaction has a globally 

unique timest amp ahich eliminates ambiguity of the timestamp of transaction: (2) 

Each transaction has its on-n actiz~zty- table which recorded al1 the accessed data items 

used during the execution of the mobile transaction. When reintegrat ion begins. each 

transaction nill be submittecl to the GCP serially. The GCP schedules the cornmitted 

mobile transactions to commit globally. For esample: suppose t hat transaction Tt 

wants to commit globally. The GCP attempts to verifj- Ti and detect any conflicts. If 

there are no conflicts between Tz and other globally committed transactions. T, will 

commit. Othenvise the GCP will try to resolve the conflicts introduced by Ti. Only 

if the GCP resolves the conflicts successfully ni11 Tt be committed. 

5.2 Architecture of GCP 

Figure 5.1 shows the main GCP components. 
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Figure 5.1: The Alain Components of GCP 

Three major components compose the GCP. They are: Global fiansaction Man- 

ager (GTS1) . Verification Processor (VP) and Confiict Solver (CS). The GTM is called 

when a commit ted mobile transaction is submitted to the GCP. It schedules the trans- 

action wit h its unique timestamp. Since the GCP is an optimistic mechanism. the 

GTM ensures the correctness of the transactionk execution. Therefore. the GTM 

calls the VP to verify the transaction. The VP first scans the activity-table of the 

transaction and compares the timestamp of each data entry to the global database. 

If there is no conflict, it returns to the GTSI. However, if any cordicts are detected. 

the transaction is sent to the CS to resolve the conflict. There are three possibil- 

ities to resolve the conflict : ( 1) execute alternative transaction. (2) perform partial 

re-execution [HBG97] and, (3) abort the transaction. Chapter 3 discussed these three 
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options in our new mobile transaction model. This chapter concent.rates on imple- 

menting the partial re-ezecution method. Xfter solving conflicts. the CS returns the 

transaction to the VP which will commit the transaction. The VP is t hen responsible 

for making the effects of committing transactions permanent. 

5.3 Partial Re-execution Module 

W l e n  the VP detects a confiict . it has two options. If the mobile user has an  alterna- 

t ive transaction. the VP will at tempt to commit the alternat ive transaction globally. 

If the alternative transaction fails to commit. the VP ni11 submit the conflicting trans- 

action to the CS. The CS is able to  re-esecute only the conflicting operations in the 

transaction. Thus. the system is not required to re-esecute every single operation 

in the conflicting transaction. We argue that reesecutinp al1 operat ions in the con- 

Ricting transaction is not necessary in a lightl-shared database system. The reason 

is that  only a small portion of the operations in the transaction act ually generates 

conflicts. Thus. re-esecuting the whole conflicting transaction is very inefficient and 

ineffect ive. The CS has been developed to  analyze and identify al1 the conflict ing o p  

erat ions in a conflict ing transaction. Shen the syst em re-executes only the conflict ing 

operations to maintain the serializability. Hon-ever. identi-ing al1 the conflicting o p  

erations is not a simple task. It reqiiires the CS analyze the stat ic dependency of each 

variable used in the transaction before the execution of global commit. We define t hat 

the compile time is the moment that the set of locally comrnitted mobile transactions 

are being verified before the execution of global commit. For example: suppose that 

transaction Ti generates conflicts nhen it tries to  commit globally. Furt hermore. the 

VP  detects that data item A is stale. the VP analyzes T, and finds out that d l  the 

direct and indirect operat ions using -4 must be re-executed. Figure 5.2 dernonstrates 

the effect of the partial re-execut ion. 
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Figure 5.2: Re-esecut ing Operat ions caused by GCP 

The heart of the conflict solver is the mechanism of analyzing the stat ic informa- 

tion of a conflicting transaction. LVe cal1 it the Partial Re-execution Algorithm. 

5.4 Data Structure for Re-execution Algorithm 

Before discussing the algorit hm. t here are several data structures associated wit h the 

algorit hms. They are as fo1Ion.s: 

m: number of data variables in T,. 

rn n: nuniber of operations in T,. 

StateArray: is a one-dimensional array of records. Each record consists of 

four fields. < result. argl.  op. arg2 >. For example: : E = 9 * C. result is 

E. argl  is 9. op is * and. arg2 is C. The size of StateArray is n. 

0 RSet [i,j]: is a 2D-array of integer. RSet[i. j ]  = k means that read üarj 

from opk The size of RSet [ij] is n x m. 

0 WSetb]: is a one-dimensional array of integer. It records the la& operation 

that modified Varin&. The size of WSet Ü] is m. 
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ReStateSet: is a queue to keep a set of operations for re-execution in trans- 

action Ti. 

To perform partial re-execution. the following set of functions is performed by the 

CS. Each is discussed in more detail below. 

Function Set 5.1 CS'S finctions 

Generate_RTabie(s : state-array) 
return ( R S e t )  

Generate-U7Table(s : state-array) 
return (%t 'Set )  

F ina lS ta ie ,Var(x  : data. s : state-array) 
return ( R e S t a t e S e t )  

FinaLRelatedSfate,inRset(op : state. rs  : R e S t a t e S e t  
s : state-array. RSe t .  CI.'Set) 

return ( R e S t a t e S e t )  

End of Function 

Functions Generate-RTable and Generate- WTable  generate RSet and RWet. re- 

spectively. Based upon the information of RSet and tt-Set. the GTM passes each 

comrnitted mobile transaction to the VP. The VP calls functions Final-State- Var and 

FinaLRelated-State-ihRset to identifj- al1 the n e c e s s -  operations to be re-esecuted. 

The execution sequence is as follows: the VP scans and compares al1 the data item 

in the actiuity-table one by one to the same data item in the global database. If a 

stale data item r is found. the VP passes that stale variable to FznaLState- Var. This 

function returns al1 the operations which dirertly used x in its argument and stores 

them in R e s t a t e - S e t .  The VP investigates each operation in the Re-State-Set and 

calls function FznalRelated-State-in-Rset recursively to search out al1 the related op- 

erations that used x indirectly and inserts t hem in the ReState-Set .  If the conflict ing 

transaction cannot be re-executed. the VP returns abort to the GT-LI: othemise. it 
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returns commit to the G T l I  which commits or aborts the transaction accordingly. 

Figure 5.3 illustrates RSet  and CVSet generated by functions GenerateRTable and 

Generate-WTable based upon the transaction s h o m  in Figure 5.2. 

O 1 2 3 4 5 6 7 8 9  

i RSet[i,j] \ the kt opencion W ~ W S  SE-. 

WSet[El= 8 means that op8 is 

1 RSer[C.91= f m c m  bat op9 r d  'C' 

RSrt[E,OI = mruis hi opû docs not use 'E' from op?. 

Figure 5.3: RSet and WSet based upon Figure 5.2 

Entry RSet ( 2 .  j ]  = k represents that operation op, reads variable j from operation 

opk. For esample: in Figure 5.3. RSet [S. A] = 6 means ops reads '-4' from m. Entry 

W S e t  [il = k represents t hat operations opk is the last operatiori that modifies variable 

i. In Figure 5.3. IVSet[.4] = 6 mean op6 is the last operation which modifies 'A'. 

Suppose the VP detects that T, generates confiicts. Furthermore. the VP identifies 

that operation op, read stale data and caused codicts. There are six cases to consider 

when opi is being reexecuted. Suppose that transaction Ti has read stale data item 

B. Figure 5.4 show these siu cases. 

Case 1: opi is not related to any other operation in Ti, so only is re-executed. 

Case 2: opi used B to compute A and op, reads A. After the re-execution of T i ,  A 

becomes stale. so op, must be reexecuted. 
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Case 3: qi read stable data B so the system refreshes B from the fixed servers and 

re-executes spi. However. at some later time of the transaction. op, cornputes 

B. Since B is refreshed. the CS must re-execute op, to  compute the correct 

result of B. Thus. both op* and op, must be re-executed to guarantee correct. 

serializat ion. 

Case 1: op/ used B to compute -4. opi iised the -4 computed by- op1 to compute C. and 

op, used the C computed by op, to compute D. When op/ is re-executed. opi 

must be re-esecuted because -4 becornes stale after re-execut ing op/. When 

op, is re-executed. op, must be re-executed because C becomes stale after 

re-esecut ing qi. This case is recursive. 

Case 5: %%en B is stale. B d l  be refreshed from the fixeci semer. However. qi used 

the B produced by op! to compute -4. so the CS should re-execute opf to 

undo the effect. Thus. bot h op: and must be re-executed. 

Case 6: When op* is re-executed. -4 ni11 be ovem-ritten. so the CS must re-esecute 

op, to compute the correct value of -4. Thus. both qi and op, must be 

re-exec ut ed. 

5.5 Detail Implementation 

5.5.1 Conflict Solver 

Algorithm 5.1 is iised to generate array RSet. It scans the S ta t eArray  to determine 

the read dependency of the variables among the operations. Algorit hm 5.1 is divided 

into two parts. Part 1 determines the read dependency of the first argument of the 

operation. and Part II determines the read dependency of the second argument. For 

exarnple: in Figure 5.2. we want to determine the read dependency of ap, : C = 
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C + -4. Part 1 of Algorithm 5.1 determines where op, reads 'C' from. It scans 

through State-Array and finds out that opr is the last operation to  modify C . so 

the algorithm Ri11 insert 2 in RSet [S. Cl. Similarly. Part II of Algorithm 5.1 finds out 

t hat  op^ modified .4 before op, read it . It ni11 insert 6 in RSet  [S. -41. 

Algorithm 5.2 generates &'Set from Sta teArray .  It gets a variable r and starts 

scanning from the last operation. Once it finds Stated4r~ay[i] .resuZt = x. it =-il1 

stop and fil1 the operation number in the corresponding e n t ~  in WSet. For example: 

in Figure 5.2. we want to find out which operation is the last to modib A'. The 

algorithm scans through S t a t e A r r a y  from the bottom to the top. It finds op6 is the 

last to modify -4. so it inserts 6 CO [VSet[d]. 

Given a stale wriable x. Algorithm 5.3 identifies four re-execution cases (case 1. 

case 3. case 5 and case 6) shown in Figure 5.4. The algorithm is divided into four 

parts: (1) The first if-statement is responsible for identifying a- operation using 

r in its arguments directly (case 1 in Figure 5.4) and keeps it in R e S t a t e S e t .  (2)  

Once a conflicting operation is identified (siil). the algorithm r d 1  identib the last 

operation modifying s[i].result from WSet  (case 6 in Figure 3.4) and keeps it in 

R e S t a t e S e t .  (3) The algorithni identifies the 1 s t  operation to modify x from W S e t  

(case 3 in Figure 5.4) and keeps it in R e S t a t e S e t .  (4) The last for-loopstatement 

finally identifies the operation s[i] read x from (case 5 in Figure 5.4) and keeps it in 

R e S t a t e S e t .  

Given the re-execution of operation op i .  Algorithm 5.4 c m  identify three re- 

execution cases (case 2, case 4 and case 6) shown in Figure 5.4. Algorithm 5.4 first 

scans t hough RSet. If there is an operation (op, ) t hat read a stale result produced by 

wi, Algorithm 5.1 Ml1 cal1 itself with input op, recursively. The algorit hm compares 

q ' s  result (s[j] .result) to CVSet. If op, is not the last operation that modified the 

variable (x) kept in s[i]  .resul t ,  the operation stored in WSet [ X I  must be re-executed 
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(case 6 in Figure 5.4). Thus. when Algorithm 5.4 is terminated. it returns al1 the 

re-execut ing operat ions when op* is re-executed. 

5.5.2 Verificat ion Processor 

The VP is a module to identify any potential conflicts in T,. It first checks every 

nriable x used in T,. If x is stale. the VP cdls FinalStale-Var to determine al1 

the operations that used x. The VP then calls F i n n l R e l a t e d S t a t e i n R s e t  to find 

al1 the re-executing operations in RSet and Fina lMr i t eS ta t e  to find al1 the re- 

executing operations in CC-Set. Finally. VP gets a set of re-executing operations and 

acknowledge the GTM if the re-execut ion is successful. 

Algorit hm 5 -6 examines every re-execut ing operat ion (opi ) t O ensure t hat re- 

executing op, does not violate the application predefined constraints such as over-sel] 

a product. The algorithm signals the VP 'succeed' if opi performs no illegal operation 

or ' f ail' if Ti performs an illegal operation. 

5.5.3 Global Transaction Manager 

Suppose transaction Ti n-ants to commit. the GTlI  calls the VP to veri- Ti. If 

the VP returns i leri fy = TRUE. the GTM commits Tt; othernise. T, is aborted. 

Algorit hm 5.7 shows the reqiiired pseudcxode. 

5.6 GCP's Complexity 

Given that m is the number of data variables in transaction Ti and n is the number 

of the operations in Ti. the comple-xity of the GCP's algorithms are as follows: 

Algorithm 5.1 is 0(n2m): 

Algorithm 5.1 contains a 3-level nested for-loop. The outer most loop takes n 
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times. the second loop takes n times. and the third loop takes m times. Thus. 

the complexity is 0 ( n 2 m ) .  The computation is shown in Equation 5.1. 

Algorithm 5.2 is O(mn):  

Algorithm 5.2 contains a 2-level nested for-loop. The outer loop takes m tirnes 

and the inner loop takes n times. Thus. the complesity is O(mn).  

Algoritlm 5.3 is O(nm):  

Algorit hm 5.3 contains a %level nested for-loop. The outer loop takes n times 

and the inner loop takes m times. Thus. the complexity is O(nm).  

Algorithm 5.4 is O(rnn%"): 

Algorithm 5.4 contains a 2-level nested for-loop. The outer loop takes m time 

and the inner loop takes n times. Inside the inner loop. a n-level recursion is 

used. Thus, the complexity is O(mn-Ln*). Equation 5.2 shows the recursive 

computation. 
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-Algorithm -5.5 is 0(mn+Lnn+2): 

Algorithm 5.5 contains a 2-level for-loop. The outer loop takes rn times. 

Fina lS ta l -Var  inside the outer loop takes mn times. the inner loop takes 

n times. and F i n a l R e l a t e d i n R s e t  inside the inner loop takes mn-lnn times 

so the complexity is: 

Algorithm 5.6 is O(n) :  

Algorithm 5.6 contains on- 1 for-loop whicli takes n times. Thus. the com- 

plexity is O(n) .  

0 Algorithm 5.7 is 0(tmn+1nn+2): 

Given than t  is the number of transactions. Algorithm 5.7 calls Algorithm 5.5 

t times. Thus. the complexity is 0(tmn+'nni2 1 - 

The overall complesity of the GCP is equal to the complexity of Algorithm 5.7 

which is O(tmn"nn+* ). Thus. the complesity of the GCP is exponential. 

An exponential complexity is not desirable and may not be optimal. However, 

the exponential complexity is only provoked by Algorithm 5.4. The main function 
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of Algorithm 5.4 is to find out al1 the dependent operations of the input operation. 

In a highly intra-dependent envuonment. -4lgorit hm 5.4 niIl be called frequently and 

result ing in an exponent i d  complexity. We define t hat the Intra-dependency indicates 

the level of data dependency of a transaction. A highly intra-dependent transaction 

means that the variables in the transaction are highly dependent to each other. We 

argue that the GCP performs well in a low intra-deprndency because it reduces the 

chances of calling Algorithm 5.4. 

In the real world. a light ly-shared and low int ra-dependent environment does exist . 

For example. a traveling salesman traveled to a remote site to help his client. Before 

the salesman left the head office. he had downloaded d l  the necessary files in his 

laptop. When he finished discussing nitli his client. the client placed him a sales 

order. The order contains a list of items to be purchased. The salesman took the 

order and committed it in his laptop locally. Consider the data overlap problem: 

In the real world. it is unlikely that other salesrnen in the head office would modiS: 

the same client's informat ion concurrent ly  Consider the intra-dependency: When a 

client places ari order. it is reasonable to assume that the intra-dependency of that 

order is low. For instance: operation 1 (opl) sells 100 item x and operation 2 (oh) 

sells 100 item y. In this case. t here is no direct nor indirect relationship between op1 

and Thus. the intra-dependency is zera Suppose that op, generates conflicts 

when the salesman reconnected his laptop to the network. Using the static analysis. 

the transaction manager knows t hat only op, must be re-esecuted and the rest of the 

operations consistently affect t lie database. Thus, the rate of calling Algorit hm 5.4 

to andyze operation dependency is minimal. 

Using the static analysis is feasible because once the analysis is done. the transac- 

tion manager requires no overhead nor re-scheduling to solve any conflict at run time. 

The transaction manager can commit the transaction without worrying about any 
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dynamic information such as the sequence of readl uyrite operat ions of transactions 

to maintain serializability. 

5.7 Summary 

This chapter shows that the GCP is able to synchronize the mobile transactions 

to the semer optimistically and resoives conflicts just before commit time. Thus. 

this new mechanisrn allows the disconnected mobile unit to operate mithout concern 

for data inconsistency. lloreover. the GCP can identify and re-execute only the 

conflicting operations. This reduces unnecessan re-execution and thereby increasing 

concurrency and performance. 
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Algorithm 5.1 GenemteRTable 

GenerateRTable(s) : RSet: 
Input s:statearray 
Output RSet:ReadSet 

for i = n to 1 do 
for j = i-l to 1 do 

ch1 = s[i].argl: 
ch2 = sb].result: 
if (ch1 == ch2) 

for k = 1 to rn d o  
if (ch1 == k) 

(RSet[i. k] == j): 
endfor 

endfor 

for j = i-1 to 1 do 
ch1 = s[i].arg3: 
ch2 = s ~ ] . r e s u l t :  
if (ch l  == ch2) 

for k = 1 to rn do 
if (ch1 == k )  

(RSet[i. k] == j ) :  
end for 

endfor 
endfor 
return( RSet): 

End of Algorithm 

Algorithm 5.2 Genemte, WTable 

Generat-lt7Table(s : state-array) : \t'Set: 
Input: state-array 
0utput:IVSet 

for i = 1 to rn do 
for j = n to 1 do 

if (s[i] . resul t == r) 
W S e t  = \t'Set U j :  

endfor 
endfor 
return(WSet): 

End of Algorithm 
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Algorit hm 5.3 FinalStale- Var 

FinalStale-Var(x : data. s : state-array. RSet .  W S e t )  : R e S t a t e S e t :  
Input x: stale data 

state-arra y: al1 operat ions of a transaction 
RSet:  2D array storing the read dependency 
WSet :  f D array storing the finai write operation 

Output R e S t a t e S e t :  a set keeps the re-executing operations 

for i = 1 to n do 
if (s[i].argl == x or s[i].arg2 == x )  { 

R e S t a t e S e t  = R e S t a t e S e t  U s t ~ t e i  : /*case 1*/ 
R e S t a t e S e t  = R e S t a t e S e t  u LVSet [s[i] .result]: /*case 6*/ 
R e S t a t e S e t  = R e S t a t e S e t  u LVSet [r] : /*case 3*/ 
for j = 1 to rn do 

if ( R S e t b .  i] not E-UPTY) 
R e S t a t e S e t  = R e S t a t e S e t  u RSetb.  il: /*case 5*/ 

endfor 
} 

endfor 
r e t u r n ( R e S t a t e 3 e t ) :  

End of Algorithm 
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Algorithm 5.4 Final_RelatedState-in-Rset 

FinalRelatedState-in_Rset(op : d a t e .  r s  : R e S t a t e S e t .  
s : state-array. RSet .  IVSe t )  : R e S t a t e S e t :  

Input qp: re-execut ing operat ion 
rs: a set keeps the re-execut ing operations 
s t a t e ~ r r a y :  al1 operations of a transaction 
RSet :  2D array storing the read dependency 
CVSet: 1D array storing the finai mite operation 

Output rs: a set keeps the re-executing operations 

for i = 1 to m do 
for j = 1 to ndo 

if ( R S e t  [i. j ]  == o p )  { 
if ( W S e t [ s ~ ] . r e s u Z t ]  != op) 

r s  = r s  u Ii~Set[s(j].resrrZt]: /*case 6*/ 
rs  = rs U state] : /*case 2*/ 
rs  = rs u FinalRelatedStatein_Rset(RSet[i. j]. rs. 

S. RSet. t t 'Se t ) :  /*case 4*/ 

1 : 
endfor 

endfor 
return( r s )  

End of Algorithm 
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Algorit hm 5.5 VerificationProcessor 

Veri f ication_Processor(acti~itî~-table of Ti) 
Input adivity-table of Ti 
O u t p u t  ueri f y: a boolean Aag to indicate succe~~ful verificat ion 

for each ent ry  x  in acti vit y-table of Ti d o  
if (Rf lag  == TRUE) { 

if ( version-id(x) < ~ ~ e r s i o r t - i d ~ ~ ~ ~ ( x ) )  { 
if (alternative transaction fails to  coninlit) { 

R e S t a t e S e t  = Final S ta l e -Var (x .  s t a t e ~ r r a y ) :  
for every opi E R e S t a t e S e t  do 

R e S t a t e S e t  = Final Re la tedSta te- in  Rset(opi .  
R e S t a t e S e t .  RSet ) :  

end for  
}: 
else 

submit the alternative transaction: 

if ( R e S t a t e S e t  # 0) 
Reaxecute(ReSta teSe t .  dane): 
if (done == succeed) 

return(veri  f g = TRUE); 
e lse  

return(veri  f y = FALSE): 
eIse 

return(t .er i fy  = TRUE);  /*no re-execut ion is required*/ 
e n d f o r  

End of A l g o r i t h m  
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Algorithm 5.6 Re-ezemte 

Re-execute( Restateset .  succeeded): 
Input ReStateSet: a set of re-execut ing operat ions 
Output dme: a boolean to indicate a successful re-execution 

for every element op E ReSfateSet do 
if (opi  is not illegal) 

execute(opi): 
else { 

end for 
return(done = succeed): 

End of Algorithm 

Algorit hm 5.7 Global Transaction Management 

Globai-Transaction-llanager(T,) 
Input Transaction Ti 

for every Ti enters to the GCP do 
Cal1 Ver2 f icationProcesso7(activity_table of TL. cei i  f y): 
if (tleri f y == TRUE) 

globalçommit(Ti) 
else 

abort(T,): 
end for 

End of Algorithm 
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Chapter 6 

Demonstration in Mobile 

Computing 

The GCP has been simulated osing Cf+. The mode1 is able to generate a random 

number of operations and variables. The variables are limited to 52 letters (-a' - -z' 

and 'A' - 2'). so a transaction can access at most 52 variables. lforeover. we cari input 

the percentage of the data overlap between mobile and fked servers. The simulation 

can generate transactions and ident ifit which operat ions in a mobile transaction are 

required to be re-executed. From the simulation. ive measiire the GCP's performance 

in two aspects: ( 1 )  Re-execution Rate. and (2)  Time Complexity. 

6.1 Re-execution Rate 

\\%en we analyze the re-esecution rate of the GCP. we conclude t hat there are two 

factors affecting the performance: (i) percentage of the data overlap between mobile 

and fmed servers. and (ii) intra-dependency of the operations in a transaction. 
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6.1.1 Data Overlap 

The GCP is an optimistic concurrency control scheme. so it will not work well in a 

heavily-shared system. If the data items are shared heavily between the fixed servers 

and the disconnected mobile unit. nre can expect a lot of confficts. In our experiments. 

n-e set up three different sets of data. Each set of data represents a different number 

of operations in each transaction: Set 1 contains at most 10 operations. Set 2 contains 

a t  most 20 operations. and Set 3 contains a t  most 50 operations. Table 6.1 shows 

the results. In Table 6.1. Overlap7c is the percentage of data overlap between the 

disconnected mobile unit 's aiid fked servers' transactions: O P  is the average number 

of operations generated for 10 transactions: R E  is the average number of operations 

re-executed for 10 transactions. and 5% is the overall percentage of re-execution. 

GCP's Performance for 10 Transactions 

Set 1 (10) Set 2 (20) Set 3 (50) 

Table 6.1: GCP's Result for 10 Transactions 

Figure 6.1 plots the results of Table 6.1. As we cm see from Figure 6.1, when the 
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Re-execution % vs Data Overiap % for 10 Transactions 

Figure 6.1: Running 10 Transactions 

overlap rate is 10%. about 20% of the operations are re-esecuted. Honiever. n-heri the 

overlap rate increases to 50%. more t han half of the operations are re-executed. Xote 

also that when the overlap rate is set to 100%. not every operation is required to  be 

re-executed. For example: a mobile transaction T,  contains ap, : A = 100 + 200 and 

T, does not contain any operation reading A. Although A is stale. opr is not required 

to be re-executed. When nte increase the number of transactions from 10 to 100. we 

generate very similar results. ResiiIts are shom in Table 6.2. In Table 6.2. Set I 

contains at most 10 operations per transaction. Set 2 contains at most 20 operations. 

and Set 3 contains at most 50 operations. Figure 6.2 plots the results of Table 6.2. 

6.1.2 Intra-Dependency of Transaction 

The intra-dependency represents the operat ion dependency inside a transaction. A 

highly intra-dependent transaction means t hat the variables in the transaction are 
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I GCP's Performance for 100 Tkansactions 
.- 1 Overlap% ( Set 1 (10) [ Set 2 (20) Set 3 (50) 

Table 6.2: GCP's Result for 100 Transactions 

highly dependent to  each other. The intra-dependency plays a critical rule in the 

re-esecution rate. If the variables used in a transaction are highly related. n-e can 

expect the rate of re-execution to be high because a re-esecution of one operation 

will result an eidiaustive searcli for al1 other affected operations. This search will go 

recursively and take esponential time to  cornpute. \Ve have shown the complesity in 

Section 5.6. 

For example: we generate 5 transactions nith a t  most 2.000 operations in each 

transaction and limit the number of variables to 10. Therefore. the operations are 

closely related to each other. The result is a very high re-execution rate even in a 

low data overlap environment. Thus. we conclude that the percentage of data overlap 

alone cannot determine the re-execution rate of the GCP. The GCP does not perform 

better in a low percentage of data overlap but closely related transaction. In contrast . 
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Re-execution % vs Data Overfap % for 100 Transactions 

Figure 6.3: Running 100 Transactions 

the level of intra-dependency between operations affects the rate of re-esecution. Ta- 

ble 6.3 shows the result of the simulation. 

Figure 6.3 plots the results of Table 6.3. Even in a low overlap scenario (10%) 

the re-execution rate is v e l  high (90.28%) (see Figure 6.3). This result shows that 

a transaction n i th  high intra-dependency will result a high re-esecution rate. So. 

the GCP does not work well in highly intra-dependent transactions. In contrast. if a 

transaction is lon- in int ra-dependency. the re-esecut ion rate d l  be lower. Consider 

an estreme case shomn in Figure 6.4. In Figure 6.4. T, has zero intra-dependency 

because no variable in Ti is related. If a7e set 10% of data to stale (2 variables are 

stale), the maximum number of re-executing operations is two because the worst case 

will be two different operations read these two stale variables in their arguments. 

Except for t hese two operations. no ot her operations will be affected. 
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Time 

- -- -- - 

GCP's Performance for 2000 Operations 

Table 6.3: GCP's Result for 2000 Operations 

Complexity 

Siniilarly. we conclude that tliere are also two factors affecting the time complexity: 

(i) size of the mobile transaction. and (ii) intra-dependency of a transaction. 

6.2.1 Size of Transaction 

The longer the transaction. the more tinie the GCP takes to compute the result. 

However. the size of a transaction only plays a minor factor to the time performance 

of the GCP. W have shown in section 5.6, the complexity of the GCP is exponen- 

tial. This exponential growth is contributed by the intra-dependency but not by the 

transaction's length. If we fi?< the data overlap percentage to a constant. a long tram- 

action with low intra-dependency will run faster t han a long transaction Mth high 

intra-dependency. Thus. we concentrate on analyzing the Intra-dependency. 
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Re-execution % vs Data Overlap % for 2000 Operations 

Figure 6.3: Running 2000 Operations in Each Transaction 

6.2.2 Intra-Dependency 

L h e n  we mesu re  the time complexity of the GCP. the intra-dependency must be 

considered becaiise it dominates the running time in the long run of the GCP. When 

a transaction wit h litt le intra-dependency exists arnong its operat ions. the GCP can 

compute the result rapidly. In contrast . if a transaction has a hiph intra-dependency 

among its operations. the GCP miist spend a lot of time finding al1 the direct and 

indirect operat ions for re-execut ion. In a highly int ra-dependent environment. the 

task will result in many recursive calls of Algorithm 5.4 that lowers the GCP's per- 

formance. 

In Table 6.4. we simiilate the GCP Mth different nurnbers of operations. Figure 6.5 

plots the result of Table 6.4. From the experiment's results. the GCP's performance 

drops significantly when the number of operat,ions in a transaction is over 7000. Since 

our simulation only allows at most 52 variables in a transaction, a long transaction 
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In this example. no operation is reIated to 
each other because al1 varibles are using 
only 1 time. so the Intra-dependency is 
zero. 

Figure 6.4: A Transaction wit h Zero Intra-Dependency 

will result very high intra-dependency Thus. the GCP requires much more time to 

compute the results. 

Summary 

There are two aspects to mesure the perforniance of the GCP: (1) Re-execution 

Rate, and (2) Time Complexity. In a lightly-shared system with short transactions. 

our simulation shows t tiat the GCP performs very well. We argue that the cut-off 

point for using the GCP approach is 30% of data overlap. Sloreover. Our simulation 

shows that the *'Intra-dependency' among a transaction is an important factor to 

be considered. -4 transaction with high intra-dependency results in a high rate of 

re-esecution and requires a long time to finish. 
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Size of Transaction Time 

31 sec 

102 sec 

217 sec 

360 sec 

766 sec 

1603 sec 

3420 sec 

6012 sec 

12561 sec 

50569 sec 

Table 6.4: GCP's Esecution Tirne for Different h m b e r  of Operations 

Number of Operations vs Execution Time 

t 2 3 4 5 6 7 8 9 10 
Number of Operations (XI 63) 

Figure 6.5: The Graph for Sumber of Operations vs Xumber of Operations 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has presented a new method for concurrency control for the disconnection 

protocol in mobile computing. The main property of the proposed method is t o  p r u  

vide the highest concurrency. mobility and user transparency. as opposed to methods 

which lirnit the concurrency level and require human interaction to resolve conflicts. 

This thesis is divided into five parts: 

1. Chapter 1 identifies the propert ies of mobile comput ing environment and presents 

the problem domain of alloning concurrent data access between the fked servers 

and disconnected mobile unit. 

2. Chapter 2 reviews the research literature and discusses briefly about t heir work 

and limitations which mot ivate t his t hesis. 

3. Chapter 3 revises the traditional distributed transaction model and presents a 

new mobile transaction model for the disconnect ion prot ocol. 

4. Chapter 1 and 5 present the detailed design and implementation of the MVTC. 

89 
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5. Chapter 6 shows the actual results of the new model. From the results. we 

analyze and show its performance and limitations. 

Performance of the GCP has been tested and presented. From the results, Ive 

argue t hat SIVTC is feasible iii a lightly-stiared system. There are two advantages of 

SIVTC over other methods: (1) user transparency. and (2)  partial reexecution. 

7.1.1 User Transparency 

Al1 the existing methods require some human interaction to resolve codicts. In 

contrast. 'IIVTC is fully automatic. The only time it fails to commit a transaction 

is when a user's transaction is illegal baseci on application's pre-defined constraints. 

For example: an attempt to withdraw money exceeding an account's limit. If conflict 

occurs in a transaction. the SIVTC can identifj- it locally and globally. subsequently 

resolves the conflicts automaticall. Users are not required to have special knowledge 

to use the SIVTC. so it provides user transparency. For example: the travel agent 

in Chapter 1 needs not know hon- to solve the air-ticket's probleni. If there is no 

more space in United Airlines. the transaction manager Ml1 submit the alternat ive 

transaction (to book a ticket from American Airlines) and commit the transaction. 

The transaction manager handles the conflict by itself alone. 

7.1.2 Partial Re-execution 

When concurrent data access between the fked servers and disconnected mobile unit 

is permitted. past work has resolved conAict,s by re-executing the whole conflicting 

transaction. This t hesis has shown that this is suboptimal. Ure have presented the 

GCP to detect and partially re-esecute only the conflicting operations in a codicting 

transaction. This thesis shows how to apply compiler technology to analyze the static 

information and reconcile committed mobile transactions to the f i e d  servers. In Our 
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experiments. only half of the operat ions are required to be re-executed when a system 

shares 30% of its data with both the L'ted servers and disconnected mobile unit during 

re-int egrat ion. 

7.2 Future Work 

There are five areas not covered in this thesis. (1)Reliability (3) Failure detection. 

(3) Formal Sleasurement of Intra-dependency. (4) the GCP for peer-tepeer service. 

and (5) the GCP for multiple disconnected mobile units. 

7.2.1 Reliability 

Our mode1 does not discuss any issue related to the reliability of the system. A 

recovery technique should be developed to ensure reliability. Recovery from transac- 

tion failure usually means that the database is restored to a consistent state after a 

failure. An obvious way to achieve this is to roll back and redo al1 the uncommitted 

transactions during failure. Hon-ever. it is wry costly. so a recovery algorithm can be 

developed which logs the transaction information in the GCP to minimize cascading 

roll back during failure. 

7.2.2 Failure Detection 

This thesis assumes that an unreachable mobile unit is working in the disconnected 

mode. However. if a mobile unit is actually failed. the system should be able to 

determine it. The system alone cannot tell whether a mobile unit is working in the 

disconnected mode or fails to operate because the system cannot reach the unit. 

The mobile unit should inform the fked system when it expects to  travel prior to 

disconnection. If the mobile unit is unable to reconnect back to the fixed servers on 
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schedule. the spstem NiIl consider it as failure. 

7.2.3 Forma1 Measurement of Intra-dependency 

In t,he simulation of the GCP. we identify tliat the intra-dependency is one of the fac- 

tors to determine the GCP's performance. The result shows that increasing the intra- 

dependency d l  lower the GCPws performance. but we do not explicit,ly and formally 

state the relationship between the intra-dependency and the GCP's performance. 

A forma1 mesurernent can be developed to indicate the level of intra-dependency 

affecting t lie GCP's performance. 

7.2.4 The GCP for Peer-to-Peer Service 

In Our model. we do not allow two disconnected mobile units to exchange t heir infor- 

mation. Nowever. t his requirement is too restrictive when two ciisconnected mobile 

units wants to share some critical data in an isolated area. .A rnodified version of 

the GCP ( GCP for Peer-to-Peer service (CCP-PP)) c m  be developed to allow two 

disconnected mobiles to share their data without the fked servers' present . Upon 

reconnection. the GCP-PP should be able to reconcile the transactions. Figure 7.1 

illustrates the architecture of the GCP-PP. 

In Figure 7.1. a disconnected mobile unit JIU; shares data with another discon- 

nected mobile unit l\ILT2. Upon reconnection. the GTM of the GCP-PP should be 

able to identify those shared data and reconcile the committed mobile transactions 

globally. 

7.2.5 The GCP for Multiple Disconnected Mobile Units 

In our model. we only address the problem of reconcile one disconnected mobile unit 

to the fixed servers at a time. However, two or more disconnected mobile units may 
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Fiowe 7.1: Architecture of GCP-PP 

want to reconnect back to the iîsed servers at the same time. In oi ir model. v ;e only 

allow t hem to re-integrate back to the fked servers serially. Thus. no concurrency is 

involved. So. a modified version of the GCP. GCP for iW~ltiple Disconnected Mobile 

Unit (GCP-MU). can be developed to handle the concurrency control of multiple 

re-integration. The architecture of the GCP-MU is shonn in Figure 7.2. 

In Figure 7.2. the GTSI of the GCP-LIU accepts and reconciles several transactions 

from different disconnected mobile units at the same time. These eommit.ted mobile 

transactions might access the same set of data. so conflicts may occur among them. 

The GCP-!du' is responsible for det ect ing conflicts and reconcile t hose transactions 

concurrently. 1Ioreover. it should guarantee the serializability among t hem. Main- 

taining serializability involves transaction scheduling and conflict detection among 

those disconnected mobile transactions. In addition. the GCP-MU should be able to 

detect and avoid deadIock. 
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Figure 7.2: Architecture of GCP-SIU 
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