Multi-Version Timestamp Certification for

Disconnection Protocol in Mobile Computing

by

Yiu Leung Lee
A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of

Master of Science

in

Computer Science

Winnpeg, Manitoba. Canada. 1998

©Y. L. Lee 1998

March 25, 1998



il

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et )
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your filg Votra reférence
Our fle Notre reference
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent Etre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-32164-9



MULTI-VERSION TIMESTAMP CERTIFICATION FOR
DISCONNECTION PROTOCOL IN MOBILE COMPUTING
BY

YIU LEUNG LEE

A Thesis submitted to the Faculty of Graduate Studies of the University of Vlaritoba
in partial fulfillmeant of the requirements of the degree of

MASTER OF SCIENCE

Yiu Leung Lee © 1998

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and LIBRARY MICROFILMS to publish an

abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written

permission.



Acknowledgement

First of all. [ must thank you my supervisor Professor Ken Barker for guiding me
through this thesis. He inspired me in many ways so I could come up with the ideas.
My thanks also go to my family for supporting me in Hong Kong, Lan Jo for food
and care-taking, and Kevin for proof-reading. Without them, [ wouldn’t have made

this thesis possible. Thank you.



Abstract

Wireless technology inspires many new thoughts to the traditional distributed database
systems. “Disconnection” is a standard operation of the mobile computing which the
traditional distributed systems usually treat as a failure. A mobile unit informs the
fized servers prior to disconnection. During the time of disconnection, the mobile unit
operates by itself with no network support. Upon reconnection. the fired servers should
be able to synchronize the updates and commit the transactions made by the mobile
unit during the disconnecting period. Allowing the disconnected mobile units to op-
erate alone may generate scme conflicts upon reconnection. This thesis presents the
Multi- Version Timestamp Certification for Disconnection Protocol in Mobile Com-
puting to resolve the data inconsistency caused by the disconnection protocol. The
objectives of this new protocol includes: (1) to solve data consistency problem between
the distributed static servers and moving mobile units and (2) to mazimize transaction

concurrency for transactions.






Contents

1 Introduction

1.1
1.2
1.3
1.4

1.5
1.6
1.7

Architecture . . . . . . . . . ...
Operation Modes . . . . . . . . . . .. . .. ...
Problem Domain . . . . . ... ... . .. ... .. ... ...
Motivations . . . . . . . . . ..
1.4.1  Multi-Version Timestamp Ordering Algorithm . . . . . . . ..
1.4.2 Optimistic Certification Scheme . . . . . .. .. .. ... ...
Contributions . . . . . . . . ...
AsSSUmMPLIONS . . . . . . v . . o e e e e e e e e e e e e e

Thesis Organization . . . . . . . .. . . ... ... ... .. ......

2 Related Work

2.1

2.2

Introduction . . . . . . ... L Lo Lo
Mobile FileSystem . . . . . .. .. . . ... .. ... ..
2.2.1 Disconnection ProtocolinCoda . . . . ... ... ... ....
2.2.2 Disconnection Protocolin AFS . . .. ... ... ... ....
Mobile Transaction Management . . . . . .. ... ... .......
2.3.1 Isolation-Only Transaction for Mobile Computing . . . . . . .

2.3.2 Optimistic Two Phase Locking for Mobile Transaction

il

(S

o O W

10
11
13
14
15

17
17
17
18
20
20
21
22



CONTENTS

iv
2.3.3 Mobile Transaction in Clustering Mobile System . . . . . . . . 24
2.3.4 Reconciliation in a Nested Object Transaction Environment . 26
3 Mobile Transaction Model 29
3.1 Transaction Properties . . . . . . ... ... ... ... .. ...... 30
3.2 Mobile Transaction . . . . . .. .. ... ... ... ... ... 32
3.2.1 Transaction Structure . . . .. .. .. ... ... ... .... 32
3.3 Definition of Conflict . . . . . . . ... .. ... ... ... .. ... 33
3.4 Data Consistency . . . . . . . . . .. 34

4 Multi-Version Timestamp Certification for Disconnection Protocol

in Mobile Computing 39
4.1 Design Overview . . . . . . . . . ... ... ... . 40
4.1.1 Fixed Network . . . . . . ... ... 41
4.1.2 Mobile Client . . . . . . . . ... L 41

4.2 LTCS Design Overview . . . . . . . ... ... ... .. ... ..... 42
4.3 LTCS Design Detail and Implementation . . . .. ... .. ... ... 43
4.3.1 Settinga Global Clock . . . ... ... ... .. ... ..... 43
43.2 DataModel . . . . . ... 45
4.3.3 Architectureof LTCS . . . . .. .. .. ... .. ... ..... 46
4.3.4 Execution of Transaction . . . . .. .. ... ... ... .... 48
4.3.5 Certification Module . . . . ... ... ... ... ... ... 49
4.3.6 Update Module . . . . .. ... .. .. ... ... ... ... 53
4.3.7 Local Transaction Scheme . . . .. .. .. ... ... ..... 54

5 Global Commit Protocol 59
5.1 Overview of Global Commit Protocol . . . . . . ... ... ... ... 59

5.2

Architecture of GCP . . . . . . . . ... 59



CONTENTS

5.3 Partial Re-execution Module . . . . . . .. ... ... ..o,
5.4 Data Structure for Re-execution Algorithm . . . . . . . .. ... ...
5.5 Detail Implementation . . ... ... ... ... ... .. ...,
5.5.1 Conflict Solver . . . ... ... ... .. ... ... ...
5.5.2 Verification Processor . . . . . . .. .. ... ... ... ...
5.5.3 Global Transaction Manager . . . . . . ... .. .. ... ...
56 GCP's Complexity . . . . .. ... .. .. ... ... . ...
5.7 SUMIMNATY . . . . - . o o v e e e e e e e e e

Demonstration in Mobile Computing

6.1 Re-executionRate . . .. .. ... .. . ... ... .. ... . ..
6.1.1 DataOverlap . . . . .. ... . ... ... ... ... ...
6.1.2 Intra-Dependency of Transaction . . ... .. ... ......

6.2 Time Complexity . . . . . . . . .. .. ... ... ...
6.2.1 Sizeof Transaction . . ... .. ... ... ... .. ......
6.2.2 Intra-Dependency . . . . . . . . .. .. ... ...

6.3 SUIMIMATY . .« o v v o e e e e e e e

Conclusions and Future Work

7.1 Conclusions . . . . . . . . . . . e
7.1.1 User Transparency . . ... . . . .. ... ...
7.1.2 Partial Re-execution . . ... . ... ... ... .. ......
7.2 Future Work . . . . . . . . .. L
7.2.1 Reliability . . . . . . ... e
7.2.2 Failure Detection . . . ... .. ... ... .. L.
7.2.3 Formal Measurement of Intra-dependency . . . .. ... ...

7.2.4 The GCP for Peer-to-Peer Service . . . . . . . . .. .. .. ..

79
79
80
81
84

85
36



vi

7.2.

5

The GCP for Multiple Disconnected Mobile Units

CONTENTS



List of Figures

5.1
5.2
9.3
9.4

6.1
6.2

Model of a System to Support Mobility . . . . . . ... ... ... ..
States of Operation of a Mobile Unit . . . . . . . . ... ... ....
General Model of Re-integration . . . . . . .. ... .. ... .....

Phases of Transaction Execution. . . . . . . . . . . .. . .. ... ..

Venus States and Transaction . . . .. .. .. ... .. ........
A State Transition Diagram for IOT Execution . . .. ... ... ..
A Mobile Transaction Example . . . . .. .. ... ... ... ....

Reconciliation of Object-Base System . . . . . . . . .. .. .. ....
Model of MVTC . . . . . . .. ..

Overview of MVTC . . . . . .. . . .
Architecture of LTCS . . . . . . . . . .

The Main Components of GCP . . . . .. .. ... .. .. ......
Re-executing Operations caused by GCP . . . . . . ... ... .. ..
RSet and WSet based upon Figure 5.2 . . . . ... ... ... .. ..

Six Cases for Partial Re-execution . . . . . . . . . . .. . ... .. ..

Running 10 Transactions . . . . . . .. .. .. ... . ... ......

Running 100 Transactions . . . . . ... ... ... .. ... .....

N R W

19

21

23
27



viil

6.3
6.4
6.5

LIST OF FIGURES

Running 2000 Operations in Each Transaction . . . . . . . .. .. .. 85
A Transaction with Zero Intra-Dependency . . . . . . . .. . ... .. 86
The Graph for Number of Operations vs Number of Operations . .. 87
Architectureof GCP-PP . . . . . . . .. ... ... ... 93
Architectureof GCP-MU . . . . . . . . . .. ... 94



List of Tables

6.1 GCP’s Result for 10 Transactions . . . ... ... ... ........ 80
6.2 GCP’s Result for 100 Transactions . . ... ... ... ........ 82
6.3 GCP’s Result for 2000 Operations . . . . . .. .. ... .. ...... 84
6.4 GCP’s Execution Time for Different Number of Operations . . . . . . 87

ix



Chapter 1

Introduction

Rapid technological improvements in wireless communication and the increased func-
tionalities found on small portable notebook computers opens new research oppor-
tunities in distributed systems [BAI93. Duc92. IB93. IB94. PB93]. A goal of mobile
computing is to provide the greatest mobility possible to the users [BAI93. Duc92.
IB93. IB94]. Mlobile units are able to move between different locations while re-
maining connected to a wireless network. Mobile computers frequently operate in a
disconnected or doze mode!. Thus. mobile computing is a dynamic distributed system
in contrast to traditional distributed svstems which are considered static.

Powerful light weight laptop computers have become commonplace recently [HH94.
[B93. IB94|. Modern laptop computers can provide the same functionality as desktop
computers and, at the same time. provide mobility to users. Users can communicate
with LAN. WAN. and Internet through a laptop computer. The large disks now found
on laptop computers are able to runoffice sized applications such as word processing
and mail program without any network support [BAI93. HH93]. We define office
sized applications as those that do not require network support to operate. However.

a mobile unit does not work as a file server for both security and availability reasons.

'Energy saving mode.
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In a sense, a mobile unit is a moving client in client-server environment. Thus, a
mobile client functions exactly as any client. and it can move and operate in partly
or fully disconnected modes.

Mobile computing has created a new application area for existing distributed
systems. Several vertical applications? of mobile wireless computing including: taxi
dispatch. mail tracking. car alarm systems. etc. The most frequently mentioned
applications for horizontal applications are mail enabled and information services to
mobile users.

Mail enabled services allow mobile users to send or receive electronic mails. An-
other common application of mail enabled services is electronic news services. Elec-
tronic news services can deliver current information to mobile users based on indi-
vidual profiles or preferences. For example: a stock broker may want to know the
current status in the stock market while traveling to meet a customer. The broker
can connect via a notebook computer and a cellular phone to retrieve the appropriate

information.

1.1 Architecture

Two mobility models exist in the current research papers. The first model consists
of a fully dynamic environment where everything is mobile in the system [Chr93].
Thus clients and file servers are expected to change locations from time to time.
The second model consists of two distinct sets of entities: fixed hosts and mobile
units. Some fixed hosts (called mobile support stations (MSSs)) are augmented with
wireless interfaces to enable communication with mobile hosts and are located within

a coverage unit called a cell A mobile unit can then move within a cell or between

2 Horizontal applications are domain independent, as opposed to the vertical applications which

are written for a specific application domain [BAI93]
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two cells while retaining its network connection. Fixed hosts are statically connected
by wires and maintain a high-speed connection all the time. The second model is
more realistic so most research has focused on that paradigm. Figure 1.1 shows the

second model [EJB95. IB94. JBE95. KS92. PB93. PB%4aj.

Wireless Celf

Wireless Cell

MU - Mobile Unut
MSS - Mobile Supporn Stauon

Wireless Cel
MH
L]
L ]
MH
MH o

Figure 1.1: Model of a System to Support Mobility

1.2 Operation Modes

For traditional distributed systems. a host operates either in connected or discon-
nected mode. Disconnection may be caused by either network failure or server fail-

ure. Mobile environment has additional operating modes not typically found on fixed
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networks. Pitoura and Bharagava [PB93. PB94a] summarized the different modes.

(see Figure 1.2).
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Hand-off
Protocol
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Figure 1.2: States of Operation of a Mobile Unit

In Figure 1.2, there are four states representing the different modes in which
a mobile unit can operate. The mobile unit switches its operation mode between
them depending on need. The transactions in Figure 1.2 represent the conditions
and protocols of switching modes. For example: if a mobile unit is disconnected
from a fixed network, it will switch from fully connected mode to disconnected mode
by executing a disconnection protocol. After a while. when the disconnected mobile
unit wants to save battery life, it switches from disconnected mode to doze mode.
Subsequently. when the disconnected mobile unit wants to reconnect to the fixed

servers, it is reactivated back from doze mode to disconnected mode, then it executes



Introduction 5

a re-integration protocol and switches from disconnected mode to connected mode.
When switching modes. the mobile unit is required to execute some protocols.
These protocols are used to maintain the smooth transition from one mode to another.
For example: when a mobile unit wants to disconnect from the fixed network. the
disconnection protocol will operate and download all the necessary files and data to
the mobile cache. While disconnecting. the disconnection protocol keeps running and
monitors the transactions running on the disconnected mobile unit. The conditions

and responsibilities of the protocols are as follows:

o A hand-off protocol is used when the mobile unit wants to cross the boundaries

of a cell.

e A partly-disconnection protocol is executed when very limited network services
are available. A mobile unit should restrict communication as much as possible

to the fixed network.

e A disconnection protocol is executed before physically detaching the mobile unit
from the fixed servers. The disconnected mobile unit can then continue to work
using the data in its cache. When the unit reconnects to the fixed servers.
the updates made while it is disconnected is then passed to an agent that re-

integrates the updates to the fixed servers.

e A re-integration protocol is executed when a disconnected mobile unit wants
to reconnect to the fixed servers. It helps the system to verify and merge the
transactions run on the disconnected mobile unit to the fixed servers. If conflicts

are identified. the re-integration protocol will attempt to resolve the conflicts.

Although computational power improves rapidly. energy technology improves more

slowly. Battery consumption is still a major problem for mobile units [IB93, IB94].
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Doze mode operation reduces energy waste on notebook computers because it avoids
transmissions until absolutely necessary.

A mobile unit cannot maintain full network connectivity as it must function in
Partly Connected or Disconnected modes. Partly-Disconnection and Disconnection
protocols are developed to handle these situations. The key idea of these two protocol

is allowing the mobile unit to continue working while isolated.

1.3 Problem Domain

Several issues differentiate mobile systems from traditional distributed systems. These

include:

1. Mobility during the course of a transaction [Chr93. EJB95. GBH96. HH95.
[B93. IB94. JBE95. PB93. PB94a. PB94b. PB95|.

o

Communication speeds are slower with mobile units [BAI93. IB93. IB94].
3. Transactions are typically long-lived [Chr93. PB93].

4. Maintaining consistency of data over all distributed sites is extremely difficult

in a mobile computing environment [HH95. LS94. PB94a. PB94b].

These paradigms introduce new technical issues in the area of distributed database
systems [BAI93. Duc92. HH94. HH95. IB93. IB94. PB93|. For example: when a
site cannot be reached. traditional distributed database management systems assume
that the site is failed. In contrast, the disconnection protocol [Hei92, HH93, HH9.
HH95, KS92] is a basic function of mobile computing, so mobile database management
systems do not make the same failure assumption. For example: Unit A copies all
the necessary files to its cache, and then disconnects from the main office to travel to

a branch office. During the journey, a file on the laptop computer is updated. At the
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same time, Unit B updates the same file on the fixed server. When Unit A reconnects
to the fixed network. a conflict occurs. This scenario does not happen in traditional
distributed systems because the disconnected unit would be considered failed.
Currently. almost all researches concentrate on Mobility and Scale. Location Man-
agement. Banduwidth and Energy Management. Disconnection Protocol. Mobile File
Systems [TD91. ZD93] and Mobile Transaction Management [Chr93. EJB95. JBE9S5.
LS94. PB95|. However. very little work has been done on concurrent data access
and its impact when disconnection protocol is permitted. The disconnection protocol
must be investigated to revise the distributed transaction management algorithms.

Figure 1.3 provides an overview of this thesis’'s goal.

T

lFxxed Server| : Mobile Unil‘

j Database | : Database | :
|

Ti

Re-integration

. y
! T:
r Consistent
l Database

Figure 1.3: General Model of Re-integration

In Figure 1.3, there are four components: (1) a set of transactions running on a
fixed server. (2) a set of transactions running on a disconnected mobile unit, (3) a
re-integration agent. and (4) a set of transactions running on a consistent database.

When a mobile unit is disconnected from a fixed server. it continues its work based
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upon the data in its cache, so we have a set of transactions running on the disconnected
mobile unit. Concurrently. the fixed server executes its normal daily transactions
which creates another set of transactions. When the disconnected mobile unit wants
to reconnect. we need a re-integration agent to verify and merge those transactions
running on the mobile unit to the fixed server. After the re-integration. the system
should return a consistent database. The re-integration agent is the heart of the
whole process. [t should be able to identify and resolve any potential conflict and
guarantee serialization after merging the transactions on the mobile unit to the fixed

server.

1.4 Motivations

Many modern proposed solutions to the conflict problem involve some user input [Hei92.
HH93. HH94. KS92. LS94]. For example: suppose that a travel company downloads
all the information such as airlines’ schedules and hotels’ reservation once a day.
All the travel agents in the company share the data locally instead of connecting
to different networks. In this particular case. all of the travel agents are working
with “disconnected data”. Suppose that an agent helped a customer to schedule a
vacation in Miami. The agent asked the customer his favourite airlines, hotel and
local tours he wants to join in Miami. The customer might choose to take United
Airlines to Miami. stay in Holiday Inn and join a local tour to Disney World. For this
transaction. there are three operations: opl: book an air-ticket. op2: reserve a hotel
room, and op3: reserve a space in the tour to Disney World. Unfortunately, when
the system reconnected back to the server, all seats from United Airlines have been
already booked so the transaction must be aborted. This thesis argues that the agent
could submit one more alternative transaction. If the master transaction contains

conflicts, the alternative transaction will substitute it. In this example, the master
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transaction is to book a ticket from United Airlines; the alternative transaction could
be to book a ticket from American Airlines. This thesis shows that the transaction
manager can automatically replace the conflicting transaction using the alternative

transaction and commit it.

Furthermore. during the time of disconnection. the database showed 100 empty
rooms left in Holiday Inn. However. the Holiday Inn’'s database shows that only
90 rooms are left when connected. In the agent’s point of view. 90 or 100 empty
rooms make no difference as long as he can reserve a room for his customer. In
the transaction management’s point of view. op2 violates the serializability because
it read stale data. Traditional approaches will abort and roll back this transaction
even though only op2 generates conflict. But. this thesis argues that using static

analysis [GB95]. we can avoid re-executing the whole transaction.

Let us consider another case: A medical company owns two hospitals. In order
to reduce operational expenses. only one accountant is employed so he is responsible
for both hospitals. The accountant spends only one day in each hospital monthly.
and the rest of the month in the headquarter. Each time he travels to one of the
hospitals. he downloads the financial information from the hospital's database in his
notebook and audit it in the headquarter. In this case. the accountant is working with
a “disconnected data”. In the end of each month. the accountant travels back to the
hospitals. reconnects his notebook and submits the transactions he did in the head-
quarter back to the hospital’'s database. Since the information such as employees’
salaries and maintenance fee does not change frequently. we can expect that most of
the transactions can be committed successfully. But. suppose that the management of
the medical company agreed to increase one of the doctor’s salary in hospital A, this
change does not reflect on the accountant’s notebook immediately. If the accountant

submits a transaction which pays salaries to all 200 employees in hospital A, this
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transaction must be aborted and rolled back even though only one salary is changed.
This scenario is inefficient and undesirable.

This thesis argues that previous approaches need to re-execute the whole conflict-
ing transaction which is not always necessary [PB95]. A Multi-version Timestamp
Certification for Disconnection Protocol in Mobile Computing is presented to address
the new transaction paradigms found in mobile computing environment. The primary

objectives of the algorithimn are:

1. solving data consistency problem between the distributed static servers and

moving mobile units. and

2. maximizing transaction concurrency for transactions.

Before explicitly discussing our approach. the Multi- Version Timestamp Ordering
Algorithm and Optimistic Certification Scheme are required. Our model is based

upon these two algorithms.

1.4.1 Multi-Version Timestamp Ordering Algorithm

Timestamp Ordering algorithm (TO) [BG80. OV90| ensures serializability using a
non-atomically increasing logical timestamp. A basic TO algorithm never causes
transactions to wait. but may require them to start. To restart transactions is un-
desirable. so multi-version timestamp ordering algorithm (MVTO) [Pap84, Tho78]
attempts to eliminate the restart overhead. MVTO does not modify the database us-
ing a write operation. Instead. it creates a new version of that data item marked by
the timestamp. If a read operation (read(z)) is issued, the system will fetch a version
of  where ts(z,) is the largest timestamp less than ts(read(x)) to the operation. For
example: T; wants to read z. However, T; = {w;(z)} has been committed where

ts(T;) < ts(Tj). In basic TO, T; must be aborted and restarted. But, in MVTO, T;
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can still commit because T; can read the latest version of r where ts(x,) < ts(T;).
The MVTO trades space for time because it requires extra storage to keep the old

version of data.

1.4.2 Optimistic Certification Scheme

Kung and Robinson [KR81] designed an optimistic concurrency control algorithm for
a centralized database of low concurrency. Sinha. Nanadikar and Mehndiratta [SNM85]
moved one step further and introduced a timestamp based certification algorithm for
distributed database systems. An optimistic concurrency control algorithm assumes
that concurrent transactions are infrequent. so it will not check for any conflicting
operation until the End_Transaction is issued. The algorithm commits the trans-
action if no conflict occurs. or aborts and restarts it otherwise. Thus. a consistent
database is alwayvs maintained. This algorithm is more efficient for mostly-read-only
database such as query-domain database because there is no locking involved. thereby
eliminating the associated delays.

Pushing the validate phase after compute phase reduces the overhead time be-
cause the transaction manager allows transactions to compute first without checking
any conflict among them. This scheme reduces the time spending on predicting po-
tential conflicts during the execution of transactions. A transaction is validated by
the transaction manager when a commit signal is received. If no conflict occurs.
the transaction is committed: otherwise. it is aborted. In a lightly-shared system.
conflicts are rare. Using optimistic certification scheme can save the overhead time
of predicting conflicts. However. if a system shares its files heavily, the optimistic
approach is not appropriate because many transactions must be aborted and redone.
Figure 1.4 shows the sequence of phases of pessimistic and optimistic transaction

executions.
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Validate Read Compute Write

a. Pessimistic Concurrency Protocol

|

e ———— e ———— e ————

Read Compute Validate Write

b. Optimistic Concurrency Protocol

Figure 1.4: Phases of Transaction Execution

MVTO is suitable for a mobile computing environment because it does not abort
read operations which are mostly used in mobile computing environment. A stand-
alone disconnected mobile unit is operated in isolation: hence simultaneous sharing

of data should happen rarely which suggests the certification scheme be used.

This thesis develops a new transaction model similar to [GBH96]. The new
model is able to record the modifications in a transaction at execution time in the
disconnected mobile unit and provide information to analyze and resolve conflicts

using static analysis [GB95] upon reconnection.

A locally committed mobile transaction will result in a conflict if stale data is
read during the time of disconnection. Traditional approaches can only base on the
dynamic read/write operations or transaction submission order alone to roll back the
transaction. Such approaches are based on exact but extremely limited information.
Applying the static analysis can derive more extensive but inexact information to
resolve the conflict at compile time and guide the transaction manager to commit the
transaction at run-time [GB95]. Thus, concurrency control overhead is reduced by

shifting some of the effort to compile time.

Unlike run-time scheduling method to detect the conflict at run time and roll back
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conflicting transactions. a static analysis retrieves and analyzes the static information
of a transaction to predict and resolve conflicts prior to the execution of commit at
run time. In other words. a mechanism is developed to analyze the static information
of a transaction to predict where conflicts arise and attempt to resolve them prior
to committing the transaction. The consequences of using static analysis can remove
any overhead associated with scheduling and guarantee a successful commit at run
time.

During the execution time. we allow the fixed servers and disconnected mobile
units to run their transactions concurrently. Upon reconnection. we apply Partial
Re-ezecution [HBGY7] using static analysis to analyze and reconcile the conflicting

transactions at compile time before committing the transactions at run time.

1.5 Contributions

This thesis attempts to achieve the following:

1. Investigate the properties of a mobile computing environment. Furthermore.
identify the problems and difficulties to allow concurrent data access in both

the fixed servers and disconnected mobile units.

2. Review the existing research literature and determine their limitations in solving
data inconsistency caused by the disconnection protocol in a mobile computing

environment.

3. Revise the traditional distributed transaction model and introduce an improved

mobile transaction model suitable for the disconnected mobile unit.

4. Combine Sinha. Nanadikar and Mehndirtta’s [SNM85] and Hadaegh, Barker

and Graham's [HBG97] work to develop a new transaction management for the
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disconnection protocol.

5. Implement. demonstrate and analyze the results of the new transaction model.

From the results of the experiment. we discuss its performance and limitations.

1.6 Assumptions

Based upon the observation [KS92. SKM™93]. the authors conclude that laptop users
are very aware of the operations they use while traveling [HH93]. Moreover. they
will eventually connect their laptop computers back to the fixed servers and report
their updates during the time of disconnection. Furthermore. to prevent the lost of
critical data items from the fixed network. we do not allow the moving disconnected
unit to hold any primary data. All data in the mobile cache is replicated from the
fixed servers. To reduce the overhead time and complexity of re-integration. we do not
allow any direct communication between disconnected mobile units. The assumptions

are summarized below:

1. Since people are able to operate for extended period in isolation. they are quite

good at predicting their needs for future file access.

N

The workload of engineering/office applications generally consists of sequential

read-write sharing. but little simultaneous sharing [HH93. SKM™*93].

3. The disconnection period is short. and the disconnected mobile unit will even-

tually reconnect back to the servers [Hei92. HH93. HH94. SKM*93].

4. The data in the fixed servers is the primary one. The data in the disconnected

mobile is replicated from the fixed servers.

Mobile units do not directly communicate with each other. Any inter-mobile

($1]

data exchange occurs through connection to the fixed network.
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1.7 Thesis Organization

This thesis is organized as follows: Chapter 2 discusses the related work to imple-
ment the disconnection protocol. and designing the mobile transaction model and
management system. Chapter 3 presents a new mobile transaction model. Chapter 4
presents the general model and overview of the Multi- Version Timestamp Certifica-
tion for Disconnection Protocol in Mobile Computing. The detailed implementation
of the Local Transaction Certification Scheme will also be presented in Chapter 4.
Chapter 5 discusses and presents the overview and detailed implementation of the
Global Commit Protocol. The demonstration of mobile computing is presented in

Chapter 6. Finally. conclusions and future work are given in Chapter 7.
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Chapter 2

Related Work

2.1 Introduction

Much work has been done on the mobile computing environment [Chr93. EJB95.
GBH96. Hei92. HH93. HH94. JBE95. KS92. LS94. PB95. TD91. ZD93]. We can
divide them into two categories: (1) Mobile File Systems and (2) Mobile Transaction
Managers. First. we discuss the effects of adding mobility to the distributed file
systems and some related work that solves their problems. Then. we discuss the
mobile transaction managers and provide some new methods to revise the traditional

distributed transaction managers to meet the needs of a mobile transaction manager.

2.2 Mobile File System

Several issues have been addressed when adding mobility to distributed systems [Hei92.
HH93. HH95. KS92. TD91. ZD93|. This thesis concentrates on the effect of allow-
ing the disconnection protocol. The disconnection protocol in mobile computing is
different from failure. The mobile units can inform the fixed network of an impend-

ing disconnection prior to its occurrence and execute a disconnection protocol. A

17
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disconnected mobile unit can continue working using data in its cache. When the
unit reconnects. it passes the updates made while disconnected to an agent that
re-integrates those updates to the servers.

Generally. a mobile unit copies files from a network. works on the files when it is
disconnected. and then restores the updated information to the network. The sys-
tem should prevent the user from accidentally overwriting another user’s work in an
automatic way [HH93]. Although the strength of the disconnection protocol is it per-
mits mobile units to continue working when the network is inaccessible. inconsistency
of the shared data in the disconnected mobile units and servers must be carefully

avoided.

2.2.1 Disconnection Protocol in Coda

Kistler and Satyanarayanan [KS92| implement the disconnection protocol in the Coda
file system!. Theyv implement the disconnection protocol as a user-level process called
Venus. Venus uses optimistic replication. The assumption is that simultaneous write-
sharing happens rarely in the UNIX NFS so an optimistic approach will vield better
performance in a lightly-shared system. Venus operates in one of the three states:
hoarding. emulation. and re-integration. Figure 2.1 illustrates transaction states found
in a Venus process.

Venus is in a hoarding state while the mobile unit is connected. It replicates
server’'s data. executes transactions in the mobile unit. and reports updates to the
server. Venus moves from a hoarding state to an emulation state while it is discon-
nected. Venus emulates server’s operations when the network connection is inacces-
sible. During the emulation state. the cache manager logs all the accessed objects

and reports to the user if a cache miss occurs. During reconnection. Venus enters the

1Coda file system is a distributed system developed on UNIX.
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Emulation ! Re-integration

physical reconnection

Figure 2.1: Venus States and Transaction

re-integration state. resvnchronizes its cache with the server. and returns to hoarding
state. In the re-integration state. they propose a replay algorithm to re-integrate the

data in the local cache and the data in server together.

The replay algorithm consists of four phases. In phase 1. the log in the discon-
nected mobile unit is examined. a transaction is begun. and all objects referenced in
the log are locked. In phase 2. each operation in the log is validated and then exe-
cuted. The validation contains conflict detection and integrity protection. In phase
3. the actual data transfer process is done. In phase 4. the transaction is committed
and all locks are released. Venus's optimistic algorithm means conflict is possible at
re-integration. The authors only consider write/write conflicts because they claim
read/write conflicts are irrelevant to the UNIX file system because it has no notion
of atomicity beyvond the boundary of a single system call. The conflict detection is
straightforward. Each data item has its own storeid that uniquely identifies the last
update to it. During phase 2 of the replay algorithm, a server compares the storeid

of every data item in the log of the mobile unit with the storeid of its own replica of
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the data item. If the comparison indicates equality for all data items. the operation
is performed and the mutated data items are tagged with a new storeid specified in
the log entry. If a storeid comparison fails. the entire re-integration is aborted.
Venus attempts to provide the disconnection protocol for the Coda file system. It
modifies the existing distributed file system and cache manager to guarantee availabil-
ity and consistency of data items. Unfortunately, it does not automatically solve the
problem of data inconsistency caused by conflicting transactions during the time of
re-integration. The replay algorithm only logs and reports to the user where conflicts

occur. Users are required to resolve conflicts manually.

2.2.2 Disconnection Protocol in AFS

Similar to Venus. Huston and Honeyman [HH93] present the disconnected operation
in AFS? which also modifies the existing distributed file system and cache manager
to make the disconnection protocol possible. The remote cache manager logs all the
accessed data items during the time of disconnection. and compares the logs to the
file server upon reconnection. The disconnected operation in AF'S resolves conflicts
by copying the conflicting object in the mobile unit to a new object in the file servers
and informs the user. The user then decides which objects he wants to discard. Once
again. the disconnected operation in AFS concentrates on the effect of the distributed

file system. The transaction management issues are not addressed explicitly.

2.3 Mobile Transaction Management

Adding mobility to the distributed transaction managements creates new problems

that need to be researched. There are two major issues: (1) Relocation Problem.

2Andrew File System (AFS) is a distributed file system built on UNIX.
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and (2) Frequent Disconnection. Much work {GBH96. JBE95. LS94. PB95] has been
undertaken. The work focuses on maintaining serializability and minimizing message

exchange in the network.

2.3.1 Isolation-Only Transaction for Mobile Computing

Lu and Satyanaravanan [LS94] develop the Isolation-Only Transactions (IOT) for
mobile computing. An IOT is a flat sequence of file access operations bracketed by
a begin_iot and an end_iot. The IOT execution model uses an optimistic concurrency
control mechanism so the client’s local cache is a private workspace for transaction
processing. There are two classes of transactions for the [OTs: (1) First class trans-
action whose execution does not contain any partitioned file access. and (2) Second
class transaction whose execution contains partitioned file access. Partitioned file ac-
cess means that a file is shared by both the fixed server and the disconnected mobile
unit. A first class transaction’s results are visible on the servers once it commits. A
committing second class transaction enters the pending state so it can be validated
later. Figure 2.2 depicts the state transition diagram for IOT execution.

Second class transaction

m with parnnoned validation fail
running (il sccesses pending

validauon succeed
& te-integration

resolution

user invocaton

Figure 2.2: A State Transition Diagram for IOT Execution
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In the diagram. there are three cases where a transaction can be committed. The
IOT execution guarantees that a first class transaction is always serializable because
no partitioned data item is accessed. A second class transaction is always serializable
locally but may not be serializable globally. If a second class transaction is not in
conflict during global validation. the transaction will leave the pending state and be
committed globally. If this option fails. the system will suggest 4 options: (1) re-
executing the transaction. (2) invoking the transaction’s application specific resolver.
(3) aborting the transaction. and (4) notifving the users and wait for further decision.
For example: if a transaction is used for editing the files of a co-authored paper
on a disconnected laptop. this option is useful for coordinating possible concurrent
updates. Unlike the disconnection protocols in Coda and AFS. IOT attempts to
maintain transaction serializability. However. it cannot resolve conflicts at the system

level so the user must decide what to do.

2.3.2 Optimistic Two Phase Locking for Mobile Transaction

Jing, Bukhres and Elmagarmid [JBE93] adapt the optimistic two phase locking
(O2PL) algorithm to the mobile environment and call it the optimistic two phase lock-
ing algorithm for mobile transaction (O2PL-MT). The O2PL algorithm is developed
for distributed replicated database systems and uses a read-one write-all concurrency
control algorithm. The word optimistic is used because write_locks are obtained just
before the commit phase begins. but read_locks are obtained immediately from the
local or nearest copy site when the read operation is issued. A read operation is
very inexpensive within its local site when it is compared to the message-intensive
approach when site boundaries are crossed.

However, the authors show that mobility results in extra messaging for the O2PL

algorithm. For example, suppose that a transaction T; = {r(z)r(y)w(z)} is executed
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in a moving mobile unit. So. it issues r(z;) in site 1. r(y2) in site 2 and w(z3) in site
3. and r and y are replicated in sites 1. 2, and 3. When T; is committed in site 3.
it must send unlock(z,) to site 1 and unlock(y,) to site 2. Thus. the system sends

extra messages. Figure 2.3 depicts the example.

Ti
Site 1 Site 2
—_—
| T, = {r(x)r(y)w(z)}
! Xl x(2) !
wh LOCK(x(1)) 104) LOCK(y(2)
READ(x(1)) READ(y(2))
!
[
> ¢
5
UNLOCKix(1)) UNLOCK(y2)

LOCK(z(3)
WRITE(z2(3))
UNLOCK((z(3)
Commit

Figure 2.3: A Mobile Transaction Example

In this traditional distributed systems. this scenario will not happen because the
positions of transactions are assumed to be fixed. The authors claim that these extra
message transmissions can be avoided in mobile computing.

Consider the earlier example. Instead of sending unlock(x,) to site 1 and unlock(y-)
to site 2. T; sends unlock(z3) and unlock(ys) to site 3 at commit time. The algorithm
itself is not sufficient to guarantee the correctness of read-one write-all criteria, so
some additional issues have to be explored: (1) read_locks must remain at remote

sites until the coordinator decides to release the locks and commit a transaction lo-
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cally. (2) An update transaction must be able to determine that the item to be
updated has not been locked by other transactions for reading if the read.lock and
unlock are executed at different sites. Such a check should have a low message cost.
(3) A mechanism much be provided to remove the pending read_locks at remote sites
at proper time if the continuation of such locks will affect the execution of other
transactions.

In the traditional O2PL algorithm. when a transaction requests a write_lock. the
svstem will boardcast to all remote sites. If no pending read.lock is in effect. the
transaction grants the write_lock: otherwise. it is blocked. This process requires only
one round of message exchange. However. if the read_lock and unlock are executed in
different sites. we need two rounds of message exchange to ensure the read-all write-
one approach. In the first round. the system collects unlock information from all the
copy sites involved. In the second round. while all sites indicate that the unlock has
been executed. the system can send a message to allow the write_lock request to be
granted.

The O2PL-MT algorithm is designed for a mostly-read-only mobile system. As
we can see, granting a write lock requires two-round of message transmissions so
a heavily write-shared system will increase the number of message transmissions.
Moreover. it addresses only the mobile relocation problem, it does not support the

disconnection protocols explicitly.

2.3.3 Mobile Transaction in Clustering Mobile System

Pitoura and Bhargava [PB94a, PB94b, PB95] describe a transaction model for mobile
computing. They partition the mobile system into several clusters which are smaller
in size and the clustered data is closely related. Transactions must maintain strict

consistency within its cluster, but not necessarily across other clusters. The mobile
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unit and fixed servers can issue either weak transactions or strict transactions. For
critical transactions. users issue strict transactions which guarantee global consistency
when the transaction commits. When a strict transaction wants to commit globally.
the system sends a commit request message to every participating site including
mobile units and waits for their replies. This may be quite costly for mobile units
because they may not be easily located. Moreover. some mobile units may operate
in isolation so the system must either discard the transaction or wait for the mobile

units’ replies.

On the other hand. a weak transaction only requires strict consistency within its
local cluster so it avoids the overhead of long network accesses. The authors argue that
data clusters requiring shared access is rare across cluster boundaries. For example:
in a university community. the Department of Computer Science does not share its
data heavily with the Department of Statistic. Thus computer science users issue
weak transactions within its local cluster. as do the statistics users. If a user does not

require data consistency across two clusters. it will never release strict transaction.

Dividing mobile systems into clusters is an extension of network partitioning.
However. two or more separated clusters may eventually need to merge their data.
This merging can lead to conflict between the two clusters. A weak transaction
issued in a cluster may contain inconsistent data that must be resolved when a strict
transaction is issued. Resolution of inter-cluster serializability is accomplished with
roll back transactions whose weak writes conflict with strict transactions [PB95]. Care
must be taken to correctly merge cascading aborts that occur when the transaction

manager re-does a transaction.
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2.3.4 Reconciliation in a Nested Object Transaction Envi-

ronment

Graham. Barker and Reza-Hadaegh [GBH96] extend the disconnection protocol to an
object-base system. They argue that the property of encapsulation in objects helps
the re-integrating agent to reconcile conflicting transactions. In an object-based sys-
tem. every object is encapsulated. If an operation wants to access any information in
a particular object. it must go through the public protocols of the object. It imme-
diately tells us that the system knows exactly what data items the operation wants
to access and what behaviour the transaction expected from the object. Based upon
these definitions. a new concept of optimistic re-integration algorithm is described in
the paper. A mobile unit downloads all the critical objects from the object-based sys-
tem prior to disconnection. While the mobile unit is disconnected. the cache manager
is responsible for logging all the object’s behaviours at execution time. Since every
object is encapsulated. the transaction manager knows what and how the changes
occur. At the same time. the transaction manager in the fixed file server logs all the
modifications to the critical objects. During the reconnection. if there is any con-
flicting transaction reported, the re-integrating agent analyze the behaviour of the
critical objects before executing global commit. It examines the changes logged on
both objects in the mobile unit and the server during execution time, and determines
whether the changes should be integrated or not. An object ob can be replicated. We
use S}, to represent i replication of ob. An object ob moves from state Sg to S,;* using
method m; as Su —> S&'. According to the authors {GBH96]. S,,'™ is equal to
S2>™ so the execution sequence of two methods does not affect the final result. For
example: a mobile unit replicated an object S}, in its cache. While the mobile unit
is disconnected. it updated S}, to S.' using m;. At the same time. the fixed server

updated its replica of S3, to S.,’ using m;. Upon reconnection, the re-integrating
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agent merges Sp' and S.;’ to SiF¥.
Figures 2.4 depicts the process of object re-integration and illustrates two cases

to re-integrate two conflicting objects to a new consistent object. The system can

integrate S}, and S% to S in two cases.

Compric time analysss of
m s m,

where
S, is the based object. S:' is the new object in the disconnected mobile unit after performing method m,
S; is the object cached by the disconnected mobile unit. S:' is the new object in the fixed file server after performing method m,
S°, is the same object which resides on the server. S:' is the new object after the re-integration of $°* and S$™°
o e o

S' andS°® are ideatical.
ob o

m, andm  are the methods operated in S; and §° correspondingly.
R A

Figure 2.4: Reconciliation of Object-Base System
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She™ can be obtained either from S with method sequence m; and m; or from
S2, with method sequence m; and m;. Since the re-integrating agent knows what

and how the objects have changed. the replay algorithm reconciles two methods to
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produce a new consistent object. The worst case is discarding one of the critical
objects and re-executing the conflicting transaction.

The authors present a reconciliation mechanism suitable for a close nested object
transaction environment. However. their whole idea is based upon the property of
object-orientation. For other database models such as relational and network models.

this method is not appropriate.



Chapter 3

Mobile Transaction Model

Transactions are used to ensure consistent and reliable data management in addition
to atomic and isolated user interaction. In traditional database systems. a consis-
tent and reliable transaction has to satisfy the ACID properties [OV90]. Recent
research [Chr93. HBG97. PB94b] has pointed out that advanced applications em-
ploying complex data structures such as CAD and object base systems may require
a relaxation of those properties. The invention of wireless medium and the discon-
nection protocol has changed the concept of transaction management in distributed
systems [EJB95. GBH96. HH95, IB93. IB94. JBE95. LS94. PB95|. For example. in
the traditional transaction management. disconnection means failure, but the dis-
connection protocol in mobile computing environment is also a standard operation.
This thesis introduces a new mobile transaction model suitable for the disconnection
protocol and shows that it is sufficient to maintain correct data. The correctness

criterion used in this thesis is conflict-serializability.
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3.1 Transaction Properties

Transactions ensure that the database remains consistent even when concurrent ac-
cesses and failures occur. In traditional database systems. the consistency and relia-

bility aspects of transactions are due to four properties (ACID):

e Atomicity states that all or none of the operations are executed.

e (Consistency states that a transaction must take the database from one consis-

tent state to another.

e [solation means that no partial result is seen. [t guarantees a consistent view

of the database at all times.

e Durability means that once a transaction commits. its results are permanent.

In mobile computing environment. protecting the ACID properties requires new
research. For example: mobile units frequently work in disconnected mode. If we al-
low concurrent data access in both the fixed server and the disconnected mobile unit.
a new mechanism is required to guarantee data consistency. Furthermore. wireless
communication is not as stable and. as reliable when compared to wired communi-
cation. We should expect more frequent errors in a mobile transaction so a differ-
ent recovery method is required to guarantee durability. In our model. we develop
a new Multi- Version Timestamp Certification for Disconnection Protocol in Mobile
Computing (MVTC) to ensure consistency optimistically. MVTC consists of two
phases: (1) Local Timestamp Certification Scheme (LTCS) runs on the disconnected
mobile unit and guarantees only serialization among local transactions, and (2) the
Global Commat Protocol (GCP) ensures global serialization upon reconnection. We
use conflict-serializability for correctness. The general idea of the GCP is shown in

Figure 3.1.
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Figure 3.1: Model of MVTC

In Figure 3.1. there are two sets of locally serializable transactions: one set is run-
ning on the disconnected mobile unit and the other set is running on the fixed server.
Upon reconnection. the GCP will examine every transaction in the disconnected mo-
bile unit and identify any potential conflict. If there is no conflict. the transaction will
be committed and merged to the fixed server. Otherwise. the system will attempt to
resolve the conflicts. In our model. we provide three methods to resolve conflicts. (1)
execute and commit the alternative transaction. (2) partially re-execute [HBG97| the
conflicting transaction. and (3) abort the transaction. After resolving conflicts. the
system commits the resolved transaction globally. The detail of these resolutions is

presented in Section 3.5.
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3.2 Mobile Transaction

A mobile transaction contains several sub-transactions executed on mobile and fixed
units. Given the high cost and low bandwidth of mobile communication. users are
often willing to temporarily work with "stale” data if correctness is guaranteed [HH93.
HH94. IB93. IB94. LS94. PB95]. Consider a disconnected mobile unit requesting a
hotel reservation. The mobile unit may show 100 rooms are available even though 95
rooms are left based upon data on the fixed servers. Clearly, it makes no difference
to the mobile user since only one room is required. In our model. we allow the
room reservation to be committed locally and confirm it with the GCP to verify
this committed mobile transaction later. Although all 100 rooms may be unavailable
when the mobile unit reconnects. this scenario is unlikely to happen for a short
disconnection typical in mobile computing. Strictly speaking the transaction has
violated serializability because the transaction has read stale data locally.

The GCP examines every locally committed transaction. If there is any conflict,
the GCP will either submit an alternative transaction or re-ezecute the transaction
partially. If the GCP fails to resolve conflicts, it will abort the transaction. Without
loss of generality. we assume that at any given time. a mobile unit can directly
communicate with only one mobile support station which is responsible for the logical

or geographical area in which the mobile unit moves.

3.2.1 Transaction Structure

Traditionally. a transaction is composed of a sequence of read/write operations on
database items bracketed by Begin_Transaction and End statements. A Be-
gin_Transaction statement results in a call of the transaction manager at the user’s
site which processes all user’s requests following it. This is a flat model for transaction

with only one Begin_Transaction and End statement.
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Suppose that a stock broker (user A) helps a new client (user B) to invest. First.
user A checks the current price. then the credit history of user B. and only if both
results are satisfactory will user A help user B place the order. This transaction
involves accessing several different databases and requires dependencies between sub-
transactions. The transaction manager first divides the transaction into a number
of sub-transactions. They run concurrently perhaps on different database systems
and report the results back to the transaction manager. This model is a nested
transaction model. To make the case more complicated. user A may disconnect
from the network temporarily and transfer to a new physical location. During the
period of disconnection. user A may access and modify some of its cached data items.
This thesis concentrates on resolving the serialization of transactions affected by the
disconnection protocol.

We could lock all the data items while a mobile unit disconnects from the rest of
the network to maintain serialization. However. it is very inefficient and unnecessarily
restrictive. Our model allows the disconnected mobile units to operate and commit
locally using cached local data items. and commit globally upon reconnection. No
locking is involved during the transaction execution in this model. However. when the
disconnected mobile unit reconnects to the network. some mechanisms are required to
detect and resolve potential conflicts between fixed and mobile units. When conflict
occurs. the system can prompt the user to determine if a conflicting transaction
needs to be discarded. By providing a reconciliation methology. human interaction is

minimized [HH93. HH94. KS92].

3.3 Definition of Conflict

We define an operation r of transaction i as op; .. We define a boolean function called

con flict which accepts two operations and returns true if at least one of them is a
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write operation. We define that op;, proceeds before op;, as opi, — op;,. We say

that a transaction T, must be serialized before T; if

30Pt.r~ opj,,(conflict(opi.,. Opj.s) A (opir — Opj.s))

3.4 Data Consistency

Mobile units are only connected to the fixed network intermittently. so mobile trans-
action management must reflect increased concern for bandwidth consumption and
disconnection constraints. Disconnection gonstraints are caused if the system allows
concurrent access of data between the fixed server and the disconnected mobile unit
because conflicts are possible.

Since pessimistic approaches induce unacceptably high costs. this thesis attempts
to attain consistency after the mobile unit reconnects to the network. When a lo-
cal transaction issues Begin_Transaction in the disconnected mobile unit. the local
transaction manager (LTM) is called. The LTM logs all information such as times-
tamp and flags data items accessed by the transaction. Upon reconnection. the GCP
merges the transactions in the disconnected mobile unit to the fixed server and forms
a consistent database.

In our model. transactions are allowed to run concurrently in both the discon-
nected mobile unit and the fixed servers which results in a substantially higher con-
currency than the locking method [KR81. OV90. SNM85]. Transactions are classified
into two categories: a local transaction is one whose execution guarantees local serial-
izability; a global transaction is one whose execution guarantees global serializability.
The global transaction is very different from the local transaction. It can only be
verified for global conflicts when the disconnected mobile unit reconnects to the fixed

server. In order to guarantee the serializability of the global transactions, we must
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specify how the system will respond if those transactions generate conflicts. This

thesis proposes three options to resolve conflicts.

e Alternative Transaction
A disconnected mobile unit issues an alternative transaction on the top of the
master transaction while it is disconnected. When conflict occurs and the sys-
tem fails to commit the master transaction. the alternative transaction is sub-
mitted to the GCP. For example: a mobile user downloaded the airline ticket
information before disconnecting from the network. While it is disconnected.
it wants to reserve an airline ticket to Toronto from Air Canada. The local
database indicates that there were only two seats left on Air Canada. Those
two seats may be gone when the user reconnects to the fixed network so the
svstem will ask the mobile user to hold an alternative ticket from Canadian
Airlines. If all of the seats from Air Canada have gone during the period of

disconnection. the alternative transaction will replace the master transaction.

e Partial Re-execution
In a traditional optimistic concurrency control. the svstem aborts all conflicting
transactions and re-executes them. However. we can apply compiler technology
to analyze the committed mobile transactions before executing global commit.
If a conflict is detected. the GCP will re-execute only the conflicting opera-
tions in the conflicting transactions. In the worst case. we re-execute all the
operations of the conflicting transaction. We argue that re-executing the whole
conflicting transaction in a lightly-shared system is often unnecessary and is
the worst case scenario. For example: suppose that a salesman sold 100 item A
and 100 item B to a customer in a remote area using the disconnected laptop
computer. The salesman’s laptop showed that he had enough items in stock to

commit this invoice. We can treat this invoice as a transaction which consists
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of two operations (opl: sold 100 item A: op2: sold 100 item B). When the sales-
man reconnects back to the network. the database shows that other salesmen
sold some item A to another customer during the time at which the salesman
was disconnected so there are not enough item A left. Thus. opl generates con-
flict. In traditional transaction model. even though only opl generates conflict.
both opl and op2 in the conflicting transaction will be re-executed. However.
op2 does not generate any conflict and needs not be re-executed. When only
two operations are involved. the re-execution costs are not onerous. but let us
consider an extreme case. If the salesman sold 1000 items and only opl gen-
erates conflicts. the system must re-execute 1000 operations in the transaction
because of one conflicting operation. This scenario is inefficient. Using partial
re-execution. only opl needs to be re-executed so other operations consistently

affect the database.

Aborting the transaction

In some cases. the GCP must abort the locally committed transactions, and
inform the user of the abortion because of the application’s constraints. For
example: suppose that a mobile user wants an airline ticket to Toronto on a
specific day. Before traveling. the user downloaded the airline ticket information
to the laptop computer. While he is traveling, he makes a booking and the
LTM committed the transaction locally because the system had shown that
there were seats available. However. upon reconnecting to the fixed server, the
system shows that all seats have been taken and no more seats are available in
any airline company for that day. Even though the mobile user may submit two

or more alternative transactions. the GCP must abort the transaction.

For the first two options, the system resolves the conflicts automatically. Users

are not required to respond when the conflict is detected. Thus. the new model
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supports user transparency in that the user needs not know specifics about database
management to resolve conflicts. Moreover. it is not required to re-execute every
conflicting operations in a transaction. Applying this new transaction model gives us
a higher concurrency without violating serializability.

For the third opinion. performance depends on the application’s constraints. A
transaction must be aborted if it attempts to operate illegally. (For example: a
user wants to use a credit card over limit.) These constraints are pre-defined in the

application so it does not require special care in our transaction model.
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Chapter 4

Multi-Version Timestamp
Certification for Disconnection

Protocol in Mobile Computing

Multi- Version Timestamp Certification for Disconnection Protocol in Mobile Com-
puting (MVTC) is specifically designed for the disconnection protocol. The goal is
to provide the highest concurrency and mobility to both disconnected mobile units
and fixed servers while maintaining data consistency. MVTC consists of two phases.
The 1st phase runs independently in the disconnected mobile unit. and the 2nd phase
runs when the disconnected mobile unit reconnects to the fixed servers. 1st phase is
called Local Timestamp Certificate Scheme (LTCS). LTCS is based upon [SNMS85],
which is a distributed certification algorithm. LTCS is responsible for local serial-
izable transactions and guarantees their consistency properties. 2nd phase is called
Global Commit Protocol (GCP). GCP is responsible for identifying conflicts between
the disconnected mobile unit and the fixed servers. and merging the transactions

running on them together. Figure 4.1 provides an overview of MVTC.
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Figure 1.1: Overview of MVTC

4.1 Design Overview

MVTC is designed for an environment consisting of a large collection of fixed file
servers and connected clients, and a much smaller number of disconnected moving
mobile units. The design is optimized for transaction concurrency typical of lightly-
shared mobile systems. It is specifically not intended for applications that exhibit
highly concurrent. fine granularity, and heavily-shared system.

Each mobile unit has a local disk and is able to communicate with the fixed
network over a high bandwidth network such as 10M Ethernet while it is wire con-

nected, or over a low bandwidth network such as NCR’s wavelan, Motorola’s AL-
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TAIR. Proxim’s Range LAN and Telesystem’s ARLAN [IB94] while it is moving.
Mobile units may temporarily disconnect from the network and operate automat-
ically with local data in cache. Mobile units view the fixed network as a single.
location-transparent shared file system. The fixed network supports global naming
and file replication. The mobile units need to know nothing about the distributed
operating system underneath. Generally speaking. the mobile unit should treat the

whole network as one logical file server.

4.1.1 Fixed Network

The fixed network consists of a number of file servers connected with a high bandwidth
network. These file servers run 24 hours a day and reachable at any time through
the network. An unreachable file server implies failure. and no valid transaction will
be run on that failed machine. Compared to the mobile client. the file server is more
powerful in term of computational power and storage capacity. It is relatively more
durable and secure than mobile units since laptops are more fragile and vulnerable.
There are several distributed operating systems in both academic and commercial
markets. Coda. Ficus and AFS [Hei92. HH93. KS92] are some examples. The ultimate
goal for a distributed operating system is ensuring location transparency so clients
view the whole distributed system as one large file server regardless of where they
connect to the network. To achieve this goal. it involves persistent global naming.
concurrency control among sites. server failure and recovery. file replication. smart

caching, security. etc.

4.1.2 Mobile Client

Compared to a file server, the mobile client is less powerful in term of storage capacity

and computational power. A mobile unit is equipped with a fixed disk and a com-
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munication device. It can work in both connected and disconnected modes. Without
network support. it is able to run transactions using the data in its cache. Users
find no apparent difference in working in the disconnected mobile unit if they have
previously down-loaded all the data items they need while traveling. Users require no
special knowledge about how the database management system handles re-integration
or how the database management system resolves and reconciles conflicting transac-

tions.

4.2 LTCS Design Overview

The cache manager of the disconnected mobile unit acts as a pseudo-server and the
cache acts as a local database. A local database executes a transaction as a process.
For each process. there is a corresponding Local Transaction Manager (LTM). The
LTM is divided into two phases. 1st phase called the certification phase. the LTM asks
its Certification Module (CM) to certify each of its transactions. Several transactions
are permitted to run concurrently without blocking before the commit phase. When
a transaction wants to commit. its LTM will go into the critical section to test the
serializability with respect to the other transactions running at the database. The
LTM issues certification request to its CM and waits for a reply. After the CM certifies
the transaction and responds. the LTM enters 2nd phase called the Update Module
(UM) and installs the tentative updates of the data items permanently in its local
database.

Since the LTCS guarantees only the serializability of local transactions, we must
keep in mind that a set of locally certified transactions will merge to the fixed servers
upon reconnection. Thus, even if a transaction gets local certification, it does not
guarantee that the same transaction can commit globally. Two sets of locally certi-

fied but globally conflicting transactions may get interleaved. To resolve the global
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serializability problem. the system-wide unique timestamp will be used.

4.3 LTCS Design Detail and Implementation

4.3.1 Setting a Global Clock

Since we must maintain the global serializability of transactions after reconnection.
we need system_wide unique timestamps for comparing and merging transactions.
Before disconnection. the mobile unit and the fixed server must synchronize their
clocks using the “happened before™ relation [Lam?78] so there is no ambiguity about
the time.

In distributed systems. the physical clock is not reliable because each site has its
own clock which is difficult to synchronize globally. Lamport introduces a.logical
clock to synchronize time in distributed systems. The logical clock uses a “happened
before™ relation to distinguish the time. We define a process as a sequence of events.
An event can be a subprogram or an execution of a system call.

The “happened hefore™ relation denoted by “—" must satisfv the following three

conditions:

1. If r and y are events in the same process. and r comes before y. then z — y.

(L]

. If r is the sending of a message by one process and y is the receipt of the same

message by another process. then r — y.

3. fr—yandy— z.thenr — 2.

Two distinct events r and y are said to be concurrent if £ - y and y = r.

A synchronized clock. C. is a way of assigning an order number to an event. The

order number is used to indicate the sequence of which the event occurred. Lamport
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defines that C,; is a function to assign an order number to an event of process i.
The order number indicates the process sequence of an event. C;[z] returns an order
number corresponding to an event r in process P,. For example: events r and y
belong to process P,. If z proceeds y. then Ci{z] < C;[y]. The entire system of clocks
is represented by the function C. There is no direct relation of the order number to
physical time. The idea of synchronized clocks in distributed systems is based upon
the order in which events occur.
Lamport formally defines the Clock Condition as follows:

For each event r and y. we say that event xr proceeds event y if
z — y then C[z] < Cly].
There are two Clock Conditions in distributed systems:

C1: For event r and y in process P,. if r comes before y. then C{z] < Cly].

C2: If event r is the sending of 2 message by process P; and event y is the receipt of

that message by process P;. then C,[x] < C;[y].

To establish C1. each process P, increments C; between any two successive events.
To establish C2. a timestamp 7}, is used on each message m. 7,, equals the time
at which the message was sent. Upon receiving a message timestamp 7, a process
must advance its clock to be later than T,,. For example: if event r is the sending
of a message m by process P;, then the message m contains a timestamp T, = Ci{z].
Upon receiving a message m. process P; sets C; greater than or equal to its present
value and greater than T,,.

Unfortunately, ties are still possible for two concurrent events from two different
processes. To break ties, the relation “=" is used. Before defining “=>", a relation

“<" is defined. For any two processes F; and P;, B < F; means F; has a higher
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process priority than P;. The definition of relation “=" is as follows: If z is an event

in process P; and y is an event in process P;. then r = y if and only if either

(i): Ci[z] < Cjly] or.
(ii): Ci[z] = C,[y] and P. < P,.

With the help of relation “=". we can extend the “happened before” relation to
total ordering relation and synchronize the global timestamp in distributed systems.
Therefore. both the disconnected mobile unit and fixed servers issue a get_timestamp()
operation to obtain the system_wide unique timestamp. Note that transaction Tj is
older than transaction Tj; if ts(7;) < ts(7;).

Global synchronization is an open problem and other researches appear in the
research literature. For examples: Beguelin and Seligman [BS93| discuss the com-
bination of the logical and physical clocks to achieve the global svnchronization.
Schneider [Sch86| discusses the fault-tolerant property of synchronizing global clock.
and Srikanth and Toueg [ST84] present the optimal clock synchronization. Global
synchronization is non-trivial to solve and how to solve it is beyond the scope of this

thesis.

4.3.2 Data Model

A data item is < name. verston_d. attrib > where attrib is < val.ts(r).ts(w) >.
Suppose we have a data item x. val is the current value of r: ts(zx,) is the timestamp
of the last transaction who reads z: ts(.r,.) is the timestamp of the last transaction who
modifies z: version_id = ts(x,. ) is used to indicate r’s version. We define that data z;
is older than z; if verison_id; < version_id; (ts,(1.) < ts;(z.)). For each data item
z. there are two queues corresponding to it: (1) read request queue (RR.) and (2)

write request queue (W R,). These two queues are used to store all certified requests
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(rri and wr;). rr; is created and stored in RR; upon a successful read certification of
transaction T;. wr; is created and stored in W R; upon a successful write certification
of transaction T,. The structure of rr; and wr, is < val.ts(r).ts(w) > where rr;.val
(wuw;.val) is the value of the certified data item and rr;.ts(r) (wr;.ts(r)) is the time
when it is certified for read operation. Furthermore. rri.ts(w) (wr;.ts(w)) is the time

when it is certified for write operation.

4.3.3 Architecture of LTCS

Figure 1.2 illustrates the architecture of LTCS.

LTCS
~— N Bl
Transaction Commit
and or
Timestamp Abort

Request
Cerufication

acknowledgement

approve or fail

Read Request

Queue Delete
r_request

or ;

Write Request |, w_request .

Queue ,

Figure 4.2: Architecture of LTCS

The LTCS is composed of three parts: (1) Local transaction manager (LTM). (2)
certification module (CM). and (3) update module (UM). For each data item z, there
are two queues corresponding to it (RR; and WR;). A transaction T; can execute

any operation before the commit time. During the execution of T}, an activity_table
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will be created and log all the information of all the data used in T;. The structure
of the activity.table is an array of records. The structure of the record entry is
< name, cur_value. verionid.certify_id. Rflag. W flag >. Every distinct data item
z used in T, has an entry in activity table where name is the name of z. cur_value is
the most recent value of r. version_id is the version r which has been read in read
operation. certified_id is the timestamp when r got certified. Rflag indicates z has
been read. and W flag indicates r has been written. When T; wants to commit. the
LTM will first pass the activity_table of T; to the CM. The CM certifies each data
item z by calling certification functions. There are three certification functions: (1)
Certify_Read. (2) Certify_Write. and (3) Certify.RW. Certify_Read is used to certify
read operations: Certify_Write is used to certify write operations. and Certify.RW
is used to certify read/write operations. A successful certification creates a certified
request. There are two different certified requests. certified read and certified write
requests (rr; and wr;). There are two queues read request queuve (RR;) and write
request queue (W'R;) corresponding to every data item r. which stores all rr; and
wr; respectively. These requests are used to detect conflict in the CM. For example:
suppose that T; gains a read certification of data z from the CM and it creates and
installs rr; in RR,. but T; has not vet been committed. This scenario occurs if Tj is still
active. Consider another transaction T; where T; is older than T; (ts(T;) > ts(T;)).
T, asks the CM to certify its write operation on x. The CM first checks RR; and
discovers that an active T; has a read certification on x. Since T; is younger than T},

CM will reject T; because T; will overwrite the current value of z.

If CM reports a successful certification. the LTM informs the UM to update the
corresponding value executed by T; on the database permanently. Otherwise. the
LTM informs the UM to abort 7;. In both cases. the UM will erase all the certified

requests of T; because T; is terminated.
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A data item x can be in either normal or active state. If both RR, and W R, are
empty. r is in normal state: otherwise. it is in active state. The active state means
there is at least one active transaction accessing that particular data item before
commit. In the mobile client. there are separate storages for stable and unstable
databases. The UM will not modify the stable database until it gains permission
from its LTM.

Since the LTCS is an optimistic concurrency control mechanism. there is no locking
involved in these functions except Certify_Read. Certify Write and Certi fy_ RW .
At any time. the CM will permit a Read_Data operation. It returns the current
value regardless of the state of the data item. All three certification functions are
issued by the LTM to verify its transaction before commit. When the LTM issues
these certification functions to the CMl. it will pass its timestamp along with other
parameters to verify its request. Next. the CM compares the input timestamp to
the certified requests in the queues. If there is no conflict. the CM will send the

request_approved to the LTM: otherwise. it sends not_.approved.

4.3.4 Execution of Transaction

When a transaction issues Begin_Transaction. the LT\ initializes its activity_table
and logs all data items accessed during the execution until End_Transaction is
issued. When the LTM submits a Read(z) operation. it will check its activity fable.
If entry = does not exist. the LTM will create an entry, and issue read(z) to its
CM. If r exists, it will set Rflag to true and return the curr_value. Similarly, for
Write(z.new_value) operation. if r does not exist in the table, the LTM will create
an entry and fill it accordingly. If r exists, it will overwrite the curr_value with the
new_value and set the W flag to true. Algorithm 4.1 and Algorithm 4.2 show the

Read and Write operations.
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Algorithm 4.1 Read Operation

Read(z, curr _value)
Input z: data
Output curr_value: current value of x
if r exists in activity table {
set Rflag to TRUE:

return(cur value):
}
else {
create a table entry for r:
name = z: fetch the value of r from the database:
fit it in activity_table:
issue read(z):
}

End of Algorithm

The Read and Write operations of transaction 7; do not modify the actual
database. They only update the activitytable and indicate to the LTM that a read
or write operation has been performed. They leave the actual consistent database
untouched until 7; commits. The CMI is responsible for the certification process be-
fore T; commits. The advantage of using the LTCS over the MVTO is the optimism.
In general. read and write operations are never blocked before commit. so several

transactions can run concurrently.

4.3.5 Certification Module

The following set of certification functions are issued by the LT\ to the CM. Detailed

implementation and explanations are given below.

Function Set 4.1 Certification functions

Certify_Read(data. version_id. timestamp)
return (certi fied : boolean. certi fy.id)

Certify_Write(data, new value. timestamp)
return (certified : boolean. certify_id)
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Algorithm 4.2 Write Operation

Write(r. new_value)
Input z: data
new_value: new value of r

if r exisis in activity_table

{
overwrite curr_value to new_value:
set W flag to true:
}
else {
create a table entry for r:
name = I
set W flag to TRUE:
curr.value = new_value:
}

End of Algorithm

Certi fy.RW (data. new _value. version_id. timestamp)
return (certified : boolean. certi fy_id)

End of Function

When the LTM wants to certify a read operation of T; on data r. it orders the
CM to issue Certify_Read. Certify_Read first ensure that the r read before by
T; is a current version. This is done by comparing the version_id (ts,(ry)) of z in
the activity_table to the veriod_id of r (ts4(x,)) in database. Subscript ‘a’ indicates
timestamp used in the activity table. and subscript ‘d’ indicates timestamp used in
the database. If the current version of r in the database is younger than T;, the CM
will fetch a version of x where it contains the largest tsq(z,) less than ¢s(T;) to the
LTM. The only time when a certified request fails is if there exists a wr; in the W R,
where wr;.ts(w) > ts(T;) because a transaction T;. where ts(T;) > ts(T;), has already
gained the write certification and waits to commit. This means that the value read

by T; earlier is stale because 7 runs concurrently with T; and will perform a certified
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write operation on r when it is committed. So the CM refuses to certify T;'s read

operation. Algorithm 4.3 shows the pseudo-code of Certify_Read.

Algorithm 4.3 Certify_Read

Certify_Read(z. version_id. timestamp)
Input r: data to be certified
version_id of the input data
timestamp of calling Certify_Read
Output request_approved
certify.id

if (tsq(wz) # verion_id) {
find a version of r such that tsy(x,.) is the largest timestamp less than ts(T});
update curr_value in the activity_table:
certified =TRUE:

} else
if (WR, ==0)
certi fied = TRUE:
else {
find wr; with oldest ts(w) from W' R,
if (timestamp < wr;.ts(w))
certi fied = TRUE:
else certified = FALSE: /*due to existing certified write request™®/
}:
if (certified == TRUE)
{

create a certified R request. rr; where
rr;.ts(ry) = timestamp:
set r to active status:

}
End of Algorithm

When the LTM wants to certify a write operation of T; on data z. it orders the CM
to issue Certify IWrite. First. it makes sure that no younger transaction performed
any read operation and committed before 7; wants to certify its write operation.
Second. it scans through the RR, and finds the youngest rr;. If ts(T;) < rri.ts(r).
then the CM rejects T; because a young transaction T, has gained a certified read

operation on z and not yet committed. If the CM certified T;'s write operation on z.
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T; would read stale data when it commits.
In Algorithm 4.4, there are two situations when the certified write request of T;

will be rejected.

case 1: a younger transaction 7, has read r and been committed before T; requests

the write certification on r.

case 2: a young transaction T has certified its read operation but has not committed

vet. Thus. a write operation of T; cannot be certified.

Algorithm 4.4 Certify_Write

Certify_Write(x. new_value. timestamp)
Input r: data to be certified
new value of the input data
timestamp of calling Certify_Write
Output request_approved
certi fy.id

if (RR, ==0) {
if (tsq(r:) < timestamp)
certified = TRUE:
else certified = FALSE; /*case 1: due to committed transaction*/

}
else {
find rr; with youngest ts(r) from RR;
if (rri.ts(r) < timestamp)
certified = TRUE:
else cerified = FALSE:  /*case 2: due to existing certified read request.*/
}
if {certified == TRUE)
{
create a certified W request. ww;. where
ww;.val = new_value,
ww;.ts(r) = tsq(rz),
wwj.ts(w) = timestamp;
set r to active status;
}

End of Algorithm
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Algorithm 4.5 is the combination of a Certify_Read and a Certify.Write calls.
On successful certification on data r. the CM creates two identical requests (rr; and
wr;) queued in both RR, and W R, according to the timestamp recorded in the

transaction. Certify_RIW refuses to certify T; if:
case 1: the transaction would overwrite a vounger committed transaction.

case 2: there exists r7; where r7;.ts(r) is older than ¢s(T;). or there exists wr; where

wr;.ts(w) is younger than ts(T;)).

4.3.6 Update Module

The following set of functions are issued by the LTM to the UM. These two func-
tions are used to update the database permanently. Detailed implementation and
explanations will be given below.

Function Set 4.2 Update functions

Update_Request(data. certi fy_id)
return Acknowledge

Delete_Request(data. certify_id)
return Acknowledge

End of Function

After the CMI verified T;. the LTM decides to commit or abort T;. If the CM fails to
verify T;. the LTM aborts T;. It calls Abort_Request to erase all T;’s certified requests
because T; causes conflict. If the CM verifies T; successfully, the LTM commits
T;. It calls Update_Request to update the database based on T;'s certified requests.
Algorithm 4.6 and Algorithm 4.7 provide the pseudo-code.

Since T; is aborted. Algorithm 1.6 erases all its certified requests from the RR and

W R queues according to the input data name and the cert: fy_id.
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Algorithm 4.7 Update_Request

Update_Request(z. certified_id)

Input z: data name
Certify_id belong to r

Output Acknowledge to LTM

{
if (rr; € RR; and rri.ts(r) = certified_id)
if (rr; is not outdated) {
tsq(xr) == rri.ts(r):
mark all rr; ahead of rr; in RR; as outdated:
remove rr; from RR;:

}

else remove rr, from RR;:
if (wr; € WR; and wr;.ts(w) = certified.id)

if (wr; is not an outdated) {
tsq(z,) = maz(tsq(z.), wrj.ts(r)):
tsq(ry) = wrj.ts(w);
mark all wry ahead of wr; in W R, as outdated:

}

else remove wr; from WR;:

if (no rr and wr is left in RR; and WR;)
state = normal:

Send acknowledgment to LTM:
}

End of Algorithm

4.3.7 Local Transaction Scheme

After the End_Transaction is issued. the LTM verifies each entry in the activity_table.
There are two phases for the scheme: (1) Certification phase and (2) Update phase.
In the certification phase, the LTM sends a cert: fication.request to its CM and waits
for a response. If the CM acknowledge certification. it will signal the LTM with an
certi fied_id. If the CM refuses to acknowledge. it will signal the LTM to abort the
transaction. In the update phase, the LTM issues a Update_Request to the UM upon
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successful certification: otherwise, it issues dbort_Request to the UM. Algorithm 4.8

and Algorithm 4.9 show the detailed pseudo-codes of certification and update phases.

Algorithm 4.8 Verification Phase
Input activity_table
Output activty_table
state: boolean to indicate successful certification

For each entry in its activity.table {
if (Rflag and W flag)
send Certify_ RW to CM:
else if (R flag)
send Certify.Read to CM:
else
send Certify_-Write to CM:

Wait_for CM responses:
CM will return boolean request_approved & certified_id:

if (request_approved == FALSE)
EXIT:
else
save certified.id in the activity_table:

if (request_approved == TRUE)

signal certification_success to LTM:
set state = certified:
else

signal certi fication.failure to LTM:
set state = abort:

}
End of Algorithm

Only the verification phase is in critical section. so the algorithm avoids certi-
fication deadlock. We have shown that LTCS maximizes optimism and guarantees
synchronization and serializability. The LTCS remains functional in the mobile unit

until network access is regained.
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Algorithm 4.9 Update Phase

Input activity_table
Output Acknowledge to LTM

For each entry in its actinity_table {
fetch the certified_id of the entry i:
if it is a commit signal
send update_request(data. certi fied_id)}) to UM:
else
send delete_request(data. certified._id) to UM:
Acknowledge to the LT AS:
End the transaction.

}
End of Algorithm

When the disconnected mobile unit reconnects to the network. the global commit
protocol (GCP) applies. The major duty of the GCP is re-integrating the locally
committed transactions in the mobile unit to the fixed servers. Upon reconnection,
each committed transaction calls the GCP. Thus. we must provide a concurrency
control mechanism to protect the consistency of the system. The GCP is able to
synchronize the locally committed transactions and maintain the strict consistent

state of the database at all time.
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Algorithm 4.5 Certify RW

Certify-RW(z. new_value. version_id. timestamp)
Input z: data wanted to be certified
new value of the input data
version_id of the input data
timestamp of calling Certi fy_.RW
Output request_approved
certify_id

if (tsq # version_id)

find a version of r such that ¢sq(x,) is the largest ts less than ts(T;):

if (WR; ==0 and RR; == 0)
if (tsq(zw) < timestamp)
certi fied = TRUE:
else certified = FALSE: /*Case 1*/
else {
find wr; with the oldest wr;.ts(r) from WR,
find rr; with the youngest rr;.ts(v) from WR,
if (timestamp > rr;.ts(r) and timestamp > wr;.ts(w))
certified = TRUE:

else certified = FALSE: [*Case 2*/
}:
if (certified == TRUE)
{
create a rri and wr; where
rrr.val = wri.val = new_value.
rrr.ts(r) = wri.ts(r) = timestamp.
wri.ts(w) = wri.ts(w) = timestamp:
}

End of Algorithm

a7



58 MVTC

Algorithm 4.6 Abort_Request

Abort_Request(r. certi fied_id)

Input z: data name
Certify_id belong to =

Output Acknowledge to LTM

{

if (rr; € RR; and rr,.ts(r) = certified_id)
delete all rr; from RR;:

if (wr; € WR, and wrj.ts(w) = certified_id)
delete all wr; from RIV;:

if (no rr and wr is left in RR; and WR;)
state = normal:

send acknowledgment to LTM:

}
End of Algorithm



Chapter 5

Global Commit Protocol

5.1 Overview of Global Commit Protocol

Upon reconnection. the GCP applies and commits the committed mobile transactions
globally. The re-integration process requires: (1) Each transaction has a globally
unique timestamp which eliminates ambiguity of the timestamp of transaction: (2)
Each transaction has its own activity_table which recorded all the accessed data items
used during the execution of the mobile transaction. When re-integration begins. each
transaction will be submitted to the GCP serially. The GCP schedules the committed
mobile transactions to commit globally. For example: suppose that transaction T,
wants to commit globally. The GCP attempts to verify T; and detect any conflicts. If
there are no conflicts between T; and other globally committed transactions, T; will
commit. Otherwise the GCP will tryv to resolve the conflicts introduced by 7;. Only

if the GCP resolves the conflicts successfully will T; be committed.

5.2 Architecture of GCP

Figure 5.1 shows the main GCP components.

59
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Figure 5.1: The Main Components of GCP

Three major components compose the GCP. They are: Global Transaction Man-
ager (GTM). Verification Processor (VP) and Conflict Solver (CS). The GTM is called
when a committed mobile transaction is submitted to the GCP. It schedules the trans-
action with its unique timestamp. Since the GCP is an optimistic mechanism. the
GT)M ensures the correctness of the transaction’s execution. Therefore. the GTM
calls the VP to verify the transaction. The VP first scans the activity_table of the
transaction and compares the timestamp of each data entry to the global database.
If there is no conflict, it returns to the GTM. However, if any conflicts are detected.
the transaction is sent to the CS to resolve the conflict. There are three possibil-
ities to resolve the conflict: (1) execute alternative transaction. (2) perform partial

re-ezecution [HBG97] and, (3) abort the transaction. Chapter 3 discussed these three
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options in our new mobile transaction model. This chapter concentrates on imple-
menting the partial re-erecution method. After solving conflicts. the CS returns the
transaction to the VP which will commit the transaction. The VP is then responsible

for making the effects of committing transactions permanent.

5.3 Partial Re-execution Module

When the VP detects a conflict. it has two options. If the mobile user has an alterna-
tive transaction. the VP will attempt to commit the alternative transaction globally.
If the alternative transaction fails to commit. the VP will submit the conflicting trans-
action to the CS. The CS is able to re-execute only the conflicting operations in the
transaction. Thus. the system is not required to re-execute every single operation
in the conflicting transaction. We argue that re-executing all operations in the con-
flicting transaction is not necessary in a lightly-shared database system. The reason
is that only a small portion of the operations in the transaction actually generates
conflicts. Thus. re-executing the whole conflicting transaction is very inefficient and
ineffective. The CS has been developed to analyze and identify all the conflicting op-
erations in a conflicting transaction. Then the system re-executes only the conflicting
operations to maintain the serializability. However. identifying all the conflicting op-
erations is not a simple task. It requires the CS analyze the static dependency of each
variable used in the transaction before the execution of global commit. We define that
the compile time is the moment that the set of locally committed mobile transactions
are being verified before the execution of global commit. For example: suppose that
transaction T; generates conflicts when it tries to commit globally. Furthermore, the
VP detects that data item A is stale. the VP analyzes T; and finds out that all the
direct and indirect operations using 4 must be re-executed. Figure 5.2 demonstrates

the effect of the partial re-execution.
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Figure 5.2: Re-executing Operations caused by GCP

The heart of the conflict solver is the mechanism of analyzing the static informa-

tion of a conflicting transaction. We call it the Partial Re-erecution Algorithm.

5.4 Data Structure for Re-execution Algorithm

Before discussing the algorithm. there are several data structures associated with the

algorithms. They are as follows:

e m: number of data variables in T;.
e n: number of operations in T;.

e State_Array: is a one-dimensional array of records. Each record consists of
four fields. < result.argl.op.arg2 >. For example: opo : E = 9% C. result is

E.arglis 9. opis * and. arg2 is C. The size of State_Array is n.

e RSetli,j]: is a 2D-array of integer. RSet[i.j] = k means that op; read var;

from opk. The size of RSet(i,j] is n x m.

e WSet][j]: is a one-dimensional array of integer. It records the last operation

that modified varinge;. The size of WSet[j] is m.
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e Re_State_Set: is a queue to keep a set of operations for re-execution in trans-

action T;.

To perform partial re-ezecution. the following set of functions is performed by the
CS. Each is discussed in more detail below.

Function Set 5.1 CS's functions

Generate_RTable(s : state_array)
return (RSet)

Generate_WTable(s : state_array)
return (W Set)

Final _Stale_ Var(r : data. s : state_array)
return (Re_State_Set)

Final_Related_State.in_Rset(op : state.rs : Re_State_Set
s : state_array. RSet. W Set)
return (Re_State_Set)

End of Function

Functions Generate.RTable and Generate.WTable generate RSet and Rl et. re-
spectivelv. Based upon the information of RSet and 1 'Set. the GTM passes each
committed mobile transaction to the VP. The VP calls functions Final_State_Var and
Final Related_State_in_Rset to identify all the necessary operations to be re-executed.
The execution sequence is as follows: the VP scans and compares all the data item
in the activity_table one by one to the same data item in the global database. If a
stale data item r is found. the VP passes that stale variable to Final State. Var. This
function returns all the operations which directly used r in its argument and stores
them in Re_State_Set. The VP investigates each operation in the Re_State.Set and
calls function Final Related_State_in_Rset recursively to search out all the related op-
erations that used z indirectly and inserts them in the Re_State_Set. If the conflicting

transaction cannot be re-executed, the VP returns abort to the GTM: otherwise. it
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returns commit to the GTM which commits or aborts the transaction accordingly.
Figure 5.3 illustrates RSet and W Set generated by functions Generate_RT able and
Generate_W T able based upon the transaction shown in Figure 5.2.

06 1 2 3 &4 5 6 7 8 9
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attt;-{o{. .!. It. A B CDE

| |
cle|s o= o2 o 1o 2 32 6 7 9 4 8
Dle| = |* |* i1 -‘E't* WSet([i]
E nactot;o'-

- WSet{E] = 8 means that op8 is
RSet{i,j] the last operation writes 'E’.

| RSet[C.9] = 2 means that op9 read *C”
RSet(E.Of = ® means that op0 does not usc 'E’ from op2.

Figure 5.3: RSet and WSet based upon Figure 5.2

Entry RSet[i. j] = k represents that operation op; reads variable j from operation
opi. For example: in Figure 5.3. RSet[9. A| = 6 means opg reads ‘4’ from ops. Entry
W Set[i] = k represents that operations op; is the last operation that modifies variable
i. In Figure 5.3. IV Set[A] = 6 mean opg is the last operation which modifies "A’.

Suppose the VP detects that T, generates conflicts. Furthermore, the VP identifies
that operation op; read stale data and caused conflicts. There are six cases to consider
when op; is being re-executed. Suppose that transaction T; has read stale data item

B. Figure 5.4 shows these six cases.

Case 1: op; is not related to any other operation in T;, so only op; is re-executed.

Case 2: op; used B to compute A and op, reads A. After the re-execution of op;, A

becomes stale. so op; must be re-executed.
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Case 3:

Case 4:

Case 5:

Case 6:

5.5

op; read stable data B so the system refreshes B from the fixed servers and
re-executes op;. However. at some later time of the transaction. op, computes
B. Since B is refreshed. the CS must re-execute ops to compute the correct
result of B. Thus. both op; and ops must be re-executed to guarantee correct

serialization.

opy used B to compute 4. op; used the 4 computed by ops to compute C. and
ops used the C computed by op; to compute D. When opy is re-executed. op;
must be re-executed because 4 becomes stale after re-executing opy. When
op; is re-executed. op; must be re-executed because C becomes stale after

re-executing op;. This case is recursive.

When B is stale. B will be refreshed from the fixed server. However. op; used
the B produced by ops to compute 4. so the CS should re-execute ops to

undo the effect. Thus. both op; and op; must be re-executed.

When op; is re-executed. A will be overwritten. so the CS must re-execute
ops to compute the correct value of A. Thus. both op; and op; must be

re-executed.

Detail Implementation

5.5.1 Conflict Solver

Algorithm 5.1 is used to generate array RSet. It scans the State_4Array to determine

the read dependency of the variables among the operations. Algorithm 5.1 is divided

into two parts. Part I determines the read dependency of the first argument of the

operation, and Part II determines the read dependency of the second argument. For

example: in Figure 5.2. we want to determine the read dependency of opy : C =
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C + A. Part I of Algorithm 5.1 determines where opg reads "C’ from. It scans
through State_Array and finds out that op- is the last operation to modify C . so
the algorithm will insert 2 in RSet[9. C|. Similarly. Part II of Algorithm 5.1 finds out

that opg modified .4 before opg read it. It will insert 6 in RSet[9. A].

Algorithm 5.2 generates W Set from State_Array. It gets a variable r and starts
scanning from the last operation. Once it finds State_irray[i].result = r. it will
stop and fill the operation number in the corresponding entrv in 11" Set. For example:
in Figure 5.2. we want to find out which operation is the last to modify *4’. The
algorithm scans through State_Array from the bottom to the top. It finds opg is the

last to modify A. so it inserts 6 to IV Set[A].

Given a stale variable xr. Algorithm 5.3 identifies four re-execution cases (case 1.
case 3. case 5 and case 6) shown in Figure 5.4. The algorithm is divided into four
parts: (1) The first if-statement is responsible for identifying any operation using
L in its arguments directly (case 1 in Figure 5.1) and keeps it in Re_State_Set. (2)
Once a conflicting operation is identified (s[¢]). the algorithm will identify the last
operation modifying s(i].result from W Set (case 6 in Figure 5.4) and keeps it in
Re_State_Set. (3) The algorithm identifies the last operation to modify z from W Set
(case 3 in Figure 5.4) and keeps it in Re_State_Set. (4) The last for-loop-statement
finally identifies the operation s{i] read z from (case 5 in Figure 5.4) and keeps it in

Re_State _Set.

Given the re-execution of operation op;. Algorithm 5.4 can identify three re-
execution cases (case 2, case 4 and case 6) shown in Figure 5.4. Algorithm 5.4 first
scans though RSet. If there is an operation (op;) that read a stale result produced by
op;i, Algorithm 5.4 will call itself with input op; recursively. The algorithm compares
op;'s result (s{j].result) to W Set. If op; is not the last operation that modified the

variable (z) kept in s(i].result, the operation stored in W Set[z] must be re-executed
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(case 6 in Figure 5.4). Thus. when Algorithm 5.4 is terminated. it returns all the

re-executing operations when op; is re-executed.

5.5.2 Verification Processor

The VP is a module to identify any potential conflicts in T;. It first checks every
variable r used in T;. If r is stale. the VP calls Final_Stale.Var to determine all
the operations that used r. The VP then calls Final_Related_State.in_Rset to find
all the re-executing operations in RSet and Final Write_State to find all the re-
executing operations in W Set. Finally. VP gets a set of re-executing operations and
acknowledge the GTM if the re-execution is successful.

Algorithm 5.6 examines every re-executing operation (op;) to ensure that re-
executing op; does not violate the application pre-defined constraints such as over-sell
a product. The algorithm signals the VP ‘succeed’ if op; performs no illegal operation

or ‘fail’ if op; performs an illegal operation.

5.5.3 Global Transaction Manager

Suppose transaction 7; wants to commit. the GTM calls the VP to verify T;. If
the VP returns verify = TRUE. the GTM commits T;; otherwise. T; is aborted.

Algorithm 5.7 shows the required pseudo-code.

5.6 GCP’s Complexity

Given that m is the number of data variables in transaction 7, and n is the number

of the operations in T;, the complexity of the GCP’s algorithms are as follows:

e Algorithm 5.1 is O(n%*m):

Algorithm 5.1 contains a 3-level nested for-loop. The outer most loop takes n
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times. the second loop takes n times. and the third loop takes m times. Thus.

the complexity is O(n?m). The computation is shown in Equation 5.1.

T(mn)

T(mn)
T(mn)

e Algorithm 5.2 is O(mn):

2oim1 Ljmt Lk L

m- 2l

m-y " i (5.1)
m-n(n+1)/2

O(n*m)

Algorithm 5.2 contains a 2-level nested for-loop. The outer loop takes m times

and the inner loop takes n times. Thus. the complexity is O(mn).

& Algorithm 5.3 is O(nm):

Algorithm 5.3 contains a 2-level nested for-loop. The outer loop takes n times

and the inner loop takes m times. Thus. the complexity is O{nm).

e Algorithm 5.4 is O{m"™~'n"):

Algorithm 5.4 contains a 2-level nested for-loop. The outer loop takes m time

and the inner loop takes n times. Inside the inner loop. a n-level recursion is

used. Thus, the complexity is O(m®~'n"?). Equation 5.2 shows the recursive

computation.
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T(mn) = mnT(n-1)
T(mn) = mn(m(n—1))T(n - 2)
T(mn) = m?’n(n-1)T(n-2)

T(mn) = m"'-(n(n-1)---3-2)-T(n-(n-1))
T(mn) = m™!-n!-T(1)
n* > n!
T(mn) = O(m" 'n")
e Algorithm 5.5 is O(m"*'n""2%):

Algorithm 5.5 contains a 2-level for-loop. The outer loop takes m times.
Final_Stal Var inside the outer loop takes mn times. the inner loop takes
n times. and Final_Related_in_Rset inside the inner loop takes m"~!n" times

so the complexity is:
T(n)=m-mn-n-m"'a" = O(m™*1n"*?)

@ Algorithm 5.6 is O(n):
Algorithm 5.6 contains onlv 1 for-loop which takes n times. Thus. the com-

plexity is O(n).

e Algorithm 5.7 is O(tm"+!1n"*?):
Given than ¢ is the number of transactions. Algorithm 5.7 calls Algorithm 5.5

t times. Thus. the complexity is O(tm™T1n"72).

The overall complexity of the GCP is equal to the complexity of Algorithm 5.7
which is O(tm™*1n"*2?), Thus. the complexity of the GCP is exponential.
An exponential complexity is not desirable and may not be optimal. However,

the exponential complexity is only provoked by Algorithm 5.4. The main function
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of Algorithm 5.4 is to find out all the dependent operations of the input operation.
In a highly intra-dependent environment. Algorithm 5.4 will be called frequently and
resulting in an exponential complexity. We define that the Intra-dependency indicates
the level of data dependency of a transaction. A highly intra-dependent transaction
means that the variables in the transaction are highly dependent to each other. We
argue that the GCP performs well in a low intra-dependency because it reduces the

chances of calling Algorithm 5.4.

In the real world. a lightly-shared and low intra-dependent environment does exist.
For example. a traveling salesman traveled to a remote site to help his client. Before
the salesman left the head office. he had downloaded all the necessary files in his
laptop. When he finished discussing with his client. the client placed him a sales
order. The order contains a list of items to be purchased. The salesman took the
order and committed it in his laptop locally. Consider the data overlap problem:
In the real world. it is unlikely that other salesmen in the head office would modify
the same client’s information concurrently. Consider the intra-dependency: When a
client places an order. it is reasonable to assume that the intra-dependency of that
order is low. For instance: operation 1 (op;) sells 100 item r and operation 2 (op2)
sells 100 item y. In this case. there is no direct nor indirect relationship between op;
and ops. Thus, the intra-dependency is zero. Suppose that op, generates conflicts
when the salesman reconnected his laptop to the network. Using the static analysis,
the transaction manager knows that only op; must be re-executed and the rest of the
operations consistently affect the database. Thus, the rate of calling Algorithm 5.4

to analyze operation dependency is minimal.

Using the static analysis is feasible because once the analysis is done, the transac-
tion manager requires no overhead nor re-scheduling to solve any conflict at run time.

The transaction manager can commit the transaction without worrying about any
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dynamic information such as the sequence of read/write operations of transactions

to maintain serializability.

5.7 Summary

This chapter shows that the GCP is able to synchronize the mobile transactions
to the server optimistically and resolves conflicts just before commit time. Thus.
this new mechanism allows the disconnected mobile unit to operate without concern
for data inconsistency. Mloreover. the GCP can identifv and re-execute only the
conflicting operations. This reduces unnecessary re-execution and thereby increasing

concurrency and performance .
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Algorithm 5.1 Generate RTable

Generate_RTable(s) : RSet:
Input s:state_array
Output RSet:Read Set

fori=ntoldo
for j =i-1to1ldo
chl = sfi].argl:
ch2 = s[j].result:
if (chl == ch2)
for k =1tomdo
if (chl == k)

(RSet[i. k] == j):

endfor
endfor

for j =i-1to1do
chl = sfi].arg3:
ch2 = s{j].result:
if (chl == ch2)
for k =1tomdo

(RSet[i. k] == j):

if (chl == k)
endfor
endfor
endfor
return(RSet):

End of Algorithm

Algorithm 5.2 Generate.WTable

Generat_WTable(s : state_array) : W Set:

Input: state_array
Output:WSet

fori=1tomdo
for j =ntoldo
if (s[i].result == 1)
WSet = WSetUj:
endfor
endfor
return(W Set):

End of Algorithm



74 Global Commit Protocol

Algorithm 5.3 Final_Stale_Var
Final_Stale Var(r : data. s : state_array. RSet. WSet) : Re_State_Set:
Input r: stale data
state_array: all operations of a transaction
RSet: 2D array storing the read dependency
W Set: 1D array storing the final write operation
Output Re_State_Set: a set keeps the re-executing operations

fori =1tondo

if (s(i].argl == z or s[i].arg2 == z) {
Re_State_Set = Re_State_Set U state;: /*case 1*/
Re_State_Set = Re_State_Set U W Set[s[i].result]: /*case 6*/
Re _State_Set = Re_State_Set U W Set|[r]: /*case 3*/

for j =1tomdo
if (RSet[j.:]| not EMPTY)
Re_State_Set = Re_State_SetU RSet[j.i]:  /*case 5%/

endfor
}
endfor
return(Re_State_Set):

End of Algorithm
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Algorithm 5.4 Final Related_State_in_Rset

Final_Related_State_in_Rset{op : state.rs : Re_State_Set.
s : state_.array. RSet. W Set) : Re_State_Set:

Input op: re-executing operation
rs: a set keeps the re-executing operations
state_array: all operations of a transaction
RSet: 2D array storing the read dependency
W Set: 1D array storing the final write operation
Output rs: a set keeps the re-executing operations

for i =1tomdo
for j =1tondo
if (RSet|i. j] == op) {
if (W Set[s[j].result] != op)
rs = rs UV Set(s[j].result]: /*case 6*/
rs = rs U state;: /*case 2%/
rs = rs U Final _Related_State_in.Rset(RSet[i. j|. rs.

5. RSet. W Set): /*case 4*/
}:
endfor
endfor

return(rs)

End of Algorithm
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Algorithm 5.5 Verification_Processor

Verification_Processor(activity_table of T;)
Input activity_table of T;
Output verify: a boolean flag to indicate successful verification

for each entry r in activity_table of T; do
if (Rflag == TRUE) {
if (version_id(x) < version_idgosai(T)) {
if (alternative transaction fails to commit} {
Re_State_Set = Final_Stale_Var(z. state_array):
for every op; € Re_State_Set do
Re_State_Set = Final_Related_State_in_Rset(op;.

Re_State_Set. RSet);
endfor
}:
else
submit the alternative transaction:
}:
}
if (Re_State_Set # 0)
Re_erecute( Re_State_Set.done):
if (done == succeed)
return(verify = TRUE);
else
return(verify = FALSE):
else
return(verify = TRUE); /*no re-execution is required*/
endfor

End of Algorithm
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Algorithm 5.6 Re_erecute

Re_execute( Re_State_set. succeeded):
Input Re_State_Set: a set of re-executing operations
Output done: a boolean to indicate a successful re-execution

for every element op € Re_State_Set do
if (op; is not illegal)

execute(op;):
else {
return(done = fail):
}
end for

return(done = succeed):

End of Algorithm

Algorithm 5.7 Global Transaction Management

Global Transaction_Manager(T;)
Input Transaction T;

for every T; enters to the GCP do
Call Verification_Processor(activity_table of T;. verify):
if (verify == TRUE)
global commit(T;)
else
abort(T;):
endfor

End of Algorithm
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Chapter 6

Demonstration in Mobile

Computing

The GCP has been simulated using C++. The model is able to generate a random
number of operations and variables. The variables are limited to 52 letters (*a’ - ‘'z’
and A’ -°Z’). so a transaction can access at most 32 variables. Moreover. we can input
the percentage of the data overlap between mobile and fixed servers. The simulation
can generate transactions and identify which operations in a mobile transaction are
required to be re-executed. From the simulation. we measure the GCP’s performance

in two aspects: (1) Re-execution Rate. and (2) Time Complexity.

6.1 Re-execution Rate

When we analyze the re-execution rate of the GCP, we conclude that there are two
factors affecting the performance: (i) percentage of the data overlap between mobile

and fixed servers, and (ii) intra-dependency of the operations in a transaction.

79
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6.1.1 Data Overlap

The GCP is an optimistic concurrency control scheme. so it will not work well in a
heavily-shared system. If the data items are shared heavily between the fixed servers
and the disconnected mobile unit. we can expect a lot of conflicts. In our experiments.
we set up three different sets of data. Each set of data represents a different number
of operations in each transaction: Set 1 contains at most 10 operations. Set 2 contains
at most 20 operations. and Set 3 contains at most 50 operations. Table 6.1 shows
the results. In Table 6.1. Overlap% is the percentage of data overlap between the
disconnected mobile unit’s and fixed servers’ transactions: OP is the average number
of operations generated for 10 transactions: RE is the average number of operations

re-executed for 10 transactions. and % is the overall percentage of re-execution.

GCP’s Performance for 10 Transactions
Overlap% Set 1 (10) Set 2 (20) Set 3 (50)
OP | RE % OP | RE % OP | RE %

10 80| 1.4 1750 | 147 | 2.5 | 17.01 | 35.3 | 7.3 | 20.68
20 69 | 1.3 1884|164 | 3.4 |20.73 | 41.8 | 16.4 | 39.23
30 7.5 202667179 4.6 |25.69 | 37.2 | 16.4 | 44.09
40 8.2(3.5 42,68 | 15.7| 8.5 | 5414 | 429 | 33.8 | 67.88

50 7.8 |38 |48.72 139 | 88 |63.10| 33.0 | 22.4 | 78.79
60 8.0 | 45 |56.25|15.3 ] 10.6 | 68.94 | 34.1 | 29.4 | 86.22
70 8.7 |68 | 7816 | 14.3 | 10.5|69.28 | 38.7 | 34.7 | 89.66
80 3.0 7219000 (13.2]| 9.1 |73.43|36.3|33.8]93.11
90 841769048 |13.6 | 12.6 9265 32.8 ] 31.5 | 96.04

Table 6.1: GCP’s Result for 10 Transactions

Figure 6.1 plots the results of Table 6.1. As we can see from Figure 6.1, when the
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Re-execution % vs Data Overlap % for 10 Transactions
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Figure 6.1: Running 10 Transactions

overlap rate is 10%. about 20% of the operations are re-executed. However, when the
overlap rate increases to 50%. more than half of the operations are re-executed. Note
also that when the overlap rate is set to 100%. not every operation is required to be
re-executed. For example: a mobile transaction T; contains op, : A = 100 + 200 and
T; does not contain any operation reading A. Although A is stale. op, is not required
to be re-executed. When we increase the number of transactions from 10 to 100. we
generate very similar results. Results are shown in Table 6.2. In Table 6.2. Set 1
contains at most 10 operations per transaction. Set 2 contains at most 20 operations.

and Set 3 contains at most 50 operations. Figure 6.2 plots the results of Table 6.2.

6.1.2 Intra-Dependency of Transaction

The intra-dependency represents the operation dependency inside a transaction. A

highly intra-dependent transaction means that the variables in the transaction are
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GCP’s Performance for 100 Transactions
Overlap% Set 1 (10) Set 2 (20) Set 3 (50)
OP | RE % OP RE % OP RE %

10 8.06 | 1.55 | 19.23 | 15.61 | 2.45 | 15.70 | 37.22 | 10.16 | 27.30
20 7791216 (27.73 | 1546 | 5.71 | 36.93 | 39.02 | 14.44 | 37.01
30 8.30 | 3.20 | 38.55 | 23.05 | 10.44 | 45.29 | 39.24 | 20.16 | 51.38
40 7.92 1398 | 50.25 | 16.38 | 9.61 | 58.67 | 38.88 | 26.40 | 67.90
30 8.37 | 5.09 { 60.81 | 16.17 | 10.17 | 62.89 | 36.80 | 29.60 | 80.43
60 7.86 | 5.66 | 72.01 | 15.49 | 10.98 | 70.88 | 36.88 | 30.38 | 82.38
70 7.89 1594|7529 | 15.62 | 12.74 | 81.56 | 36.73 | 31.59 | 86.01
80 8.10 | 7.02 | 86.67 | 15.03 | 12.63 | 84.03 | 37.00 | 31.64 | 93.62
90 8.13 | 7.26 | 89.30 | 14.97 | 13.46 | 89.91 | 37.36 | 35.74 | 95.66

Table 6.2: GCP’s Result for 100 Transactions

highly dependent to each other. The intra-dependency plays a critical rule in the
re-execution rate. If the variables used in a transaction are highly related. we can
expect the rate of re-execution to be high because a re-execution of one operation
will result an exhaustive search for all other affected operations. This search will go
recursively and take exponential time to compute. We have shown the complexity in

Section 5.6.

For example: we generate 5 transactions with at most 2,000 operations in each
transaction and limit the number of variables to 10. Therefore, the operations are
closely related to each other. The result is a very high re-execution rate even in a
low data overlap environment. Thus, we conclude that the percentage of data overlap
alone cannot determine the re-execution rate of the GCP. The GCP does not perform

better in a low percentage of data overlap but closely related transaction. In contrast,
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Re-execution % vs Data Overiap % for 100 Transactions
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Figure 6.2: Running 100 Transactions

the level of intra-dependency between operations affects the rate of re-execution. Ta-

ble 6.3 shows the result of the simulation.

Figure 6.3 plots the results of Table 6.3. Even in a low overlap scenario (10%)
the re-execution rate is very high (90.28%) (see Figure 6.3). This result shows that
a transaction with high intra-dependency will result a high re-execution rate. So.
the GCP does not work well in highly intra-dependent transactions. In contrast. if a
transaction is low in intra-dependency. the re-execution rate will be lower. Consider
an extreme case shown in Figure 6.4. In Figure 6.4. T, has zero intra-dependency
because no variable in T; is related. If we set 10% of data to stale (2 variables are
stale), the maximum number of re-executing operations is two because the worst case
will be two different operations read these two stale variables in their arguments.

Except for these two operations. no other operations will be affected.
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GCP’s Performance for 2000 Operations
Overlap% | OP | RE Re-execution%

10 1750 | 1580 90.28
20 1698 | 1532 91.40
30 1009 | 934 92.57
40 1265 | 1200 9:4.86
50 1726 | 1642 95.13
60 1232 | 1195 97.00
70 1875 | 1319 97.01
80 1994 | 1950 97.80
90 1683 | 1678 99.70

Table 6.3: GCP’s Result for 2000 Operations

6.2 Time Complexity

Similarly. we conclude that there are also two factors affecting the time complexity:

(1} size of the mobile transaction. and (ii) intra-dependency of a transaction.

6.2.1 Size of Transaction

The longer the transaction. the more time the GCP takes to compute the result.

However, the size of a transaction only plays a minor factor to the time performance

of the GCP. We have shown in section 5.6, the complexity of the GCP is exponen-

tial. This exponential growth is contributed by the intra-dependency but not by the

transaction’s length. If we fix the data overlap percentage to a constant, a long trans-

action with low intra-dependency will run faster than a long transaction with high

intra-dependency. Thus. we concentrate on analyzing the Intra-dependency.
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Re-execution % vs Data Overlap % for 2000 Operations
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Figure 6.3: Running 2000 Operations in Each Transaction

6.2.2 Intra-Dependency

When we measure the time complexity of the GCP. the intra-dependency must be
considered because it dominates the running time in the long run of the GCP. When
a transaction with little intra-dependency exists among its operations. the GCP can
compute the result rapidly. In contrast. if a transaction has a high intra-dependency
among its operations. the GCP must spend a lot of time finding all the direct and
indirect operations for re-execution. In a highly intra-dependent environment, the
task will result in many recursive calls of Algorithm 5.4 that lowers the GCP’s per-

formance.

In Table 6.4. we simulate the GCP with different numbers of operations. Figure 6.5
plots the result of Table 6.4. From the experiment’s resuits. the GCP’s performance
drops significantly when the number of operations in a transaction is over 7000. Since

our simulation only allows at most 52 variables in a transaction, a long transaction
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T
op0: A=B+C
opl:D=E-F
op2: G=H*1I
op3:J=K/L
op&:M=N+0
op5:P=Q-R
op6:S=T*U
op7: V=W/X
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In this example. no operation is related to
each other because all varibles are using

only I time. so the Intra-dependency is
zero.

Figure 6.4: A Transaction with Zero Intra-Dependency

will result very high intra-dependency. Thus. the GCP requires much more time to

compute the results.

6.3 Summary

There are two aspects to measure the performance of the GCP: (1) Re-execution

Rate, and (2) Time Complexity. In a lightly-shared system with short transactions.

our simulation shows that the GCP performs very well. We argue that the cut-off

point for using the GCP approach is 30% of data overlap. Moreover. our simulation

shows that the “Intra-dependency” among a transaction is an important factor to

be considered. A transaction with high intra-dependency results in a high rate of

re-execution and requires a long time to finish.
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Size of Transaction Time
1000 31 sec
2000 102 sec
3000 217 sec
4000 360 sec
5000 766 sec
6000 1603 sec
7000 3420 sec
8000 6012 sec
9000 12561 sec
10000 50569 sec

Table 6.4: GCP’s Execution Time for Different Number of Operations

Number of Operations vs Execution Time
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has presented a new method for concurrency control for the disconnection
protocol in mobile computing. The main property of the proposed method is to pro-
vide the highest concurrency. mobility and user transparency. as opposed to methods
which limit the concurrency level and require human interaction to resolve conflicts.

This thesis is divided into five parts:

1. Chapter 1 identifies the properties of mobile computing environment and presents
the problem domain of allowing concurrent data access between the fixed servers

and disconnected mobile unit.

(3]

Chapter 2 reviews the research literature and discusses briefly about their work

and limitations which motivate this thesis.

3. Chapter 3 revises the traditional distributed transaction model and presents a

new mobile transaction mode] for the disconnection protocol.

4. Chapter 4 and 5 present the detailed design and implementation of the MVTC.

89



90 Conclusions and Future Work

5. Chapter 6 shows the actual results of the new model. From the results. we

analyze and show its performance and limitations.

Performance of the GCP has been tested and presented. From the results, we
argue that MVTC is feasible in a lightlv-shared system. There are two advantages of

MVTC over other methods: (1) user transparency. and (2) partial re-execution.

7.1.1 User Transparency

All the existing methods require some human interaction to resolve conflicts. In
contrast. MVTC is fully automatic. The only time it fails to commit a transaction
is when a user’s transaction is illegal based on application’s pre-defined constraints.
For example: an attempt to withdraw money exceeding an account’s limit. If conflict
occurs in a transaction, the MVTC can identify it locally and globally. subsequently
resolves the conflicts automatically. Users are not required to have special knowledge
to use the MVTC. so it provides user transparency. For example: the travel agent
in Chapter 1 needs not know how to solve the air-ticket’s problem. If there is no
more space in United Airlines. the transaction manager will submit the alternative
transaction (to book a ticket from American Airlines) and commit the transaction.

The transaction manager handles the conflict by itself alone.

7.1.2 Partial Re-execution

When concurrent data access between the fixed servers and disconnected mobile unit
is permitted. past work has resolved conflicts by re-executing the whole conflicting
transaction. This thesis has shown that this is sub-optimal. We have presented the
GCP to detect and partially re-execute only the conflicting operations in a conflicting
transaction. This thesis shows how to apply compiler technology to analyze the static

information and reconcile committed mobile transactions to the fixed servers. In our
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experiments. only half of the operations are required to be re-executed when a system

shares 30% of its data with both the fixed servers and disconnected mobile unit during

re-integration.

7.2 Future Work

There are five areas not covered in this thesis. (1)Reliability. (2} Failure detection.
(3) Formal Measurement of Intra-dependency. (4) the GCP for peer-to-peer service.

and (5) the GCP for multiple disconnected mobile units.

7.2.1 Reliability

Our model does not discuss any issue related to the reliability of the system. A
recovery technique should be developed to ensure reliability. Recovery from transac-
tion failure usually means that the database is restored to a consistent state after a
failure. An obvious way to achieve this is to roll back and redo all the uncommitted
transactions during failure. However. it is very costly. so a recovery algorithm can be
developed which logs the transaction information in the GCP to minimize cascading

roll back during failure.

7.2.2 Failure Detection

This thesis assumes that an unreachable mobile unit is working in the disconnected
mode. However. if a mobile unit is actually failed. the system should be able to
determine it. The system alone cannot tell whether a mobile unit is working in the
disconnected mode or fails to operate because the system cannot reach the unit.
The mobile unit should inform the fixed system when it expects to travel prior to

disconnection. If the mobile unit is unable to reconnect back to the fixed servers on
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schedule. the system will consider it as failure.

7.2.3 Formal Measurement of Intra-dependency

In the simulation of the GCP. we identify that the intra-dependency is one of the fac-
tors to determine the GCP’s performance. The result shows that increasing the intra-
dependency will lower the GCP’s performance. but we do not explicitly and formally
state the relationship between the intra-dependency and the GCP’s performance.
A formal measurement can be developed to indicate the level of intra-dependency

affecting the GCP’s performance.

7.2.4 The GCP for Peer-to-Peer Service

In our model. we do not allow two disconnected mobile units to exchange their infor-
mation. However. this requirement is too restrictive when two disconnected mobile
units wants to share some critical data in an isolated area. A modified version of
the GCP (GCP for Peer-to-Peer service (GCP-PP)) can be developed to allow two
disconnected mobiles to share their data without the fixed servers’ present. Upon
reconnection. the GCP-PP should be able to reconcile the transactions. Figure 7.1
illustrates the architecture of the GCP-PP.

In Figure 7.1. a disconnected mobile unit MU, shares data with another discon-
nected mobile unit AMU,;. Upon reconnection. the GTM of the GCP-PP should be
able to identify those shared data and reconcile the committed mobile transactions

globally.

7.2.5 The GCP for Multiple Disconnected Mobile Units

In our model. we only address the problem of reconcile one disconnected mobile unit

to the fixed servers at a time. However, two or more disconnected mobile units may
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GCP-PP
Fixed Servers
GTM
MU, MU,
VP VP
] 2
cs, cs

Figure 7.1: Architecture of GCP-PP

want to reconnect back to the fixed servers at the same time. In our model. we only
allow them to re-integrate back to the fixed servers serially. Thus. no concurrency is
involved. So. a modified version of the GCP. GCP for Multiple Disconnected Mobile
Unit (GCP-MU). can be developed to handle the concurrency control of multiple
re-integration. The architecture of the GCP-MU is shown in Figure 7.2.

In Figure 7.2. the GTM of the GCP-MU accepts and reconciles several transactions
from different disconnected mobile units at the same time. These committed mobile
transactions might access the same set of data. so conflicts may occur among them.
The GCP-MU is responsible for detecting conflicts and reconcile those transactions
concurrently. Moreover. it should guarantee the serializability among them. Main-
taining serializability involves transaction scheduling and conflict detection among
those disconnected mobile transactions. In addition. the GCP-MU should be able to

detect and avoid deadlock.
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Figure 7.2: Architecture of GCP-MU
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