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ABSTRACT
Ultrasonic velocity measurements were performed in the frequency
range 11 MHz to 120 MHz to investigate the dynamic and static critical
effects dué to random fields at the structural phase transitions in the
mixed Jahn-Teller compounds DyAsxVLmO4. Elastic constant, (c=pv2), was
investigated for two samples having strong random fields ( x = 0.164;
T/TD = 0.38 and T/TD = 0.42) and a third sample with weaker random

fields (x = 0.154; T/TD = 0.54}.

For the samples with strong random fields, dynamic rounding of the
soft-mode elastic constant (x 1/ near the critical region) was
observed, indicating extreme slowing down of critical fluctuations due
to the random fields. Although clear evidence of dynamic rounding of the
phase transition was shown, data over a wider range of frequencies 1is
needed to determine whether the data is properly described by an
activated model as proposed by Villain (1985) and Fisher (1986) for

random-field systems, or by conventional dynamic scaling.

For the sample with weaker random fields (x = 0.154), the soft mode
elastic constant was found to be independent of the ultrasonic frequency
in the range 11 MHz to 70 MHz, implying that static critical behavior is
not obscured by dynamic effects and enabling the susceptibility exponent
to be measured. We found that y=1.78%0.07, which 1is consistent with
several theoretical predictions and previous experiments on this

compound (Graham et al. (1991)).
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CHAPTER ONE: INTRODUCTION



Both of the rare earth compounds dysprosium arsenate (DyAsO4) and
dysprosium vanadate (DyV04) undergo structural phase transitions which
are caused by the co-operative Jahn-Teller effect (CJTE). This type of
phase transition is driven by a linear coupling between the lattice
displacements and the electronic states of the rare earth ions ( Elliott
et al (1972) ). For DyAsO4 and DyVO4 the crystallographic symmetry is
lowered from the tetragonal zircon structure ( space group DZ: ) to an
orthorhombic structure ( space group Dzi), resulting in an increase in
the separation of the lowest electronic levels of Dy3+, thereby lowering
the electronic energy at low temperatures. Earlier experiments ( eg. see
Kaston (1980), Page et al (1984) ) showed that the phase transitions in
DyAsO4 and DyVO4 occur at fransition temperature TD of 11.4 K and 14.6 K
respectively. The order of the transition in the two compounds is
different: first order (discontinous) in DyAsO4, and second order

(continuous) in DyVO4.

Mixing the two compounds DyVO4 and DyAsO4 has the effect of
introducing random strains which are caused by the different unit cell
sizes of the two compounds. Previous experiments have suggested that the
mixed compounds DyAsxvl__XO4 provide a good experimental system for
studying the Random-Field Ising Model (RFIM) problem, since (i) the
interactions between the rare-earth ions that cause the phase transition

are well described by a pseudo-spin Ising Hamiltonian, (ii) the



interactions are ferrodistortive, (iii) large static random strain
fields can be generated via the coupling to lattice strains, (iv) there
is no dilution of the ion-ion interactions as the concentration x 1is
varied, unlike the diluted antiferromagnetic compounds used to study the
random-field problem, and (v) the interactions have a large short-range
component (which in pure DyVO4 determines the observed critical behavior
in the accessible range of temperatures near the tramsition ) so that
the nearest-neighbor interactions assumed in the RFIM should provide a
good description of DyAsxVL*O4. The RFIM has been of considerable

interest recently due to theoretical predictions of new critical
behaviour and slow equilibration near and below TC which 1leads to
metastability and hysteresis ( for a review, see Jaccarino and King

(1988)).

Previous experiments done on DyAsxvl__xO4 (Page et al. (1988) and
Graham et al. (1991) ) to investigate the critical behavior have shown
that the transition temperature TD depends strongly on the arsenic
concentration x. The phase transition was also found to be more rounded
in the random systems, an effect that was attributed to modified
critical behavior in which the susceptibility critical exponent was
increased aramatically from 1.15%+.05 to 1.79%0.07 by the random fields.
Other possible contributions to the rounding of the phase transition
could be: i) concentration inhomogeneities, which cause the distortion

temperature to be different at different regions of the sample, and 1ii)



dynamic non-equilibrium effects due to extreme slowing down of critical
fluctuations near the transition temperature. The effect of
concentration inhomogeneities was investigated by Graham et al. (1991)
and found to be too small to significantly affect the rounding of the
transition. Dynamic effects on the rounding of the phase transition have
been predicted by Villain (1985) and Fisher (1986). The only
experimental evidence of such effects is that of Jaccarino et al.
(1991), who used AC susceptibility measurements on the dilute
anti-ferromagnet FeQ462nQS4F2 over a wide range of frequencies. They

found that the rounding of the phase transition was indeed affected by

dynamic effects and could be interpreted in terms of the activated model

proposed by Villain and Fisher.

The main aim of this work is to look for evidence of such dynamic
effects in the Jahn-Teller system DyAsxVb«04. Three samples of
different random field strengths (x=0.164, and x=0.154) were studied. To
investigate the critical dynamics and their possible contribution to the
rounding of the phase transition, the elastic constant Cyq was measured

for the three samples as a function of temperature over as wide a range

of frequency as could be realized with the available apparatus.




THESIS OUTLINE

Chapter two presents the theory behind the structural phase
transition. A brief introduction to the Jahn-Teller structural phase
transition is given and the Hamiltonian of the system is derived, with
its molecular field solution. The elastic constants and their relation
to the susceptibility are then derived thermodynamically. The final
section in chapter two deals with random fields in the mixed Jahn-Teller

compounds DyAsXVL«O4.

Chapter three explains the experimental methods, including the
measurements of the ultrasonic velocity as a function of temperature
(this was required to determine the elastic constant i.e. c=pv2, where
p is the sample density and v is the ultrasonic velocity). A description
of the equipment used for these measurements, with related block
diagrams, are also given. Sample bonding and polishing are also treated

in this chapter.

Data collection, analysis, and the results of all the experiments
are included in chapter four, along with a discussion of the results.

Finally the conclusions are stated in chapter five.




CHAPTER TWO :THEORY



2.1 INTRODUCTION

In this chapter a brief introduction is given to structural phase
transitions driven by the Jahn-Teller effect. A detailed theory of the
Co-operative Jahn-Teller phase transition 1is presented, including a
molecular field solution of the Hamiltonian of the system. The behavior
of the soft-mode elastic constant near the phase transition 1is derived
thermodynamically . The next section deals with the mixed Jahn-Teller
compounds i)yAsxvl__XO4 where the random-field effects arising from mixing
DyAsO4 and DyVO4 are discussed. Finally a discussion of the
susceptibility critical exponent and dynamic effects associated with the

phase transition are also presented .

2.2 JAHN-TELLER EFFECT ( JTE )

2.2.1 INTRODUCTION

The Jahn-Teller structural phase transition is driven by the
interaction between degenerate electron states localized on a
particular ion and a lattice distortion. As a result, the symmetry of
the electronic states is lowered and the degeneracy is removed, so that
the energy of one of the electronic states is lowered while the other is
raised. If the lower state is preferentially occupied , the electronic

energy will decrease by an amount that Jahn and Teller (1937) showed



would be proportional to the distortion. In addition there will be an
increase in the elastic energy that is quadratic in the distortion. The
result is that an equilibrium situation is attained for a finite
distortion which minimizes the total energy. For example, if there is a
local distortion, measured by ¢, of the crystallographic environment

around the ion, the total energy E(L) can be written as

E(Z) = -al + bl
where a and b are constants. The minimum then occurs at

§O= a/2b ,
and the minimum energy is lowered to the value

_ — 2
E(g) = E,_ = -a/ab.

2.2.2.THE JAHN-TELLER HAMILTONIAN OF THE Dy-SYSTEM

The Hamiltonian can be found by writing the distortion £ in terms
of the normal modes of the crystal. To avoid the problem of applying
periodic boundary conditions to the distorting crystal, we separate the
lattice modes into two categories: uniform strains and phonons. The
uniform strains are treated first and periodic boundary conditions are

then applied to the strained crystal in calculating the phonon



contribution. A uniform local strain er is defined as ( see for example,

Nye (1957))

1 aui ou
e.=e = [ + J } L, =x,y,2). ... (2.2.1)
axj axi

where T’ represents the strain symmetry and u is the lattice displacement

caused by the strain.

The long-wavelength acoustic phonons may be treated as local

fluctuations in the strain, so that the displacements u are now given

by,

u, = 1/VN§Q(k) pgk)exp[i k.Rn] .............. (2.2.2)

Here Q(k) is the normal mode coordinate at wave vector k, and pi(k) is
the polarization vector. Q(k) is defined in terms of the annihilation

and creation operators ak , a; as follows

172

Q) = [W/2Mo(k)] (ap+a ) ooeeionnns (2.2.3)

For simplicity we restrict our discussion to phonons of a single

branch, so the branch index can be omitted.



We first discuss the coupling between the electronic states and the
bulk strain mode, since it is convenient to treat this contribution to
the lattice displacements separately from the phonon contributions. The

Hamiltonian of a system with a strain e_ is (Gehring and Gehring 1975),

r

¥ = § Rs eFOr(n) + 2 NVc e

s [¢]

-1 O
s I\

where R 1is the coupling constant, er is the strain, Or(n) is the
s

operator representing the electronic states, N is the number of unit
cells, V0 is the unit cell volume, and c? is the unperturbed elastic

constant . Minimizing the Hamiltonian with respect to the variable er

gives the equilibrium value

0
er—(l/NVOcr)ERSOF(n) ................. (2.2.5)

at the minimum. Substituting (2.2.5 ) in (2.2.4) the Hamiltonian of the

system becomes

u
Ho=-—— o) o) ..oooiiiiiii.n, (2.2.6)
2N ’
R2
where p= ——Ji———, and the electronic operators Or(n) representing the
4V ¢
o Tl
two energy levels are written as pseudo-spin operators ¢~ (n) having

10



eigenvalues ¥1. Here the strain coupling now gives rise to an infinite
ranged interaction between the magnetic Dy3+ ions represented by the

pseudo-spin operators.

The Hamiltonian that describes the coupling between the electronic
states and the acoustic phonons is found by substituting (2.2.2) and

(2.2.3) for the phonon displacements into (2.2.1) and (2.2.4), giving
# =% h ok (a (kalk) s T ERIaK) T+ alk) 1 o). (2.2.7)

1/2

h
} {kipj(k) + kjpi(k) o,

where E(k)=RS(—% ){_zﬁﬁaTk)

is the coupling strength constant, and

1

zZ
o (k)=
e

T ¢ (n) expli(k.R(n))]

n
The coupling to the optic phonons has the same form as (2.2.7). This
Hamiltonian can be simplified by introducing the displaced operators
7+(k) and y(k) which define the excitations relative to the 1local

distortions ,where

£ (k) o 1

, and
ho(k) k

¥ (k) = [a* (k) +

11




£(k)

Fok) Ok’

7y (k) = [ a(k) +

Note that the commutation relation [a+(k),a(k’)]= [7+(k),7(k') ] = Sk K’
still holds. Substituting the displaced operators into equation (2.2.7),

the Hamiltonian in (2.2.7) becomes

HOAE
o(k) o(-k) ..... (2.2.8)

+
H=Z ho(k) [y (k) 7(k) + 5 ] - Z
ho (k)

Thus the Jahn-Teller coupling gives rise to an effective interaction
between the Dy3+ ions which is of the Ising form. The strength of the
jon-ion coupling is conveniently written in terms of the effective
exchange constant J(k) which is defined by

leao ! | ®

2tg (k) 1 21€ (k)

T = T TN T The®

with its Fourier Transform

Jap) = s s B el ik L (R@)- RO )

,h k ho(k)

which defines the ion-ion interaction at positions n,n’. The n = n’ term
is called the self energy and must be subtracted from the ion-ion

effective interaction which is given by

12




- —%— £ J (n,n’) ¢7(n) " (n’).

n,n’

For the dysprosium compounds investigated in this thesis, the electronic
states are not exactly degenerate in the absence of the Jahn-Teller
interaction, but are split by an amount 2e due to the crystalline

electric field. The total Hamiltonian which includes this crystal field

is term then (Elliott et al. (1972) )

®= E Bl [y(k) o () = -1 =, Umn) + A et et )
X 0D . (2.2.10)
n

This Hamiltonian has the form of an Ising mode! in a transverse field.

2.3 MOLECULAR FIELD SOLUTION

Molecular field theory (MFT) describes an approximation for
studying a system of interacting spins in which the effect of all
neighboring spins on a representative spin is described by their thermal
average. Thus each spin experiences an effective f{field which 1is

proportional to the magnetization.

In the molecular field approximation, the Hamiltonian of the system

13



becomes

K = —-(A+p) <o E 0:~ € § 0:, ........................... (2.3.1)

m. £

where A= = J(n,m)= J(0) and <o&> is the thermal average. Diagonalizing
n

the Hamiltonian, the energy levels are given by ¥W where

W={ [(a+p<c™>]?+ 23?

Now the average values of ¢® and ¢ are found by projecting the total

pseudo-spin average value <¢>, where

W
o> = _r _
o tanh ( kBT ),

along the x and z axes to give

<> =cosetanh(W/kBT),and

<> = sin@tanh (W/k_T).

Here 6 is rotational angle in the pseudo-spin xz-plane,

tanNe = (2.3.2)

(A+p)<o”>

14




In this approximation, the phase transition occurs at a
temperature TD=(A+u)/<oz> below which <o>> is no longer =zero. In the

distorted phase T<TD, the expressions for W, <¢®>, and <¢*> can be

written as
w=(A+u)tanh(W/kBT)
<oZ>= (Wo+e2)/(A+p).

<o >=e/ (A+p).

In the undistorted phase, T>TD, we have,

<c?>=0, giving
< >= tanh(s/kBT).

If the high temperature splitting is negligible (e> 0) these expressions

will be simplified to give

W= (A+p)<o>

15




< >= 0
<¢Z>= tanh(W/kBT) )

Above TD, <0x>=0, <oz>=0, and W=0.

2.4 RELATION TO ELASTIC CONSTANTS

For the Dy compounds under investigation, the order parameter in
the JT distortion is proportional to the lattice strain B1g' This
macroscopic strain of B1g symmetry corresponds to a stretch along the
x-axis and an equal compression along the y-axis giving the symmetrized

strain

where e1 is defined in (2.2.1). For a review of elastic constants see
for example Nye (1957). The coupling between the strain and the rare
z

earth ions is given by the term - RSeBlgw R RS being the coupling

constant.

For the tensor strain eB1g as defined above, the strain elastic

energy 1is ( Elliott et al. (1972), Gehring and Gehring (1975)),

16




— 1 —
U= -—Z——NVO( 41" 12 ) ( eBlg) ............ (2.4.1)

N is the number of unit cells, and Vo is the unit cell volume.

The behavior of the elastic constant -%—(c —012) can be obtained

11
from the Helmholtz free energy as follows. The Helmholtz free-energy,

F = <#> - TS is equal to
2 2

z 1
—2NkBT In [2 cosh(W/kT)] + NA < ¢™> *— NVO(c11 C12)e ... (2.4.2)

where W now is written as

W= (2™ + Rse)2+ e ]1/2,

to show the dependence on strain e explicitly. A< oz>2 is the molecular
field self energy in the unit cell, and the Big subscript 1is dropped.
The condition 8F/ 8<c°>=0 determines the equilibrium value of <¢>>, and

gives the same result as in the previous section.

The stress in the mode B1g is defined as,

- <5
g = 1 ( oF )= 2 R <o R .
v N ae 0 v 2 11 12 --------- . .

0o

Setting J = 0 gives the equilibrium value of the strain as

17




<e> m e e e (2.4.5)

The elastic constant Cs with B1g symmetry is defined by

Co = (67/66)0,

where ¢ denotes the thermodynamic measurement condition. Using (2.4.3),

this gives

z
= 20 80 >l e (2.4.6)
v de N o]

1 (c,.-c..).

where Co is the unperturbed value of 5 (c17¢5

Cg Can be conveniently written in terms of the single-ion

susceptibility &s which is defined as

Here He=J(O) <c“> + R e is the effective molecular field acting on
s

the o operators. Using the relation

()7 (55 [+
de N aﬂe o de "

18




gives the result

[ a<oz>] _ R g5
de 5 1 -2 8s

Thus we obtain the general expression

c 1 - (A+u)g19

c 1 - Agﬁ

Since ultrasonic measurements are done adiabatically, we only
consider the adiabatic "perfectly isolated” susceptibility. Here the
spin populations are kept constant when changing the strain, which is
equivalent to keeping <0>=tanh(W/kBT) constant and allowing only the
angle 6 in equation (2.3.2) to vary. In this case 8y = g, which is given

by

g = e<o>/ wz.
s

Substituting this expression into (2.4.7) we get

S _ () P<o®>2+ ele-(Atp)<o™>)

) (A+u)2<0z>2+ ele-A<c™>)

19



. . s et . . z
This expression can be simplified if we consider T > Tthere <¢™> = 0,

giving
s e - ()<

c € - A<C>
o]

At T = TD, <oc®> is still zero but <¢">=e/(A+p), so c_ goes continuously

to zero as TD is approached from above.

The elastic constant can be expressed in terms of the total

pseudo-spin susceptibility which is defined as

(o] z
e 0 <o ">
X = ;ig [__N 55 ], ................ (2.4.9)

S

and which measures the response of the <> operators to an external
stress. x is the analog for the JT phase transition to the magnetic

susceptibility at a ferromagnetic phase transition. In the presence of a
stress J§ the electronic energy in the Hamiltonian (2.2.4) 1is increased

by NVeJ and the equilibrium strain becomes (Page (1976) )

—% + m e s e e ae e s et as e s e e e (2410)
0 o]

The elastic constant c¢ then is given by

20




so that,

1 + px

In the critical region near the phase transition temperature T ,

the susceptibility diverges as

x«t_x

Here t=(T-—TD)/TD is the reduced temperature, and y is the susceptibility

critical exponent. Thus near the phase transition when y»1,

2.5 MIXED JAHN-TELLER COMPOUND DvAs,V,_.0,

2.5.1 RANDOM FIELD ISING MODEL(RFIM)

Mixing the two compounds DyAsO4 and DyVO4 has the effect of
inducing random strains which are due to the different unit cell sizes
of the two compounds. One component of this random strain field will

have the right symmetry to couple to the electronic levels . The

21



Hamiltonian (2.3.1) is modified by adding a new term which results from

this coupling,

Ising R.F

=i?j J110?0j+§h1012

where hi is the random strain field, which depends on the arsenic
concentration x. Note here that Jij does not depend on the
concentration x. This modified Hamiltonian shows that the mixed
compounds DyAsxvi__XO4 are a structural counterpart to a ferromagnet in a
random maénetic field, and as such they are expected to be an

interesting experimental realization of the random-field Ising model.

In the pure DyVO4, even though the critical behavior is ultimately
classical sufficiently close to TD, the critical behavior that 1is
observable in the experimentally accessible range of temperatures near
TD is influenced by the short-range interactions, and the measured
exponents compare to those of the nearest-neighbor Ising model ( Harley
and MacFarlane (1975) ). Thus it is reasonable to expect that the
critical behavior of the mixed compounds will be influenced by the
random fields and provide a good experimental test of the
nearest—neighbor Random Field Ising Model. Some additional advantages of

this system are: a) Unlike diluted antiferromagnets in a uniform field

which are believed to be equivalent to the random-field ferromagnet,

22



DyAsxVI__xO4 presents no dilution problem (Huse and Henley 1985), since

the interactions in this mixed system are between the Dy3+ ions and
their concentration is unaffected by mixing. b) It is possible to study
the response of the system to an applied ordering field which can be
varied by changing the applied stress. A drawback of this system is that
the random field is fixed in the sample, so that the only way to vary

the random field is by changing the sample.

This RFIM has been of considerable interest recently due to
theoretical predictions of new critical behavior and slow equilibration
near and below Tc which leads to metastability and hysteresis (Jaccarino
(1988)). There have been several mixed Jahn-Teller compounds for which
some properties have been studied. In meLui_xVO4 the specific heat was
measured by Gehring et al. (1976)}. Phase transitions in the
Tbde1—xVO4 antiferromagnet were studied by Glynn et al. (1977), who
showed that this system undergoes a double phase transition. Kaston et
al. (1984) and Taylor et al.(1986) studied the phase transition
concentration dependence for TbemL*AsO4. However all of these diluted
Jahn-Teller compounds are dominated by long-range interactions and are
expected to show different critical properties to the mixed DyAsxvl__xO4
system studied in this thesis. In random-field magnets, there have been
very few experimental studies of the critical exponents, the only
measurement of ¥ being that of Belanger et al. (1985). They

investigated the d=3 diluted antiferromagnet Fe062n04F2 using neutron

23



scattering and obtained a value for y of 1.75%0.2, although their result
has been viewed with caution because of the lack of a rigorous theory

for the neutron-scattering line shape on which their value of ¥ depends.

There have been several relevant theoretical predictions for
modified critical behavior in random field Ising systems. Aharony et al.
(1976) predicted that the critical exponents for the d-dimensional
(2<d<4) system with short-range exchange and random fields are the same
as the (d-1)-dimension pure system, leading to a value for 7 of 1.75.
Another prediction is presented by Ogielski and Huse (1986) wusing a
Monte Carlo simulation of the 3-d dilute antiferromagnet in a uniform
field, their value for ¥ being 2.0 * 0.5. We finally mention the work of
Bray and Moore_(1985) who developed a scaling theory for the Random
Ising Model in 2+¢ dimension which gave 9= (3-d+1.5)/e, 1implying for

three dimensions that ¥ = 1.5 (e=1)}.

2.5.2 DYNAMIC EFFECTS NEAR THE PHASE TRANSITION

Villain et al. (1985) and Fisher (1986) predicted extreme slowing
down of critical fluctuations near Tc in a random field systems. In
their meodels, the characteristic time T for a fluctuation on a scale of
the correlation length £ grows as

T « exp ( €& ) « exp ( C £

24




where ® is a new exponent that governs the growth of the free energy in

v ). The

a volume Ed and v is the correlation length exponent ( § « t
basic idea is that the dynamics are determined by an activated process
invelving hopping over barriers induced by the random fields. Close to
TD, T becomes very long because of this exponential dependence on §,
leading to dynamic rounding at reduced temperatures t<t*(w), as

non~-equilibrium behavior sets in at frequency w. In terms of the elastic

constant c(w,t), Fisher’s model for the susceptibility implies

-@v

| Inw/w I]
o
t

clw,t) « t¥ . F [

where Wy is some characteristic frequency and F is a universal scaling
function. Thus the dynamic elastic constant no longer goes to zero at
the transition but reaches a minimum value cmin(w) at a reduced
temperature tmin(w) which can be greater than zero. These quantities
scale with frequency as

clw) x | 1n(w/w )|_7/VG ,
min o]

t(w) « |1n(w/w )I—l/v®
min (o]

In fact it is the main aim of the experiments reported in this thesis to

see if such dynamics are important at wultrasonic frequencies in

DnyAS1-xO4‘
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CHAPTER 3 EXPERIMENTAL TECHNIQUES
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In this chapter the experimental methods and equipment are
discussed. The measurements of ultrasonic velocity using the pulse echo
technique are done in two ways: the room temperature "absolute"”
velocity, and the velocity change as a function of temperature. These
two procedures are discussed, including the techniques used to measure
and control the sample temperature. Sample polishing and bonding are

discussed briefly.

3.1 A BRIEF DISCUSSION OF THE PULSE ECHO TECHNIQUE

The basic idea of the pulse echo technique 1is to subject the
specimen under investigation to a stress wave ( ultrasonic ) of a short
pulse duration relatiye to the time to for the pulse to travel one round
trip in the sample ( for example, for shear ultrasonic waves propagating
along the [100] direction in sample Al, the pulse width was 0.4 usec,
while to was 3.637 pusec ). The direction in which the pulse is applied
to the sample is perpendicular to sample parallel faces. An
electromagnetic pulse is converted into an ultrasonic mechanical stress
wave via a piezoelectric transducer. The transducer resonates at its
fundamental frequency (given by the condition f=v/2s’, where f 1is the
frequency, v is the sound velocity in the transducer and s’ 1is the
transducer thickness ) and all odd harmonics; this determines the

possible frequencies of operation. The transducer is bonded to a delay

27




rod which delays the ultrasonic signals to allow for separation between
the reflected sample echoes and the non-converted initial
electromagnetic pulse which is also detected by the receiver. The
ultrasonic velocity is then determined from the measured transit time to

and the thickness of the sample s (v=25/t0).

The ultrasonic wave generated by the transducer travels through the
the delay rod and 1is partially reflected at the delay-rod/sample
interface. The other part is transmitted into the sample and continues
to travel until it reaches the sample-air interface at the far side of
the sample, at which it 1is completely reflected back towards the
transducer. The reflected signals arriving at the transducer are partly
reflected back into the delay rod for another round trip while the other
part is converted by the transducer into electric energy waves which are
then amplified and displayed on an oscilloscope. Accurate timing
measurements can then be performed on the sample echoes to determine the

ultrasonic velocity, as described in detail in the next section.

3.2 MEASUREMENTS OF THE ULTRASONIC VELOCITY CHANGE AS A FUNCTION OF
TEMPERATURE
3.2.1 PHASE CANCELLATION METHOD

In this method the change in ultrasonic velocity in the sample was

measured as the temperature was varied from room temperature down to
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liquid helium temperature ( i.e 295 to 4.2 K ). This was done in two
stages, first the sample was cooled down to liquid nitrogen
temperature ( 77 K ) and then subsequently cooled to 4.2 K (usually the

next day).

The basic idea of the measurements 1is to superimpose a radio
frequency ( RF ) generated reference signal pulse on the reflected
sample signal, and to establish destructive interference between the two
signals so that the phase of the sample signal can be determined. The
phase and amplitude of the reference signal can be adjusted using a set
of variable delay lines and an adjustable attenuator. The reference

signal is coherent with the signal sent to the sample.

The apparatus was set up as shown in figure 3.1. The RF pulse used
to generate the sample echoes is obtained by modulating the continuous
wave output of a frequency synthesizer ( FLUKE 6060B ) with a square
pulse from a pulse generator ( STANFORD RESEARCH SYSTEM , INC. MODEL
D6535 ). The pulse generator is also used control the pulse width and
time delay of the RF signal. The pulse width of the signal must be wide
enough to allow for the finite rise and fall times of the transducer
response but not too wide to cause interference between any two adjacent
echoes. The first constraint on the pulse width enables a constant echo
amplitude to be established in the interference region, while the second

is required to eliminate spurious phase shifts due to echo overlap. The
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modulation is done via a set of three mixers (MINI-CIRCUITS 15542 ) each
of which réduces the CW background by 30dB relative to the RF signal.
The signal is then amplified using a power amplifier which has a maximum
output power of about 50W. The output signal is fed into a two stage
diode expander which blocks the low amplitude noise but allows the high
power pulses to pass virtually unattenuated. There is also a 3dB
attenuator which isolates the amplifier from reflected signals, thereby
improving 1its stability. Before reaching the transducer, the
electromagnetic pulse passes through a double stub tuner ( WEINSCHEL
ENGINEERING HS40 ) which provided a way of matching the impedance of the
transducer to the impedance of the measuring system ( 50 Ohm ). One
difficulty in using the double stub tuner is that it broadens the
pulses, so that we were unable to wuse it for measurements in the
thinnest sample for which pulses shorter than 200nsec were required. At
the transducer the electromagnetic pulse is converted to an ultrasonic
signal, which then travels through the delay rod and the sample where it

is reflected back and forth, resulting in a train of echoes.

The retransduced signals are fed via a power splitter into
precision attenuator (TELONIC MODEL 8143S and 8123S ) which can be set
from 0.0 to 111.0 decibels to adjust the signal level. These echoes are
then coupled to the reference signal at the directional coupler and
amplified by the receiver ( MATEC MODEL 254 and KEITHLEY INSTRUMENTS

MODEL 107 ), and finally viewed on the oscilloscope ( HEWLETT PACKARD
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MODEL 1725A ). The oscilloscope is triggered externally by the pulse

generator.

The reference signal is also obtained from the continuous wave
signal from the Fluke frequency synthesizer so that it is coherent with
the signal sent to the sample. A second square pulse originating from
the Stanford pulse generator and a pair of (HP 141) mixers were used to
amplitude modulate these continuous wave signals to create a long {about
10usec) radio frequency pulse, timed to overlap the sample signal. The
pulse is then phase shifted using air-filled continuously variable delay
lines (O té 250cm) and a set of coaxial cables which can be added in
nine different lengths ( ranging from 39 cm to 1500 cm } depending on
the wavelength A used. The reference signal 1is then connected to an
attenuator that can be adjusted from O to 110 dB in order to vary the
level of the reference pulse to match that of the sample signal. Thus
both the phase and amplitude of the reference signal could be adjusted
to obtain null signals on the oscilloscope. IChanges in the sample
velocity could be accurately measured from the change in the phase of
the reference needed to maintain a null. One of the sample echoes
( usually the first reflected sample echo ) was selected and the
reference signal was superimposed on it by time delaying the reference
signal ( this is done using the delay features of the pulse generator
and had no effect on the phase of the reference signal). The

cancellation region was taken to be at the peak of the reflected sample
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echo, where the signal 1level is maximum so as to optimize the

sensitivity.

The sample temperature was controlled by a Lake Shore Cryotronics
controller which uses a carbon resistor as a feed back sensor and two
calibrated thermometers, a silicon diode and a carbon glass resistor, to
measure the temperature. For the low temperature measurements (77 X to
4.2 X ) we used the carbon glass resistor which was believed to give
the more accurate calibration. Both thermometers were glued ( using G.E
VARNISH ) as close to the sample as possible. The sample was placed in a
cylindrical copper cell around which the heater coil was wrapped. The
copper cell is hung inside two concentric stainless steel cans which
were placed in the helium dewar. Helium exchange gas was ac'ded to the
two stainless cans to insure good thermal contact between the sample,
the heater, and thermometer without evaporating an unnecessary amount of

liquid helium from the dewar.

3.2.2 SIGNAL AVERAGING TECHNIQUE

This method was used when the signal-to-noise ratio was so small
that the phase cancellation method was not sufficiently accurate to
make meaningful measurements. This problem arose in our experiments when
the attenuation of the sample signal became very high at low

temperatures near the phase transition.
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In this method a high resolution Tektronix digital oscilloscope,
borrowed from the electrical engineering department (DSA 600 series),
was used to digitize part of the echo train with a timing resolution of
10ps, and to perform summation signal averaging on successive sweeps to
dig the radio frequency sample signal out of the random background
noise. One problem that occurred was that, after averaging, the
background was found to contain a radic frequency component with the
same frequency as the ultrasonic echo; this radio frequency background
was separately digitized ( by taking advantage of the fact that below
the transition temperature, ultrasonic attenuation in the sample was so
high that the sample echo was completely suppressed } and later
subtracted from the measured signal to leave only the transduced
ultrasonic signal from the sample. To effect this background
subtraction, averaged signals were transferred using the RS232 interface
to an IBM compatible 286 computer and analyzed using the ASYST software

package.

The time delay was measured by fitting a straight line to the zero
crossover region of an RF oscillation ( chosen from the middle of the
stored signal ) and finding the intercept relative to the corresponding
zero crossing at a reference temperature. Thus changes in the
propagation time could be directly determined to a precision of about
20ps, providing that the sample signal was larger than the RF background

signal. For smaller sample signals, the data was severely limited by
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background noise and by small shifts in the continuous RF background

component.

3.3 ROOM TEMPERATURE ABSOLUTE VELOCITY MEASUREMENTS

Measurements of the ultrasonic velocity at room temperature were
done by measuring the time to taken by the pulse to travel a round

trip through the sample. The velocity is then determined by :

where s is. the sample thickness. The equipment arrangement was similar
to that of section ( 2.2.1 ) but with no reference signal as shown in
figure 3.2. The time interval to was measured using the At option of the
HP1724 oscilloscope which enabled the time to be directly read on a
voltmeter ( FLUKE 8840 digital multimeter ). This was done by first
dividing ( via a power divider ) the reflected train of echoes, after
being received by the Matec receiver, into two signals and then feeding,
with equal length cables, each of the signals into one channel of the
oscilloscope. The oscilloscope was calibrated using the frequency
synthesizer. The delay trigger on the oscilloscope was adjusted to
overlap two of the sample echoes ( e.g. S11 with S12’ see figure 3.3 ),

the time interval At being read on the digital voltmeter. The two echoes

were accurately overlapped on the oscilloscope by adjusting the trigger
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delay to line up the RF oscillations in the two pulses. This was done
for optimum alignment and also for -1 ,and +1 cycle pernitting
corrections to be made for phase shifts at the sample/delay-rod
interface. This procedure was done for several frequencies ( no less
than four ). The "absolute” time to was then determined by extrapolating
to the zero period T ( T = '%r , ¥ is the frequency ) at which any
phase shifts vanish. These linear fits to the data for At verses T meet
at the the same point on the ordinate, which is the true time interval
to. An example of such measurements is shown in figure 3.4. It should be

noted here the temperature was kept constant throughout these

measurements.

In later measurements this method was modified slightly , by wusing
the Stanford pulse generator to delay trigger the oscilloscope after the
HP oscilloscope became unstable. The A output of the pulse generator was
used to trigger the oscilloscope so that the zero crossing of one of the
RF oscillations of the first echo was centered on the screen. The B
output was then adjusted to line up the appropriate zero crossing of
the second echo on the screen, the +time difference At beling read

directly off the digital display of the pulse generator.
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3.4 SAMPLE POLISHING

In ultrasonic measurements that use the detection of the reflected
sample signals by a conventional ultrasonic transducer, it is important
to achieve perfect parallelism of the faces of the sample. The faces
need to be parallel to a fraction of the wavelength to avoid spurious

phase cancellation effects in the piezoelectric transducer.

The sample is mounted in the center of a steel disc using a yellow
wax ( #70C Lakeside Brand thermoplastic cement ). The disc thickness
depends on the required thickness of the sample ( 0.9mm to 3mm ), and
its diameter is about 8cm. The flat faces of the disc are machined
parallel to about 10 micrometers. Since the sample is much smaller than
the disc diameter, the sample parallelism is better by at least an order
of magnitude, enabling the necessary parallelism to be achieved. The
crystal axis in which sound is propagated is perpendicular to the flat

faces of the sample.

Polishing the sample is then done by first gently “sanding” the
sample with 500-grit size SiC paper wuntil it 1is just protruding a
fraction of a millimeter from the steel disc. The sample was then
polished flush with the steel disc using 6pm diamond paste (Hyprez
Diamond compounds) on a stainless steel lap. To achieve a better finish,

the sample was then polished on a series of three solder laps, using 6u,
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3um, and finally 1um diamond paste. When moving to a finer finish the
lap and steel disc were cleaned very carefully using mineral oil which
dissolves the diamond paste without damaging the wax, then alcohol, and
acetone. This was done to remove all the remaining particles from the
previous finish. To test the flatness of the sample, an optical flat
slide is placed on the sample and illuminated with a monochromatic light
from a Midwest Scientific Company unilamp. If the sample sides are flat
the fringes resulting from the light reflected from the optical flat
slide and the polished sample face must be parallel lines. Most of the
samples are fragile, thus one had to be careful when polishing. Using

the above procedure the samples were easily polished to better than lum.

3.5 SAMPLE BONDING

Bonding was done in two ways, one for the absolute velocity
measurements, and the second for the velocity change measurements. The
first one, for which the temperature was held constant throughout the
measurement, uses silicon oil ( Dow Corning 200 ) as the bonding agent.
First the delay rod and sample faces were cleaned carefully using
acetone or toluene followed by alcohol. The sample is then bonded using
a small drop of silicon oil. The bond needs to be thin enough so that it
does not attenuate the sound going to the sample and does not cause an

appreciable propagation time error.
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The second way of bonding uses a thin ( thickness of 28-45 pum)
Indium layer glued to the sample and the delay rod using silicon oil in
the same way as above. Indium was used for bonding for the following
reasons: a) to provide " a cushion " to absorb some of the differences
in the thermal expansion and contraction between the sample and the
quartz delay rod, and b) to provide a way of looking at a desired region
of the sample by cutting the indium piece to the appropriate size

(sound will transmit only through the indium piece).

The bonded sample is then placed in a holder under a press of one
to two kilograms, and cured over night ( 10 to 12 hours ) at about 650C.
The bond is then left to cool down for a few hours. This improves the

sample signal by up to 10 decibels.

3.6 COAXIAL DELAY CABLES CORRECTION

3.6.1 INTRODUCTION

For an electromagnetic wave propagating through a cable where
losses are present, the attenuation « and the phase velocity v are
frequency dependent. For a brief review see, for example, Bleaney and
Bleany (1976). Thus it is necessary to correct for the resulting
frequency dependent phase shifts in the coaxial cables used to adjust

the reference delay in our relative velocity measurements (§ 3.2.1).
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For a wave traveling through a cable with capacitance C, inductance
L, resistance R, and conductance G per unit length, the phase velocity v

and the attenuation a are

1 1 G _Ry°
o 8—2(? o)
1 C 1/2 L 1/2

o= HAR({) *6(¢)

where the losses represented by R and G are small. Note that the changes
in the velocity due to this effect is small ( since it occurs only in

second order) and is greatest at low frequencies.

3.6.2 METHOD

To measure this effect on our delay data, the apparatus was set
as in figure 3.5. A modulated pulse ( obtained as in sections 3.2.1 &
3.2.2) is split into two signals using a power splitter; one signal 1is
used as a reference signal and is passed through a precise attenuator
{ 0.0 - 111.0 dB ) to control its level. The other signal 1is passed
through the air filled variable delay lines and the cable being
investigated and then its fed into an attenuator ( O - 110 dB ). The two
signals are then mixed together and viewed on the oscilloscope ( HP1725)

which is triggered externally by the Stanford pulse generator.
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Frequencies of operation f were selected using the following
n

condition,

where ¢ is the speed of light, A is the electrical length of the cable
being measured, and fo is the fundamental frequency corresponding to
the cable length. Setting the reference signal level to be the same as
the signal passed through the cable under investigation (which can be
done to 0.1dB), and varying the delay 1lines, destructive interference
may be achieved and a minimum can be measured to a very good accuracy
(2mm). Once a measurement is done the cable is disconnected,and the
minimum is measured again. The difference between the two measurements
gives the effect on the measured delay (del). ( If there were no losses
in the cabie, the minimum would occur at exactly the same position at
all frequencies, and if fo were chosen exactly as indicated above, the
difference between the readings would be zero since adding the cable
merely shifts the phase by 2r). The above procedure is repeated for a
set of frequencies that are multiples of fo. Results of measurements
done on a 1497.6 centimeter cable ( f0= 20 MHz ) are shown in figure
3.6. This method relies on the excellent accuracy of the the frequency
7

synthesizer ( better than one part in 107), to determine the

corresponding wavelength A and hence the electrical cable length.
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CHAPTER FOUR : RESULTS AND DISCUSSION
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4.1 DATA COLLECTION AND ANALYSIS

In most of our experiments the raw data used to calculate the
temperature dependence of the ultrasonic velocity consisted of the delay
Dt in centimeters required to cancel the sample echo (see § 3.2.1). The
temperature of the sample was measured using a carbon glass resistor
whose resistance was easily converted to Kelvin with the use of a
calibration curve provided by Lake Shore Cryotronics. A typical result
for the total delay Dt as a function of temperature T up to 300K 1is
shown in figure 4.1. These data are for the x=0.15 sample oriented in
the [100] direction using longitudinal ultrasonic waves. Dt represents
the tnotal delay including the contribution from the quartz delay rod,

the indium piece, and the sample. The quartz and indium delays were

subtracted from Dt as described in the following section.

4.1.1. QUARTZ DELAY ROD CORRECTION

The quartz rod delay was measured separately as a function of
temperature the same way as was done for the sample by selecting the
reflected quartz echo (Q1 in figure 3.3) and measuring its delay as a
function of temperature. To avoid possible spurious shifts, these
measurements were performed with the sample removed from the quartz

delay rod. The quartz delay was then fitted to a fourth order polynomial
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and later subtracted from Dt' Figure 4.2 shows the polynomial curve used
to fit the data with the constant value at zero temperature subtracted.
The coefficients of the linear through fourth order terms of this
polynomial are respectively: -2.7572, 0.1207, -3.04x10"%, 5.11x10™". The
values of the temperature used in this polynomial were obtained from the
carbon glass resistor for the data below 77.35 K and the silicon diode
thermometer for the data above 77.35 K; to correct for the small
temperature discrepancy between the two thermometers at 77.35 K the

measured delay was shifted so that the data joined up smoothly at this

crossover point.

One of the advantages of using quartz delay rods is that the change
in delay is small up to about 20K, so that the shape of the anomaly in
the sample velocity is not significantly affected by this correction in

the critical region.

4.1.2 INDIUM CORRECTION

Appendix I describes how the longitudinal and shear velocities for
the indium layer were calculated from the elastic constant data of

Chandrasekhar et al.(1961). The indium time delay DI was calculated from

DI=(25’. cl/v,

where v is either vL or VS , s’ is the thickness of the indium piece and
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c is the speed of light. The DI data were then fit to fourth-order
polynomial so that the delay could be subtracted at any temperature T.
An example of this correction is given in figure 4.3 for a relatively
thick indium piece of thickness 0.147mm. The coefficients of this
polynomial are 69.5349, 0.4253, -1.71x10 %, 8.20x10™°, and -1.21x10°°.

The polynomial is then used for the subtraction. Note that the indium

delay variation in the region up to 20K is about 20cm.

4.1.3 SAMPLE DELAY

Figure 4.4 shows the “corrected” sample delay in which the quartz
and indium contributions have been subtracted from the data presented in
figure 4.1. Note that the sample delay is almost constant akove 90K, and
has the largest variation in the region from 8 - 30 K. For this reason
the elastic constant and velocity data data will now be presented up to

77 K only.

4.1.4 THE ULTRASONIC VELOCITY

The velocity of the ultrasonic pulse in the sample 1is calculated

using the following equation:

2 s

tO + (D-DO)/C
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where s is the sample thickness, to is the room temperature propagation
time , Do is the time delay measured at the same temperature as to’ and
D is the measured variable delay. An example of velocity data at 30MHz,
calculated from the delay plotted in figure 4.4, is shown in figure 4.5.
It shows that the velocity of [100] longitudinal waves slows down

dramatically as the phase transition temperature is approached.

4.2 DETERMINATION OF THE ELASTIC CONSTANTS

Table 4.1 shows the elastic constants that were measured using
elastic waves propagating in a tetragonal crystal oriented along [100]
and [110] crystal axes. For a review of the determination of the
different elastic constants from sound velocity measurements see
Neighbours et al. (1967). The table shows that the soft mode elastic
constant '%‘(¢11'°12) can be measured directly wusing transverse waves
propagating along [110] direction. However, previous experiments
(Melcher, et al.(1972) and Graham, et al.(1991)) have shown that the
ultrasonic attenuation for this mode is too high for measurements to be
performed in the critical region close to TD. To avoid this difficulty

L (c,,-c,.) was measured indirectly from c

> 11"%12 using the velocity v of

11
the longitudinal ultrasonic waves propagating along the [100] direction
for which c11=pv2, where p is the the sample density. This method relies
on the fact that Cyq Can be written as the sum of two symmetrized

elastic constants
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TABLE (4.1)

Elastic constants for wultrasonic waves with propagation and

polarization directions in the basal plane of a tetragonal crystal. Here

k is the ultrasonic wave vector as, u is the displacement, p 1is the

density of the sample, and v is the velocity.

polarization ultrasonic| elastic
. . 2
direction k waves constant= pv
[100] longitudinal 4
u Il [100]
[100] transverse Cos
u (I [010]
f1101 longitudinal 1/2(c11+012)+c66
u Il [110]
[110] TranSVfrse 1/2(011— C12)
u Il [110]
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—1 -
c1= 5 (e1%0yp) * 5 (e11700) (4.1)

Since the elastic constant -%—(011+012) corresponds to an A1g strain
which has the wrong symmetry to couple to the distortion, it is expected
to remain constant through the transition ( see § 4.4 below), enabling

. 1 .
the temperature dependence of ?;(011—012) to be determined from Cqq-

The results of 11 measurements on three [100] samples as function
of temperature are shown in figure 4.6 and table 4.2. The values of the
densities used to calculate the elastic constants ‘were computed from
room temperature X-ray measurements of the lattice constants as
described in Taylor et al.(1990). The three elastic constant curves

decrease continuously to a minimum value at the transition temperature

c..). The lack of any discontinuity

. 1
TD due to the softening of 7;( 12

€117

. 1

in — (c,.-c
2

11 12) at TD indicates that the phase transition is second

order, as in pure DyVO4, and not first order, as in DyAsO4. Table 4.2
shows that the transition temperature is lowered as the arsenic
concentration x is increased, which indicates that the random field
strains are stronger for the higher concentrations. The reduction in TD
with respect to pure DyVO4 (TD=14.6K) is considerable in these samples,
indicating that strong random fields are generated. Note that the
transition temperatures for the two samples from the same batch B (BI

and B2) are not identical, suggesting either that the concentrations x
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TABLE 4.2

Summary of. the data for 11 measurements in the three [100]}samples. x

is the arsenic concentration of each sample, s is the thickness of the

sample, TD is the transition temperature, and Cll(TD) is the elastic

constant at the transition temperature TD.

sample

rientationl ¥ s(mm) TD(K) cliTD) GPa TD/(TD)pure
[100] 0.154}12.926¥0.002) 7.77%+0.02 155.35+£0.02 0.53
[1001] 0.164(0.917%0.002| 6.24%+0.03 156.33%20.02 0.42
[100] 0.16412.916¥0.002} 5.43%0.01 157.87+0.02 0.37
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in the two samples are not the same or that different amounts of flux
impurities in the two samples are introducing additional random strains
which are larger in sample B2. Since concentration gradients within a
sample have been found to be very small (Taylor et al.1990}, it is
difficult to see how two samples from the same batch could have
sufficiently different values of x to explain the different {ransition
temperatures. The other possibility, that flux impurities are
responsible, 1is difficult to verify <quantitatively, although both
samples were selected from the batch because of their optical clarity
which is generally associated with a low flux concentration. Another
feature of'the data shown in figure 4.6 1is that the minimum becomes
broader as the concentration x is increased. One possible contribution
to the rounding of the phase transition could be the effect of
inhomogeneities which cause the distortion temperature to be different
in the different regions of the sample. This effect was investigated
using a birefringence technique by Graham and co-workers {Graham (1990)
and Taylor et al. (1990)) for two of our samples (Al and B2). They found
that concentration inhomogeneities, even in the worst sample studied
(A1), were too small to significantly affect the observed broadening of

the transition.
Anothér possible contribution to the rounding of the transition is

dynamic non-equilibrium effects due to the extreme slowing down of the

critical fluctuations as the transition is approached. Although there
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have been several theoretical predictions (Villain (1985), Fisher
(1986)), the only experimental evidence in random-field systems is that
of Jaccarino et al (1988), and Nash et al.(1991), who wused AC
susceptibiiity measurements on the dilute antiferromagnet FeO‘MZnO.EMF2

to study dynamic rounding over a wide range of frequencies. They found
that random fields in their system cause a measurable rounding of the
transition at frequencies as low as 5mHz and were able to show that the
dynamical critical behavior of Feo.%ZnO‘MF2 is better described by an

activated dynamics model as first suggested by Villain and Fisher. In
the next section we examine this effect in our RF system DyxAsvl__XO4 for

the three samples A1, Bl, and B2 having concentrations x= 0.154, 0.164,

0.164 respectively.

4.3 DYNAMIC CRITICAL BEHAVIOR

To investigate the dynamic effects, the elastic constant Cqq Was
measured for the three [100] samples: Al with x = 0.154, s = 2.926 mm
and in the range 11 MHz to 70 MHz, Bl with x = 0.164, s =.917 mm and in
the range 25 MHz to 120 MHz, and B2 with x = 0.164, 5 =2.916 mm and in
the range 25 MHz to 70 MHz. The upper limit of the frequency range for
each sample was determined by the ultrasonic attenuation, which
increased quadratically with frequency in the region down to the

transition temperature and which became so large near TD at high

frequencies that the sample echoes were too small to measure. The
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results of these measurements are shown in figures 4.7, 4.8, and 4.9.

From these results the following observations can be made:

A) Both samples Bl in the range 25 MHz to 120 MHz, and B2 in the range
25 MHz to 70 MHz show that the minimum 11 value and the corresponding
temperature T;ln increase as the frequency increases. This indicates
that for these two samples, in which the random fields are strong
(x=0.164), dynamic effects are present and contribute to the rounding of
the phase transition; in other words the elastic constant for these
random field systems (Bl and B2 ) depends on the frequency in the
critical region.

B) For the Al sample (x=0.154), in which the random fields are weaker,
the elastic constant is independent of frequency, and no dynamic

rounding is observed. This implies that no dynamic rounding of the phase

transition occurs in the range from 11 MHz to 70 MHz.

For each sample the temperature dependence of the elastic constant
was the same at all frequencies for temperatures between the upper edge
of the critical region and 15-20 K, although there were small
frequency-dependant discrepancies at higher temperatures. A possible
explanation of this spurious effect is discussed below. The data shown
in figures 4.7, 4.8, and 4.9 were corrected for such discrepancies by
overlaying the data in the temperature range 8-12 K where the slopes

dc/dT were the same.
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Beforé discussing the implications of the dynamic rounding observed
in samples Bl, B2, it is important to establish that there were no
significant contributions from spurious frequency-dependent effects such
as interference with background signals or multiple reflections with the
indium layer. Interference with the background signals ( see § 3.2.2)
could introduce a measurable phase shift in the sample echo, leading to
errors in the delay measurements that wvary with the ultrasonic
frequency. This problem was most serious near the phase transition
temperature for high frequency measurements where the attenuation of the
ultrasonic pulse was greatest and the continuous background pick-up
largest. To calculate the the phase shift due to this background signal,
we write the measured signal as a linear combination of the background

signal and the sample signal,

AM51n(wt+¢H)= A351n(wt+¢s)+A351n(wt+¢B),

Here A and ¢ represent the signal amplitude and phase respectively, and
the subscripts ¥, s, and B stand for measured, sample, and background
respectively. This expression can be inverted to solve for the phase

shift ¢S—¢M, giving

(¢s_¢u)=sin'1(AB/Assin(¢n—¢B))~

The maximum phase shift is
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(¢~¢, ) = sin (A /A)

Thus the maximum error in the delay &8 is
6={A/2n}(¢s-¢h).

The amplitﬁdes of the sample and background signals used to calculate
¢S—¢H were estimated from the measured attenuation data for each sample
and the size of the background at the position of the sample echo. (The
background signals were measured after the runs were completed and the
sample removed from the delay rod, so that the background could be
separated from the sample signal). The results for these calculations
are summarized in table 4.3 for samples Bl and B2 in which the dynamic
effects were observed. Since a delay error of 1lcm corresponds to an
error in the elastic constant of 0.01 GPa for sample B2 and 0.03 GPa for
sample Bl, it is clear that interference with the background is too
small to account for the observed frequency dependence, and that it is
generally bomparable to the scatter of the data due to finite resolution

of the spectrometer.

‘A second possible source of spurious phase shifts 1is interference
due to multiple reflections in the indium layer. The attenuation of the
indium layer is lowest at low frequencies, and hence the interference
effect due to the indium layer would be greatest at low frequencies. For
a 30 pm indium piece the transit time t = 20nsec and the corresponding

delay is ct = 600cm, where c¢ is the speed of light. This could generate
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TABLE 4.3
Results of calculations of the maximum delay error introduced by
interference with the background signals.a) sample Bl, and b) sample B2,
Here F is the frequency, T is the temperature, and & 1is the maximum

delay error.

(a)
FiMHz]| T [X] Estimated Ratio s (cm)
A /A
s"'B
77 178 1.07
25
T 172 1.11
D
77 223 0.38
68
TD 100 0.70
77 3.2 4.30
120
T 5.6 7.00
D
(b)
Estimated ratio
F[{MHz]l| TIK] A /A 8 (cm)
s"'B
77 32 5.00
30
T 22 7.20
D
77 100 0.95
50
T 40 2.40
D
77 36 . 1.20
70
TD 8.9 7.70
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huge phase shifts on both the signals entering and leaving the sample.

Writing the measured signal amplitude as follows,

AM s1n(¢n~¢s) = AS+A151n¢I+ A251n2¢I +...,

where ¢I is the phase shift introduced by a single round trip in the
indium layer and each term accounts for the contribution due to
successive round trips. In the region where the 1longitudinal indium
velocity is not changing ( the temperature region up to about 20 K see
figure 1.1 ) ¢I remains constant, and the amplitudes A1’ A2,... should
not change significantly relative to As’ so that the change 1in delay
with temperature in this region is not affected by such shifts. Hence
the change in the elastic constant near the phase transition Iis
independen£ of interference effects involving the indium layer. However,
this effect could introduce a measurable phase shift at higher
temperatures, and is probably the cause of the small frequency dependent
discrepancies observed in the change in the eléstic constant between 20

K and 70 K noted above.

These calculations clearly indicate that the dynamic effects shown
in figures 4.8 and figure 4.9 cannot be explained by spurious
interference effects. We therefore conclude that the dynamic rounding
observed in samples Bl and B2 is a genuine dynamic critical effect

resulting from the extreme slowing down of the critical fluctuations as
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the transition temperature is approached. The fact that these dynamic
effects are observed in the two samples with the strongest random fields
but not in the sample having weaker random fields strongly suggests that
the critical slowing down is greatly enhanced by random fields, as
predicted by Villain and Fisher. Qualitatively our data for samples BI
and B2 agree with dynamic scaling predictions that the minimum in the
elastic constant cmin(w), the corresponding temperature Tmin(w) and the

temperature T:in(w) at which non-equilibrium effects set in all increase
with frequency, albeit weakly. Figure 4.10 and figure 4.11 show the
frequency dependence of cmin(w) and Tmin(w) over the limited frequency

range that could be achieved 1in the present experiments. The
corresponding data are also summarized in table 4.4. However the
frequency range of the data is too limited to make a quantitative
comparison with the Fisher’s dynamic scaling model (see & 2.5.2),
especially as the logarithmic dependence on the frequency 1is so weak.
The difficulty in making a meaningful comparison between theory and
experiment is compounded by the number of unknowns in equations 2.5.1
and 2.5.2 for gﬂn(w) and QMn(w): data close to the static 1limit are

needed to pin down TD and cmin(w=0) before the characteristic frequency
W and the product of the exponents v and 8 can be reasonably determined
from the elastic constant data. Finally it should also be pointed out
that data over a much wider frequency range are needed to unambiguously
show whether or not our structural random-field system is indeed

correctly described by Fisher’s activated dynamics model or whether it

73




2.30 h
2.05 + i
-
o
25
£ % 1.80 % +
E = a)
(-]
: }
1.55 1 1
i
{
i
"30 i ; —l
4439 So0 35.0 70.0 105. 140.
F[MHZz]
1.20 4
1.10 4 { i
.'u\ !2
5 . i b)
25 1007+
g 3
€ o
« &
P
.900 i

i

i

%

|

.B0OO + + + +

.000 20.0 40.0 60.0 80.0
FooimHz)

Figure 4.10 Elastic constant Cmin(w) senoals frequency: a) sample Bl

b) sample B2.

74




6.52 T

(K]

m

LB B.42 + T
a)

6.32 + r

.000 35.0 70.0 105. 140.

F oMz}

5.55 1 {

5.50 1 +

(K}

min

b)

5.45 + +

.000 20.0 40.0 50.0 80.0

F [MHz)

Figure 4.11 Temperature Tmm(w) senols frequency: a) sample Bl

b) sample B2.

75




TABLE 4.4

The results of the 14 measurements for the three [100] samples:

Al, x=0.15, and s=2.926mm, Bl; x=0.17, and s=0.917, B2; x=0.17, and

s=2.915.

Sample fre?sgg?y Tmin[K] cmin[GPa]

11 7.78+0.02 155.3540.05

30 7.77+0.02 155.35%0.02

Al 50 7.77£0.02 155.34+0.01
70 7.77+£0.02 155.35%0.01

25 6.24+0.03 156.33+0.02

B1 68 6.3210.03 156.66+0.02
120 6.60%0.1 157.09+0.03

% 25 5.29%0.02 157.97£0.02

30 5.43+0.01 157.87x0.02

B2 50 5.54+0.01 158.08+0.02
% 68 5.52+0.02 158.44+0.02

70 5.51%0.02 158.07+0.03

i These data are calculated with no indium correction.
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whether it is better described by “conventional” dynamic scaling in
which the characteristic time T has a power-law dependence on the

correlation length ( T « SZ ).

4.4 STATIC CRITICAL BEHAVIOR

For sample Al, the elastic constant Cqq Was found in the previous

section (figures 4.9 and 4.10) to be independent of frequency in the
range 10MHz to 70MHz, implying that the static critical behavior of the

soft mode elastic constant -é—(c —012) is not obscured by the dynamics

11

in these measurements. To investigate the static critical behavior, the

temperature :lependence of the soft mode elastic constant é;(cll—clz)

was determined in the critical region as follows { see equation 4.2.1
and table 4.1):

1) Cqq Was measured from the [100] longitudinal wultrasonic velocity

(Figure 4.5).

1 . . .
2) 2r(011+C12)+C66 was measured from the [110] longitudinal ultrasonic

velocity of a second sample cut from the same crystal. These data are
shown in figure 4.12.
3) 066 was measured from the velocity of transverse ultrasonic waves

propagating along the [100] direction and polarized in the basal plane

as shown in figure 4.13.
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1

4) ??( +012) was calculated by subtracting a fourth order polynomial

€11
. 1 .

curve fitted to the c66 data from ??(C11+012)+C66' The result is shown

in figure 4.14.

c. ) was then calculated by fitting a seventh order

1
5) S (eyy=cyy

polynomial to -%;( 012) and subtracting this curve from the data for

“11”
11 shown in figure 4.4. See Figure 4.15.

The data for %;( )+c (figure 4.12) show a small anomaly

€11%¢12” % %66

near TD which is similar in shape to the much larger variation in Cq1-
Above about 30K, the elastic constant softens somewhat due to anharmonic
effects, a feature characteristic of all elastic constant data which 1is
of no future interest here. By contrast, the data for o6 in figure 4.13
shows almost no variation up to 20K. In particula:- there is almost no
indication of any softening of this elastic constant as the transition
is approached, indicating that a linear Jahn-Teller coupling to this B2g
mode, while allowed by symmetry, is extremely weak. ( In fact these data
show that the B2g coupling in this sample is even weaker than expected
on the basis of calculations done by Elliott et al. (1972) for pure
DyVO4). Close examination of figure 4.13b suggests that, instead of
decreasing near TD, o6 shows a very slight increase, possibly due to
higher order coupling to the electronic levels. In any case the
variation of ¢ near the phase transition is far too small to account

66

. 1
for any of the observed anomaly in -E-(011+012)+c66.
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One possible explanation for the anomaly in figure 4.12 could be a
misaligment of the [110] axis of the sample with respect to the normal
to the polished faces of the sample. If the misaligment of the [110]
axis were in the basal plane, the measured velocity would include a
contribution that depends on %?(C11_012)' To investigate this
possibility, the orientation of the [110] axis was measured using the
Laue back-reflection X-ray diffraction method ( for a review see Cullity
(1956) ). The sample was bonded to a Z-cut quartz delay rod, the end
face of which was known to be perpendicular to the quartz c axis to
better than 1/20, and the quartz rod was mounted on a triple axis
goniometer. The orientation of the samplevwas compared to that of the
quartz rod by taking a double X-ray picture; first the X-ray beam was
focused on the sample and then, after a horizontal translation using the
goniometer, a second exposure of the quartz was taken. The misaligment
of the [110] axis of the sample relative to the quartz rod was found to
be about 1..2° (+0.5°) in the basal plane, with negligible misaligment in
the a’ ¢ plane. Using the formulas in appendix II, the resulting
correction to the measured elastic constants was then calculated and 1is
shown in figure 4.16. This correction was found to be too small to
)

explain the entire anomaly in %;( being less than 20% of

€11%¢127 %6’

the observed variation in figure 4.12 ( If the misaligment were 2.50,
the variation within a few degrees of TD could be explained ,but not

the total variation up to 30 K, as the temperature dependence of the
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. . 1
correction and the observed anomaly in ??(011+012)+C66 are not
identical ). Thus it appears that the anomaly in figure 4.12 is due to

the temperature wvariation of ) near the transition. Even

e, +c
2 711 712
though the correction shown in figure 4.16 is quite small, it was

c11+012)+c66 data in order to calculate the

1

subtracted from the —;—(

(cll+012) shown in figure 4.14. The

C12) near the phase transition indicates that the

temperature dependence of
softening of -%r(011+
coupling between the A1g strain and the electronic levels 1is not
negligible, as assumed previously ( Page and Graham (1988) ). This
coupling does not lower the crystal symmetry so that it can not lead to
a phase transition. However, in systems such as these Dy compounds in
which the two electronic levels are not exactly degenerate above TD,
coupling to an A1g mode can result in a change in the separation between
the two nearly degenerate levels that is associated with a change in the
magnitude of the c and a crystal axes. Although this type of interaction
has been found to be the dominant one in cerium ethyl sulphate ( Graham
and Page 1984 ), it is expected to be very weak in DyAsxvl__xO4 since the

A1g coupling was shown by Elliott et al. (1972) to be comparable to the
weak B2g coupling and very much smaller than the dominant B1g coupling

that drives the phase transition. We note that Elliott et al. (1972)
were unablé to measure the strength of all A1g couplings in pure DyVO4
using Raman scattering and that our result for %;(011+012) appears to

be the first to demonstrate experimentally the presence of a linear

Jahn-Teller coupling to this symmetric mode in the DyAsxvl__xO4 system.
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The data for %?( 2) shown in figure 4.15 are consistent with

€117%
the expected result that the soft mode elastic constant vanishes at the
transition temperature TD in the static limit. However, even though the
errors in measuring the variation of the elastic constant with
temperature are small, the uncertainties 1in the absolute velocity
measurements at room temperature are quite large, leading to a rather
large uncertainties in the magnitude of -%—(011—012) at TD of #*1.2 GPa

(see table 4.2). Thus to unambiguously establish that %;( 012)=0 at

‘117
TD using the procedure described above, the room temperature propagation
time and the sample thickness must be measured more accurately. One
approach that is showing promise for improving the accuracy of the
absol.te propagation time is measurements that exploit the improved
signal-to-noise and timing resolution of a high-speed digital
oscilloscope such as the Tektronix DSA 600; the use of signal averaging

also allows propagation time data to be obtained at higher frequencies,

where the signal would otherwise be buried in the noise.

Since the soft mode elastic constant %?(011—012) is inversely

proportion to the pseudo-spin susceptibility x, (i.e -ér(011~012) o x_l

« tw), the susceptibility critical exponent 7 can be determined from the
data in figure 4.15 as follows. For the phase transition to occur, the

static elastic constant must go to zero at TD implying that the

observed minimum value of e .-c,)atT , ¢ =(0.96 £ 1.2)GPa, should
2 11 712 D (o}
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be subtracted from the data to give the variation of 'é7(011_012) in the
critical region. ( Note again that the uncertainties of *1.2GPa is a
systematic effect which accounts for a possible offset due to absolute

velocity errors, not relative velocity errors near TD ).

The critical exponent ¥ was determined by plotting the corrected

data for -ér(c —012) ( i.e. the data in figure 4.16 minus s ) versus

11
the reduced temperature t=(T—TD)/TD on a log-log plot as shown in figure
4.17. Good power law behavior is seen for 2x1073<t<7x10™% with a slope

¥=1.78%0.07.

Our result for y agrees with the theoretical predictions mentioned
in § 2.5.1 namely: 1) The predictions of Monte Carlo simulations in
which y was found to be 2.0%0.5 (Ogielski et al. (1986)) aﬁd 1.7+0.2
(Young et al. (1985)). 2) The prediction of dimensional reduction by 1
that postulates that ¥ is equal to the value for a pure 2d nearest-
neighbor Ising system (Onsager (1944)) for which ¥ 1is 7/4. We should
also mention the prediction of the scaling theory for RFIM developed by
Bray and Moore (1985) in which the result for % in 2+e dimensional
systems gave y=0.5+1/g, which would give %=1.5 for three dimensional
system (i.e. £=1). Although their prediction for y does not agree with
ours, falling outside of our experimental uncertainties, their
prediction.that ¥ increases in the presence of a random-field is
consistent with our data and with previous measurements on this compound

( Graham et al. (1991)).
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The result for ¥y is also consistent with two experimental results:

1) The result of measurements done on the same sample DyASo1svosso4
and using an identical ultrasonic technique (Graham et al.(1991)), where

j—(cll—clz) was calculated directly without subtracting the weak

temperature dependence of %?(011+012) ( see § 5.2.1 ). Their result for

y, 1.80%#0.06, is in complete agreement with ours. 2) The result of

neutron scattering measurements (Belanger et al. (1985)) done on the

dilute anti-ferromagnet Fe062n04F2; their result for ¥ is 1.75%0.20,

which agrees with our result within the experimental uncertinities.
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CHAPTER FIVE CONCLUSIONS
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Ultrasonic velocity measurements were successfully used to look for
evidence of dynamic critical effects 1in the structural random-field
system DyAsxVL«O4. We find that for strong random-field samples,
dynamic effects are observed in the ultrasonic frequency range 25 MHz to
120 MHz as a result of the extreme slowing down of the critical
fluctuations as the transition temperature is approached. Even though a
much wider range of frequencies 1is needed to correctly model the
behavior of the dynamic effects, it is clear now that such dynamic
effects ex;st in this random-field Jahn-Teller compound, a fact that was

not known before this work was begun.

Ultrasonic velocity measurements were also successfully used to

investigate the static critical behavior of the soft mode elastic
1 . . . 1

constant 'E?(Cll 012) using a new approach in which '27(011 012) was

determined from independent measurements of both 41 and the background

contribution -ér( ). The elastic constant -%;(011+012) was found

©11%%12
to exhibit a weak temperature dependence near the transition
temperature, an effect which had not been investigated previously and
which had been ignored in earlier work. The susceptibility critical
exponent y for the random-field system DyAsxvi__XO4 was found to be

1.78+0.07 in a complete agreement with previous measurements done wusing

a different approach. The power-law behavior from which ¥ was determined

was observed in the reduced temperature region 10-3<t<10_1.
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Future work will concentrate on: 1) improving the absolute

propagation time measurements so that the soft mode elastic constant

%;(011—012) can be determined on absclute scale to greater precision at

T and 2) increasing the ultrasonic frequency range to further

jnvestigate the new dynamic effects reported in this thesis.

92




APPENDIX |: DEIERMINATION OF LONGITUDINAL AND SHEAR VELOCITIES OF INDIUM

The elastic constants of single-crystal indium have been measured
as a function of temperature by Chandrasekar et al. (1961). To estimate
the propagation delay through the thin indium layer wused 1in our
ultrasonic measurements, the average elastic constants for a
polycrystaline sample must be calculated from the single crystal data.
The usual approach is to take the average of rigorous upper and lower
bounds for the bulk and shear moduli given by the Voigt and Reuss
expressions (Anderson (1965)). The Voigt (1928) expressions for the
bulk, and shear moduli, Kv and Gv , (derived assuming constant strain in
the crystallites) are written in terms of the elastic constants for
indium as follows,

)

9K;=2011+ Caqt 2(c12 + 2¢c

3 13

c,,— (c at 066)'

15G;=2011+ 33

12 +2013)+ 3(204
The corresponding Reuss (1929) expressions for Kr and Gr (derived
assuming constant stress in the crystallites) are written in terms of

the elastic compliances as,

1/K )

P = (2syq+ s55) + 205,428

15/G 4(2s
r 1

13
).

Sg3g) — 4(s ,+ 25,5) +3(2s

1" 44% 566
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Here the elastic compliances are defined in terms of the elastic

constants as (Nye (1972)),

511=1/2[ [033/C] + [ 1/(011— 012)]],

312=1/2([c33/C] - 1/(c11— 012)]),

=(c,.+c,,)/C,

S 11" %12

2¢c 2

)C3a™ 2045

where C = (011+ s

The polycrystalline bulk and shear moduli are given by (Anderson (1965))

=-i-(K +K ), and
2 v r

G=— (G +G ).
2 v r

The longitudinal velocity v, and shear velocity v, are related to the

bulk and shear moduli as follows,
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1/2
A [(K + 374 G )/p]

1/2
v_= [ G/p ]

The longitudinal and shear velocities are plotted as a function of

temperature in figure AI.1.
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Figure AI.1 Temperature variation of the ultrasonic

velocity for indium a) longitudinal b) shear.
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APPENDIX [|: SAMPLE MISALIGNMENT CORRECTIONS

In this appendix we calculate the relationship between the
ultrasonic velocity and the elastic constants when the sample is
misaligned by a small angel € with respect to the [110] direction in the

basal (x-y) plane. The idea 1is to find periodic solutions to the

equation of motion for plane waves propagating along the x’ direction
(Neighbours et al. (1967))
o 8°u’ = o 8%u’ b o 8%v + o 8°w’
6t2 11 6x’2 16 ax’2 15 ax,z
. 8°v' o o%u o &%, o 8%w’
6t2 16 P , 2 66 6x’2 56 6x’2
2 2 2 2
v’ , a“u’ , 3°v’ , 3w’
p =c + cC + cC ,
6t2 15 6x’2 56 6x’2 55 6x’2
where p is the density , u, v, and w are the components of the

displacement, cgj are the elastic constants for a tetragonal I crystal

(see Neighbours et al. (1967)), and x’ is the propagation direction.

For the impure longitudinal (transverse) mode of a misaligned
sample the propagation direction is no longer parallel (perpendicular)
to the displacement direction x. The propagation direction 1is now
determined from the elastic constants, the most important of which Iis

. _ 1 _ _ . .
the anisotropy term Ca— 5 (011 012) 6 ( which changes considerably as
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the temperature is varied, since é;(c ) goes to zero at the phase

11" %12
transition). The sign of Ca determines whether the propagation direction
is tilted towards or away from the high symmetry direction. The tilt of
the quasi-longitudinal (QL) mode direction away from the propagation
. s H ' 4 : 7 - ! =
direction x depends on the the ratio C16/Cll’ ( since C15 C56 0 for a
basal plane misalignment ), and the tilt of the quasi-transverse (QT)
mode direction away from being perpendicular to x’ depends on CiG/Cé6.

For our purpose we only consider the QL case in which the tilt angle

between the displacement and propagation direction is given by,

2
v’ pv. -c!
6 = tan 1 0 = tan 1( .._LL___L]' )’
L u’ c!
0 16

 and ¢/ . in terms of the unprimed elastic constants

Substituting for 11 16

and the angle & between the propagation direction (x’) of the impure

mode and [110], we obtain

-1 Ca
6 = tan ~ ( tanZSL—E—:t ),
d "a
Ca
= ZSL'—C—_—C— for small 3.
d "a

For a fixed BL, BLchanges sign as a function of temperature. Relative to
x!, 9L<0 when the displacement is tilted towards [110] (T near TD), and

and eL>O when the displacement is tilted away from [110] (T far from
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TD). In ultrasonic experiments the displacement direction (perpendicular
to the polished sample faces) is fixed relative to the crystal axis, so

that the quantity eL=6L+6L is fixed, and

Cc.,-C c,.—C
_ d "a 11 66
eL—GL[1+ 5C 1 OL[ 5 1, or
a a
2C c c
€= aL[ 1+ —1= aL[ c11 + i6 1,
c-2¢C 12 66

Thus the angle between the propagation direction and the [110] direction

is
5 - sL(Cd—Ca)
Cd+ Ca

The correction for the QL mode velocity due to the misalignment can be

determined from the following solution of the equation of motion

1 2 Cd Ca
2 (G117 p)*Cge + 48 Cy - C,’

2 Cd-ca
(ey¥eyp)tegs * 48 Cqll(—— )
[Cd+Ca]

|-

Calculations done using the measured values of 11 ——(011+012),

1
2;(0 —012) and ¢

11 are shown in figure 4.16.

66
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