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Abstract 

A map is important for autonomous mobile robots to traverse an environment safely and 

efficiently through highly competent abilities in path planning, navigation and localization. Maps 

are generated from sensors data. However, sensor uncertainties affect the mapping process and 

thus influence the performance of path planning, navigation and localization capabilities. This 

thesis proposes to incorporate sensor uncertainty information in robot environmental map using 

Fuzzy Boundary Representation (B-rep). Fuzzy B-rep map is generated by first converting 

measured range data into scan polygons, then combining scan polygons into resultant robot B-

rep map by union operation and finally fuzzifying the B-rep map by 

sweeping sensor uncertainty membership function along generated B-rep map. A map of the fifth 

floor of E1 building is generated using the proposed method to demonstrate the alleviation in 

computational and memory load for robot environment mapping using Fuzzy B-rep, in contrast 

to the conventional grid based mapping methods. 
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Chapter 1 

Introduction 

Safe navigation and reliable localization are two elementary capabilities necessary for 

autonomous mobile robots to traverse in an unknown environment. Robot localization mainly 

depends on the map generated manually or based on sensor data automatically. Localization is 

achieved by matching the map information with recent robot perception of the environment. 

Common map building approaches are topological maps [1] and occupancy grid [2]. Topological 

mapping maintains robot environment information using graphs. Properties of landmarks or 

features in robot environment are stored in graph nodes. The spatial relationship among 

landmarks or features is represented using graph links. The main problem of this method is that it 

has difficulties in representing open area in robot environments. Geometric information of the 

represented robot environments is usually missing in topological maps. Therefore, the robot does 

not have geometric information about the occupancy of an area. Topological maps usually do not 

consider sensor uncertainty caused by measurements errors or interference from the 

environment. The sensor uncertainty affects the accuracy of the generated maps in representation 

of robot environment and spatial reasoning. On the other hand, occupancy grid based methods 

represents robot environments as an evenly spaced field (called cells) of random variables in 

special cells. Each cell contains the probability of being occupied in the corresponding robot 

environment region [2] [3]. An occupancy grid map only contains geometric information of the 

modeled environment. The disadvantage of an occupancy grid map is that it does not contain 
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topological information and robot path planning becomes difficult, as sophisticated algorithms 

are needed to extract topological information of the environments from geometric maps.  

This research is expected to have high impact in the robotics community by developing a 

unified map representation that is capable of handling sensor uncertainty for map building, path 

planning, navigation, and localization for mobile robots. This thesis focuses on 2D map building 

for mobile robots. This thesis proposes to represent robot environment maps using boundary 

representation (B-rep) and fuzzy set theory to incorporate the robot sensor uncertainty into the 

maps. A fuzzy boundary representation map is a combination of a B-rep map (a collection of 

boundary information of open area of robot environment) with fuzzy set theory for modeling the 

sensors uncertainties. The idea of fuzzy map building has already been introduced to the robotics 

community [4]. However, there is still much space for improvement, like generating a more 

efficient fuzzy algorithm or fuzzifying a different map type like boundary representation. This 

thesis suggests that robots do not have to implement sophisticated algorithms to enhance 

accuracy in mapping, navigation, path planning, and localization. Instead, this thesis proposes to 

include the uncertainty information due to imperfect sensors as safety tolerance in robot maps. 

Thus, the robots can produce task plans and execute commanded tasks appropriately and 

securely considering the safety margin stored in the fuzzy boundary of robot maps for path 

planning, navigation and localization.  

      

1.1. Motivation and Challenges 

Autonomous robots require environment information to traverse and complete tasks. When 

the robot is situated in a novel environment, the first thing it does is to collect information of the 

environment using onboard sensors. By using raw data captured by sensors, robots can create 
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environment maps for path planning, navigation and localization. A map is required for path 

planning because it provides information of navigable space and obstacles in the environment. 

For localization, the map information is matched with current perception of the environment to 

obtain the position and orientation of the robot. Thus, map building is an important competence 

in autonomous robots. However, sensor data uncertainty introduces inaccurate information in 

robot map building. This uncertainty in the data is caused by many reasons, and it is highly 

dependent on the sensor used [5].  

Probabilistic methods have been widely studied for reduction of the effect of sensor 

measurement error to robotic applications, including map building [3] [5]. These methods work 

on the assumption that the sensor measurement error follows a Gaussian distribution and use the 

Gaussian model to compensate the effect of this error, such as the Kalman Filter [6] [7]. Studies 

on probabilistic methods have introduced nonlinear methods, like Extended Kalman Filter and 

the Unscented Kalman filter [8] to handle nonlinear sensor measurement errors. These methods 

can work on non-Gaussian distribution of measurement errors and nonlinear processes, at the 

cost of high computational complexity       [9]. Real-time implementation of these techniques 

is difficult on resource (in terms of computational power, memory and power) limited hardware 

platforms. On the other hand, this thesis investigates the possibility of incorporating the sensor 

uncertainty information in robot maps. Instead of finding a way to compensate the effect of the 

measurement errors on the path planning, navigation and localization abilities of autonomous 

robots, this research proposes to incorporate the uncertainty information directly into the map.  

Various ways to represent uncertainties are briefly described in Section 2.3.  Specifically, the 

sensor impreciseness is incorporated in robot maps using the fuzzy set theory, which allows 
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representation of the vague and imprecise entities.  This thesis focuses on generation of fuzzy 

boundary representation of robot environments. 

In robot environmental map building, the first difficulty encountered is to create the crisp 

boundary representation map based on range sensor data. When the size of the modeled 

environment is large, the robot or multiple robots need to take several measurements of the 

environment that leads to the challenge of efficient combination of different scans of sensor 

information for the building of a global robot map. Another challenge is how the generated crisp 

boundary representation map of a robot environment is transformed into its fuzzy counterpart so 

as to reflect sensor uncertainty inherited in robot sensors. 

1.2. Proposed Approach   

This thesis proposes to represent robot environments using fuzzy boundary representation 

(fuzzy B-rep) based on uncertain range data and odometry data. The first step is to convert raw 

sensor data into a crisp boundary representation map (B-rep map), where the robot environment 

is represented by the boundary of open area of the environment. Boundaries are represented by a 

series of lines extracted by the Hough Transform from raw range sensor data. Lines found by the 

Hough Transform algorithm are then organized to form the edges of a scan polygon. Multiple 

scan polygons generated at different locations can be combined to form the resultant 

environment map by performing the union operation of them. Obstacles in the environment are 

represented by holes in the principal polygon that represents the boundary of the robot 

environment. Detail of hole detection and management is discussed in Chapter 3. 

A fuzzy boundary representation map of the robot environment is generated by sweeping 

sensor uncertainty fuzzy set along the boundary of its crisp boundary representation map 
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generated from sensor data. The sensor uncertainty fuzzy set represent the impreciseness of the 

range data and odometry data. Details of fuzzy boundary representation (fuzzy B-rep) generation 

are described in sections 4.1 and 4.2.   

1.3. Contributions 

The advantages of modeling the environment map using fuzzy boundary representation are 

that the robot has access to both, topological information and geometric information of its 

environment. It leads to safe navigation and path planning because it takes into consideration the 

uncertainty of sensor measurements. 

The following lists the contributions of this thesis: 

    

 A way to incorporate sensor data impreciseness inside the maps is developed. 

 An algorithm for sweeping the sensor uncertainty membership function along the 

environment boundary representation for accelerated α-cuts calculations is developed.  

 A fuzzy B-rep map data structure for 2D robot maps is developed. 

 The research provides an efficient approximation for the fuzzification of the environment 

of the open area of robot environment.  

 

1.4. Thesis Organization 

The thesis is organized as follows. The background information is presented in Chapter 2, 

where information about fuzzy set theory, different types of map representations, and a variety of 

ways to handle uncertainties are presented. Chapter 3 explains how to create the crisp boundary 
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representation map (B-rep map), including how to convert raw sensor data to B-rep data 

structure, and how to handle special features of the B-rep maps like holes (as obstacles in robot 

environments). In Chapter 4, conversion of crisp B-rep maps to fuzzy B-rep maps is investigated. 

Selection of the sensor uncertainty membership functions, algorithms of sweeping operation and 

the data structure for fuzzy B-rep maps are discussed in this chapter. In Chapter 5, experimental 

results and discussions are presented, and finally chapter 6 concludes the thesis and suggests 

future works. 
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Chapter 2 

Background  

This chapter presents the background of the research of building robot environment map 

using fuzzy boundary representation. We present the basics of fuzzy set theory, discuss different 

methods of robot environmental mapping, and briefly describe different ways to represent 

uncertainties.       

2.1. Basics of fuzzy sets 

Fuzzy sets are sets with boundaries that are not precise, this mean that the membership of 

elements in a fuzzy set is not a matter of affirmation or denial (True or False), but a matter of 

degree (Lofti A. Zadeh [10]). In contrast, a crisp set is defined in a way as to dichotomize the 

individuals in some given universe of discourse into two groups: members (those belong to the 

set) and nonmembers (those that do not). There is a clear distinction between the members and 

nonmembers of the set. However, in a fuzzy set, instead of taking such sharp set boundaries in 

the universe of discourse, assigns to each possible element a grade of membership. George and 

Klir [11] stated that: 

 

 

 

“The capability of fuzzy sets to express gradual transitions from membership to 

nonmembership and vice versa has a broad utility. It provides us not only with a meaningful 

and powerful representation of measurement uncertainties, but also with a meaningful 

representation of vague concepts expressed in natural language.” 
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Let us take the YOUNGNESS of a person as an example. Given a person x, in the set of 

all people on earth (the universe of discourse under this context), age(x) gives his/her age. The 

membership function of the fuzzy set YOUNG, defined in the universe of discourse X is 

expressed as: 

{                         
         

  
                            }  

As shown in Figure 2.1. If a person is 25 years old, he or she does not belong entirely in the 

YOUNG fuzzy set but partially with a membership grade of 0.5. 

 

Figure 2.1 Fuzzy membership function for YOUNGNESS 

 

2.1.1 Membership function 

 A membership function is a characteristic function of a fuzzy set. It shows the 

membership of an element in the subset A of the universe of discourse X and is denoted 

by      . For example, Figure 2.2 illustrates the membership functions of four heat conditions in 

a room namely COLD, COOL, WARM, and HOT. Each fuzzy subset has its own membership 
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function, and some of them overlap. That means that in this universe of discourse, a temperature 

value may have different grades of memberships in two different subsets. Consider the case 

when the room temperature is 0°C, we observe that this value has a membership of 0.5 in the 

COLD subset and a membership of 0.5 in the COOL subset in Figure 2.2. The membership grade 

of each element in a fuzzy set has to be in the range [0, 1]. 

 

Figure 2.2 Fuzzy sets to characterize the Temperature of a Room 

Figure 2.3 shows the possible descriptions of fuzzy memberships for characterizing the 

concept of “a real number that is close to 2.” However, it is worth to mention that the 

membership function shape depends on the characteristics of the uncertainty in the process and 

the nature of the applications. Each function in Figure 2.3 is a member of a family of 

parameterized functions. The followings are general formulas describing the four families of 

membership functions, where r denotes the core of the fuzzy set with the membership grade 

equals 1 (i.e., r=2 for all functions in Figure 2.3), and     (       is the parameter that 
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determines the rate at which, for each x, the function decreases with the increasing difference 

|   | [11] [12]: 

      

{
 
 

 
                          [

   

  
  )

                        [  
   

  
]

                      

 

      {
 

            

      {  |       | 

      {
     (        )

 
         [

   

  
 
   

  
]

           

 

For each              increases while the graph    becomes narrower. Functions in Figure 

2.3 exemplify these classes of functions for                             . [11] 

[12]. 

 

Figure 2.3 Examples of membership functions for real number close to 2 
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2.1.2 α-cuts 

 The α-cut of a fuzzy set A is a crisp set that contains all the elements whose degree of 

membership in A is no less than α [11] [12]. A α-cut is a level set of the fuzzy set membership 

function and is defined as:  

   {   |       }. 

Similar to the α-cut, the strong α-cut (  
   is a crisp set that contains all the elements 

whose degree of membership in a fuzzy set A is strictly greater than α and is, 

  
  {   |       }. 

 The support of a fuzzy set A in a universe of discourse X is the crisp set that includes all 

the elements whose degree of membership is greater than zero. In other words, the support is the 

strong α-cut when α=0. Formally, 

        {   |       } 

 In contrast, the core of a fuzzy set A is represented by the α-cut when α=1. Formally, 

        {   |       } 

 For example, for the membership function       shown in Figure 2.3, the support, core, 

and the α-cuts               are shown in Figure 2.4. 
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Figure 2.4 Support, Core and α-cuts (α=0.3, α=0.7) of membership function A1(X) 

of Figure 2.3 

2.1.3 Fuzzy set operations 

In this section, several set operations for fuzzy sets are defined. Let A and B be two fuzzy 

sets in the universe of discourse U. 

1. Complement denoted as Ᾱ, is defined as:   ̅                    

2. Intersection:             [           ]         

3. Union:            [           ]         

Many other fuzzy sets operations exist. However, they are not relevant to the objectives 

of this thesis (see [13] for details).    
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2.1.4 The Extension Principle 

The extension principle is a fuzzy set theory that is used for fuzzifying crisp functions. Its 

purpose is to generalize crisp mathematical mappings in fuzzy sets.  Suppose that A is a fuzzy set 

on the universe of discourse X, B is a fuzzy set in the universe of discourse Y, and   is a function 

for mapping X to Y,       . 

A is defined as  

  {          ⁄            ⁄              }⁄         

 The extension principle states that the image of fuzzy set A under the mapping      can 

be expressed as a fuzzy set B. 

       {          ⁄            ⁄              ⁄ } 

Where                                   

For any          , where    , and their images                   are equal so 

that        (  )    , the membership grade of        is defined as 

          (         (  ) ) . 

The membership function of the fuzzy set B is defined as, 

   {
                     

                  
 

Fuzzification of functions or mapping using the Extension Principle including fuzzifying 

crisp boundary representation of robot environment maps usually involves heavy computational 

processes.  In order to reduce the computational complexity in fuzzifying boundary 
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representation, this thesis proposes an efficient approximation to the boundary fuzzification 

process in fuzzy B-rep map generation.  

2.2. Robot Map Representations 

Robot environment map representation can be classified by three categories, raw sensor 

patterns; landmarks-based maps, navigability of space maps [14]. Some of their strengths and 

limitations are briefly explained. 

 

2.2.1. Raw sensor patterns: Sensor data patterns captured at different discrete locations are 

stored in robots. A new location is found when the aggregated difference, with respect to 

various environment specific metrics, between the current view and the views obtained at 

previous location is higher than a predefined threshold [15]. For instances, the works of 

Cheng [16] and Hermer [17] both proposed that some animals memorize specific views for 

navigation. Franks et al. devised this biologically inspired map type for robot navigation 

[18]. Nevertheless, the use of raw sensor patterns has problems with the sensors 

uncertainties and recognizing one sensor view from another, so rather than to be used for 

map representation they are more useful to identify features in a global map.  

 

2.2.2. Landmarks: Landmarks are basic objects or features in the environment that are easy to 

identify. They can be represented by their positions or signatures. Landmarks map type 

simplifies human style navigation. Denis [19] focused on the description of routes. He 

concluded that humans employ a rich repertoire of landmarks, e.g., “the hardware store,” 

“the lighthouse,” etc. The environmental map grows with the number of landmarks in the 
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environment. Localization using these maps is easy because the robot will only have to 

identify the closest landmark to know its position. A common problem in this type of 

mapping information is how to identify a landmark when it is captured from various 

perspectives. Landmark identifications are especially difficult with image sensors, because 

objects may look completely different or occluded from different perspectives. 

Nevertheless, new algorithms in image processing described in [20] allows for efficient 

topology estimation in optical mapping. One solution for localization is to keep track of the 

previous landmark with the odometry data, and therefore the robot has to have its position 

updated at any moment. This leads to recent mobile robotics research problem called 

Simultaneous Localization and Mapping (SLAM) [3]. A SLAM problem is usually solved 

using Kalman Filter [6] [15] [21] or the particle filter [15]. However, the need for the robot 

to keep track of previous landmarks adds extra computational and memory loads while the 

quantity of landmarks increases and thus renders this solution inappropriate for large maps 

in robots built with limited resources. 

 

2.2.3. Navigability of space:  This type of map specifies what part of the environment is 

navigable for robots. It can be further classified in three categories, occupancy grids map, 

topological map, and boundary of navigable space. 

A. Occupancy Grids 

An Occupancy grid map represents the robot environment as an evenly spaced 

field of random variables. Each cell holds the degree of occupancy of obstacles inside 

it. The simplest form of an occupancy grid is the binary occupancy grid so that each 

cell has value of one for empty space and zero for occupied space or vice versa. 
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Moreover, current occupancy grid maps employ probabilistic algorithms to estimate 

the probability of occupancy of each indexed grid cell [3]. Specially, Elfes [22] used 

Bayesian estimation procedures to update the probability of occupancy of each cell 

from readings taken by different sensors and perspectives.     

In spite of the fact that an occupancy grid map is one of the most commonly used 

mapping methods in mobile robotics; it still has some limitations. One limitation is 

that the representations do not contain any topological information of the 

environment (it only contains the degree of occupancy of an array of cells), and 

another is that robot path planning can be difficult without implementation of 

complex algorithms. Memory requirements depend on the physical dimension of the 

environment and the resolution of the cell size in the map, and this is a drawback 

when mapping large environments in robots with limited hardware (Table 5.3). For 

example, an occupancy grids map with cell size of 50cm² for a 100m² environment is 

depicted in Figure 2.5. This map contains the occupancy probability of 400 cells. 

Black cells denote high probability of occupancy, gray cells denote medium 

probability of occupancy, and white cells represent free space and red cell is the 

current robot position.  
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Figure 2.5 400 cells in typical Occupancy grid map 

 

 

B. Topological map 

It is also called roadmap. It represents routes in the environment using a variant of 

Generalized Voronoi Diagram (GVD) [23]. The GVD represents the medial axis of 

free space (“skeleton”). For all points x in the Euclidean space, there is one point S 

closest to x, where S represents a d-dimensional sphere inscribed in free space [23]. 

Each point in the GVD is the center of a sphere that touches at least two points of the 

obstacle outline. A graph called Generalized Voronoi Graph (GVG) is then derived 

from GVD, which has information of meet points and end points of the GVD in the 

nodes of GVG. For example, Figure 2.6 shows a GVD representation of the blueprint 

of the fifth floor of the E1 building of the University of Manitoba and its 

corresponding GVG. The GVD shows the “skeleton” of the blueprint and the GVG 

represents GVD in a series of vertex points or nodes linked together as a graph.  



18 
 

GVG offers compact representation of robot environment. Furthermore, routes 

that follow the GVD are maximally safe as they maintain maximum distance to 

obstacles and are especially popular for indoor office scenarios [23]. However, GVG 

is highly susceptible to sensor uncertainties. Small changes in the environment can 

alter the graph basic structure, and sophisticated algorithms for recognition of 

environment change are required for robust navigation of autonomous robots in the 

environment.         

 

 

 

Figure 2.6 GVD and the corresponding GVG of the fifth floor of the E1 building 

blueprint 

C. Boundary of navigable space (Boundary representation or B-rep) 

This type of map represents the environment by the boundaries of the free space. It 

only represents boundaries of obstacles and walls in the environment. Information taken 

from the laser range finder can be extracted to identify boundaries of navigable space. 
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This mapping technique is particularly useful for indoor environments. The main merits 

for using B-rep map style for representing the environment is that it contains both 

topological and geometrical information of the robot environment, which leads to easy 

application of common path planning algorithms. Moreover, the memory requirement is 

small in comparison to occupancy grid map style and is independent of the size of the 

environment (See Table 5.3). Thrun [24] [25], mentioned additional advantages of B-rep 

maps over occupancy grid maps:  

 B-rep maps can be more accurate, since the grid sizes in occupancy grid maps 

are trade-offs between accuracy, compactness, and efficiency.   

 B-rep maps are more robust in handling dynamic environments, because 

moving objects in the real world corresponds to holes in the B-rep map. 

Therefore, predicting the movement direction of the object is possible. On the 

other hand, occupancy grid maps do not have the knowledge of real world 

objects, which complicates the handling of dynamics of the environment in 

the map.   

This type of map is selected in this thesis. Further information about boundary 

representation is given on Chapter 3.       
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2.3. Representing Uncertainty 

Before describing details of different ways to represent uncertainties, is it essential to 

define what kind of uncertainty is handled in the research.  Section 4.1 refers to the proper 

selection of the sensor uncertainty membership function; in this section the odometry sensor 

and the laser range finder sensor measurement errors are the principal sources of uncertainty. 

The uncertainty to be represented is the one produced by the sensors measurement errors.  

2.3.1. Probabilistic approaches 

This is the most commonly used method for handling uncertainties in robot mapping 

and localization. Probabilistic algorithms approach the problem by explicitly modeling 

different sources of sensor uncertainties and their effects on the measurements. These 

approaches provide quantitative measures of error obtained. Most probabilistic methods 

work well with Gaussian distribution of the sensor uncertainties [6]. However, real world 

uncertainty is not always Gaussian.  Navigation and localization algorithms, based on the 

assumption that the sensor errors follow a Gaussian distribution, often fail under the non – 

Gaussian uncertainty environment in real world. Probabilistic methods, such as the 

Extended Kalman filter and the Unscented Kalman filter [8] can work with non-Gaussian 

processes and they use nonlinear functions to model sensor uncertainty to improve the 

accuracy of the result. However, using non-linear models for pose estimation, increases 

computational complexity       (when using Unscented Kalman Filter [9]). Another 

limitation of probabilistic approaches is the difficulty in fusing data from multiple sensor 

modalities. Probabilistic data fusion requires understanding of the sensed environment, the 

type of measures, the characteristics of the sensors, and finally the kind of uncertainty 
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introduced by the sensors [26]. For an instance, laser range finder (LRF) and sonar sensors 

are two common types of sensors installed on mobile robots. It is well known that the 

accuracy of LRF is greater than that of the sonar sensor. However, in environments where 

the laser reflectivity is low, the accuracy of the LRF is impaired and the sonar range 

readings have higher accuracy.  

 

2.3.2. Rough Sets 

The theory of rough sets is motivated by the practical needs to interpret, characterize, 

represent, and the process indiscernibility of individuals. Rough set theory provides a 

systematic method for representing and processing vague concepts caused by 

indiscernibility in situations with incomplete information or the lack of knowledge [27]. For 

example, a group of students registers for a collection of courses, many students would 

belong to the same courses, and so they are indistinguishable. This forces us to consider a 

subset of the students as one unit, instead of multiple individuals. The theory applies the use 

of a formal approximation of a universe of discourse (crisp set or fuzzy set) through a lower 

and upper approximation of the original set [28].  In a universe of discourse A, the lower 

and upper approximation subsets are defined by                   respectively. The 

partition of a universe of discourse into two sets can be achieved by using constructive and 

algebraic methods. This research focuses on incorporating the impreciseness of sensor data 

into the map, and thus the use of rough sets is possible to meet this objective. However, if 

rough set theory is applied to incorporate sensor uncertainty information in robot 

environment maps, three sets               and the rough boundary region set that 

represent values between lower and upper approximations should be defined and processed 
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[29]. This results in the definition of three rough membership functions complicating the 

representation of uncertainty in this research. On the other hand, only one membership 

function is required for incorporating uncertainty sensor information using fuzzy set theory. 

A detail comparison between rough sets and fuzzy sets can be found in [30].  For that 

reason, Fuzzy boundary representation is investigated for robot map representation in this 

thesis.               

 

2.3.3. Dempster-Shafer Theory 

 

It is the theory of belief functions. It is a generalization of the Bayesian theory of 

subjective probability. Whereas Bayesian theory requires probabilities for each question of 

interest, belief functions allow us to base degrees of belief for one question on probabilities 

for a related question. These degrees of belief may or may not have the mathematical 

properties of probabilities. How much they differ from probabilities will depend on how 

closely the two questions are related. Dempster-Shafer theory is based on two notions: the 

notion of obtaining degrees of belief for one question from subjective probabilities for a 

related question, and Dempster's rule for combining such degrees of belief when they are 

based on independent items of evidence [31]. To illustrate the use of Dempster-Shafer 

theory in robot map building, the degree of belief depends on sensors used to obtain the 

position of the obstacles (A Laser Range finder and an odometry sensor), and the two sensor 

measurements correspond to the items of evidence. Dempster-Shafer theory may be useful 

for deciding if there is really an obstacle at that position. However, in this thesis we propose 

to incorporate the sensor uncertainty information in the map. Using Dempster-Shafer theory 
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only provides a degree of belief to the sensor measurement, this degree of belief is not 

adequate information when incorporating the sensor uncertainty in the map. Moreover, the 

belief functions are usually defined in the discrete domain X, and based on multinomial 

confidence regions. Complicated extension is required for application of Dempster-Shafer 

theory in continuous domains, like boundary representation of real robot environments [32] 

[33].  

 

2.3.4. Fuzzy sets 

Fuzzy sets are sets whose elements have graded degrees of membership. The use of 

fuzzy sets allows us to represent element membership in vaguely defined sets, which make 

it suitable for representing the concepts of vagueness and impreciseness. This graded degree 

of membership of the elements has the advantage over the sharp boundaries of the classical 

sets theory (members vs. non-members) in situations where there is impreciseness in the 

membership of elements data in the set. Fuzzy sets model impreciseness in a simple way 

and well-defined operations to combine information obtained by different sensor sources 

and modalities. Fuzzy sets are the most suitable way to represent the kind of uncertainty 

mentioned in section 2.3 where the prior information is the systematic error of the sensors, 

because, it allows us to model the uncertainty in one membership function and is easy to 

incorporate into the map. It is important to clarify that the objective of the research is not to 

reduce the uncertainty information, but to include such information into the map for 

decision-making. Interested readers may refer to Section 2.1 for introduction fuzzy sets.         
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2.4. Summary 

In this chapter, background information was discussed. The chapter covered the 

basics of fuzzy set theory with common membership functions definition. Next, different 

robot map representations were classified in three categories (Raw sensor pattern, landmarks, 

and navigability of the space), their strengths, and limitations were discussed. Navigability of 

space map category was further classified in occupancy grids map, topological map, and 

boundary of navigable space. Details of strengths and limitations of each sub-category were 

given. Finally, different ways of representing uncertainty were discussed including 

probabilistic approaches, Rough set theory, Dempster-Shafer theory, and fuzzy set theory.  
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Chapter 3 

Boundary Representation Mapping  

 

The chapter details generation of robot environment map in the crisp world using B-rep 

systematically from sensor range data. The robot environment is considered static, in other words 

there is no moving object in the environment. Perfect range and odometry sensors are also 

assumed.  

3.1 Boundary Representation 

As previously mentioned on Chapter 2, Boundary Representation (B-rep) is a shape 

model that represents the environment by its boundaries of open area of robot environment, so it 

only takes in consideration boundaries of obstacles or walls [34]. The boundary representation 

model conveys both topological and geometrical information of the shape. For 3D objects, the 

geometric entities are faces, edges, and vertices. A face is an enclosed segment of several 

bounding curves or lines, edges are lines or curves segments between two vertices, and a vertex 

is the intersection point of adjacent edges.  

The geometric information in B-rep of a shape corresponds to face, edge equations and 

vertex coordinates forming the basic components of a B-rep model. The topological information 

in B-rep of a shape corresponds to the spatial relationship among components, in other words 

how faces, edges and vertices are connected and holes (if any) in the shape [35]. Figure 3.1 

shows the relation of different components of the B-rep of a 3D polygonal shape. A closed 3D 
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polygonal object boundary representation contains at least four faces. A face contains at least 

three edges. An edge contains two vertices. 

 

Figure 3.1 B-rep of a 3D polygonal object 

 

3.1.1 2D Boundary representation  

To represent 2D polygon shapes using B-rep, only edge and vertex information is 

required.  The B-rep of a 2D polygonal shape concept is shown in Figure 3.2. A 2D polygon 

contains at least three edges and an edge contains exactly two vertices.   
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Figure 3.2 2D polygon in B-rep 

 The concept of a 2D Boundary representation of the robot environment is depicted in 

Figure 3.3.   Overall, a B-rep environment map contains exactly one principal polygon and zero 

or more hole polygons for obstacles in robot environments. Principal and hole polygons are 2D 

boundaries represented by 2D polygons that have at least three edges and each edge is formed by 

joining two vertices.  

 

Figure 3.3 Robot environment in 2D B-rep map 
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Figure 3.4 Office floor plan 

 

Figure 3.4 shows the floor plan of a typical office for an autonomous household robot, 

where the white area represents free space and the shaded area is occupied space. The result of 

converting the office plan into a polygon like structure is depicted in Figure 3.5. The polygonal 

map contains 16 external vertices, 8 internal vertices, 16 external edges, and 8 internal edges. An 

obstacle in the physical environment is described as a hole in a B-rep map representation. Every 

hole in a B-rep map includes a vertex, and an edge table that describe it. Therefore, 

implementing a B-rep map to the office floor plan of Figure 3.4 results in three different 

boundaries data structures, one for the principal polygon (general floor description), two for the 

holes formed by the chair, and the box respectively. 
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Figure 3.5 Boundary Representation of Office in Figure 3.4 

 

 3.1.2 Boundary representation map data structure 

 B-rep map data structure contains basic topological and geometric information of the 

robot environment. Topological information of the environment provides the relationships 

among its vertices, edges, and faces. Geometric information, on the other hand, refers to 

parameters of equations of the edges and faces [34] [36].    

 The wireframe model is a traditional way of representing 3D solids. It consists of two 

tables, namely the vertex table, and the edge table. A basic vertex table records vertices and its 

coordinates, while each entry in the edge table consists of two incident vertices of that edge. A 

wireframe model does not have face information [36]. Nevertheless, a face table may be included 

for better representation of complex 3D objects, but having face information to represent a 3D 

solid is not necessary (see [34] [36] for details).    
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Vertex V X Y 

V1 X1 Y1 

V2 X2 Y2 

⁞ ⁞ ⁞ 

Vn Xn Yn 

Table 3.1 2D Vertex table 

Table 3.1 shows the basic 2D wireframe vertex table, and the only difference of the 3D 

vertex table is the lack of the Z coordinates of the vertex. Table 3.2 shows the basic structure of 

an edge table and extra columns of information can be added to include information of adjacent 

edges, line or curve model parameters, and so on. 

Edge e Vstart Vend 

E1 V1 V2 

E2 V2 V3 

⁞ ⁞ ⁞ 

En Vn V1 

Table 3.2 Edge table 

A hole polygon is represented in the same way as the principal polygon but in separate 

edge and vertex tables and each hole is individually indexed. 

3.2 Generation of a boundary representation map from range 

data 

To create the map of an unknown environment, the first step is to obtain the local scan of 

the area in the current position using sensors (Laser Range finder or ultrasonic sensor and 

odometry). A local scan, represented as a polygon, contains environmental information in the 

current pose (position and orientation of the robot) found by range data and the odometry sensors 

measurements. Secondly, that raw range sensor information (a collection of points representing 
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obstacles) is converted into a closed polygon. A closed polygon is considered as the initial map 

of the area. Then the robot moves to a new location in free space of the environment and 

performs another local scan. Given the two polygons (initial map polygon and second scan 

polygon); the resultant map is obtained by taking union of both polygons to form one global 

polygon. Union of polygons may have holes in the result. This process is repeated by taking the 

local scan at a different pose and performing the union operation with the global polygon until 

the whole environment is scanned. Therefore, one global polygon (principal map) of the robot 

environment and smaller polygons inside if holes/obstacles are present is generated.  

This thesis employs the Pioneer 3DX mobile robot as the experimental platform for 

building the B-rep map. It is equipped with a laser range finder and ultrasonic sensors. The laser 

range finder is employed as the default sensor since it has higher accuracy and angular 

resolution. Interested readers can refer to Chapter 5 for the specifications of the Pionner 3DX 

robot and the sensors installed.  

The steps to create a 2D B-rep map are listed in the followings: 

a) Obtain raw data from current robot pose. (Local scan) 

b) Construct a scan polygon from the raw range sensor data. (The first polygon is 

the principal polygon, which is also the current global map). 

c) Move the robot to a different pose. (Use a previously obtained polygon to move 

the robot to a free space. GVG [23] is a well-known method for path planning, 

this algorithm can be adapted to use the polygon as map in the robot exploration 

procedure) 

d)  Scan the area for new data. (Perform another local scan) 
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e) Construct a local scan polygon from the new data. 

f) Perform union operation between the global map and the new polygon to 

consolidate the information into one principal polygon and hole polygon(s) (if 

any).  

g) Repeat steps (c) to (f) until the whole robot environment is covered. 

3.2.1 Construction of scan polygon from raw sensor data 

 The laser range finder LMS200 installed on the Pioneer 3DX robot is employed to 

acquire range data in robot environments. Figure 3.6 depicts a raw range data measurement that 

contains 181 points in which each point corresponds to a range measurement transformed to the 

Cartesian coordinate system (X, Y) from the polar coordinate system (ρ, θ). Once the raw range 

sensor data is obtained, the next step is to create a polygon from that data. RANSAC [37] [38] 

and Hough transform [39] are two common methods of extracting line segments from raw range 

data.  

RANSAC is an iterative algorithm to estimate the parameters that fit a model from a set 

of data contaminated by outliers (data that do not fit the model). First, a hypothetical model is 

fitted to the inliers (data that fit the model). All data are then tested against the fitted model. The 

estimated model is considered acceptable if the numbers of members are higher than a preset 

CONSENSUS threshold. The model is re - estimated for other hypothetical inliers. Finally, the 

algorithm chooses the model that fit the best based on the CONSENSUS data and error 

tolerance.  The RANSAC algorithm produces good results in some situations, but the application 

of the RANSAC algorithm to the small quantity of measures obtained through the LMS200 may 

produce under fitted results because the CONSENSUS parameter on the RANSAC algorithm 
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should be small. This results in a tradeoff between the parameters CONSENSUS and 

TOLERANCE, and to obtain satisfactory line extraction results, the value of these two 

parameters need to adapt to different laser scans. On the other hand, Hough Transform 

algorithms can achieve accurate line equations extraction when the numbers of measurements is 

small according to our experimental experience. Therefore, this thesis employs Hough transform 

to extract the lines from the raw data.           

 

Figure 3.6 Laser range data of a corner 

3.2.1.1 Hough Transform 

Hough Transform [39] [40] is a general technique for identifying the location and 

orientation of certain types of features in digital images. It is possible to find all kinds of shapes 

that can be algebraically expressed (lines, circles, ellipses, etc.) using Hough Transform. In this 
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thesis, lines are found from raw range sensor data. (Details on Hough Transform can be found in 

[39] [41] [42]).  

In line extraction, the following equation                  is used for the 

construction of the Hough Transform matrix, where x and y represent the Cartesian coordinates 

of one measured range point,   is the perpendicular distance between the origin and the line, θ is 

angle of the line being evaluated from the positive x-axis. By applying the equation for every 

    [     ] in degree for all the range point measurements, the Hough Transform matrix or 

accumulator is constructed and is shown in Table 3.3 and Figure 3.7. 

           …        

Measurement#1 

(X1,Y1) 

            …         

Measurement#2 

(X2,Y2) 

            …         

⁞ ⁞ ⁞ ⁞ ⁞ 

Measurement#n 

(Xn,Yn) 

            …         

Table 3.3 Hough Transform Matrix or Accumulator 
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Figure 3.7 Graphical representation of the Hough Transform Accumulator of data 

in Table 3.3   

Figure 3.7 shows the accumulator matrix generated by the measurements displayed in 

Figure 3.6. Note that the curves in the accumulator meet at two points. This means that there are 

two major lines reflected in the data shown in Figure 3.6.  

After forming this matrix, it is required to determine how many points (measurements) 

belong to one line. Theoretically, two or more points fit in one line if they have the same       

and θ. Tolerance is considered in comparing two        and       for line equation parameters 

estimation. The threshold of tolerance is set for minimum error (    of initial         value). 

In case the line selection algorithm does not produce any results, the algorithm increases this 

tolerance and re-calculates the parameters of the fittest line.  This algorithm is a vital part for the 

suitable selection of a line. 
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The result of this algorithm produces line equations parameters of lines constructed by 

the given range points. For example, by applying Hough Transform to Figure 3.6, two line 

equations:                    and                   are generated as shown in 

Figure 3.8. 

 

Figure 3.8 Resulting lines obtained from Hough Transform and their intersection   

3.2.1.2 Finding the vertex points 

  The Hough Transform decision maker algorithm generates the equation parameters (ρ 

and θ) of lines fitted by range data points acquired in a single laser range scan. Since the range 

data points are ordered along the angular dimension (from 0°, 1°, 2°, to 180°), the extracted lines 

can be ordered according to the indices of the range data points that are fitted to them. By 

exploiting this fact, computation of the intersection points can be greatly reduced, given that the 

intersection points are computed one by one according to the extracted line order, instead of 

finding intersection points from a collection of unsorted lines.  The first extracted line has one 
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intersection with the second line; the second line has one intersection with the third line and so 

on.  

Given two line equations, the intersection point is given as: 

                    
     

 
 

                    
     

 
 

        
     

     
   

Algorithm is also developed to handle special case when AE=BD, when one of the lines 

is either vertical or horizontal. 

The coordinates of all vertices (intersection points) of the scan polygon are generated and 

line equation parameters of all edges (lines) of the scan polygon are obtained using Hough 

Transform. The vertex table then contains the coordinates of all the intersection points taken as 

vertices as shown in Table 3.1. The edge table contains the vertices information as shown in 

Table 3.2.  

3.2.2 Polygon Union in Boundary Representation   

 This section discusses how to perform union operation on two polygons in B-rep data 

structure. Each polygon data includes one vertex table and one edge table as shown in Table 3.1 

and 3.2. In Figure 3.9, two polygons overlap. The first step is to find the vertex points of the 

union polygon (displayed as red point in Figure 3.9). This is achieved by analyzing every edge 

line equation of one polygon with the second polygon in search for the intersection point of the 
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edges. If an intersection occurs within the line segment (indicated by the vertex points of the 

evaluated edges), the new intersection point is considered as the new vertex point of the union of 

polygon.         

 

 

Figure 3.9 Union of 2D polygons 

Assume the black polygon is polygon A and the blue polygon is polygon B. One polygon 

is the B-rep current global map (polygon A), and the polygon B is the new local scan polygon 

obtained by new laser scan. The edges of each polygon are ordered in a counter-clockwise 

manner. Both polygons A and B have eight edges. With the introduction of new vertices (red 

dots in Figure 3.9), both polygons now have 10 edges as shown in Figure 3.10.  
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Figure 3.10 Union of 2D polygons (identified edges with the new additions) 

 The result of the union operation just considers edges that exist outside both polygons. 

Straightforwardly, the union operation scans each edge and decides if the edge is “INSIDE” or 

“OUTSIDE” of the other polygon. Initially the scan start with the first edge of polygon A (PA1), 

pick a point arbitrarily that lies within the first edge. Its coordinates can be easily obtained from 

the parametric form of the line equation of this edge. This point is called evaluation point and is 

used to determine if the edge can be classified as “OUTSIDE” or “INSIDE” a given polygon 

according to algorithm 1 developed by Randolph [43]. 
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Algorithm 1                                                                                                                           . 

Input  

Testy= Y-coordinate of test point. 

Testx= X-coordinate of test point. 

V1y and V2y=Y-coordinate of current edge 

V1x and V2x=X-coordinate of current edge 

C= returned value. 

 CFalse; “(False means “OUTSIDE,” True means “INSIDE”) 

 For each edge of the polygon 

If ((V1y>Texty) and (V2y<Testy) or (V2y>Testy) and (V1y<Testy)) 

 If (       
                      

               
) 

C=not C; 

End; 

End; 

 End.  

Output C; 

                                                                                                                                         end. 

 

For the point to be inside the polygon the condition has to be met for an odd number of 

edges because the initial value of C is false and C is negated every time the condition is met. 

After classifying every edge of both polygons as “OUTSIDE” or “INSIDE,” the next step 

is to scan along the edges for all the “OUTSIDE” edges that belong to the union polygon. 

For example, in Figure 3.10 start with edge PA1 in polygon A. If the edge is labeled as 

“OUTSIDE” polygon B then it belongs to the result of the union operation. Repeat the check for 

the next edges PA2, PA3 up to PA6 where this edge is classified as “INSIDE.” That means that 
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PA6 does not belong to the union polygon. At this point, the scan meets an edge that is 

“INSIDE” of polygon B. The algorithm then needs to compare for equality between the end 

vertex point (Vend) of the previous edge (PA5 Vend) with the Vstart (See Table 3.2) of the all 

the edges of polygon B. The scan continues from edge where the Vstart of polygon B is equal to 

the Vend of the last “OUTSIDE” edge of polygon A (PA5). After switching to the second 

polygon (polygon B), continue to scan along the edges in the counter-clockwise manner up to 

PB4 that is labeled as “INSIDE” of polygon A, and once again this “INSIDE” edge does not 

belong to the resulting union polygon. The algorithm performs the same check, as previously, 

when an “INSIDE” edge was encountered and transfer the scan to the other polygon (polygon A) 

from the edge where the Vstart of polygon A is equal to the Vend of the last “OUTSIDE” edge 

of polygon B. The switching edge now becomes PA9. The scan continues to check for 

“OUTSIDE” edges from PA9 and go back to PA1 that has already been scanned. This marks the 

end of the scan and a new closed polygon is generated.  

The union polygon is shown in Figure 3.11 where edges PB4, PB5, PA6, PA7, and PA8 

are removed from the resulting polygon. The last step is to rename the edges of the resulting 

polygon to form one global map. This algorithm performs the union operation between two 

convex polygons so that no hole is formed after the union operation. 

This algorithm for “INSIDE/OUTSIDE” edge scanning focuses on the polygon switching 

logic and assumes that the two polygons overlap. If the polygons do not overlap (intersection 

points between the two polygons less than 2) the union operation is straightforward. Both 

polygons belong to their union.  
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Figure 3.11 Resulting Union Operation of the Polygon A and B 

 

3.2.3 Management of holes in union 

 In previous section, the union operation between two convex polygons was explained. 

However, in some cases the union operation of two or more concave polygons may introduce 

holes in the union polygon.  

 This section describes how to detect and handle holes in the B-rep map structure when 

union of the polygons is formed. A hole in the map represents objects occupied in the robot 

environment, which may be a static object or a moving one. 

 The question arises, “How a hole is detected in the resulting polygon from the union 

operation?”  
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The union operation algorithm classifies all the edges of both polygons as “INSIDE” or 

“OUTSIDE” in relation with the other polygon and that all the edges classified as “OUTSIDE” 

are part of the final union result. Before starting to check for “OUTSIDE”  edges, flag all the 

edges as “NOT SCANNED,” which means that the edge has not been checked if it belongs to the 

final solution or not. Once the scan begins, toggle the flag of the checked edges to “SCANNED.” 

After all the edges are checked, verify if there are still some edges that are classified as 

“OUTSIDE” and flagged “NOT SCANNED.” This means that some “OUTSIDE” edges are not 

part of the final solution. This implies that a hole may exist in the resulting union polygon. Some 

of the conditions to determine if the resulting polygon has a hole or not are defined. 

 All edges in holes are also classified as “OUTSIDE” in the union algorithm. 

 All edges that belong to a hole have to be flagged as “NOT SCANNED.” 

 There has to be a minimum of three edges classified as “OUTSIDE” and flagged “NOT 

SCANNED.” A hole is also a closed polygon, and thus it must have a minimum of three 

edges. 

  If the previous conditions are true then start a new scan with only the edges classified as 

“OUTSIDE” and flagged “NOT SCANNED.” If this scan forms a new closed polygon 

then there is a hole in the union result. 

 Inspect for another hole, until all edges are exhausted. 

In order to demonstrate the steps clearly, an example of the union operation is given in 

Figure 3.12 and the polygons have already been handled for the union operation (intersections 

and new edges added).    
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Figure 3.12 Union operation of two polygons with a resulting hole  

 The edges of both polygons are classified as “INSIDE” or “OUTSIDE” of the other 

polygon and the result is listed in Table 3.4 (all edges are currently flagged as “NOT 

SCANNED”).  

Polygon A Classification   Polygon B Classification  

PA1 Outside  PB1 Inside 

PA2 Outside  PB2 Inside 

PA3 Outside  PB3 Outside 

PA4 Inside  PB4 Outside 

PA5 Inside  PB5 Outside 

PA6 Outside  PB6 Outside 

PA7 Outside  PB7 Outside 

PA8 Outside  PB8 Inside 

PA9 Inside  PB9 Outside 

PA10 Inside    

PA11 Inside    

PA12 Outside    

Table 3.4 Edge classification of polygon A and B 
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Subsequently, start the first scan for all edges of the polygon and flag inspected edges as 

“SCANNED,” so that the principal boundary of the union polygon is obtained. The edges 

classification and flag after the first scan is listed in Table 3.5. Since some edges are flagged as 

“NOT SCANNED” and classified as “OUTSIDE,” hole(s) is/are formed in the union polygon. 

As shown in Table 3.5, four edges are classified, as “OUTSIDE” and they are PA6, PA7, PA8, 

and PB9.  

Polygon A Classification Flag  Polygon B Classification Flag 

PA1 Outside SCANNED  PB1 Inside NOT SCANNED 

PA2 Outside SCANNED  PB2 Inside NOT SCANNED 

PA3 Outside SCANNED  PB3 Outside SCANNED 

PA4 Inside NOT SCANNED  PB4 Outside SCANNED 

PA5 Inside NOT SCANNED  PB5 Outside SCANNED 

PA6 Outside NOT SCANNED  PB6 Outside SCANNED 

PA7 Outside NOT SCANNED  PB7 Outside SCANNED 

PA8 Outside NOT SCANNED  PB8 Inside NOT SCANNED 

PA9 Inside NOT SCANNED  PB9 Outside NOT SCANNED 

PA10 Inside NOT SCANNED     

PA11 Inside NOT SCANNED     

PA12 Outside SCANNED     

Table 3.5 Edge classification and flag of polygon A and B after first scan 

The final step for the management of holes is to start the second scan from one of the 

edges flagged as “NOT SCANNED” and classified as “OUTSIDE” to find the hole polygon. For 

example, in Figure 3.10 start the scan from edge PA6, following the rules (described in the union 

operation algorithm) PA6 is part of the final solution because it is an “OUTSIDE” edge, next 

PA7 and PA8 follows and are also considered as part of the hole. Then, PA9 follows, however 

this edge is classified as “INSIDE” thus the search of the equality of the vertices on the other 

polygon is initiated. The search then chooses PB9 as the next edge to be inspected and make it 

part of the hole. It is because it is classified as “OUTSIDE” and flagged “NOT SCANNED.” 

Next, PB1 is labeled as an “INSIDE” edge thus the search for equality of the vertices on the 
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other polygon is initiated. PA6 is then selected as the next edge to be inspected. However, PA6 is 

already part of the final solution and is flagged as “SCANNED” and thus it completes the second 

scan with a closed polygon representing a hole. In the case, there still are edges classified as 

“OUTSIDE” and flagged “NOT SCANNED,” a new scan in search for another possible hole is 

launched.   

Figure 3.13 shows the result of the union operation of polygon A and B shown in Figure 

3.12. The Table 3.6 and 3.7 list the information of the principal boundary and the hole boundary 

respectively of the result in permanent storage. 

 

Figure 3.13 Result of the Union operation from polygon A and B of Fig 3.12 

 



47 
 

Edge Vstart Vend  Vertex X Y 

P1 VP1 VP2  VP1 XP1 YP1 

P2 VP2 VP3  VP2 XP2 YP2 

P3 VP3 VP4  VP3 XP3 YP3 

P4 VP4 VP5  VP4 XP4 YP4 

P5 VP5 VP6  VP5 XP5 YP5 

P6 VP6 VP7  VP6 XP6 YP6 

P7 VP7 VP8  VP7 XP7 YP7 

P8 VP8 VP9  VP8 XP8 YP8 

P9 VP9 VP1  VP9 XP9 YP9 

Table 3.6 Edge table and Vertex table for main polygon of Fig 3.13  

Edge 

HOLE 
Vstart Vend  Vertex X Y 

PH1 VH1 VH2  VH1 XH1 YH1 

PH2 VH2 VH3  VH2 XH2 YH2 

PH3 VH3 VH4  VH3 XH3 YH3 

PH4 VH4 VH1  VH4 XH4 YH4 

Table 3.7 Edge table and Vertex table for polygon representing the hole in Fig 3.13  
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3.3 Summary 

In this chapter, the generation of a boundary representation map, its data structure, and 

the management of holes were introduced. Moreover, the chapter described an algorithm for 

generation of B-rep map from raw range data. It also described essential operations needed for 

formation of B-rep map from local scans, like the union operation between two different 

polygons and the management of objects (holes) in the area (map). 
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Chapter 4 

Fuzzy Boundary Representation 

 

In chapter 3, a B-rep map of the robot environment in the crisp world was constructed. 

However, the crisp B-rep map does not take into consideration the uncertainty information of the 

sensors (laser range finder and odometry sensors). Imperfect sensors are the principal source of 

uncertainty in the creation of a map; this is because the data obtained through them is not 

completely precise. This impreciseness in sensor data cannot imply the exact location of features 

or objects in the map. This chapter introduces the incorporation of uncertainty information into 

the robot map by fuzzifying the B-rep map. The chapter presents the fundamental steps to 

convert the crisp B-rep map to its fuzzy counterpart. These include the selection of a sensor 

uncertainty membership function for uncertainty modeling, the sweeping operation for α-cut 

generation, and the data structure for fuzzy boundary representation (fuzzy B-rep).  

4.1. From the crisp world to the fuzzy world 

  The conversion from a universe of discourse to its fuzzy counterpart (grades of 

membership) is called fuzzification.  

The main step of fuzzifying any concept or process is to generate the fuzzy membership 

function. The membership function is used to associate a grade membership value to the crisp 

data. In robot map building using boundary representation, all boundaries defined in a fuzzy B-

rep become an edge defined by a membership function governed by the sensor uncertainty. 
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Therefore, selecting the appropriate membership function to reflect sensor uncertainty 

information for every edge in the B-rep robot map is important. This membership function is 

called sensor uncertainty membership function (fuzzy set). The membership function of the 

fuzzy boundary representation is constructed by grouping all of its α-cuts. After the selection of 

this sensor uncertainty membership function, the sweeping operation is performed to generate 

the α-cuts of the boundary of robot environment. The sweeping operation consists of passing a 

“moving entity” (sensor uncertainty membership function) along a “trajectory” given by the crisp 

B-rep polygon. This “moving object” passes through all the edges of the crisp B-rep polygon to 

generate the fuzzy B-rep map. This sweeping operation is similar to the sweep representation of 

a solid [34]. Figure 4.1 illustrates a simple fuzzy B-rep polygon, its corresponding inward and 

outward offsets produced by the support (µ=0) of the membership function, and one α-cut at 

µ=0.4013.     

 

Figure 4.1 3D view of a Fuzzy B-rep polygon  
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Figure 4.2 illustrate a different perspective of Figure 4.1. Figure 4.2 shows the crisp B-

rep polygon that corresponds the core (µ=1), the support (µ=0) and the polygons at µ=0.8, µ=0.6, 

µ=0.4, and µ=0.2, generated by sweeping a triangular sensor uncertainty fuzzy set along the crisp 

B-rep polygon. 

 

Figure 4.2 3D view of a Fuzzy B-rep polygon in Figure 4.1 

 

4.1.1 Selection of a proper sensor uncertainty membership function 

 As mentioned previously, the sensors uncertainty is the principal source of uncertainty in 

the obtained scan polygons. This means that when constructing the sensor uncertainty 

membership function the errors introduced by the sensors have to be taken into consideration. 

The sensors involved in this research are: 
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 Laser range finder (LRF) 

 Odometry 

The measurement error inherent in the laser range finder LMS200 is given by the 

technical specification of the sensor [44]. This sensor has a range of 8 meters and has a 

systematic error of ±15mm on normal conditions (See Chapter 5 for its specification). On the 

other hand, the measurement error introduced by the odometry sensor is not given by its 

technical specification but it can be obtained through calibration experiments using the 

UMBmark method [45](refer to Appendix I).   

The main step of the fuzzification of B-rep maps is to characterize the uncertainty 

introduced by the sensors to create the membership function. Both sensors errors need to be 

considered to create a single possible maximum error and incorporate all sensors uncertainty into 

the fuzzy B-rep map. Thus, selecting the maximum error as support for the sensor uncertainty 

membership function is essential. 

Sensor measurement error values: 

                 (Given by its technical specification [44]) 

                             (Calculation in Appendix I) 

       |                                  |             

The addition of both sensor errors assured that the calculated TME (Total Maximum 

Error) value is the maximum possible error. This value specified the safety margin for navigation 

and path planning.  
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 As mentioned previously in section 2.1.1, the selection of the sensor uncertainty 

membership function is highly related to the nature and the uncertainties of the process. A 

boundary representation map represents the boundaries of an environment. However, the 

boundary obtained may not be exact at the measured position. Fuzzification of a crisp B-rep map 

is introduced to model the vagueness of the boundaries position obtained through sensors.  

The sensor uncertainty membership function grants a graded value to a position data, and 

this graded value represents the uncertainty of whether that position is open or not. To illustrate, 

a real number x representing location with a membership grade value of       means that the 

location x is considered a boundary, and so a membership value       would mean that the 

position x is not a boundary at all. Therefore, three criteria for defining the sensor uncertainty 

membership function are proposed: 

1.                  , 

2.                   and 

3.             

Where x is the real number to be evaluated, TME is the total maximum error (that 

depends on sensor measurement errors specification) and r is the value where its membership is 

equal to one. These criteria state that everything that is outside the range defined in criteria #1 

and #2 has a membership grade value equal to zero. In other words, any position x outside that 

range is not considered a boundary. Criterion #3 states that the original measure r is considered a 

boundary (obtained in the crisp world in Chapter 3).  These criteria put constraints in the 

selection of the sensor uncertainty membership function. Any function that meets these three 
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criteria can be applied to describe the impreciseness of the sensor measurements (Figure 2.3 

shows some membership function examples). 

A question arises “What does the membership function imply?” To answer this question 

two different membership function shapes are given as examples. Figure 4.3 shows a 

membership function with a sharp peak. This kind of membership function implies that the data 

taken by the sensors are highly accurate, because the area under the graph of membership 

function        is small, implying that the membership grade values of the data representing 

position are small, thus a smaller area in the environment is considered a boundary.  

 

Figure 4.3 Membership Function with a pointed peak 

On the contrary, a bigger area under the function implies that the sensor uncertainty is 

high. Figure 4.4 shows a function where the area of the region under the curve of the 
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membership function is big. Positions covered by the pink shaded area have a high membership 

grade value that characterizes high impreciseness of the position information of the boundary.  

 

Figure 4.4 Membership function with high uncertainty  

In other words, the bigger the area under the sensor uncertainty membership functions, 

the higher the uncertainty in sensor measurements. In the worst-case scenario, all measured 

range X that lies between                 has a membership grade value equal to one, 

and the whole area is considered a boundary. Accordingly, the best-case scenario is that the 

sensor measurements are error free and all measured range excluding the original measurement r 

has a membership grade of zero. This reduces the fuzzy boundary to its crisp counterpart (See 

Chapter 3). 
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  However, without prior knowledge of the material, of which the environment is made, 

finding the shape of the sensor uncertainty membership function is difficult. A triangular sensor 

uncertainty membership function is reasonable choice overall, because it corresponds to the 

average cases across the preciseness and impreciseness continuum. The triangular membership 

function is as follows.  

        ; 

           

    
     

     
           [         

    
     

     
           [       ] 

As shown in Figure 4.5, the width of the support of the triangular membership function is 

twice of TME, where a and b are the lower and upper limits of the support of the membership 

function respectively. 

 

Figure 4.5 Triangular Membership function  
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Nevertheless, the membership function is not required to have only one shape and is 

subject to change, if the robot can recognize that the measured area is highly certain or uncertain 

for the sensor in use. If a laser range finder is used for measurement, an area where the 

reflectivity of the laser is low (e.g., glass fences), the range measurement data can be considered 

as uncertain. On the other hand, the range data measurement is certain when the area is made of 

material with high laser reflectivity (e.g., opaque walls). Thus, the sensor technical specifications 

and the material of which the environment is made determine the shape of sensor uncertainty 

membership function. In this thesis, the triangular membership function is used. The flexibility 

of using different membership functions is presented and taken into consideration in the fuzzy B-

rep map data structure (see Chapter 4.3, table 4.1).    

 

4.1.2 α-cut generation by sweeping operation 

Once the sensor uncertainty membership function is determined, α-cut generation of 

fuzzy boundaries is made by sweeping the sensor uncertainty fuzzy set along the crisp boundary 

representation of the robot map generated from range data (Chapter 3). Polygon offsetting 

provides a simple solution to finding the lower and upper bounds of the α-cut of the fuzzy 

boundary membership function. As shown on Figure 4.6 offsetting tries to keep the shape of the 

original polygon. Polygon offsetting can be easily implemented in a B-rep data structure. The 

lower and upper bounds of the α-cut of sensor uncertainty membership function shown in Figure 

4.1 define the offsetting distance. An inward and outward offsetting is executed with the lower 

and upper limits defined by the α-cut of the sensor uncertainty membership function. 
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Figure 4.6 Polygon offsetting 

    4.1.2.1 Offsetting operation 

There are many well-known algorithms for offsetting a polygon. Wein’s method [46] 

uses the Minkowski sum [47] with a disc of radius R to offset the polygon. The author also 

included an exact offsetting algorithm using algebraic number types and an approximation 

algorithm that use rational arithmetic to reduce computational time. On the other hand, Kim [48] 

developed the multiple normal vectors algorithm for offsetting a 3D triangular mesh. The author 

also introduced the use of a single normal vertex, but the accuracy is poor in 3D offsetting [48] 

[49]. By combining the attributes of single normal vertex and rudimentary algebraic computation 

used in the Wein approximation algorithm [46], a new hybrid algorithm for precise offsetting of 

a 2D polygon is proposed. The use of the single normal vertex method has the advantage of not 

creating gaps in the resulting polygon, and lower computational complexity than other methods 

discussed in [48]. This method tries to keep the exact shape as the original polygon. Another 
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advantage for using single normal vertex method is that the information required to carry out this 

algorithm can be obtained directly from the B-rep data structure.  

The proposed algorithm applies algebraic computation to find the single normal vertex 

line equation. This equation is used for easy offsetting with varying offsetting distance, which is 

given by the lower and upper bounds of the α-cut of the sensor uncertainty membership function 

at a particular membership grade (See Figure 4.1, and Figure 4.2). In other words, to find the 

lower and upper bounds of an α-cut for the given fuzzy boundary membership function requires 

only computing the new vertex points along the normal vertex line. This is the main reason for 

using the proposed offsetting algorithm instead of previously developed ones [46] [48] [49], 

where finding an α-cut of the membership function requires applying the whole offsetting 

algorithm for different radius or distance specified by the lower and upper bounds of the α-cut in 

the sensor uncertainty membership function.    

The B-rep map data structure contains the edge table and vertex table as specified in 

Chapter 3. Obviously, a corner is produced by two linked edges with one vertex point in 

common as shown in Figure 4.7. V2 is the vertex point of the intersection between edges ED1 

and ED2. Figure 4.7 also shows the single normal vertex point (V2N) that lies on the angle 

bisector the line (V2-V2N) of the angle        . 
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Figure 4.7 corner with the single normal vertex of V2 

For symmetric sensor uncertainty membership function, V2N is found at a distance of 

half the range of the α-cut of the sensor uncertainty fuzzy set at a particular membership grade 

from the vertex V2. For example, at membership grade µ=0, the distance corresponds to half the 

support of the fuzzy membership function. It is worth to mention that the V2N vertex point on 

Figure 4.7 represents the outward offsetting vertex point of the V2 point. When the line equation 

is found and converted to the parametric form, the location of the inward offsetting vertex point 

of V2 can be extrapolated by accordingly changing the sign of the parameter in the parametric 

line equation. 
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Once the radial position of V2N is determined, the algorithm needs to find the angular 

position of V2N, β, which is formed between the first and second edges of the intersection in a 

counterclockwise direction as shown in different cases of β in Figure 4.7.  

As seen in Figure 4.8 the computation of the angle β depends on the position of the 

vertices V1 and V3. In Figure 4.8 A, V1 is located in the first quadrant and V3 on the adjacent 

quadrant of the Cartesian plane. In Figure 4.8 B, V1 and V3 are reversed compared with Figure 

4.8 A. In Figure 4.8 C and D, both vertices V1 and V3 are found in the same quadrant, and their 

positions are reversed in Figure 4.8 C and D respectively. In Figure 4.8 E and F, both vertices V1 

and V3 are found in opposite quadrants, and their positions are reversed in Figure 4.8 E and F 

respectively. The orientation of the edges and the vertices is important for the calculation of the 

angle β.  
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Figure 4.8 Angle beta in different situations   
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To find the inward and outward offsetting point V2N, a series of steps is proposed. 

 Start with the initial vertex point found in the vertex table. 

 Rename the vertex point to be evaluated to V2, the previous point as V1 and the point 

that follow V2 as V3. (Counterclockwise direction) 

 Translate V1, V2, and V3 in the Cartesian plane so that V2 becomes the origin. 

 Classify in which quadrant of the Cartesian plane V1 and V3 are found according to 

Figure 4.8. 

 Calculate the value of β, which depend on the quadrant location and position of V1 and 

V3. 

 Using the β value, find the location of V2N by trigonometry as the line V2-V2N is the 

angle bisector of the angle        . 

 Translate V2N back in relation to V2’s initial position. 

 Find the parametric line parameters (T, U, V, and W) of the line V2-V2N.   

                       ; where the x-y coordinates of points V2 and 

V2N are       and       respectively. 

 Repeat the previous steps for all vertex points in the vertex table. 

 Use the obtained parametric line equation to extrapolate the location of the inward 

offsetting vertex point for all vertex points in the vertex table. 

 Using the parametric line equation, find the inward, and outward vertex points for any 

distance in relation with the α-cut of the sensor uncertainty membership function. 
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However, the proposed offsetting algorithm introduces a problem in some situations. This is 

illustrated in Figure 4.9 where the inward offsetting solution by the proposed algorithm produces 

a self-intersecting polygon (the black line polygon), which is an invalid solution for the fuzzy B-

rep. Proper polygons are required for map representation. Therefore, a proper polygon test is 

devised. If the offset solution is self-intersecting, a modification algorithm is proposed to convert 

it to a proper polygon.  

 

Figure 4.9 Inward offsetting solution of the blue line polygon   

The self-intersection test checks for intersecting line segments in polygons because a 

proper polygon does not have any nonvertex intersection from all edges. Therefore, if at least 

one pair of the edges has nonvertex intersection in the resulting polygon, it is certain that the 

tested polygon is self-intersecting. Bentley [50] suggested an algorithm for detection of 

geometric intersections, which is very useful in detecting nonvertex intersections. This algorithm 

generates useful information for proper polygon conversion.  Once the self-intersecting polygon 

test gives a positive result, an algorithm to convert the self-intersecting polygon to a proper 
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polygon is carried out. In most situations, this conversion results in one polygon. However, 

applying the conversion algorithm to Figure 4.9 will result in two proper polygons. Nevertheless, 

if the conversion generates two proper polygons, one of them is treated as a hole and the other as 

the principal polygon (usually the polygon with more vertices and edges is chosen as principal 

and the other as a hole).  

The conversion from a self-intersecting polygon to a proper polygon (if needed) marks 

the end of the sweeping operation. 

 

4.2. Fuzzy Boundary Representation Data Structure  

After the sweeping operation, all the information required to represent a fuzzy boundary 

map in a data structure is at hand. The vertex table and edge table represents the crisp B-rep data 

structure. A fuzzy B-rep map representation extends these two tables by adding necessary 

information like the sensor uncertainty membership function type, parameters, (if  different 

membership functions are employed at different edges) and the parametric line equation 

parameters (T,U,V, and W) of the average normal vertex for every vertex in the vertex table.   

A new table is added to store several indexed membership functions. This table is useful 

for describing which membership function is associated with edges of the polygon, and it 

provides the option of using different membership functions on different parts of the robot 

environment.    

The crisp B-rep and fuzzy B-rep data structures are similar because the vertex and edge 

geometric information and their linking relation in the map remain the same. In the fuzzy B-rep 
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data structure, additional columns are added in the vertex table including the line equation 

parameters of the average normal vertex points (VIN and VOUT) associated with the 

corresponding vertex point of the polygon and the membership functions associated with the 

corresponding edges. The Cartesian coordinates of the normal vertex points (VIN and VOUT) 

are also include in the fuzzy vertex table. 

A α-cut of a fuzzy B-rep map consisting of the inward and outward offsets from the 

original polygon is shown in Figure 4.10. The resulting data structure is shown in Table 4.1, 4.2, 

and 4.3. 

 

Figure 4.10 Fuzzy B-rep map example 
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V X Y VO UT X Y VIN X Y T U V W FM 

V1 300 300 VO 1 158.58 158.58 VI1 441.42 441.42 -141.4 441.42 -141.42 441.42 1 

V2 300 2700 VO 2 168.96 2851.1 VI2 431.04 2548.9 -131.0 431.04 151.09 2548.9 1 

V3 2400 2400 VO 3 2577.2 2492.8 VI3 2222.8 2307.2 177.16 2222.8 92.82 2307.2 1 

V4 2100 1800 VO 4 2205.1 1629.9 VI4 1994.9 1970.1 105.15 1994.9 -170.1 1970.1 1 

V5 1200 1800 VO 5 1341.4 1658.6 VI5 1058.6 1941.4 141.42 1058.6 -141.42 1941.4 1 

V6 1200 1200 VO 6 1341.4 1341.4 VI6 1058.6 1058.6 141.42 1058.6 141.42 1058.6 1 

V7 2400 1200 VO 7 2541.4 1341.4 VI7 2258.6 1058.6 141.42 2258.6 141.42 1058.6 1 

V8 2400 300 VO 8 2541.4 158.58 VI8 2258.6 441.4 141.42 2258.6 -141.42 441.42 1 

Table 4.1 Fuzzy Vertex Table  

  

The fuzzy vertex table shown in Table 4.1 contains all the information of the crisp B-rep 

(the first three columns) and additional data. The table contains the coordinates of the outward 

vertex point (VOUT), the coordinates of the inward vertex point (VIN), the parametric line 

equation parameters (T, U, V, and W), and the FM that is an index to the sensor uncertainty 

membership function used in the corresponding vertex. This table follows the same indexing as 

the crisp B-rep vertex table. The crisp B-rep information and fuzzy B-rep information are 

maintained in separate columns. This allows convenient use of crisp B-rep information when 

performing the union operation of polygons for map building. 

    A new table is created (see Table 4.2), to store parameters of sensor uncertainty fuzzy 

membership functions associated with the map. Every used fuzzy membership function is 

indexed. The index works as a pointer to the assigned membership function for each vertex 

point, and the table contains its formula description and the support of the membership function. 
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Index Parameters Type 

1 

1.       ; 

2.         

3.        ; 

 

 

Triangular 

4.    
     

    
          

 [        

5.    
     

   
          

 [      ] 

Table 4.2 Membership function 

For example, the triangular membership function is defined as        ,    

       
     

     
          [         and    

     

     
           [       ]. Since the 

sensor uncertainty fuzzy set is used in the sweeping operation, the description is centered along 

the crisp B-rep map generated from range sensor data (r is zero). Using the normal line equation 

in the fuzzy vertex table, the sensor uncertainty fuzzy set and the vertex point are related. Only 

one membership function is used in the example shown in Figure 4.10. A fuzzy B-rep map can 

be associated with more than one membership function and its index is listed in the FM column 

of the fuzzy vertex table (Table 4.1). 

 The last table needed for a complete description of a fuzzy B-rep map is the fuzzy edge 

table shown in Table 4.3. This table contains the index to the members of an edge of the original 

polygon (crisp B-rep data), the inward and outward polygons.  
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Edge Vstart Vend 
Edge 

OUT 
Vstart Vend 

Edge 

IN 
Vstart Vend 

E1 V1 V2 EO1 VO1 VO2 E1 VI1 VI2 

E2 V2 V3 EO2 VO2 VO3 E2 VI2 VI3 

E3 V3 V4 EO3 VO3 VO4 E3 VI3 VI4 

E4 V4 V5 EO4 VO4 VO5 E4 VI4 VI5 

E5 V5 V6 EO5 VO5 VO6 E5 VI5 VI6 

E6 V6 V7 EO6 VO6 VO7 E6 VI6 VI7 

E7 V7 V8 EO7 VO7 VO8 E7 VI7 VI8 

E8 V8 V1 EO8 VO8 VO1 E8 VI8 VI1 

Table 4.3 Fuzzy Edge Table 

 If the offset polygon is self-intersecting, the number of vertices of the polygon generated 

by the sweeping operation and proper polygon conversion may not be equal to that of the 

original polygon. In this case, the information for the deleted vertex points are represented as 

“NULL” to keep the same indexing for the rest of the table.    

 The proposed fuzzy B-rep map can be considered as an approximation to the 

fuzzification of the crisp B-rep map using the Extension Principle. At each membership grade α, 

all possible boundaries of the open area in the robot environment lie inside the α-cut of the fuzzy 

boundary set characterized by the generated fuzzy B-rep map. In particular, the support (α=0) of 

the fuzzy B-rep map provides an appropriate safety margin for robot navigation in the 

environment without collision at the highest confidence because its inner boundary bounds the 

space that the robot can navigate freely. On the other hand, the core (µ=1) of the fuzzy B-rep 

map is the same as the crisp B-rep map.  
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4.3. Summary  

 This chapter proposed algorithms for generation of all α-cuts of the fuzzy B-rep map of 

the robot environment by sweeping the sensor uncertainty fuzzy membership function along the 

boundary represented by the crisp B-rep map. Details of how the sensor uncertainties fuzzy 

membership function is constructed were presented. Sweeping operation is performed by 

offsetting the crisp B-rep polygon according to the required membership grade. A modified 

offsetting algorithm for the sweeping operation with the advantage of allowing efficient 

computation of α-cuts of the fuzzy set of the robot environment boundaries was proposed. The 

new data structure for the fuzzy B-rep map was presented. All necessary information is stored in 

three tables, namely fuzzy vertex table, fuzzy edge table, and sensor uncertainty membership 

functions table.  
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Chapter 5 

Experimental results and discussions 

 This Chapter presents the experiment of building the Fuzzy Boundary Representation 

map of the fifth floor of the E1 EITC building using a Pioneer 3DX mobile robot. 

 

5.1. Experimental Platform  

A Pioneer 3DX mobile robot, which is equipped with a Laser range finder (LMS200), 

and an odometry sensor, is employed to test the proposed algorithm. To control the sensor 

measurements and motion of the robot, a MAC mini computer (A1176 Model) was used to 

run the control software for taking laser range scans and to drive the robot around. The 

measured range data is saved in a file and is sent through wireless transmission to a host 

laptop computer. A Matlab program runs on this laptop to read the files and execute the 

proposed algorithm. In Figure 5.1, the robot Pioneer 3DX with the Laser range finder and the 

MAC mini computer with the wireless transmission is shown. 
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Figure 5.1 Experimental Platform  

5.1.1. Robot Specifications 

The following lists the technical specifications of the Pioneer 3DX robot.  

Construction: 

 Body: 1.6 mm aluminum (powder-coated) 

 Tires: Foam-filled rubber 

Operation: 

 Robot Weight: 9 kg 

 Operating Payload: 17 kg 

Differential Drive Movement: 

 Turn Radius: 0 cm 

 Swing Radius: 26.7 cm 
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 Maximum Forward/Backward Speed: 1.2 m/s 

 Rotation Speed: 300°/s 

 Maximum Traversable Step: 2.5 cm 

 Maximum Traversable Gap: 5 cm 

 Maximum Traversable Grade: 25% 

 Traversable Terrain: Indoor, wheelchair accessible 

 

Power: 

 Run Time: 8-10 hours with three batteries (with no accessories) Charge 

Time: 12 hours (standard) or 2.4 hrs. (Optional high-capacity charger) 

 Available Power Supplies: 

5 V @ 1.5 A switched 

12 V @ 2.5 A switched 

 

 Additional Pioneer 3DX specification can be found in the datasheet provided online by 

adept mobiles robots [51]. 

 

5.1.2. Laser Range Finder Specifications 

The following table lists the technical specifications of the LMS200 laser range finder 

installed on the Pioneer 3DX robot. 
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Scanning angle (field of vision) 180° 

Motor speed 75HZ 

Angular resolution (response time) 
0.25°  (53.33 ms); 0.5° (26.66 ms); 1° (13.33 ms); 

selectable 

Range Maximum 32M 

Measurement resolution 10mm 

Measurement accuracy Typical ±35mm 

Systematic error 

– mm-mode: typical ±15 mm at range 1 to 8 m 

– cm-mode: typical ±4 cm at range 1 to 20 m 

Statistical error 
mm-mode: typical 5 mm at range ≤ 8 m/ reflectivity ≥ 

10 %/ light ≤ 5 klx 

Table 5.1 Laser Range finder technical specification 

 Additional information about the LMS200 manufactured by SICK Sensor Intelligence 

can be found in the datasheet [44]. 

 The MAC mini has a 2.0 GHz Dual core CPU and 1GB Ram. It runs on Ubuntu 10 OS. A 

program developed by QT Library [52] is used to control the laser scan measurements. A power 

converter is used to power the Mac mini computer by converting the 12V DC power provided by 

onboard battery.  

To verify the proposed algorithm, experiments were conducted to generate the map of the 

fifth floor of the E1 building of the Engineering and Information Technology Complex (EITC) of 

the University of Manitoba using fuzzy boundary representation.  Figure 5.2 shows the floor plan 

of the mapping environment obtained from website of The University of Manitoba [53]. The 
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environment is divided into four sections (A, B, C, D) that correspond to the four passages. 

Figures 5.3, 5.4, 5.5, and 5.6 shows the pictures four sections (A, B, C, and D respectively).  

 

 

Figure 5.2 Map of the E1 fifth floor building 
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Figure 5.3 Section A 

 

Figure 5.4 Section B 
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Figure 5.5 Section C 

 

Figure 5.6 Section D  
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5.2. Experimental Procedure 

The robot was programmed to follow a clockwise route from the Home position (blue 

circle) in Section A of the map as shown in Figure 5.7.    

 

Figure 5.7 Robot route 

 A local scan was taken for every five meters. The laser range finder LMS200 takes a 

180° measure. However, the data of each scan should cover 360°. This is achieved by 

consolidating two laser range measurements taken at local headings of 0° and 180°. The 

algorithm discussed in section 3.2.1 generated crisp polygons from the local range data.  Local 

scan polygons were then combined to form the global crisp B-rep map of the environment by 

forming union of all local scan polygons. After that, the proposed algorithm discussed in Chapter 

4 is applied to construct the fuzzy B-rep map. A time stamp of each local scan is useful to keep 

track of up to date information.   
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 In the experiment, map building for section A, B and C, went well without any problems. 

However, excessive spikes appeared in local scans obtained in section D, as shown in Figure 5.7. 

This is due to the glass installed along the alley. Laser ray from the laser rangefinder, in fact, 

passed through the glass or was under specular reflection in section D. Figure 5.8 shows the 

consolidated polygon taken in section D. 

 

 Figure 5.8 Noisy Section D data  

 The solution to this special situation was to use paper to cover the glass fence in section 

D as shown in Figure 5.9. Incorrect data was also taken in other locations. However, no 

modification was done to the environment unlike circumstance in section D. Differential filtering 

can be adopted in this kind of situations, but the filter configuration have to be adjusted to handle 

this specific situation. A Median filter is another solution for reducing spikes; however, because 

of the excessive spikes the output of the filter will also be highly inaccurate.        
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Figure 5.9 Section D with glass fence covered with paper 

 

5.3. Results and Discussions 

Before the generation of the fuzzy B-rep map, the membership function table for the 

sensor uncertainty fuzzy set has to be determined. As explained in Chapter 4, membership 

function can take different shapes and the triangular membership function is a reasonable choice 

for normal situations in which the robot does not have prior information of the environment. 

According to appendix I, the TME computed was 199.13mm. The following table shows the 

definition of the sensor uncertainty membership function employed in this experiment. 
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Index Parameters  Type 

1 

6.          ; 

7.            

8.           ; 

 

 

Triangular 

9.    
     

    
          

 [        

10.    
     

   
          

 [      ] 

Table 5.2 Membership function Table 

 Once the membership function is described, the fuzzy B-rep map tables can be created 

according to algorithms proposed in Chapter 4. Figure 5.10 shows the support of the generated 

map (µ=0). The robot traveled approximately 140 meters in total, and 27 360° local laser range 

scans were processed.   

The artifacts in section C were also produced by glass like in section D. However, no 

paper was used to cover the glass. Figure 5.11 shows the right area in section C where the artifact 

was presented (laser passed through the glass in range measurements). The artifact in section A 

was due to an open door. 
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Figure 5.10 Support of the fuzzy B-rep map (µ=0) 



83 
 

 

Figure 5.11 Glass boundaries on section C where the range data was noisy 

 Figure 5.12 shows a 3D plot of the membership function of the principal polygon. The 

figure shows the support and the core of the membership function (µ=0, µ=1 respectively). 

Figure 5.12 shows the value of the Cartesian coordinates of the vertex points (these vertex points 

represent the outer and inner boundary of the fuzzy map) when the membership grade is 

approximately µ=0.59. 

 

Figure 5.12 3D surface plot of the membership function for principal polygon 
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The resulting vertex table for the principal polygon has 40 vertices. The vertex table for 

the hole polygon has 37 vertices (both tables are listed in Appendix II). The edge tables of the 

principal and hole polygon are not presented in the thesis, because they only contain indices to 

the vertices of the corresponding edges. However, the edge table is part of the fuzzy B-rep map 

data structure and forms a data matrix of 40x6 for the principal polygon and 37x6 for the hole 

polygon.  

The number of vertices of both principal and hole polygons can be further reduced by 

different methods. Least Mean Square Filter [54] and the Hough Transform [39] are algorithms 

that can be used for reducing the number of vertices. RANSAC [38] uses hypothetical models 

and test if the vertex points fitted that model (in this case, the model is a line). The algorithm 

chooses the model that fitted best over several points. On the other hand, Hough Transform tries 

to identify lines for several of points (See Chapter 3). Both methods have tuning parameters that 

affects the results. By using any of these methods, the complexity and memory requirements of 

the final map can be reduced in sacrifice of loss of details in the map.   

Figure 5.13 shows the upper part of the section C of the fuzzy B-rep map with the floor 

plan. This figure shows that the floor plan boundary was bounded by the support of the fuzzy 

boundary. The inner bound of the fuzzy boundary support provides sufficient safety margin for 

autonomous navigation. 
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Figure 5.13 Comparisons between fuzzy map and floor plan (α=0) 

The map shown in Figure 5.10 modeled an approximate area of 1050m². For instance, to 

store a map of this size using occupancy grid with a cell size of 30cmX30cm or 0.09 m² requires 

11667 cells or floating-point numbers. On the other hand, the memory required for storage of the 

same environment in the fuzzy B-rep map are 1232 floating-point numbers (this includes the 

necessary information for the four tables discussed in Chapter 4), which correspond to 4928 

bytes of memory. 

 As shown in Table 5.3, the memory space required for the fuzzy B-rep map does not 

depend on the physical dimension of the environment. On the other hand, the memory 

requirement for an occupancy grid map increases with the physical dimension of the 

environment and cells resolution. For instance, in Table 5.3 shows that changing the cell size 

from 30x30cm to 20x20cm doubles the used memory. Further decreasing the cell size (10x10 
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cm) quadruples the used memory. In comparison to fuzzy B-rep map data storage, an occupancy 

grid map with cell sizes of 30cmX30cm, 20cmX20cm, and 10cmX10cm requires 9, 21, and 85 

times more memory respectively. 

Fuzzy B-rep Map 

memory required  

In bytes 

Probability 

Occupancy Grid Map 

(30x30cm cell size) 

In bytes 

Probability 

Occupancy Grid Map 

(20x20 cm cell size) 

In bytes 

Probability 

Occupancy Grid Map 

(10x10 cm cell size) 

In bytes 

4928  46668 105000 420000 

Table 5.3 Map storage size comparison for Figure 5.10 

It is important to highlight that the proposed method tries to incorporate, but not to reduce 

sensor uncertainty information in robot map representation. Effective reduction of uncertainty in 

map representation usually relies on high computational complexity algorithms, which may not 

be able to implement on robot platform with limited computational and memory resources, 

especially in real-time. On the other hand, the sensor uncertainty information stored in fuzzy B-

rep map provides reasonable tolerance in decision making or planning for robot tasks.  
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Chapter 6 

Conclusions  

6.1. Concluding Remarks 

In robotics, sensors are the principal means of acquiring external environmental information. 

Ideally, information obtained by sensors is accurate. However, due to imperfect sensors, acquired 

sensor data is usually imprecise. The information obtained by sensors is used for the generation 

of an environmental map. A map is used for path planning, navigation and localization of the 

robot. Probabilistic methods are common for handling the uncertainty of the sensors. However, 

computational complexity and memory requirements limit the performance of these methods, 

like occupancy grid and Kalman Filter.   

In this thesis, a way to incorporate sensors uncertainty into the robot environment map was 

investigated. The objective of the thesis is to include the sensors impreciseness into the boundary 

representation map structure with the use of fuzzy set theory. Fuzzy B-rep map is generated by 

converting the measured range data into scan polygons, then combining multiple scan polygons 

to form the resultant robot environment B-rep global map by performing the union operation, 

and finally fuzzification of the crisp B-rep map by sweeping the sensor uncertainty fuzzy set 

along the boundaries. The proposed method provides an approximation to fuzzification of 

boundaries of open area in a robot environment, instead of using the Extension principle, which 

is usually a computationally intensive task. This research demonstrated that the integration of the 
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sensor uncertainty into boundary representation map structure is possible, and showed that the 

fuzzy B-rep data structure storage space is highly efficient in comparison to occupancy grid map 

structure. Experimental results verified that the support (µ=0) of boundaries of the fuzzy B-rep 

map of the fifth floor E1 of the EITC enclosed the floor plan boundary (See Chapter 5). 

Not all the robot applications require precise environmental information. In real world, a 

simple task of moving to one location may be heavily taxed by the mapping method. Fuzzy B-

rep map uses simple algorithms to convert range data into scan polygons, combining the scan 

polygons to generate a B-rep map, and fuzzification of the B-rep map to incorporate sensor 

uncertainty using the sweeping operation. Like humans, autonomous robots may not need precise 

information to complete navigation tasks.         

6.2. Future works 

The area of research presented in this thesis still has a wide range of aspects that need to be 

further studied. Accordingly, several future works are suggested: 

1. The fuzzy B-rep map presented is in a 2D world and is straightforward to extend to 3D 

fuzzy B-rep. The use of B-rep data structure for the representation of solids (3D objects) 

is well known in solid modeling. However, the implementation of the sweeping operation 

to a 3D B-rep data structure using the sensor uncertainty membership function requires 

further developments.  

2. Further research is required to handle dynamic environments. Dynamic environment 

refers to robot environment where the situation of robot surrounding area changes with 

time, like with moving obstacles, and so on. The use of time stamps for the measurements 
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can be useful for this kind of situations. New data takes priority over old data in map 

updates. Algorithm for union operation of time-stamped polygons will be developed. 

3. Combination of different types of sensor information into map building. Gregory [55] 

proposed an algorithm called “just-in-time sensing” for combining Laser and Sonar range 

data by using the line segments intersection obtained by sonar and laser range data. Local 

scan polygons constructed from different types of sensors (laser range finder or ultrasonic 

sensors) can be combined by intersection operation to fuse information acquired by 

different sensor modalities in building robot environment maps using boundary 

representation. 
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Appendix I 

 

Odometry uncertainties characterization 

Odometry system also called the Dead-reckoning system is commonly used for robot 

positioning. Odometry sensors of a typical mobile robot are wheel encoders.  

It is noteworthy that many researchers have developed algorithms that estimate the 

position uncertainty of a dead-reckoning robot [56] [57]. With this approach, each computed 

robot position is associated by a characteristic “error ellipse,” which shows a region of 

uncertainty for the robot's actual position (see Figure I.1) [56] [58]. While the robot traverses in 

an environment, the size of error ellipses continues to grow until a fixed position measurement is 

given to the system resetting the ellipse size. However, considering the systematic errors of 

odometry we may reduce the rate, which the error ellipses increase in relation to the distance 

traveled. Higher accuracy of positioning can be achieved without constantly using an external 

method to obtain a fixed position measurement. Nevertheless, this only slows the growing rate of 

the error ellipse. At time progresses the error ellipse continues to grow and will be in need of a 

reset. (It may be a position measurement using external system).               
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Figure I.1 Growing error ellipses indicates the growing uncertainty with odometry 

(Adapted from [56])  

 

 The Pioneer 3-DX is equipped with a wheel encoder as an odometry system and it 

has a differential drive system. The odometry error can be classified into systematic errors and 

non-systematic errors.  

Systematic errors are caused by: 

 Unequal wheel diameters. 

 Average of actual wheel diameters differs from the nominal wheel diameter. 

 Actual wheelbase differs from nominal wheelbase. 

 Misalignment of wheels. 

 Encoder accuracy. 
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Non-systematic errors are caused by: 

 Travel over uneven floors. 

 Travel over unexpected objects on the floor. 

 Wheel-slippage. 

Estimating non-systematic errors is hard, but possible, if the robot environment is known 

apriori.  Non – systematic errors may appear unexpectedly and can cause large position errors. 

However, if the robot has previous knowledge of the environment, it can detect non-systematic 

errors by continuously monitoring the position for large changes using finite difference methods 

[59]. On the other hand, systematic errors are always present in the odometry sensor 

measurements and can be easily estimated, and compensated [60]. 

 

I. Estimating Systematic errors of Pioneer 3DX robot 

 

As mentioned in [61] [45] two types of the systematic errors are dominant and significant in 

robots with differential drive systems. They are the error due to unequal wheel diameters, 

defined as      
  

⁄   where     and    are the actual wheel diameters of right and left wheel 

respectively, and the error due to uncertainty about the effective wheelbase, defined as    

       
        

⁄  where b is the wheelbase of the vehicle. 

The systematic error due to difference between average of actual wheel diameters and 

nominal wheel diameter can usually be neglected. For example, a wheel encoder is set for a 

wheel diameter          to travel          distance for one revolution of the wheel. However, if 
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the actual wheel diameter         is different from the nominal one, the distance traveled in one 

revolution of the wheel          will differ from           and this difference introduces error in 

the system. Non-systematic error is insignificant in the environment where the mapping 

experiment was conducted in this thesis. This is because the main causes of the non-systematic 

error are not present in the experimental environment.    

There are many ways of calculating the systematic error introduced by the odometry system 

including: 

 The Unidirectional Square-Path Test [45] 

 The Bidirectional Square-Path Experiment or UMBmark [45] 

 Calibration procedure to compensate for systematic error (by Goel et al [62]). 

 An algorithm introduced by Roy and Thrun [63]. 

The “UMBmark” is applied for obtaining the systematic error in the Pioneer 3-DX 

because it satisfies the need of a quantitative analysis of the odometry error. The procedure 

introduced by Goel et al., [62] requires a precise tachometer as reference and the Kalman filter to 

estimate the error. That complicates the calibration process. Roy and Thrun algorithm’s [63] 

calibrates the odometry systematic error automatically while the robot operates using 

incremental maximum likelihood method with high computational complexity. The 

unidirectional square path test is not suitable for a differential-drive system like the Pioneer 3-

DX robot because it can easily conceal two mutually compensating odometry errors. 
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II. The Bidirectional Square-Path Experiment or UMBmark 

   In this test, the robot is commanded to run in a 4mx4m square path with a fixed start 

position. End position is then read from an odometry sensor and is compared with the start 

position. The test is run 5 times in clockwise (cw) path and counterclockwise (ccw) path. The 

stopping positions of the cw and ccw paths are then clustered in two different areas. Next, the 

coordinates of the two centers of gravity of the clusters are computed using equation (1)  

             
 

 
∑         

 

   

 

Equation (1) 

             
 

 
∑         

 

   

 

where n is the number of run in each direction. Subsequently we continue to calculate the 

absolute offset for clockwise and counterclockwise paths given by equation (2) 

        √(        )
 
 (        )

 
 

Equation (2) 

         √(         )
 
 (         )

 
. 

Finally, the larger value between                       is considered the “measure of odometry 

accuracy for systematic errors”: 

                            (                 )            Equation (3) 
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More detail information about the UMBmark test can be referred in [45]. 

III. Pioneer 3-DX UMBmark test results 

 The start position is considered as               the obtained stopping position for cw 

and ccw paths in different runs are: 

Number of run (n) 

Stop position cw (       and 

(       in mm 

Stop position ccw (        

and (        in mm 

1 (1327,645) (-928,1477) 

2 (1420,581) (-893,1512) 

3 (1318,594) (-802,1225) 

4 (1378,612) (-879,1286) 

5 (1349,642) (-713,1289) 

Table I.1 Stop Position Clockwise and Counter Clockwise before the calibration 

 

Then the mean value defines the centers of gravity of the stop position clusters: 

                                 

                                 

And the absolute offset is given by equation (3): 
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Finally, the systematic error is given by equation (4):  

[               ] 

In Figure I.2 we can see the result of the UMBmark test applied to the Pioneer 3-DX in a 

4m² path. 

 

Figure I.2 Result from running UMBmark in 4m square path in the Pioneer 3-DX 

IV. Correction of systematic errors for the Pioneer 3-DX 

  The Pioneer 3-DX has three calibration parameters. The first one is the “driftFactor” 

which is a value added or subtracted from the left-wheel encoder count at each motor cycle. It 

compensates for the effect of tire difference in the robot’s forward and backward translation. 

This calibration parameter is closely related to a type B error in the systematic calibration 

introduced by Borenstein and Feng, L. [45] where this error is due to unequal wheel diameters, 

defined as       
  

⁄ . The second calibration parameter is the “revCount” value, which is the 
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differential number of encoder ticks for a 180-degree turn of the robot. It depends on several 

factors, principally the length of the wheelbase that may change due to payload, tire wear, 

operating surfaces and so on. This calibration parameter is related to the error introduced by   . 

         are used as references for calculating the “driftFactor, and revCount.” The third 

parameter “TicksMM” is unchanged.  

Using the equations for the systematic calibration obtained in [45]: 

   
  

  
⁄  

   
 ⁄

   
 ⁄
  Equation (4) 

   
       

        
 

    

      
 Equation (5) 

  
                  

   
 
    

 
 Equation (6) (L is the length of one side of a square path) 

  
 

 ⁄

   (β
 ⁄ )

  Equation (7) 

   
                  

   
 
    

 
 Equation (8) 

Where                   for the Pioneer 3DX robot. 

Using equations (6) (8) we get: 

          

           

From equation (7): 
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and from equation (4): 

            
  

⁄  

Based on the result of    the right wheel diameter is a bit bigger than the left wheel 

diameter resulting in a curved traversal path when the robot is commanded to move a long 

straight line. 

The “driftFactor” modifies the traveled distance reading in one revolution when the robot 

is commanded to move along a straight line. One revolution on the wheel corresponds to 195mm 

distance traveled (wheel size obtained from [46]). The “driftFactor,” (df), is computed as: 

   (                    )              

   
       

        

 
    

      
      

The default “revCount” value, which was used for the UMBmark test, is 16570. Based on 

the computed    and applying the “Rule of Three” the revCount (revC) is computed as: 

     
     

  

          

The driftFactor was changed to 104mm and the revCount to 16737, the test of the 

parameters gave minimum general error, but the clockwise and the counter clockwise error were 

unbalanced. The revCount value was then tuned to 16653 to balance the errors in clockwise and 

counterclockwise rotations.      
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After error compensation, the UMBmark test was repeated and stopping positions of the five 

runs are listed as follows. 

CW X Y CCW X Y 

#1 -160 -150 #1 73 -75 

#2 -134 -134 #2 102 -94 

#3 -144 -140 #3 132 -114 

#4 -117 -130 #4 136 -118 

#5 -93 -100 #5 127 -87 

Table I.2 Stop Position Clockwise and Counter Clockwise after the calibration 

                                 

                               

                

                 

The           is then taken as the odometry sensor error as it is the largest error of both, 

clockwise and counter-clockwise runs, and it is used for the calculation of the Total Maximum 

Error (TME) in Chapter 4. 
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Appendix II 

 

 

The Principal polygon and the hole polygon 

  

 The Vertex tables (II.1 and II.2) of the fuzzy B-rep map generated for the fifth floor of 

the E1 building of EITC are listed as follows. 
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VP Crisp  VP outside VP Inside Parametric Line Equation 

X Y XOUT YOUT XIN YIN T U V W 

2986.353 3315.948 3185.366 3309.125 2787.34 3322.77 -199 3185.366 6.8224 3309.13 
3154.172 16171.72 3353.302 16171.72 2955.042 16171.72 -199.1 3353.302 0 16171.7 

2991.055 27739.18 3034.548 27544.86 2947.562 27933.51 -43.49 3034.548 194.32 27544.9 

3158.367 27370.76 3200.786 27176.2 3115.948 27565.32 -42.42 3200.786 194.56 27176.2 
3113.39 42087.86 3255.815 42227.03 2970.965 41948.69 -142.4 3255.815 -139.2 42227 

1149.044 42139.3 1011.035 42282.84 1287.053 41995.75 138.01 1011.035 -143.5 42282.8 
1037.224 33647.74 897.388 33789.51 1177.06 33505.97 139.84 897.388 -141.8 33789.5 

-3298.81 33650.18 -3298.81 33849.31 -3298.81 33451.05 0 -3298.81 -199.1 33849.3 
-21196.8 33940.56 -21053.6 34078.91 -21340 33802.21 -143.2 -21053.6 -138.4 34078.9 

-21040.9 42439.61 -20850.7 42498.62 -21231.1 42380.6 -190.2 -20850.7 -59.01 42498.6 

-21375.2 42907.86 -21287.6 43086.66 -21462.9 42729.07 -87.67 -21287.6 -178.8 43086.7 
-23896.1 42809.46 -24037.2 42949.97 -23755 42668.94 141.1 -24037.2 -140.5 42950 

-23937.7 41617.82 -24052.6 41780.44 -23822.8 41455.2 114.93 -24052.6 -162.6 41780.4 
-25311.4 42050.94 -25469.4 42172.1 -25153.3 41929.78 158.03 -25469.4 -121.2 42172.1 

-25118.7 41749.08 -25293.8 41843.97 -24943.6 41654.18 175.07 -25293.8 -94.89 41844 
-30581.2 41698.18 -30723.7 41837.24 -30438.7 41559.12 142.53 -30723.7 -139.1 41837.2 

-30550.6 39699.22 -30689.1 39556.12 -30412.1 39842.31 138.48 -30689.1 143.1 39556.1 

-23884.9 39815.87 -24026.7 39676.09 -23743 39955.66 141.82 -24026.7 139.79 39676.1 
-23991.6 36472.35 -24190.8 36474.64 -23792.5 36470.06 199.12 -24190.8 -2.29 36474.6 

-23968.4 33863.68 -24152.3 33939.87 -23784.4 33787.49 183.98 -24152.3 -76.19 33939.9 
-24306.9 33531.08 -24491.5 33605.7 -24122.2 33456.47 184.62 -24491.5 -74.62 33605.7 

-24067.3 24320.46 -24223.4 24444.09 -23911.2 24196.82 156.1 -24223.4 -123.6 24444.1 
-25187.2 24087.55 -25370.6 24165.07 -25003.8 24010.03 183.42 -25370.6 -77.52 24165.1 

-24718.8 23350.29 -24910 23294.55 -24527.6 23406.03 191.17 -24910 55.739 23294.5 

-24714.6 20330.32 -24872.7 20451.44 -24556.6 20209.21 158.06 -24872.7 -121.1 20451.4 
-25656.1 20078.06 -25810.6 20203.64 -25501.6 19952.48 154.54 -25810.6 -125.6 20203.6 

-25707.8 19151.2 -25857.3 19019.56 -25558.4 19282.85 149.41 -25857.3 131.64 19019.6 
-24099.3 19037.61 -24243.4 18900.2 -23955.1 19175.02 144.12 -24243.4 137.41 18900.2 

-23839.1 7637.338 -24038.3 7637.338 -23640 7637.338 199.13 -24038.3 0 7637.34 
-23855.3 3572.427 -24054.4 3572.427 -23656.2 3572.427 199.13 -24054.4 0 3572.43 

-23829.9 -4518.9 -24024.6 -4560.61 -23635.2 -4477.2 194.71 -24024.6 41.707 -4560.6 

-23577 -5086.94 -23685.5 -5253.95 -23468.5 -4919.94 108.45 -23685.5 167 -5253.9 
-22069.7 -5086.94 -21928.9 -5227.75 -22210.5 -4946.14 -140.8 -21928.9 140.81 -5227.7 

-22069.7 -1583.16 -21929.1 -1724.12 -22210.4 -1442.19 -140.6 -21929.1 140.97 -1724.1 
-8363.85 -1614.93 -8359.69 -1814.01 -8368 -1415.84 -4.158 -8359.69 199.09 -1814 

-5676.89 -1496.4 -5714.43 -1691.96 -5639.34 -1300.85 37.544 -5714.43 195.56 -1692 
-5298.51 -1666.94 -5341.24 -1861.43 -5255.79 -1472.44 42.724 -5341.24 194.49 -1861.4 

565.0477 -1719.91 664.5863 -1892.37 465.5092 -1547.44 -99.54 664.5863 172.47 -1892.4 

756.0897 -1382.24 854.146 -1555.56 658.0334 -1208.93 -98.06 854.146 173.31 -1555.6 
2722.561 -1433.74 2857.503 -1580.17 2587.62 -1287.3 -134.9 2857.503 146.44 -1580.2 

Table II.1 Fuzzy Vertex Table for principal polygon 
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VP Crisp VP outside VP Inside Parametric Line Equation 

X Y XOUT YOUT XIN YIN T U V W 

151.69 22112.25 296.43 21974.22 6.9612 22250.28 -144.7 296.428 138.03 21974.2 
880.18 10896.19 1080.2 10899.07 680.2 10893.31 -200 1080.16 -2.878 10899.1 

810.94 8978 1005.9 9022.436 615.94 8933.564 -195 1005.946 -44.44 9022.44 

1035.1 8551.828 1228.9 8601.085 841.25 8502.571 -193.8 1228.924 -49.26 8601.09 
1133.1 1293.519 1275.2 1152.77 991.05 1434.268 -142.1 1275.229 140.75 1152.77 

-450.6 1299.891 -487.5 1103.321 -413.7 1496.462 36.88 -487.47 196.57 1103.32 
-815.8 1440.222 -848.4 1242.908 -783.1 1637.535 32.672 -848.426 197.31 1242.91 

-6852 1206.467 -6657 1162.597 -7047 1250.337 -195.1 -6656.98 43.87 1162.6 
-5942 731.5522 -5749 680.6505 -6136 782.4538 -193.4 -5748.69 50.902 680.651 

-8772 826.9028 -8880 658.4741 -8665 995.3314 107.85 -8880.26 168.43 658.474 

-8978 1236.445 -9082 1065.519 -8874 1407.37 103.85 -9081.92 170.93 1065.52 
-18857 1103.055 -18903 908.3038 -18812 1297.806 45.519 -18902.9 194.75 908.304 

-19221 1289.072 -19258 1092.476 -19184 1485.668 36.74 -19257.9 196.6 1092.48 
-20951 1109.884 -21085 961.2011 -20817 1258.568 133.77 -21084.9 148.68 961.201 

-20993 19098.68 -21193 19101.13 -20793 19096.24 199.99 -21192.9 -2.447 19101.1 
-20871 23643.49 -21061 23579.67 -20682 23707.32 189.54 -21060.7 63.826 23579.7 

-21265 24133.82 -21454 24067.81 -21076 24199.83 188.79 -21453.5 66.014 24067.8 

-21245 29558.6 -21412 29668.56 -21078 29448.64 167.06 -21412 -110 29668.6 
-18069 30939.68 -18072 31139.66 -18065 30739.71 3.2702 -18071.9 -200 31139.7 

-16747 30415.52 -16832 30596.14 -16661 30234.91 85.903 -16832.4 -180.6 30596.1 
-16640 30752.32 -16790 30885.38 -16491 30619.25 149.31 -16789.7 -133.1 30885.4 

-15593 31220.63 -15629 31417.37 -15557 31023.9 35.991 -15628.6 -196.7 31417.4 
-14226 31140.66 -14174 31333.85 -14278 30947.46 -51.73 -14174.5 -193.2 31333.8 

-13544 30798.79 -13544 30998.79 -13544 30598.79 0 -13544.5 -200 30998.8 

-13140 30992.98 -13177 31189.57 -13104 30796.39 36.775 -13177.1 -196.6 31189.6 
-10169 30760.41 -9996 30860.87 -10342 30659.95 -172.9 -9996.03 -100.5 30860.9 

-10775 29473.15 -10583 29527.47 -10968 29418.82 -192.5 -10582.9 -54.33 29527.5 
-9997 28962.7 -10040 29157.92 -9953 28767.48 43.48 -10040.4 -195.2 29157.9 

-8948 30664.88 -9058 30832.29 -8839 30497.46 109.42 -9057.83 -167.4 30832.3 
-5386 31163.41 -5400 31362.91 -5372 30963.92 14.159 -5400.23 -199.5 31362.9 

-811.6 31175.63 -629 31257.22 -994.2 31094.04 -182.6 -628.972 -81.59 31257.2 

-3620 28056.13 -3473 28191.26 -3768 27920.99 -147.4 -3472.95 -135.1 28191.3 
-1492 29661.13 -1461 29858.72 -1523 29463.54 -30.94 -1460.69 -197.6 29858.7 

-860.8 28766.45 -877 28965.79 -844.6 28567.11 16.213 -877.04 -199.3 28965.8 
343.63 31248.4 236.91 31417.55 450.34 31079.25 106.71 236.9118 -169.2 31417.5 

645.64 31250.4 786.88 31392.01 504.4 31108.8 -141.2 786.8775 -141.6 31392 
608.59 22104.28 748.48 21961.34 468.7 22247.21 -139.9 748.4836 142.93 21961.3 

Table II.2 Fuzzy Vertex Table for hole polygon 
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