
AN gruT'Ðä,K,XGÐN?' þÐCäSã&N-SKJPPTR.T' SYST'ÐES

,&NÐ KISÐ tF'p','ClV,,V,W SÐT'S F.tR
RÐSÐRV@KR. ,EruAå-,YSãS

Ðragan A. Savic

A Thesis
presenled to the University of Manitoba

in partial fu(rllment of
the requirementsfor the degree of

Doctor of Philosophy
in the Department of Civil Engineering

Winnþg, Manitoba

October, 1990

by



w

The author has granted an inevocable non-
exclusive licence allowing the National Ubrary
of Canada to reproduce, barì, distih¡te orsell
copies of his/her thesis by any means and in
any form or format, making this thesls available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial exfacts from it may be printed or
otherwise reproduced without hiVher per-
mission.

Bibliothèque nationale
du Canada

Service des thèses canadiennes

r5Bï{ Ø-3rs-71926-5

L'auteur a accordé une licence inévocable et
non exclusive permettant à la Bibliothèque
nationale du Canada de repioduire, prêter,
distribuer ou vendre des copies de sa thèse
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thèse à la disposition des personnes
intéressées.

Lauteur conserve la propriété du droitd'autzur
qui prot{7e sa thèse. Ni la thèse nides exhaits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

National Library
of Canada

Canadian Theses Service

Ottawa. Canada
KI A ON4

Canadä



AI{ INTETLIGEI{T DECISION-ST'PPORT SYSTM{

AIED TISE OE WZZY SETS FOR

RESERVOIR ANALYSIS

BY

DRAGAI{ A. SAVIC

A thesis subnrined to fhc Faculty of Craduate Studies of

tlte University of Marritoba in partial fulfillment of the requirenrerrts

of the degree of

D(rcTOR OF PEILSOPEY

o 1990

Permission has been granted to the LIBRARY OF THE UNIVER-

S¡TY OF MANITOBA to lend or sell copies of this thesis. to

the N.ATIONAL LIBRARY OF CANADA to rnicrolrlm this

thesis and to lend or æll copies oí the film, and UNIVERSITY

MICROFILMS to publish an abstract of rhis thesis.

Thc author res€ryes other publication rights, and neither thc

thesis nor extensiye extracts frorn it may be pnnteC or other-

wise reproduced without the author's wril.ten permission.



ACKNTWX-EÐGÐMÐNT'S

The author wishes to express his sincere thanks to his advisor, Dr. Slobodan

Simonovic, for his support throughout this research program and the preparation

of the thesis. His guidance, advice, encouragement, and thoroughness are greatly

appreciated. In addition, the author also thanks Dr. Caspar Booy, Dr. Ian Goulter,

Dr. Donald Burn, and Dr. Witold Pedrycz who gladly obliged to serve on his

advisory committee. Their valuable comments and helpfulness during the research

program and, equally important, during lectures and informal discussions, are

gratefully acknowledged.

A special thanks to the many students and faculty members, who were

constantly offering support and encouragement.

Financial assistance for this research was provided by Natural Sciences and

Engineering Research Council of Canada (NSERC), operating grant OGP0004416,

and is gratefully acknowledged.

Appreciation is extended to Dr. J. Stedinger for the source codes and data

for ILP and SDP models developed at Cornell IJniversity. The author also thanks

Mr. K. Reznicek for the data, reports, source code, and personal observations

about the EMSLP model developed at University of Manitoba.

Finally, to the author's family, a special note of thanks for their support and

encouragement.



.EBST'R.,ACT'

Use of mathematical models in water resource management has been

ptagued in the past by the lack of communication, understanding, and involvement

of managers in the model development. Interactive modelling methods give

managers an appropriate role in model use, calibration, and verification. This

thesis extends the idea of interactive reservoir modelling using the engineering

experr sysrem approach. An advisory tool, REZES, which is developed using this

approach, integrates formal reservoir models with reservoir expertise for making

both numerical and logical inferences. This integration required special fteatment,

programming skills, and representations. Most of the objective functions and

constraints employed in existing formal reservoir models, deterministic or

stochastic in nature, are clear-cut, easy to formulate, and non-controversial. The

presence of situations, characterized by lack of economic data and the involvement

of a human factor, do not permit easy and colrect system representations within the

limits ser up by existing models. With that difficulty in mind, a new approach is

proposed for handling the uncertainty that is not statistical or random in nature.

Fuzzy set theory is used to represent the imprecision which surrounds the

probabilities and utilities in chance-constrained reservoir operation modelling. A

new chance-constrained reservoir model is

using this approach. Finally, this new model

models within REZES.

theoretically developed and encoded

is added to the set of formal reservoir

ll
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The transformation of water regime by reservoir storage is used for

regulating natural streams instead of adjusting water demands to unregulated

random inflows. However, sizing, designing, and planning reservoir operation is a

very complex problem. Matching water management requirements with

topographic and hydrologic characteristics of water courses is a problem of

searching for "the optimum" as a function of natural, economic, social, and

environmental conditions and factors. Mathematical models have been used for this

purpose for several decades. These formal tools, which range in sophistication from

simple graphical techniques to complex computer programs, are used to help

understand water resource characteristics and improve water resource management

and planning activities.

A systems analysis approach and operations research provide the

philosophical framework and quantitative techniques, respectively, for handling

physical and socio-economic considerations within optimization processes. Use of

systems analysis in reservoir problems (as above) is, in this work, referred to as

"reservoir analysis". Over the past three decades the development and application of

mathematical models for design, planning, and operation of water resources systems

have attracted growing attention among engineers, planners, and managers. Many

successful applications of optimization techniques have been made in reservoir



srudies, mostly for planning purposes lYeh, 19851. These techniques range from

simple search and simulation to more advanced linear programming, dynamic

programming and non-linear programming techniques. Flowever, the complexity of

the techniques and models, developed under the assumptions of probabilistic

certainty or uncertainty, has proven to be a major obstacle for wider practical

application of the models. One of the obvious reasons fo¡ this complexity and lack of

acceptance is that some of the models have been developed for research purposes

without consultations with practitioners in the field. Lack of information about

available models, lack of communication and understanding, lack of manager

involvement in model development, and involvement of a subjective and value-

dominated human element are the most frequently cited constraints to effective

model use. Another not so obvious, but nevertheless present reason lLiebman,

I9761, is the presence of situations, in public systems decision-making, where the

concept of so-called "classical" probability, alone, does not describe reality

adequately.

Interactive water resources modelling, and model use coupled with use of

graphics, have been introduced as a way of dealing with such problems lLoucks et

al., 1985). This approach considers the interface between the model user and the

models being used. Interactive methods can assist the user in controlling model

calibration, model use, output form, and display. Integration of this approach with

the expert systems approach leads to decision support systems with the potential for

improving water resource management and planning.

2



N.2. RÐSEAAÇF{ OtsJECT'TVÐS

The intent of this work is to improve reservoir modelling and model use

utilizing an integrated approach to developing engineering expert systems

lsimonovíc and Savíc,19891. The approach, called the engineering expert system

approach, may suit the needs of managers and planners better than classical expert

systems or mathematical modelling alone. The main advantage of the approach over

the pure expert system approach, or use of formal algorithmic routines alone, lies in

its ability to combine both methods and better utilize their individual potentials for

improved modelling of water resources related problems.

By adopting some of the ideas of interactive reservoir modelling and the

engineering expert system approach, it was possible to combine/incorporate formal

reservoir optimization models, experience in their use, heuristics, and common

rules-of-thumb in an intelligent decision-support system (IDSS) named REZES. It

will be shown that research efforts were concentrated on synthesis and structuring of

the modelling knowledge necessary for the proper formulation, selection, and use of

different mathematical models within REZES. The system is intended to help a user

to select and use the proper formal (single-multipurpose) reservoir model(s) to

improve the accuracy and effectiveness of information available to managers,

decision makers, and researchers. REZES uses procedural and declarative (logic)

programming methods, rather than using only one of them, to make both numerical

and logical inferences.

Formal optimization models are the essential tools of systems analysis. Some

representative reservoir optimization models, developed by different researchers,

form a basis for reservoir sizing and short- and long-term planning optimízation



within REZES. These models are considered suitable for describing fairly complex

aspects of physical systems and problems being modelled. Crucial elements of each

model are a system performance indicator, i.e., the objective function, and a set of

system constraints and boundary conditions. Depending on the purpose of the

reservoir, different economic or social utility objectives may be quantified and

integrated into a single objective function or presented through system constraints.

In spite of their strengths, there are concerns that models often display

critical gaps in interpreting existing information and knowledge fRogers and

Fiering,1986l. Most of the objective functions and constraints employed in existing

formal models, whether deterministic or stochastic in nature, are clear cut, easy to

formulate, and non-controversial. There is some doubt about the extent to which

these models have been as useful as anticipated in adequately representing reality.

Situations in public systems decision-making, characterized by a lack of economic

data and the involvement of a human factor, do not permit easy and correct system

representations within the limits set up by existing models. It will be shown by

example that even using the expert system technology as a way to improve

modelling, as suggested here, some informational gaps still exist and cannot be

explained directly by conventional models. To counter this, a new approach is

proposed for handling uncertainty that is neither statistical nor random in nature.

Fuzzy set theory is used to represent the imprecision which surrounds the

probabilities and utilities in chance-constrained reservoir operation modelling. A

new chance-constrained reservoir model is developed using this approach and has

been added to the set of formal models within REZES. The same reservoir problem

used to illustrate the functionality of the developed tool is then used to show the

merits of the proposed fuzzy-set-based methodology.

4
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This work emphasizes reservoir analysis through mathematical modelling

and model use. The ultimate goal of the analysis in this thesis, is to identlfy, analyze,

and provide appropriate solutions for reservoir design, planning, and development

of operation plans and policies for single-multipurpose reservoirs'

A general review of major research contributions is presented in Chapter 2.

This review includes reservoir management, mathematical modelling, and methods

of analysis; advances in the artificial intelligence field with emphasis on the potential

of artificial intelligence for water resources management applications; and the

treatment of uncertainty and imprecision in water resources optimization with a

special overview of fuzzy set theory and its applications to water resources systems.

. In Chapter 3, theoretical considerations are established for the development

of an intelligent decision support system for reservoir analysis. The expertise

necessary for the development of REZES and the complex issues involved in

reservoir analysis are also addressed. Reservoir analysis is introduced as a non-

structured problem which can be treated using systems analysis and expert systems

technology. In addition, specific areas and phases of reservoir analysis, where

declarative and procedural components may outperform the present combination of

human efforts and conventional programs, are identified and analyzed.

The development issues, from knowledge acquisition to organizing and

representing reservoir analysis knowledge and expertise, are presented in Chapter 4.

The structure and programming efforts necessary to enhance IDSS to include the

identified reservoir analysis phases, are described. The formal mathematical



optimization models for reservoir analysis, which constitute the procedural

component of REZES, are then briefly presented. Finally, an illustrative example

presents some of the potential benefits of the enhancement. As well, some unresolved

problems related to the formal models are discussed. The example demonstrates the

need for treating imprecise conceptual phenomena in modelling and decision

making.

Chapter 5 gives an introduction to the theory of fuzzy sets and discusses

necessary principles for the development of a fazzy-set-based decision making

model. These theoretical principles provide a mathematical framework for

studying imprecise conceptual phenomena in modelling and decision making. The

chapter presents a transition from rigorous, quantitative, and precise modelling to

modelling which deals with vague, qualitative, and imprecise concepts.

The theoretical development of an original fuzzy-set-based methodology for

selecting the risk levels in chance-constrained reservoir operation modelling is

described in Chapter 6. Three different approaches to modelling of decision

making in afuzzy environment are investigated and'presented. These are followed

by an application of the developed model to the Gruza reservoir in Yugoslavia.

Detailed results with explanations and sensitivity analysis are also presented.

Summary, conclusions, and recommendations for future research are

included in Chapter 7.

6
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Ï,TT'ER,&TUR.E R.EVãEW

Considerable research has been performed in the area of reservoir

operations and design. Most of it is concerned with various systems analysis

techniques utilized in and by the formal reservoir models. The emphasis has been

on developing models which are more complex, which describe reality in a more

satisfactory manner, and which require more computation. In this context,

computers have been widely used to assist with numerical computations only.

Limited utility of formal models and recent developments in artificial intelligence

have encouraged research which is leading to an expanded role for computers in

reservoir analysis.

This chapter reviews the various approaches to single reservoir operation

and design modelling, the treatment of uncertainty and imprecision within formal

reservoir models, and the use of artificial intelligence advances and potentials in

water resources.

MATF{EMATTCAL MOÐET-LTI\G AI{Ð AN,AI-VSTS

In general, reservoir stolage capacity may be divided into three

components: (i) flood control storage capacity; (ii) active storage capacity; and (iii)

dead storage capacity. These three components are usually determined separately

and then added together, thereby constituting the total capacity of a reservoir. The



following discussion of existing design models will be limited to several methods

for estimating active storage requirements.

In addition to reservoir design, an optimal operating policy is needed for

proper management of a reservoir system. The design of a reservoir and the design

of its subsequent operation are interdependent. A separate review section considers

mathematical models applied to reservoir planning and management.

Real-time decisions, regarding reservoir releases, for various purposes,

often need to be made within a short time period. The last group of mathematical

models discussed herein is concerned with these reservoir problems.

2.L"L. Single Reservoir Ðesign Models

Before digital computers were introduced, reservoir design efforts were

generally restricted to the group of, so-called, critical-period methods. These

methods find the required reservoir active capacity to be the difference between

the water released from an initialty full reservoir and the inflows, for periods of

low flow. The mass diagram analysis lRippl,1883l appears to have been the first

rational method for estimating the amount of storage required to meet a sequence

of specified reservoir releases. The original method does not take into account

storage-dependent losses nor does it provide an estimate of the storage

conesponding to a given probability of failure. Alexander Í19621augmented the

critical-period approach by developing a series of drought curves for different

probabilities of occurrence. From these he derived generalized storage-regulation-

probability curves. A modification of Rippl's procedure, the sequent-peak



algorithm fThomas and Burden,1963) resolves computational problems with the

Rippl procedure but fails to take the probability of failure into account. Simonovic

t19851 developed and applied a model based on the sequent-peak procedure and

behaviour (simulation) analysis. The changes in storage content of a finite

reservoir, using a mass storage equation with different reliability and vulnerability

criteria, are calculated. Recent|y, LeIe t19871 presented two improved algorithms

based on the sequent-peak procedure that account for both storage-dependent losses

and "less than maximum" reliability of water supply.

The second group of models, probability matrix models, are based on

Moran's theory of storage t19591. Moran derived an integral equation which

relates the probabitity distribution of the inflow and the specified reservoir release

rule to the probability distribution of the storage. Discretizing time and volume

variables, reservoir states can be expressed in a transition matrix. The main

limitation of this type of model is the assumption of independent inflows. Gould

t19611 modified Moran's approach to account for both seasonality and

autocorrelation of monthly inflows. This procedure, however, does not account

for annual inflow autocorrelation nor for droughts longer than one year fHaktanir,

19891.

Mathematical programming methods applied to the reservoir sizing

problem form the basis for the third group of models. These models are based on

mass-balance or continuity equations for routing flows through the reservoir and

have the advantage of easy incorporation of storage-dependent losses. Loucks et al.

t1981, pp. 339-3531 presented two yield models for reservoir design and operation

based on the linear programming algorithm. These models, the complete and

9



approximate yield model, arrive at the reservoir storage capacity necessary to

provide yield with certain reliability for a given streamflow sequence.

These three groups of models are used mostly to screen preliminary

estimates of reservoir capacities needed to meet specified release and reliability

targets for water supply. Although they involve the same basic techniques, final

design procedures are more complex and time-consuming. In practice, the use of

most of these models has been combined with the use of synthetic streamflow data

and detailed statistical analysis of the results. A recent study by Savíc et al.ll989l

showed that the decision of the appropriate streamflow generation scheme may

significantly influence the identified storage capacity.

2.'i,.2" Reservoir Ï-ong-Term Operation Flanning Models

In the optimum design of a reservoir system, determination of the optimum

size and the optimum operating rules are necessary for the design and the

subsequent use of the reservoir. The subproblem of planning the optimum mid-

and long-term operation of a reservoir has been of major concern in the past

twenty years and is the subject of this section. The models discussed here are those

which are predominantly based on a monthly time period. In general, there are two

basic approaches to the rational planning of reservoir release policies:

deterministic and stochastic. In order to safeguard against extreme events, the

model used to select the reservoir operating policy should include the stochastic

nature of hydrologic parameters. However, some problems are still solved

deterministically. Operations research quantitative techniques, such as linear

progtamming, dynamic programming, nonlinear plogramming, and simulation,

10



have been used within operation planning models to handle physical and socio-

economic considerations of optimization problems lYeh,1985l. The following is a

review of the most representative models and studies based on these techniques.

Linean Frogramming Models

Linear programming has been widely used in water resources optimization

studies. It has become quite popular due to its ability to handle large numbers of

variables and constraints and to provide global optimal solutions to problems

which can be formulated to match the technique. Dorfman 11962l used linear

programming for combined optimization of reservoir storage capacity and

reservoir operation. His model considers the stochastic nature of inflows and treats

reservoir capacities and target releases as decision variables. Loucks tI967l

demonstrated how linear programming could be used to determine reservoir

releases and the allocation of water to various uses. The management objectives

considered were related to maximization of total expected benefits, minimization

of total expected losses, and minimization of total expected deviations from each

user's target.

Various lineaúzation techniques are available for nonlinear problems to

make them solvable using linea¡ programming. However, it has to be noted that the

solutions identified with the application of linearization techniques are not

guaranteed to yield the global optimum. Thomas and ReVelIe U9661employed

linear programming to determine optimal operating policies for the High Aswan

Dam. considering benefits from hydropower and irrigation. Recent works by

Grygier and Stedinger ll985l and Reznicek and Simonovic t19901 present the

application of successive linear programming to optimizing hydropower

generation. The first algorithm maximizes the value of energy generated over the
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planning period by an isolated hydropower system and the expected future benefit

from the warer remaining in the reservoir(s) at the end of the planning period. The

second model is developed for an interconnected hydro utility with the objective of

maximizing the energy expofl benefits, while minimizing the costs of satisfying the

domestic power demand over the planning period.

Manne lL962l also adapted linear programs to the stochastic reservoir

problem. He used a Markov process optimization with a hypothetical single

reservoir example. Loucks t1968] developed a stochastic linear programming

model for a single reservoir subject to random, serially correlated inflows. In his

algorithm the joint probabilities of inflows and storage values are used to

determine the optimal operating policy and the optimal "release joint probabilities"

(as definedby Loucfrs [1968] and Loucks et al., t19811). The applicability of the

model in real situations is limited somewhat by the dimensionality problem

associated with this approach. Stochastic prograrnming with recourse, sometimes

called two-stage stochastic programming, is another variation of linear

programming applied to the stochastic case. This modelling approach handles

random variables in the constraint set of a linear probl.-. The solution is obtained

by making decisions in multiple stages (usually two) lDorfrnan, L962).

Chance-constrained programming is another form of stochastic linear

programming model. It is based on assigning fixed probability levels within the

constraint set. These probability levels define the percentage of time that specified

storage and/or release targets, defined by the constraints, can be violated. In the

reservoir management context, chance constraints relate inflows (random

variabies with known distributions) to release and storage (random variables with

unknown probability distributions). The defined stochastic problem can then be
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converted to a deterministic equivalent, if the cumulative probability distribution

function of the inflow is assumed to be known. The application of the approach to

reservoi¡ system optimization was initiated by ReVelIe et al. t19691. Since then,

many modifícations, extensions, discussions and evaluations, of single- and

multipte-decision rules have been reported for different single- and multi-

reservoir model formulations. A different approach to use of chance-constrained

programming in reservoir design and operation, which does not utilize the linear

decision rule, has been introduced by Curry et al. U9731. This approach can

include releases in the objective function and can include stochastic as opposed to

deterministic demands in problem formulation. The method used by Curry et al.

tLgi3l converts a probabilistic constraint into an equivalent deterministic linear

constraint by using the analytic convolution integral procedure. Simonovíc 119791

applied the iterative convolution algorithm to the discretized inflow probability

density function, thereby solving problems associated with integrating some

complicated probability density functions. A feasibility analysis of chance

constrained programming models for reservoir design and operations is presented

in ttre papor by Loaicíg¿ [1988].

Colorni and Fronza 11916l have employed reliability programming to find

optimum reliability levels and reservoir operating rules, simultaneously. This

approach is based on an extension of the chance-constrained formulation which, in

their work, considers constraint reliabilities as decision variables' Simonovíc and

Marino [1980, 1981] applied reliability prograrnming to a multipurpose reservoir

and developed a methodology for estimating risk-loss functions, associated with the

frequency and severity of faitures in reservoir operation.
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Ðynamic Frognamming Models

Dynamic programming is a sequential decision-making procedure in which

the optimization is done in steps (stages) employing a recursive equation. The

procedure decomposes a multistage problem containing many related variables

into a set of one-stage problems, each containing fewer variables. In optimizing

reservoir operation by dynamic progranìming, the stages are the time periods and

the state variables, which represent the state of the reservoir, are the storage

volumes in the reservoir. The decision variables are the volumes to be released

from the reservoir at each stage. Dynamic programming is particularly suitable

for handling nonlinear problems of water resources systems. This technique can be

used for problems having nonseparable objective functions. Sniedovích [1989]

combined dynamic programming and c-programming techniques to alleviate the

so-called "curse of dimensionality", caused in this case, by nonseparable objective

functions.

Hatt et al. tl968l developed an algorithm using the deterministic dynamic

programming technique to obtain a release policy for a multipurpose reservoir

system. Given the initial state of the system, price schedules, and sequences of

critical period inflows, this model arrived at a set of release decisions. To reduce

the amount of computation, Hall et al. t19691 adapted incremental dynamic

programming to reservoir-operation problems. The generalization of incremental

dynamic programming is systematized, and referred to as discrete differential

dynamic programming, by Heideri et al. t19711. This procedure starts from an

assumed control state trajectory. The recursive equation is then used to examine the

neighbouring states around the initial trajectory. If any neighbouring trajectory

gives a better value of the objective function, it then replaces the initial trajectory,

and the procedure continues until convergence takes place. This technique uses an

t4



iterative method, where the grid becomes progressively finer, until the desired

accuracy is reached. Unfortunately, the technique does not guarantee that the

global optimum will be found.

Parametric dynamic programming is a similar method. Its objective

function is approximated by a multi-variate polynomial function over the entire

state space. By defining the objective function in this way the burden of carrying

over the information from one stage to another in tabular form is alleviated. To

alleviate the "curse of dimensionality", Larson and Keckler Ll969l have applied a

technique which decomposes a multiple reservoir dynamic programming problem

into a series of subproblems. The technique is called incremental dynamic

programming with successive approximations. This technique is particularly

useful for solving stochastic problems which can have large numbers of state

variables lTakeuchi and Moreau,19741. Opricovíc and Djordjevic 11916l proposed

a three-level hierarchical deterministic algorithm for reservoir operation planning

based on the dynamic programming procedure. The algorithm considered direct

and indirect water users. The time distribution of available water was optimized on

the first level; distribution to direct users, on the second level; and water was

allocated to indirect users on the third level. An extensive list of dynamic

programming computational procedures is given in Esogbue U989).

In most reservoir operation problems, the system inflows are not known in

advance. Little t19551 introduced a stochastic dynamic programming model for a

mixed power-generation system that used inflow data described by probability

distribution. The model identified an optimal water-use policy based on the present

reservoir content and the inflow in the preceding period while it was minimizing

the expected cost of meeting the power demand for the remainder of the planning
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horizon. Butcher ll97Il presented an algorithm based on the storage volume and

the reservoi¡ inflow in the preceding period. The recursive equation was

developed, using both the discounted and undiscounted approach. The model was

applied, using different interest rates, to maximize returns from irrigation,

hydropower generation, and recreation.

A different approach to reservoir optimization, using a nonstationary

stochastic dynamic model, was employed by Bras et aI.ll983l. This approach used

a, so-called, real-time adaptive closed loop control scheme which made use of

multilead real-time streamflow forecasts in reservoir operation. Stedinger et al.

[1984] improved this model by employing efficient flow forecasts as hydrologic

state variables in their predictive stochastic dynamic programming model. A study

by Goulter and Tai ll985l reported on the effects of the number of storage state

variables in stochastic dynamic programs on the estimated increase in the objective

function (annual gain) and computational efficiency. Another model by Kelman et

al. L19901 employed storage and forecast as state variables using a sampling

stochastic dynamic programming approach. It utilizes a large number of generated

streamflow scenarios to which conditional probabilities are assigned using a

streamflow forecast. Unlike the implicit stochastic optimization approach, this

model derives optimal decisions by considering all of the streamflow scenarios

simultaneously, instead of using only one at a time to optimize reservoir operation.

The large number of state variables in stochastic dynamic programming

contributes to the computational barrier which is often found in deterministic

multi-reservoir problems.
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tthen Resenvoin ûpenating Models and Studies

tsesides linear programming and dynamic programming models, used

separately for reservoir management purposes, there have been some attempts

based on the combined application of the two techniques. Becker andYeh lI974l

applied a linear programming model to obtain a set of alternative operating

policies and a dynamic programming model to subsequently select a single optimal

policy. The method was applied to the California Cenral Valley hoject to derive

optimal release control for a multiple reservoir system and hydropower utility.

Another mathematical programming approach, nonlinear programming,

has been adapted for use in reservoir optimization. The consumption of large

amounts of computer storage and time have made the application of nonlinear

programming methods to the operation of reservoirs and reservoir systems

impractical lYeh,1985l. Despite their capability to handle nonseparable objective

functions and nonlinear constraints, these models have not been used as often as

linear or dynamic programming models. Rosenthal [1981] reported on a study

where a nonlinear network algorithm was used to optimize the benefits from a

multi-reservoir hydroelectric power system for the Tennessee Valley Authority.

He used deterministic inflows in conjunction with a nonseparable, nonlinear

objective function.

Klemes ll979l reminded water resource researchers of the, so-called,

"stretched-tread" method based on Rippl's storage mass-curve analysis. He

concluded that for the deterministic formulation of the problem both linear and

dynamic programming solutions converge to the same optimal reservoir policy as

the method above. However, he unjustly kept both mass-curve analysis and the

stretched-tread method from being classified in the systems analytic approach.
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Simulation is a mathematical modelling technique which relies on trial-and-

error to identify near-optimal solutions. It enables a decision-maker to examine the

consequences of different operating scenarios for an existing, or future, system. As

with optimization models, simulation may be used in the deterministic or stochastic

manner. Loucks et al. [1981,pp. 2l-22] suggested the combined use of

optimization and simulation techniques. In this context, simulation models may be

used to n¿urow down the search for a global optimum by identifying plans that may

be close to it. At present, the general tendency is to incorporate an optimization

scheme into the simulation model to take advantage of both approaches.

2"L.3" Reservoir Short-Term Operation Flanning Models

Real-time (short-term) reservoir operation models determine optimal

reservoir releases by using very short time steps, usually daily or even hourly

increments. The performance of such a model depends greatly on a forecasting

algorithm and forecasted information obtained. Mobt of the previously mentioned

mathematical programming techniques have been used, within either a

deterministic or a stochastic framework, for real-úme reservoir operation models.

Houck [1982] developed the probabilistic balancing rule model for the

optimal real-time (daily) operation of a reservoir system used both for water

supply and flood damage mitigation. The model defines the optimal period-to-

period operation decisions as those which maximize the non-exceedence

probability values for the respective control variables, such as storage volumes or
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flows. Nzewí and Houck tl9871 showed that it is possible to extend the approach to

solve reservoir operation problems which involve hydropower generation.

In contrast to probabilistic balancing-rule models, the optimal decisions

obtained from a penalty-based model are those which minimize the total assessed

penalty (short-term losses) for non-ideal operations. This group of models uses

economic criteria to derive optimal short-term operation of a reservoir system.

Datta and Burg¿s [1984] examined the importance of penalty functions (loss

functions) and inflow forecast errors for effective short-term operation of a single

multipurpose reservoir. They concluded that the actual losses, incurred, decrease

substantially as the reliability of inflow predictions increases. Can and Houck

tl9851 pointed out problems, in short-term reservoir operation modelling, due to

imperfect forecast information and the use of imperfect river routing models.

In general, forecasts, using streamflow and other input data, deteriorate

with increase in forecast length. On the other hand, with perfect forecasting (the

use of actual historical data as inflow predictions) the longer the operating horizon,

the better the reservoir performance that can be expected. With this in mind,

Simonovic and Burn I19891 proposed an improved modelling procedure that

explicitly utilizes the trade off between forecast reliability, which decreases with

the increase in forecast length, and the improvement in reservoir operation

attributable to the longer inflow forecast. The model incorporates (i) a Kalman

filtering technique within the forecasting algorithm; (ii) a linear programming

real-time reservoir operation model which attempts to minimize cumulative

penalties due to deviations from storage and release targets; and (iii) a multi-

objective compromise programming algorithm, which minimizes the inflow
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forecast error variance as well as the total penalties associated with the reservoú

operating horizon.

The combined use of short- and long-term operation models has been

reported in the literature lYeh,1979). Due to different objectives in the long- and

short-term, the two types of models are run sequentially to account for the

differences. Outputs from the first model are used as inputs into the next model, in

an iterative manner, with updated streamflow forecasts.

2.2. TREAT'MENT OF' UNCERT'ATI*ITY WTTF{TIN F'C}RM, T.

R4OÐELT-XNG AND ANALVSTS

Previous sections indicate that, in general, and according to the nature of

input data, mathematical models may be classified into:

(i) deterministic models, in which parameters are considered to be known or

fixed numbers for any set of conditions, and

(ii) stochastic models, in which data are expressed as a range of probable

values.

In the case of reservoir planning and management, deterministic models

which use the historical critical period or mean seasonal inflows to arrive at

optimal decisions, do not encounter the hydrologic uncertainty associated with

inflows or uncertainty in demand variability. Although, such models are very
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simple and easy to use, they may not lead to satisfactory results. Post-optimal

analysis must follow deterministic optimization if the variability is to be

incorporated in the analysis. Generally, these models represent physical system

characteristics in more detail than stochastic models. However, simplifying the

assumptions about reservoir inflows used for formulating them may result in

overestimated benefits or underestimated costs and losses.

Stochastic procedures safeguard against the possibility that reservoir storage

capacity may become insufficient during a drought longer than the historically

critical one. They also take into account the possibility of experiencing flood

conditions not observed in the period of record. Any model used to design a

reservoir and select its operating policy must specifically incorporate the stochastic

nature of inflows and demands. In order to do so, two stochastic approaches may be

used: (a) explicit, and (b) implicit stochastic optimization. The explicit stochastic

approach uses the probability distributions of streamflows at each stage directly in

the stochastic optimization. Implicit stochastic optimization utilizes samples drawn

in data generation procedures (synthetic inflow data) ás input data for a

deterministic reservoir optimization model. The optimum release policies,

obtained for each generated sequence, are then studied through the use of multi-

variate analysis. While some researchers maint¿in that a stochastic formulation is

necessary for adequately addressing reservoir studies fTurgeon, 19801, others

argue that, in some cases, deterministic models offer increased flexibility and

reduced computer time and memory, without sacrificing much in performance or

reliability, especially in the case of multi-reservoi¡ studies lGrygíer and Stedinger,

19851.
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2.2"3.. Adaptive and Fredictive Methodolosies

Each of the outlined approaches, deterministic or stochastic, may be

augmented using an adaptive methodology, in which new information is

incorporated into the decision problem as it becomes available. Labadie 11969l

used Bayesian updating as a form of adaptive reservoir control. Closely reiated to

the adaptive approach, is work that has been done in the forecasting field and its use

in determining optimal operation of a reservoir system. DagIí and Miles t19801

used adaptive-planning methodology for deriving a reservoir-control policy with a

one-year time horizon. They utilized long-range inflow and demand forecasts for

determining releases for the first month only. At the end of the month, a new

forecast was generated and a new conffol poticy was determined for the actual state

of the system, at the end of the month, as a starting condition.

The forecasting procedure developed by Curry and Bras [1980], which uses

a multivariate autoregressive forecasting model for the Nile basin, was adopted by

Bras et at. Ll983l and used within an adaptive planning model. Using results of the

stationary reservoir control problem as boundary conditions, they used dynamic

programming to solve a finite horizon optimization problem using the multi-lead

forecasts of reservoir inflows. This was an attempt to incorporate nonstationarity

into the solution procedure.

Stedinger et al. t19841 discovered some inconsistency in this adaptive

methodology, namely, that the use of all available flow information within the

model requires the solution of a stochastic dynamic programming model of large

dimensions. As an improvement they suggested employing flow forecast as a one-

dimensional hydrologic state variable in, what they called, a predictive model. The



improvement in the High Aswan Dam operation, observed with the predictive

policy, shows the advantage of the adaptive methodology.

2.2"2. Fuzziness; Imprecision of Another Kind than Stochasticity and

Randomness

The abundance and sophistication of all approaches, methods, and models

available to water resources analysts, planners, and managers, implies that an

appropriate model may be found for virtually every type of water resource

problem. A study by the Il.S. Office of Technology Assessment ÍOTA, 19821

revealed the high, current and potential, use of formal models by Federal and State

agencies which "expanded the Nation's ability to understand and manage its water

resources". However, as presented by Rogers and Fiering [1986], there are some

problems that existing models are unable to address. These problems are related to

vagueness or disagreement regarding objectives and constraints and to estimation

error in model parameters. Even a study reported by AustÌn [1986], which offered

a much more favourable view of models used in water resource management,

acknowledges these problems.

Hipel [1981] recognizes the necessity for inclusion of, "nonquantitative OR

(Operatíons Research) techniques" within formal models, mainly because

information about the real world is often imprecise, ambiguous, difficult to

interpret, and is not open to analysis by quantitative OR methodologies. Situations

like these, where concepts of formal models and "classical" probability, alone, are

not adequate to describe reality, are relatively common in engineering practice.

Situations where some question arises about exactness of concepts, correctness of
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statements and judgements, degrees of credibility, etc., have little to do with

probability of occutrence, the fundamental concept of the classical probabilistic

framework. These situations warranted introduction of a fuzzy set conceptLZadeh,

19651 as a mathematical theory of vagueness. The theory of fuzzy sets attempts to

provide a device for modelling a qualitatively different kind of uncertainty or

imprecision, one which is not covered by any of the classical theories. This is

modelling of inexactness, ill-defînedness, vagueness, or simply: fuzziness. The key

concept of fuzzy set theory is the membership function, which represents,

numerically, the degree to which an element belongs to a fuzzy set. It should be

noted that, when the quantity of available data is limited, Bayesian statistical theory

provides another alternative to the classical approach. Bayesian relationships, that

systematically combine new data with previous information, can be developed. The

previous information can be either subjective or objective in nature. However, a

large number of correlated variables can make the development of Bayesian

relationships exfremely complex.

Many methodologies, based onfuzzy set theory, have been developed for

decision-making models which use quantitative'and qualitative information

simultaneously. Fuzzy mathematical programming was introduced by Tanakn et al.

U9741with extensions to some of the classical concepts in linear programming.

The new approach was formulated for cases where coefficients need not be known

precisely. Zimmermnnn ï19761clearly explaíned the idea of decision making under

fuzzy conditions. He argues that a decision in afuzzy environment can be viewed as

the intersection of. a fuzzy constraint and a fuzzy objective function. Prade [1980]

adapted ordinary operations research algorithms treating PERT, assignment,

fravelling salesman, and transportation problems, which are appropriate to precise

data, to datathatÍìre not precisely known. Terano et aI.ll983l and Esogbue t19831
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showed that dynamic programming, aS a tool for planning and management, can be

tailored to admit human interpretation and interference. This demonsfi'ation was

performed using fazzy set theory and the introduction of several new concepts:

fuzzy state, fuzzy sfrategy, fuzzy constraints, etc.

In spite of the frequent and rather general claim of its applicability, little

research in fuzzy sets has been directed toward solution of practical engineering

problems. The predominant trend in early studies was toward examples sought out

to show the capabilities of fuzzy set theory rather than to deal with real problems of

application LKickert,1978l. However, the bibliography of fuzzy set application by

Maiers and Sheríf119851 and the book by Kaufman and Gupta t19881 subsequently

revealed considerable improvements in application of fuzzy mathematical models

to engineering and management science.

Most of the applications of fuzzy set theory to water resources are related to

multi-objecrive studies and conflict analysis. In his analysis of the Poplar River

Basin conflict, Hipel t19811 advocates the use of fuzzy set theory, coupled with

multi-criteria modelling, for a conflict analysis of the dispute over of water

allocation . Esogbue and Ahípo l1g82l developed a fiizzy-set-based model for

measuring the effectiveness of public participation in area-wide water-resources

planning. An heuristic algorithm for clustering the membership functions of the

basic factors in the effectiveness model is also presented. Dubots t19831 analyzed

the problem of optimal network design. As the problem belongs to the

combinatorial field and an optimal solution is impossible, with practical-sized sets

of data, he concluded that fuzzy set theory provides a basis for a more efficient

methodology. The paper claims to present a methodology to provide a procedure

for approximate network generation. Chuang and Munro [1983] discussed several



ways in which imprecision may be incorporated into a linear program. The work

includes comparisons of proximate programming, inexact programming, and

fuzzy programming approaches. A simple illustrative example concerned with

water quality is reworked using these techniques.

Bogardi et al. t19831 and Nachtnebel et aI. tl9861 have used fuzzy s,et

membership functions to represent environmental objectives in a multi-objective

framework. The first study concerns the conjunctive planning and operation of

water and mineral resources extraction in the Bakony region of Hungary. The

second work evaluated a small hydropower project with respect to both economic

and environmental objectives. The existing hydropower scheme located on the

Erlauf river (Austria) was selected as a case study. In their recent work, Bogardi et

al. t19891 proposed a joint probabilistic and fuzzy set approach to treating

stochastic uncertainty and imprecision in risk analysis.

2.3" ARTTF'TC{AX, ThITEX,LTGÐNÇE ANT} WAT'ÐR RÐSOURCÐS

M,Al*IAGEMENT'

The previous two sections presented a review of mathematical models and

their use in the water resources field. The emphasis was mainly on new model

formulations, improved solution techniques, improved computational efficiency,

and addressing real situations within the formal models. However, the most

frequently encountered problems relate the lack of communication between model

users and developers, Iack of documentation and support services, and involvement

of a subjective and value-dominated human element fLoucks et a1.,1985; Austín,

19861.
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As a consequence of emphasis on the development of progressively more

sophisticated, more complex, and bigger models, their acceptance by planners and

managers is limited. This rend prompted a new way of thinking about research

lLoucks et a1.,19851:

We will need, and we will develop, better models, of course, as our

knowledge of the system we model increases. However, equally important,

\ile must devote some attenlion úo the interface between the model user and

the models being used. More effective communication is essential for

increased effectiveness in model use.

Interactive water resources modelling and model use, as proposedby Loucks et

qL U985), gives the user an appropriate role in controlling model calibration,

model use, and output display. G:oulter [1990] identifies yet another problem, i.e.,

the lack of suitable "packaging", âs the primary cause for the non-acceptance of

optimization models. Goulter acknowledges also that "work is needed in packaging

these optimization models before they can be used in practice". However, interface

and "packaging" problems are addressed only marginally in this thesis. It

concentrates on synthesis and structuring of the modelling knowledge necessary

for the proper formulation, selection, and use of different mathematical models. In

his summary, Goulter ll990l argues that "due to the nature of the packaging

problem it appears that the packaging issue should be addressed by software

experts rather than academic researchers who have formulated optimization

algorithms". This diverges from Loucks' contention [Loucks et a1.,1985] and the

one used in this work, with respect to the role of academic researchers (engineers)

who have formulated and/or understand optimization algorithms. The



development of a useable and marketable system requires the multidisciplinary

approach, i.e., involvement of both engineering and software experts. But

communication problems between the two groups, and the complex nature of

engineering decision-making, require engineering experts to collect and structure

the relevant engineering knowledge. Recent developments in Artificial Intelligence

(AI) now make it feasible to expand, not only the role of computers in reservoir

analysis, beyond numerical calculations, but to expand the role of academic

researchers in improving the use of the models which they understand the best.

This approach is demonstrated to be a possible direction for both research and

practice in water resources [Sìmonovtc,1990; Simonovíc and Grahoyac, 1990;

Arnold and Rouve, 1990; and Fedra, 19901.

The availability of inexpensive powerful hardware has enabled a major

breakthrough in the field of AI, namely the introduction of expert systems (ES).

These computer programs are capable of solving or helping to solve complex

problems, in a manner similar to what a human expert would do if given the same

tasklWatermen,l936l. Originally, engineering AI applications were primarily

oriented toward study of vision perception, speech recognition, and movement

(robotics). The science then began to address some other problems, gradually

evolving into one of the more fertile research areas in engineering fKostem and

Maher,1986; Maher,1987l. The importance of AI lies in the fact that decision-

making in engineering practice requires a high level of expertise, encompassing

experience, judgment, heuristics, imagination, inventiveness, rules-of-thumb,

etc.,- in short, a certain level of "intelligence".

There have been successful water-resources-related expert systems

applications repofied in the literature [Simonovíc and Barlishen,l9S];Weígkrícht



anlWinkelbauer,l9BT; Simonovíc and Savic,1989l. From these publications, it is

clear that the basic engineering tasks of planning, design, and operations

management are addressed by the researchers in several water-resource

suMisciplines. A detailed literature review of expert systems in environmental and

structural engineering can be found in Ortolano and Steinemann 119871 and Maher

[1987] respectively, and will not be covered in this thesis. A review of some

attempts in developing expert systems in water resources follows.

F{ydrology

One of the first of such attempts, HYDRO, is an expert system designed to

help determine appropriate parameters of physical characteristics of a watershed

ISRI International,l9Sl]. Recommended parameter values serve as input to the

Hydrocomp HSPF simulation program, for evaluating various hydrological aspects

of the region being analyzed. The system is intended to provide advice comparable

to that of an expert hydrologist. Being one of the first expert systems in water

resources, HYDRO was developed for a mainframe environment using

INTERLISP. With the effect of the microcomputer "revolution" of the last decade,

more expert systems are oriented toward the mini or micro, i.e., work station or

personal computer (PC), environment.

A computer-based consultation system, FLooD ADVISOR lFayegh and

Russell,1986l, has been developed to provide advice about the most suitable flood

estimation technique. The advice is based on the availability of sfeamflow and

rainfall data for the location being investigated or for nearby sfeams in the region.

A hybrid-type expert system, wMS fPalmer and, Tull,1987],has been developed

for the opposite problem, drought management planning. Integration of

procedural computing, a linear programming model, declarative computation
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model, an expert system shell, and graphics is used to enhance their individual

capabilities. Along the same lines, an expert system SID, has been devetoped fo¡ the

Seattle Water Department, offering guidance for initiating water-use restrictions

during drought conditions fPalmer and Holmes, 19881. The expert system

environment is used again for combining the advantages of linear programming,

database management, and computer graphics. Níshida et al. U9901 presented an

expert system, ESCORT, that guides water managers through the development of

operational strategies for reservoir management by North West Water

(Warrington, England) during droughts. ESCORT is a protorype rule-based

system capable of interpreting control curves and selecting an appropriate

management response using engineering expertise acquired from human experts.

The EXSRM computer system lEngman et a1.,19861 is designed to provide

assistance in estimating parameters of a snowmelt-runoff simulation model (SRM).

SRM needs satellite data and parameters that are not directly measurable. EXSRM

is designed to provide the expertise necessary for estimating the appropriate values

for these parameters. An expert system for a similar purpose has been developed to

automate the calibration of the runoff block of the EPA's Storm Water

Management Model (SWMM). It assists the user in the initiai estimation of the

parameter values, building the SWMM input files, interprets the results and

suggests adjustments in the value of significant parameters [Baffaut and Delleur,

19891. An early version of the system was written in the programming language

PROLOG, but the final version was developed using an expert system shell KES

written in C. The use of the shell allowed developers to concenrate on the

development of a rule base without being concerned with programming search

stategies.
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The information about the following two expert systems is gathered through

personal communications with the authors. FIydro-Quebec has been developing its

own decision-support tool, ARIANE, with the aim of providing expert guidance to

users of the multi-year operation planning process. It is intended to monitor data

updating, consistency, and validation; to oversee the use of heuristics knowledge;

and to control calling and use of mathematical models. Groundwater Branch of the

U.S. Bureau of Reclamation uses DMWW, an expert system that works in a PC

environment. The system is intended to assist the bureau personnel in the design of

municipal water wells, water storage wells, observation wells, and dewatering

wells.

A pilot expert system for advising on operation of the Jenpeg generation

station during the freeze-up period, JOE fMaxfield,1987] has been developed and

tested by Manitoba Hydro. It is developed on a microcomputer using anothsr

expert system shell, GEPSE. The very complex operations expertise which

involves many judgment calls, and is normally performed by an expert engineer,

was successfully captured by the system. Sieh and Strzepek t19891 reported on the

development of another advanced decision-support system for operations and

maintenance. A prototype that explores embankment dam seepage was developed

for the IJ.S. Bureau of Reclamation. An expert system has been developed to assist

in selecting process units for upgrading small water supplies lKnight, 19871. The

system has undergone testing throughout the United Kingdom giving results

comparable to those of human experts.

A prototype system has been developed to help organize and support

operation of an integrated surface water quantity acquisition data network

[Simonovíc, 1990]. The deveioped prototype assists in selecting a suitable method
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for flow measurement in open channels. Two prototype expert systems; one for

sewerage rehabiiitation planning (SERFES), and a second for diagnosing a possible

problem within a water distribution network (WADNES); have been developed.

SERPES is focused on the use of a hydraulic model for an existing sewer network,

while WADNES focuses on advising the controller on the best course of action to

remedy problems in a water distribution network lAhmnd et a1.,19891. Armijos et

al. ll990l presented an interesting approach to real-time reservoir operation. A

hybrid reasoning structure using both Bayesian and rule-based reasoning has been

incorporated into a single decision-support tool. The authors claim that the system

has learning capabilities an important consideration from the viewpoint of future

use.

Nagy et al. [1989] addressed issues and problems in developing an expert

system around the existing operating tool for Energy Management and

Maintenance Analysis (EMMA) used by Manitoba Hydro. Conclusions from the

investigation of the knowledge acquisition process IBarlíshen, 1989] and the

available programming tools were used by Grahovac and Simonovic [1990] as a

starting point in the incremental development of ttre expert system. They concluded

that permanent interaction between the expert, knowledge engineer, and the final

user is critical for the development of an expert system.

Finally, based on a review of existing expert system applications, Símonovíc

t19911 concludes that expert systems have to play a significant role in the field of

hydrology. He identifies various tasks, performed by hydrologists in collecting and

using data and models, which may benefit f¡om ES technology.
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Water Quality

Several expert systems have been developed with environmental managers

in mind. The RAISON expert system lswayne and Fraser, 19861 performs analysis

of acid rain data and examines the relationships between related acid rain

parameters. The program, written in C, operates in a microcomputer

environment. An expert system for extracting concise information from a large

quantity of available historical water quality data, WATQUAS lAllen,1986l, is

also capable of interpreting extracted information in a form useful for continuing

analysis. WATQUAS is a prototype system that provides: (i) a user-friendly

interface to water quality data; (ii) an interpretation of historical data; and (iii) a

planning tool based on expert water quality assessment. It was developed for the

Ontario Ministry of Environment and runs on a VAX machine. Jenkins and Jowitt

[1987] describe potentials and problems in developing expert systems for river

basin management. They describe work undertaken toward the development of an

expert system for operational control of a wastewater treatment plant.

An heuristic computer program, PILOTE fLannuzel and Ortolano, t989),

attempts to reproduce decisions of expert operators in scheduling outlet pumps at a

water Íeatment plant near Paris, France. Although it is not considered an expert

system by its authors, the program exhibits many expert systems characteristics

and successfully combines mathematical models and heuristics. A knowledge-based

expert system, DADEES lHouck,1989l, is being developed to support decision-

making in the management of potentially hazardous or dredged materials. It is a

completely menu-driven system and uses a three-tiered testing strategy to

determine the aquatic disposal requirements for dredged material. The same report

inftoduces the application of a knowledge-based system to aid in the calibration and

use of the extended Streeter-Phelps BOD-DO model for a stream.
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ûther Researctr .A.neas

Two computer systems, HYSTOR and FIYSIZE, wete developed to

determine the optimum layout for a particular hydroelectric site. The user is

provided with alternative ranks according to economic priorities lDotan and

Wíller,1986l. HYSIZE is used for run-of-river type projects without storage and

IIYSTOR is used for sites with reservoir storage. These systems are aÍare example

of attempts to develop expert systems using FORTRAN. The SISES expert system

was developed for use in the process of site selecting for specific uses ïFindikaki,

19861. The most impressive feature of the system is its ability to capture decision-

makers'preferences without making a priori assumptions about them. The expert

system RRA was designed for the IJ.S. Bureau of Reclamation to administer the

acreage limitation provision of the Reclamation Reform Act. It provides a

mechanism for determining the status of a landholder, as well as the number of

acres on which subsidized reclamation water can be received. The system is

designed using an expert systems shell, Personal Consultant Plus (Strzepek,

personal communications).

The expert systems reviewed above cover a variety of topics and problems

related to water resources planning and management. The extent of the work under

way, or already completed, shows that ES technology has found a significant place

in this engineering field. General conclusions about the status of current systems

development, drawn by Simonovic and Savic U9891, still hold for the systems

presented. The work on applying AI advances to water resources problems is

mainly academic and, from the implementation point of view, in its starting stage.

Very few of these systems are being used in practice, on a day-to-day basis,

although several are undergoing thorough testing by practitioners. Howevet,



several papers presented at the recent research workshop on computer-aided

suppori systems for water resources research and management INATO, 1990]

demonstrate that the expert systems technology is being increasingly accepted and

trusted by decision makers. Due to cuts in funding, and scarcity of experts, affected

water authorities or government agencies are focusing their attention on expert

systems research. It is not surprising that most of the developed (or pilot) systems

are intended for use by these organizations. The intended end users and the

convenience and cost-effectiveness of using personal computers (PCs) have made

the ES developers favour PC- or workstation-computing environments. Finally, it

is important to note that computational aspects of water resources planning and

management have influenced integration of knowledge-based and procedural

programming for most of the decision-support system frameworks reviewed here.

Expert systems applying a knowledge-based approach are poised to take a

more active role in water resources engineering practice. The technology is widely

accepted by the research community and is gaining broader acceptance in the

engineering community. However, the success of the new technology will be

measured by the degree of its general implementatioi in practice.
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RESER.VTÍR,&NAT,V$TS ÐXPER.TTSE ANÐ TNT'ET.T.XGENT'

ÐECTSTTN.S{JPPTR.T' SYSTEMS

In general, analysis of man-made lakes is a complex multi-disciplinary,

multi-stage process comprising tasks from the design of a dam to impound the

water to the day-to-day reservoir operations planning and management. The

process involves specialists (structural, environmental, geomechanical,

hydrological, and hydraulic engineers, among others) from various engineering

and non-engineering, but related, fields (politics, economics, operations research,

public participation, etc.). Difficulties related to integration of all the mentioned

disciplines, modelling their interrelations, and policy implementation and decision-

making issues make this analysis a very complex and difficult problem to model.

Therefore, a somewhat restricted, yet very demanding, definition of reservoir

analysis is introduced. The scope of "reservoir analysis", as used in this work,

concentrates on expertise in using the systems approach as an effective means of

advancing decision-making in r'eservoir planning, design, and operations. This

definition serves as the framework within which an intelligent decision-support

system is to be developed.

As pointed out by Yeh ll985l, one of the most important advances made in

water resources engineering is the development and adoption of optimization

techniques for planning, design, and management of complex water resources

systems. In fact, systems analysis, ranging from simple cost-benefit analysis to
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sophisticated simulation and use of optimization techniques, is considered to be the

traditional decisi on- support in strument in w ater resources.

The decision-making process in reservoir management becomes more

complex because of increasing water demands, increasing complexity of reservoir

systems, and increasing public involvement. The development and analysis of

water management plans and reservoir operating policies, and the subsequent

selection of the most promising ones for consideration by managers/decision-

makers requires considerable expertise. This expertise is provided by technical

professionals, referred to as "experts" in this thesis, who use mathematical models

to efficiently identify, formulate, and solve reservoir problems. Their expertise is

typically gained through experience in developing and using mathematical models;

interpreting their results; and consulting, and discussing operational policies and

their consequences, with managers and others involved in decision-making. Expert

systems promise to make this type of technical expertise readily available to

managers and decision-makers having limited or no expert help. The use of expert

systems makes expertise and knowledge transparent and allows the user to easily

understand the reasoning of experts and the logic of the program.

The following sections present synthesis of existing expertise and knowledge

regarding the non-structured reservoir analysis problem. The need for a tool

encompassing this expertise is demonstrated through identified complexities of the

reservoir analysis process. Further support for this need is demonstrated by the

demonstrated inability of managers to make rational decisions without the help of

technical experts. The expertise is structured in four steps/phases. FinallY, an

approach to developing intelligent-decision support sysiems is presented and
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recommended as a preferable alternative to the "classical" expert systems

development approach.

3. 1. R E S Ð R VO T R ÐN G]&ÐE E T N G-AMÐ A N A X,V S TS-E X PE R T'{ S E

The engineering of a dam and reservoir goes far beyond the mathematics of

structural, hydrologic, and hydraulic design, or the difficulties of construction.

Even though a reservoir may be created to serve a single pu{pose, e.9., water

supply, there will be some effects on the surrounding environment. A river basin

normally contains a wide variety of aquatic and related wildlife, and may attract

numerous recreational users. The changed flow regime of a river will not only

affect the lives of people, but also those of fauna and flora, the weather patterns,

and the landscape. The planning of a project is, therefore, a multi-disciplinary

study in which the water resources engineer should be capable of playing a leading

role.

There are a number of uncertainties and imprecisions involved in reservoir

analysis, e.g., hydrological uncertainty associated with reservoir inflows and water

demands; imprecision in subjective evaluation of changing objectives and values;

and uncertainties in estimating future social or political impacts of recommended

decisions. Reservoir inflows, together with other input data, including

management objectives and assumptions concerning the representation of physical

processes and their characteristics, are important factors in the reservoir analysis

process. The following is a short summary of the most important features

influencing this process and the expertise required to perform it.
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For any reservoir analysis, streamflow data are considered to be of the

greatest importance. Although streamflow is continuous in time, it is usually

measured in discrete time intervals and is considered as a time series made up of

discrete variables. In the reservoir analysis process, the length of the inflow time

step varies from less than one day to ayeæ or more, depending on purpose of the

reservoir analysis. For example, problems involving floods require short time

steps, sometimes even hourly or daily, to capture flow variability. As well as

uncertainty resulting from its stochastic nature, the following characteristics of

streamflow and streamflow data sources may cause difficulties:

(i)

(ii)

(iii)

(iv)

(v)

short and unreliable inflow records;

unreliable and inaccurate hydrometric measurements;

incompatible data;

differences in temporal and spatial resolution; and

poor statistical quality.

Short inflow records may be extended by using the available techniques for

estimating historical streamflow dat¿. The selection of a technique depends on the

characteristics of the river basin watershed and available streamflow and rainfall

data sources.

In addition to inflow considerations related to reservoir analysis, the

identification of relevant planning objectives, and subsequent definition of the

relative importance of each of these objectives, is one of the most difficult aspects

of the analysis. Many individuals, interest groups, and organizations are affected

by, and concerned about, water and the environment. Each of them has a number

of objectives which are usually conflicting, difficult to quantify, and often
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incommensurate. This complexity makes reservoir analysis an iterative, dynamic,

and learning process during which goals may change or new objectives and

constraints may emerge.

In attempting to improve reservoir analysis, it is worthwhile to examine

issues and difficulties encountered in previous applications of the systems analytic

approach (specifically, of formal models) to practical water resources problems.

These issues placed burdens on decision-makers and reservoir operators who then

became reluctant to use models for planning or for adjusting existing reservoir

operation procedures. Although this work concentrates on single reservoir

problems, which narrows the scope, a key characteristic of reservoir analysis is

the complexity of the reservoir problem itselfl. Therefore, identifying and

formulating the problem may not be as simple and straightforward task as it first

appears. In formulating the problem, in terms of different measures of
performance and constraints, a key player in the process is the expert, possessing

highly developed technical capabilities, who relies mostly on experience and

personal engineering judgment. A typical single reservoir system has many,

equally important, physical components, each of which is related to the others (for

example, spillway, emergency spillway, bottom outlets, turbines, turbine by-pass

outlets, etc.). This complexity prevents engineers from evaluating all components

in detail and requires them to break the analysis down into several stages. The

process usually starts with the feasibility study, continues through the preliminu.y

analysis, and ends with the detailed analysis.

Another important characteristic of reservoir analysis is related to

selecting the appropriate solution pnocedure for the identified and

formulated problem. Analytic al andlor numerical procedures may be available to



perform the required analysis. Since modelling is a rapidly advancing and highly

specialized field, it is very difficult for managers to stay informed about new

developments and models. Human experts (analysts), who are informed,

experienced, and capable of making judgment in complex situations are not always

available to managers. These technical experts are capable of making reasonable

and accurate a priori evaluations of the problem-solving strategy and of making

reconunendations on the appropriate procedure for the particular situation.

Numerous reservoir models are currently used in water resources research

labo¡atories or specialized agencies. Although the number of models is important

and may be an advantage for a user, the over-abundance of possible choices

rnay increase the burden on a water resources manager. The models may be

difficult for users to identify, locate, and obtain. Even when different models

require similar basic data, data selection and processing methods can vary geatly.

The complexity associated with initial estimation or the adjustment of input

parameter values emphasizes the need for a human expef to conduct or assist in the

task fArnold and Samrnons, 1988; Baffaut and Delleur, l9g9l

There is a long-standing concern about difficulties inherent in using

mathematical rnodelling techniques and implementing them, especially for

public-decision making fLiebnnn, 1976].It has been pointed out that even multi-

objective models have serious shortcomings and that no general technique which

provides a definitive answer exists [Brill, tgTg]. The review of reservoir

operations models and applied optimization techniques by Yeh t19851 reached the

same conclusion. Before applying optimization or simulation procedures to a

specific problem, an expert should, therefore, contribute to the reservoir analysis

by assessing potential weaknesses and limitations of the technique(s) employed in
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the model. For this task, knowledge, of both operations-research techniques and

water resources related expertise, is essential.

Use of mathematical models as tools within a planning process requires the

objective evaluation and interpretation of the reservoir rnodel outputs.

This ouçut analysis should be done in a iterative manner, by adjusting parameters

that need to be calibrated and then restarting the model with the changed

parameters. The final solution is often unique, but sometimes many different

answers to a given problem may achieve the objectives closely enough and satisfy

the constraints.

An additional difficulty that is often encountered in decision-making related

to reservoir planning is the lack of comrnunication and understanding

between the experts/analysts and the decision-makers (ÐM) lLíebman,

19761. The involvement of the affected public, or stakeholders, is making the

situation even more complicated. This deficiency can compromise all previous

efforts exerted in the analysis. Dífferent sources of complexity are summarized in

Figure 3.1. Few decision-makers are familiar with the modelling process and even

fewer are willing or able to get involved with it. Therefore, the transfer of

quantitative and non-quantitative understanding of the problem from the expert to

the DM, and vice versa, is of great importance. From this point of view, a

computer may help in communication and learning.
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Figure 3.1. Sources of complexity in reservoir analysis problems

3.2. RESER.V{TR AhIAT.YSTS PFTASES

The first step in implementing the EES approach to reservoir management

problems is to identify specific areas in reservoir analysis where it may

complement or out-perform the present combination of human expert involvement

and use of conventional programs. In performing such an examination, it became

obvious that a number of frustrating characteristics of public sector decision-

making that require subjective evaluation and conflict resolution, cannot be

formally represented in any generally acceptable way. Consequently, the scope of
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this work was narrowed down to improving reservoir mathematical modelling and

model use for planning and management, i.e., the expertise from some engineering

fields (geology, geomechanics, structures, etc.,) has been excluded from

consideration here. However, even with the narrowed scope of study, all

previously mentioned sources of complexity are addressed by the developed tool.

Once the scope of the work was decided upon, the task of reviewing and

rationalizing the reservoir analysis process had to be performed. It was found that

this complex dynamic task includes the following phases:

reservoir problem identification and analysis for establishing goals

and objectives;

mathematical formulation of the established objectives and physical

and other constraints;

selection of the formal mathematical solution procedure for

analyzing the identified, and subsequently formulated, problem;

and

iv) input data preparation, application of the formal mathematical

procedure, and presentation, evaluation, and validation of the

results.

In addition to these tasks, the process may be repeated, in an iterative manner,

providing alternative solutions and more insight into the problem under

consideration.

i)

ii)

iii)
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3"¿"r" R eservoir Frobl em ãd entifie af-Íon and An aits-is---fç-r

Ðstabxishin* Goals and OhjeetÍves

The initial step of every analysis is directed toward gathering preliminary

information and identifying: i) important characteristics of the problem; ii) the

scope of the problem; iii) the interrelationships among the components of a

reservoir system; and iv) performing the analysis of the objecúves. In the reservoir

analysis process, this step is composed of defining the purposes of the analysis;

acquiring information about the availability of historical records of relevant

parameters; assessing involved risk; establishing goals and objectives, etc. This

phase of reservoir analysis is not precisely defined, in a structured way, in the

available technical literature. Rather, it is defined in general terms, giving users no

guidelines but leaving them to rely on their individual experience in gathering

relevant information about the problem.

One of the earliest decisions to be made concerns the purpose of the

reservoir analysis. In discussing the problem with the ÐM or with members of the

supporting staff the expert is usually expected to conclude whether reservoir

design (sizing), or reservoir operation planning, or both are of interest and need

consideration throughout the analysis process. If reservoir operation planning is

inferred to be the primary concern, then a more detailed specification of the

purpose of the analysis is needed. Using information about management needs and

available data, the decision whether real-time reservoir operation or long-term

planning is required, should be provided next.

To analyze a reservoir problem, an expeft needs quantitative measurements

of hydrologic data (streamflow, precipitation, evaporation rate, etc.), i.e.,



historical data records. These data records should be sufficiently long to properly

define the statistical parameters and behaviour of hydrologic data. For example, a

3-4 year record is likely to be insufficient to provide a representative picture of

long-term fiow variability at the gauging station. The expert should also ensure

that data are homogeneous over time and without systematic errors incurred in

information gathering. Before proceeding further, an expert should also decide

upon the optimization time step that should and can be used (given the purpose of

the analysis and available data). If a planning study is needed, the number of time

steps to be considered within a planning horizon must be determined.

Inadequacy of data is the most commonly identified factor inhibiting

modelling efforts IOTA, I982l.It may introduce significant bias into any water

resources management evaluation. Therefore, it is often necessary to estimate short

gaps of missing data, e.g., streamflow data, or even to increase the record length by

using data extension techniques. Knowledge and experience in extending station

records by regression with nearby gauging-station records, as well as knowledge

of rainfall-runoff processes and models is essential for performing this task. It

should be noticed that the reliability and credibility of formal models is only as

good as the input data.

Keeping in mind the purpose of the analysis, available data, data record

sampling frequency, and data reliability, the next step in identifying a reservoir

problem and performing analysis is to assess the potential consequences of a system

failing to achieve established objectives. Generally, this type of risk depends on

water use, land use, and population density downstream from the reservoir.

According to the level of involved risk and data record characteristics, the decision

about the level of detail and necessary simplifications of the physical system should



be analyzed. The expert's task is to reduce the number of factors under

consideration to a manageable size, and to select for modelling the most significant

characteristics of the system.

3.2"2. Mathernatical FormuXation of-Ðstablished Objectives.

Fhysical and Other Constraints

A mathematical model uses numbers and/or symbols to represent

relationships among the components of real-world systems. If these relationships

can be meaningfully quantified, they can be included in a mathematical

representation, i.e., formal model, of a reservoir system. As a result, along with

gathering necessary data, avery important part of the analysis is formulation of the

reservoir problem into a suitable mathematical form. Various simulation and

optimization procedures require an explicit mathematical definition of the

objective function, constraints, the governing equations, and the bounds on

decision variables. Proper formulation is the first step in successful selection of an

appropriate algorithmic procedure to solve the identified problem.

Ðecision Variables

Reservoir planning and management activities involve the selection of many

engineering design and operating variables. When a mathematical model is used to

describe a reservoir system, these design and operating variables are called

decision variables. Often these variables represent decisions regarding physical

quantities (e.g., storage capacity, release through turbines, release for irrigation,

etc.), or system performance characteristics (e.g., probability of failure,

resiliency, robustness, etc.). For example, if reservoir design is identified as the
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reason for analysis, reservoir capacity becomes the decision variable. Reservoir

operation models may, on the other hand, include allocation of water to different

users, release and storage targets, or reservoir releases as decision variables. In the

mathematical notation used to describe a model, a set of decision variables is

usually denoted as a vector:

x = (Í1, x2,...,Xn)T (3.1)

Where n is the number of decision variables and T denotes transpose.

The expert's must often rank possible variable choices and decide which

variable(s) is most important for the identifîed reservoir analysis objectives. This

task requires experience and technical skill to fulfill the goal of including a high

degree of reality within the model and analysis while keeping it manageable. For

example, in considering hydropower generation, the decision should be made

whether or not to distinguish between releases for on-peak and off-peak reservoir

operation. If the distinction is not significant for the analysis, the dimensionality of

the problem may be halved.

Objective Function

Rese¡voir system performance may be evaluated by assigning a value

function to the system decision or output. For example, a reservoir operation

within a time step may be judged in relation to the economic benefit realized from

hydropower generation. Such a benefit depends on the reservoir storage, inflows,

and releases of the current, and several previous, time steps. In optimizing

reservoir operation usually more than one time step must be considered in the time

horizon, thus generating a value vector during the optimizatíon. The overall
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system performance may then be evaluated through the use of a single objective

function. This objective function assigns a single total value of system performance

to every possible value vector:

f [vt(dù, vz(dz),..., v t{dò] (3.2)

Where/is the objective functioni v¡ represents the value function at the time step /,

in the planning horizon t=|,2,...,7; and d¡ represents the decision variable at the

time step. If the objective function represents net benefits from operating the

reservoir, then the expression (3.2) may be maximized with the decision variable

representing release.

An alternative approach for optimizing the multi-purpose reservoir

operation, is one often used in mutti-objective analysis. The so-called weighting

method may be used to reflect priorities assigned to each different goal of meeting

release and/or storage targets. For the management of the Fligh Aswan Dam, for

example, Bras et al. t1983] considered irrigation, flood protection, and

hydropower production. The objective function vector, consisting of separate

goals, was converted to a scalar as the weighæd sum of the individual goals:

õ
J

Minimize 2 *IA¡(TAR, r)
trJ i=l

(3.3)

In the above equation, l?i represents the non-negative weights specified as

constants, and A; represents functions of the target vector TAR, and the release

vector r. The index í,í=1,2,3, is related to the three different goals contained

within the optimizing model.
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A different objective function, which incorporates net benefits, associated

with monthly releases, and losses, associated with reliability levels for not violating

storage targets, is reported by Símonovíc and Marino [1980, 1981]. This approach

requires deriving the so-called risk-loss functions, associated with violating storage

targets and maximizing the following expression:

tøa111ntze flr) - Lt@) - Lz(Ð (3.4)

where/represents the net benefit function associated with the release vector, r,

during a year, and Ll,L2represent yearly risk loss functions associated with

reliability levels u, þ for different parameters.

In the case of reservoir sizing, a simple objective function stated by

expression 3.5, which achieves minimum active storage capacity under specified

conditions (operating and/or physical consÍaints) may be used:

lvhnimize CAP (3.s)

where CAP represents the active reservoir storage capacity. An example of the use

of this objective (function) is determining the minimum active storage capacity for

a given set of releases over a period of time.

The four objective function examples, cited, above illustrate the diversity in

possible approaches to formulating reservoir analysis problems. An additional

difficulty in identifying an appropriate objective function may be attributed to two
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types of benefit functions: long-run and short-run lLoucks et al., 1981, pp.2O3-

205). For long-run benefit functions, the target reservoir releases to different users

are assumed to be unknown decision variables. For short-run benefit functions, the

trget storage and reiease levels have been fîxed and reservoir operators try to

satisfy them as closely as possible. Only when resources available in a short run,

correspond to those anticipated when the long-run decisions were made, can

estimated long-run benefits and actual short-run benefits be the same.

The choice of the objective function is highly influenced by the problem

characteristics, the expert's preference for using specific technique(s), and the

DM's willingness to co-operate. If formal models for improving reservoir

management are to be implemented, the objective function should reflect both

physical and economic reality, as well as the DM's perception of the system. Houck

t19811 demonstrated the importance of the expert's understanding of the modelling

problem to the conect identification of the objective function. In Houck's [1981]

work the analysis was performed for the objective function of an optimization

model used for real-time operation. By analyzing losses associated with deviations

from ideal operations, he proved that the objective function should differ from the

true measure of effectiveness of reservoir operation (i.e., penalty functions used in

real-time operation should be different from the identified true penalty functions).

These findings were attributed to the lack of reliable long-range inflow forecasts

required to use true penalty functions in real-time reservoir operation. Other

examples from the literature show that nonscientific aspects of the problem often

dominate and reveal difficulties in achieving proper representation of real-world

problems [Schultz, I 989].
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Govenning Ðquation

Every formal reservoir model must be based on the general principle of

conservation of mass (mass balance or continuity). The conservation of mass for a

reservoir may be simply expressed in terms of mass added by inflows, and mass

removed by outflows (including losses). There are many ways to represent the

components of the mass balance equation. One approach is to express the final

storage volume S,, in the time period /, in terms of the initial storage volume S¡-1,

inflow i,, release rþ evapoÍation losses e, and seepage losses sr:

S¡=S¡-t +i1-r¡-€t-St (3.6)

Inflows are stochastic in nature and the proper collection of inflow data and their

treatment is of crucial importance for reservoir modelling and model use.

A reasonably accurate estimation of the evaporation losses is necessary for

reservoir analysis, at sites in arid regions having high rates of evaporation. For

example, Lele 119871 reported a 307o increase in the required storage capacity

when evaporation losses were included. A simila¡ example by Wurbs and Bergmnn

119901 shows that the net evaporation losses in the Brazos River Basin (U.S.) were

in the range of 20-607o of the firm yield of the reservoirs in the basin. Evaporation

and seepage losses in the time period t, are functions of the storage volume in the

reservoir during that period.Reliable estimation of the average evaporation (or

seepage) rates for each period is required for a correct inclusion of losses.

Careful evaluation of the reservoir problem and basin hydrology is

necessary for properly expressing the mass balance equation. A water resources

expert, familiar with the problem and trade-offs between the problem
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representation and computational efficiency, is responsible for making decisions

pertaining to this task. For example, the assessment of the quality of collected

evaporation data may lead to a complete exclusion of evaporation terrns, or the use

of gross evaporation instead of calculated net evaporation. A common decision that

must be made is whether to average monthly evaporation rates for all years in the

planning period, or to use actual monthly rates which vary between years.

The nature of ttre mass balance equation, which represents an actual physical

limitation which cannot be, usually requires that the equation be formulated as a

constraint. The mass balance equation is analyzed before the other constraints

because it is fundamental to the reservoir analysis problem.

Constraints

In addition to an objective function and the continuity equation, reservoir

management problems incorporate a number of requirements which are

formulated as constraints. As with the continuity equation, some of them may be

expressed as rigid physical limitations, e.9., the capacity of the reservoir, the

capacity of a spillway, etc. Other constraint types incorporate requirements that

could be violated, although the losses associated with such violation may be high.

These constraints include restrictions on minimum instream release for water

quality reasons and restrictions on violating the reservoir flood control and

minimal storage levels.

If a decision variable should be prevented from violating some physical

boundary, a simple deterministic constraint may be appropriate to express the

requirement. A typical deterministic constraint, regarding minimum instream

release, may be expressed as:
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r¡ 2 f ¡¡¡i¡1 (3.7)

where rr¡n represents the minimum required volume to be released for low flow

augmentation and water quality purposes. Sometimes, depending on a situation, the

salne type of requirement may be expressed as a probabilistic constraint:

P(r¡2rmin) > û (3.8)

where P is the probability that the reservoir release r,, in the time period r, is

greater than the minimum required instream release r,n¡n. The expression allows

violating the minimum required instream release, at most, (1-ø)*1ggvo of the

time.

In some cases, it is difficult to decide whether a requirement should be

formulated as a constraint or an objective. A high level of modelling expertise and

judgment is needed to decide which objectives of the problem can be modelled as

consftaints and how to formulate these constraints. For example, it is always an

expert's responsibility to decide whether flood control requirements, in a

particular case, should be included through an additional constraint or through the

objective function. Different mathematical forms may be employed for this

purpose [símonovÌc and Maríno,1980; Bras et al.,l9g3; and Druce,lgg0).
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3.2.3" Selecting F'ornra! Mathsmatical Models flgr Analyzing

ldentified and Formutrafed Reservoin Froblems

In practice, the outcome of this phase depends on the reservoir models

available to managers and planners, or on the ability of their staff to develop a

model. Developing reservoir models is a complex undertaking, requiring skilled

personnel as well as adequate time and funding for computer facilities and

collecting and processing data. It is, therefore, advantageous to use developed

standard models that can be adapted to management needs. If possible, it is also

important to use a tool with which the manager is familia¡. Ford and Davis t19891

concluded that people would rather live with a problem they cannot solve than

accept a solution they cannot understa¡d. Therefore, any potential user needs a

great deal of information about available models to select the proper one for

his/her problems, to become familiar with running the selected model, and to

interpret its results. Documentation is the primary mechanism for informed

communication among those involved in developing a model and those interested in

using it.

Even when documentation on different reservoi¡ models is available, a great

deal of experience and knowledge is needed to make an appropriate selection. In

order to perform the analysis correctly, an expert user should be able to

understand the simplifications and limitations of the model and modelling

technique. For example, in sizing a reservoir, the expert should keep in mind

which methods are suitable for preliminary design and which for final (detailed)

analysis. It is also the expert's responsibility to choose the model having a

prograrnming technique that best fits all aspects of the reservoir problem and the

computer facilities to be used.
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Xt can be concluded, that there is no perfect match between reservoir

problem characteristics and a model's capability to address them. A basic

requirement that must be upheld in all analysis, namely the correct modelling of

the problem at hand, is often difficult to achieve. The future uncertainty is a

primary concern in all reservoir problems, but there is no unbiased approach to

dealing with this. Therefore, a considerable amount of judgment is necessary when

selecting the best tool for the circumstances. It is not surprising that the study by

OTA ll982f came to the conclusion that "water resources models vary greatly in

their capabilities and limitations and must be carefully selected and used by

knowledgeable professionals ".

3.2.4. nnput Ðata Freparation. Model {"lse. and Results Fresentation.

Ðvaluation and Validation

An important aspect of reservoir modelling and model implementation is

associated with preparing data for use by a formal model. This step deals with

gathering and preparing necessary information and input data in a form

recognizable by the selected model. Its success strongly depends on the user's

knowledge of where to look for information and data as well as how to process

them to get the desired output. Increasing numbers of hydrologic data collection

networks and automated data retrieval systems make the frst part of this task easier

ïCalt et a1.,19891. The second part, information and data processing, depends on

the input data characteristics of a particular model.
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For practical purposes, it is important to have a model that is designed for

use by persons other than the model developers. This kind of model ensures that

information and data needed for running the model can be introduced into the

model with the least effort and with least possibility of errors. Such a model should

perform data feasibility checks and verify data completeness. In the past, model

developers concenftated their research efforts mostly on developing techniques

and procedures; user interfaces and data checkers were neglected. These

shortcomings are beginning to be addressed with the development and application

of Computer Aided Design (CAD) and ES technologies.

A model's ease of use depends not only on the design of its input, but also on

its output characteristics. The oulput of a good user-oriented model can be adjusted

to provide the level of detail and organization of information that best suits the

user. This may be quite different for different persons and if a model lacks these

capabilities, it is expert's obligation to provide the end-user with systematized

oufpur. In that case, the modeller must instruct the user in interpretation of model

results, otherwise, the conclusions may be misleading. Another approach is to hire

an expert to be responsible for data analyzing and interpretation of results to

managers and decision-makers. Common formats for presenting data to clients

range from simple numerical tables to qualitative linguistic statements and colour

graphics.

Most formal models are equipped with some kind of diagnostic mechanism

for determining whether a model succeeded or failed to reach a solution. If a

computer run cannot be completed due to errors or data incompatibility, there is

usually no parameter or fault analysis to help a user ftace the problem back to input

data. Instead, a simple "diagnosis" indicating system failure is presented to the user.
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Leaving a non-expert user with only this "diagnosis", for example, in the case of

the solution infeasibility -- "solution infeasible", would not provide productive

man-machine interaction. Instead the manager may choose to avoid using the

model in the future. Managers and planners rely on human exllerts, or modellers to

identify the parameters that cause problems and/or influence the solution most

significantly. Again , a great deal of problem understanding and modelling

experience is essential for performing diagnostic analysis and evaluating the effects

of variation in parameters.

3.3. ENGTNEERTNG ÐXPERT SYST'EMS ,APPRO,A.CH

Various definitions of an expert system may be found in the AI literature. A

composite definition considers an expert system to be a computer system

(program) that uses domain-specific knowledge to solve problems in a narrow

domain at a level of performance that is comparable to that of a human expert

lBarr and Feigenbaum,1981; Rích,1983; Waterman, 19861. The key concept in

expert systems development is the accumulation and codification of knowledge

(expertise), particularly high quality knowledge used for solving so-called "hard"

problems. The process of acquiring the knowledge needed to power an expert

system and structuring that knowledge in a usable form, i.e., the process of

building an expert system, is often referred to as "knowledge engineering". The

advocates of this definition argue that the process should rely on specialists, i.e.:

knowledge engineers with a background in computer science and AI, to perform

knowledge acquisition and knowledge structuring fWaterman, 1986]. In this

context, a knowledge engineer is viewed, within the knowledge engineering

process, as a crucial connecting link between the domain expert and the expert
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system (Figure 3.2). The role of the knowledge engineer is to interview the expert,

to organize the knowledge, to decide upon knowledge representation within the

expert system, and to develop a knowledge base.
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Figure 3.2. Standard approach to expert system development

Expert systems developed using this standard approach typically consist of

two major components:
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(i)

(ii)

knowledge base; and

inference engine.

The essence of an expert system is the explicitly encoded knowledge which

has been organized to simplify decision-making.The most cornmon way to store

knowledge is in the form of facts and IFÆIIEN rules developed for a particular

problem. Some systems make use of knowledge representations such as semantic

nets and frames. These last two approaches group related facts and rules together to

ensure consistency, modularity, and easier access to the knowledge fWaterman,

19861. The problem of knowledge acquisition must be properly addressed to

develop knowledge base that will promote a successful expert system. Depending

on the type and source of knowledge relevant to the domain of the expert system,

different approaches may be employed. Public knowledge lHayes-Roth et al.,

19831, which is widely shared and agreed upon is contained mainly in textbooks,

manuals, and references, is highly structured, may be easily accessed and acquired

This type of knowledge is considered as a static knowledge category. The

extraction of private knowledge, which is possessed by human experts and is

therefore dynamic, is a much more difficult task. An important benefit of

knowledge acquisition for modelling purposes is that it brings an understanding of

how experts organize and use their knowledge to less experienced people

fBarlishen, 1989].

The second important component of an expert system is the inference

engine, i.e., a control strategy required for manipulation of knowledge. This

confol strategy determines how facts and rules are to be used for problem solving.

Expert systems problem solving involves the search through the knowledge base



for the set of rules that, when applied, provides a solution. The direction of a

search through the knowledge base is determined by forward-chaining or

backward-chaining strategy. A forward-chaining search works from an initial state

of known facts to a goal state, while a backward-chaining search works in opposite

direction. Each strategy has its own advantages and drawbacks. Effective

engineering expert systems usually employ aspects of both straægies.

In addition to these two main components, a user interface, explanation

facilities, a working memory, and a knowledge acquisition subsystem may also be

distinguished within an expeil system. The user interface is a vehicle for

communication between the system and the user. The "friendliness" of a user

interface should be as highly developed as possible, in order to give the user easy

access to the information within the system. Explanation facilities are responsible

for clarifying the reasoning leading to any conclusion the system reaches. They

may provide a trace of the execution of the system, as well as facilities capable of

answering WlfY and HOW questions. The working memory contains information

about the current subproblem a system is attempting to solve. As the system

retrieves new data, facts may be added, modified, or even deleted from the

working memory. The knowledge acquisition system is responsible for facilitating

modifications and updating of the knowledge base. This system is closely related to

the user interface.

The development and application of lower level as well as more advanced

expert systems for helping water and environmental resource engineers and

managers has been taking place for almost ten yeãs [SR1 International, I98l;

Kostem and Maher, 1986: Maher, L987; Ortolano and Steinemenn, 1987;

Simonovic and Barlishen,19871. The interest in technology is commensurate with
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its promises to help reduce complexities involved in decision making and

implementation of water resources systems planning, design, and operations.

Expertise and intuitive judgment form an important aspect of water resources

engineering, making the development and application of expert systems highly

appropriate.

A specific approach to developing expert systems by engineers and for

engineering use, named Engineering Expert System (EES) approach by Simonovìc

and Savíc [1989], evolved from the higher involvement of engineers in expert

system construction lSavíc and Simonovic,l9S9; Cohn et a\.,1988; Nagy et al.,

1989; Barlishen, 19891. The EES approach differs from classical knowledge

engineering most significantly in the area of knowledge acquisition. In the EES

approach civil engineers with a background in AI and ES techniques, and with the

help of easy-to-use ES shells, assume the role of knowledge engineers @gure 3.3).

This approach simplifies the development of the knowledge base and helps

engineers achieve more insight in the structure of the expertise. In addition,

through this approach, the research concentrates on the application of the ES

technology to specific engineering fields, rather than'on problems in general Al.

Decision making within the reservoir analysis framework may be defined as

choosing among alternatives which are generated for design, long-term, or short-

term reservoir operation purposes. Alternatives are not always obvious, and the

search for them can be a difficult task. Ciassical decision-support systems (DSS)

provide a combination of tools which support the process of understanding and

structuring a problem, generate alternative solutions, and help a decision-maker to

evaluate them and to choose those that are acceptable. Decisions in water resources

should be accepted with some reliability and within confidence limits because of the
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uncertainty and risk inherent in the area. In the past, decision-support tools were

based mainly on mathematical modelling and use of graphics. Now, database and

artificial intelligence techniques improve the capabilities of the classical tools.

Figure 3.3. Engineering Expert System approach to expert sysrem development

The EES approach should be widely applied in the development of DSS to be

used by technical professionals as well as less experienced decision and policy
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makers and users. Thus computer becomes not only a vehicle for numerical

analysis, but also a vehicle for communication, learning, and experimentation. This

line of thinking initiated another definition of a computer system, called the

intelligent decision-suppoil system (IDSS), which differs from the classical

definition of a DSS or expert system. An IDSS, particularly for water resources

analysis, is a computer program that assists in understanding and solving

complicated water resources problems by integrating engineering knowledge,

principles of systems analysis, experience, intuition, creativity, and engineering

judgment with formal procedural modelling. Therefore, the interaction between

the declarative component and external procedural models, with efficient means of

real-time data transfer, characterizes intelligent decision-support systems. To

summarize, an IDSS is considered to be a result of applying the EES approach,

within its philosophical framework, to the development of a computer system by

and for engineers.
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CFA,&PT'ÐR. 4.

REZE,S:,&N XNT'Eï,Ï,{GENT' DECISION-S{JPPÛRT SYSTÐM

F''OR RESERVTXR. AþIAT,VS{S

This chapter describes how the expertise and knowledge in the area of

reservoir analysis is structured by combining systems analysis and artificial

intelligence technology in an intelligent decision-support system. The structure

identified during the synthesis of the expertise (Chapter 3) is revised and

transformed into decision rules. Examples of the rules for all four identifred phases

of the reservoir analysis process are then presented. Finally, an illustrative

example is analyzed with help of the developed tool.

4.tr.. R.ÐSEAR.CF{ Ots.TEtT'I S

The basic aim of the research leading to the development of REZES was to

capture and formalize knowledge and expertise that has been implicitly rather than

explicitly available. Careful analysis of research objectives preceded the system

development because of the lack of detailed documentation of all the tasks normally

undertaken in a reservoir analysis process. In addition to formalizing accumulated

knowledge and expertise, this analysis revealed the following research objectives:

(i) to review and rationalize the general reservoir analysis process in order to

permit it to be explicitly encoded;
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(ii) to test the capabilities of knowledge-based (ES) technology in the field of

reservoir analysis using domain experts in developing an IDSS themselves,

rather than calling upon knowledge engineers;

(iii) to improve the application of different conventional procedures and formal

models for the reservoir analysis, integrating them with advanced

knowledge-based (ES) technology;

(iv) to provide an intelligent decision-supporting tool to advise and train

different types of users of reservoir analysis;

(v) to equip the system with powerful explanation facilities and ensure that users

are consistently informed of the reasoning employed by the system;

(vi) to provide a new type of automation using less experienced personnel

(novice users), quicker solution procedures, and more reliable solutions;

(vii) to use a PC-based hardware environment for wider acceptance and

applicability of the system.

The development of a complex decision-support system is not a uniquely

defined task for a fixed time period. Rather, it is an iterative process, with frequent

revisions as the work progresses. This revision aspect extends into the

implementation phase. In addition to the objectives identified prior to the system

development, some additional conclusions were drawn during the development of

REæS. Several hidden objectives have also been identified:
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(úiii) not all areas in the reservoir analysis are suitable for declarative

computation. Therefore, an additional objective was to identify specific

areas (in the reservoir analysis) where ES technology may complement or

out-perform conventional software; and

(ix) the scope of the general reservoir analysis as defined by all involved

disciplines, and as described in the introduction to Chapter 3, was found to

be too broad for the successful development and later effective

implementation of an IDSS. The objective of the work was then confined

mainly to expertise related to mathematical modelling and applying the

systems analytic approach to reservoir management. This re-direction

enabled the research to go more in depth rather than in breadth. For other

related aspects of reservoir analysis not covered by REZES, the user is

directed to literature dealing specifically with the given aspects of it.

In conjunction with the recognized research objectives, three potential user

types have been identified for the software system being developed:

(i) An "assistant" user, with whom the system is intended to interact in order to

encourage him/her to fînd a solution, or a range of solutions, for a problem

at hand. This type of user needs directional advice from the system. He/she

may have overall knowledge, but lacks experience in performing specific

tasks.

(ii) A "client" user, for whom the system behaves as a consultant. The system is

intended to offer answers to the client's reservoir problems. This user type
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is generally well aware of all aspects of reservoir problems, but is relatively

ill informed about effective solution procedures.

(iii) A "student" user, for whom the system acts as an practical instructor and

also provide a deeper insight into "expert" knowledge. This type of user

possesses theoretical background in reservoir modelling approaches and

techniques, but lacks practical experience and expertise in implementing

them.

The underlying assumption for all the user types is that they all possess a

certain amount of reservoir analysis knowledge or knowledge related to decision-

making problems. The system requires user involvement in providing information

on the reservoir problem. That information is used by the system to provide

alternative solutions that ensure better understanding of management actions and

can lead to rational decision making. This issue is in agreement with the purpose of

REZES, which is not a decision-making, but a decision-supporting tool.

4"2. KITOWT.EDGE ACOUXSNTXON

The concept of building "skilled" expert systems by first extracting the

domain expert's knowledge and then organizing it in an efficient manner is

referred to as "knowledge engineering" in AI literature. The tasks of effectively

extracting knowledge and operatively representing it are crucial for the building

and ultimate success of expert systems. However, the transfer of knowledge from

people and other sources to software systems is not simply an ad hoc procedure.

During the course of this study the structure of the future system was defined and
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the reservoir analysis process was reviewed and rationalized as a result of the

experience gained and increasing understanding of the problem. Development of

the rule base uncovered additional problems related to knowledge encoding, as

well as problems specific to the ES development tool being used. Initially

developed strategies or intentions were modified to address problems emerging

during the course of the research. The experience gained during the initial stages of

knowledge acquisition and ES development was used for subsequent stages.

Clearly, this is a benefit of building a knowledge base in stages and adopting the

modular knowledge base structure.

The process of knowledge acquisition starts with the identification of all

relevant sources of knowledge about the problem domain. A thorough review of

the literature must be completed to ensure basic unde¡standing of the domain. For

the expertise structured in the REZES'knowledge base the following sources were

identified:

(i)

(ii)

(iii)

(iv)

personal experience;

expertise available at the University of Manitoba;

expertise of other researchers in the field;

books, manuals, reports, journal articles, etc.

Technical literature, containing "static" knowledge on reservoir analysis,

presents previously processed and partially structured knowledge. The other type

of knowledge, dynamic knowledge, is that possessed by human experts. Acquired

through personal experience and extracted through discussions with other

researchers and through consultation with experts, it is less structured and

therefore harder to represent and encode. The following section introduces some
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possible knowledge representation schemes considered during the development of

REZES.

4 "3. KNOWX-ÐÐGÐ RÐPRÐSENTATTON

Conventional procedural programming can be defîned as a set of techniques

for specifying knowledge through algorithmic routines (procedures). These

techniques specify the knowledge needed and the strategy to be used for solving a

particular problem. The knowledge in an ES is organized so that the knowledge

about a problem domain is separated from the techniques used to manipulate it. A

kind of programming that supports a strict separation between the knowledge and

the control strategy, known as declarative programming, uses a symbolic

knowledge representation to give the knowledge a particular style and structure.

Depending on how the knowledge is to be used, this representation can be quite

simple or very complex. The three most common knowledge representation

schemes are:

(i)

(ii)

(iii)

production rules;

semantic networks; and

frames.

(i) Froduction nules are the elements of the simplest and most popular

knowledge representation scheme. They take the form of IF-TFIEN statements

consisting of one or more premises (conditions) and one or more actions or

conclusions. Actions are performed if the premises are true:
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IF

T}TEN

(premises)

(conclusion/action)

An application-independent inference procedure searches for the rules whose

premises are true given the known facts contained in the working memory. The

advantage of having an independent inference engine is that it allows incremental

development. As new information in the problem domain is discovered, that

information can be added to the knowledge base without requiring changes in the

inference engine itself.

Closely related to the rule-based knowledge representation is the di¡ection

of search which the inference engine performs through the knowledge base.The

characteristics of the problem domain should dictate the direction of search. As

mentioned in Chapter 3, both forward- and backward-chaining search strategies

exist. The forward-chaining search, also called a data-driven or bottom-up search,

starts from an initial state and proceeds, applying rules, until a goal state is reached.

This strategy is particularly useful in situations where a goal state is poorly

defined. The main problem with this approach is that numerous search paths may

be generated during a consultation. The backward-chaining search, also called a

goal-driven or top-down search, starts from a goal state backward to the initial

state. It is more useful in situations where the desired goal state is precisely known.

(ii) Semantic networks provide a transition from simple rules to more complex

frames in the knowledge representation schemes. Semantic nets, as they are also

called, provide a way of grouping rules into a structured knowledge base. Related

rules and facts are sü'uctured as nodes in a network. Relations among facts and

rules are represented as links between the nodes. The obvious advantage of using
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semantic networks is that they provide a mechanism for guiding the application of

knowledge and protecting the consistency of the knowledge base.

(iii) Knowledge representation using fnames is very similar to semantic nets. The

frame representation is also defined as a network of nodes and relations organized

in a hierarchy, where the top-most nodes represent general concepts and the lower

nodes more specific instances of those concepts fWatermnn, t9861. Frames differ

from nets in that all the properties of a concept or object, defined by a set of

attributes and the values of these attributes, are grouped in a frame. Therefore,

frames are used for more structured knowledge representation.

In general, water resources expertise contains different types of knowledge.

Each of the representation schemes concenfates on a pafiicular type of knowledge.

While rules are suited to expressing heuristics and modular knowledge, structured

representations are suited to expressing organized and hierarchical knowledge.

Structured representations provide a powerful mechanism for organizing

knowledge. They ensure more effîcient consultation runs than a simple rule-based

structure as a result of defined inheritance mechanisms and explicit paths for a

search (along links). However, control of the search mechanism becomes less

explicit and consequently the system becomes less understandable. Each of the

schemes has shortcomings when representing knowledge that does not closely fit its

focus. As a result, several representational approaches may be used concurrently.

Combining the approaches provides increased flexibility and explicit separation of

different types of knowledge.
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4 .4 . INT'ET-T,TGÐNT- EEÇTSTON-SS"]PPORT' SVSTÐM

ÐÐVEÏ,OP&{ENT' T'OOLS

A number of different development tools are currently available for

developing IDSS. These tools vary widely in their characteristics, capabilities,

price, and sophistication. The availability of powerful tools may greatly reduce the

time required to develop expert systems. Palmer and Mar t19881 stated that some

of the expert system software is sufficiently friendly that a domain expert can enter

his/her knowledge directly into the knowledge base. That may eliminate the need

for a knowledge engineer in the expert system development phase. Generally, ES

tools can be grouped into three categories:

(i) General-purpose programming languages, such as LISP and PROLOG,

have been very popular among AI researchers. These high-level languages offer

great flexibility to knowledge engineers but lack knowledge representation

guidance and support. This type of tool is useful for developing symbolic

computing programs (as distinguished from numeric programming in FORTRAN

or BASIC). With its built-in backward chaining inference engine PROLOG may be

considered as a transition tool from pure languages to ES shells.

(ii) Ðxpert systern shells, provide the system developer with development

support facilities, an inference mechanism, and a knowledge representation

scheme. These tools are designed to facilitate the rapid development of expert

systems. However, it is very important that the characteristics of the application

match those offered by the shell.
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(iii) Ðxpent system development envix"oxanaents, generally include multiple

knowledge representation schemes and reasoning mechanisms. These

environments offer greater capabilities, but most of them require a LISP-based

machine or a mini computer environment.

According to presented research objectives the IDSS development tool had

to satisfy following criteria:

(i) to operate in the IBM PC or strictly compatible computer environment;

(ii) to have the ability to integrate formal (procedural) programming with ES

(declarative) programming. The possibility of interacting with external

FORTRAN programs, and efficient real-time data transfer were considered

necessary features; and

(iii) to be easy to use for expert system development as well as consultations. The

user-friendly developer interface and user-friendly user interface are considered

very important.

In addition to the above, the development tool capabilities are required to march the

following criteria as closely as possible:

(i) to have the capability of multiple knowledge representations (for example, rules

and frames);

(ii) to be able to use its own graphics or to call other graphics procedures;
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(iii) to have the ability to perform advanced mathematical calculations;

(iv) to be fast and ensure ¡easonably short execution times for knowledge bases

developed with the tool; and

(v) to have good documentation and continuous vendor support, preferably on-

line.

A prototype intelligent decision-support system was developed using the

general-pu{pose programming language PROLOG. During the development of the

prototype, it was found that forcing PROLOG to perform a forward-chaining task

is a complex programming endeavour. After memory related problems were

encountered with a moderately expanded knowledge base, and after problems in

managing this comprehensive and flexible tool, it was decided to change to a

friendlier expeft system shell, Personal ConsultantTM Plus (Texas Instruments).

Personal Consultant Plus (PC Plus) is an expert system shell developed in the

Scheme programming language, a dialect of LISP. PC Plus has very good graphics

capabilities that are considered important for better use of IDSS.

Two basic knowledge representations, the rule-based and frame-based, are

supported by PC Plus. Frames and rules organize a hierarchy of knowledge and

information within an ES. A knowledge base, arranged in this way, ensures more

efficient consultation runs. Thus the system is not slowed by searching for and

processing knowledge and information that is currently irrelevant.

PC Plus is capable of handling uncertainty in user responses with the use of

certainty factors and a built-in mechanism for processing them. However, this
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feature has not been used in REZES because a different approach to handling

uncertainties was taken. In responding to a REZES' question, rather than

expressing the level of confidence with a numerical value the user has the option of

responding with the "DO NOT KNOW" or qualitative type of response. The

questions and reasoning scheme, following this type of a user answer, are then

modified accordingly.

The PC Plus capability to integrate procedural and declarative

programming is very important for the interactive use of REZES. Necessary

interaction between the knowledge base and the external formal models

(FORTRAN subroutines), as well as real-time data transfer, are performed via

data files.

4.5" MOÐU{.AR ARCFXTT'ECTUN.Ð OF TT¡E KNOWT.ÐÐGE EASE

As shown in Chapter 3, in addition to being multi-disciplinary, reservoir

modelling and model use represents a portion of a wider multistage and highly

complex process. A major undertaking, in reviewing and rationalizing the

reservoir modelling process was in identifying its phases. Accordingly, the

REZES' structure is organized to resemble identified phases of the reservoir

analysis process as closely as possible. It was found that a modular structure best

suits the problem characteristics. However, the identified phases of the reservoir

analysis and the developed REZES modules do not correspond one-to-one fo¡

several reasons. Firstly, several phases often employ the same information to

ar¡ive at their individual conclusions. In order to avoid duplication and

unnecessary memory problems, phases that shared most of the information were
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modelled together. Secondly, although it constitutes a single entity, the phase

encompassing input data preparation, model use and presentation, and evaluation

and validation of results was found to be to large for one module. The proper

adjustments were made and it was b¡oken down into two separate modules.

Two basic knowledge representations, rules and frames, were used to

facilitate the modular structure required for the development of REZES. The rule-

based representation permitted declarative programming of the expert's rules and

heuristics in the simple IF-THEN form. The frame-based representation,

employed by PC Plus, enabled clustering of related rules into frames, to resemble

one or more of the activities in reservoir analysis as performed by a human expert.

For example, rules related to the historical inflow record, its length, sampling

frequency, etc., were grouped into one frame to facilitate inferences that will lead

eventually to the reservoir problem formulation. Furthermore, several related

frames were grouped into a module designated to perform a specific phase in the

reservoir modelling process. The graphical representation of the REZES' modular

structure is represented in Figure 4.1.

The following sections provide detailed descriptions of the knowledge

representation and knowledge use in different REZES' modules. These modules

are developed to resemble identified reservoir analysis phases.
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4.5.tr. R,ÐZÐS; Reservoir-Froblem [d-entification and Formulatiott

Module

Two closely related reservoir analysis phases, problem identification and

mathematical formulation, are ¿uranged to share five frames. These five frames

constitute one programming entity, a module, which contains the knowledge base

portion designated for identification and formulation tasks. The module and

frames within it are graphically represented in Figure 4.2.

Figure 4.2. Reservoir problem identification and formulation module

The frames are named to suggest the task they perform and to agree with the PC

Plus syntax:

(i)

(ii)

ANALYSIS-PURPOSE

INFLOWS

R,BS ER.VONR. PR.O]EtE}VJ
]IDEbÌ"JT]IF]ICATNO}g AND

FOR.ÀllUL¿\TltON
N{OD{.]LE

PRECIPI.
T.{TXOIq

ANAI,YSIS
PUR.PÛSE [hlFI-ows

LINEAR
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(i) The ANALYSIS-PURPOSE frame is created to identify the purpose of

performing the reservoir analysis, i.e., whether to identify or define a possible

reservoir design or management plan. The identification is performed in one or

two stages depending on the answers supplied by the user. At the first level, REÆS

distinguishes between analysis for reservoir sizing and reservoir planning. The

second level, where a more detailed specification of the purpose is derived, is

invoked only if planning is deduced at the first level. The decision is then rondered

whether real-time reservoir operation, or long-term planning is required. The

identification process is carried out in REZES through a set of rules and related

questions. The following are two rules from the first level identification that

exemplify the set:

Rule 1:

(iii)

(iv)

(v)

Rule 2:

PRECIFITATION

LINEARITY

RISK

IF

AND

TIIEN

IF

Al.lD

AND

(RESERVOIR does not exist)

(PROJECT DOCUMENTATION is not available)

(PURPOSE OF TIIE ANALYSIS is to determine the

reservoir size)

(RESERVOIR does not exist)

(PROJECT DOCUMENTATION is available)

(REASSESSMENT OF RESERVOIR SIÆ, is needed)
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TTIEN (PUR.POSE OF TI{E ANAI-YSIS is to determine the

reservoir size)

These two and the following rules in this chapter are given in a pseudo-English

form. The premise and action parts of each rule are given following IF and TI{EN

indicators.

Rules 1 and 2 are backward chaining rules. They both conclude that only

reservoir sizing, not operation planning, can be recommended and performed. If
one of these rules is fired, then the reservoir storage capacity is determined to be

the decision variable. The inference engine starts by searchi4g for a goal state

(parameter), in this case, PURPOSE OF TI{E ANALYSIS. In order to evaluate

rules, the rule premises are checked and questions related to their parameters

(RESERVOIR and PROJECT DOCUMENTATION) are asked.

The following is another rule from the same set of identification and

formulation rules, but this time from the second level of identification:

Rule 3:

IF

AND

AND

TT{EN

(PURPOSE OF ANALYSIS is planning in general)

(user cannot identify OPTIMIZATION TIME STEP)

(STRATEGIC GOAL is to help short-term operation of the

reservoir)

(DETAILED PURPOSE OF ANALYSIS is real-time

reservoir operation planning)
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It should be noted that if this rule is fired, then the objective function minimizing

the reservoir storage capacity, in the form of Eq.(3.5), is eliminated from the

mathematical formulation. These rules are developed to work without direct

questions being asked. This helps the user to expose the facts relevant to the

decision without knowing particular terminology. The consultation is based on

gradual refinements of the analysis parameters, e.g., from the general purpose of

the reservoir analysis to the detailed decision about the mathematical model

needed.

Another rule from the same frame, this time used in a forward-chaining

manner, looks like this:

Rule 4:

IF (DETAILED PURPOSE OF ANALYSIS is real-

time reservoir operation planning)

inform the user of the conclusionTI{EN

The TTIEN part of the rule is an action that should be performed whenever a

conclusion that DETAILED PURPOSE OF ANALYSIS is real-time planning, has

been reached.

The parenr frame for the AI.{ALYSIS-PURPOSE sub-frame is the root

frame. The only child frame is the INFLOWS sub-frame (see Figure 4.2).

(ii) The INFLOWS garhers initial information about the streamflow historical data

record. The availability, characteristics, sampling frequency, and the length of data

records are of special interest to the analyst (who is to determine whether data are
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sufficient to proceed with the analysis or not). Depending on available data, the

request for additional investigation or data preparation may emerge from this

specific investigation. For example, it is often necessary to estimate or fill in short

gaps of missing streamflow data. The parent frame for INFLOWS is ANALYSIS-

PURPOSE, and its child frame is the PRECIPITATION frame @gure 4.2).

A characteristic rule from this frame is:

Rule 5:

IF

AND

AND

AND

TT{EN

(HISTORICAL STREAMFLOW RECORD is availabte)

(STARING YEAR OF TIIE RECORD is known)

(LAST YEAR OF THE RECORD is known)

(RECORD EXTENSION is impossible)

IRECORD LENGTH is I(LAST YEAR OF TrrE RECORD

minus STARTING YEAR. OF TI{E RECORD) plus 1l }

inform the user about the record length and advise him/her

about analysis reliability in relation to the record length

This rule is an example of how PC Plus performs mathematical operations

(subnaction).

(iii) Simple processing on precipitation data and record availability is taken care of
in the PRECIPITATION frame. Although REÆS cannot use rhis information for
extending the inflow record, it is capable of giving advice about procedures and

citing references in the literature. The PRECIPITATIOI.{ frame does not have any

child frames. The following is a rule exhacted from that frame:
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Rule 6:

IF (I{ISTORICAL RAINFALL RECORD is not available)

THEN (EXTENDING INFLOWS RECORÐ is impossible)

The user supplies answers to precipitation-related questions, as well as information

on available nearby gauging stations at REZES's request. Again, procedures for

multivariate analysis are not available within REZES, but REZES can advise the

user on locating more details about them.

(iv) Knowledge translated into rules, related to the linearity of the mathematical

problem being formulated, is stored in the LINEARITY frame. This frame is

directly involved in both the identification and formulation phase of the analysis.

According to the purpose of the analysis and intended future reservoir use, it

discriminates between linear and non-linear problems. The root frame is its parent

frame and it has no child frames. Next, the rule that concludes non-linearity is

given. A typical rule in this frame is

Rule 7:

IF

OR

I(DETAILED PURPOSE OF ANALYSIS is long-term

planning)

(DETAILED PURPOSE OF ANALYSIS is real-time

planning)l

(RESERVOIR FUNCTION is to generate electricity)

(RESERVOIR PROBLEM is non-linear)

AND

THEN

In this pariicular rule, only one potential reservoir purpose is explicitly mentioned

(hydropower). However, the user is required to supply information about every



possible use of the reservoir and, often, several conflicting purposes may be

selected.

Information about other possible reservoir purposes is used for

formulating the objectives and constraints of the reservoir problem. This process is

done in agreement with the available mathematical models so that one of them

matches the formulated problem.

(v) Lastly, REZES should decide to what degree of detail the analysis is to be

performed. Often, it is difficult to justify a detailed analysis for screening

alternative plans. Similarly, it is not appropriate to use preliminary techniques for

cases where detailed analysis is necessary and where consequences of a wrong

decision may be devastating. This type of decision also depends on the available

formal models. For example, if an explicit stochastic analysis matches the problem

requirements and the appropriate model is not available, the analysis may be

performed using a deterministic model. In such a case utilizing synthetic

streamflow sequences in the implicit stochastic manner can give comparable results

to those of the explicit stochastic optimization approach. The last frame in this

module, RISK, determines whether a deterministic or stochastic procedure is to be

used. The following two rules illustrate the outlined methodology as it is used by

REÆ,S:

Rule 8:

IF (DOWNSTREAM AREA is highly populaæd municipatity)

AND (DOWNSTREAM AREA is predominanrly indusrrial)

TI{EN (R.ISK LEVEL is high)
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Rule 9:

IF (RISK LEVEL is high)

OR I(RISK LEVEL is medium)

AND (REQUIRED ANALYSIS is detailed)l

TFIEN (MODELLING APPROACI{ is stochastic)

The conclusion about the modelling approach to be used directly influences

the form of some of the problem constraints. trn the case where Rule 9 is applicable,

some of the constraints, like that in Eq. (3.8), may be reliability based. A different

recommendation may be expected if one of the problem characteristics used for

evaluation of the premises changes. For example in Rule 9, if analysis is required

for preliminary or screening purposes, the conclusion witl be that a deterministic

modelling approach be used.

Many parameters which influence the identification phase were

investigated throughout the research. Each of them identifies or contains a piece of

information that REZES uses to arrive at a conclusion or to give a

recommendation. Table 4.1 lists some of the parameters used in the identification

and mathematical formulation phases. Conclusions or recommendations from these

parameters are used for making inferences in the later phases.

The parent frame for RISK is the root frame. The root frame uses

information provided by RISK and other sub-frames in the identification and

formulation module, to determine the appropriate formal reservoir model for

performing the analysis. Only information used to render this conclusion is

transferred from these five frames to the model selection module.
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Table 4.1. Parameters used in the identification and formulation phases

Supplied Xnformation Conclu sions/Recommen dations

Parameters rons Farameters rons

.Reseryoir identifi cation

"Reservoir existence

"hevious project documentation

.Resewoir sizing
"Planning objective

.Hi storical infl ow record

"Starting/last year of the inflow
rccord

.Dispiay detailed statistical
. requirements of the record
"Historical rainfall record

.Gauging station in the same or
nearby watershed

'Overlap period of the two records
(for calibration)

"Optimization time step

"Input data time step

.Reservoir functions

.Land use specificæion of the
downstream area

.Downstream population density

.Required analysis

user defined

exists
undeveloped
available
not available
yes/no
strategic
short-ærm
available
not available
numerical input

yes
no
available
not available
yes
no
exists
does not exist

less than hour
hour
day
weel<
monfh
season
unknown
month and less
season
municipal water supply
industrial water supply
inigaton
wüd life preservation
recreation
flood controi
low flow augmentation
hydropower generation
indusuiai
farming
unpopulated
scarcely populated
medium ppulated
heavily populated
preliminary
detailed

Analysis purpose

Detailed planning
purpse

Analysis feasibility

Record length

Recod extension

Record length
appropriateness

Reservoir problem

Risk leve1

Modeling approach

sØng
planning

short-term
long-term

can be done
cannot be done

numerical result

possibie
not possible

very likely long enough
urilikely long enough
not long enough

linear
non-linea¡

high
medium
low

deærministic
stochætic
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4 "5 .2 " REØÐS:

The module which selects the appropriate reservoir model renders its

conclusions based on the interactively collected information about the reservoir

system and on the conclusions derived in the identification and formulation phases.

If selecting the model is not possible given the existing information, additional

refinements are stimulated. It should be noted that the decision on which model to

use is higtrly dependent on the models available. As not every model is appropriate,

in all contexts, inclusion of different techniques and approaches to reservoir

analysis ensures the best match between problem characteristics and one of the

formal models. Special attention was, therefore, paid to choosing a wide range of

comprehensive models for improving the accuracy and effectiveness of the

analysis.

This module consists of only one frame, RESERVOIR-MODEL, which is

simultaneously the root frame of the IDSS. Having this feature, the RESERVOIR-

MODEL frame does not only recommend the formal reservoir model to be used,

but also controls the rest of the system. The root frame performs control functions

by making an appropriate sub-frame active at the appropriate time, and/or by

transferring necessary information from frame to frame. Being the root frame,

RESERVOIR-MODEL does not have a parent frame. Its child frames are:

ANALYSIS-PURPOSE, LINEARITY, RISK, ANd INPIJT-PREPARATION

frames (Figure 4.3).
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R.ESER.VOTR. PR.TELÐM
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Figure 4.3. Formal mathematical selection module with root frame
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R.uÌes of the Selection &,flodule

Twenty three rules accommodated by this frame may be grouped into

three rule categories:

(i) rules rendering advice or giving an explanation;

(ii) rules activating a sub-frame; and

(iii) model selection rules.

These rule types will be described below and examples illustrating each of the rule

types will be presented:

(i) Rules rendering advice or giving an explanation: in general, these are

antecedent rules used in a forward chaining manner to render advice or a warning.

The following rule informs the user that further analysis is impossible without

inflow data. Although this analysis cannot be completed,as a record is not available,

the consultation can proceed until the missing information is actually required.

Rule 10:

IF

AND

TTTEN

(MODEL is known)

GIISTORICAL INFLOW RECORD is not available)

inform the user that none of the methods and formal

procedures can work without this information

proceed with consultationAND

(ii) Rules activating a sub-frame: these types of rules are antecedent rules, activated

when a set of conditions is already being fraced and satisfied. They usually ensure
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proper ordering of reservoir analysis activities. nn the following example, the

II.IFLOWS frame may be activated only after the detailed purpose of the analysis is

known, regardless of whether it is sizing, real-time planning, or long-term

planning:

(iii) Model selection rules: this type of rule uses previously gathered information to

choose the appropriate mathematical modelling technique and the reservoir model.

Additional information to distinguish between possible model choices may be

required at this point. The final choice of the model to be employed, as pointed out

by Rogers and Fíering [1986]:

... depends upon the use to which the model is put; what sort of questions the

problem poses; and how derailed the analysis is ûo be.

The formal models included within REZES cover a wide range of reservoir

problems, thereby ensuring that the model chosen provides a good fit to the

problem at hand. The following rules demonsftate the reasoning used to choose one

of these models:

Rule l1:

IF

THEN

Rule 12:

IF

AND

(DETAILED PURPOSE OF ANALYSIS is known)

consider activating frame: INFLOWS

(PURPOSE OF ANALYSIS is sizing)

(REQUIRED OPTIMIZATION TIME STEP is month or

less)
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AND (INFLOW DATA is collected and recorded on monthly basis)

AI.{D (RELIABILITY OF WATER SUPPLY iS tO bC MAXiMiZEd)

TT{EN (MODEL to be used is APPROXIMATE Yß,LD MODEL)

Rule 13:

IF (DETAILED PURPOSE OF ANALYSIS is long-term

reservoir operation planning)

(RESERVOIR PROBI-EM is non-linear)

(MODELLING APPROACH is deterministic)

(PRIMARY WATER USE is for electricity generation)

(GENERATION SYSTEM is considered isolated)

(MODEL to be used is ITERATIVE LINEAR

PROGRAMMING MODEL)

AND

AND

AND

AND

TI{EN

Table 4.2. lists mathematical model selection parameters and their values

arrived at, or obtained from the user during a consultation. Selected models and

their main characteristics are also provided. A list of all formal mathematical

models included in REZES, with short explanations, is given at the end of this

chapter.

4.5.3. RÐZÐS; lnteractive Ðata Entry Module

This module, which contains 172 rules, helps the user to prepare necessary

input data to suit the particulil reservoir problem, in a form recognizable by the

selected formal model. The transfer of information between the IDSS knowledge
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TabIe 4.2. Parameters used in the model selection phase

uppl ed nf'orrnation an
Conclusions

Param eters

Analysis purpose

Deøiled planning purpose

Reservoir problem

Reservoi¡ functions

Planning horizon

Demand reliability

Priority of the generation of
electricity over the other users

Energy generation system
cha¡acteristics

Energy price throughout fhe
time period

tion s

srzmg
planning

short-term
long-ærm

linea¡
non-linear

municipal water supply
industrial waær supply
irrigation
wild life preservation
rerreation
flood connol
low flow augmentation
hydropower generation

less then a year
one yeår

maximum possible
use¡ del¡ned

pnmary
secondary

isolaæd
interconnected

constant
variable

Model Characteristics

RESER sizing, simulation-optimization, monthly,
linea¡, reliability criteria, and vulnerability
ciæna

sizing, linear programming, seasonal, and

linea¡

sizing, linear programming, monthly, and

linear

long-term planning, deterministic,
iterative linear programming, monthly,
nonlinear, isolated generation system,
variable energy price, constant demand,
and one year planning horizon

long-ærm or mid-term planning,
deterministic, successive linea¡
programming, month or less, nonlinear,
interconnected generation system, variable

energy demand, and a year or less planning

horizon

long-ærm planning, deterministic, three
level dynamic programming, monthly,
nonlineal, direct and indirect users, and one
year planning horizon

long-ærm planning, stochastic, chance-
constrained linear progamming, monthly,
Iinear, flood control, and minimal storage

reliability levels

long-ærm planning, sûochastic, reliability
programming, monthly, nonlinear, flood
control and minimal storage reliability
levels

long-term planning, stochastic, dynamic
programming, monthly, nonline¿r, and a
year planning horizon

real-time planning, daily, linear
programm ing, compromise program ming,
and linea¡.

long-term planning, stochasdc, fuzzy sets,

chanceconsEained linear programming,

search, monthly, linea¡, flood control, and

cYTFLD

AYIELD

EMSLP

RPORC

PROFEXI
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base and the library of formal (procedural) models is performed via data files. For

this purpose, a floppy disk drive is used as a file communication vehicle.

The INPUT-PREPARATION frame, together with 24 additional frames,

forms the basis for the input data preparation tasks (Figure 4.4).This frame

contains over 60 rules which control data-export and data-import procedures.

These procedures, easy to incorporate into rules, ensure data completeness for each

of the fonnal reservoir models. Each of the 11 formal models has its own 5-8 rules

associated with the INPUT-PREPARATION frame. These rules enable control

over gathering inflow data, demands,losses, and other physical and computational

parameters necessary for the reservoir analysis.

Two characteristic types of rules are employed by this frame:

(i)

(ii)

rules which warn the user of the action(s) to be performed; and

rules which conÍol presence of file(s) with the necessary data.

(i) Rules which warn the user of the action(s) to be performed: To provide a "non-

modeller" with better understanding of the system and to improve REZES-user

communication, this type of rule provides necessary information about the

system's subsequent actions. Usually, graphics capabilities of PC Plus are employed

to highlight important facts or user actions required to proceed with a consultation.

The following rule wams the user to place the correct floppy disk, with the selected

formal model, into the floppy disk drive:
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Figure 4.4.Interactive data entry module
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Rule 14:

IF (MODEL iS R,ELIABILITY PROGRAMMING

RESERVOIR MODEL)

TmN print warning and inform the user about necessary

action

(ii) Rules which control presence of file(s) containing necess¿ry data: once a

formal reservoir model is chosen, model runs with different inputs are usually

performed several times. REZES contains this type of rule in order to check

whether data frles already exist. A user is allowed to override an existing file and

change input data if another model run with changed parameters is needed. Each of

the 11 formal models has a rule similar to the following to check whether some or

all data files are already present:

Rule 15:

IF (MODEL iS RELIABILITY PROGRAMMING RESERVOIR

MODEL)

AND TGNFLOW DATA FILE is prePared)

AND (HYDROLOGIC/PHYSICAL DATA FILE is prepared)l

OR I(INFLOW DATA FILE is not prepared)

AND (PREPARE INFLOW DATA FTLE)

AND (ITYDROLOGIC/PHYSICAL DATA FILE is prepared)l

OR

TFIEN (INPUT PREPARATION is done)

The remaining 24 fuames associated with the interactive data entry

module, are closely related to 11 mathematical models. Each formal model has 1-5



frames for handling the laborious task of input data preparation and data export to

an external medium so it can be used with the formal model.

Although all the REZES modules use PC Pius graphics capabilities, the

input data preparation module uses them most extensively. It is advantageous to

include graphics with a model designed for use by persons other than the model

developers, because users are more comfortable with pictures than with text. Static

pictures enhance REZES "prompt" or "help" capabilities, while background

pictures are combined with active image(s) to create a user-friendly input

environment. These pictures cannot take in or display parameter values. Active

images can accept values from the user and display parameter values set as a result

of conclusions reached during a consultation. These standard images, like dial

image, thermometer image, selection boxes, etc, are associated with parameters

from the knowledge base. Figure 4.5 shows a horizontal bar graph image, used for

data input necessary for running one of the formal models. For this image type the

user selects the desired value from the numeric range displayed on the horizontal

bar graph. The cursor keys move the bar to the left or to the right, indicating the

value a model will use. It is also possible to group two or more active images in a

cluster to give a better view of the multiple parameter values. A background

picture added to a cluster can provide additional guidance and supplementary

details for data input. In REZES, image clusters and background pictures have

often been used for multi-valued input, for example, average monthly inflows,

demand levels, evaporation rates, etc. An example of an integrated background

picture and active images is shown in Figure 4.6. Boxes with explanations are part

of the background picture and the shaded box is an active image for data input.

Over 450 active images, together with 46 background pictures, have been creafed

for REZES.
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lntelligent Ðecision Suppont S¡¿stem - [. tl

Enter the fractional part of the time step the hydro
plant should satisfy the higher (on-peak) energy
demand from the load-duration curve.

The up and right arrow keys move the blue bar to the
right; the down and left keys move the ba¡ to the
left. When done, press ReturnÆnter key.

On-peak fraction of the time step

Figure 4.5. Example of a horizontal bar graph image

In conjunction with graphical aids, REZES provides a user with default

parameter values, and with information about acceptable parameter value ranges in

two ways: explicitly and implicitly. The explicit approach provides a user with the

parameter value range by displaying it on the screen as the question is asked. In the

implicit approach, REZES prompts a user to answer whether to accept a value

falling outside of the prespecified range.

The following rules exemplify interactive data entry module use in

gathering and exporting input data:
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[ntextigent Ðecision Suppont systern - ffifi

MÐAN MTNT'F{T.Y TNF'I,TWS

YE,AR I 1957 Type in the value for the
inflow in the appropriate box

To move press ENTER
To exit press F10

F.EBE
A{JGE

MARE
SEP

t_l
Press F10 to continue.

BACKGROUND
PICTURE

ACTXVE IMAGE

Figure 4.6.Integrated background picture and active images

Rule 16:

IF

AND

AND

AND

TTIEN

(INFLOW FOR JANUARY is known)

(INFLOW FOR FEBRUARY is known)

(INFLOW FOR DECEMBER is known)

export data and change the counter value for frame

instantiation
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Rule 17:

IF (EVAPORATION DATA are stored)

AND (STAGE-STORAGE RELATIONSIilP is stored)

AND (STORAGE-AREA RELATIONSHIP is stored)

AND (WATER DEMAND DATA are stored)

AND (COMPUTATIONAL DATA are stored)

TFIEN (INPUT DATA PREPARATION FOR RESERVOIR

DYNAMIC PROGRAMMING MODEL is finished)

The same input preparation module may be used several times in a single

consultation. If the model run is intemrpted, or adjustment of some parameter

values is needed, REZES proceeds with all, or just a part, of the input preparation

process.

4.5.4" RtrZES: Results Ðisplay. Evaluation and Validation Module

There are several important aspects of the utilization of the optimization

model regarding its output results. The first is related to the format and output

characteristics of the formal models within REæS. The output module is designed

to display a brief summary of results immediately after running the particular

formal model. For example, after a consultation with a sizing model, information

on required storage capacity and computed water supply reliability is presented to

the user. In addition to the summarized results, each model stores detailed output

results in a data file accessible to REZES. These results may be displayed to the

user automatically, or upon request, during the consultation. The information is

clearly presented, i.e., tables with short explanations, to permit rapid
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comprehension and to improve the user understanding of the solution. After a

consultation, the summary files remain on the floppy disk and may be analyzed or

printed using some other software.

The second aspect of using output results is diagnostic, i.e., the ability of

the model to determine whether computation has reached the optimum. REZES is

capable of detecting malfunctioning of a model and can advise the user of possible

remedies and courses of action. This is accomplished by enabling each model to

produce a diagnostic daøfile, which REZES processes in addition to presenting the

results. Often, due to an internal error, or wrong or inadequate input data, a

computation may be interrupted. In this case the user is left without any

explanation about what actually went wrong. Mathematical models incorporated

within REZES are tailored to generate clear diagnostic messages whenever an

important step in the computation is performed. These messages are stored in the

file accessible by REZES, which is then capable of interpreting them and

informing the user of the terminating conditions. The following are examples of

two rules from this module that are used for the purposes described above:

Rule 18:

IF (DIAG #1 is "optimum is reached")

AND (USER REACTION is "satisfied")

TFIEN inform the user that optimal solution is reached, invoke text

editor to display detailed output results, and conclude

consultation.

IF (DIAG #1 is "optimum is not reached)

Rule 19:
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TI{EN (impon DIAG #2 from the file: CYIELD.DGN and interpret

the error message stored in the file)

Note, that "DIAG #1" and "DIAG #2" are parameters generated by the

particular model (in this case COMFLETE YIELD RESERVOIR MODEL) which

are transferred to the REZES knowledge base via the diagnostic (CYIELD.DGN)

file. The parameter USER REACTION calls for user opinion about recommended

storage or reservoir release policy, and depending upon this opinion, the

appropriate course of action is recommended.

The third aspect is related to estimating the effect of model parameter

change, commonly known as "sensitivity analysis". Water resources practitioners,

which utilize the systems approach in their professional practice, know that it is

important to consider the effects of changes in the model parameter on the optimal

policy. Most computer codes do not display the non-optimal solutions through

which an algorithm passes on its way to the optimum. It may be beneficial for the

user to explore the near-optimal solutions that give similar values of the objective

function but substantially different operating policies. Through its 11 frames and

over 60 rules, employed in the result evaluation and validation module, REZES

advises the user about the parameters that are mostly likely to change the

performance of the formal model. The following is a rule illustrating this IDSS

capability:

Rule 20:

IF

AND

OR

(DIAG #1 is "optimum is reached")

(USER REACTION is "storage is too large")

(USER REACTION is "reliability is too high)
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TÏ{EN (inform the user on which parameter influences the solution

most significantly)

restart the input preparation phase

This rule is taken out from the RESER-E)G frame and causes the next

iteration in preparing input data. By changing the parameters identified by

REZES, the user may get a better understanding of the solution sensitivity to

parameter variation or may even obtain a more suitable solution to the problem at

hand.

R,ÐSÐRVOER F''tRMA{. MODE[,S: MATF{EMATICAL

OPT'TMTZATTTN PROCEÐURÐS

AND

4.6 
"

This section provides a brief description of the formal models for reservoir

analysis that are incorporated in the REZES knowledge base. The REZES system

includes formal mathematical models selected to cover three basic areas of

reservoir analysis:

(i)

(ii)

(iii)

reservoir design;

short-term reservoir operation planning; and

long-term reservoir operation planning.

The selected set of models includes optimization methods that use classical calculus,

linear programming, non-linear programming, dynamic programming, and

simulation techniques. To represent all possible input situations as well as possible,

both deterministic and stochastic modelling approaches have been incorporated.
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These models have proved to be acceptabie decision-support tools for handling a

variety of reservoir related problems.

However, careful analysis, of the reservoir mathematical modelling and its

theoretical background, unveiled an existing gap between available models and

reservoir management problems. Even with using the expert system technology to

improve modelling, as suggested in this thesis, the gap still appears to exist. The

objective functions and constraints employed by existing models are required to be

well-defined and are not always easy to formulate. As the library of formal models

within REZES grew, the need for a model capable of coping with fuzzy situations

became more apparent. That is why efforts were also directed to the analysis of

decision making and modelling in afuzzy environment. Afuzzy set model has been

developed for this purpose and it is included with the rest of the formal reservoir

models.

Most of the models, deterministic or stochastic in nature, were developed

by different researchers well before REZES development started. Each of them

had to be modified to allow for specific input-ouþut processing employed by

REZES. For some, the theoretical foundations were set in the literature, but the

algorithms srill had to be adapted for use within REZES. These models constitute

an important segment of the expertise contained in REZES. The theoretical

background, detailed development, and an example application of the fuzzy set

reservoir model are presented in Chapters 5 and 6.

The following is a list of all formal mathematical models included in

REZES, with a short explanation of the model capabilities'
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l.

2.

RESER - a reservoir sizing model based on the improved Rippl procedure

lRíppl,18B3; Símonovic, 19851. At present the model includes storage

dependent losses and uses different reliability levels of water supply.

CYIELD (Complete Yield) - employs a linear progl¿ìmming technique for

minimizing total reservoir capacity with regard to set of system constraints

[Loucks et a1.,1981]. It is used with seasonal hydrological data.

AYIELD (Approximate Yield) - is a simpler reservoir sizing model

fLoucks et a\.,1985] than CYIELD, in that it requires a smaller number of

constraints in the formulation of an LP model. It minimizes the total active

storage capacity necessary to provide the within-year yield.

[-P - uses a technique called Iterative LP lGry7ier and Stedinger, 19851

for solving nonlinear reservoir operation problems. The algorithm

attempts to maximizethe value of hydropower geRelated over the planning

period of one year.

EMSLP - employs successive LP in optimizing long-term planning of an

interconnected hydro utility for a deterministic future lReznicek and

Simonoytc, 19901. The operation involves scheduling reservoir releases to

generate hydro power, and managing energy transfer through the

interconnections (i.e., system,import, and export).

6. DP - considers the optimal long-term conftol of a multipurpose reservoi

which could supply water to both direct and indirect users lOpricovic and

Djordjevic, 1916). The model uses the dynamic progfamming (DP)

4.

5.
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technique for optimizing hydro-power-plant operation as a direct user and

as the only source from which indirect users may receive water.

7. CCCP - a chance-constrained LP model determines operating policies

which maximize expected benefits when the system is constrained to

achieve fixed minimal storage and flood control reliability levels

[simonovic, 1979]. The model uses the specific approach for converting

stochastic problem formulaúon into its deterministic equivalent one.

8. RPORC - a model developed by Simonovtc and Marino [1980], uses the

reliability programming approach where reliability levels are not fixed, a

priori. A nonlinear problem resulting from using this approach is solved

using a multi-dimensional Complex search by Box.

9. SDP - a predictive stochastic dynamic programming approachlBras et al.,

1983; Stedinger et al., 19841 served as a basis for this reservoir model.

This nonstationary model employs the solution of the steady state stochastic

DP as a boundary condition. The model makes use of efficient flow

forecasts as hydrologic-state variables.

10. PROFEXI - employs the concept of optimizing short-term operation of a

multi-purpose reservoir. It performs optimization on the basis of inflow

forecasts provided by an external forecasting algorithm fSímonovic and

Burn,1989]. However, due to the nature of real-time reservoir operation

REZES uses this procedure only for demonsfation purposes.
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11. FCCP - afuzzy-set-based chance-constrained model that determines the

reservoir operating policy which maximizes system reliability and returns

from release. The model accepts both quantitative and qualitative input.

The model transforms qualitative information about a decision-maker's

preferences toward the system's operations reliability and releases, into

numerical data. The model employs LP and search techniques for solving

the non-linear problem.

4.7 . AN TLX,{"]ST'RATTVÐ CONSUT.TATÏON

The Gruza reservoir (in Yugoslavia) case study has been employed to

illustrate the application of REZES and its potential benefits. The reservoir is

intended to provide water for a large municipal settlement (the town of

Kragujevac) 1Okm from the reservoir.site and to release minimal contracted

volume downstream from the reservoir (Figure 4.7). Flood control and sediment

deposition conÍol were two additional purposes, considered in the study done by

the Jaroslav Cerni Instítute llg76J and implemented in modelling reservoir

operation. According to this study the storage of the Gruza reservoir is 64.6x106

*3. Currently, this capacity is divided into three zones: the dead storage of

8.5x106 m3, the active storage of 48.4x106 m3, and the flood control storage of

73x106 m3. Reservoir storage, and the long-term planning reservoir-management

policy have been developed to provide firm water supply discharge of Qt=9.316

m3ls with very high reliability. Mean monthly evaporation (potential) ranges from

L9.2 mm in January to 119.0 mm in July. The most recent hydrologic report

f\nergoprojekt,1988] showed that demand and reservoir releases for water supply

stayed at the average level of Qd=O.550-3/s during the period 1985-1988 (the
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reservoir began operating in 1983). This low value of Q¿ relative to Qg raised a

question of how to improve utilization of the reservoir storage. The potential of

rural water supply has been considered for the utilization of available excess water.

Figure 4.7. Gruza reservoir system

The following is an illustrative consultation session performed by the

author, using information available on the Gruzareservoir system. It is suggested

here that a planner or manager (the "client" type of user), having limited

knowledge about the most appropriate model in the given context, but having

access to the mentioned project documentation and reservoir characteristics, may

r. KRAGU"TEVAC

Gnuza \ [ *ainpiptin
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@ Water treaÍnent plant -À'
O Rural settlement
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benefit from interacting with REZES. Flowever, this interaction should involve an

analyst as well (the "assistant" t)rye of user).

Figure 4.8 represents the problem identification steps for the Gruza

reservoir system operation study. The problem description is made up using

information supplied by the user. Logical inferences are then made based on the

problem description and modelling experience. Partial decisions and inference

flow respectively are represented by the shaded ellipses and arrows between them.

A more complete description of the logic in Figure 4.8 is as follows:

Using the fact that the reservoir exists and the previous project documentation is

available, REZES concludes that reservoir operation planning rather than sizing of

the reservoir is appropriate for this problem. The strategic goals and optimization

time step foreseen by the user suggested a long-term reservoir operation planning

approach and eliminated the real-time operation planning approach which would

need streamflow data with a shorter time step, and a good forecasting algorithm.

For this study, historical streamflow data for the years 1926 to 1977, recorded on a

monthly basis at the dam site, are used. Using rules, generally accepted by

practitioners, REZES concluded that this inflow record provides enough

information about inflow variability.

The next task is to determine risk levels, from the user's qualitative

description of the downsfteam land use and population density, involved in

choosing wrong methodology. Due to the conclusion of high risk, data record

length of 52 years, and available procedural models, an explicit stochastic

optimization approach is chosen. Finally, water supply, flood control, and low

flow augmentation purposes, identified for Gruza reservoir use, determined that a
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linear programming approach is appropriate for modelling of the functional

relationships. It is worthwhile mentioning that at each step of the analysis, the

"explanation" and "help" facilities are available to the user of REZES.

The mathematical formulation phase of the Gruza reservoi¡ problem is

represented schematically in Figure 4.9. For long-term planning purposes and

available streamflow record characteristics, reservoir storage was eliminated as a

decision variable and only monthly releases were selected as decision variables. In

addition, current and future ¡eservoir use dictated selecting a linear form of the

objective function. The form of the storage constraints is decided upon, using the

information available on reservoir storage zones. Finally, from the previous

documentation about the reservoir and its surroundings, minimal and maximal

allowable release levels are chosen to account for required instream release

quantities and the acceptable river channel erosion respectively. Certain

restrictions to the formulation phase are applied to assure that the formulated

model is available among the l1 reservoir optimization models included in

REZES.

Gruza problem characteristics (supplied by the user or derived during the

consultation) are matched next against characteristics of the 11 models available in

REZES. Reservoi¡ sizing and real-time models are eliminated first. Among the

long-term planning models, those that captwe stochastic variability of the inflows

are next examined, and a chance-constrained linear programming (CCCP) model is

chosen.
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Figure 4.10 shows a good agreement between the reservoir characteristics and the

CCCP model. A short explanation about the model's main features is then

presented to the user. This is a final instruction before proceeding to the input data

preparation and following phases of the reservoir modelling and model use

process.

Through the use of active images and background pictures (Figure 4.6)

data necessary to run the formal mode are collected. Physical data, reservoir model

specific computational data as well as hydrological data are supplied by the user.

To ensure accurate numerical results, REZES provides the user with

default parameter values and/or their acceptable ranges. Again, "explanation" and

"help" facilities are used fo¡ ensuring correct information input and subsequent

model use. After the model is run and the optimal solution is reached, a concise

presentation of numerical results is shown to the user and he/she is given the option

to comment on it. Based on this, further advice about the most influential

parameters, or a more detailed numerical outprit is provided. In the Gruza

reservoir case, the specified reliability levels were identified as being important,

and it was suggested that they be changed in the next run. In addition to the

reliability levels, the user is supposed to supply the coefficients of the objective

function in the form of unit benefits per cubic meter of released water. However,

this information was not available as it would have required precise economical

evaluation and considerable information on the future. Therefore, only rough

estimates were used in the analysis. It should be noted, also, that required reliability

levels a (of not exceeding the flood cont'ol storage) and B (of not violating the

minimal storage) are not known or strictly regulated by water authorities and
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should be provided by a decision-maker or a decision-making body. Therefore,

the first run was performed under the conservative assumption of very high

required reliability levels, i.e., both c¿ and p are set at9B7o (see Table 4.3).

Table 4.3. GruzaReservoir Data and Results

Month Evapo- Minimal
ration release

nate

Maximal
nelease

Solution
No. X.

ç¿=B={.98

R.elease

l1Ém3l

Solution
No" 2

cr=Ê=O.925

R.elease

t1Fm3lt-l [mm] [lFml1 [lÉng]

0ct.
Nov.
Ðec.

.lan.
F eb"

Mar.
Apr.
to[ay

Jun.
.lul.
Aug.
sep"

65.7

28.5

20.8

t9.2
19.7

50.0

65.7

96.4

110.4

119.0

113.5

90.3

0.54

0.52

0.54

0.54

0.48

0.54

0.52

0.54

0.52

0.54

0.54

0.52

8.04

7.18

8.04

8.04

7.26

8.04

7.78

8.04

7.78

8.04

8.04

7.78

1.98

0.52

0.54

0.54

0.48

0.54

5.39

5.60

0.52

r.02

0.93

0.52

0.54

0.52

0.54

0.54

0.48

0.54

0.52

3.88

0.52

7.52

8.04

0.52

The corresponding optimal release policy suggested that an additional

18.58x106m3 can be allocated annually to the downstream users. The analysis of

within-year distribution of releases revealed that although higher benefit

coefficients were assigned to releases during summer months (June, July, and

August), most of the water was released during the spring rnonths, .April and May

(41% of the total annual release during spring and l3Zoduring summer). A careful

115



examination of the flow duration plots for these two months reveals the reasons for

these seemingly inconsistent results. The very high flows during these two months

correspond to 9B7o flood control reliability (27o probability of exceedence on the

flow duration plots), and cause flood control constraints to be binding at the

optimum. Consequently, water was released from the reservoir during the spring

months to ensure safe operation. However, high-valued releases during suûrmer

months were kept close to minimum allowable flows.

In the next iteration, the required reliability levels were relaxed, as

suggested by REZES, to 92.57o and the model was run again. The new optimal

release policy suggested that 24.16x106m3 may be released annually ro rhe

downstream users. This amount represents a 307o increase in water allocated to

downstream users when compared to the results of the first run, or in total

5.58x106m3 more. This increase in supply was achieved at a cost of 5.57o in

reliability levels. The within-yeil distribution of releases (Table 4.3) shows rhar

most of the water (337o of the total annual release) is now released during the

summer months, rather than during spring (LBEI). In addition, the month-to-

month comparison of the first and second runs shows a significant change in

released amounts even for same months, e.g., the suggested release in August has

risen from 0.93 to 8.04x106m3. This change was not able to be directly explained

by the model results. Examination of the flow duration plots for the inflows during

the two spring months revealed the cause. The flows during April and May that

colrespond to 925Vo flood control reliability (7 .5Vo probability of exceedence on

the probability plots), are considerably lower than those used for the 987o

reliability in the first run. Consequently, the flood control constraints did not have

to force release of water in these two months.

116



The unexplained and abrupt changes in suggested release policy

strengthened the need for a robust procedure, which may more closely explain the

interaction of the two constraints and the objective function. That procedure should

not be rigid and static, with respect to the strict satisfaction of the constraints, as

assumed by the CCP procedure in which all constraints are considered inviolate at

their fixed a priori defined levels (set up by in advance chosen reliability levels). In

addition, each of the two above sets of results identifies one optimal release policy

for the precisely defined input provided by the user. It does not, however, account

for the uncertainty in the input parameters and functional relationships that are

considered precise, reliable, and not subject to change. In practice, especially for

planning pu{poses, users need a range of solutions which are not critically sensitive

to changes in model parameters that are imprecise and hard to identify a priori.

Carefully planned and performed sensitivity analysis can be used to provide the

user with these important insights. The disadvantage of the classical sensitivity

analysis for this purpose, is that in a highly constrained multi-dimensional feasible

space (as it is in the case of CCP with high reliability levels) the analysis may not be

very efficient. The uneven coverage of the feasible space may be another reason

why sensitivity analysis should be guided somehow and embedded into the model,

which will then allow for uncertainty and imprecision to be directly taken into

account. At the same time sensitivity analysis should generate widely different

solutions (in terms of the set of selected decision variables, i.e., releases) to

faciliøte their evaluation and elaboration. Bríll U9791 suggested that the tailoring

of available aigorithms should provide this information for use in planning.

The previous discussion of the CCP model results and input parameters

raises a question of adequately capturing reality in the optimization process and in

rational decision making. It is argued that an unambiguous extremum on benefits
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requires reliable economic information which can be difficult to obtain in reality.

Even if it can be obtained, the satisfactory attainment level for the objective

function may not be expressed as an absolute minimum level, e.g., below which the

operation of the reservoir is not economical. Because of the imprecision embedded

in the objective function, some violations of the "crisp" minimum levels may be

allowable. Even a range of acceptable levels may be specified for the objective and

used in the analysis. Similarly, the constraints that are posed may have the same

feature of uncertainty. Therefore, they need to be flexíble and allow for some

violations rather than being strictly inviolable. In summary, this discussion

displays a separation between optimizing and the process of seeking solutions

which are acceptable. Brown ll989l calls this process "satisficing". He contrasts

optimizing, which is a procedure based upon sftong mathematical foundations and

allows precise statements to be made in the objective function, with "satisficing",

which is then "an expectation with formal trappings which admits of imprecision in

the objectives and constraints and robustness in the solution".

The following chapters introduce fuzzy set theory and a fuzzy approach to

rational decision making. It will be shown that "satisficing" forms a framework for

using fuzzy linear programming in reservoir analysis. A non-linear chance-

constrained reservoir-operation model, which is based on the principles of

satisficing and uses fuzzy set theory, is then developed and described. The model is

built on the chance-constrained model developed by Simonovic ll979l which is

tailored to account for subjective and imprecise information by using fuzzy

methods. The new model exemplifies how fuzzy methods may be used to augment

and improve a purely stochastic procedure. The discussion will address two

conìmon misconceptions about the use of fuzzy sets: (i) thatfuzzy models are really
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statistical ones in disguise; and (ii) that fuzzy models are always proposed to

replace stochastic ones.
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CFXAPT'ER. 5.

FUZ,øV SET'S, ÐECTSTON V{AKTNG ANÐ FUZ.,ø.Y MTÐET.T.XNG

This chapter reviews the theory of fuzzy sets and principles necessary for

the understanding and development of afuzzy-set-based decision-making model.

These theoretical principles provide a mathematical framework for studying

imprecise conceptual phenomena in modelling and decision making.

5.X.. REVTEW OF'' EASXC F'{"]ZZV SET THEORY ANÐ PRTNCTPT-ES

This section is devoted to the description of basic fuzzy set theory by means

of: (i) basic concepts and definitions; (ii) basic model of a decision making process

in a fuzzy environment; and (iíi) fuzzy linear programming. First, basic fuzzy set

theory will be presented as a generalízation of ordinary set theory, i.e., the theory

of collections of things. Second, fuzzy decision modelling is defined and presented

in terms of membership functions of the objective function and the constraints.

Finally, fuzzy decision modelling principles, applied to fuzzy linear programming,

are presented in more detail. Only the notions and definitions necessary for the

development and understanding of the CCF reservoir operation model will be

presented.
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5.1.n. Some tsasic Ço¡rcepfs and Ðefinitions

The following definitions are adopted and/or compiled from the, now

classical, paper by Zadeh t19651 or from the works by Zimmermann 11916,1983,

1985, 1987).

lDefinition 5.il

Á, classicat (crisp) set is a collection of elements or objects x in X, which can be

finite or infinite. Each single element can either belong to or not belong to the set

A, A.e X. Membership in a classical set,4 of X is often viewed as a characteristic

function p6 @inary function with two possible values, 0 or 1) such that:

pa(x) ={ 
å, î I f (s.1)

[Example 1]

.A.="Real numbers between 8 and 12":

(s.2)

Graphical representation of the characteristic function of .& is given in Figure 5.1.

lDefinition 5.2]

Fuzzy set: if X is a collection of objects denoted generically by x, then a fuzzy set

.4 in X is a set of ordered pairs:

A = lx, p¡(.x)),x e X

pn(x)={å: î Zt,,}?_r,
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Figure 5.1. Characteristic function of the set A.

where the first component of the pair refers to the element of X and the second

deals with the corresponding grade of membership.

lDefinition 5.31

Membership function represents the grade of membership of -r in the fuzzy set

,4., and its values are allowed to be in the real interval [0,1]. The closer the value of

Fe(x) is to l, the more.r belongs to A. Because fuzzy sets are represented by their

respective membership functions, in this work these two terms are considered

equivalent and are referred to interchangeably.
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þxample 2l

A="Real numbers close to 10", where

linguistic hedges used with fuzzy sets

etc.):

the explanation represents an example of

(e.g., approximately, more or less equal,

pa(x) =;-i 
" ^r1 + (x-10)" (s.4)

Graphical representation of the fuzzy set ,4, (or the membership function of A) is

given in Figure 5.2.

8 S 10 11 12

Real Numbens

Figure 5.2. Membership function of the fuzzy set A,
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lDef,rnition 5.4]

Support af a frazzy set is an ordinary set S(A) such that x belongs to S(,e) if

lrn>0.

[Definition 5.5]

l{ormality of fuzzy sets: if Max ¡ra(x)=l, the fuzzy set .4, is called normal.

lDefinition 5.6]

Equality of two fuzzy sets: two fuzzy sets, A and B, are equal if:

tte(x) = Fn(x), Vx e X (5.5)

Basic operations on fuzzy sets are the result of an immediate generalization

of the corresponding operations in classical set theory. Thus, we will staf from the

conventional Venn diagrams for depicting basic operations on ordinary sets.

Figure 5.3 shows how the elements of two sets may be lumped together, i.e., the

union operation (.{uts), or how we could examine the elements held in common by

two sets, taking their intersection (Ants). Finally, the elements not belonging to a

set may be examined by taking its complement. It can be easily seen that the

intersection of a set and its complement is an empty set:

Ãr¡A - Ø

and that the union of a set and its complement results in

discourse X:

.Au,& = X
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B,&

{1, 3, 6, 9, 11} {2, 3,5, 6, 7, 8, 11}

.A nB uts

{1 ,2,3 ,5, 6 ,7 ,8, 9, 1 1 }{2, 4, 5,7, B, 10,...} {3,6, 1 1 }

Figure 5.3. Venn diagrams of basic operations on ordinary sets

lDefinition 5.61

{Jnion of fvzzy sets: the membership function of Auts is defined as the

maximum of the membership functions of ,{ and B. This operation was extended

from classical set theory by the following formula proposed by hdeh [1965]:

Vx eX, p¡.rs(.r) = max{pe(x), pe(x)} (5.8)

[Definition 5.7]

lntersection of fuzzy sets: the membership function of ,4,ôts is defined as the

minimum of the membership functions of ,4 and ts. This operation is expressed by

the following formula:

ñ
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Vx eX, p¿.n(x) = min {pu(r), pe(x)}

lDefinition 5.8]

complernent of a fuzzy set: The complement Ã of .a is
membership function:

Vx eX, pft) = 1- p¿(x)

(s.e)

defined by the

(s.10)

There is no exact analogy for these operators to the Venn diagrams used to depict

tradiúonal set union and intersection. Figure 5.4 shows a fuzzy set representation

of these operations.

Ants ,4uB

Figure 5.4. Representation of fuzzy set operations
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The above formulas for operations on fuzzy sets, preserve almost all

properties of operations found in traditional set theory. There are, however, two

important differences. Figure 5.5 shows that the intersection of a fuzzy set and its

complement is no longer an empty set:

Ar.,l^+Ø (s.11)

o
q)

(t)
¡-
c)

q,)
Eg¿

0

X

Figure 5.5. Intersection of afuzzy set and its complement

and that the union of a fuzzy set and its complement does not result in complete

universe of discourse X:

A.u.A * X (s.r2)

These differences are the direct consequence of a lack of sharp boundaries in fuzzy

SEIS.

Õ
Afä

û

A
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5.L.2. Modelling___of a ÐecisÍon-Ma!<ing Fnocess in a F uzzy

Envircnmenf

In Chapter 3, conventional (non-fuzzy) modelling of a decision making

process in reservoir management and operations was analyzed through the

mathematical description of a system in terms of:

(i)

(ii)

(iiÐ

decision variables;

objective functions; and

constraints.

The optimal decision is defined then as the value of the vector of decision variables

giving the best system performance.

As is the case with operations on fuzzy sets, modelling of a decision-making

process in a fuzzy environment is developed as an extension of its traditional

analogue. A fuzzy decision-making model considers a situation in which the

objective function as well as the constraint(s) are fuzzy. According to Bellman an-d

Zadeh [1970] and Zimmermann 11976), since the objective function should be

optimized and, at the same time, the constraint set satisfied, a decision in a fuzzy

environment is defined by analogy to a non-fuzzy environment as the selection of

decision variable values which simultaneously satisfy the objective function and

constraints. According to this definition and assuming that the intersection

operator corresponds to the logical "and", the decision in a fuzzy environment can

therefore be viewed as the intersection of fuzzy constraints and a fuzzy objective
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function. F'igure 5.6 shows how two fuzzy sets, comesponding to an objective

function and a constraint, are combined to get a fuzzy set representing a fuzzy

decision (shaded area). A range of .r in the shaded area refers to those values of x

acceptable from the point of view of the constraint as well as the objective function.

The membership levels of the decisions in the shaded area may be viewed as

support levels or satisfaction levels for the corresponding decisions. A

mathematical formulation of the decision may be expressed in terms of

membership functions:

lrn(¡) = min {pc("), pc(x)} (5.13)

Figure 5.6. Modelling of decision making in fuzzy environment

where Frn(x), Fc(x), and ¡ts(x) are the membership functions of the decision,

objective function, and constraint respectively. It should be pointed out that if the

DM needs a crisp, rather than a fuzzy decision, the solution with the highest degree

of membership in the fuzzy set decision may be considered as the "optimal".

q,)

a)

Ø
¡<
q)

q)€à

ObjectÍve
Function

Ðecision
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The above definition of modelling of a decision-making process ín a fuzzy

environment introduces a different approach to treating the relationship between

objective functions and constraints. According to the fuzzy definition, there is no

longer a difference between the objective function and constraints (their

membership functions), i.e., the relationship between them is fully symmetric.

Figure 5.6 explains this relationship in the membership space. The membership

function of the objective is a bell-shaped function that reaches maximum value for

some aspiration level of X. The membership function of the consftaint is an inverse

S-shaped function which embraces values of X within defined tolerance limits. The

acceptable decision space is then the intersection of the two fuzzy sets. Exactly the

same answer would have been attained if the membership function of the objective

was defined as an inverse S-shaped function and the membership function of the

constraint as a bell-shaped function. In other words, the treatment of the two

membership functions is the same in the fuzzy decision-making process.

5.1.3. Fuzz]¡ Linear Frogramming

The conceptual formulation of the fuzzy linear programming proposed by

Tanaka et al. ï19741, and developed by Zimmenru¿nn Í1976,L983,1985,19871 will

be briefly reviewed next. The classical LP model characterized by its feasible

region in the decision space (defined by the consfaints) and the goal (specified by

the objective function), may be staæd as follows:

Minimize z = cT'x (s.14)

,{.x > b
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x >0 (s.16)

where X is a given space of alternatives (xeX=Rru); ceRe; beR.r¿;4, the

coefficient matrix such that heKm'w' R./¿, ¿-dimensional real space; n, number of

decision variables; and m, number of constraints. According to this formulation,

the violation of any constraint renders the solution infeasible. Also, it should be

noted that the solution to this problem lies in the corner of the feasible region, i.e.,

the intersection of the two or more constraints and the objective function.

If we assìrme that decision making (modelled by LP) has to be made in a

fuzzy environment, and both objective function and constraints become

ambiguously defined (with vague boundaries), the problem can be reformulated in

terms of the fuzzy set theory. To do that, the objective function might have to be

written as a maximizing goalin order to consider z as alower bound. The objective

function and constraints may be represented, then, by fuzzy sets with their

conesponding membership functions. The problem is now fully symmetric with

respect to objective function and constraints:

cT.x ) z

A.x >h

N >0

(5.17)

(s.18)

(5.1e)
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where ) denotes the fuzzy version of > relation and has the linguistic

interpretation "essentially greater than or equal". Using the symmefy feature the

objective (5 .17) and constraints (5 . 1 8) can be represented together as:

ts'x >d (s.20)

where

6. pn.(m+l) ,rrO¿J'lLbl

Each of the rn + I rows of (5.20) are now represented by a fuzzy set s; in the E;, ând

a function h:x->Ð. objects w1,...,w**1 ârê reâr lines which correspond to the

items related to the objective and constraints. Afuzzy decision ÐeX is then defined

as the intersection of the inverse images of s1,...,S.*1 with respect to h1 ,...,hpa1,

i.e.,

,u{;],r=sze+l

m+1

Ð= tl t;t(s)
i=l

and conespondingly, its membership function is:

Fn(x) = Min Frsr(hr), xeX, t =1,2,..., m+I

where lro is the membership function of the fuzzy (decision) set Ð; p5-

membership function of the fuzzy set S; corresponding to the i-th constraint.

(s.21)

(s.22)
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' This is the function of the set of decisions xthat satisfy relation (5.20). In

order to derive one executable decision it is appropriate to consider it as a solution

with the highest degree of membership in the fuzzy set decision space Ð. The

optimization problem can be formulated as choosing an alternative x*e Ð such that:

pn(N.) = Max pn(x), xe Ð (s.23)

At this point it should be noted that linear programming formulation requires that

all membership functions of the fuzzy goal and fuzzy constraints are given in linear

form. This requirement gives the following:

psJ(¿r) = Max {uin [o¡er, 1], o), e¡ew¡ (s.24)

where o¡(e¡),'t-L,2,...,m+I, are linear functions. An example of the membership

function of a fuzzy constraint is given in Figure 5.7.

Figure 5.7. Afuzzy constraint membership function

q)

a)

v)l-
q)

0)g
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Accordingly, the membership function of the fuzzy decision is represented by:

pu(x) = Max t (Mi" [or(rdr))], t ], 0], i= 1,2,...,m+r (5.25)

The simptest form of the linear membership function, stated generally in (5.24),

for the fuzzy constraints and fuzzy objective function (5.20) may be stated in the

following form:

for (ts.x)¡>d¿

p,{(ts.x)r) =PP*, ror adn x) ¡>drp¡ (s.26)

for (E.x)¡<d¡-p¿

where d¡isi-th element of the column vector d given in (5.20); andp¿'s are

subjectively chosen tolerance levels of admissible violation of the i-th constraints,

1,

0,

al
qJ

v)
¡-
q)

q)
F

d¡ -P¡ d¡ (E'x);

Figure 5.8.Fuzzy "greater than" constraint membership function
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and (B.x)¡ is the í-th row of the linear system from (5.20),í.e., the left-hand side of

the i-th constraint. Figure 5.8 shows afuzzy set representing the i-th constraint.

substitutin e 6.26) into (5.22) and then (5.23) yields following:

'*{*['.ryt, ]]
(s.21)

This problem is usually called the Maximin (or MAX-MIN) problem lWagner,

lg6gl.It can be reformulated into the classical LP problem by introducing a new

variable À. This LP equivalent has just one more variable and two more constraints

than the original problem given by (5.14), (5'15) and (5.16):

Maximize À (5.28)

þ, -(g'o)¡Sp¡-d¡, í =1,Z,...,m+l (s.2e)

¡"<1 (5.30)

(5.31)ì,>0,x>0

It (À*¡*) is the optimal solution to the problem represented by (5.28), (5.29),

(5.30), and (5.31), such.x* is the optimal solution to (5.23), as well as to (5.27)'

In practice, it is very rare that the objective function is initially expressed in

fuzzy terms, as it was in (5.17). lJsually, a DM wants the objective function

maximized or minimized, subject to the set of constraints, where some of them are
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well-defined and some are fuzzy. Accordingly, the roles of objective function and

fuzzy constraints are different and the introduced symmetric approach is not

applicable. In order to make the problem symmetric again, the following

transformation procedure was proposed by Zimmermann ll985l, to normalize the

membership function of the original objective function:

(s.32)

where Lrc is the membership function of the fuzzified objective function/(.r),/ois

the optimal solution of the standard LP problem without any allowed violation of

the original constraints (5.15), andfi is the optimal solution of the relaxed standard

LP problem with introduced relaxation terms pis on the constraints (5.15):

pc(x)=L#,

for cr.xf1

for /pcr.ÞÍ

for cT.xf6

,fr=Minimizeflx)

(a.u)r 2 b rp ¡, i=\,2,...,m

x20

A membership function of the objective function

Figure 5.9.

(5.33)
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Figure 5.9. Objective functionfuzzy set (membership function)

Due to the transformation, the problem is symmetric with respect to the objective

function and constraints. Its equivalent LP formulation may be obtained again by

introducing a new variable l,:

Maximize ), (s.34)

'Ài4fo-fù + cr.x </e

þ¡ - (A'u)¡ S prd¡, i=1,2,...,m

1"<1

l">0,x>0

(5.35)

(5.36)

(s.37)

(5.38)
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Finally, if the problem contains some non-fazzy constraints the constraint

set may be extended to inco¡porate them. Simply, a set of k consh'aints are added to

the problem formulation yielding the solution /0,/i, as well as the problem

formulation (5.3a)-(5.3 8) :

(G."), < gr, i-m+I,...,m+k

where (G'x)i is the left-hand side of the ¡-th non-fuzzy constraint, and

right-hand side of the same constraint.

(s.3e)

g¿ is the

The fuzzy linear programming technique will be demonsffated using a

simple water quality management example formulated as an LP by Loucks et al.

[1981, pp. 46].

Vy'aste input = W1

=200 units/day
Waste removed =W t xt

Waste input = I4l2
=100 unirs/day
V/aste removed = WZ xz

Figure 5.10. S¡ater quality management problem (after Loucks et al.1L981))
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A stream (Figure 5.10) receives waste from sources located at sites 1 and 2. Q¡

represents the desired water quality concentration (index) and {¿ represents the

existing quality at the sites without any waste treatment. The problem is to find the

level of wastewater treatment at sites 1 and 2 required to achieve the desired

concentrations at sites 2 and 3 at a minimum cost. The transfer coefficient a¡¡

measures the improvement in the water quality concentration at site i per unit of

waste removed at site i, and I4l¡ represents the waste input at site i. The variable x¡ is

the fraction of waste removed at site i, and the coeffîcient c¡ is the cost of treatment

per unit of x¡.

The formulated LP model for this problem is:

Minimize z=ctxr+c2x.z (5.40)

Q2+aewfit2Qz

g+agWrÍt + ayW2x2>Q3

xr, Xz> 0.30

xt, xz< 0.95

The bounds on x¡ (5.43) and (5.44) represent the operating

removal technology.

(5.41)

(s.42)

(s.43)

(s.44)

limits of the waste

r39



'We now assume that data take the following values: ct=10, c2--6, Qz=3,

Q3=2, an-0.025, ai3=0.010, a2r-9.925,Wt-299,Wz=lC{, Qz=1, and Qr=6' 7¡"

opiimal solution to this LP is xÏ =0.8125 , xz* -0 .95, and z* -r3 '825 '

Suppose that desired water quality concenÍations are not known precisely

and that they are given as shown in Figure 5.1la and Figure 5.1lb. Note that the

size of the terms pF3 and pr=1 give an indication of how imprecise our

understanding of the lower limits on water quality is.

q)

g}

Ø
q)

c)!5

0
d1-p1=4 d1=7 Qz

Figure 5.1la. Water quality constraint as afuzzy set (site 2)

dz-pz=S dz=6 Qt

Figure 5.11b. Water quality constraint as afuzzy set (site 3)

qJ

q,)

u)t-
é)

q)
F&

0
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If we solve the given problem for /g, i.e., using the most restrictive constraint

values, the objective function yields z=13.825.If we then solve the given problem

for f1, i.e, for the relaxed (softened) constraints, the objective function yields

z=7.8. Finally, if we solve the given problem for l" (Eq. 5.3a-5.39), the final

solution yields: ¡,=0.58, xÏ=0.72, and x2* -0.53. If the values are substituted back

into the original objective function, the value of the objective function is z=10.38.

In summary, the differences between the "crisp" model (5.40)-(5.43) and

the fuzzy LP model (5.34)-(5.39) are as follows: the use of fuzzy LP admits

imprecision in the consÍaints while the "crisp" model needs totally precise input

data, i.e, the fuzzy procedure and solution may embrace the understanding of

uncertain data and constraints in a more realistic manner; the solution of the

"crisp" model is obtained by solving an LP problem once while the fuzzy solution

is obtained by running the LP solver three times. It can be observed, however, that

the solution obtained by using fuzzy LP is another "crisp" solution. The only

additional information for a DM is that support (satisfaction) for this solution

attains its maximum at 0.58. The apparent defîciency of the fuzzy model in terms

of providing just another crisp answer, will be discussed in more detail in the

following chapter and an improved methodology will be presented.

5.2. MEMtsÐRSF{TP F''{-]NCTTON ÐST MAT ON

The membership function is a subjective category that depends on the

expert's or decision-maker's individual perception of degrees of membership. It is,

therefore, obvious that membership functions are context-dependent and should be
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carefully anãlyzed for each particular application. The question of how to obtain,

or at least estimate, these degrees of membership has received some attention in the

literature and is described in the following sections.

5.2.n. lntroduction

In general, three approaches to the membership function estimation have

been followed. The first technique is simply to ask assessors to draw their

membership functions, or give thresholds for grades 0 and I and assume a

functional relationship between the two grades lBogardi et a1.,1983; Sakawa et aI.,

19S71. The main idea is to fit the empirical data set, consisting of pairs of elements

of the universe of discourse and the relative grades of membership, to the

analytical form of the membership function (linear, exponential, etc.). It is,

however, seldom possible to get trustworthy membership functions by asking

assessors to state them directly.

The second approach is based on statistical data manipulation. The approach

uses a population of assessors, each of which can respond to certain questions, with

respect to membership of an element in a set, with a Boolean "yes" or "no" answer.

The grade of membership is taken to be the proportion of the population replying

"yes" to the question fFreelíng,1980; Bharathi and Sarmn 19851. The statistical

approach makes it possible to obtain a confidence interval to the grade of

membership for each element of interest. Although applicable for certain types of

problems that involve group decision making, this approach is not particularly

useful for individual decision modelling.
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The third approach uses a basic scaling method for priorities proposed by

Saaty lIg77l or its variation lPedrycz, 1989 pp. 51-531. Its characteristics,

discussed in the following section, make it the most convenient approach for the

problem of determining risk levels in CCP reservoir operation modelling.

5"2"2" Saaty's Method

Saaty tlg|ll and Chu et al., tl979l have shown that the problem of

determining the degree of belonging of each member to afuzzy set can be reduced

to a matrix eigenvalue probiem. To illustrate the nature of the approach, as used in

this work, we use a simple chance constraint:

P(Xsx) <e (5.45)

where P denotes probability, X is a random variable, x is a value of the random

variable, and ais the fraction of time the consfaint may be violated at most. Often

a complement of a risk level is referred to as a reliability level (1-a).

Let us assume that the economic consequence of violating the constraint,

associated with the risk level ø, is not known. The risk, in absence of economic

data, should then be assessed by the DM. First, the DM compares every two

discrete risk levels giving qualitative preference judgments rather than numerical

values. Table 5.1 shows the nine-level qualitative scale used for pairwise

comparisons of risk (reliability) levels.
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Let w be the vector whose elements w¡>l0, i=|,2,...,n, are the unknown

degrees (weights) of belonging of each of n different probability levels to a set of

"acceptable risk levels".

Table 5.1. Qualitative scale for pairwise comparisons

l-evel Ðefinition Explanation

1) Equal importance Two risk levels are equally significant

2) Intermediate*

3) Weak importance of one over Experience and judgment slightly

another favour one risk level over another

4) Intermediate*

5) Essential or sfiong importance Experience and judgment strongly

favour one risk level over another

6) Intermediate*

7) Very strong or demonstrated A risk level is strongly favoured; its

importance dominance is demonstrated in practice

8) Intermediate*

9) Absolute importance The evidence favouring one risk level

over another is unquestionable

Note:* is used when a compromise among two choices is needed

Now, the pairwise comparisons may be represented by a matrix .4 of relative

weights with elements:

oij -f, YÌ,i ;í-I,Z,...,n, i =!,2,...,n (5.46)

To illustrate the idea employed by the method, let us assume first that c¡ values are

precisely known, e.g., as a result of a precise physical measurement. Therefore, the
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matrix A, called a pairwise comparison reciprocal matrix, has positive entries

everywhere and satisfies the reciprocal property expressed as:

(s.41)

Multiplying the matrix by the vector w=(t!1,...,wr)T, we have

.{w=nw (5.48)

(.{-n ã)w=0 (s.4e)

where I is the identity matrix of order nby n. This is a system of homogeneous

linear equations which has a non-trivial solution for the vector w if the determinant

of (.&-n[) vanishes. Furthe¡more, z is the only nonzero eigenvalue of A for this

perfectly consistent case lSaary, 1977).

Saaty ll977l has shown that in a matrix, small perturbations in its elements

imply small perturbations in the eigenvalues. In the general case of membership

determination, a¡¡ ratios are not known and should be estimated from a scale. The

DM's subjectivity in estimating them causes inconsistency of the matrix A, i.e., the

relationship

aji-h

or

qü
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is not preserved any more. Even the property in Eq. (5.47) may not be maintained.

To improve the consistency in the numerical scaling of the judgment, care should

be taken to ensure that whatever value a¡¡ is assigned using comparison, the

reciprocal value is assigned to aji.In the next step, F,q. (5.48) becomes

A'w' = &ro* w' (5.51)

where w' is the n-dimensional eigenvector associated with the largest eigenvalue

l"¡¿* of the perturbated comparison matrix Á,'. At the same time this vector

represents the desired vector of weights (after proper scaling). Carrying the

analysis one step further, it can be shown that the largest eigenvalue of the matrix

A'satisfies

L"r*>n (s.s2)

where equality holds for perfectly consistent cases only.

For the evaluation of matrix consistency a simple measure, the consistency

index (C0, has been defined by Saaty Ll977l as:

., -Arrr^-n(JI _- (s.53)
n -L

It is obvious that the closer the CI is to zero, the better is the consistency of the

matrix of comparison.
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For establishing the reasonable upper limit on the CI, a sample of 500

matrices of different sizes have been randomly generated [Saary andVargas, 1980,

pp.24l. Their consistency is presumed to be very poor as the entries have been

chosen randomly from a numerical scale. A scale with the upper bound value of 9

and the lower bound value of ll9, to comply with Eq.(5.47),was used' The average

consistency index values, which depend on the size of the generated random

matrix, are shown in Table 5.2.

Table 5.2.

ue77l)

Average consistencies of randomly generated matrices (after Saaty

Matrix size Average consistency

1

2
õJ

4

5

6

7

B

9

10

0.00

0.00

0.58

0.90

r.t2
1.24

r.32

1.41

r.45

1.49

The average consistency index values presented in Table 5.2 show the worst

consistency scenario for the particular matrix size because all the entries a¡¡ of the

matrices used in the calculation are randomly generated. It can be observed that the

value of the index increases with the size of the matrix. This trend occurs due to the

relatively higher increase in the largest eigenvalue Lmax compared to the increase

in matrix size, n.The explanation follows directly from Eq. 5.53.
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It is suggested by Saaty ]9771that a ratio of a CI and the average random

consistency index (from Table 5.2) for the same size matrix, should be around 10

percent or less, to be acceptable. This descriptive measure is called the consistency

ratio (CR), and its interpretation is analogous to descriptive measures of

association between independent and dependent variables X and Y in regression

models. Simitarly to the coefficient of determination, r2 (which measures the

strength of the linear relationship between X and Y [Neter et al., 1989]), the

limiting values of CR are between 0 and 1. The only difference is in the

interpretation of CR. The closer CR is to zero, the greater is said to be the degree

of consistency of the matrix A'.

Because of the subjective nature of the manager's attitude toward the

acceptable risk levels in (5.45), information provided by the manager is not

actually verifiable. Therefore, the consistency measures are descriptive and should

serve mainly to highlight anomalous data for the managers! reconsideration.

However, some work on selecting a numerical scale for a¡¡', for which assessor's

information is actually or conceptually verifiable from other sources, has been

done [Saøty,1980, pp. 53-64]. Different scales were investigated and it was found

that a scale with the upper bound value of 9 provides sufficient flexibility to

differentiate between two elements. These findings are used here for adopting a

scale for estimating the membership functions of chance constraints and the

objective function for reservoir planning optimizaúon.

The use of Saaty's eigenvector method in the so-called Analytic Hierarchy

hocess lSaaty,1980l for multiobjective optimization in water resources planning

and management has been documented by Palmer and LundL1985l. They used the

method for a discrete case to create the "importance (or weight) of an alternative
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with respect to an objective". The following simplified example will illustrate

Saaty's method applied to a verifiable problem of estimating weights. Assume that

we have 4 objects. If we measure their weights we can easily construct a pairwise

comparison matrix (4 by 4) which satisfîes F4. (5.46) and (5.47). We now assume

that actual weights take the following values: Wr=3,W2-2,W{l,W+=5 (or if we

normalize them: wr0.2727, w2=0.1818, w¡=0.0909, w4-9.4545). A pairwise

comparison matrix constructed by using the data is:

Solving the system of equations (5.49) we get 'ilr=0.6,'il2=0.4, re3=0.2,

w4=L0 and \nax=n= . If we then normalize the solution it yields exactly the same

values as obtained by the physical measurement. This is an example of an perfectly

consistent case.

If however, the actual measurements are not available and we have to assess

relative weights of the four objects, then Saaty's method may be applied as follows.

First, we compare four objects in pairs by picking them up one at time to get an

idea of the range of their weight intensities; then we comp¿Lre all the objects with

each other by picking them up. Suppose that the matrix of pairwise comparisons is

tLzS25
21nz
35
11r1

I_32 5

f f s 132
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ar _

Solving the system of equations (5.51) we get an eigenvector w=(w1=0.563,

wz=0.325,,il3=0.183, w 4-L0) and Àmax=4.0145 (or normalized w pQ.27 19,

wz=0.I570, r4rs=0.0880, w4-0.4829) which is close to actual values. For this case

C1=0.0048. The consistency ratio for this case was calculated as a ratio of CI and

the average random consistency index for the matrix of size 4, i.e., the average

random consistency index is 0.90. The calculated CR=0.0054<0.1 shows that the

ratio is smaller than 107o and therefore, the assessment was consistent.

L23l
2

1r .1
l/.23

11r 1
I-32 5

23 51
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CFåAPT'ÐR. 6.

R SK T.EVET. SÐT,ECTTON TN CFNANCÐ.CONST'RATNÐÐ

R.ESERVSïR OPERAT'TON &4ÛÐEÏ-LING: Æ FWg.g'Y SET'

APPR.O,&CF{

It was shown by example (Chapter 4) that even with using the ES technology

some problems, associated with the use of models, still exist. Fuzzy set theory was

introduced as a possible way to treat the non-random uncertainty. This chapter

demonstrates how fuzzy set theory may be used to represent the imprecision

inherent in probabilities and utilities used in a decision-making process and thereby

overcome some of these problems. Chance constraints and the objective function of

the chance-constrained programming (CCP) reservoir operation problem have

been identified as potential components which might benefit from being expressed

in afuzzy manner. To achieve these improvements, special numerical procedures

have been developed in this work. These procedures, for the most part, require

knowledge of basic fuzzy set theory.

An original approach to the formulation of a multi-purpose reservoir long-

term operation planning problem is presented next. This approach, based on fuzzy

sets, incorporates the estimation of fuzzy membership functions for constraints and

the objective function, as well as formulation of a solution algorithm for deriving

an optimal decision. Finally, an application of the model to the Gruza reservoir

case study (Yugoslavia) is presented as an example.
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The problem of how to choose appropriate risk levels is as old as the CCP

approach to water resources optimization. Two different methods have been used

for incorporating the selection of risk levels into the CCP solution process. The

fîfst one, a reliability programming approach, as proposed by Sengupta [1972],

and appliedby Simonovic and Marino U9B1l, explicitly considers a trade-off

between the benefits and the cost of risk. The approach may be useful for situations

where existing economic data are available for the development of so-called risk-

loss functions. The second method, which uses a multiple-objective programming

approach, was introduced by Rakes and Reeves [1985]. A similar method has been

applied to feservoir design and operation by Uan-On and Helw¿g [1988]. The

multiobjective methods provide the DM with trade-off curves between system

reliability levels and economic benefits.

Lack of economic data and the fact that establishment of acceptable risk

levels involves a human factor, with all its vagueness of perception, subjectivity,

and attitudes, may not permit a proper application of either of the above

approaches. With that situation in mind, a new approach is proposed and applied in

this work. This approach is based on fuzzy set theory. It holds promise as a bridge

for part of the gap, caused by imprecision that is not statistical or random in nature,

between real systems and their modelting.

Situations where the concept of so-called "classical" probability, alone, is

not adequate to describe real-world problems, regularly occur in water

engineering practice. When questions arise about exactness of concepts,
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correctness of statements and judgments, degrees of credibility, etc, the probability

framework, alone, is not appropriate for representing reality. Yet, to account for

hydrologic uncertainty, a formal modeL used to estimate reservoir size and select

its operating policy must incorporate the stochastic nature of inflows and demands.

Therefore, a joint stochastic and fuzzy-set approach may be appropriate for

credible reservoir design and operation modelling. The key concept of fuzzy set

theory is the membership function which numerically represents the degree to

which an element belongs to a set. The following work concentrates on the

estimation of the membership functions and development of the solution procedure

to arrive at the desirable reservoir operating policy. Although the following

methodology can be applied to different CCP formulations, the one developed by

Curry et aI., tl973l and later modified by Simonovic ll979l, is employed to

demonstrate the process of selecting risk levels.

6.1-.L" Chance-Constrained Reservoir OpetaLion_Planning_Model

The model is derived f¡om consideration of the storage balance equation

with the reservoir release as the decision variable. The storage balance equation

reflects the conservation of water in the reservoir (Figure 6.1):

S¡ = Sr -ÈT, - d¡ - r¡ - l¡ Vt, t = 1,2,...,7 (6.1)

where S, is the volume of water stored in the reservoir at time t,Ç¡is the stochastic

inflow into the reservoir during the time interval (t-1,t), d, represents

deterministic extractions directly from the reservoir, r, represents additional
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downstream release in the time interval, and /, denotes losses from the reservoir in

the time interval.

ACTTVE
ST'ORAGÐ

C.&PACXT'Y
ü*Wu-&W

Figure 6.1. Schematic representation of a reservoir (after SímonovicLLglgl)

Let the objective function be

Tåx/ c) (6.2)

where r=(r1,...,r7)T is the vector of releases within the planning horizon,I(t<T.

The function / is a suitably defined function incorporating benefits and costs of

releasing water from the reservoi¡. The chance constraints expressing the accepted

risk levels, with regard to reaching storage targets, are as follows:

P(Sr>c-vt)<a

F'T,TOÐ CONTR.TT, ST'ORAGE

A/ïINIMAL eW

STORA
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P(Sr<m,)3þ (6.4)

in which c is the reservoir capacity, yr represents reservoir storage for flood

routing, m, denotes minimal reservoir volume, and u and þ are the risk levels

(O<u, þ<1).The constraint set is completed by specifying bounds on the

downstream releases

f min I r¡ 3 r¡¡raa Y t (6.5)

where r*¡n, ãÍrd r*o, respectively, are the minimum and maximum allowable

release levels. The detailed description of the model (6.1)-(6.5) and the

development of the deterministic equivalent of the stochastic LP reservoir

problem, following Simonovic fl9791, is given in Appendix A.

This model is a long-term planning model which provides a preliminary

monthly schedule of releases within a planning horizon of one year. The identified

"crisp" set of releases is based on the previous realizations of random streamflows

and serves as a general guideline, for resource allocation and strategic planning, by

the model user. The actual realizations of random inflows and storages should be

taken into account to revise the planning solutions. This revision is done by means

of sequential use of an optimization model (usually one different from the long-

term planning model), in a mid-term or real-time manner, i.e., using forecasted

information. The reliability levels and the objective function coefficients which are

necessary for the analysis must be provided, a priori, by a DM. This is a

disadvantage of the model because these estimates are unreliable and hard to obtain
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unless a range of values is considered. In addition, the chance-consh'ained approach

does not evaluate, the sometimes difficult to quantify, effect of constraint violation.

As noted above, in practice, it is very hard to fix the risk levels or to define

them precisely, for a particular problem. In addition, the objective function form

and/or its coefficients may be ambiguous in the absence of an explicit rationale,

e.g., Bogardi et al. [1983] found it difficult to express a non-economic

environmental objective in economic terms. Ilaving this in mind, research has been

performed to arrive at: (a) a general approach for developing a fuzzy membership

function for chance constraints; and (b) an approach for choosing objective

function coefficients and determining membership levels of an imprecise objective

function. In both of the approaches, the DM's input is essential for estimation of the

membership functions.

6.2. EST'TMAT'TON OF MEMtsERSHXP F''UNCT'XC}NS F'OR

CONSTRATNT'S

The procedure is based on the use of a DM or a group of DMs as assessors.

The assessors are presented with a questionnaire which requires no numerical input

about imprecise problem elements. They are asked, instead, to make pairwise

comparisons between the imprecise elements, i.e., risk levels. The comparisons

may be performed using a scale similar to one in Table 5.1. After associating

numerical values from the scale 1-9 with the nine qualitative levels of comparison

identified by assessors, the remaining entries in the marix .{ are obtained by

taking their respective reciprocal values. The approach is basically qualitative and

may be applied in an iterative manner if consistency is to be preserved.
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The estimation of a membership function, using this approach, was

implemented for the chance constraints (6.3) and (6.a). The Gruza reservoir CCP

problem, which will be presented in detail later in the chapter, served as the

example. Using known trends in past operations of the reservoir in the past and its

potential future use, a DM body assesses the acceptable risk of violating reservoir

minimal and flood storage. A reasonable range for pairwise comparisons of risk

levels and use in CCP is chosen to be between 0.5 and 0.0 (corresponding reliability

levels are between 0.5 and 1.0). Ten discrete risk levels a¡md13¡ i=t,2,...,10, from

within this range were analyzed and compared by assessors. The matrix .4 is

formed using the scale from Table 5.1. The system of equations (5.49) is solved,

giving the real eigenvector w, i.e., the membership function of the constraint

(5.45).

The effect of the scale upper bound on the membership function of

retiability levels (l-u¡), and the effect on their degree of belonging (membership

level) to a set of "acceptable reliability levels" is shown in Figure 6.2. It was

observed that more conservative membership levels were obtained for higher

upper bound values of the numerical scale. It is likely that the nature of entries in

the matrix 4., most particularly reciprocity of a¡¡ and aji , causes this effect.

F'or the fîve membership functions, which correspond to the five upper

bound values of the numerical scale, differences in membership levels diminish as

the value of reliability levels approaches 1.0 (risk levels approach 0). It was also

observed that no matter which upper bound value is used the same preference

relationship is maintained between successive reliability levels.
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Figure 6.2. Effects of different scales on the membership function of a

constraint

The target value for the chance constraint is in the region of high retiability values,

with membership levels close to or equal to 1.0, i.e., high reliability levels are

more desirable. As the assessor's input is not actually verifiable, the selection of the

most appropriate numerical scale was based on the recoûunendation by Saaty,

ll9l7l. Thus for this reservoir operations planning, membership functions are

obtained using the 119-9 scale.

Rather than relying on the CI index and on Saaty's experiment with

randomly generated entries for comparison matrices, the following procedure was

designed and implemented to investigate the soundness of the C/ measure. Many

samples, each of them consisting of 1@ matrices, were generated from the original
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pairwise comparison matrices obtained from the assessors. The samples were

generated by introducing a random noise into each of the comparison matrices:

ag)=A +e; (6.6)

Where A,!) denotes j-th matrix generated from the original matrix A,i=l,...,100;

and €j is the random noise matrix generated using the j-th seed value. The matrix

ap is obtained when all entries of the matrix A (except a¡¡=I, i=L,2,...,!0,

j=1,2,...,10) are disturbed using generated noise values. The disturbed matrices

Ap were used to calculate the maximal eigenvalue, CI index, and CR for each of

them. For each sample of 100 values of CRs, generated from an original matrix ,4.,

a frequency distribution was constructed. Figure 6.3 shows the frequency

distribution of the consistency ratio obtained by disturbing what was originally

considered a consistent matrix with C/=0 .026 andCR=0.017<0.10 (calculated for a

mafiix of order n=10). It is clear, from Figure 6.3, that the original value of the

consistency ratio (dotted line) is in the acceptable region of 707o (shaded area) and

that there is not much room for improving the consistency of the original pairwise

comparison matrix (as all generated CRs are gleater than the original).

However, Figure 6.4 shows that an originally inconsistent matrix

(C1=0.405, CR=0.272>0.10) can improve its consistency even with the

introduction of a random noise. Figure 6.4 clearly indicates that this pairwise

comparison matrix should be given back to the assessor for reconsideration.
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6.3. MÐMtsÐR$F{{P F''UNÇT ûN ÐST ]\4AT'{ON EOR T-'8.{Ð-

OE JECT{VÐ F''{j]\TT CIN

Depending on the purposes of the reservoir, different economic or social

utility objectives may be quantifred and integrated into a single indicator. This

indicator, an objective function, describes how the reservoir should be operated. A

common procedure for multi-pu{pose, multi-objective study is to use the

weighting method, where weights reflecting priorities are assigned to each

objective lBras et al., 19831. These weights are often called objective function

coefficients. If a realistic evaluation of economics or utility is not possible, a

different approach to determining objective function coefficients may be required.

In this work, the DM's assessment of the importance of the reservoir

monthly release r, is used for deriving the coefficients of the objective function

flr). Similarly, as in the case of the chance constraint, no absolute values of the net

benefits or costs, associated with the monthly releasé, are used. A planning horizon

of a year was used in the example (T-I2 months). Following the scaling method

for priorities, a group of twelve objective function coefficients associated with

reservoir monthly releases has been sorted into four clusters. Each cluster is

related to the coefficients associated with releases during three months of similar

importance. Clustering (in this problem) makes possible, efficient pairwise

comparisons and greater consistency of the comparison maüix .4. Comparisons

are performed using a qualitative scale similar to one presented in Table 5.1.

trnstead of comparing two risk levels, as in the case of chance constraints, two

clusters, containing different objective function coefficients, are compared.
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Elements of the resulting vector w'=c(c1,cz,c3,c+)T represent objective function

coefficients associated with each cluster. They are then normalized to give:

4

L'¡=4
i=1

(6.7)

If further differentiation among the coefficients in a cluster is needed, the relative

priorities of releasing water during the individual months in each cluster may be

compared. Figure 6.5 shows clustered months and the objective function

coefficient values associated with reservoir releases for the Gruza reservoir. The

cluster consisting of summer months (June, July, and August) was given the highest

priority by the assessors, followed by the cluster of late spring and early autumn

months (May, September, and October), and the cluster of early spring and early

winter months (March, April, and November). The lowest priority was given to

releases during winter months (January, February, and December).

Jan F'eb Mar Apr May "Iun Jul Aug Sep Oct Nov Ðec

&¿ãomtEe

Figure 6.5. Objective function coeffîcients obtained using Saaty's procedure
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The target value (maximum membership level) for the objective function is

established as the value obtained by solving the CCP problem (6.1)-(6.5) for risk

levels a and B, both,set to 0.5. That value is the level for which the membership

function of the constraint attains its minimum (Figure 6.2). Accordingly, it is

assumed that the minimum membership level of the objective function is reached

when no risk is imposed on the system (note that this solution is theoretically and

computationally infeasible). Intermediate membership levels for the objective

function are calculated as:

pi",ÁÒl=t# (6.8)

where VLf",g\r¡] is the membership function level for the objective function

fo,$r),fo,B is the objective function value for the risk levels a, þ from within the

interval (0,0.5), and/5,.5 is the objective function for op0.5 and B=0.5.

6.4, SÛT-{JTION PROCEÐURES F'OR RTSK X,ÐVE{. SÐX-ÐCTTTN

In the introductionto fuzzy LP decision making, it was pointed out that such

a formulation requires all membership functions to be given in linear form. The

solution to the problem is obtained by solving three standard LP problems giving

fo,ft, and I respectively. However, membership functions of the constraints and

the objective function for the CCP reservoir operation problem are non-linear

(given in a piecewise linear form). Therefore, a non-linear procedure is proposed

for solving the problem of the risk level selection.
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It was previously shown that the solution of a problem, which is specified

using membership functions, is defined as the selection of risk levels and

coresponding statement of reservoir release policy, which simultaneously satisfy

the objective function and constraints. The solution to the problem represented by

Eq.(6.1)-(6.5) and (6.8) can therefore be viewed as the intersection of the single

f.uzzy set representing constraints and the fuzzy set representing the objective

function. Both the objective function and consEaints are given in the form of luzzy

inequalities. The intersectin g fuzzy set identifies a range of solutions among which

one may be selected, if necessary, as a "crisp" solution. The "crisp" solution to

fuzzy LP problems (see F;q.5.27) is obtained by identifying the maximum of the

minimum supports (membership function values) among the fuzzy inequalities.

The mathematical expression in Eq. 5.27 can be interpreted as an'attempt to arrive

at a solution which has the "greatest satisfaction" (maximum membership function

value overall) under the "worst possible scenario" (minimum membership function

values). The logic will suit the viewpoint of a DM who wishes to identify the best

decision but takes a more conservative (risk-averse) outlook within his/her

decision environment. That is, the minimum operator represents a conservative

way of simultaneously satisfying the constraints and the objective function.

However, under the assumption that: (a) the above deductive model, i.e.,

MAX-MIN approach, correctly represents the decision making process involved in

reservoir operation planning; (b) a range of solutions that satisfy minimum

requirements is needed ; (c) a "crisp" solution should be identified as the best in the

set; the following procedure was developed. Firstly, a single membership function

of the fuzzy set which conesponds to the two chance constraints is obtained as the

intersection of the two related fuzzy sets. The resulting fuzzy set, represented by

the shaded area in Figure 6.6, is obtained using the minimization operator (5.13). It
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can be observed that more conservative values of the membership functions p{cr}

and p { F } at any point determine the resulting fuzzy set. Therefore, the

conservative attitude is a driving force of the algorithm.
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Figwe 6.6. Chance consraints fuzzy set

The intersection of the resulting chance constraints fuzzy set and the

objective function fuzzy set is obtained next. The shaded intersection zone in

Figure 6.7 represents the solution fuzzy set for the reservoir problem, as defined

above. The tails of the zone should be excluded from solution consideration

because of the low membership levels. The intersection point of the two functions

distinguishes the decision with the maximum membership (support) value among

other acceptable decisions. Risk levels ø = a, and þ = b in Figure 6.7, which
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correspond to the maximum membership level, are the "optimal crisp" risk levels

(corresponding reliability levels are l-a= l-a and 1-þ - \-b respectively).
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Figure 6.7. "Optimal" (crisp) risk levels solution

A simple search routine was developed to fînd the intersection point, i.e., the

"crisp" solution, as well as a range of solutions to the rese¡voir problem

formulated in terms of chance constraints. The flowchart of the algorithm is given

in Figure 6.8. The procedure is as follows:

1. Define the search step Ap and acceptable search accuracy sp in

terms of membership levels pe [0,1] of the solution.

2. Start from solving the CCP problem (6.1)-(6.5) for both u and þ

equal to 0.5 and obtain f.s,.s. Then associate the membership level of 1.0 with

Objective
Function
F{f",p(n)}

Minimum storage
constraint

Flood Controtr P{P}
constraint
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þ{/.s,.s(r)} and find the minimal membership level for the two constraints

W{d=0.5,þ=0.5} by comparing membership levels that are read for a=0.5 and

þ=0.5 from their membership functions respectively.

3. Increase the membership level of the constraints using the search

step Âp and read a and p from the two memþrship functions of the constraints.

4. Solve the CCP problem for new values of ø and þ ^d compare

obtained V{Í",fir¡1 to V1-u,þ}.

5. If ¡tlfo,g{r)} isstillgreaterthanp[a,þi, gobacktostep3. If the

opposite is true or the solution is infeasible, decrease the membership level by one

search step 
^U", 

change the search step to L¡t12, and go back to step 3. The

procedure is continued until W{f",Bg¡1is equal to p.{a,þ}, or they differ less than

the given search accuracy.

The model formulated through these five steps is analogous to the fuzzy LP

model given by (5.3a)-(5.39). However, this model may not give a preferred

solution to every DM. In situations where more than one DM is involved in the

decision-making process, the conservative MAX-MIN procedure may not be

appropriate. A DM body may accept a less conservative approach to combining the

constraints and the objective function which can provide greater Íade-offs among

fuzzy inequalities. This can be achieved by maximizing the total support

(satisfaction) for all fuzzy inequalities individually.
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cr =0.5 B =0.5

Solve CCP problem
(s.54)-(s.s8)

It {cr=0.5, F=0.5}

ti {fr,., (r)}=1.0

p{cl,Ê}=p{o,p}+ A¡r

c[rp Llt =l/2 Llt

Solve CCP problem
(s.s4)-(s.s8)

p{cr,Þ}=p{cr,Fi-Âp

Solution feasible ?

lut t,urrl] - p{o,F}l>,

Figure 6.8. Flowchart of the risk level selection algorithm
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The mathematical model given by (5.3a)-(5.39) may be expressed then as:

Maximize

?"t(fo-fù + cr.N </s

þ; - (4.*)¡ 3 prd¡, i=2,...,m +l

l,¿ )0, x>0

For this particular case of the CCP model the objective function will be:

Maximize &{f",6r¡7 + p[cr] + p{p}

m+lXr
i (6.e)

(6.10)

(6.11)

À;<1 (6.r2)

(6.13)

(6.14)

The symmeüy feature of the objective function and constraints is still preserved

with this model. Support levels (1,Ð in this model are defined for each of the fuzzy

inequalities as opposed to a combined support for all inequalities (minimum À).

These support levels are not necessarily equal at the "optimum" (crisp solution) as

was the case with the MAX.MIN formulation of the same problem. This chalge

gives additional flexibility to the fuzzy prograrnming model. However, there is a

trade-off between a more flexible model and the attained level of support for each

of the fuzzy inequalities. Using this model, some of the inequalities may result in

lower support (satisfaction) levels than those produced by the MAX-MN model.
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For example, one of the reliability levels may be sacrificed for an increase in the

other reliability level and the objective function.

In reservoir operation planning decision-makers tend to be sensiúve to the

issue of reliability. It is, therefore, unlikely that the above model may be used for

practical problems. If a distinction in treatment of the original objective function

and treatment of reliability constraints should be made, a compromise between

MAX-MIN and a risk-inclined solution procedure may be adopted. The idea is to

use a minimum operator for combining the reliability constraints and then to

maximize the sum of supports for the objective function and constraints, i.e.

Maximize V{f 
",B(r¡¡ 

+ P[cr, Þ] (6.15)

where V{fo,{r¡¡ and ¡rIcr, Þ] ate previously defined membership functions. This

model and the MAX-MIN model will be used, and their results analyzed, in the

Gruza reservoir case study.

6.5. MOÐÐT. TMPI-EMENTATTON AF{Ð RES{.][.T'S

The developed modelling approach has been applied to the Gruza reservoir

in Yugoslavia. The long-term planning objective for the Gruza reservoir concerns

conservation storage for water supply of the city of Kragujevac, flood and

sediment deposition conffol, and the low flow augmentation downstream from the

reservoir f"[aroslav Cerni lwtitute,1976]. A realistic economic and social utility

evaluation was not available for the reservoir objectives. This is a consequence of

the specific characteristics of the economy in this developing country. According
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to the mentioned reservoir pu{poses, the storage capacity of the Gruza reservoir of

64.6xß6 m3 is divided into three zones:

(i)

(ii)

(iii)

the dead storage zone of 8.5x106 -3 IZSB m.a.s.l.);

the active storage zone of 48.4x106 m3 Q69.25 m.a.s.l.); and

the flood conrrol zone of 7.7xl16 
^3 çZl0 m.a.s.l.).

The reservoir must provide a firm water suppty in the amount of Q=9.916 m3/s

for municipal water supply, and an additionat Q=0.20 *3/r fot instream release

throughout ayear. The reservoir stârted operation in 1983. Since then feasibility

of improved utilization and potential water supply to rural areas has become

apparent. Figure 6.9 shows that high storage levels were maintained in the

reservoir during the period 1985-1988 despite measured inflows below the long-

term average for 52 years. Therefore, utilization of excess water seems even more

appropriate.

L985 n 986 f.987
Veax'

n 988

Figure 6.9. Gruza reservoir water levels during the period 1985-1988
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Using available streamflow observations of the Gruza basin, monthly inflow

distributions were derived for use by the model. Attempts were made to fit each

month's inflows to a norrnal, log-normal, Pearson type III, or log-Pearson type III

distribution. Using both the Chi-square and Kolmogorov-Smirnov goodness of fit

tests, a log-normal distribution has been selected as the most suitable. Upon fitting

each month's inflows to a log-normal distribution, the monthly marginal

probability distributions are completely described by their respective means and

variances. The detailed input data and results of the streamflow statistical analysis

¿re presented in Appendix B.

For the testing of the fuzzy set approach developed in this work, a group of

professors and graduate students of the Civil Engineering Department at the

University of Manitoba served as a "decision-making body". They were presented

with the information on reservoir characteristics, pu{poses, past performance, and

considerations about improved use. The attitude toward operating the reservoir in

the past was illusmated by the reservoir levels, inflows, and releases during the

period 1985-1988. Using the scale from Table 5.1, a quesúonnaire presented to the

"decision-makers" asked them to rank the relative importance of ten discrete risk

levels. The judgment was based on the past management decisions, their personal

judgment, and knowledge about the reservoir system as provided in the

questionnaire. In addition to this, they were asked to give a point estimate of the

risk levels, as required for the classical approach to the sele¡tion of risk levels in

chance-constrained reservoir operation modelling. A sample of the questionnaire

is given in Appendix C. A matrix of comparisons was established from the

questionnaire and an appropriate set of weights, and CI were calculated for each

experiment.
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The consistency measures used in the context of the Gruza reservoir

problem served to highlight anomalous data supplied by the assessors. The results

in Table 6.1 demonstrate that the consistency ratio values, for most of the

comparison matrices, stayed within the acceptable limits (0<CR<0.1). Those

assessors whose matrices show larger inconsistency than allowed, were asked to

reconsider and adjust their priority estimations among different risk levels.

Table 6.1 Largest eigenvalue, consistency index, and consistency ratio for

membership functions of the two chance constraints

.4.ssessor Constraint À,n* CT CR.

l{o. type
tu
tþ
2d,
2p
3a
3þ
4a
4þ
5u
sþ
6a
6þ

* these comparison matrices were considered inconsistent and were

submitted to assessors for reconsideration

10.411

10.387

11.019

t1.314
1r.487

1 1.1 13

10.232

rt.r52
11.328

t2.445
11.022

12.657

0.046

0.043

0.113

0.t46
0.165

0.r24
Ô.026

0.128

0.148

0.272

0.114

0.295

0.031

0.029

0.076

0.098

0.11 1*

0.083

0.017

0.086

0.099

0.182*

0.076

0.lgg*
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The results, of the MAX-MIN methodology applied to selecting risk levels

in CCP, were compared to the point estimates of the acceptable risk levels elicited

from the assessors. Table 6.2 shows how the obtained results compare to the point

estimates. For example, the results for assessor No. 2 show the inconsistency in his

a priori estimates of the acceptable risk when compared to his priorities as set up by

pairwise comparison. The assessor was ready to accept flood control retiability of

75Vo when asked about acceptable levels. However, the fuzzy set procedure, using

the data provided by pairwise comparison, showed that a higher reliability level is

required.

TabIe 6.2. A priori risk estimates and risk levels obtained using the proposed

fuzzy set approach

.A.ssessor

No"

Risk point

estimates

arß

Rist< levels

calcr¡lated

u,ß

I

2

J

4

5

6

0.100,0.150

0.250,0.050

0.020,0.100

0.150,0.m0

0.050,0.010

0.063,0.092

0.059,0.061

0.060,0.059

0.155, 0.049

0.057,0.069

0.065,0.0530.100,0.000

Another example shows that a risk-free solution (É=0.0), required by assessors

No.4 and No.6, was not workable. More realistic solutions, i.e., B=Q.049 and

þ=0.053 respectively, were obtained using thefuzzy set approach. Considering that

t74



assessors supplied only qualitative input to the model the agreement between the

obtained results and a priori fixed risk levels is very good.

The detailed results from an iterative search procedure run are shown in

Table 6.3 and Table 6.4. Membership levels for both the objective function and

constraints (assessor No. 4), as well as the change in risk levels throughout eleven

iterations of the MAX-MIN procedure, are presented in Table 6.3. The results

demonstrate how the significant changes in the risk level a did not allow the search

to be terminated before the required level of accuracy was achieved although the

change in the risk level þ had diminished in the last three iterations. The column

with the additive objective function (z=Ft{fo,p(r)} + p{cr,Þ}) shows that the

additive model, i.e., the less conservative model, achieved the maximum

satisfaction level (1.078) earlier than the MAX-MIN procedure, and at risk levels

higher than those obtained by the MAX-MIN procedure. This table also

demonstrates how each of the models treats a trade-off between reliability levels

and the objective function. The MAX-MIN procedure is always driven by the

lower membership level of p{fo,B(r)} or p[o,P], while the additive model is

driven by the average value of the two. Table 6.4 reports on how the reservoir

policy, recommended by the CCP model, changes during the last several iterations.

Again, a comparison between the results in iteration 6 (the "crisp" solution of the

additive model) and iteration 11 (the "crisp" solution of the MAX-MIN model)

shows the impact of the different procedures, e.g., the total annual release

decreases from 25.54x106 n 24.45xI06 m3 if the more conservative procedure.is

used. However, the impact, especially in August and October, on within-year

release distribution is more pronounced. As shown in Chapter 4 these releases are

most sensitive to a change in reliability levels.
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Finally, these two tables demonstrate how the model presents the user with a

range of near-optimal solutions from which to choose. In the example MAX-MIN

solution (Table 6.4), release policies from the iterations 6,8,9, and 10, for which

the risk levels are not very different, may be considered as near-optimal solutions.

Direct presentation of solutions to the user is an obvious benefit of the method if

the user has other reasons to prefer the solution with a lower membership level but

still close to the identified intersecting solution (iteration 11). These two tables also

Table 6.3. Risk and membership levels throughout the iterative search

procedure run

Iteration

l{o.

Membership

levels

p{f".s(r)J, p{a,F}

F{f",8(¡)}

+ p[cr,F]

R.isk

levels

G,p

1

2

aJ

4

5

6

7

I
I

1.000, 0.037

0.771,0.100

0.654,0.200

0.603,0.300

0.588,0.400

0.578,0.500

infeasible

0.495,0.550

0.537,0525

0.517 ,0.537

0.527,0.531

0.500, 0.5m

0.500, 0.196

0.500, 0.7L7

0.500,0.089

0.415,0.071

0.180,0.054

0.098,0.039

0.140, 0.046

0.160, 0.050

0.150,0.049

1.037

0.871

0.854

0.903

0.988

1.078

1.045

r.062

1.054

1.058

10

11
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explain the relationship between grades of membership and physical variables

(release).

Table 6.4. Annual release policies for the first and last five iterations of an

iterative search procedure run

Month Min. Max.
.{l}ow" .{llow.
Release Release

Iteration No"t

106m31 [106m

9

106m31

October 0.54 8.04 0.54 6.6s 8.03 7.37 7.69 7.53
November 0.52 7.78 a.5z 0.52 0.52 0.52 o.5z 0.52
December 0.54 8.04 0.54 0.s4 0.s4 0.s4 0.54 0.54
January 0.54 8.04 0.54 0.54 0.54 0.54 0.54 0.54
February 0.48 i.26 0.48 0.48 0.48 0.4g 0.4g 0.48
March 0.54 8.04 0.54 0.54 0.54 0.54 0.54 o.s4

1.1x.0

April
May

June

July

0.52 7.78 0.52 0.52 0.52 0.52 0.52 0.52
0.54 8.04 8.04 5.04 5.2r 5.13 5.t7 5.15
0.52 7.78 7.78 1.60 1.62 1.61 1.62 1.61
0.54 8.04 8.04 0.90 0.99 o.g4 0.96 0.95

August 0.54 8.04 8.04 7.69 4.zg 5.gg 5.r7 5.58
s"pt" b", 0.52 7.78 1.60 0.52 0.52 0.52 0.52 0.52

lNoæ: Results from iterations 2-5 and 7 are omitted in the presentation because of high risk levels

while iteration 7 rendered an infeasible solution.

The fuzzy set approach for handling imprecision can reduce the

requirement for precise numerical inputs in decision modelling. The imprecision

in the input is modelled using fuzzy set theory, which is then used to calculate the

imprecision implied in ihe results. But so far, the DM is presented only with the

results which were reduced to numbers. For example, the release of 5.15x106 m3,
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with the membership degree of 0.53 calculated for May, is of no immediate use to a

DM. If however, reservoir monthly releases are ploned against membership levels

for each iteration of the search procedure, then the information available from the

fuzzy analysis may be seen and stated more clearly. Figure 6.10 shows a

membership function of the release for the month of May.

67
Release (10 6m I )

Figure 6.\0.Fuzzy set representing recommended reservoir release in May

Clearly, some form of hedged advice may be given from observing this fuzzy set.

The recommended release in May can be characterized as "approximately 5x106

*3".

Careful analysis of Figure 6.10 reveals that a risk-averse attitude toward

operating the reservoir is represented by the rising limb of the membership

function as the release is decreased from 8x106 *3 to around 5x106 m3. In this

part of the function membership levels of the fuzzy set constraints dominate over

0.5

0.4

0.3

o.2

o
o)

ttt
trq)

Þ{
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membership levels of the fuzzy set objective function (p[ø,F] > P{fo,Þ(r)}). This

information may be used in situations which dictate risk-averse actions. On the

other hand, the falling limb of the fuzzy set membership function to the left of the

5x106 m3 in Figure 6.10, represents releases for the risk-inclined operation. It

should be noted that the rising limb is not completed because the procedure had

ended the search for the "optimum" before lower membership levels were

investigated. Furthermore, this example reveals the dominance of the minimal

storage constraint over the flood control constraint because the increase in

membership values causes reduction in release values.

An opposite example, for the dominance of the flood control constraint is

given in Figure 6.11.

qJ

q)

v)
¡d
q.)

é)€&

0.6

0.5

o.4

0.3

o.2

0.1

0.0
2468

R.elease (10 6 nn I ¡

Figure 6.lI.Fuzzy sei representing recommended reservoir release in October

179



The rising limb of the release membership function for the month of October from

0.5x106 m3 to 7xß6 *3 t.pr"sents the risk-inclined decisions. Conversely, the

risk-averse decisions are represented by the falling limb to the right of 7x106 m3.

Again, some form of hedged advice may be given from observing this fuzzy set.

The recommended release in October can be characterized as "approximately

7x106 m3".

0.1

0.0
0.50 0.s2 0.54 0.56 0.58 0.60

R.elease (n0 6 ¡n 3 
)

Figure 6.12.Fuzzy set representing recommended reservoir release in January

Finally, Figure 6.12 shows a special case of a membership function for a

release during one of the winter months. This was one of the months from the

cluster with the lowest release priority in Figure 6.5. In addition, the quantity of

accumulated water was below the flood control pool in this month, so the flood

control constraint was not binding. Thus, the recommended release stayed at the

minimal allowable level for all membership degrees.
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Special attention should be di¡ected to the sensitivity of the "crisp" results to

the upper bound value of the scale used for pairwise comparison of the risk levels

and clustered months. Table 6.5 shows the difference in the membership levels and

risk levels obtained by using three different upper bound values of the scale. It may

be observed that similar risk values were obtained for cr. p values varied slightly.

The overall similarity does, however, demonsfate the robustness of the procedure

with respect to the selection of the upper bound value of the scale.

Table 6.5. The effect of the scale on selected risk levels

Scale 1_-9L-7L-5

F{fo,p (r) }

p{cr,Þ}

cr,

ß

0.625

0.637

0.050

0.198

0.567

0.575

0.049

0.17r

0.527

0.531

0.049

0.155

A similar conclusion may be drawn f¡om Table 6.6 which shows the difference in

release policies with respect to variation in the same parameter. The difference

between the annual release schedules obtained using the scales 1-5 and 1-9 is 7.47o,

while the difference dropstoZ.gVa when the scales 1-7 and 1-9 are compared.

Again, the impact of the upper bound value of the scale on the within-year

distribution of releases is most significant for the month of August. It should be
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noted that the similar general conclusions will hold for each set of near-optimal

solutions provided along with the "crisp" solution.

Table 6.6. The effect of the scale on release schedule

Monttr Scale 1-5

Release X.06rn3

Scale 1-7 Scale l-9

0ct

I{ov

Ðec

.Ian

Feb

Mar

Apr

May

.lun

.ðul

Aug

Sep

7.30

0.52

0.54

0.54

0.48

0.54

0.52

5.12

1.61

0.94

7.66

0.52

7.46

0.52

0.54

0.54

0.48

0.54

0.52

5.r4

1.61

0.95

6.37

0.52

7.53

0.52

0.54

0.54

0.48

0.54

0.52

5.15

1.61

0.95

5.58

a_52

6"6. SUMN4AR.Y C}F' F' NÐTNGS

An attempt has been made to discuss the characteristics of an optimization

model, i.e., chance-constrained (CCF); and a model based on principles of

"satisficing", i.e,.fuzzy chance-consfained (FCCP). The best comparison may be
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obtained if characteristics of the two models are contrasted on a one-to-one basis.

The following is a summary of findings:

Common Characteristics:

Both models are long-term reservoir planning models, i.e., both provide a

monthly schedule(s) for releases within a one-year planning horizon. Both models

are consistent in terms of how they use input information to provide a solution(s):

CCP uses "crisp" data and renders a "crisp" solution; FCCP uses imprecise

information and arrives at a range of near-optimal solutions from which one may

be selected if necessary. The preliminary set of releases, of both models, is based

on the previous realizations of random streamflows, i.e., both models are

stochastic in nature.

Model use:

The release set identified by both models serves as a general guideline for resource

allocation and strategic planning on the part of the water authority. In practice, the

actual realizations of random inflows, storage states, as well as unexpected shifts in

decision-making attitudes, should be taken into account to revise the planning

solutions. This is done by means of the sequential use of an optimization model

(usually one different from a long-term planning model), in a mid-term or real-

time manner (i.e., using forecasted information).

ÐÍfferences:

1) CCP - Reliability levels are provided by a DM or an analyst without an

explicit rationale for assessing the consistency of DM's input (e.g., why certain

reliability levels vs. others).
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FCCP - Reliability levels are decision variables. Only the relative importance of

different reliability levels are needed from a DM. The information necessary to do

the analysis is also extracted qualitatively. A consistency measure is avai.lable to

evaluate the consistency of the DM's input and thereby ensure a reasonable

solution.

2) CCP - Objective function coefficients (i.e., value of released water), which

are necessary for the analysis must be provided a priori. Britl ll979l identifies

empirical shortcomings in estimating benefits and costs. He suggests that "in going

from quantitative descriptions to benefits and costs, more judgmental and

subjective elements enter the analysis", so they should be dealt with qualitatively.

These "crisp" benefits/costs estimates are hard to obtain and unreliable. In addition,

optimization results tend to be highly sensitive with respect to changes in objective

function coefficients.

FCCP - Objective function coefficients are obtained using information on the

relative importance of releasing water in one particular month vs. other months.

The preference scale (weights) is constructed from information obtained

qualitatively. Again, the consistency index is available for evaluating the

consistency of the DMs responses.

3) CCP - Feasible space is highly constrained even for lower values of

reliability levels. The specified consftaints are inflexible.

FCCP - Fresents and fteats the relaxed (softened) objective function and constraints

as fuzzy inequalities. The n-lodel explores a broader feasible region than the

original CCP model. In terms of multi-objective analysis, it is hypothesized that

184



with relaxing the original feasible space the model explores the interior region of

the non-inferior set without determining the complete "crisply" defined inferior

set. That interior search is not achieved in the same manner as in a classical multi-

objective analysis, i.e., by carrying out a parametric analysis of objectives

expressed as constraints. It is done in a more directed way using a qualitatively

provided preference structure. The flexible specification of the limits requires no

absolute boundaries, but uses tolerance levels ("satisfîcing" vs. optimizing) to

explore those regions of interior space which are denser with respect to preference

information provided. In this manner, the algorithm explicitly takes into account

fuzziness, vagueness, and imprecision.

4) CCP - Does not directly evaluate the effect of constraint Violation - an effect

that is sometimes difficult to quantify.

FCCP - The membership functions obtained using qualitative data from assessors

represent measures which implicitly consider the effect of both the frequency and

the extent of constraint violation.

Finally, the choice of the fuzzy procedure, i.e., MAX-MIN or additive,

should be carefully analyzed in each situation. The solutions identified by both

procedures should be presented to the DM or DM body, which will eventually

select the best compromise between high reliability levels and potential benefits to

be gained by releasing water from the reservoir.
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SUþI&,IARV ANÐ CONCT.IJSTONS
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Reservoir modelling and model use, if properly performed, may result in

increasing potential benefîts or decreasing costs of managing water in reservoirs.

However, several problems in applying formal models for reservoir sizing and

short- and long-term planning have been encountered by different water authorities

and agencies. The most frequently reported problems are related to the lack of

communication and understanding between model users and model developers. This

leads to the first contribution of the research: identifying, formalizing, and

structuring reservoir modelling expertise, which by its nature resists completely

formal (algorithmic) representation. By formalizíng and structuring reservoir

analysis knowledge in REZES (an intelligent decision-support system), reservoir

analysis expertise becomes more explicit and available to different potential users.

As a user friendly, educational and practical tool, REZES can bridge the gap

between a potential user and a model. REZES is intended to advise users and explain

and perform tasks usually reserved for an expert planner or modeller. REZES

performs within the limits of the eleven incorporated models.

A second contribution of the research presented in this thesis is in combining

formal (mathematical) models with "expert" knowledge (in the form of experience,

judgment, etc.), that lacks formal structure. Human experts, experienced in applying

formal models to practical problems, possess and use both types of knowledge in
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solving real-world problems. Through the deeper understanding of a reservoir

model, and the understanding of the parameters influencing the solution as offered

by REZES, a user may improve his/her perception of the problem. The potential

benefits of combining this knowledge into one computenzed, tool is illustrated by the

Gruza reservoir example. In the case of the Gruza reservoir, changing the reliability

levels and then observing consequent changes in operating policies, may help the

user to reach a conclusion about an acceptable compromise between reliability levels

and expected returns from irnproved water allocation.

A careful selection of reservoir models included in REZES has been made to

minimize the uncertainty and subjectivity involved in reservoir analysis. However, it
was demonstrated through the Gruza example that even by using the expert systems

technology, uncertainty and subjectivity may not be adequately treated. A need for

treating both stochastic uncertainty and imprecision, that is non-random in nature,

stimulated the development of a fuzzy-set-based approach to reservoir chance-

consfrained modelling. The two methods for selecting risk levels within a chance-

consftained reservoir operation model, based on the fuzzy set approach, represent

the third contribution of the thesis. Both methods incorporate imprecision directly

into the model.

An application of the fuzzy model to the Gruza reservoir operation problem

demonstrates the feasibility, robustness, and efficiency of both the proposed

approach and its iterative search procedure. This fuzzy procedure leads to sets of

results which are of practical interest and which are not critically sensitive to

changes in model parameters. A group of professors and graduate students has been

used to provide necessary input for estimating membership functions. Although the

actual decision-maker may provide different comparison matrices than the ones
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which were selected by these "decision-makers", the methods of estimating

membership functions and the iterative procedure are essentially the same.

To summarize, the use of the Engineering Expert Systems approach, and the

development of an intelligent decision support system for reservoir modelling, is

introduced as an appropriate application of emerging technologies to the single

multipurpose reservoir optimization. However, not all identified problems can be

solved by using this approach. It is believed that only a combination of existing

("classical" and non-classical) models, new (fuzzy) models, and new technologies

will bring the full potential of benefits to water resources practice.

7 .2. CONCX_,{"ISIC}NS

The REZES system, developed in this thesis, can be used to optimize the size

or the release schedules of single multi-purpose reservoirs, given a variety of

reservoir uses and assuming a deterministic or stochastic future. The major benefit

of using REZES lies in its ability to perform analysis and explain the reasoning used

therein, to provide recommendations, and to take actions during a consultation. The

intelligent decision-support system (IDSS) capable of doing so can stimulate the

participation of the people concemed with reservoir management decision making

(DMs) in using the expertise and models provided by the people concerned with

reservoir modelling (experts). Therefore, reservoir management can benefit from

providing an opportunity for greater involvement of DMs or reservoir operators in

using mathematical models. It is hoped that due to its relative ease of use REZES will

encourage more reservoir operators, managers, or less skiiieci water resources

engineers to actually use mathematical models when making release decisions.
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As no general algorithm exists for reservoir analysis problems, an additional

benefit in using REZES is is that it provides a selection of procedures that perform

differently depending on the form of the mathematical model they employ. The

differences and similarities among the eleven models, and the situations in which it is

most appropriate to use each of them, may still cause some confusion with potential

users. However, this situation is still preferable to having too few methods from

which to choose.

The increasing demand for proper management of water quantity requires

development of comprehensive water resource management models to cope with the

complexity of multi-purpose, multi-reservoir systems. Even if a deterministic

future with perfect flow forecasts is assumed, most of the multi-reservoir models

suffer from the so-called "curse of dimensionality". The introduction of stochastic

inflows into a model formulation only further aggravates the problem. REZES

comprises both stochastic and deterministic mathematical models but only for single

reservoir schemes. The consequences of not treating multi-reservoir systems may,

however, be reduced by the careful selection of the system constraints for each of the

mathematical models. For example, relationships (hydraulic, electrical, etc.) ¿rmong

reservoirs in a system or external connections may be represented through a set of

consfaints.

In the last two decades there has been an increased awareness of the need to

identify, and simultaneously consider, several reservoir management objectives.

Although REZES does not cover any of the classical multi-objective techniques,

rnultiple objectives have been incorporated into the mathematical models. This

incorporation was accomplished by simple addition, when a common metric was
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eivallable, or by the single objective function and the imposition of constraints

reiated to additional objectives.

The second major contribution, presented in this thesis, considers the

treatment of non-random imprecision or "vagueness" in reservoir modelling. The

fuzzy-set approach, applied to the risk-level-selection problem, gives worthwhile

results when some functional relationships, e.g., system constraints or objective

functions, cannot be quantified for the formulation of the model. In the context of

chance-constrained progr¿Lmming (CCP) used to demonsÍate the approach, the

developed method combines use of the fuzzy set operations and the linear

programming technique. In this work the more common "MAX-MIN" relation,

stemming from the intersection of the fuzzy objective and fuzzy constraints, is

questioned as to whether it is the most appropriate one for the fuzzy optimization

criteria.

An alternative procedure which gives less "conservative" solutions is

developed and compared to the "classical" MAX-MIN approach. The new model

incorporating fuzzy sets is developed by tailoring the chance-constrained reservoir

operation model developed by Simonovic [1979]. It should be noted, however, that

certain limitations of the original CCP model still apply to the new model

formulation but their impacts are reduced. One such limitation is related to the

increase in variance of the convoluted inflows with the increase of the number of

time steps in the time horizon.

The procedure for selecting the risk levels is general, in that it is able to

handle non-linear membership functions for both fuzzy constraints and the itzzy

objective function. The procedure may also be applied to less imprecise situations
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where, for example, objectives, related economic and/or social utilities, and weights

are known with certainty and only constraints are fuzzy. The simple search

procedure, employed to render the intersection of the two fuzzy sets, is very

efficient even if implemented on a PC-based micro-computer. An additional major

benefit of using the procedure lies in the fact that one may view the near-optimal

solutions, which the procedure provides as a form of automated sensitivity analysis.

The generation of these near-optimal solutions by this sensitivity analysis directly

accounts for the imprecision involved in defining constraints or an objective

function.

The crucial task of estimating membership functions was performed by

applying the scaling method for priorities. This method reduces the main drawback

of using inconsistent DM's input in model building. It also reduces the complexity

and pressure on a DM by using a linguistic approach to eliciting data rather than a

numerical one. Nevertheless, the major benefit, in using the proposed method,

remains in easy incorporation of qualitative, imprecise, and subjective input into a

CCP model formulation.

7 .3" RECOMMEruÐATIONS F'ùR.-F'{"]TURÐ RÐSEARCFT

trn order to be well-received among practitioners, REZES needs verification

in practice and some further refinements. Recommended directions for future

research on interactive modelling and use of REZES in reservoir management are:

expanding the limited library of formal mathematical models and augmenting rhe

user interface to handle additional graphics, especiaiiy for handling output resuits.

Currently, REZES is not able to distinguish between an expert user and a complete
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novice, i.e., explanation and help facilities are insensitive to the user's level of

expertise. In some cases, more effîcient use and faster consultations may be achieved

when detailed help is not needed.

Remaining problems for discussion and future research are: (a) analysis of

the uncertainty inherently associated with reservoir modelling expertise; and (b)

treatment of the subjectivity with which different experts approach the same type of

resewoir problem.

Another major area that could benefit from further research is related to the

improvement of algorithms. One obvious improvement would be to make use of

variable time steps in formal models. Even more radical changes to the mathematical

models would be needed to allow REZES to address optimization problems of multi-

reservoir systems. The large number of variables in a stochastic model makes the

present techniques impractical for multi-reservoir systems.

In this thesis, the application of. fazzy sets to reservoir analysis has been

carried out through an optimization long-term reservoir operation planning model.

Yet, uncertainties and imprecision in inflow forecasting and in estimating outflow

effects, make fuzzy sets an appealing approach to real-time reservoir operation

modelling. Two research directions on this issue may be worth examining: fuzzy

optimization and fuzzy reasoning. The former is related to new applications of, or

even possible computational improvements to fuzzy optimization models similar to

that presented in the thesis. The latter is related to research in fuzzy logic, i.e., the

logic underlying approximate, rather than exact, modes of reasoning. That

reasoning plays an essential role in the human ability to make rational decisions in a
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fuzzy environment. The research in this area may result in botter management of

uncertainty in IDSS and expert systems.

As for the improvement and application of the presented reservoir model, the

involvement of a decision-maker must be ensured. Therefore, further

improvements and implementation must be carried out in cooperation with a person

actuaiiy involved in decision making.
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APPENÐSK ,&

The following section gives the detailed description of the chance-

constrained reservoir operation model Lsimonovic, 19791briefly introduced in

Chapter 6, and the transformation of the stochastic problem into its deterministic

equivalent.

We recall that the model (6.1)-(6.5) was stated in the following form:

S¡ = S¡ -ftît- d¡- r¡- I¡ Yt, t = I,2,...,7 (A1)

/(r) (/'2)

P(S,>c-vt)<a (A3)

P(S,(mt)<þ (44)

tmín3l¡Sfrrraa Yt (As)

Substituting equation (41) into equation (43) yields:

P (Sr-r +T, - dt - h - lt> c - v¡) < d (46)

fn¿ìx
{'}
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Using the basic property

tatrcen to the left-hand-side

of a probability inequality

of the constraint gives:

with the random variable lt

P (1,1c -vt - Sr-t + d'¡r r¡+ l¡)21- a (A7)

The expression in equation (47) is equivalent to:

F Lc -v¡ - S¡ -t* ù+ rt+ I,f> I - a (A8)

if F[.] denotes the cumulative distribution function of the convoluted inflows. In

his work Simonovic 119791 combined random inflow and random irrigation

demand into the random variable ñ. goth variables, inflow and demand, were

assumed to be independent. In this thesis only one random variable is treated, i.e.,

random inflow. In addition to that instead of using iterative convolution method,

the histori cal realízations of cumulative inflows were investigated and employed to

estimate the distribution of the joint events (cumulative flows). Knowing the

probability density function of Tt, the final form of the constraint is:

c - vt -,Sr -r + d, + r, + lt> Fir!-rl) (Ae)

where Fl denotes the inverse of the cumulative distribution function F¡

Similarly, for constraint (A4),

P (S, -r +1, - dt - rt - h < mt) < þ (410)

P (1, 3 mt - S¡-r + d¡ + r, + lt) < þ (411)
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Finally, the deterministic equivalent of the stochasúc problem (41)-(45)

may be stated in the following form:

F l-mt- Sr-r + d,+ r,+ Ll < þ

mt - St t + dt + rt + t, < F;1(þ )

max/ (r)
{r} -

c - vt - S¡ -r * d, + r, + It> Fil(l-d,) Yt

mt- St¡* dt+ rt+ I,<F;1(þ ) Vr

f min 3 l¡ 3 rrrro, V¡

(Ar2)

(A13)

(414)

(A1s)

(416)

(A 17)
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Mean Monthly Flows [m3/s]
for period î926-L975

River: Gruza
Gauging St: Tucacki Naper

.Ian Feb Mar Apr May .Iun .Iul Aug Sep Oct Nov Dec AnnYear mean
î926 2.850 4.890 0.220 1.320 0.429 2.370 3.400 0.501 0.834 0.350 0.495 0.450 i.509
1.927 2.s20 0.754 3.500 2.500 1.030 r.570 0.199 0.377 0.640 2J001.170 0.740 r.475
L928 0.394 0.760 2.770 4.110 2.910 1.160 0.218 0.110 0.t47 0.531 0.430 r.410 r.25r
1929 0.815 i.550 1.780 6.350 4.2100.9760.497 0.706 1.430 0.740 0.340 1.160 r.113
1930 0.707 0.420 2.320 2.270 4.100 0.990 0.980 0.820 0.200 1.280 0.037 0.290 1.20r
1931 0.420 0.901 4.000 r.470 2.670 0.820 0.?020.567 0.331 1.880 2.090 0.367 1.310

1932 r.9202.0603.020 5.9r0 1.820 1.4400.4400.351 0.7s9 0.135 1.4601.390 1.725
1933 1.470 1.480 1.700 4.330 5.530 2.T90 0.620 0.710 1.700 0.372 r.940 r.320 r.g4l
L934 0.939 1.300 4.880 0.590 1.610 1.810 3.190 0.860 1.590 0.960 0.750 0.6701.596
1935 2.190 4.380 1.900 3.000 2.920 0.984 0.393 0.490 2.2401.190 1.690 1.460 1.903

f.936 1.910 3.790 2.050 r.420 0.910 t.620 0.122 0.786 0.415 0.556 2.100 1.050 1.399
1.937 1.120 4.450 4.820 3.150 5.230 2.360 2.73A 5.190 2.2001.140 1.960 r.430 3.032
1938 2.720 2.400 2.770 6.410 2.890 0.780 2.050 0.7541.150 r.2s0 r.92A 0.730 2.152
1939 1.800 0.340 2.510 4.350 2.3s0 0.820 1.050 0.726 0.780 0.701 2.7401.980 1.619
1940 1.680 3.660 4.000 4.000 r.790 2.5301.910 0.794 0.377 f .i00 1.390 r.610 2.070
L941, 2.070 5.290 3.110 2.A40 2.220 r.720 0.169 0.168 0.400 r.440 2.160 2.040 r.902
L942 2.6001.680 s.420 4.4s0 2.610 r.760 0.860 1.040 0.927 0.081 1.680 0.220 r.g44
x943 0.620 2.290 0.930 2.430 0.377 2.590 0.536 0.229 1.330 0.346 0.190 0.253 1.010

L944 0.7401.000 5.320 5.350 0.730 2.050 4.3100.067 1.100 1.820 2.2002.000 2.224
L94s 1.880 4.020 2.560 4.910 0.841 r.7r0 0.362 0.693 0.142 0.6721.070 0.603 1.622
L946 0.680 0.915 1.830 1.840 0.440 0.330 0.168 0.089 0.093 0.r72 r.1201.200 0.740
L947 0.565 2.690 4.540 0.794 0.338 0.319 0.077 0.588 0.166 0.13i 1.0i0 0.550 0.981

1948 3.000 1.940 0.710 1.s80 r.290 6.060 0.4i0 0.2461.850 0.r74 0.062 0.229 r.468
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î949 0.4320.5& 0.860 2.490 0.611 r32A 1.380 0.2910.233 0.233 0.706 0.s31 0.804

n,950 0.614 i.060 1.600 0.607 0.396 1.150 0.264 0.186 A.246 0.240 0.554 r.320 0.686

t95l 0.548 1.200 2.A40 2.230 1.590 0.276 0.352 0.277 0.243 0.23r 0.299 0.713 0.833

19 52 r.240 0.900 0.600 2.070 0.460 0.381 0.285 0.207 0.187 0.972 1.130 3.660 1.008

1953 1.610 1.850 2J50 23rA 0.400 i.050 0.938 0.400 0.396 1.070 0.345 0.352 r.r23
Í.954 0.338 0.750 3.760 3.940 5.210 r.2r0 0.426 0.821 0.2621.600 0.860 2.470 1.804

n 955 3.440 3.960 0.840 6.180 r.240 1.150 0.800 7.060 1.160 2.770 1.500 4.300 2.867

1956 2.900 3.05010.100 5.760 2.530 r.290 0.405 0.130 0.104 0.i35 0.212 0.385 2.2s0

L957 0.702 r.970 0.731 0.773 4.500 2.390 0.665 0.848 0.960 r.230 0.550 1.860 t.432
x958 2.120 i.150 3.250 5.920 1.630 0.308 0.i96 0.159 0.163 0.222 0.338 0.503 i.330

1959 0.985 0.433 0.708 0.428 0.405 2.160 1.350 0.897 0.987 0.437 r.290 0.9s7 0.920

I.960 1.380 2.t60 1.260 1.330 r.320 0.794 0.899 0.509 0.406 0.492 0.6s8 0.924 r.Ur
L96L 0.951 1.115 0.746 1.000 4.000 2.010 0.905 0.s2r 0.s60 0.467 0.718 0.9321.160
L962 i.800 3.480 7.200 5.240 1.080 0.944 0.218 0.120 A.tr7 0.163 A.227 0.264 1.743

L963 1.750 5.640 r.250 1.390 0.184 0.208 0.098 0.082 0.zrt 0.093 0.097 0.101 0.925

1.964 0.189 0.944 2.430 1.930 Í.040 0.267 0.738 0.136 0.170 0.720 1.840 1.800 1.017

1965 r.3102.640 3.350 1.660 4.s10 0.810 0.221 0.047 0.053 0.033 0.085 0.153 r.24s
1.966 r.670 s.320 1.530 1.390 1.030 0.310 0.6s9 0.138 0.143 0.089 0.184 1.2r0 r.139
1967 r.270 1.690 3.650 2.t70 3.200 1.410 0.272 0.048 0.059 0.063 0.081 0.202 r.r76
1968 1.190 3.820 t.620 0.404 0.378 0.232 0.174 0.397 0.539 0.300 1.100 0.781 0.911

1969 1.240 6.680 3J30 1.770 0.692 2.360 0.678 0.364 0.876 0.i86 0.216 0.536 1.s66

1970 3.550 6.900 4.000 2.200 6.130 1.840 1.400 0.3760.206 0.398 0.520 0.384 2.32s

L97L 0.6521.380 5.060 3.180 0.7530.612 0.408 0.215A342 0.410 0.397 0.701 7.r76
'i.972 0.454 0.430 0.358 0.261 0.234 0.118 0.7t7 0.291 0.730 5.370 1.280 0.718 0.913

1,973 0.760 r.490 4.160 3.730 1.080 0.480 0.615 0.r76 0.183 0.163 0.188 0.715 r.r4s
L974 1.530 0.785 0.583 1.040 2.s70 1.060 0.387 0.073 0.065 0.184 1.280 4.770 1.r94
L975 1.640 0.939 3.310 0.996 2.050 2.370 0.802 2.5600.77s 1.080 1.260 0.963 r.562
L976 1.9903.630 4.870 i.9000.991 3.0900.4850.385 0.3640.207 0.616 1.100 r.636

L977 1.920 3.510 3.430 4.870 1.230 0.578 0.4s7 0.311 0.247 0.2720.420 1.230 1.s40

Mean 1.471 2.354 2.806 2.765 1.9361.368 0.811 0.6710.611 0.761 0.943 1.109 t.467
StDv 0.848 1.7221.888 1.805 1.586 i.015 0.885 1.187 0.566 0.915 0.708 0.972
r1 0.382 0.540 0.110 0.405 0.204 A.143 0.27t A.22r 0.42t 0.215 0.364 0.414
12 0.315 0.041 0.160 0.002 0.i41-0.083 0.048 0.136 0.411 0.318 0.322 0.233

r3 0.120 0.166 0.368 0.326 0.012-0.022 0.081 0.185 0.501 0.159 0.2910.040

Cskw t.564 A.92r r.267 0.599 1007 1.947 2.291 4.216 1.289 2.912 0.579 2.04s

Cvar 0.577 0.731 0.673 0.653 0.819 0.742 1.092 1.770 0.926 1.202 0.7sL0.876
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This section presents graphical results of hydrologic frequency analysis of

historical monthly streamflows at the Gruza dam site. Statistics derived from

historical monthly streamflow observations are used to generate the required

monthly disfibutions. Four theoretical distributions were investigated: normal,

log-normal, Pearson type III, and log-Pearson type III. For each distributional

assumption, the magnitude of events for various return periods is selected from the

theoretical "best-fit" line according to the assumed distribution. Computer

programs for analysis are taken from Kíte t19851. Both solutions for the method of

moments and the maximum likelihood method have been investigated.
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TESTNNG T'E{E GOOÐNESS OF'' F'TT OF'' ST'R.EAMF'T,OW Ð,åT,4 T'Û

PR.OBAETN,TTV ÐNSTRTts{JT TNS

Two statistical tests: Chi-Square and Kolmogorov-Smirnov were used to help

judging whether or not a particulff distribution adequately describes the set of streamflow

observations on the Gruza river. Both test were performed for 95Vo confidence level

(cx=0.05). The following table shows whether particular distribution provides a good

approximation to the orginal sample or not.

Distr. NORMAL I-OG-NOR PEAR.3 LPEAR.3

Test CHz KST CEX,Z KST CYl? KST CYl? KST

Jan

Feb

Mar
Apr
May

Jun

.Iul
Aug

sep
Oct

Nov
Ðec

àt

?

*

?

?

d<

?

?

*

?

?

d<

{<

*

?

*

d<

*

*

*

*

ãk

*

*(

*

*

*

*

t<

*

*

*<

*

*

t<**{<

?{<*àk

*r<?{<

?{<**

**?*
?d<d<*

?>k{<*

??t<c<

?*J<*

**<**

?*,k*
**å<*

* Test OK
? Test failed
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,APPÐruÐãK C

QIJE,ST',íûNN.{ÏRÐ, {.]SEÐ F''OR TF{E CtNST',R.{.lCT{tN OF TF{E

MEMEER.SF{TP F'UNCTTONS

Imagine yourself as a member of a decision-making body preparing long-

term planning guidelines for managing a reservoir. The following reservoir

characteristics should help you in finding the most appropriate answers:

Dam type:

Reservoir purposes:

arch (relatively safe to overtopping)

water supply (municipal and industrial),

flood control of the downstream area which is

predominantly rural (rarely populated),

sediment deposition control, and

low flow augmentation.

1)

2)

3)

4)

The reservoir is built primarily for províding water for a large municipal

settlement (the town of Kragujevac) 10 km from the reservoir site and releasing

minimal contracted volume downstream from the reservoir. The obligation of the

reservoir management is to provide constant amount of water each month for these

purposes. The potential of supplying rural areas with drinking water prompted the

question of utilizing excess water (if any).
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The following three siorage zones are identified in the reservoir design process:

The attitude of the managers towards operating the reservoir in the past may be

illustrated by the reservoir levels during the periodl985-88 (the reservoir started

operation in 1983).

27 0.00
1r)9 . ./,) A,

258.00

L98s L986 1987 1988
Year

QUESTION l{o. L

What would be the minimal required reliability levels for keeping reservoir

storage below flood control and above minimum storage levels respectively,in Vo ,

v)

€J

*J

fr
a)

r-

F'T,OOÐ CONTROT, ST'OR.AGE

MINIMAL STORAGE

,ACTTVE STOR.,AGE
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i.e., what is the percentage of time that the reservoir flood cont'ol storage and

minimal storage are not corrupted (e.g., X 7o for flood control andY 7o).

Flood Storage R.eliability Vo

Minimum Storage Reliability 7o

QUESTION No. 2

Using the following scale indicate the relative importance of different failure

frequencies to each other (e.g., how important is the difference between having

minimal reservoir storage corrupted on average once in five and once in seven

years of operation). Base your decision on past management decisions (previous

page) and your personal judgement and knowledge of the reservoir system.

Scale Ðescription

a) two frequencies are equally significant

b) experience and judgement slightly favor one frequency over another

c) experience and judgement strongly favor one frequency over another

d) a frequency is strongly favored and its dominance is demonstrated in

practice 
,

e) the evidence favoring one frequency over another is of the highest possible

order of affirmation
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Note: When the compromise among two adjacent choices (e.g., b&c, or d&e) is

needed use both letters.

The following is the proposed notation for frequencies:

on average 507o

on average 60Vo

on averageT0To

on averuge807o

on average 907o

on average 92.57o

on average95To

on average 97.57o

on average9SVo

on average99To

Explanation of the following tables:

- It is assumed that a frequency is equally significant in comparison with itself (that

is why the scale notation "a" is used for the same corresponding rows and

columns).

- You are not supposed to fill a space with "X"
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