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ABSTRACT

Use of mathematical models in water resource management has been
plagued in the past by the lack of communication, understanding, and involvement
of managers in the model development. Interactive modelling methods give
managers an appropriate role in model use, calibration, and verification. This
thesis extends the idea of interactive reservoir modelling using the engineering
expert system approach. An advisory tool, REZES, which is developed using this
approach, integrates formal reservoir models with reservoir expertise for making
both numerical and logical inferences. This integration required special treatment,
programming skills, and representations. Most of the objective functions and
constraints employed in existing formal reservoir models, deterministic or
stochastic in nature, are clear-cut, easy to formulate, and non-controversial. The
presence of situations, characterized by lack of economic data and the involvement
ofa ﬁuman factor, do not permit easy and correct system representations within the
limits set up by existing models. With that difficulty in mind, a new approach is
proposed for handling the uncertainty that is not statistical or random in nature.
Fuzzy set theory is used to represent the imprecision which surrounds the
probabilities and utilities in chance-constrained reservoir operation modelling. A
new chance-constrained reservoir model is theoretically developed and encoded
using this approach. Finally, this new model is added to the set of formal reservoir

models within REZES.
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CHAPTER 1.

INTRODUCTION

1.1. GENERAL

The transformation of water regime by reservoir storage is used for
regulating natural streams instead of adjusting water demands to unregulated
random inflows. However, sizing, designing, and planning reservoir operation is a
very complex problem. Matching water management requirements with
topographic and hydrologic characteristics of water courses is a problem of
searching for "the optimum" as a function of natural, economic, social, and
environmental conditions and factors. Mathematical models have been used for this
purpose for several decades. These formal tools, which range in sophisﬁcation from
simple graphical techniques to complex computer programs, are used to help
understand water resource characteristics and improve water resource management

and planning activities.

A systems analysis approach and operations research provide the
philosophical framework and quantitative techniques, respectively, for handling
physical and socio-economic considerations within optimization processes. Use of
systems analysis in reservoir problems (as above) is, in this work, referred to as
"reservoir analysis”. Over the past three decades the development and application of
mathematical models for design, planning, and operation of water resources systems
have attracted growing attention among engineers, planners, and managers. Many

successful applications of optimization techniques have been made in reservoir



studies, mostly for planning purposes [Yeh, 1985]. These techniques range from
- simple search and simulation to more advanced linear programming, dynamic
programming and non-linear programming techniques. However, the complexity of
the techniques and models, developed under the assumptions of probabilistic
certainty or uncertainty, has proven to be a major obstacle for wider practical
application of the models. One of the obvious reasons for this complexity and lack of
acceptance is that some of the models have been developed for research purposes
without consultations with practitioners in the field. Lack of information about
available models, lack of communication and understanding, lack of manager
involvement in model development, and involvement of a subjective and value-
dominated human element are the most frequently cited constraints to effective
model use. Another not so obvious, but nevertheless present reason [Liebman,
1976], is the presence of situations, in public systems decision-making, where the
concept of so-called "classical" probability, alone, does not describe reality

adequately.

Interactive water resources modelling, and model use coupled with use of
graphics, have been introduced as a way of dealing with such problems [Loucks et
| al., 1985]. This approach considers the interface between the model user and the
models being used. Interactive methods can assist the user in controlling model
calibration, model use, output form, and display. Integration of this approach with
the expert systems approach leads to decision support systems with the potential for

improving water resource management and planning.



1.2. RESEARCH OBJIECTIVES

The intent of this work is to improve reservoir modelling and model use
utilizing an integrated approach to developing engineering expert systems
[Simonovic and Savic, 1989]. The approach, called the engineering expert system
approach, may suit the needs of managers and planners better than classical expert
systems or mathematical modelling alone. The main advantage of the approach over
the pure expert system approach, or use of formal algorithmic routines alone, lies in
its ability to combine both methods and better utilize their individual potentials for

improved modelling of water resources related problems.

By adopting some of the ideas of interactive reservoir modelling and the
engineering expert system approach, it was possible to combine/incorporate formal
reservoir optimization models, experience in their use, heuristics, and common
rules-of-thumb in an intelligent decision-support system (IDSS) named REZES. It
will be shown that research efforts were concentrated on synthesis and structuring of
the modelling knowledge necessary for the proper formulation, selection, and use of
different mathematical models within REZES. The system is intended to help a user
to select and use the proper formal (single-multipurpose) reservoir model(s) to
improve the accuracy and effectiveness of information available to managers,
decision makers, and researchers. REZES uses procedural and declarative (logic)
programming methods, rather than using only one of them, to make both numerical

and logical inferences.

Formal optimization models are the essential tools of systems analysis. Some
representative reservoir optimization models, developed by different researchers,

form a basis for reservoir sizing and short- and long-term planning optimization



within REZES. These models are considered suitable for describing fairly complex
aspects of physical systems and problems being modelled. Crucial elements of each
model are a system performance indicator, i.e., the objective function, and a set of
system constraints and boundary conditions. Depending on the purpose of the
reservoir, different economic or social utility objectives may be quantified and

integrated into a single objective function or presented through system constraints.

In spite of their strengths, there are concerns that models often display
critical gaps in interpreting existing information and knowledge [Rogers and
Fiering, 1986]. Most of the objective functions and constraints employed in existing
formal models, whether deterministic or stochastic in nature, are clear cut, easy to
formulate, and non-controversial. There is some doubt about the extent to which
these models have been as useful as anticipated in adequately representing reality.
Situations in public systems decision-making, characterized by a lack of economic
data and the involvement of a human factor, do not permit easy and correct system
representations within the limits set up by existing models. It will be shown by
example that even using the expert system technology as a way to improve
modelling, as suggested here, some informational gaps still exist and cannot be
explained directly by conventional models. To counter this, a new approach is
proposed for handling uncertainty that is neither statistical nor random in nature.
Fuzzy set theory is used to represent the imprecision which surrounds the
probabilities and utilities in chance-constrained reservoir operation modelling. A
new chance-constrained reservoir model is developed using this approach and has
been added to the set of formal models within REZES. The same reservoir problem
used to illustrate the functionality of the developed tool is then used to show the

merits of the proposed fuzzy-set-based methodology.



1.3. SCOPE OF WORK

This work emphasizes reservoir analysis through mathematical modelling
. and model use. The ultimate goal of the analysis in this thesis, is to identify, analyze,
and provide appropriate solutions for reservoir design, planning, and development

of operation plans and policies for single-multipurpose reservoirs.

A general review of major research contributions is presented in Chapter 2.
This review includes reservoir management, mathematical modelling, and methods
of analysis; advances in the artificial intelligence field with emphasis on the potential
of artificial intelligence for water resources management applications; and the
treatment of uncertainty and imprecision in water resources optimization with a

special overview of fuzzy set theory and its applications to water resources systems.

In Chapter 3, theoretical considerations are established for the development
of an intelligent decision support system for reservoir analysis. The expertise
necessary for the development of REZES and the complex issues involved in
reservoir analysis are also addressed. Reservoir analysis is introduced as a non-
structured problem which can be treated using systems analysis and expert systems
technology. In addition, specific areas and phases of reservoir analysis, where
declarative and procedural components may outperform the present combination of

human efforts and conventional programs, are identified and analyzed.

The development issues, from knowledge acquisition to organizing and
representing reservoir analysis knowledge and expertise, are presented in Chapter 4.
The structure and programming efforts necessary to enhance IDSS to include the

identified reservoir analysis phases, are described. The formal mathematical



optimization models for reservoir analysis, which constitute the procedural
component of REZES, are then briefly presented. Finally, an illustrative example
presents some of the potential benefits of the enhancement. As well, some unresolved
problems related to the formal models are discussed. The example demonstrates the
need for treating imprecise conceptual phenomena in modelling and decision

making.

Chapter 5 gives an introduction to the theory of fuzzy sets and discusses
necessary principles for the development of a fuzzy-set-based decision making
model. These theoretical principles provide a mathematical framework for
studying imprecise conceptual phenomena in modelling and decision making. The
chapter presents a transition from rigorous, quantitative, and precise modelling to

modelling which deals with vague, qualitative, and imprecise concepts.

The theoretical development of an original fuzzy-set-based methodology for
selecting the risk levels in chance-constrained reservoir operation modelling is
described in Chapter 6. Three different approaches to modelling of decision
making in a fuzzy environment are investigated and presented. These are followed
by an application of the developed model to the Gruza reservoir in Yugoslavia.

Detailed results with explanations and sensitivity analysis are also presented.

Summary, conclusions, and recommendations for future research are

included in Chapter 7.



CHAPTER 2.

LITERATURE REVIEW

Considerable research has been performed in the area of reservoir
operations and design. Most of it is concerned with variovus systems analysis
techniques utilized in and by the formal reservoir models. The emphasis has been
onvdeveloping models which are more complex, which describe reality in a more
satisfactory manner, and which require more computation. In this context,
computers have been widely used to assist with numerical computations only.
Limited utility of formal models and recent developments in artificial intelligence
have encouraged research which is leading to an expanded role for computers in

reservoir analysis.

This chapter reviews the various approaches to single reservoir operation
and design modelling, the treatment of uncertainty and imprecision within formal
reservoir models, and the use of artificial intelligence advances and potentials in

water resources.

2.1. RESERVOIR DESIGN., PLANNING AND MANAGEMENT:
MATHEMATICAL MODELLING AND ANALYSIS

In general, teservoir storage capacity may be divided into three
components: (i) flood control storage capacity; (ii) active storage capacity; and (iii)
dead storage capacity. These three components are usually determined separately

and then added together, thereby constituting the total capacity of a reservoir. The



following discussion of existing design models will be limited to several methods

for estimating active storage requirements.

In addition to reservoir design, an optimal operating policy is needed for
proper management of a reservoir system. The design of a reservoir and the design
of its subsequent operation are interdependent. A separate review section considers

mathematical models applied to reservoir planning and management.
Real-time decisions, regarding reservoir releases, for various purposes,

often need to be made within a short time period. The last group of mathematical

models discussed herein is concerned with these reservoir problems.

2.1.1. Single Reservoir Desien Models

Before digital computers were introduced, reservoir design efforts were
generally restricted to the group of, so-called, critical-period methods. These
methods find the required reservoir active capacity to be the difference between
the water released from an initially full reservoir and the inflows, for periods of
low flow. The mass diagram analysis [Rippl, 1883] appears to have been the first
rational method for estimating the amount of storage required to meet a sequence
of specified reservoir releases. The original method does not take into account
storage-dependent losses nor does it provide an estimate of the storage
corresponding to a given probability of failure. Alexander [1962] augmented the
critical-period approach by developing a series of drought curves for different
probabilities of occurrence. From these he derived generalized storage-regulation-

probability curves. A modification of Rippl's procedure, the sequent-peak

8



algorithm [Thomas and Burden, 1963] resolves computational problems with the
Rippl procedure but fails to take the probability of failure into account. Simonovic
[1985] developed and applied a model based on the sequent-peak procedure and
behaviour (simulation) analysis. The changes in storage content of a finite
reservoir, using a mass storage equation with different reliability and vulnerability
criteria, are calculated. Recently, Lele [1987] presented two improved algorithms
based on the sequent-peak procedure that account for both storage-dependent losses

and "less than maximum" reliability of water supply.

The second group of models, probability matrix models, are based on
Moran's theory of storage [1959]. Moran derived an integral equation which
relates the probability distribution of the inflow and the specified reservoir release
rule to the probability distribution of the storage. Diécret’izing time and volume
variables, reservoir states can be expressed in a transition matrix. The main
limitation of this type of model is the assumption of independent inflows. Gould
[1961] modified Moran's approach to account for both seasonality and
autocorrelation of monthly inflows. This procedure, however, does not account

for annual inflow autocorrelation nor for droughts longer than one year [Haktanir,

1989].

Mathematical programming methods applied to the reservoir sizing
problem form the basis for the third group of models. These models are based on
mass-balance or continuity equations for routing flows through the reservoir and
have the advantage of easy incorporation of storage-dependent losses. Loucks et al.
[1981, pp. 339-353] presented two yield models for reservoir design and operation

based on the linear programming algorithm. These models, the complete and



approximate yield model, arrive at the reservoir storage capacity necessary to

provide yield with certain reliability for a given streamflow sequence.

These three groups of models are used mostly to screen preliminary
estimates of reservoir capacities needed to meet specified release and reliability
targets for water supply. Although they involve the same basic techniques, final
design procedures are more complex and time-consuming. In practice, the use of
most of these models has been combined with the use of synthetic streamflow data
and detailed statistical analysis of the results. A recent study by Savic et al. [1989]
showed that the decision of the appropriate streamflow generation scheme may

significantly influence the identified storage capacity.

2.1.2. Reservoir Lons-Term Operation Planning Models

In the optimum design of a reservoir system, determination of the optimum
size and the optimum operating rules are necessary for the design and the
subsequent use of the reservoir. The subproblem of planning the optimum mid-
and long-term operation of a reservoir has been of major concern in the past
twenty years and is the subject of this section. The models discussed here are those
which are predominantly based on a monthly time period. In general, there are two
basic approaches to the rational planning of reservoir release policies:
deterministic and stochastic. In order to safeguard against extreme events, the
model used to select the reservoir operating pblicy should include the stochastic
nature of hydrologic parameters. However, some problems are still solved
deterministically. Operations research quantitative techniques, such as linear

programming, dynamic programming, nonlinear programming, and simulation,

10



have been used within operation planning models to handle physical and socio-
economic considerations of optimization problems [Yeh, 1985]. The following is a

review of the most representative models and studies based on these techniques.

Linear Programming Models

Linear programming has been widely used in water resources optimization
studies. It has become quite popular due to its ability to handle large numbers of
variables and constraints and to provide global optimal solutions to problems
which can be formulated to match the technique. Dorfman [1962] used linear
programming for combined optimization of reservoir storage capacity and
reservoir operation. His model considers the stochastic nature of inflows and treats
reservoir capacities and target releases as decision variables. Loucks [1967]
demonstrated how linear programming could be used to determine reservoir
releases and the allocation of water to various uses. The management objectives
considered were related to maximization of total expected benefits, minimization
of total expected losses, and minimization of total expected deviations from each

user's target.

Various linearization techniques are available for nonlinear problems to
make them solvable using linear programming. However, it has to be noted that the
solutions identified with the application of linearization techniques are not
guaranteed to yield the global optimum. Thomas and ReVelle [1966] employed
linear programming to determine optimal operating policies for the High Aswan
Dam. considering benefits from hydropower and irrigation. Recent works by
Grygier and Stedinger [1985] and Reznicek and Simonovic [1990] present the
application of successive 1ineér programming to optimizing hydropower

generation. The first algorithm maximizes the value of energy generated over the

11



planning period by an isolated hydropower system and the expected future benefit
from the water remaining in the reservoir(s) at the end of the planning period. The
second model is developed for an interconnected hydro utility with the objective of
maximizing the energy export benefits, while minimizing the costs of satisfying the

domestic power demand over the planning period.

Manne [1962] also adapted linear programs to the stochastic reservoir
problem. He used a Markov process optimization with a hypothetical single
reservoir example. Loucks [1968] developed a stochastic linear programming
model for a single reservoir subject to random, serially correlated inflows. In his
algorithm the joint probabilities of inflows and storage values are used to
determine the optimal operating policy and the optimal "release joint probabilities”
(as defined by Loucks [1968] and Loucks et al., [1981]). The applicability of the
model in real situations is limited somewhat by the dimensionality problem
associated with this approach. Stochastic programming with recourse, sometimes
called two-stage stochastic programming, is another variation of linear
programming applied to the stochastic case. This modelling approach handles
random variables in the constraint set of a linear problem. The solution is obtained

by making decisions in multiple stages (usually two) [Dorfinan, 1962].

Chance-constrained programming is another form of stochastic linear
programming model. It is based on assigning fixed probability levels within the
constraint set. These probability lévels define the percentage of time that specified
storage and/or telease targets, defined by the constraints, can be violated. In the
reservoir management context, chance constraints relate inflows (random
variables with known distributions) to release and storage (random variables with

unknown probability distributions). The defined stochastic problem can then be
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converted to a deterministic equivalent, if the cumulative probability distribution
function of the inflow is assumed to be known. The application of the approach to
reservoir system optimization was initiated by ReVelle et al. [1969]. Since then,
many modifications, extensions, discussions and evaluations, of single- and
multiple-decision rules have been reported for different single- and multi-
reservoir model formulations. A different approach to use of chance-constrained
programming in reservoir design and operation, which does not utilize the linear
decision rule, has been introduced by Curry et al. [1973]. This approach can
include releases in the objective function and can include stochastic as opposed to
deterministic demands in problem formulation. The method used by Curry et al.
[1973] converts a probabilistic constraint into an equivalent deterministic linear
constraint by using the analytic convolution integral procedure. Simonovic [1979]
applied the iterative convolution algorithm to the discretized inflow probability
density function, thereby solving problems associated with integrating some
complicated probability density functions. A feasibility analysis‘ of chance
constrained programming models for reservoir design and operations is presented

in the paper by Loaiciga [1988].

Colorni and Fronza [1976] have employed reliability programming to find
optimum reliability levels and reservoir operating rules, simultaneously. This
approach is based on an extension of the chance-constrained formulation which, in
their work, considers constraint reliabilities as decision variables. Simonovic and
Marino [1980, 1981] applied reliability programming to a multipurpose Teservoir
and developed a methodology for estimating risk-loss functions, associated with the

frequency and severity of failures in reservoir operation.
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Dynamic Programming Models

Dynamic programming is a sequential decision-making procedure in which
the optimization is done in steps (stages) employing a recursive equation. The
procedure decomposes a multistage problem containing many related variables
into a set of one-stage problems, each containing fewer variables. In optimizing
reservoir operation by dynamic programming, the stages are the time periods and
the state variables, which represent the state of the reservoir, are the storage
volumes in the reservoir. The decision variables are the volumes to be released
from the reservoir at each stage. Dynamic programming is particularly suitable
for handling nonlinear problems of water resources systems. This technique can be
used for problems having nonseparable objective functions. Sniedovich [1989]
combined dynamic programming and c-programming techniques to alleviate the
so-called "curse of dimensionality", caused in this case, by nonseparable objective

functions.

| Hall et al. [1968] developed an algorithm using the deterministic dynamic
programming technique to obtain a release policy for a multipurpose reservoir
system. Given the initial state of the system, price schedules, and sequences of
critical period inflows, this model arrived at a set of release decisions. To reduce
the amount of computation, Hall et al. [1969] adapted incremental dynamic
programming to reservoir-operation problems. The generalization of incremental
dynamic programming is systematized, and referred to as discrete differential
dynamic programming, by Heideri et al. [1971]. This procedure starts from an
assumed control state trajectory. The recursive equation is then used to examine the
neighbouring states around the initial trajectory. If any neighbouring trajectory
gives a better value of the objective function, it then replaces the initial trajectory,

and the procedure continues until convergence takes place. This technique uses an
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iterative method, where the grid becomes progressively finer, until the desired
accuracy is reached. Unfortunately, the technique does not guarantee that the

global optimum will be found.

Parametric dynamic programming is a similar method. Its objective
function is approximated by a multi-variate polynomial function over the entire
state space. By defining the objective function in this way the burden of carrying
over the information from one stage to another in tabular form is alleviated. To
alleviate the "curse of dimensionality", Larson and Keckler [1969] have applied a
technique which decomposes a multiple reservoir dynamic programming problem
into a series of subproblems. The technique is called incremental dynamic
programming with successive approximations. This technique is particularly
useful for solving stochastic problems which can have large numbers of state
variables [Takeuchi and Moreau, 1974]. Opricovic and Djordjevic [1976] proposed
a three-level hierarchical deterministic al gorithm for reservoir operation planning
based on the dynamic programming procedure. The algorithm considered direct
and indirect water users. The time distribution of available water was optimized on
the first level; distribution to direct users, on the second level; and water was
allocated to indirect users on the third level. An extensive list of dynamic

programming computational procedures is given in Esogbue [1989].

In most reservoir operation problems, the system inflows are not known in
advance. Little [1955] introduced a stochastic dynamic programming model for a
mixed power-generation system that used inflow data described by probability
distribution. The model identified an optimal water-use policy based on the present
reservoir content and the inflow in the preceding period while it was minimizing

the expected cost of meeting the power demand for the remainder of the planning
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horizon. Butcher [1971] presented an algorithm based on the storage volume and
the reservoir inflow in the preceding period. The recursive equation was
developed, using both the discounted and undiscounted approach. The model was
applied, using different interest rates, to maximize returns from irrigation,

hydropower generation, and recreation.

A different approach to reservoir optimization, using a nonstationary
stochastic dynamic model, was employed by Bras et al. [1983]. This approach used
a, so-called, real-time adaptive closed loop control scheme which made use of
multilead real-time streamflow forecasts in reservoir operation. Stedinger et al.
[1984] improved this model by employing efficient flow forecasts as hydrologic
state variables in their predictive stochastic dynamic programming model. A study
by Goulter and Tai [1985] reported on the effects of the number of storage state
variables in stochastic dynamic programs on the estimated increase in the objective
function (annual gain) and computational efficiency. Another model by Kelman et
al. [1990] employed storage and forecast as state variables using a sampling
stochastic dynamic programming approach. It utilizes a large number of generated
streamflow scenarios to which conditional probabilities are assigned using a
streamflow forecast. Unlike the implicit stochastic optimization approach, this
model derives optimal decisions by considering all of the streamflow scenarios
simultaneously, instead of using only one at a time to optimize reservoir operation.
The large number of state variables in stochastic dynamic programming
contributes to the computational barrier which is often found in deterministic

multi-reservoir problems.

16



Other Reservoir Operating Models and Studies

Besides linear programming and dynamic programming models, used
separately for reservoir management purposes, there have been some attempts
- based on the combined application of the two techniques. Becker and Yeh [1974]
applied a linear programming model to obtain a set of alternative operating
policies and a dynamic programming model to subsequently select a single optimal
policy. The method was applied to the California Central Valley Project to derive

optimal release control for a multiple reservoir system and hydropower utility.

Another mathematical programming approach, nonlinear programming,
has been adapted for use in reservoir optimization. The consumption of large
amounts of computer storage and time have made the application of nonlinear
programming methods to the operation of reservoirs and reservoir systems
impractical [Yeh, 1985]. Despite their capability to handle nonseparable objective
functions and nonlinear constraints, these models have not been used as often as
linear or dynamic programming models. Rosenthal [1981] reported on a study
where a nonlinear network algorithm was used to optimize the benefits from a
multi-reservoir hydroelectric power system for the Tennessee Valley Authority.
He used deterministic inflows in conjunction with a nonseparable, nonlinear

objective function.

Klemes [1979] reminded water resource researchers of the, so-called,
“stretched-tread" method based on Rippl's storage mass-curve analysis. He
concluded that for the deterministic formulation of the problem both linear and
dynamic programming solutions converge to the same optimal reservoir policy as
the method above. However, he unjustly kept both mass-curve analysis and the

stretched-tread method from being classified in the systems analytic approach.
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Simulation is a mathematical modelling technique which relies on trial-and-
error to identify near-optimal solutions. It enables a decision-maker to examine the
consequences of different operating scenarios for an existing, or future, system. As
with optimization models, simulation may be used in the deterministic or stochastic
manner. Loucks et al. [1981, pp. 21-22] suggested the combined use of
optimization and simulation techniques. In this context, simulation models may be
used to narrow down the search for a global optimum by identifying plans that may
be close to it. At present, the general tendency is to incorporate an optimization

scheme into the simulation model to take advantage of both approaches.

2.1.3. Reservoir Short-Term Operation Planning Models

Real-time (short-term) reservoir operation models determine optimal
reservoir releases by using very short time steps, usually daily or even hourly
increments. The performance of such a model depends greatly on a forecasting
algorithm and forecasted information obtained. Most of the previously mentioned
mathematical programming techniques have been used, within either a

deterministic or a stochastic framework, for real-time reservoir operation models.

Houck [1982] developed the probabilistic balancing rule model for the
optimal real-time (daily) operation of a reservoir system used both for water
supply and flood damage mitigation. The model defines the optimal period-to-
period operation decisions as those which maximize the non-exceedence

probability values for the respective control variables, such as storage volumes or
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flows. Nzewi and Houck [1987] showed that it is possible to extend the approach to

solve reservoir operation problems which involve hydropower generation.

In contrast to probabilistic balancing-rule models, the optimal decisions
obtained from a penalty-based model are those which minimize the total assessed
penalty (short-term losses) for non-ideal operations. This group of models uses
economic criteria to derive optimal short-term operation of a reservoir system.
Datta and Burges [1984] examined the importance of penalty functions (loss
functions) and inflow forecast errors for effective short-term operation of a single
multipurpose reservoir. They concluded that the actual losses, incurred, decrease
substantially as the reliability of inflow predictions increases. Can and Houck
[1985] pointed out problems, in short-term reservoir operation modelling, due to

imperfect forecast information and the use of imperfect river routing models.

In general, forecasts, using streamflow and other input data,vdeteriorate
with increase in forecast length. On the other hand, with perfect forecasting (the
use of actual historical data as inflow predictions) the longer the operating horizon,
the better the reservoir performance that can be expected. With this in mind,
Simonovic and Burn [1989] proposed an improved modelling procedure that
explicitly utilizes the trade off between forecast reliability, which decreases with
the increase in forecast length, and the improvement in reservoir operation
attributable to the longer inflow forecast. The model incorporates (i) a Kalman
filtering technique within the forecasting algorithm; (ii) a linear programming
real-time reservoir operation model which attempts to minimize cumulative
penalties due to deviations from storage and release targets; and (iii) a multi-

objective compromise programming algorithm, which minimizes the inflow
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forecast error variance as well as the total penalties associated with the reservoir

operating horizon.

The combined use of short- and long-term operation models has been
reported in the literature [Yeh, 1979]. Due to different objectives in the long- and
short-term, the two types of models are run sequentially to account for the
differences. Outputs from the first model are used as inputs into the next model, in

an iterative manner, with updated streamflow forecasts.

2.2. TREATMENT OF UNCERTAINTY WITHIN FORMAL
DECISION MODELS: IMPLICATIONS FOR RESERVOIR
MODELLING AND ANALYSIS

Previous sections indicate that, in general, and according to the nature of

input data, mathematical models may be classified into:

(i) deterministic models, in which parameters are considered to be known or

fixed numbers for any set of conditions, and

(ii) stochastic models, in which data are expressed as a range of probable

values.

" In the case of reservoir planning and management, deterministic models
which use the historical critical period or mean seasonal inflows to arrive at
optimal decisions, do not encounter the hydrologic uncertainty associated with

inflows or uncertainty in demand variability. Although, such models are very
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simple and easy to use, they may not lead to satisfactory results. Post-optimal
analysis must follow deterministic optimization if the variability is to be
incorporated in the analysis. Generally, these models represent physical system
characteristics in more detail than stochastic models. However, simplifying the
assumptions about reservoir inflows used for formulating them may result in

overestimated benefits or underestimated costs and losses.

Stochastic procedures safeguard against the possibility that reservoir storage
capacity may become insufficient during a drought longer than the historically
critical one. They also take into account the possibility of experiencing flood
conditions not observed in the period of record. Any model used to design a
reservoir and select its operating policy must specifically incorporate the stochastic
nature of inflows and demands. In order to do so, two stochastic approaches may be
used: (a) explicit, and (b) implicit stochastic optimization. The explicit stochastic
approach uses the probability distributions of streamflows at each stage directly in
the stochastic optimization. Implicit stochastic optimization utilizes samples drawn
in data generation procedures (synthetic inflow data) ds input data for a
deterministic reservoir optimization model. The optimum release policies,
obtained for each generated sequence, are then studied through the use of multi-
variate analysis. While some researchers maintain that a stochastic formulation is
necessary for adequately addressing reservoir studies [Turgeon, 1980], others
argue that, in some cases, deterministic models offer increased flexibility and
reduced computer time and memory, without sacrificing much in performance or
reliability, especially in the case of multi-reservoir studies [Grygier and Stedinger,

1985].
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Each of the outlined approaches, deterministic or stochastic, may be
augmented using an adaptive methodology, in which new information is
incorporated into the decision problem as it becomes available. Labadie [1969]
used Bayesian updating as a form of adaptive reservoir control. Closely related to
the adaptive approach, is work that has been done in the forecasting field and its use
in determining optimal operation of a reservoir system. Dagli and Miles [1980]
used adaptive-planning methodology for deriving a reservoir-control policy with a
one-year time horizon. They utilized long-range inflow and demand forecasts for
determining releases for the first month only. At the end of the month, a new
forecast was generated and a new control policy was determined for the actual state

of the system, at the end of the month, as a starting condition.

The forecasting procedure developed by Curry and Bras [1980], which uses
a multivariate autoregressive forecasting model for the Nile basin, was adopted by
Bras et al. [1983] and used within an adaptive planning model. Using results of the
stationary reservoir control problem as boundary conditions, they used dynamic
programming to solve a finite horizon optimization problem using the multi-lead
forecasts of reservoir inflows. This was an attempt to incorporate nonstationarity

into the solution procedure.

Stedinger et al. [1984] discovered some inconsistency in this adaptive
methodology, namely, that the use of all available flow information within the
model requires the solution of a stochastic dynamic programming model of large
dimensions. As an improvement they suggested employing flow forecast as a one-

dimensional hydrologic state variable in, what they called, a predictive model. The
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improvement in the High Aswan Dam operation, observed with the predictive

policy, shows the advantage of the adaptive methodology.

2.2.2. Fuzziness: Imprecision of Another Kind than Stochasticity and

Randomness

The abundance and sophistication of all approaches, methods, and models
available to water resources analysts, planners, and managers, implies that an
appropriate model may be found for virtually every type of water resource
problem. A study by the U.S. Office of Technology Assessment [OTA, 1982]
revealed the high, current and potential, use of formal models by Federal and State
agencies which "expanded the Nation's ability to understand and manage its water
resources”. However, as presented by Rogers and Fiering [1986], there are some
problems that existing models are unable to address. These problems are related to
vagueness or disagreement regarding objectives and constraints and to estimation
error in model parameters. Even a study reported by Austin [1986], which offered
a much more favourable view of models used in water resource management,

acknowledges these problems.

Hipel [1981] recognizes the necessity for inclusion of, "nonquantitative OR
(Operations Research) techniques" within formal models, mainly because
information about the real world is often imprecise, ambiguous, difficult to
interpret, and is not open to analysis by quantitative OR methodologies. Situations
like these, where concepts of formal models and "classical" probability, alone, are
not adequate to describe reality, are relatively common in engineering practice.

Situations where some question arises about exactness of concepts, correctness of
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statements and judgements, degrees of credibility, etc., have little to do with
probability of occurrence, the fundamental concept of the classical probabilistic
framework. These situations warranted introduction of a fuzzy set concept [Zadeh,
1965] as a mathematical theory of vagueness. The theory of fuzzy sets attempts to
provide a device for modelling a qualitatively different kind of uncertainty or
imprecision, one which is not covered by any of the classical theories. This is
modelling of inexactness, ill-definedness, vagueness, or simply: fuzziness. The key
concept of fuzzy set theory is the membership function, which represents,
numerically, the degree to which an element belongs to a fuzzy set. It should be
noted that, when the quantity of available data is limited, Bayesian statistical theory
provides another alternative to the classical approach. Bayesian relationships, that
systematically combine new data with previous information, can be developed. The
previous information can be either subjective or objective in nature. However, a
large number of correlated variables can make the development of Bayesian

relationships extremely complex.

Many methodologies, based on fuzzy set theory, have been developed for
decision-making models which use quantitative and qualitative information
simultaneously. Fuzzy mathematical programming was introduced by Tanaka et al.
[1974] with extensions to some of the classical concepts in linear programming.
The new approach was formulated for cases where coefficients need not be known
precisely. Zimmermann [1976] clearly explained the idea of decision making under
fuzzy conditions. He argues that a decision in a fuzzy environment can be viewed as
the intersection of a fuzzy constraint and a fuzzy objective function. Prade [1980]
adapted ordinary operations research algorithms treating PERT, assignment,
travelling salesman, and transportation problems, which are appropriate to precise

data, to data that are not precisely known. Terano et al. [1983] and Esogbue [1983]
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showed that dynamic programming, as a tool for planning and management, can be
tailored to admit human interpretation and interference. This demonstration was
performed using fuzzy set theory and the introduction of several new concepts:

fuzzy state, fuzzy strategy, fuzzy constraints, etc.

In spite of the frequent and rather general claim of its applicability, little
research in fuzzy sets has been directed toward solution of practical engineering
problems. The predominant trend in early studies was toward examples sought out
to show the capabilities of fuzzy set theory rather than to deal with real problems of
application [Kickert, 1978]. However, the bibliography of fuzzy set application by
Maiers and Sherif [1985] and the book by Kaufman and Gupta [1988] subsequently
revealed considerable improvements in application of fuzzy mathematical models

to engineering and management science.

Most of the applications of fuzzy set theory to water resources afe related to
multi-objective studies and conflict analysis. In his analysis of the Poplar River
Basin conflict, Hipel [1981] advocates the use of fuzzy set theory, coupled with
multi-criteria modelling, for a conflict analysis of the dispute over of water
allocation. Esogbue and Ahipo‘ [1982] developed a fuzzy-set-based model for
measuring the effectiveness of public participation in area-wide water-resources
planning. An heuristic algorithm for clustering the membership functions of the
basic factors in the effectiveness model is also presented. Dubois [1983] analyzed
the problem of optimal network design. As the problem belongs to the
combinatorial field and an optimal solution is impossible, with practical-sized sets
of data, he concluded that fuzzy set theory provides a basis for a more efficient
methodology. The paper claims to present a methodology to provide a procedure

for approximate network generation. Chuang and Munro [1983] discussed several
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ways in which imprecision may be incorporated into a linear program. The work
includes comparisons of proximate programming, inexact programming, and
fuzzy programming approaches. A simple illustrative example concerned with

water quality is reworked using these techniques.

Bogardi et al. [1983] and Nachtnebel et al. [1986] have used fuzzy set
membership functions to represent environmental objectives in a multi-objective
framework. The first study concerns the conjunctive planning and operation of
water and mineral resources extraction in the Bakony region of Hungary. The
second work evaluated a small hydropower project with respect to both economic
and environmental objectives. The existing hydropower scheme located on the
Erlauf river (Austria) was selected as a case study. In their recent work, Bogardi et
al. [1989] proposed a joint probabilistic and fuzzy set approach to treating

stochastic uncertainty and imprecision in risk analysis.

2.3. ARTIFICIAL INTELLIGENCE AND WATER RESQURCES
MANAGEMENT

The previous two sections presented a review of mathematical models and
their use in the water resources field. The emphasis was mainly on new model
formulations, improved solution techniques, improved computational efficiency,
and addressing real situations within the formal models. However, the most
frequently encountered problems relate the lack of communication between model
users and developers, lack of documentation and support services, and involvement
of a subjective and value-dominated human element [Loucks et al., 1985; Austin,

1986].

26



As a consequence of emphasis on the development of progressively more
sophisticated, more complex, and bigger models, their acceptance by planners and
managers is limited. This trend prompted a new way of thinking about research

[Loucks et al., 1985]:

We will need, and we will develop, better models, of course, as our
knowledge of the system wé model increases. However, equally important,
we must devote some attention to the interface between the model user and
the models being used. More effective communication is essential for

increased effectiveness in model use.

Interactive water resources modelling and model usé, as proposed by Loucks et
al. [1985], gives the user an appropriate role in controlling model calibration,
model use, and output display. Goulter [1990] identifies yet another problem, i.e.,
the lack of suitable "packaging", as the primary cause for the non-acceptance of
optimization models. Goulter acknowledges also that "work is needed in packaging
these optimization models before they can be used in practice”. However, interface
and "packaging" problems are addressed only marginally in this thesis. It
concentrates on synthesis and structuring of the modelling knowledge necessary
for the proper formulation, selection, and use of different mathematical models. In
his summary, Goulter [1990] argues that "due to the nature of the packaging
problem it appears that the packaging issue should be addressed by software
experts rather than academic researchers who have formulated optimization
algorithms". This diverges from Loucks' contention [Loucks et al., 1985] and the
one used in this work, with respect to the role of academic researchers (engineers)

who have formulated and/or understand optimization algorithms. The
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development of a useable and marketable system requires the multidisciplinary
approach, i.e., involvement of both engineering and software experts. But
communication problems between the two groups, and the complex nature of
engineering decision-making, require engineering experts to collect and structure
the relevant engineering knowledge. Recent developments in Artificial Intelligence
(AI) now make it feasible to expand, not only the role of computers in reservoir
analysis, beyond numerical calculations, but to expand the role of academic
researchers in improving the use of the models which they understand the best.
This approach is demonstrated to be a possible direction for both research and
practice in water resources [Simonovic, 1990; Simonovic and Grahovac, 1990;

Arnold and Rouve, 1990; and Fedra, 1990].

The availability of inexpensive powerful hardware has enabled a major
breakthrough in the field of Al, namely the introduction of expert systems (ES).
These computer programs are capable of solving or helping to solve complex
problems, in a manner similar to what a human expert would do if given the same
task [Waterman, 1986]. Originally, engineering Al applications were primarily
oriented toward study of vision perception, speech recognition, and movement
(robotics). The science then began to address some other problems, gradually
evolving into one of the more fertile research areas in engineering [Kostem and
Maher, 1986; Maher, 1987]. The importance of Al lies in the fact that decision-
making in engineering practice requires a high level of expertise, encompassing
experience, judgment, heuristics, imagination, inventiveness, rules-of-thumb,

etc.,- in short, a certain level of "intelligence".

There have been successful water-resources-related expert systems

applications reported in the literature [Simonovic and Barlishen, 1987; Weigkricht
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and Winkelbauer, 1987; Simonovic and Savic, 1989]. From these publications, it is
clear that the basic engineering tasks of planning, design, and operations
management are addressed by the researchers in several water-resource
- subdisciplines. A detailed literature review of expert systems in environmental and
structural engineering can be found in Ortolano and Steinemann [1987] and Maher
[1987] respectively, and will not be covered in this thesis. A review of some

attempts in developing expert systems in water resources follows.

Hydrology

One of the first of such attempts, HYDRO, is an expert system designed to
help determine appropriate parameters of physical characteristics of a watershed
[SRI International, 1981]. Recommended parameter values serve as input to the
Hydrocomp HSPF simulation program, for evaluating various hydrological aspects
of the region being analyzed. The system is intended to provide advice comparable
to that of an expert hydrologist. Being one of the first expert systems in water
resources, HYDRO was developed for a mainframe environment using
INTERLISP. With the effect of the microcomputer "revolution" of the last decade,
more expert systems are oriented toward the mini or micro, i.e., work station or

personal computer (PC), environment.

A computer-based consultation system, FLOOD ADVISOR [Fayegh and
Russell, 1986], has been developed to provide advice about the most suitable flood
estimation technique. The advice is based on the availability of streamflow and
rainfall data for the location being investigated or for nearby streams in the region.
A hybrid-type expert system, WMS [Palmer and Tull, 1987],has been developed
for the opposite problem, drought management planning. Integration of

procedural computing, a linear programming model, declarative computation
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model, an expert system shell, and graphics is used to enhance their individual
capabilities. Along the same lines, an expert system SID, has been developed for the
Seattle Water Department, offering guidance for initiating water-use restrictions
during drought conditions [Palmer and Holmes, 1988). The expert system
environment is used again for combining the advantages of linear programming,
database management, and computer graphics. Nishida et al. [1990] presented an
expert system, ESCORT, that guides water managers through the development of
operational strategies for reservoir management by North West Water
(Warrington, England) during droughts. ESCORT is a prototype rule-based
system capable of interpreting control curves and selecting an appropriate

management response using engineering expertise acquired from human experts.

The EXSRM computer system [Engman et al., 1986] is designed to provide
assistance in estimating parameters of a snowmelt-runoff simulation model (SRM).
SRM needs satellite data and parameters that are not directly measurable. EXSRM
is designed to provide the expertise necessary for estimating the appropriate values
for these parameters. An expert system for a similar purpose has been developed to
automate the calibration of the runoff block of the EPA's Storm Water
Management Model (SWMM). It assists the user in the initial estimation of the
parameter values, building the SWMM input files, interprets the results and
suggests adjustments in the value of significant parameters [Baffaut and Delleur,
1989]. An early version of the system was written in the programming language
PROLOG, but the final version was developed using an expert system shell KES
written in C. The use of the shell allowed developers to concentrate on the
development of a rule base without being concerned with programming search

strategies.
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The information about the following two expert systems is gathered through
personal communications with the authors. Hydro-Quebec has been developing its
own decision-support tool, ARIANE, with the aim of providing expert guidance to
users of the multi-year operation planning process. It is intended to monitor data
updating, consistency, and validation; to oversee the use of heuristics knowledge;
and to control calling and use of mathematical models. Groundwater Branch of the
U.S. Bureau of Reclamation uses DMWW, an expert system that works in a PC
environment. The system is intended to assist the bureau personnel in the design of
municipal water wells, water storage wells, observation wells, and dewatering

wells.

A pilot expert system for advising on operation of the Jenpeg generation
station during the freeze-up period, JOE [Maxfield, 1987] has been developed and
tested by Manitoba Hydro. It is developed on a microcomputer using another
expert system shell, GEPSE. The very complex operations experﬁse which
involves many judgment calls, and is normally performed by an expert engineer,
was successfully captured by the system. Siek and Strzepek [1989] reported on the
development of another advanced decision-support system for operations‘and
maintenance. A prototype that ekplores embankment dam seepage was developed
for the U.S. Bureau of Reclamation. An expert system has been developed to assist
in selecting process units for upgrading small water supplies [Knight, 1987]. The
system has undergone testing throughout the United Kingdom giving results

comparable to those of human experts.

A prototype system has been developed to help organize and support
operation of an integrated surface water quantity acquisition data network

[Simonovic, 1990].'The developed prototype assists in selecting a suitable method
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for flow measurement in open channels. Two prototype expert systems; one for
| sewerage rehabilitation planning (SERPES), and a second for diagnosing a possible
problem within a water distribution network (WADNES); have been developed.
SERPES is focused on the use of a hydraulic model for an existing sewer network,
while WADNES focuses on advising the controller on the best course of action to
remedy problems in a water distribution network [Ahmad et al., 1989]. Armijos et
al. [1990] presented an interesting approach to real-time reservoir operation. A
hybrid reasoning structure using both Bayesian and rule-based reasoning has been
incorporated into a single decision-support tool. The authors claim that the system
has learning capabilities an important consideration from the viewpoint of future

use.

Nagy et al. [1989] addressed issues and problems in developing an expert
system around the existing operating tool for Energy Management and
Maintenance Analysis (EMMA) used by Manitoba Hydro. Conclusions from the
investigation of the knowledge acquisition process [Barlishen, 1989] and the
available programming tools were used by Grahovac and Simonovic [1990] as a
starting point in the incremental development of the expert system. They concluded
that permanent interaction between the expert, knowledge engineer, and the final

user is critical for the development of an expert system.

Finally, based on a review of existing expert system applications, Simonovic
[1991] concludes that expert systems have to play a significant role in the field of
hydrology. He identifies various tasks, performed by hydrologists in collecting and

using data and models, which may benefit from ES technology.
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Water Quality

Several expert systems have been developed with environmental managers
in mind. The RAISON expert system [Swayne and Fraser, 1986] performs analysis
of acid rain data and examines the relationships between related acid rain
parameters. The program, written in C, operates in a microcomputer
environment. An expert system for extracting concise information from a large
quantity of available historical water quality data, WATQUAS [Allen, 1986], is
also capable of interpreting extracted information in a form useful for continuing
analysis. WATQUAS is a prototype system that provides: (i) a user-friendly
interface to water quality data; (ii) an interpretation of historical data; and (iii) a
planning tool based on expert water quality assessment. It was developed for the
Ontario Ministry of Environment and runs on a VAX machine. Jenkins and Jowitt
[1987] describe potentials and problems in developing expert systems for river
basin management. They describe work undertaken toward the development of an

expert system for operational control of a wastewater treatment plant.

An heuristic computer program, PILOTE [Lannuzel and Ortolano, 1989],
attempts to reproduce decisions of expert operators in scheduling outlet pumps at a
‘water treatment plant near Paris, France. Although it is not considered an expert
system by its authors, the program exhibits many expert systems characteristics
and successfully combines mathematical models and heuristics. A knowledge-based
expert system, DADEES [Houck, 1989], is being developed to support decision-
making in the management of potentially hazardous or dredged materials. It is a
completely menu-driven system and uses a three-tiered testing strategy to
determine the aquatic disposal requirements for dredged material. The same report
introduces the application of a knowledge-based system to aid in the calibration and

use of the extended Streeter-Phelps BOD-DO model for a stream.
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Other Research Areas

Two computer systems, HYSTOR and HYSIZE, were developed to
. determine the optimum layout for a particular hydroelectric site. The user is
provided with alternative ranks according to economic priorities [Dotan and
Willer, 1986]. HYSIZE is used for run-of-river type projects without storage and
HYSTOR is used for sites with reservoir storage. These systems are a rare example
of attempts»to develop expert systems using FORTRAN. The SISES expert system
was developed for use in the process of site selecting for specific uses [Findikaki,
1986]. The most impressive feature of the system is its ability to capture decision-
makers' preferences without making a priori assumptions about them. The expert
system RRA was designed for the U.S. Bureau of Reclamation to administer the
acreage limitation provision of the Reclamation Reform Act. It provides a
mechanism for determining the status of a landholder, as well as the number of
acres on which subsidized reclamation water can be received. The system is
designed using an expert systems shell, Personal Consultant Plus (Strzepek,

personal communications).

The expert systems reviewed above cover a variety of topics and problems
related to water resources planning and management. The extent of the work under
way, or already completed, shows that ES technology has found a significant place
in this engineering field. General conclusions about the status of current systems
development, drawn by Simonovic and Savic [1989], still hold for the systems
presented. The work on applying Al advances to water resources problems is
mainly academic and, from the implementation point of view, in its starting stage.
Very few of these systems are being used in practice, on a day-to-day basis,

although several are undergoing thorough testing by practitioners. However,
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several papers presented at the recent research workshop on computer-aided
support systems for water resources research and management [NATO, 1990]
demonstrate that the expert systems technology is being increasingly accepted and
trusted by decision makers. Due to cuts in funding, and scarcity of experts, affected
water authorities or government agencies are focusing their attention on expert
systems research. It is not surprising that most of the developed (or pilot) systems
are intended for use by these organizations. The intended end users and the
convenience and cost-effectiveness of using personal computers (PCs) have made
the ES developers favour PC- or workstation-computing environments. Finally, it
is important to note that computational aspects of water resources planning and
management have influenced integration of knowledge-based and procedural

programming for most of the decision-support system frameworks reviewed here.

Expert systems applying a knowledge-based approach are poised to take a
more active role in water resources engineering practice. The technology is widely
accepted by the research community and is gaining broader acceptance in the
engineering community. However, the success of the new technology will be

measured by the degree of its general implementation in practice.
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CHAPTER 3.

RESERVOIR ANALYSIS EXPERTISE AND INTELLIGENT
DECISION-SUPPORT SYSTEMS

In general, analysis of man-made lakes is a complex multi-disciplinary,
multi-stage process comprising tasks from the design of a dam to impound the
water to the day-to-day reservoir operations planning and management. The
process involves specialists (structural, environmental, geomechanical,
hydrological, and hydraulic engineers, among others) from various engineering
and non-engineering, but related, fields (politics, economics, operations research,
public participation, etc.). Difficulties related to integration of all the mentioned
disciplines, modelling their interrelations, and policy implementation and decision-
making issues make this analysis a very complex and difficult problerﬁ to model.
Therefore, a somewhat restricted, yet very demanding, definition of reservoir
analysis is introduced. The scope of "reservoir analysis", as used in this work,
concentrates on expertise in using the systems approach as an effective means of
advancing decision-making in reservoir planning, design, and operations. This
definition serves as the framework within which an intelligent decision-support

system is to be developed.

As pointed out by Yeh [1985], one of the most important advances made in
water resources engineering is the development and adoption of optimization
techniques for planning, design, and management of complex water resources

systems. In fact, systems analysis, ranging from simple cost-benefit analysis to
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sophisticated simulation and use of optimization techniques, is considered to be the

traditional decision-support instrument in water resources.

The decision-making process in reservoir management becomes more
complex because of increasing water demands, increasing complexity of reservoir
systems, and increasing public involvement. The development and analysis of
water management plans and reservoir operating policies, and the subsequent
selection of the most promising ones for consideration by managers/decision-
makers requires considerable expertise. This expertise is provided by technical
professionals, referred to as "experts" in this thesis, who use mathematical models
to efficiently identify, formulate, and solve reservoir problems. Their expertise is
typically gained through experience in developing and using mathematical models;
interpreting their results; and consulting, and discussing operational policies and
their consequences, with managers and others involved in decision-making. Expert
systéms promise to make this type of technical expertise readily available to
managers and decision-makers having limited or no expert help. The use of expert
systems makes expertise and knowledge transparent and allows the user to easily

understand the reasoning of experts and the logic of the program.

The following sections present synthesis of existing expertise and knowledge
regarding the non-structured reservoir analysis problem. The need for a tool
encompassing this expertise is demonstrated through identified complexities of the
reservoir analysis process. Further support for this need is demonstrated by the
demonstrated inability of managers to make rational decisions without the help of
technical experts. The expertise is structured in four steps/phases. Finally, an

approach to developing intelligent-decision support systems is presented and
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recommended as a preferable alternative to the "classical" expert systems

development approach.

The engineering of a dam and reservoir goes far beyond the mathematics of
structural, hydrologic, and hydraulic design, or the difficulties of construction.
Even though a reservoir may be created to serve a single purpose, e.g., water
supply, there will be some effects on the surrounding environment. A river basin
normally contains a wide variety of aquatic and related wildlife, and may attract
numerous recreational users. The changed flow regime of a river will not only
affect the lives of people, but also those of fauna and ﬂora, the weather patterns,
and the landscape. The planning of a project is, therefore, a multi-disciplinary
study in which the water resources engineer should be capable of playing a leading

role.

There are a number of uncertainties and imprecisions involved in reservoir
- analysis, e.g., hydrological unéertainty associated with reservoir inflows and water
demands; imprecision in subjective evaluation of changing objectives and values;
and uncertainties in estimating future social or political impacts of recommended
decisions. Reservoir inflows, together with other input data, including
management objectives and assumptions concerning the representation of physical
processes and their characteristics, are important factors in the reservoir analysis
process. The following is a short summary of the most important features

influencing this process and the expertise required to perform it.
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For any reservoir analysis, streamflow data are considered to be of the
greatest importance. Although streamflow is continuous in time, it is usually
measured in discrete time intervals and is considered as a time series made up of
discrete variables. In the reservoir analysis process, the length of the inflow time
step varies from less than one day to a year or more, depending on purpose of the
reservoir analysis. For example, problems involving floods require short time
steps, sometimes even hourly or daily, to capture flow variability. As well as
uncertainty resulting from its stochastic nature, the following characteristics of

streamflow and streamflow data sources may cause difficulties:

() short and unreliable inflow records;

(i1) unreliable and inaccurate hydrometric measurements;
(ii1) incompatible data;

@iv) differences in temporal and spatial resolution; and

(v) poor statistical quality.

Short inflow records may be extended by using the available techniques for
estimating historical streamflow data. The selection of a technique depends on the
characteristics of the river basin watershed and available streamflow and rainfall

data sources.

In addition to inflow considerations related to reservoir analysis, the
identification of relevant planning objectives, and subsequent definition of the
relative importance of each of these objectives, is one of the most difficult aspects
of the analysis. Many individuals, interest groups, and organizations are affected
by, and concerned about, water and the environment. Each of them has a number

of objectives which are usually conflicting, difficult to quantify, and often
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incommensurate. This complexity makes reservoir analysis an iterative, dynamic,
and learning process during which goals may change or new objectives and

constraints may emerge.

In attempting to improve reservoir analysis, it is worthwhile to examine
issues and difficulties encountered in previous applications of the systems analytic
approach (specifically, of formal models) to practical water resources problems.
These issues placed burdens on decision-makers and reservoir operators who then
became reluctant to use models for planning or for adjusting existing reservoir
operation procedures. Although this work concentrates on single reservoir
problems, which narrows the scope, a key characteristic of reservoir analysis is
the complexity of the reservoir problem itself. Therefore, identifying and
formulating the problem may not be as simple and straightforward task as it first
appears. In formulating the problem, in terms of different measures of
performance and constraints, a key player in the process is the expert, possessing
highly developed technical capabilities, who relies mostly on experience and
personal engineering judgment. A typical single reservoir system has many,
equally important, physical components, each of which is related to the others (for
example, spillway, emergency spillway, bottom outlets, turbines, turbine by-pass
outlets, etc.). This complexity prevents engineers from evaluating all components
in detail and requires them to break the analysis down into several stages. The
process usually starts with the feasibility study, continues through the preliminary

analysis, and ends with the detailed analysis.

Another important characteristic of reservoir analysis is related to
selecting the appropriate solution procedure for the identified and

formulated problem. Analytical and/or numerical procedures may be available to
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perform the required analysis. Since modelling is a rapidly advancing and highly
specialized field, it is very difficult for managers to stay informed about new
developments and models. Human experts (analysts), who are informed,
experienced, and capable of making judgment in complex situations are not always
available to managers. These technical experts are capable of making reasonable
and accurate a priori evaluations of the problem-solving strategy and of making

recommendations on the appropriate procedure for the particular situation.

Numerous reservoir models are currently used in water resources research
laboratories or specialized agencies. Although the number of models is important
and may be an advantage for a user, the over-abundance of possible choices
may increase the burden on a water resources manager. The models may be
difficult for users to identify, locate, and obtain. Even when different models
require similar basic data, data selection and processing methods can vary greatly.
The complexity associated with initial estimation or the adjustment of input
parameter values emphasizes the need for a human expert to conduct or assist in the

task [Arnold and Sammons, 1988; Baffaut and Delleur, 1989]

There is a long-standing concern about difficulties inherent in using
mathematical modelling techniques and implementing them, especially for
public-decision making [Liebman, 1976]. It has been pointed out that even multi-
objective models have serious shortcomings and that no general technique which
provides a definitive answer exists [Brill, 1979]. The review of reservoir
operations models and applied optimization techniques by Yeh [1985] reached the
same conclusion. Before applying optimization or simulation procedures to a
specific problem, an expert should, therefore, contribute to the reservoir analysis

by assessing potential weaknesses and limitations of the technique(s) employed in
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the model. For this task, knowledge, of both operations-research techniques and

water resources related expertise, is essential.

Use of mathematical models as tools within a planning process requires the
objective evaluation and interpretation of the reservoir model outputs.
This output analysis should be done in a iterative manner, by adjusting parameters
that need to be calibrated and then restarting the model with the changed
parameters. The final solution is often unique, but sometimes many different
answers to a given problem may achieve the objectives closely enough and satisfy

the constraints.

An additional difficulty that is often encountered in decision-making related
to reservoir planning is the lack of communication and understanding
between the experts/analysts and the decision-makers (DM) [Liebman,
1976]. The involvement of the affected public, or stakeholders, is ﬁaking the
situation even more complicated. This deficiency can compromise all previous
efforts exerted in the analysis. Different sources of complexity are summarized in
Figure 3.1. Few decision-makers are familiar with the modelling process and even
fewer are willing or able to gét involved with it. Therefore, the transfer of
quantitative and non-quantitative understanding of the problem from the expert to
the DM, and vice versa, is of great importance. From this point of view, a

computer may help in communication and learning.
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PHYSICAL

COMMUNICATIO

Figure 3.1. Sources of complexity in reservoir analysis problems

3.2. RESERVOIR ANALYSIS PHASES

The first step in implementing the EES approach to reservoir management
problems is to identify specific areas in reservoir analysis where it may
complement or out-perform the present combination of human expert involvement
and use of conventional programs. In performing such an examination, it became
obvious that a number of frustrating characteristics of public sector decision-
making that require subjective evaluation and conflict resolution, cannot be

formally represented in any generally acceptable way. Consequently, the scope of
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this work was narrowed down to improving reservoir mathematical modelling and
model use for planning and management, i.e., the expertise from some engineering
fields (geology, geomechanics, structures, etc.,) has been excluded from
consideration here. However, even with the narrowed scope of study, all

previously mentioned sources of complexity are addressed by the developed tool.

Once the scope of the work was decided upon, the task of reviewing and
rationalizing the reservoir analysis process had to be performed. It was found that

this complex dynamic task includes the following phases:

i) reservoir problem identification and analysis for establishing goals
and objectives;

ii) mathematical formulation of the established objectives and physical
and other constraints;

1ii) selection of the formal mathematical solution procedure for
analyzing the identified, and subsequently formulated, problem;
and

iv) input data preparation, application of the formal mathematical
procedure, and presentation, evaluation, and validation of the

results.
In addition to these tasks, the process may be repeated, in an iterative manner,

providing alternative solutions and more insight into the problem under

consideration.
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3.2.1. Reservoir Problem Identification and Awnalysis for

The initial step of every analysis is directed toward gathering preliminary
information and identifying: i) important characteristics of the problem,; ii) the
scope of the problem; iii) the interrelationships among the components of a
reservoir system; and iv) performing the analysis of the objectives. In the reservoir
analysis process, this step is composed of defining the purposes of the analysis;
acquiring information about the availability of historical records of relevant
parameters; assessing involved risk; establishing goals and objectives, etc. This
phase of reservoir analysis is not precisely defined, in a structured way, in the
available technical literature. Rather, it is defined in general terms, giving users no
guidelines but leaving them to rely on their individual experience in gathering

relevant information about the problem.

One of the earliest decisions to be made concerns the purpose of the
reservoir analysis. In discussing the problem with the DM or with members of the
supporting staff the expert is usually expected to conclude whether reservoir
design (sizing), or reservoir opefation planning, or both are of iﬁterest and need
consideration throughout the analysis process. If reservoir operation planning is
inferred to be the primary concern, then a more detailed specification of the
purpose of the analysis is needed. Using information about management needs and
available data, the decision whether real-time reservoir operation or long-term

planning is required, should be provided next.

To analyze a reservoir problem, an expert needs quantitative measurements

of hydrologic data (streamflow, precipitation, evaporation rate, etc.), i.e.,

45



historical data records. These data records should be sufficiently long to properly
"define the statistical parameters and behaviour of hydrologic data. For example, a
3-4 year record is likely to be insufficient to provide a representative picture of
long-term flow variability at the gauging station. The expert should also ensure
that data are homogeneous over time and without systematic errors incurred in
information gathering. Before proceeding further, an expert should also decide
upon the optimization time step that should and can be used (given the purpose of
the analysis and available data). If a planning study is needed, the number of time

steps to be considered within a planning horizon must be determined.

Inadequacy of data is the most commonly identified factor inhibiting
modelling efforts [OTA, 1982]. It may introduce significant bias into any water
resources management evaluation. Therefore, it is often necessary to estimate short
gaps of missing data, e.g., streamflow data, or even to increase the record length by
using data extension techniques. Knowledge and experience in extending station
records by regression with nearby gauging-station records, as well as knowledge
of rainfall-runoff processes and models is essential for performing this task. It
should be noticed that the reliability and credibility of formal models is only as

good as the input data.

Keeping in mind the purpose of the analysis, available data, data record
sampling frequency, and data reliability, the next step in identifying a reservoir
problem and performing analysis is to assess the potential consequences of a system
failing to achieve established objectives. Generally, this type of risk depends on
water use, land use, and population density downstream from the reservoir.
According to the level of involved risk and data record characteristics, the decision

aboﬁt the level of detail and necessary simplifications of the physical system should
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be analyzed. The expert's task is to reduce the number of factors under
consideration to a manageable size, and to select for modelling the most significant

characteristics of the system.

3.2.2. Mathematical Formulation of Established Objectives.

hysical an her nstrain

A mathematical model uses numbers and/or symbols to represent
relationships among the components of real-world systems. If these relationships
can be meaningfully quantified, they can be included in a mathematical
representation, i.e., formal model, of a reservoir system. As a result, along with
gathering necessary data, a very important part of the aﬁalysis is formulation of the
reservoir problem into a suitable mathematical form. Various simulation and
optimization procedures require an explicit mathematical definition of the
objective function, constraints, the governing equations, and the bounds on
decision variables. Proper formulation is the first step in successful selection of an

appropriate algorithmic procedure to solve the identified problem.

Decision Variables

Reservoir planning and management activities involve the selection of many
engineering design and operating variables. When a mathematical model is used to
describe a reservoir system, these design and operating variables are called
decision variables. Often these variables represent decisions regarding physical
quantities (e.g., storage capacity, release through turbines, release for irrigation,
etc.), or system performance characteristics (e.g., probability of failure,

resiliency, robustness, etc.). For example, if reservoir design is identified as the
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reason for analysis, reservoir capacity becomes the decision variable. Reservoir
operation models may, on the other hand, include allocation of water to different
users, release and storage targets, or reservoir releases as decision variables. In the
mathematical notation used to describe a model, a set of decision variables is

usually denoted as a vector:
= T 3.1)
X (xl9 x2,---,xn) ( .
Where n is the number of decision variables and T denotes transpose.

The expert's must often rank possible variable choices and decide which
variable(s) is most important for the identified reservoir analysis objectives. This
task requires experience and technical skill to fulfill the goal of including a high
degree of reality within the model and analysis while keeping it manageable. For
example, in considering hydropower generation, the decision should be made
whether or not to distinguish between releases for on-peak and off-peak reservoir
operation. If the distinction is not significant for the analysis, the dimensionality of

the problem may be halved.

Objective Function

Reservoir system performance may be evaluated by assigning a value
function to the system decision or output. For example, a reservoif operation
within a time step may be judged in relation to the economic benefit realized from
hydropower generation. Such a benefit depends on the reservoir storage, inflows,
and releases of the current, and several previous, time steps. In optimizing
reservoir operation usually more than one time step must be considered in the time

horizon, thus generating a value vector during the optimization. The overall
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system performance may then be evaluated through the use of a single objective
function. This objective function assigns a single total value of system performance

to every possible value vector:

f vi(d1), va(da),..., vAdy)] (3.2)

Where fis the objective function; v; represents the value function at the time step ¢,
in the planning horizon ¢=1,2,....T: and ds tepresents the decision variable at th'e
time step. If the objective function represents net benefits from operating the
reservoir, then the expression (3.2) may be maximized with the decision variable

representing release.

An alternative approach for optimizing the multi-purpose reservoir
operation, is one often used in multi-objective analysis. The so-called weighting
method may be used to reflect priorities assigned to each different goal of meeting
release and/or storage targets. For the management of the High Aswan Dam, for
example, Bras et al. [1983] considered irrigation, flood protection, and
hydropower production. The objective function vector, consisting of separate

goals, was converted to a scalar as the weighted sum of the individual goals:

3
Minimize D, wiA; (TAR, 1) (3.3)
T N

i=1

In the above equation, w; represents the non-negative weights specified as

constants, and A; represents functions of the target vector TAR, and the release

vector r. The index i, i=1,2,3, is related to the three different goals contained

within the optimizing model.
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A different objective function, which incorporates net benefits, associated
with monthly releases, and losses, associated with reliability levels for not violating
storage targets, is reported by Simonovic and Marino [1980, 1981]. This approach
requires deriving the so-called risk-loss functions, associated with violating storage

targets and maximizing the following expression:

Max{irr}nize fr) -La(o) - LoB) (3.4)

where f represents the net benefit function associated with the release vector, r,

during a year, and L;,L, represent yearly risk loss functions associated with

reliability levels ¢, 3 for different parameters.

In the case of reservoir sizing, a simple objective function stated by
expression 3.5, which achieves minimum active storage capacity under specified

conditions (operating and/or physical constraints) may be used:
Minimize CAP (3.5)
where CAP represents the active reservoir storage capacity. An example of the use

of this objective (function) is determining the minimum active storage capacity for

a given set of releases over a period of time.
The four objective function examples, cited, above illustrate the diversity in

possible approaches to formulating reservoir analysis problems. An additional

difficulty in identifying an appropriate objective function may be attributed to two

50



types of benefit functions: long-run and short-run [Loucks et al., 1981, pp. 203-
205]. For long-run benefit functions, the target reservoir releases to different users
are assumed to be unknown decision variables. For short-run benefit functions, the
target storage and release levels have been fixed and reservoir operators try to
satisfy them as closely as possible. Only when resources available in a short run,
correspond to those anticipated when the long-run decisions were made, can

estimated long-run benefits and actual short-run benefits be the same.

The choice of the objective function is highly influenced by the problem
characteristics, the expert's preference for using specific technique(s), and the
DM's willingness to co-operate. If formal models for improving reservoir
management are to be implemented, the objective function should reflect both
physical and economic reality, as well as the DM's perception of the system. Houck
[1981] demonstrated the importance of the expert's understandingvof the modelling
problem to the correct identification of the objective function. In Houck's [1981]
work the analysis was performed for the objective function of an optimization
model used for real-time operation. By analyzing losses associated with deviations
from ideal operations, he proved that the objective function should differ from the
true measure of effectiveness of reservoir operation (i.e., penalty functions used in
real-time operation should be different from the identified true penalty functions).
These findings were attributed to the lack of reliable long-range inflow forecasté
required to use true penalty functions in real-time reservoir operation. Other
examples from the literature show that nonscientific aspects of the problem often
dominate and reveal difficulties in achieving proper representation of real-world

problems [Schultz, 1989].
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Governing Equation

Every formal reservoir model must be based on the general principle of
conservation of mass (mass balance or continuity). The conservation of mass for a
reservoir may be simply expressed in terms of mass added by inflows, and mass
removed by outflows (including losses). There are many ways to represent the

components of the mass balance equation. One approach is to express the final

storage volume S;, in the time period ¢, in terms of the initial storage volume Sy 5,

inflow i,, release r,, evaporation losses e,, and seepage losses s;:

Se=Sp1+i-ri-e -5 (3.6)

Inflows are stochastic in nature and the proper collection of inflow data and their

treatment is of crucial importance for reservoir modelling and model use.

A reasonably accurate estimation of the evaporation losses is necessary for
reservoir analysis, at sites in arid regions having high rates of evaporation. For
example, Lele [1987] reported a 30% increase in the required storage capacity
when evaporation losses were included. A similar example by Wurbs and Bergman
[1990] shows that the net evaporation losses in the Brazos River Basin (U.S.) were
in the range of 20-60% of the firm yield of the reservoirs in the basin. Evaporation
and seepage losses in the time period ¢, are functions of the storage volume in the
reservoir during that period.Reliable estimation of the average evaporation (or

seepage) rates for each period is required for a correct inclusion of losses.

Careful evaluation of the reservoir problem and basin hydrology is
necessary for properly expressing the mass balance equation. A water resources

expert, familiar with the problem and trade-offs between the problem
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representation and computational efficiency, is responsible for making decisions
pertaining to this task. For example, the assessment of the quality of collected
evaporation data may lead to a complete exclusion of evaporation terms, or the use
of gross evaporation instead of calculated net evaporation. A common decision that
must be made is whether to average monthly evaporation rates for all years in the

planning period, or to use actual monthly rates which vary between years.

The nature of the mass balance equation, which represents an actual physical
limitation which cannot be, usually requires that the equation be formulated as a
constraint. The mass balance equation is analyzed before the other constraints

because it is fundamental to the reservoir analysis problem.

Constraints

In addition to an objective function and the continuity equation, reservoir
management problems incorpbrate a number of requirements which are
formulated as constraints. As with the continuity equation, some of them may be
expressed as rigid physical limitations, e.g., the capacity of the reservoir, the
capacity of a spillway, etc. Other constraint types incorporate requirements that
could be violated, although the losses associated with such violation may be high.
These constraints include restrictions on minimum instream release for water
quality reasons and restrictions on violating the reservoir flood control and

minimal storagé levels.

If a decision variable should be prevented from violating some physical
boundary, a simple deterministic constraint may be appropriate to express the
requirement. A typical deterministic constraint, regarding minimum instream

release, may be expressed as:
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Tt 2 I'min 3.7)

where r;, epresents the minimum required volume to be released for low flow
augmentation and water quality purposes. Sometimes, depending on a situation, the

same type of requirement fnay be expressed as a probabilistic constraint:
P(r 2 rmin) 2 @ (3.8)

where P is the probability that the reservoir release r,, in the time period ¢, is
greater than the minimum required instream release I'min- The expression allows
violating the minimum required instream release, at most, (1-0)*100% of the

time.

In some cases, it is difficult to decide whether a requirement should be
formulated as a constraint or an objective. A high level of modelling expertise and
judgment is needed to decide which objectives of the problem can be modelled as
constraints and how to formulate these constraints. For example, it is always an
expert's responsibility to decide whether flood control requirements, in a
particular case, should be included through an additional constraint or through the
objective function. Different mathematical forms may be employed for this

purpose [Simonovic and Marino, 1980; Bras et al., 1983; and Druce, 1990].
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3.2.3. Selecting  Formal Mathematical Models for Analyzing

In practice, the outcome of this phase depends on the reservoir models
available to managers and planners, or on the ability of their staff to develop a
model. Developing reservoir models is a complex undertaking, reguiring skilled
personnel as well as adequate time and funding for computer facilities and
collecting and processing data. It is, therefore, advantageous to use developed
standard models that can be adapted to management needs. If possible, it is also
important to use a tool with which the manager is familiar. Ford and Davis [1989]
concluded that people would rather live with a problem they cannot solve than
accept a solution they cannot understand. Therefore, any potential user needs a
great deal of information about available models to select the proper one for
his/her problems, to become familiar with running the selected model, and to
interpret its results. Documentation is the primary mechanism for informed
communication among those involved in developing a model and those interested in

using it.

Even when documentation on different reservoir modefs is available, a great
deal of experience and knowledge is needed to make an appropriate selection. In
order to perform the analysis correctly, an expert user should be able to
understand the simplifications and limitations of the model and modelling
technique. For example, in sizing a reservoir, the expert should keep in mind
which methods are suitable for preliminary design and which for final (detailed)
analysis. It is also the expert's responsibility to choose the model having a
\ programming technique that best fits all aspects of the reservoir problem and the

computer facilities to be used.
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It can be concluded, that there is no perfect match between reservoir
problem characteristics and a model's capability to address them. A basic
requirement that must be upheld in all analysis, namely the correct modelling of
the problem at hand, is often difficult to achieve. The future uncertainty is a
primary concern in all reservoir problems, but there is no unbiased approach to
dealing with this. Therefore, a considerable amount of judgment is necessary when
selecting the best tool for the circumstances. It is not surprising that the study by
OTA [1982] came to the conclusion that "water resources models vary greatly in
their capabilities and limitations and must be carefully selected and used by

knowledgeable professionals”.

3.2.4. n D Preparation. Model nd Resulis Presentation

An important aspect of reservoir modelling and model implementation is
associated with preparing data for use by a formal model. This step deals with
gathering and preparing necessary information and input data in a form
recognizable by the selected model. Its success strongly depends on the user's
knowledge of where to look for information and data as well as how to process
them to get the desired output. Increasing numbers of hydrologic data collection
networks and automated data retrieval systems make the first part of this task easier
[Call et al., 1989]. The second part, information and data processing, depends on

the input data characteristics of a particular model.
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For practical purposes, it is important to have a model that is designed for
use by persons othef than the model developers. This kind of model ensures that
information and data needed for running the model can be introduced into the
model with the least effort and with least possibility of errors. Such a model should
perform data feasibility checks and verify data completeness. In the past, model
developers concentrated their research efforts mostly on developing techniques
and procedures; user interfaces and data checkers were neglected. These
shortcomings are beginning to be addressed with the development and application

of Computer Aided Design (CAD) and ES technologies.

A model's ease of use depends not only on the design of its input, but also on
its output characteristics. The output of a good user-oriented model can be adjusted
to provide the level of detail and organization of information that best suits the
user. This may be quite different for different persons and if a model lacks these
capabilities, it is expert's obligation to provide the end-user with systematized
output. In that case, the modeller must instruct the user in interpretation of model
results, otherwise, the conclusions may be misleading. Another approach is to hire
an expert to be responsible for data analyzing and interpretation of results to
managers and decision-makers. Common formats for presenting data to clients
range from simple numerical tables to qualitative linguistic statements and colour

graphics.

Most formal models are equipped with some kind of diagnostic mechanism
for determining whether a model succeeded or failed to reach a solution. If a
computer run cannot be completed due to errors or data incompatibility, there is
usually no parameter or fault analysis to help a user trace the problem back to input

data. Instead, a simple "diagnosis" indicating system failure is presented to the user.
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Leaving a non-expert user with only this "diagnosis”, for example, in the case of
the solution infeasibility -- "solution infeasible", would not provide productive
man-machine interaction. Instead the manager may choose to avoid using the
model in the future. Managers and planners rely on human experts, or modellers to
identify the parameters that cause problems and/or influence the solution most
significantly. Again, a great deal of problem understanding and modellihg
experience is essential for performing diagnostic analysis and evaluating the effects

of variation in parameters.

3.3. ENGINEERING EXPERT SYSTEMS APPROACH

Various definitions of an expert system may be found in the Al literature. A
composite definition considers an expert system to be a computer system
(program) that uses domain-specific knowledge to solve problems in a narrow
domain at a level of performance that is comparable to that of a human expert
[Barr and Feigenbaum, 1981; Rich, 1983; Waterman, 1986]. The key concept in
expert systems development is the accumulation and codification of knowledge
(expertise), particularly high quality knowledge used for solving so-called "hard"
problems. The process of acquiring the knowledge needed to power an expert
system and structuring that knowledge in a usable form, i.e., the process of
building an expert system, is often referred to as "knowledge engineering". The
advocates of this definition argue that the process should rely on specialists, i.e.,
knowledge engineers with a background in computer science and Al, to perform
knowledge acquisition and knowledge structuring [Waterman, 1986]. In this
context, a knowledge engineer is viewed, within the knowledge engineering

process, as a crucial connecting link between the domain expert and the expert
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system (Figure 3.2). The role of the knowledge engineer is to interview the expert,
to organize the knowledge, to decide upon knowledge representation within the

expert system, and to develop a knowledge base.

DOMAIN
EXPERT

DOMAIN
EXPERTISE

KNOWLEDGE ACQUISITION

KNOWLEDGE ™ [ AT
ENGINEER TRAINING

KNOWLEDGE BASE
DEVELOPMENT

Figure 3.2. Standard approach to expert system development

Expert systems developed using this standard approach typically consist of

two major components:
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(1) knowledge base; and

(i) inference engine.

The essence of an expert system is the explicitly encoded knowledge which
has been organized to simplify decision-making. The most common way to store
knowledge is in the form of facts and IF/THEN rules developed for a particular
problem. Some systems make use of knowledge representations such as semantic
nets and frames. These last two approaches group related facts and rules together to
ensure consistency, modularity, and easier access to the knowledge [Waterman,
1986]. The problem of knowledge acquisition must be properly addressed to
develop knowledge base that will promote a successful expert system. Depending
on the type and source of knowledge relevant to the domain of the expert system,
different approaches may be employed. Public knowledge [Hayes-Roth et al.,
1983], which is widely shared and agreed upon is contained mainly in textbooks,
manuals, and references, is highly structured, may be easily accessed and acquired
This type of knowledge is considered as a static knowledge category. The
extraction of private knowledge, which is possessed by human experts and is
therefore dynamic, is a much more difficult task. An important benefit of
knowledge acquisition for modelling purposes is that it brings an understanding of
how experts organize and use their knowledge to less experienced people

[Barlishen, 1989].

The second important component of an expert system is the inference
engine, i.e., a control strategy required for manipulation of knowledge. This
control strategy determines how facts and rules are to be used for problem solving.

Expert systems problem solving involves the search through the knowledge base
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for the set of rules that, when applied, provides a solution. The direction of a
search through the knowledge base is determined by forward-chaining or
backward-chaining strategy. A forward-chaining search works from an initial state
. of known facts to a goal state, while a backward-chaining search works in opposite
direction. Each strategy has its own advantages and drawbacks. Effective

engineering expert systems usually employ aspects of both strategies.

In addition to these two main components, a user interface, explanation
facilities, a working memory, and a knowledge acquisition subsystem may also be
distinguished within an expert system. The user interface is a vehicle for
communication between the system and the user. The "friendliness" of a user
interface should be as highly developed as possible, in order to give the user easy
access to the information within the system. Explanation facilities are responsible
for clarifying the reasoning leading to any conclusion the system reaches. They
may provide a trace of the execution of the system, as well as facilities capable of
answering WHY and HOW questions. The working memory contains information
about the current subproblem a system is attempting to solve. As the system
retrieves new data, facts may be added, modified, or even deleted from the
working memory. The knowledge acquisition system is responsible for facilitating
modifications and updating of the knowledge base. This system is closely related to

the user interface.

The development and application of lower level as well as more advanced
expert systems for helping water and environmental resource engineers and
managers has been taking place for almost ten years [SRI International, 1981;
Kostem and Maher, 1986; Maher, 1987; Ortolano and Steinemann, 1987,

Simonovic and Barlishen, 1987]. The interest in technology is commensurate with
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its promises to help reduce complexities involved in decision making and
implementation of water resources systems planning, design, and operations.
Expertise and intuitive judgment form an important aspect of water resources
engineering, making the development and application of expert systems highly

appropriate.

A specific approach to developing expert systems by engineers and for
engineering use, named Engineering Expert System (EES) approach by Simonovic
and Savic [1989], evolved from the higher involvement of engineers in expert
system construction [Savic and Simonovic, 1989; Cohn et al., 1988; Nagy et al.,
1989; Barlishen, 1989]. The EES approach differs from classical knowledge
engineering most significantly in the area of knowledge acquisition. In the EES
approach civil engineers with a background in Al and ES techniques, and with the
help of easy-to-use ES shells, assume the role of knowledge engineers (Figure 3.3).
This approach simplifies the development of the knowledge base and helps
engineers achieve more insight in the structure of the expertise. In addition,
through this approach, the research concentrates on the application of the ES

technology to specific engineering fields, rather than on problems in general Al

Decision making within the reservoir analysis framework may be defined as
choosing among alternatives which are generated for design, long-term, or short-
term reservoir operation purposes. Alternatives are not always obvious, and the
search for them can be a difficult task. Classical decision-support systems (DSS)
provide a combination of tools which support the process of understanding and
structuring a problem, generate alternative solutions, and help a decision-maker to
evaluate them and to choose those that are acceptable. Decisions in water resources

should be accepted with some reliability and within confidence limits because of the
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uncertainty and risk inherent in the area. In the past, decision-support tools were
based mainly on mathematical modelling and use of graphics. Now, database and

artificial intelligence techniques improve the capabilities of the classical tools.

DOMAIN
EXPERT

DOMAIN
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Figure 3.3. Engineering Expert System approach to expert system development

The EES approach should be widely applied in the development of DSS to be

used by technical professionals as well as less experienced decision and policy
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makers and ‘users. Thus computer becomes not only a vehicle for numerical
analysis, but also a vehicle for communication, learning, and experimentation. This
line of thinking initiated another definition of a computer system, called the
intelligent decision-support system (IDSS), which differs from the classical
definition of a DSS or expert system. An IDSS, particularly for water resources
analysis, is a computer program that assists in understanding and solvihg
complicated water resources problems by integrating engineering knowledge,
principles of systems analysis, experience, intuition, creativity, and engineering
judgment with formal procedural modelling. Therefore, the interaction between
the declarative component and external procedural models, with efficient means of
real-time data transfer, characterizes intelligent decision-support systems. To
summarize, an IDSS is considered to be a result of applying the EES approach,
within its philosophical framework, to the development of a computer system by

and for engineers.
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CHAPTER 4.

REZES: AN INTELLIGENT DECISION-SUPPORT SYSTEM
FOR RESERVOIR ANALYSIS

This chapter describes how the expertise and knowledge in the area of
reservoir analysis is structured by combining systems analysis and artificial
intelligence technology in an intelligent decision-support system. The structure
identified during the synthesis of the expertise (Chapter 3) is revised and
transformed into decision rules. Examples of the rules for all four identified phases
of the reservoir analysis process are then presented. Finally, an illustrative

example is analyzed with help of the developed tool.

4.1. RESEARCH OBJECTIVES

The basic aim of the research leading to the development of REZES was to
capture and formalize knowledge and expertise that has been implicitly rather than
explicitly available. Careful analysis of research objectives preceded the system
development because of the lack of detailed documentation of all the tasks normally
undertaken in a reservoir analysis process. In addition to formalizing accumulated

knowledge and expertise, this analysis revealed the following research objectives:

(i)  toreview and rationalize the general reservoir analysis process in order to

permiit it to be explicitly encoded;
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(i1)

(iii)

(iv)

(v)

(vi)

(vii)

to test the capabilities of knowledge-based (ES) technology in the field of
reservoir analysis using domain experts in developing an IDSS themselves,

rather than calling upon knowledge engineers;
to improve the application of different conventional procedures and formal
models for the reservoir analysis, integrating them with advanced

knowledge-based (ES) technology;

to provide an intelligent decision-supporting tool to advise and train

different types of users of reservoir analysis;

to equip the system with powerful explanation facilities and ensure that users

are consistently informed of the reasoning employed by the system;

to provide a new type of automation using less experienced personnel

(novice users), quicker solution procedures, and more reliable solutions;

to use a PC-based hardware environment for wider acceptance and

applicability of the system.

The development of a complex decision-support system is not a uniquely

defined task for a fixed time period. Rather, it is an iterative process, with frequent

revisions as the work progresses. This revision aspect extends into the

implementation phase. In addition to the objectives identified prior to the system

development, some additional conclusions were drawn during the development of

REZES. Several hidden objectives have also been identified:
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(viii) not all areas in the reservoir analysis are suitable for declarative

(ix)

computation. Therefore, an additional objective was to identify specific
areas (in the reservoir analysis) where ES technology may complement or

out-perform conventional software; and

the scope of the general reservoir analysis as defined by all involved
disciplines, and as described in the introduction to Chapter 3, was found to
be too broad for the successful development and later effective
implementation of an IDSS. The objective of the work was then confined
mainly to expertise related to mathematical modelling and applying the
systems analytic approach to reservoir management. This re-direction
enabled the research to go more in depth rather than in breadth. For other
related aspects of reservoir analysis not covered by REZES, the user is

directed to literature dealing specifically with the given aspects of it.

In conjunction with the recognized research objectives, three potential user

types have been identified for the software system being developed:

@)

(ii)

An "assistant" user, with whom the system is intended to interact in order to
encourage him/her to find a solution, or a range of solutions, for a problem

at hand. This type of user needs directional advice from the system. He/she

‘may have overall knowledge, but lacks experience in performing specific

tasks.

A "client" user, for whom the system behaves as a consultant. The system is

intended to offer answers to the client's reservoir problems. This user type
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is generally well aware of all aspects of reservoir problems, but is relatively

ill informed about effective solution procedures.

(iii) A "student" user, for whom the system acts as an practical instructor and
also provide a deeper insight into "expert" knowledge. This type of user
possesses theoretical background in reservoir modelling approaches and
techniques, but lacks practical experience and expertise in implementing

them.

The underlying assumption for all the user types is that they all possess a
certain amount of reservoir analysis knowledge or knowledge related to decision-
making problems. The system requires user involvement in providing information
on the reservoir problem. That information is used by the system to provide
alternative solutions that ensure better understanding of management actions and
can lead to rational decision making. This issue is in agreement with the purpose of

REZES, which is not a decision-making, but a decision-supporting tool.

4.2. K LEDGE A ISITI

The concept of building "skilled" expert systems by first extracting the
domain expert's knowledge and then organizing it in an efficient manner is
referred to as "knowledge engineéring" in Al literature. The tasks of effectively
extracting knowledge and operatively representing it are crucial for the building
and ultimate success of expert systems. However, the transfer of knowledge from
people and other sources to software systems is not simply an ad hoc procedure.

During the course of this study the structure of the future system was defined and
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the reservoir analysis process was reviewed and rationalized as a result of the
experience gained and increasing understanding of the problem. Development of
the rule base uncovered additional problems related to knowledge encoding, as
well as problems specific to the ES development tool being used. Initially
developed strategies or intentions were modified to address problems emerging
during the course of the research. The experience gained during the initial stages of
knowledge acquisition and ES development was used for subsequent stages.
Clearly, this is a benefit of building a knowledge base in stages and adopting the

modular knowledge base structure.

The process of knowledge acquisition starts with the identification of all
relevant sources of knowledge about the problem domain. A thorough review of
the literature must be completed to ensure basic understanding of the domain. For

the expertise structured in the REZES' knowledge base the following sources were

identified:
(1) personal experience;
(i1) expertise available at the University of Manitoba;

(ii1) expertise of other researchers in the field;

@iv) books, manuals, reports, journal articles, etc.

Technical literature, containing "static" knowledge on reservoir analysis,
presents previously processed and partially structured knowledge. The other type
of knowledge, dynamic knowledge, is that possessed by human experts. Acquired
through personal experience and extracted through discussions with other
researchers and through consultation with experts, it is less structured and

therefore harder to represent and encode. The following section introduces some
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possible knowledge representation schemes considered during the development of

REZES.

4.3. KNOWLEDGE REPRESENTATION

Conventional procedural programming can be defined as a set of techniques
for specifying knowledge through algorithmic routines (procedures). These
techniques specify the knowledge needed and the strategy to be used for solving a
particular problem. The knowledge in an ES is organized so that the knowledge
about a problem domain is separated from the techniques used to manipulate it. A
kind of programming that supports a strict separation between the knowledge and
the control strategy, known as declarative programming, uses a symbolic
knowledge répresentation to give the knowledge a particular style and structure.
Depending on how the knowledge is to be used, this representation can be quite

simple or very complex. The three most common knowledge representation

schemes are:
(1) production rules;
(ii) semantic networks; and

(iii) frames.

(i) Production rules are the elements of the simplest and most popular
knowledge representation scheme. They take the form of IF-THEN statements
consisting of one or more premises (conditions) and one or more actions or

conclusions. Actions are performed if the premises are true:
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IF (premises)

THEN (conclusion/action)

An application-independent inference procedure searches for the rules whose
premises are true given the known facts contained in the working memory. The
advantage of having an independent inference engine is that it allows incremental
development. As new information in the problem domain is discovered, that
information can be added to the knowledge base without requiring changes in the

inference engine itself.

Closely related to the rule-based knowledge representation is the direction
of search which the inference engine performs through the knowledge base.The
characteristics of the problem domain should dictate fhe direction of search. As
mentioned in Chapter 3, both forward- and backward-chaining search strategies
exist. The forward-chaining search, also called a data-driven or bottom-up search,
starts from an initial state and proceeds, applying rules, until a goal state is reached.
This strategy is particularly useful in situations where a goal state is poorly
defined. The main problem with this approach is that numerous search paths may
be generated during a consultation. The backward-chaining search, also called a
goal-driven or top-down search, starts from a goal state backward to the initial

state. It is more useful in situations where the desired goal state is precisely known.

(ii) Semantic networks provide a transition from simple rules to more complex
frames in the knowledge representation schemes. Semantic nets, as they are also
called, provide a way of grouping rules into a structured knowledge base. Related
rules and facts are structured as nodes in a network. Relations among facts and

rules are represented as links between the nodes. The obvious advantage of using
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semantic networks is that they provide a mechanism for guiding the application of

knowledge and protecting the consistency of the knowledge base.

(iii) Knowledge representation using frames is very similar to semantic nets. The
frame representation is also defined as a network of nodes and relations organized
in a hierarchy, where the top-most nodes represent general concepts and the lower
nodes more specific instances of those concepts [Waterman, 1986]. Frames differ
from nets in that all the properties of a concept or object, defined by a set of
attributes and the values of these attributes, are grouped in a frame. Therefore,

frames are used for more structured knowledge representation.

In general, water resources expertise contains different types of knowledge.
Each of the representation schemes concentrates on a particular type of knowledge.
While rules are suited to expressing heuristics and modular knowledge, structured
representations are suited to expressing organized and hierarchical knowledge.
Structured representations provide a powerful mechanism for organizing
knowledge. They ensure more efficient consultation runs than a simple rule-based
structure as a result of defined inheritance mechanisms and explicit paths for a
search (along links). However, control of the search mechanism becomes less
explicit and consequently the system becomes less understandable. Each of the
schemes has shortcomings when representing knowledge that does not closely fit its
focus. As a result, several representational approaches may be used concurrently.
Combining the approaches provides increased flexibility and explicit separation of

different types of knowledge.
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4.4. INTELLIGENT DECISION-SUPPORT SYSTEM

A number of different development tools are currently available for
developing IDSS. These tools vary widely in their characteristics, capabilities,
price, and sophistication. The availability of powerful tools may greatly reduce the
time required to develop expert systems. Palmer and Mar [1988] stated that some
of the expert system software is sufficiently friendly that a domain expert can enter
his/her knowledge directly into the knowledge base. That may eliminate the need
for a knowledge engineer in the expert system development phase. Generally, ES

tools can be grouped into three categories:

(i) General-purpose programming languages, such as LISP and PROLOG,
have been very popular among Al researchers. These high-level languages offer
great flexibility to knowledge engineers but lack knowledge representation
guidance and support. This type of tool is useful for developing symbolic
computing programs (as distinguished from numeric programming in FORTRAN
or BASIC). With its built-in backward chaining inference engine PROLOG may be

considered as a transition tool from pure languages to ES shells.

(ii) Expert system shells, provide the system developer with development
support facilities, an inference mechanism,‘and a knowledge representation
scheme. These tools are designed to facilitate the rapid development of expert
systems. However, it is very important that the characteristics of the application

match those offered by the shell.
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(iii) Expert system development environments, generally include multiple
knowledge representation schemes and reasoning mechanisms. These
environments offer greater capabilities, but most of them require a LISP-based

machine or a mini computer environment.

According to presented research objectives the IDSS development tool had

to satisfy following criteria:

(i) to operate in the IBM PC or strictly compatible computer environment;

(ii) to have the ability to integrate formal (procedural) programming with ES
(declarative) programming. The possibility of interacting with external
FORTRAN programs, and efficient real-time data transfer were considered
necessary features; and

(iii) to be easy to use for expert system development as well as consultations. The
user-friendly developer interface and user-friendly user interface are considered

very important.

In addition to the above, the development tool capabilities are required to match the

following criteria as closely as possible:

(i) to have the capability of multiple knowledge representations (for example, rules

and frames);

(ii) to be able to use its own graphics or to call other graphics procedures;
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(iii) to have the ability to perform advanced mathematical calculations;

(iv) to be fast and ensure reasonably short execution times for knowledge bases

developed with the tool; and

(v) to have good documentation and continuous vendor support, preferably on-

line.

A prototype intelligent decision-support system was developed using the
general-purpose programming language PROLOG. During the development of the
prototype, it was found that forcing PROLOG to perform a forward-chaining task
is a complex programming endeavour. After memory related problems were
encountered with a moderately expanded knowledge base, and after problems in
managing this comprehensive and flexible tool, it was decided to change to a
friendlier expert system shell, Personal ConsultantT™M Plus (Texas Instruments).
Personal Consultant Plus (PC Plus) is an expert system shell developed in the
Scheme programming language, a dialect of LISP. PC Plus has very good graphics

capabilities that are considered important for better use of IDSS.

Two basic knowledge representations, the rule-based and frame-based, are
supported by PC Plus. Frames and rules organize a hierarchy of knowledge and
information within an ES. A knowledge base, arranged in this way, ensures more
efficient consultation runs. Thus the system is not slowed by searching for and

processing knowledge and information that is currently irrelevant.

PC Plus is capable of handling uncertainty in user responses with the use of

certainty factors and a built-in mechanism for processing them. However, this
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feature has not been used in REZES because a different approach to handling
uncertainties was taken. In responding to a REZES' question, rather than
expressing the level of confidence with a numerical value the user has the option of
responding with the "DO NOT KNOW" or qualitative type of response. The
questions and reasoning scheme, following this type of a user answer, are then

modified accordingly.

The PC Plus capability to integrate procedural and declarative
programming is very important for the interactive use of REZES. Necessary
interaction between the knowledge base and the external formal models
(FORTRAN subroutines), as well as real-time data transfer, are performed via

data files.

4.5. MODULAR ARCHITECTURE OF THE KNQWLEDQEI BASE

As shown in Chapter 3, in addition to being multi-disciplinary, reservoir
modelling and model use represents a portion of a wider multistage and highly
complex process. A major uﬁdertaking, in reviewing and rationalizing the
reservoir modelling process was in identifying its phases. Accordingly, the
REZES' structure is organized to resemble identified phases of the reservoir
analysis process as closely as possible. It was found that a modular structure best
suits the problem characteristics. However, the identified phases of the reservoir
analysis and the developed REZES modules do not correspond one-to-one for
several reasons. Firstly, several phases often employ the same information to
arrive at their individual conclusions. In order to avoid duplication and

unnecessary memory problems, phases that shared most of the information were
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modelled together. Secondly, although it constitutes a single entity, the phase
' encompassing input data preparation, model use and presentation, and evaluation
and validation of results was found to be to large for one module. The proper

adjustments were made and it was broken down into two separate modules.

Two basic knowledge representations, rules and frames, were used to
facilitate the modular structure required for the development of REZES. The rule-
based representation permitted declarative programming of the expert's rules and
heuristics in the simple IF-THEN form. The frame-based representation,
employed by PC Plus, enabled clustering of related rules into frames, to resemble
one or more of the activities in reservoir analysis as performed by a human expert.
For example, rules related to the historical inflow record, its length, sampling
frequency, etc., were grouped into one frame to facilitate inferences that will lead
eventually to the reservoir problem formulation. Furthermore, several related
frames were grouped into a module designated to perform a specific phase in the
reservoir modelling process. The graphical representation of the REZES' modular

structure is represented in Figure 4.1.
The following sections provide detailed descriptions of the knowledge

representation and knowledge use in different REZES' modules. These modules

are developed to resemble identified reservoir analysis phases.
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Figure 4.1. Organizational chart of REZES modular structure
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Two closely related reservoir analysis phases, problem identification and
mathematical formulation, are arranged to share five frames. These five frames
constitute one programming entity, a module, which contains the knowledge base
portion designated for identification and formulation tasks. The module and

frames within it are graphically represented in Figure 4.2.

Root
’a ANALYSISA PRECIPI-
Frame "1 PURPOSE |&>| INFLOWS g} "REC 00

e LINEARITY)]
RESERVOIR PROBLEM

IDENTIFICATION AND
FORMULATION
MODULE

|l RISK

- Figure 4.2. Reservoir problem identification and formulation module

The frames are named to suggest the task they perform and to agree with the PC

Plus syntax:

(i)  ANALYSIS-PURPOSE
(i)  INFLOWS
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(ii) PRECIPITATION
(iv)  LINEARITY
(v)  RISK

(i) The ANALYSIS-PURPOSE frame is created to identify the purpose of
performing the reservoir analysis, i.e., whether to identify or define a possible
reservoir design or management plan. The identification is performed in one or
two stages depending on the answers supplied by the user. At the first level, REZES
distinguishes between analysis for reservoir sizing and reservoir planning. The
second level, where a more detailed specification of the purpose is derived, is
invoked only lif planning is deduced at the first level. The decision is then rendered
whether real-time reservoir operation, or long-term planning is required. The
~ identification process is carried out in REZES through a set of rules and related
“questions. The following are two rules from the first level identification that

exemplify the set:

Rule 1:
IF (RESERVOIR does not exist)
AND (PROJECT DOCUMENTATION is not available)
THEN (PURPOSE OF THE ANALYSIS is to determine the
TESETvoir size)
Rule 2:
IF (RESERVOIR does not exist)
AND (PROJECT DOCUMENTATION is available)

AND (REASSESSMENT OF RESERVOIR SIZE is needed)
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THEN (PURPOSE OF THE ANALYSIS is to determine the

TESErvoir size)

These two and the following rules in this chapter are given in a pseudo-English
form. The premise and action parts of each rule are given following IF and THEN

indicators.

Rules 1 and 2 are backward chaining rules. They both conclude that only
reservoir sizing, not operation planning, can be recommended and performed. If
one of these rules is fired, then the reservoir storage capacity is determined to be
the decision variable. The inference engine starts by searching for a goal state
(parameter), in this case, PURPOSE OF THE ANALYSIS. In order to evaluate
rules, the rule premises are checked and questions related to their parameters

(RESERVOIR and PROJECT DOCUMENTATION) are asked.

The following is another rule from the same set of identification and

formulation rules, but this time from the second level of identification:

Rule 3:
IF (PURPOSE OF ANALYSIS is planning in general)
AND (user cannot identify OPTIMIZATION TIME STEP)
AND (STRATEGIC GOAL is to help short-term operation of the
TeServoir)
THEN (DETAILED PURPOSE OF ANALYSIS is real-time

reservoir operation planning)
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It should be noted that if this rule is fired, then the objective function minimizing
the reservoir storage capacity, in the form of Eq.(3.5), is eliminated from the
mathematical formulation. These rules are developed to work without direct
questions being asked. This helps the user to expose the facts relevant to the
decision without knowing particular terminology. The consultation is based on
gradual refinements of the analysis parameters, e.g., from the general purpose of
the reservoir analysis to the detailed decision about the mathematical model

needed.

Another rule from the same frame, this time used in a forward-chaining

manner, looks like this:

Rule 4:
IF (DETAILED PURPOSE OF ANALYSIS is real-
time reservoir operation planning) '

THEN inform the user of the conclusion

The THEN part of the rule is an action that should be performed whenever a
conclusion that DETAILED PURPOSE OF ANALYSIS is real-time planning, has

been reached.

The parent frame for the ANALYSIS-PURPOSE sub-frame is the root
frame. The only child frame is the INFLOWS sub-frame (see Figure 4.2).

(ii) The INFLOWS gathers initial information about the streamflow historical data
record. The availability, characteristics, sampling frequency, and the length of data

records are of special interest to the analyst (who is to determine whether data are
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sufficient to proceed with the analysis or not). Depending on available data, the
| request for additional investigation or data preparation may emerge from this
specific investigation. For example, it is often necessary to estimate or fill in short
gaps of missing streamflow data. The parent frame for INFLOWS is ANALYSIS-
PURPOSE, and its child frame is the PRECIPITATION frame (Figure 4.2).

A characteristic rule from this frame is:

Rule 5:
IF (HISTORICAL STREAMFLOW RECORD is available)
AND  (STARTING YEAR OF THE RECORD is known)
AND  (LAST YEAR OF THE RECORD is known)
AND (RECORD EXTENSION is impossible)
THEN {RECORD LENGTH is [(LAST YEAR OF THE RECORD
minus STARTING YEAR OF THE RECORD) plus 11}
AND inform the user about the record length and advise him/her

about analysis reliability in relation to the record length

This rule is an example of how PC Plus performs mathematical operations

(subtraction).

(iii) Simple processing on precipitation data and record availability is taken care of
in the PRECIPITATION frame. Although REZES cannot use this information for
extending the inflow record, it is capable of giving advice about procedures and
citing references in the literature. The PRECIPITATION frame does not have any

child frames. The following is a rule extracted from that frame:
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Rule 6:
IF (HISTORICAL RAINFALL RECORD is not available)
THEN (EXTENDING INFLOWS RECORD is impossible)

The user supplies answers to precipitation-related questions, as well as information
on available nearby gauging stations at REZES's request. Again, procedures for
multivariate analysis are not available within REZES, but REZES can advise the

user on locating more details about them.

(iv) Knowledge translated into rules, related to the linearity of the mathematical
problem being formulated, is stored in the LINEARITY frame. This frame is
directly involved in both the identification and formulation phase of the analysis.
According to the purpose of the analysis and intended future reservoir use, it
discriminates between linear and non-linear problems. The root frame is its parent
frame and it has no child frames. Next, the rule that concludes non-linearity is

given. A typical rule in this frame is

Rule 7:
IF [(DETAILED PURPOSE OF ANALYSIS is long-term
planning)
OR (DETAILED PURPOSE OF ANALYSIS is real-time
| planning)]
AND (RESERVOIR FUNCTION is to generate electricity)
THEN (RESERVOIR PROBLEM is non-linear)

In this particular rule, only one potential reservoir purpose is explicitly mentioned

(hydropower). However, the user is required to supply information about every
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possible use of the reservoir and, often, several conflicting purposes may be

selected.

Information about other possible reservoir purposes is used for
formulating the objectives and constraints of the reservoir problem. This process is
done in agreement with the available mathematical models so that one of them

matches the formulated problem.

(v) Lastly, REZES should decide to what degree of detail the analysis is to be
performed. Often, it is difficult to justify a detailed analysis for screening
alternative plans. Similarly, it is not appropriate to use preliminary techniques for
cases where detailed analysis is necessary and where consequences of a wrong
decision may be devastating. This type of decision also depends on the available
formal models. For example, if an explicit stochastic analysis matches the problem
requirements and the appropriate model is not available, the analysis may be
performed using a deterministic model. In such a case utilizing synthetic
streamflow sequences in the implicit stochastic manner can give comparable results
to those of the explicit stochastic optimization approach. The last frame in this
module, RISK, determines whether a deterministic or stochastic procedure is to be

used. The following two rules illustrate the outlined methodology as it is used by

REZES:

Rule 8:
IF (DOWNSTREAM AREA is highly populated municipality)
AND (DOWNSTREAM AREA is predominantly industrial)
THEN (RISK LEVEL is high)
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Rule 9:
IF (RISK LEVEL is high)
OR [(RISK LEVEL is medium)
AND (REQUIRED ANALYSIS is detailed)]
THEN (MODELLING APPROACH is stochastic)

The conclusion about the modelling approach to be used directly influences
the form of some of the problem constraints. In the case where Rule 9 is applicable,
some of the constraints, like that in Eq. (3.8), may be reliability based. A different
recommendation may be expected if one of the problem characteristics used for
evaluation of the premises changes. For example in Rule 9, if analysis is required
for preliminary or screening purposes, the conclusion will be that a deterministic

modelling approach be used.

Many parameters which influence the identification phase were
investigated throughout the research. Each of them identifies or contains a piece of
information that REZES uses to arrive at a conclusion or to give a
recommendation. Table 4.1 lists some of the parameters used in the identification
and mathematical formulation phases. Conclusions or recommendations from these

parameters are used for making inferences in the later phases.

The parent frame for RISK is the root frame. The root frame uses
information provided by RISK and other sub-frames in the identification and
formulation module, to determine the appropriate formal reservoir model for
performing the analysis. Only information used to render this conclusion is

transferred from these five frames to the model selection module.
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Table 4.1.  Parameters used in the identification and formulation phases
Supplied Information Conclusions/Recommendations
Parameters Options Parameters Options
-Reservoir identification user defined Analysis purpose sizing
planning
*Reservoir existence exists
undeveloped
=Previous project documentation available Detailed planning short-term
not available purpose long-term
*Reservoir sizing yes/no
«Planning objective strategic Analysis feasibility can be done
short-term cannot be done
=Historical inflow record available
not available
«Starting/last year of the inflow numerical input Record length numerical result
record
«Display detailed statistical yes
. requirements of the record no
<Historical rainfall record available Record extension possible
not available not possible
=Gauging station in the same or yes
nearby watershed no
<Overlap period of the two records  exists Record length very likely long enough
(for calibration) does not exist appropriateness unlikely long enough
not long enough
+Optimization time step less than hour
hour
day
week Reservoir problem linear
month non-linear
season
unknown
Input data time step month and less
season
<Reservoir functions municipal water supply | Risk level high
industrial water supply medium
irrigation low
wild life preservation
recreation
flood control
low flow augmentation
hydropower generation
<Land use specification of the industrial Modeling approach ~ deterministic
downstream area farming stochastic
unpopulated
<Downstream population density scarcely populated
medium populated
heavily populated
*Required analysis preliminary
detailed
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4.5.2. REZES: Formal Mathematical Model Selection Module

The module which selects the appropriate reservoir model renders its
conclusions based on the interactively collected information about the reservoir
system and on the conclusions derived in the identification and formulation phases.
If selecting the model is not possible given the existing information, additional
refinements are stimulated. It should be noted that the decision on which model to
use is highly dependent on the models available. As not every model is appropriate,
in all contexts, inclusion of different techniques and approaches to reservoir
analysis ensures the best match between problem characteristics and one of the
formal models. Special attention was, therefore, paid to choosing a wide range of
comprehensive models for improving the accuracy and effectiveness of the

analysis.

This module consists of only 6ne frame, RESERVOIR-MODEL, which is
simultaneously the root frame of the IDSS. Having this feature, the RESERVOIR-
MODEL frame does not only recommend the formal reservoir model to be used,
but also controls the rest of the system. The root frame performs control functions
by making an appropriate sub-frame active at the appropriate time, and/or by
transferring necessary information from frame to frame. Being the root frame,
RESERVOIR-MODEL does not have a parent frame. Its child frames are:
ANALYSIS-PURPOSE, LINEARITY, RISK, and INPUT-PREPARATION
frames (Figure 4.3).
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Figure 4.3. Formal mathematical selection module with root frame
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Rules of the Selection Module
Twenty three rules accommodated by this frame may be grouped into

three rule categories:

(i) rules rendering advice or giving an explanation;
(ii) rules activating a sub-frame; and

(ii1) model selection rules.

These rule types will be described below and examples illustrating each of the rule

types will be presented:

(i) Rules rendering advice or giving an explanation: in general, these are
antecedent rules used in a forward chaining manner to render advice or a warning.
The following rule informs the user that further analysis is impossible without
inflow data. Although this analysis cannot be completed,as a record is not available,

the consultation can proceed until the missing information is actually required.

Rule 10:
IF (MODEL is known)
AND (HISTORICAL INFLOW RECORD is not available)
THEN inform the user that none of the methods and formal

procedures can work without this information

AND proceed with consultation

(ii) Rules activating a sub-frame: these types of rules are antecedent rules, activated

when a set of conditions is already being traced and satisfied. They usually ensure
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proper ordering of reservoir analysis activities. In the following example, the
 INFLOWS frame may be activated only after the detailed purpose of the analysis is
known, regardless of whether it is sizing, real-time planning, or long-term

planning:

Rule 11:
IF (DETAILED PURPOSE OF ANALYSIS is known)
THEN consider activating frame: INFLOWS

(iii) Model selection rules: this type of rule uses previously gathered information to
choose the appropriate mathematical modelling technique and the reservoir model.
Additional information to distinguish between possible model choices may be
required at this point. The final choice of the model to be employed, as pointed out

by Rogers and Fiering [1986]:

... depends upon the use to which the model is put; what sort of questions the

problem poses; and how detailed the analysis is to be.

The formal models included within REZES cover a wide range of reservoir
problems, thereby ensuring that the model chosen provides a good fit to the
problem at hand. The following rules demonstrate the reasoning used to choose one

of these models:

Rule 12:
IF (PURPOSE OF ANALYSIS is sizing)
AND (REQUIRED OPTIMIZATION TIME STEP is month or

less)
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THEN

Rule 13:
IF

THEN

(INFLOW DATA is collected and recorded on monthly basis)
(RELIABILITY OF WATER SUPPLY is to be maximized)
(MODEL to be used is APPROXIMATE YIELD MODEL)

(DETAILED PURPOSE OF ANALYSIS is long-term
reservoir operation planning)

(RESERVOIR PROBLEM is non-linear)

(MODELLING APPROACH is deterministic)

(PRIMARY WATER USE is for electricity generation)
(GENERATION SYSTEM is considered isolated)

(MODEL to be used is ITERATIVE LINEAR
PROGRAMMING MODEL)

Table 4.2. lists mathematical model selection parameters and their values

arrived at, or obtained from the user during a consultation. Selected models and

their main characteristics are also provided. A list of all formal mathematical

models included in REZES, with short explanations, is given at the end of this

chapter.

This module, which contains 172 rules, helps the user to prepare necessary

input data to suit the particular reservoir problem, in a form recognizable by the

selected formal model. The transfer of information between the IDSS knowledge
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Table 4.2.  Parameters used in the model selection phase
Supplied Information and Previous Selection
Conclusions
Parameters Options Model Characteristics
Analysis purpose sizing RESER sizing, simulation-optimization, monthly,
planning linear, reliability criteria, and vulnerability
criteria
Detailed planning purpose short-term
long-term CYIELD sizing, linear programming, seasonal, and
linear
Reservoir problem linear
non-linear AYIELD sizing, linear programming, monthly, and
linear
Reservoir functions municipal water supply
industrial water supply ILp long-term planning, deterministic,
irrigation iterative linear programming, monthly,
wild life preservation nonlinear, isolated generation system,
recreation variable energy price, constant demand,
flood control and one year planning horizon
low flow augmentation
hydropower generation
EMSLP long-term or mid-term planning,
Planning horizon less then a year deterministic, successive linear
one year programming, month or less, nonlinear,
interconnected generation system, variable
energy demand, and a year or less planning
: horizon
Demand reliability maximum possible
user defined Dp long-term planning, deterministic, three
level dynamic programming, monthly,
nonlinear, direct and indirect users, and one
year planning horizon
Priority of the generation of primary
electricity over the other users secondary CCLP long-term planning, stochastic, chance-
constrained linear programming, monthly,
linear, flood control, and minimal storage
reliability levels
Energy generation system isolated
characteristics interconnected RPORC long-term planning, stochastic, reliability
programming, monthly, nonlinear, flood
control and minimal storage reliability
levels
Energy price throughout the constant
time period variable SDP long-term planning, stochastic, dynamic
programming, monthly, nonlinear, and a
year planning horizon
PROFEXI real-time planning, daily, linear
programming, COmpromise programming,
and linear.
FCCP long-term planning, stochastic, fuzzy sets,

chance-constrained linear programming,
search, monthly, linear, flood control, and
minimal storage reliability levels
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base and the library of formal (procedural) models is performed via data files. For

this purpose, a floppy disk drive is used as a file communication vehicle.

The INPUT-PREPARATION frame, together with 24 additional frames,
forms the basis for the input data preparation tasks (Figure 4.4).This frame
contains over 60 rules which control data-export and data-import procedures.
These procedures, easy to incorporate into rules, ensure data completeness for each
of the formal reservoir models. Each of the 11 formal models has its own 5-8 rules
associated with the INPUT-PREPARATION frame. These rules enable control
over gathering inflow data, demands, losses, and other physical and computational

parameters necessary for the reservoir analysis.
Two characteristic types of rules are employed by this frame:

(1) rules which warn the user of the action(s) to be performed; and

(ii) rules which control presence of file(s) with the necessary data.

(i) Rules which warn the user of the action(s) to be performed: To provide a "non-
modeller" with better understanding of the system and to improve REZES-user
communication, this type of rule provides necessary information about the
system's subsequent actions. Usually, graphics capabilities of PC Plus are employed
to highlight important facts or user actions required to proceed with a consultation.
The following rule warns the user to place the correct floppy disk, with the selected

formal model, into the floppy disk drive:
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Figure 4.4. Interactive data entry module
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Rule 14:
IF

THEN

(MODEL is RELIABILITY PROGRAMMING
RESERVOQIR MODEL)
print warning and inform the user about necessary

action

(ii) Rules which control presence of file(s) containing necessary data: once a

formal reservoir model is chosen, model runs with different inputs are usually

performed several times. REZES contains this type of rule in-order to check

whether data files already exist. A user is allowed to override an existing file and

change input data if another model run with changed parameters is needed. Each of

the 11 formal models has a rule similar to the following to check whether some or

all data files are already present:

Rule 15:
IF

AND
AND
OR
AND
AND
OR
THEN

(MODEL is RELIABILITY PROGRAMMING RESERVOIR
MODEL)

[ANFLOW DATA FILE is prepared)
(HYDROLOGIC/PHYSICAL DATA FILE is prepared)]
[ONFLOW DATA FILE is not prepared)

(PREPARE INFLOW DATA FILE)
(HYDROLOGIC/PHYSICAL DATA FILE is prepared)]

(INPUT PREPARATION is done)

The remaining 24 frames associated with the interactive data entry

module, are closely related to 11 mathematical models. Each formal model has 1-5
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frames for handling the laborious task of input data preparation and data export to

" an external medium so it can be used with the formal model.

Although all the REZES modules use PC Plus graphics capabilities, the
input data preparation module uses them most extensively. It is advantageous to
include graphics with a model designed for use by persons other than the model
developers, because users are more comfortable with pictures than with text. Static
pictures enhance REZES "prompt" or "help" capabilities, while background
pictures are combined with active image(s) to create a user-friendly input
environment. These pictures cannot take in or display parameter values. Active
images can accept values from the user and display parameter values set as a result
of conclusions reached during a consultation. These standard images, like dial
image, thermometer image, selection boxes, etc, are associated with parameters
from the knowledge base. Figure 4.5 shows a horizontal bar graph image, used for
data input necessary for running one of the formal models. For this image type the
user selects the desired value from the numeric range displayed on the horizontal
bar graph. The cursor keys move the bar to the left or to the right, indicating the
value a model will use. It is also possible to group two or more active images in a
cluster to give a better view of the multiple parameter values. A background
picture added to a cluster can provide additional guidance and supplementary
details for data input. In REZES, image clusters and background pictures have
often been used for multi-valued input, for example, average monthly inflows,
demand levels, evaporation rates, etc. An example of an integrated background
picture and active images is shown in Figure 4.6. Boxes with explanations are part
of the background picture and the shaded box is an active image for data input.
Over 450 active images, together with 46 background pictures, have been created

for REZES.

97



Intelligent Decision Support System - |

Enter the fractional part of the time step the hydro
plant should satisfy the higher (on-peak) energy
demand from the load-duration curve.

The up and right arrow keys move the blue bar to the
right; the down and left keys move the bar to the
left. When done, press Return/Enter key.

On-peak fraction of the time step

Figure 4.5. Example of a horizontal bar graph image

In conjunction with graphical aids, REZES provides a user with default
parameter values, and with information about acceptable parameter value ranges in
two ways: explicitly and implicitly. The explicit approach provides a user with the
parameter value range by displaying it on the screen as the question is asked. In the
implicit approach, REZES prompts a user to answer whether to accept a value

falling outside of the prespecified range.

The following rules exemplify interactive data entry module use in

gathering and exporting input data:
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( Intelligent Decision Support System - |
MEAN MONTHLY INFLOWS
YEAR | 1957 Type in the value for the
inflow in the appropriate box
To move press ENTER
To exit press F10
JAN FEB MAR APR MAY JUN
3.0 2.5 6.5
JUL AUG SEP _OCT NOV DEC
Press F10 to continue.
N / \
PICTURE
Figure 4.6. Integrated background picture and active images
Rule 16:
IF (INFLOW FOR JANUARY is known)
AND (INFLOW FOR FEBRUARY is known)
AND
AND (INFLOW FOR DECEMBER is known)
THEN export data and change the counter value for frame

instantiation
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Rule 17:
IF (EVAPORATION DATA are stored)
AND  (STAGE-STORAGE RELATIONSHIP is stored)
AND  (STORAGE-AREA RELATIONSHIP is stored)
AND  (WATER DEMAND DATA are stored)
AND (COMPUTATIONAL DATA are stored)
THEN (INPUT DATA PREPARATION FOR RESERVOIR
DYNAMIC PROGRAMMING MODEL is finished)

The same input preparation module may be used several times in a single
consultation. If the model run is interrupted, or adjustment of some parameter
values is needed, REZES proceeds with all, or just a part, of the input preparation

Process.

4.5.4. REZES: Results Displav. Evaluation and Validation Module

There are several important aspects of the utilization of the optimization
model regarding its output results. The first is related to the format and output
characteristics of the formal models within REZES. The output module is designed
to display a brief summary of results immediately after running the particular
formal model. For example, after a consultation with a sizing model, information
on required storage capacity and computed water supply reliability is presented to
the user. In addition to the summarized results, each model stores detailed output
results in a data file accessible to REZES. These results may be displayed to the
user automatically, or upon request, during the consultation. The information is

clearly presented, i.e., tables with short explanations, to permit rapid
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comprehension and to improve the user understanding of the solution. After a
consultation, the summary files remain on the floppy disk and may be analyzed or

printed using some other software.

The second aspect of using output results is diagnostic, i.e., the ability of
the model to determine whether computation has reached the optimum. REZES is
capable of detecting malfunctioning of a model and can advise the user of possible
remedies and courses of action. This is accomplished by enabling each model to
produce a diagnostic data file, which REZES processes in addition to presenting the
results. Often, due to an internal error, or wrong or inadequate input data, a
computation may be interrupted. In this case the user is left without any
explanation about what actually went wrong. Mathematical models incorporated
within REZES are tailored to generate clear diagnostic messages whenever an
important step in the computation is performed. These messages are stored in the
file accessible by REZES, which is then capable of interpreting them and
informing the user of the terminating conditions. The following are examples of

two rules from this module that are used for the purposes described above:

Rule 18:

IF (DIAG #1 is "optimum is reached")

AND  (USER REACTION is "satisfied")

THEN inform the user that optimal solution is reached, invoke text
editor to display detailed output results, and conclude
consultation.

Rule 19:
IF (DIAG #1 is "optimum is not reached)
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THEN  (import DIAG #2 from the file: CYIELD.DGN and interpret

the error message stored in the file)

Note, that "DIAG #1" and "DIAG #2" are parameters generated by the
particular model (in this case COMPLETE YIELD RESERVOIR MODEL) which
are transferred to the REZES knowledge base via the diagnostic (CYIELD.DGN)
file. The parameter USER REACTION calls for user opinion about recommended
storage or reservoir release policy, and depending upon this opinion, the

appropriate course of action is recommended.

The third aspect is related to estimating the effect of model parameter
change, commonly known as "sensitivity analysis". Water resources practitioners,
which utilize the systems approach in their professional practice, know that it is
important to consider the effects of changes in the model parameter on the optimal
policy. Most computer codes do not display the non-optimal solutions through
which an algorithm passes on its way to the optimum. It may be beneficial for the
user to explore the near-optimal solutions that give similar values of the objective
function but substantially different operating policies. Through its 11 frames and
over 60 rules, employed in the result evaluation and validation module, REZES
advises the user about the parameters that are mostly likely to change the
performance of the formal model. The following is a rule illustrating this IDSS

capability:

Rule 20:
IF (DIAG #1 is "optimum is reached")
AND (USER REACTION is "storage is too large")
OR (USER REACTION is "reliability is too high)
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THEN (inform the user on which parameter influences the solution
most significantly)

AND restart the input preparation phase

This rule is taken out from the RESER-EXE frame and causes the next
iteration in preparing input data. By changing the parameters identified .by
REZES, the user may get a better understanding of the solution sensitivity to

parameter variation or may even obtain a more suitable solution to the problem at

hand.

4.6. ESERVOIR FORMAL MODELS: MATHEMATICAL
PTIMIZATI PROCEDURE

This section provides a brief description of the formal models for reservoir
analysis that are incorporated in the REZES knowledge base. The REZES system
includes formal mathematical models selected to cover three basic areas of

reservoir analysis:

(1) reservoir design;
(1) short-term reservoir operation planning; and

(iii)  long-term reservoir operation planning.

The selected set of models includes optimization methods that use classical calculus,
linear programming, non-linear programming, dynamic programming, and
simulation techniques. To represent all possible input situations as well as possible,

both deterministic and stochastic modelling approaches have been incorporated.
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These models have proved to be acceptable decision-support tools for handling a

variety of reservoir related problems.

However, careful analysis, of the reservoir mathematical modelling and its
theoretical background, unveiled an existing gap between available models and
reservoir management problems. Even with using the expert system technology to
improve modelling, as suggested in this thesis, the gap still appears to exist. The
objective functions and constraints employed by existing models are required to be
well-defined and are not always easy to formulate. As the library of formal models
within REZES grew, the need for a model capable of coping with fuzzy situations
became more apparent. That is why efforts were also directed to the analysis of
decision making and modelling in a fuzzy environment. A fuzzy set model has been
developed for this purpose and it is included with the rest of the formal reservoir

models.

Most of the models, deterministic or stochastic in nature, were develol\)ed
by different researchers well before REZES development started. Each of them
had to be modified to allow for specific input-output processing employed by
REZES. For some, the theoretical foundations were set in the literature, but the
| algorithms still had to be adapted for use within REZES. These models constitute
an important segment of the expertise contained in REZES. The theoretical
background, detailed development, and an example application of the fuzzy set

reservoir model are presented in Chapters 5 and 6.

The following is a list of all formal mathematical models included in

REZES, with a short explanation of the model capabilities.
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RESER - a reservoir sizing model based on the improved Rippl procedure
[Rippl, 1883; Simonovic, 1985]. At present the model includes storage

dependent losses and uses different reliability levels of water supply.

CYIELD (Complete Yield) - employs a linear programming technique for
minimizing total reservoir capacity with regard to set of system constraints

[Loucks et al., 1981]. It is used with seasonal hydrological data.

AYIELD (Approximate Yield) - is a simpler reservoir sizing model
[Loucks et al., 1985] than CYIELD, in that it requires a smaller number of
constraints in the formulation of an LP model. It minimizes the total active

storage capacity necessary to provide the within-year yield.

ILP - uses a technique called Iterative LP [Grygier and Stedinger, 1985]
for solving nonlinear reservoir operation problems. The algorithm
attempts to maximize the value of hydropower generated over the planning

period of one year.

EMSLP - employs successive LP in optimizing long-term planning of an
interconnected hydro utility for a deterministic future [Reznicek and
Simonovic, 1990]. The operation involves scheduling reservoir releases to
generate hydro power, and managing energy transfer through the

interconnections (i.e., system,import, and export).

DP - considers the optimal long-term control of a multipurpose reservoir
which could supply water to both direct and indirect users [Opricovic and

Djordjevic, 1976]. The model uses the dynamic programming (DP)
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10.

technique for optimizing hydro-power-plant operation as a direct user and

as the only source from which indirect users may receive water.

CCCP - a chance-constrained LP model determines operating policies
which maximize expected benefits when the system is constrained to
achieve fixed minimal storage and flood control reliability levels
[Simonovic, 1979]. The model uses the specific approach for converting

stochastic problem formulation into its deterministic equivalent one.

RPORC - a model developed by Simonovic and Marino [1980], uses the
reliability programming approach where reliability levels are not fixed, a
priori. A nonlinear problem resulting from using this approach is solved

using a multi-dimensional Complex search by Box.

SDP - a predictive stochastic dynamic programming approach [Bras et al.,
1983; Stedinger et al., 1984] served as a basis for this reservoir model.
This nonstationary model employs the solution of the steady state stochastic
DP as a boundary condition. The model makes use of efficient flow

forecasts as hydrologic-state variables.

PROFEXI - employs the concept of optimizing short-term operation of a
multi-purpose reservoir. It performs optimization on the basis of inflow
forecasts provided by an external forecasting algorithm [Simonovic and
Burn, 1989]. However, due to the nature of real-time reservoir operation

REZES uses this procedure only for demonstration purposes.
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11. FCCP - a fuzzy-set-based chance-constrained model that determines the
reservoir operating policy which maximizes system reliability and returns
from release. The model accepts both quantitative and qualitative input.
The model transforms qualitative information about a decision-maker's
preferences toward the system's operations reliability and releases, into
numerical data. The model employs LP and search techniques for solving

the non-linear problem.

4.7. AN ILLUSTRATIVE CONSULTATION

The Gruza reservoir (in Yugoslavia) case study has been employed to
illustrate the application of REZES and its potential benefits. The reservoir is
intended to provide water for a large municipal settlement (the town of
Kragujevac) 10km from the reservoir. site and to release minimal contracted
volume downstream from the reservoir (Figure 4.7). Flood control and sediment
deposition control were two additional purposes, considered in the study done by
the Jaroslav Cerni Institute [1976] and impleménted in modelling reservoir
operation. According to this study the storage of the Gruza reservoir is 64.6x100
m3. Currently, this cabacity is divided into three zones: the dead storage of
8.5x100 m3, the active storage of 48.4x100 m3, and the flood control storage of
7.7x100 m3. Reservoir storage, and the long-term planning reservoir-management
policy have been developed to provide firm water supply discharge of Qg=0.816
'm3/s with very high reliability. Mean monthly evaporation (potential) ranges from
19.2 mm in January to 119.0 mm in July. The most recent hydrologic report

[Energoprojekt, 1988] showed that demand and reservoir releases for water supply

stayed at the average level of Qg=0.550m3/s during the period 1985-1988 (the
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reservoir began operating in 1983). This low value of Q( relative to Qg raised a
question of how to improve utilization of the reservoir storage. The potential of

rural water supply has been considered for the utilization of available excess water.

Reservoir

O
O
LEGEND: o
O Rural settlement

Figure 4.7. Gruza reservoir system

The following is an illustrative consultation session performed by the
author, using information available on the Gruza reservoir system. It is suggested
here that a planner or manager (the "client” type of user), having limited
knowledge about the most appropriate model in the given context, but having

access to the mentioned project documentation and reservoir characteristics, may
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benefit from interacting with REZES. However, this interaction should involve an

| analyst as well (the "assistant" type of user).

Figure 4.8 represents the problem identification steps for the Gruza
reservoir system operation study. The problem description is made up using
~ information supplied by the user. Logical inferences are then made based on the
problem description and modelling experience. Partial decisions and inference

flow respectively are represented by the shaded ellipses and arrows between them.

A more complete description of the logic in Figure 4.8 is as follows:
Using the fact that the reservoir exists and the previous project documentation is
available, REZES concludes that reservoir operation planning rather than sizing of
the reservoir is appropriate for this problem. The strategic goals and optimization
time step foreseen by the user suggested a long-term reservoir operation planning
approach and eliminated the real-time operation planning approach which would
need streamflow data with a shorter time step, and a good forecasting algorithm.
For this study, historical streamflow data for the years 1926 to 1977, recorded on a
monthly basis at the dam site, are used. Using rules, generally accepted by
practitioners, REZES concluded that this inflow record provides enough

information about inflow variability.

Thé next task is to determine risk levels, from the user's qualitative
description of the downstream land use and population density, involved in
choosing wrong methodology. Due to the conclusion of high risk, data record
length of 52 years, and available procedural models, an explicit stochastic
optimization approach is chosen. Finally, water supply, flood control, and low

flow augmentation purposes, identified for Gruza reservoir use, determined that a
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Figure 4.8. Gruza problem identification phase
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linear programming approach is appropriate for modelling of the functional
relationships. It is worthwhile mentioning that at each step of the analysis, the

"explanation" and "help" facilities are available to the user of REZES.

The mathematical formulation phase of the Gruza reservoir problem is
represented schematically in Figure 4.9. For long-term planning purposes and
available streamflow record characteristics, reservoir storage was eliminated as a
decision variable and only monthly releases were selected as decision variables. In
addition, current and future reservoir use dictated selecting a linear form of the
objective function. The form of the storage constraints is decided upon, using the
information available on reservoir storage zones. Finally, from the previous
documentation about the reservoir and its surroundings, minimal and maximal
allowable release levels are chosen to account for required instream release
quantities and the acceptable river channel erosion respectively. Certain
restrictions to the formulation phase are applied to assure that the formulated
model is available among the 11 reservoir optimization models included in

REZES.

Gruza problem characteristics (supplied by the user or derived during the
consultation) are matched next against characteristics of the 11 models available in
REZES. Reservoir sizing and real-time models are eliminated first. Among the
long-term planning models, those that capture stochastic variability of the inflows
are next examined, and a chance-constrained linear programming (CCCP) model is

chosen.
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Figure 4.10 shows a good agreement between the reservoir characteristics and the
CCCP model. A short explanation about the model's main features is then
presented to the user. This is a final instruction before proceeding to the input data
preparation and following phases of the reservoir modelling and model use

Process.

Through the use of active images and background pictures (Figure 4.6)
data necessary to run the formal mode are collected. Physical data, reservoir model

specific computational data as well as hydrological data are supplied by the user.

To ensure accurate numerical results, REZES provides the user with
default parameter values and/or their acceptable ranges. Again, "explanation" and
"help" facilities are used for ensuring correct information input and subsequent
model use. After the model is run and the optimal solution is reached, a concise
presentation of numerical results is shown to the user and he/she is given the option
to comment on it. Based on this, further advice about the most influential
parameters, or a more detailed numerical output is provided. In the Gruza
reservoir case, the specified reliability levels were identified as being important,
and it was suggested that they be changed in the next run. In addition to the
reliability levels, the user is supposed to supply the coefficients of the objective
function in the form of unit benefits per cubic meter of released water. However,
this information was not available as it would have required precise economical
evaluation and considerable information on the future. Therefore, only rough
estimates were used in the analysis. It should be noted, also, that required reliability
levels o (of not exceeding the flood control storage) and B (of not violating the

minimal storage) are not known or strictly regulated by water authorities and
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should be provided by a decision-maker or a decision-making body. Therefore,
the first run was performed under the conservative assumption of very high

required reliability levels, i.e., both o and B are set at 98% (see Table 4.3).

Table 4.3. Gruza Reservoir Data and Results

Month Evapo- Minimal Maximal Solution Solution
ration release  release No. 1 No. 2

rate 0=P=0.98 a=PB=0.925

Release  Release

[-] [mm]  [105m3]  [105m3]  [106m3]  [106m?]

Oct. 65.7 0.54 8.04 1.98 - 054
Nov. 28.5 0.52 7.78 0.52 0.52
Dec. 20.8 0.54 8.04 0.54 0.54
Jan. 19.2 0.54 8.04 0.54 0.54
Feb. . 19.7 0.48 7.26 048 048
Mar. 50.0 0.54 8.04 0.54 0.54
Apr. 65.7 0.52 7.78 5.39 0.52
May 96.4 0.54 8.04 5.60 3.88
Jun. 110.4 0.52 7.78 0.52 0.52
Jul. 119.0 0.54 8.04 1.02 7.52
Aug. 113.5 0.54 8.04 0.93 8.04
Sep. 90.3 0.52 7.78 0.52 0.52

The corresponding optimal release policy suggested that an additional
18.58x100m3 can be allocated annually to the downstream users. The analysis of
within-year distribution of releases revealed that although higher benefit
coefficients were assigned to releases during summer months (June, July, and
August), most of the water was released during the spring months, April and May

(41% of the total annual release during spring and 13% during summer). A careful
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examination of the flow duration plots for these two months reveals the reasons for
these seemingly inconsistent results. The very high flows during these two months
correspond to 98% flood control reliability (2% probability of exceedence on the
flow duration plots), and cause flood control constraints to be binding at the
optimum. Consequently, water was released from the reservoir during the spring
months to ensure safe operation. However, high-valued releases during summer

months were kept close to minimum allowable flows.

In the next iteration, the required reliability levels were relaxed, as
suggested by REZES, to 92.5% and the model was run again. The new optimal
release policy suggested that 24.16x100m3 may be released annually to the
downstream users. This amount represents a 30% increase in water allocated to
downstream users when compared to the results of the first run, or in total
5.58x100m3 more. This increase in supply was achieved at a cost of 5.5% in
reliability levels. The within-year distribution of releases (Table 4.3) shows that
most of the water (33% of the total annual release) is now released during the
summer months, rather than during spring (18%). In addition, the month-to-
month comparison of the first and second runs shows a significant change in
released amounts even for same months, e.g., the suggested release in August has
risen from 0.93 to 8.04x109m3. This change was not able to be directly explained
by the model results. Examination of the flow duration plots for the inflows during
the two spring months revealed the cause. The flows during April and May that
correspond to 92.5% flood control reliability (7.5% probability of exceedence on
the probability plots), are considerably lower than those used for the 98%
reliability in the first run. Consequently, the flood control constraints did not have

to force release of water in these two months.
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The unexplained and abrupt changes in suggested release policy
strengthened the need for a robust procedure, which may more closely explain the
interaction of the two constraints and the objective function. That procedure should
not be rigid and static, with respect to the strict satisfaction of the constraints, as
assumed by the CCP procedure in which all constraints are considered inviolate at
their fixed a priori defined levels (set up by in advance chosen reliability levels). In
addition, each of the two above sets of results identifies one optimal release policy
for the precisely defined input provided by the user. It does not, however, account
for the uncertainty in the input parameters and functional relationships that are
considered precise, reliable, and not subject to change. In practice, especially for
planning purposes, users need a range of solutions which are not critically sensitive
to changes in model parameters that are imprecise and hard to identify a priori.
Carefully planned and performed sensitivity analysis can be used to provide the
user with these important insights. The disadvantage of the classical sensitivity
analysis for this purpose, is that in a highly constrained multi-dimensional feasible
space (as it is in the case of CCP with high reliability levels) the analysis may not be
very efficient. The uneven coverage of the feasible space may be another reason
why sensitivity analysis should be guided somehow and embedded into the model,
which will then allow for ﬁncertainty and imprecision to be directly taken into
account. At the same time sensitivity analysis should generate widely different
solutions (in terms of the set of selected decision variables, i.e., releases) to
facilitate their evaluation and elaboration. Brill [1979] suggested that the tailoring

of available algorithms should provide this information for use in planning.

The previous discussion of the CCP model results and input parameters
raises a question of adequately capturing reality in the optimization process and in

rational decision making. It is argued that an unambiguous extremum on benefits
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requires reliable economic information which can be difficult to obtain in reality.
Even if it can be obtained, the satisfactory attainment level for the objective
function may not be expressed as an absolute minimum level, e.g., below which the
. operation of the reservoir is not economical. Because of the imprecision embedded
in the objective function, some violations of the "crisp" minimum levels may be
allowable. Even a range of acceptable levels may be specified for the objective and
used in the analysis. Similarly, the constraints that are posed may have the same
feature of uncertainty. Therefore, they need to be flexible and allow for some
violations rather than being strictly inviolable. In summary, this discussion
displays a separation between optimizing and the process of seeking solutions
which are acceptable. Brown [1989] calls this process "satisficing". He contrasts
optimizing, which is a procedure based upon strong mathematical foundations and
allows precise statements to be made in the objective function, with "satisficing",
which is then "an expectation with formal trappings which admits of imprecision in

the objectives and constraints and robustness in the solution”.

The following chapters introduce fuzzy set theory and a fuzzy approach to
rational decision making. It will be shown that "satisficing" forms a framework for
using fuzzy linear programming in reservoir analysis. A non-linear chance-
constra’ined reservoir-operation model, which is based on the principles of
satisficing and uses fuzzy set theory, is then developed and described. The model is
built oﬁ the chance-constrained model developed by Simonovic [1979] which is
tailored to account for subjective and imprecise information by using fuzzy
methods. The new model exemplifies how fuzzy methods may be used to augment
and improve a purely stochastic procedure. The discussion will address two

common misconceptions about the use of fuzzy sets: (i) that fuzzy models are really
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statistical ones in disguise; and (ii) that fuzzy models are always proposed to

replace stochastic ones.
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CHAPTER 3.

FUZZY SETS, DECISION MAKING AND FUZZY MODELLING

This chapter reviews the theory of fuzzy sets and principles necessary for
the understanding and development of a fuzzy-set-based decision-making model.
These theoretical principles provide a mathematical framework for studying

imprecise conceptual phenomena in modelling and decision making.

5.1. REVIEW OF BASIC FUZZY SET THEQRY AND PRINCIPLES

This section is devoted to the description of basic fuzzy set theory by means
of: (i) basic concepts and definitions; (ii) basic model of a decision making process
- in a fuzzy environment; and (iii) fuzzy linear programming. First, basic fuzzy set
theory will be presented as a generalization of ordinary set theory, i.e., the theory
of collections of things. Second, fuzzy decision modelling is defined and presented
in terms of membership functions of the objective function and the constraints.
Finally, fuzzy decision modelling principles, applied to fuzzy linear programming,
are presented in more detail. Only the notions and definitions necessary for the
development and understanding of the CCP reservoir operation model will be

presented.
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5.1.1. Some Basic Concepts and Definitions

The following definitions are adopted and/or compiled from the, now
classical, paper by Zadeh [1965] or from the works by Zimmermann [1976, 1983,
1985, 1987].

[Definition 5.1]
A classical (crisp) set is a collection of elements or objects x in X, which can be
finite or infinite. Each single element can either belong to or not belong to the set

A, AeX. Membership in a classical set A of X is often viewed as a characteristic

function P, (binary function with two possible values, 0 or 1) such that:

na(ey=| X €4 5.1
0,x2A o ( ! )
[Example 1]
A="Real numbers between 8 and 12":
i1, x €(8, 12)
HAC) =\ <8 x>12 (5-2)

Graphical representation of the characteristic function of A is given in Figure 5.1.

[Definition 5.2]
Fuzzy set: if X is a collection of objects denoted generically by x, then a fuzzy set

A in X is a set of ordered pairs:

A={xpamlxeX (5.3)
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Figure 5.1. Characteristic function of the set A

where the first component of the pair refers to the element of X and the second

deals with the corresponding grade of membership.

[Definition 5.3]

Membership function represents the grade of membership of x in the fuzzy set
A, and its values are allowed to be in the real interval [0,1]. The closer the value of
Ha(x) 1s to 1, the more x belongs to A. Because fuzzy sets are represented by their

respective membership functions, in this work these two terms are considered

equivalent and are referred to iﬁterchangeably.
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[Example 2]
A="Real numbers close to 10", where the explanation represents an example of

linguistic hedges used with fuzzy sets (e.g., approximately, more or less equal,

. etc.):

1

HA() =t
1 +(x-10)

5.4)

Graphical representation of the fuzzy set A (or the membership function of A) is

given in Figure 5.2,

- Membership Function Level

0.0 LM RN S SR SRS RN M S B S | S mae Sans

I vy
5 6 7 8 g 10 11 12 13 14 15
Real Numbers X

Figure 5.2. Membership function of the fuzzy set A
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[Definition 5.4]
Support of a fuzzy set is an ordinary set S(A) such that x belongs to S(A) if

pa>0.

[Definition 5.5]

Normality of fuzzy sets: if Max L, (x)=1, the fuzzy set A is called normal.

[Definition 5.6]

Equality of two fuzzy sets: two fuzzy sets, A and B, are equal if:

Ha(x) =puB(x), Vx e X (5.5)

Basic operations on fuzzy sets are the result of an immediate generalization
of the corresponding operations in classical set theory. Thus, we will start from the
conventional Venn diagrams for depicting basic operations on ordinary sets.
Figure 5.3 shows how the elements of two sets may be lumped together, i.e., the
union operation (AUB), or how we could examine the elements held in common by
two sets, taking their intersection (AMB). Finally, the elements not belonging to a
set may be examined by taking its complement. It can be easily seen that the

intersection of a set and its complement is an empty set:

ANA =0 (5.6)

and that the union of a set and its complement results in the complete universe of

discourse X:

AUA =X (5.7)
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{1,3,6,9, 11} {2,3,5,6,7, 8, 11}

A ANB AUB
N
{2,4,5,7,8,10,.1} {3,6,11} {1,2,3,5,6,7,8,9,11}

Figure 5.3. Venn diagrams of basic operations on ordinary sets

[Definition 5.6]
Union of fuzzy sets: the membership function of AUB is defined as the
maximum of the membership functions of A and B. This operation was extended

from classical set theory by the following formula proposed by Zadeh [1965]:
VxeX, paup() =max{ia(x), up(x)) (5.8)

[Definition 5.7]

Intersection of fuzzy sets: the membership function of AMB is defined as the
minimum of the membership functions of A and B. This operation is expressed by

the following formula:
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Vx €X, panp(x) =min (La(x), pp(x)} (5.9)

[Definition 5.8]
Complement of a fuzzy set: The complement A of A is defined by the

membership function:
Vx e X, Pa) = 1- pa(x) (5.10)

There is no exact analogy for these operators to the Venn diagrams used to depict
traditional set union and intersection. Figure 5.4 shows a fuzzy set representation

of these operations.

A B
1 1
0 0
K ANB
1 ¢’¢’
o =l Izt

Figure 5.4. Representation of fuzzy set operations
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‘The above formulas for operations on fuzzy sets, preserve almost all
properties of operations found in traditional set theory. There are, however, two
important differences. Figure 5.5 shows that the intersection of a fuzzy set and its

complement is no longer an empty set:

AMA £ & (5.11)

1
r)
&
: |z i
A
=
0

Figure 5.5. Intersection of a fuzzy set and its complement

and that the union of a fuzzy set and its complement does not result in complete

universe of discourse X:

AUA X (5.12)

These differences are the direct consequence of a lack of sharp boundaries in fuzzy

sets.
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5.1.2. Modelling of a Decision-Making Process in a Fuzzy

Environment

In Chapter 3, conventional (non-fuzzy) modelling of a decision making
process in reservoir management and operations was analyzed through the

mathematical description of a system in terms of:

(1) decision variables;
(i1) objective functions; and

(iii) constraints.

The optimal decision is defined then as the value of the vector of decision variables

giving the best system performance.

As is the case with operations on fuzzy sets, modelling of a decision-making
process in a fuzzy environment is developed as an extension of its traditional
analogue. A fuzzy decision-making model considers a situation in which the
objective function as well as the constraint(s) are fuzzy. According to Bellman and
Zadeh [1970] and Zimmermann [1976], since the objective function should be

optimized and, at the same time, the constraint set satisfied, a decision in a fuzzy

environment is defined by analogy to a non-fuzzy environment as the selection of
decision variable values which simultaneously satisfy the objective function and
constraints. According to this definition and assuming that the intersection
operator corresponds to the logical "and", the decision in a fuzzy environment can

therefore be viewed as the intersection of fuzzy constraints and a fuzzy objective
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function. Figure 5.6 shows how two fuzzy sets, corresponding to an objective
function and a constraint, are combined to get a fuzzy set representing a fuzzy
decision (shaded area). A range of x in the shaded area refers to those values of x
. acceptable from the point of view of the constraint as well as the objective function.
The membership levels of the decisions in the shaded area may be viewed as
support levels or satisfaction levels for the corresponding decisions. A
mathematical formulation of the decision may be expressed in terms of

membership functions:

Hp(x) =min {ug(x), pe)} (5.13)

1
_ ﬁ / Objective
% N Function
— Constraint /
=
=
4
-3}
K]
=
[-#}
=
0

Figure 5.6. Modelling of decision making in fuzzy environment

where pp(x), Hg(x), and pLe(x) are the membership functions of the decision,

objective function, and constraint respectively. It should be pointed out that if the
DM needs a crisp, rather than a fuzzy decision, the solution with the highest degree

of membership in the fuzzy set decision may be considered as the "optimal".
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The above definition of modelling of a decision-making process in a fuzzy
" environment introduces a different approach to treating the relationship between
objective functions and constraints. According to the fuzzy definition, there is no
longer a difference between the objective function and constraints (their
membership functions), i.e., the relationship between them is fully symmetric.
Figure 5.6 explains this relationship in the membership space. The membership
function of the objective is a bell-shaped function that reaches maximum value for
some aspiration level of X. The membership function of the constraint is an inverse
S-shaped function which embraces values of X within defined tolerance limits. The
acceptable decision space is then the intersection of the two fuzzy sets. Exactly the
same answer would have been attained if the membership function of the objective
was defined as an inverse S-shaped function and the membership function of the
constraint as a bell-shaped function. In other words, the treatment of the two

membership functions is the same in the fuzzy decision-making process.

5.1.3. Fuzzyv Linear Programming

The conceptual formulation of the fuzzy linear programming proposed by
Tanaka et al. [1974], and developed by Zimmermann [1976,1983,1985,1987] will
be briefly reviewed next. The classical LP model characterized by its feasible
region in the decision space (defined by the constraints) and the goal (specified by

the objective function), may be stated as follows:

Minimize z =¢T-x - (5.14)

Ax2b (5.15)



x20 (5.16)

where X is a given space of alternatives (x€X=R"); ccR”; beR"7; A, the

coefficient matrix such that Ae Rm1t; REK, k-dimensional real space; n, number of
decision variables; and m, number of constraints. According to this formulation,
the violation of any constraint renders the solution infeasible. Also, it should be
noted that the solution to this problem lies in the corner of the feasible region, i.e.,

the intersection of the two or more constraints and the objective function.

If we assume that decision making (modelled by LP) has to be made in a
fuzzy environment, and both objective function and constraints become
ambiguously defined (with vague boundaries), the problem can be reformulated in
terms of the fuzzy set theory. To do that, the objective function might have to be
written as a maximizing goal in order to consider z as a lower bound. The objective
function and constraints may be represented, then, by fuzzy sets with their
corresponding membership functions. The problem is now fully symmetric with

respect to objective function and constraints:

Tx 2z (5.17)
Ax>b (5.18)
x 20 (5.19)
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where 2 denotes the fuzzy version of > relation and has the linguistic
interpretation "essentially greater than or equal". Using the symmetry feature the

objective (5.17) and constraints (5.18) can be represented together as:
Bx >d (5.20)

where
Be Rr(m+D) B:{ c J deR™ 1 and d:[ z }
A b

Each of the m+1 rows of (5.20) are now represented by a fuzzy set S; in the E;, and
a function h:X->E. Objects Ey,...,E,,, 1 are real lines which correspond to the

items related to the objective and constraints. A fuzzy decision D€ X is then defined

-~ as the intersection of the inverse images of Sy,...,S,, +1 Withrespect to hy ,...,h,,, 1,

ie.,

m+1
D= h'(S) (5.21)

i=1
and correspondingly, its membership function is:
Hp(x) =Min pg(hy), xeX, i=1.2,.., m+l (5.22)

where |ty is the membership function of the fuzzy (decision) set D; g, is the

membership function of the fuzzy set S; corresponding to the i-th constraint.
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This is the function of the set of decisions x that satisfy relation (5.20). In
order to derive one executable decision it is appropriate to consider it as a solution
with the highest degree of membership in the fuzzy set decision space D. The

. optimization problem can be formulated as choosing an alternative x*€ D such that:
up(x”) =Max pp(x), xeD (5.23)

At this point it should be noted that linear programming formulation requires that
all membership functions of the fuzzy goal and fuzzy constraints are given in linear

form. This requirement gives the following:

Hs(e) =Max {Min[oge), 1}, 0, e<cE; (5.24)

where o(e;), i=1,2,...,m+1, are linear functions. An example of the membership

function of a fuzzy constraint is given in Figure 5.7.

/

Membership level

| E,

Figure 5.7. A fuzzy constraint membership function
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Accordingly, the membership function of the fuzzy decision is represented by:
kp(x) =Max [ {Min [oih,(x)], 1}, 0}, i=12,..m+1 (5.25)

The simplest form of the linear membership function, stated generally in (5.24),

for the fuzzy constraints and fuzzy objective function (5.20) may be stated in the

following form:

1, for (B~X)l‘2di
pl(B o)) = | B gor (B x)dp (5.26)
0, for (B-X),'Sdi-pi

where d; is i-th element of the column vector d given in (5.20); and p;'s are

subjectively chosen tolerance levels of admissible violation of the i-th constraints,

Membership level

d; -p; di (B x)

Figure 5.8. Fuzzy "greater than" constraint membership function
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and (B-x); is the i-th row of the linear system from (5.20),i.e., the left-hand side of

the i-th constraint. Figure 5.8 shows a fuzzy set representing the i-th constraint.
Substituting (5.26) into (5.22) and then (5.23) yields following:

(B-x)i-d;

i

Max { Min [1 + } (5.27)
This problem is usually called the Maximin (or MAX-MIN) problem [Wagner,
1969]. It can be reformulated into the classical LP problem by introducing a new

variable A. This LP equivalent has just one more variable and two more constraints

than the original problem given by (5.14), (5.15) and (5.16):

Maximize A (5.28)

i -(Bx) <pi-di, i =1,2,...,m+1 (5.29)
A<l (5.30)

KZO;XZO (5.31)

If (A x™) is the optimal solution to the problem represented by (5.28), (5.29),
(5.30), and (5.31), such x™ is the optimal solution to (5.23), as well as to (5.27).

In practice, it is very rare that the objective function is initially expressed in
fuzzy terms, as it was in (5.17). Usually, a DM wants the objective function

maximized or minimized, subject to the set of constraints, where some of them are
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well-defined and some are fuzzy. Accordingly, the roles of objective function and
| fuzzy constraints are different and the introduced symmetric approach is not
applicable. In order to make the problem symmetric again, the following
transformation procedure was proposed by Zimmermann [1985], to normalize the

membership function of the original objective function:

1, for cT-x<f)
ol
HG() = %5 for fo>eT-x>f1 (5.32)
0, for cT-x>f,

where i is the membership function of the fuzzified objective function f(x), fo is

the optimal solution of the standard LP problem without any allowed violation of

the original constraints (5.15), and f; is the optimal solution of the relaxed standard

LP problem with introduced relaxation terms p;'s on the constraints (5.15):

fi=Minimize f{(x)
(A-x);2b;-p;, i=1,2,...,m | (5.33)

x>0

A membership function of the objective function is represented graphically in

Figure 5.9.
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Membership level

f1 So S (x)

Figure 5.9. Objective function fuzzy set (membership function)

Due to the transformation, the problem is symmetric with respect to the objective
function and constraints. Its equivalent LP formulation may be obtained again by

introducing a new variable A:

Maximize A (5.34)

Mfo-f1) +eTx < fo (5.35)

Api - (Ax) Spidi, i=1,2,...m (5.36)
A<l (5.37)

A20,x20 (538)
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Finally, if the problem contains some non-fuzzy constraints the constraint
set may be extended to incorporate them. Simply, a set of k constraints are added to
the problem formulation yielding the solution f, f1, as well as the problem

formulation (5.34)-(5.38):
(Gx) < g, i=m+l,.. m+k (5.39)

where (G-x); is the left-hand side of the i-th non-fuzzy constraint, and g; is the

right-hand side of the same constraint.

The fuzzy linear programming technique will be demonstrated using a
simple water quality management example formulated as an LP by Loucks et al.

[1981, pp. 46].

Waste input = W
=200 units/day
Waste removed =W 1 x1
‘l/ Waste input = W,

' =100 units/day
Waste removed = W xo

Figure 5.10. Water quality management problem (after Loucks et al. [1981])
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A stream (Figure 5.10) receives waste from sources located at sites 1 and 2. 0;
represents the desired water quality concentration (index) and g; represents the
existing quality at the sites without any waste treatment. The problem is to find the
. level of wastewater treatment at sites 1 and 2 required to achieve the desired
concentrations at sites 2 and 3 at a minimum cost. The transfer coefficient a;;
measures the improvement in the water quality concentration at site j per unit of
waste removed at site i, and W, represents the waste input at site i. The variable x; is
the fraction of waste removed at site i, and the coefficient c; is the cost of treatment

per unit of x;.

The formulated LP model for this problem is:

Minimize z = c1X1 + CoX2 (5.40)
@ +apWix; 202 (5.41)

g3 +a;3Wixy +apWoxy 203 (5.42)
x1, x220.30 (5.43)

x1, X2 <0.95 (5.44)

The bounds on x; (5.43) and (5.44) represent the operating limits of the waste

removal technology.
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We now assume that data take the following values: ¢;=10, ¢,=6, g,=3,
g3=2, a;5=0.025, a;3=0.010, ay3=0.025, W,=200, W,=100, 0»=7, and 03=6. The
optimal solution to this LP is x;*=0.8125, x,"=0.95, and z*=13.825.

Suppose that desired water quality concentrations are not known precisely
and that they are given as shown in Figure 5.11a and Figure 5.11b. Note that the

size of the terms p;=3 and p,=1 give an indication of how imprecise our

understanding of the lower limits on water quality is.

Membership level

di-p1=4 di=7 O

Figure 5.11a. Water quality constraint as a fuzzy set (site 2)

1

Membership level

d-p2=5 dr=6 03

Figure 5.11b. Water quality constraint as a fuzzy set (site 3)
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If we solve the given problem for f, i.e., using the most restrictive constraint
values, the objective function yields z=13.825. If we then solve the given problem
for f1, i.e, for the relaxed (softened) constraints, the objective function yields
z=7.8. Finally, if we solve the given problem for A (Eq. 5.34-5.39), the final
solution yields: A=0.58, x; *=0.72, and x,"=0.53. If the values are substituted back

into the original objective function, the value of the objective function is z=10.38.

In summary, the differences between the "crisp” model (5.40)-(5.43) and
the fuzzy LP model (5.34)-(5.39) are as follows: the use of fuzzy LP admits
imprecision in the constraints while the "crisp" model needs totally precise input
data, i.e, the fuzzy procedure and solution may embrace the understanding of
uncertain data and constraints in a more realistic manner; the solution of the
"crisp" model is obtained by solving an LP problem once while the fuzzy solution
is obtained by running the LP solver three times. It can be observed, hdwever, that
the solution obtained by using fuzzy LP is another "crisp" solution. The only
additional information for a DM is that support (satisfaction) for this solution
attains its maximum at 0.58. The apparent deficiency of the fuzzy model in terms
of providing just another crisp answer, will be discussed in more detail in the

following chapter and an improved methodology will be presented.

The membership function is a subjective category that depends on the
expert's or decision-maker's individual perception of degrees of membership. It is,

therefore, obvious that membership functions are context-dependent and should be
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carefully analyzed for each particular application. The question of how to obtain,
or at least estimate, these degrees of membership has received some attention in the

literature and is described in the following sections.

5.2.1. Introduction

In general, three approaches to the membership function estimation have
been followed. The first technique is simply to ask assessors to draw their
membership functions, or give thresholds for grades 0 and 1 and assume a
functional relationship between the two grades [Bogardi et al., 1983; Sakawa et al.,
1987]. The main idea is to fit the empirical data set, consisting of pairs of elements
~of the universe of discourse and the relative grades of membership, to the
analytical form of the membership function (linear, exponential, etc.). It is,
however, seldom possible to get trustworthy membership functions by asking

assessors to state them directly.

The second approach is based on statistical data manipulation. The approach
uses a population of assessors, each of which can respond to certain questions, with
respect to membership of an element in a set, with a Boolean "yes" or "no" answer.
The grade of membership is taken to be the proportion of the population replying
"yes" to the question [Freeling, 1980; Bharathi and Sarma, 1985]. The statistical
approach makes it possible to obtain a confidence interval to the grade of
membership for each element of interest. Although applicable for certain types of
problems that involve group decision making, this approach is not particularly

useful for individual decision modelling.
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The third approach uses a basic scaling method for priorities proposed by
Saaty [1977] or its variation [Pedrycz, 1989 pp. 51-53]. Its characteristics,
discussed in the following section, make it the most convenient approach for the

problem of determining risk levels in CCP reservoir operation modelling.

5.2.2. Saaty's Method

Saaty [1977] and Chu et al., [1979] have shown that the problem of
determining the degree of belonging of each member to a fuzzy set can be reduced
to a matrix eigenvalue problem. To illustrate the nature of the approach, as used in

this work, we use a simple chance constraint:
PX<x) <« (5.45)

where P denotes probability, X is a random variable, x is a value of the random
variable, and ¢ is the fraction of time the constraint may be violated at most. Often

a complement of a risk level is referred to as a reliability level (1-0).

‘Let us assume that the economic consequence of violating the constraint,
associated with the risk level ¢, is not known. The risk, in absence of economic
data, should then be assessed by the DM. First, the DM compares every two
discrete risk levels giving qualitative preference judgments rather than numerical
values. Table 5.1 shows the nine-level qualitative scale used for pairwise

comparisons of risk (reliability) levels.
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Let w be the vector whose elements w;>0, i=1,2,...,n, are the unknown

degrees (weights) of belonging of each of n different probability levels to a set of

"acceptable risk levels".

Table 5.1. Qualitative scale for pairwise comparisons

Level Definition Explanation

1)  Equal importance Two risk levels are equally significant

2) Intermediate™

3)  Weak importance of one over Experience and judgment slightly
another favour one risk level over another

4)  Intermediate™

5)  Essential or strong importance Experience and judgment strongly

favour one risk level over another

6) Intermediate™

7)  Very strong or demonstrated A risk level is strongly favoured; its
importance dominance is demonstrated in practice

8) Intermediate™

9)  Absolute importance The evidence favouring one risk level

over another is unquestionable

* . . . .
Note:™ is used when a compromise among two choices is needed

Now, the pairwise comparisons may be represented by a matrix A of relative

weights with elements:

wi

Gy =3ty Vi =120 212 (5.46)

To illustrate the idea employed by the method, let us assume first that g;; values are

precisely known, e.g., as a result of a precise physical measurement. Therefore, the
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matrix A, called a pairwise comparison reciprocal matrix, has positive entries

everywhere and satisfies the reciprocal property expressed as:

a; = ;}; (5.47)

Multiplying the matrix by the vector w=(wy,...,w,)T, we have

Aw=nw (5.43)
or
(A-n DHw=0 (5.49)

where I is the identity matrix of order n by n. This is a system of homogeneous
linear equations which has a non-trivial solution for the vector w if the determinant
of (A-nl) vanishes. Furthermore, 7 is the only nonzero eigenvalue of A for this

perfectly consistent case [Saaty, 1977].

Saaty [1977] has shown that in a matrix, small perturbations in its elements
imply small perturbations in the eigenvalues. In the general case of membership

determination, a; ratios are not known and should be estimated from a scale. The
DM's subjectivity in estimating them causes inconsistency of the matrix A, i.e., the

relationship

=2k (5.50)
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is not preserved any more. Even the property in Eq. (5.47) may not be maintained.
To improve the consistency in the numerical scaling of the judgment, care should
be taken to ensure that whatever value a;; is assigned using comparison, the
reciprocal value is assigned to a;;. In the next step, Eq. (5.48) becomes

A'W' = Apax W' , (5.51)

where w' is the n-dimensional eigenvector associated with the largest eigenvalue
Amax of the perturbated comparison matrix A'. At the same time this vector
represents the desired vector of weights (after proper scaling). Carrying the
analysis one step further, it can be shown that the largest eigenvalue of the matrix

A' satisfies
Amax 21 (5.52)
where equality holds for perfectly consistent cases only.

For the evaluation of matrix consistency a simple measure, the consistency

index (CI), has been defined by Saaty [1977] as:

___)\max -n
Cl w1 (5.53)

It is obvious that the closer the CI is to zero, the better is the consistency of the

matrix of comparison.
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For establishing the reasonable upper limit on the CI, a sample of 500
matrices of different sizes have been randomly generated [Saaty and Vargas, 1980,
pp.24]. Their consistency is presumed to be very poor as the entries have been
chosen randomly from a numerical scale. A scale with the upper bound value of 9
and the lower bound value of 1/9, to comply with Eq.(5.47), was used. The average
consistency index values, which depend on the size of the generated random

matrix, are shown in Table 5.2.

Table 5.2. Average consistencies of randomly generated matrices (after Saaty

[1977])

Matrix size Average consistency
1 0.00
2 0.00
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45

10 1.49

The average consistency index values presented in Table 5.2 show the worst
consistency scenario for the particular matrix size because all the entries ajj of the
matrices used in the calculation are randomly generated. It can be observed that the

value of the index increases with the size of the matrix. This trend occurs due to the

relatively higher increase in the largest eigenvalue Amax compared to the increase

in matrix size, n.The explanation follows directly from Eq. 5.53.

147



It is suggested by Saaty [1977] that a ratio of a CI and the average random
- consistency index (from Table 5.2) for the same size matrix, should be around 10
percent or less, to be acceptable. This descriptive measure is called the consistency
ratio (CR), and its interpretation is analogous to descriptive measures of
association between independent and dependent variables X and Y in regression
models. Similarly to the coefficient of determination, 72 (which measures the
strength of the linear relationship between X and Y [Neter et al., 1989]), the
limiting values of CR are between 0 and 1. The only difference is in the
interpretation of CR. The closer CR is to zero, the greater is said to be the degree

of consistency of the matrix A'.

Because of the subjective nature of the manager's attitude toward the
acceptable risk levels in (5.45), information provided by the manager is not
actually verifiable. Therefore, the consistency measures are descriptive and should

serve mainly to highlight anomalous data for the managers' reconsideration.

However, some work on selecting a numerical scale for a;, for which assessor's

information is actually or conceptually verifiable from other sources, has been
done [Saaty, 1980, pp. 53-64]. Different scales were investigated and it was found
that a scale with the upper bound value of 9 provides sufficient flexibility to
differentiate between two elements. These findings are used here for adopting a
scale for estimating the membership functions of chance constraints and the

objective function for reservoir planning optimization.

The use of Saaty's eigenvector method in the so-called Analytic Hierarchy
Process [Saaty, 1980] for multiobjective optimization in water resources planning
and management has been documented by Palmer and Lund[1985]. They used the

method for a discrete case to create the "importance (or weight) of an alternative
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with respect to an objective". The following simplified example will illustrate
Saaty's method applied to a verifiable problem of estimating weights. Assume that
we have 4 objects. If we measure their weights we can easily construct a pairwise

comparison matrix (4 by 4) which satisfies Eq. (5.46) and (5.47). We now assume
that actual weights take the following values: W=3, W;,=2, W3=1, W4=5 (or if we
normalize them: w;=0.2727, w,=0.1818, w3=0.0909, wy=0.4545). A pairwise

comparison matrix constructed by using the data is:

1333

2 5

anapapsau) | 2 1 5 2
A= |03 ) 3 5
a3 a3 ayazy 11411
41 A4 A3 044 32 5
2351
L3 2 i

Solving the system of eqhations (5.49) we get wy=0.6, w,=0.4, w3=0.2,
w4=1.0 and Apax=n=4. If we then normalize the solution it yields exactly the same
values as obtained by the physical measurement. This is an example of an perfectly

consistent case.

If however, the actual measurements are not available and we have to assess
relative weights of the four objects, then Saaty's method may be applied as follows.
First, we compare four objects in pairs by picking them up one at time to get an
idea of the range of their weight intensities; then we compare all the objects with

each other by picking them up. Suppose that the matrix of pairwise comparisons is
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1231

2

14,1
AV=/2 3
L1g1
32 5
23 51

Solving the system of equations (5.51) we get an eigenvector w=(w;=0.563,
wy=0.325, w3=0.183, w4=1.0) and Amax=4.0145 (or normalized w;=0.2719,
w,=0.1570, w3=0.0880, w4=0.4829) which is close to actual values. For this case
CI=0.0048. The consistency ratio for this case was calculated as a ratio of CI and
the average random consistency index for the matrix of size 4, i.e., the average
random consistency index is 0.90. The calculated CR=0.0054<0.1 shows that the

ratio is smaller than 10% and therefore, the assessment was consistent.
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CHAPTER 6.

RISK LEVEL SELECTION IN CHANCE-CONSTRAINED
RESERVOIR OPERATION MODELLING: A FUZZY SET
APPROACH

It was shown by example (Chapter 4) that even with using the ES technology
some problems, associated with the use of models, still exist. Fuzzy set theory was
introduced as a possible way to treat the non-random uncertainty. This chapter
demonstrates how fuzzy set theory may be used to represent the imprecision
inherent in probabilities and utilities used in a decision-making process and thereby
overcome some of these problems. Chance constraints and the objective function of
the chance-constrained programming (CCP) reservoir operation problem have
been identified as potential components which might benefit from being expressed
in a fuzzy manner. To achieve these improvements, special numerical procedures
have been developed in this work. These procedures, for the most part, require

knowledge of basic fuzzy set theory.

An original approach to the formulation of a multi-purpose reservoir long-
term operation planning problem is presented next. This approach, based on fuzzy
sets, incorporates the estimation of fuzzy membership functions for constraints and
the objective function, as well as formulation of a solution algorithm for deriving
an optimal decision. Finally, an application of the model to the Gruza reservoir

case study (Yugoslavia) is presented as an example.
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6.1. RISK LEVEL SELECTION IN CHANCE-CONSTRAINED
RESERVOIR OPERATION MODELLING

The problem of how to choose appropriate risk levels is as old as the CCP
approach to water resources optimization. Two different methods have been used
for incorporating the selection of risk levels into the CCP solution process. The
first one, a reliability programming approach, as proposed by Sengupta [1972],
and applied by Simonovic and Marino [1981], explicitly considers a trade-off
between the benefits and the cost of risk. The approach may be useful for situations
where existing economic data are available for the development of so-called risk-
loss functions. The second method, which uses a multiple-objective programming
approach, was introduced by Rakes and Reeves [1985]. A similar method has been
applied to reservoir design and operation by Uan-On and Helweg [1988]. The
multiobjective methods provide the DM with trade-off curves between system

reliability levels and economic benefits.

Lack of economic data and the fact that establishment of acceptable risk
levels involves a human factor, with all its vagueness of perception, subjectivity,
and attitudes, may not permit a proper application of either of the above
approaches. With that situation in mind, a new approach is proposed and applied in
this work. This approach is based on fuzzy set theory. It holds promise as a bridge
for part of the gap, caused by imprecision that is not statistical or random in nature,

between real systems and their modelling.

Situations where the concept of so-called "classical” probability, alone, is
not adequate to describe real-world problems, regularly occur in water

engineering practice. When questions arise about exactness of concepts,

152



correctness of statements and judgments, degrees of credibility, etc, the probability
framework, alone, is not appropriate for representing reality. Yet, to account for
hydrologic uncertainty, a formal model used to estimate reservoir size and select
its operating policy must incorporate the stochastic nature of inflows and demands.
Therefore, a joint stochastic and fuzzy-set approach may be appropriate for
credible reservoir design and operation modelling. The key concept of fuzzy set
theory is the membership function which numerically represents the degree to
which an element belongs to a set. The following work concentrates on the
estimation of the membership functions and development of the solution procedure
to arrive at the desirable reservoir operating policy. Although the following
methodology can be applied to different CCP formulations, the one developed by
Curry et al., [1973] and later modified by Simonovic [1979], is employed to

demonstrate the process of selecting risk levels.

6.1.1. Chance-Constrained Reservoir Operation Planning Model

The model is derived from consideration of the storage balance equation
with the reservoir release as the decision variable. The storage balance equation

reflects the conservation of water in the reservoir (Figure 6.1):
Si=Sia+Gs-di-r -l Vi, t=12,..T (6.1)
where S, is the volume of water stored in the reservoir at time ¢, g, is the stochastic

inflow into the reservoir during the time interval (¢-1,t), d, represents

deterministic extractions directly from the reservoir, r, represents additional
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downstream release in the time interval, and /, denotes losses from the reservoir in

" the time interval.

| FLOOD CONTROL STORAGE __ V

ACTIVE
STORAGE €=V~
CAPACITY t

MINIMAL .,v,.,,v.v...,,y,,,.. 2 r.,,_‘,,.,,,.v._«.. .
STORAGE—

Figure 6.1. Schematic representation of a reservoir (after Simonovic[1979])

Let the objective function be

n{ngf () (6.2)

where r=(ry,...,r)T is the vector of releases within the planning horizon, 1<1<T.
The function f'is a suitably defined function incorporating benefits and costs of
releasing water from the reservoir. The chance constraints expressing the accepted

risk levels, with regard to reaching storage targets, are as follows:

P(S,ZC-V,)SOC (6.3)
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P, <m)<P (6.4)

in which ¢ is the reservoir capacity, v,represents reservoir storage for flood
routing, m, denotes minimal reservoir volume, and « and f3 are the risk levels
(O<a, B<1). The constraint set is completed by specifying bounds on the

downstream releases
Foin £V S Tmax Vi (6.5)

where r,,;,, and r,,,,, Tespectively, are the minimum and maximum allowable
release levels. The detailed description of the model (6.1)-(6.5) and the
development of the deterministic equivalent of the stochastic LP Teservoir

problem, following Simonovic [1979], is given in Appendix A.

This model is a long-term planning model which provides a preliminary
monthly schedule of releases within a planning horizon of one year. The identified
"crisp" set of releases is based on the previous realizations of random streamflows
and serves as a general guideline, for resource allocation and strategic planning, by

‘the model user. The actual realizations of random inflows and storages should be
taken into account to revise the planning solutions. This revision is done by means
of sequential use of an optimization model (usually one different from the long-
term planning model), in a mid-term or real-time manner, i.e., using forecasted
information. The reliability levels and the objective function coefficients which are
necessary for the analysis must be provided, a priori, by a DM. This is a

disadvantage of the model because these estimates are unreliable and hard to obtain
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unless a range of values is considered. In addition, the chance-constrained approach

does not evaluate, the sometimes difficult to quantify, effect of constraint violation.

As noted above, in practice, it is very hard to fix the risk levels or to define
them precisely, for a particular problem. In addition, the objective function form
and/or its coefficients may be ambiguous in the absence of an explicit rationale,
e.g., Bogardi et al. [1983] found it difficult to express a non-economic
environmental objective in economic terms. Having this in mind, research has been
performed to arrive at: (a) a general approach for developing a fuzzy membership
function for chance constraints; and (b) an approach for choosing objective
function coefficients and determining membership levels of an imprecise objective
function. In both of the approaches, the DM's input is essential for estimation of the

membership functions.

6.2. ESTIMATION OF MEMBERSHIP FUNCTIONS FOR
CONSTRAINTS

The procedure is based on the use of a DM or a group of DMs as assessors.
The assessors are presented with a questionnaire which requires no numerical input
about imprecise problem elements. They are asked, instead, to make pairwise
comparisons between the imprecise elements, i.e., risk levels. The comparisons
may be performed using a scale similar to one in Table 5.1. After associating
numerical values from the scale 1-9 with the nine qualitative levels of comparison
identified by assessors, the remaining entries in the matrix A are obtained by
taking their respective reciprocal values. The approach is basically qualitative and

may be applied in an iterative manner if consistency is to be preserved.
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The estimation of a membership function, using this approach, was
implemented for the chance constraints (6.3) and (6.4). The Gruza reservoir CCP
. problem, which will be presented in detail later in the chapter, served as the
example. Using known trends in past operations of the reservoir in the past and its
potential future use, a DM body assesses the acceptable risk of violating Teservoir
minimal and flood storage. A reasonable range for pairwise comparisons of risk
levels and use in CCP is chosen to be between 0.5 and 0.0 (corresponding reliability
levels are between 0.5 and 1.0). Ten discrete risk levels ¢; and f3;, i=1,2,...,10, from
within this range were analyzed and compared by assessors. The matrix A is
formed using the scale from Table 5.1. The system of equations (5.49) is solved,
giving the real eigenvector w, i.e., the membership function of the constraint

(5.45).

The effect of the scale upper bound on the membership function of
reliability levels (1-¢;), and the effect on their degree of belonging (membership
level) to a set of "acceptable reliability levels" is shown in Figure 6.2. It was
observed that more conservative membership levels were obtained for higher
upper bound values of the numerical scale. It is likely that the nature of entries in

the matrix A, most particularly reciprocity of ajj and aji | causes this effect.

For the five membership functions, which correspond to the five upper
bound values of the numerical scale, differences in membership levels diminish as
the value of reliability levels approaches 1.0 (risk levels approach 0). It was also
observed that no matter which upper bound value is used the same preference

relationship is maintained between successive reliability levels.
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Figure 6.2. Effects of different scales on the membership function of a

constraint

The target value for the chance constraint is in the region of high reliability values,
with membership levels close to or equal to 1.0, i,e., high reliability levels are
more desirable. As the assessor's input is not actually verifiable, the selection of the
most appropriate numerical scale was based on the recommendation by Saaty,
[1977]. Thus for this reservoir operations planning, membership functions are

obtained using the 1/9-9 scale.

Rather than relying on the CI index and on Saaty's experiment with
randomly generated entries for comparison matrices, the following procedure was
designed and implemented to investigate the soundness of the CI measure. Many

samples, each of them consisting of 100 matrices, were generated from the original
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pairwise comparison matrices obtained from the assessors. The samples were

generated by introducing a random noise into each of the comparison matrices:
AD=A +¢ (6.6)

Where Ag) denotes j-th matrix generated from the original matrix A, Jj=1,...,100;

and € is the random noise matrix generated using the j-th seed value. The matrix

AQ is obtained when all entries of the matrix A (except a;=1, i=1,2,...,10,

j=1,2,...,10) are disturbed using generated noise values. The disturbed matrices
Ag) were used to calculate the maximal eigenvalue, CI index, and CR for each of
them. For each sample of 100 values of CRs, generated from an original matrix A,
a frequency distribution wa‘s constructed. Figure 6.3 shows the frequency
distribution of the consistency ratio obtained by disturbing what was originally
considered a consistent matrix with C/=0.026 and CR=0.017<0.10} (calculated for a
matrix of order n=10). It is clear, from Figure 6.3, that the original value of the
consistency ratio (dotted line) is in the acceptable region of 10% (shaded area) and
that there is not much room for improving the consistency of the original pairwise

comparison matrix (as all generated CRs are greater than the original).

However, Figure 6.4 shows that an originally inconsistent matrix
(CI1=0.405, CR=0.272>0.10) can improve its consistency even with the
introduction of a random noise. Figure 6.4 clearly indicates that this pairwise

comparison matrix should be given back to the assessor for reconsideration.
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Figure 6.4. Frequency distribution of CR for disturbed inconsistent matrix
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6.3. MEMBERSHIP FUNCTION ESTIMATION FOR THE
OBJECTIVE FUNCTION

Depending on the purposes of the reservoir, different economic or social
utility objectives may be quantified and integrated into a single indicator. This
indicator, an objective function, describes how the reservoir should be operated. A
common procedure for multi-purpose, multi-objective study is to use the
weighting method, where weights reflecting priorities are assigned to each
objective [Bras et al., 1983]. These weights are often called objective function
coefficients. If a realistic evaluation of economics or utility is not possible, a

different approach to determining objective function coefficients may be required.

In this work, the DM's assessment of the importance of the reservoir
monthly release r, is used for deriving the coefficients of the objective function
f(r). Similarly, as in the case of the chance constraint, no absolute values of the net
benefits or costs, associated with the monthly release, are used. A planning horizon
of a year was used in the example (7=12 months). Following the scaling method
for priorities, a group of twelve objective function coefficients associated with
reservoir monthly releases has been sorted into four clusters. Each cluster is
related to the coefficients associated with releases during three months of similar
importance. Clustering (in this problem) makes possible, efficient pairwise
comparisons and greater consistency of the comparison matrix A. Comparisbns
are performed using a qualitative scale similar to one presented in Table 5.1.
Instead of comparing two risk levels, as in the case of chance constraints, two

clusters, containing different objective function coefficients, are compared.
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Elements of the resulting vector w'=c(c1,¢2,¢3,c4)T represent objective function
g 3 p ]

coefficients associated with each cluster. They are then normalized to give:

4
Y =4 (6.7)

i=1

If further differentiation among the coefficients in a cluster is needed, the relative
priorities of releasing water during the individual months in each cluster may be
compared. Figure 6.5 shows clustered months and the objective function
coefficient values associated with reservoir releases for the Gruza reservoir. The
cluster consisting of summer months (June, July, and August) was given the highest
priority by the assessors, followed by the cluster of late spring and early autumn
months (May, September, and October), and the cluster of early spring and early
winter months (March, April, and November). The lowest priority was given to

releases during winter months (January, February, and December).
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Figure 6.5. Objective function coefficients obtained using Saaty's procedure
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The target value (maximum membership level) for the objective function is

~ established as the value obtained by solving the CCP problem (6.1)-(6.5) for risk
levels o and S, both,set to 0.5. That value is the level for which the membership
function of the constraint attains its minimum (Figure 6.2). Accordingly, it is
assumed that the minimum membership level of the objective function is reached
when no risk is imposed on the system (note that this solution is theoretically and
computationally infeasible). Intermediate membership levels for the objective

function are calculated as:

W b)) = %—% (6.8)

where W{f, g(r)} is the membership function level for the objective function
Jo, (), fo,p 18 the objective function value for the risk levels ¢, 8 from within the

interval (0,0.5), and f 5 5 is the objective function for o=0.5 and =0.5.

6.4. SOLUTION PROCEDURES FOR RISK LEVEL SELECTION

In the introduction to fuzzy LP decision making, it was pointed out that such
a formulation requires all membership functions to be given in linear form. The
solution to the problem is obtained by solving three standard LP problems giving
fo. f1, and A respectively. However, membership functions of the constraints and
the objective function for the CCP reservoir operation problem are non-linear
(given in a piecewise linear form). Therefore, a non-linear procedure is proposed

for solving the problem of the risk level selection.
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It was previously shown that the solution of a problem, which is specified
using membership functions, is defined as the selection of risk levels and
corresponding statement of reservoir release policy, which simultaneously satisfy
the objective function and constraints. The solution to the problem represented by
Eq.(6.1)-(6.5) and (6.8) can therefore be viewed as the intersection of the single
fuzzy set representing constraints and the fuzzy set representing the objective
function. Both the objective function and constraints are given in the form of fuzzy
inequalities. The intersecting fuzzy set identifies a range of solutions among which
one may be selected, if necessary, as a "crisp" solution. The "crisp" solution to
fuzzy LP problems (see Eq. 5.27) is obtained by identifying the maximum of the
minimum supports (membership function values) among the fuzzy inequalities.
The mathematical expression in Eq. 5.27 can be interpreted as an attempt to arrive
at a solution which has the "greatest satisfaction" (maximum membership function
value overall) under the "worst possible scenario” (minimum membership function
values). The logic will suit the viéwpoint of a DM who wishes to identify the best
decision but takes a more conservative (risk-averse) outlook within his/her
decision environment. That is, the minimum operator represents a conservative

way of simultaneously satisfying the constraints and the objective function.

However, under the assumption that: (a) the above deductive model, i.e.,
MAX-MIN approach, correctly represents the decision making process involved in
reservoir operation planning; (b) a range of solutions that satisfy minimum
requirements is needed ; (c) a "crisp" solution should be identified as the best in the
set; the following procedure was developed. Firstly, a single membership function
of the fuzzy set which corresponds to the two chance constraints is obtained as the
intersection of the two related fuzzy sets. The resulting fuzzy set, represented by

the shaded area in Figure 6.6, is obtained using the minimization operator (5.13). It
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can be observed that more conservative values of the membership functions pt{ o}
and p{B}at any point determine the resulting fuzzy set. Therefore, the

conservative attitude is a driving force of the algorithm.
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Risk levels (o,B)

Figure 6.6. Chance constraints fuzzy set

The intersection of the resulting chance constraints fuzzy set and the
objective function fuzzy set is obtained next. The shaded intersection zone in
Figure 6.7 represents the solution fuzzy set for the reservoir problem, as defined
above. The tails of the zone should be excluded from solution consideration
because of the low membership levels. The intersection point of the two functions
distinguishes the decision with the maximum membership (support) value among

other acceptable decisions. Risk levels o =a, and = b in Figure 6.7, which
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correspond to the maximum membership level, are the "optimal crisp” risk levels

(corresponding reliability levels are 1-a¢= 1-a and 1-B = 1-b respectively).

1.0 S

Objective
Function

H{fa,ﬁ(r)} '

Minimum storage
constraint

Flood Control n{p}
constraint

H{a}\

0.5

Membership level
v

0.0

Risk levels (o,f)

Figure 6.7. "Optimal" (crisp) risk levels solution

A simple search routine was developed to find the intersection point, i.e., the
"crisp” solution, as well as a range of solutions to the reservoir problem
formulated in terms of chance constraints. The flowchart of the algorithm is given

in Figure 6.8. The procedure is as follows:

1. Define the search step ApL and acceptable search accuracy &; in

terms of membership levels pe [0,1] of the solution.

2. Start from solving the CCP problem (6.1)-(6.5) for both ¢ and f3

equal to 0.5 and obtain f5_s. Then associate the membership level of 1.0 with
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i{fs s(r)} and find the minimal membership level for the two constraints
n{e=0.5,8=0.5} by comparing membership levels that are read for @=0.5 and

B=0.5 from their membership functions respectively.

3. Increase the membership level of the constraints using the search

step Al and read « and f3 from the two membership functions of the constraints.

4. Solve the CCP problem for new values of « and 8 and compare

obtained W{fy, 5(r)} to p{afB}.

5. If p{fg,p(r)} is still greater than w{ o, B}, go back to step 3. If the
opposite is true or the solution is infeasible, decrease the membership level by one
search step AL, change the search step to Ap/2, and go back to step 3. The
procedure is continued until p{f, 5(r)} is equal to u{e,pB}, or they differ less than

the given search accuracy.

The model formulated through these five steps is analogous to the fuzzy LP
model given by (5.34)-(5.39). However, this model may not give a preferred
solution to every DM. In situations where more than one DM is involved in the
decision-making process, the conservative MAX-MIN procedure may not be
appropriate. A DM body may accept a less conservative approach to combining the
constraints and the objective function which can provide greater trade-offs among
fuzzy inequalities. This can be achieved by maximizing the total support

(satisfaction) for all fuzzy inequalities individually.
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Figure 6.8. Flowchart of the risk level selection algorithm
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The mathematical model given by (5.34)-(5.39) may be expressed then as:

m+1
Maximize ; A (6.9)
M(fof1) +eTx <fo (6.10)
A\pi-(Ax); <prd;, i=2,..,m+1 (6.11)
risl (6.12)
Ai 20, x20 (6.13)

For this particular case of the CCP model the objective function will be:

Maximize [{f,,51)} + e} +p{B} (6.14)

The symmetry feature of the objective function and constraints is still preserved
with this model. Support levels (A;) in this model are defined for each of the fuzzy
inequalities as opposed to a combined support for all inequalities (minimum A).
These support levels are not necessarily equal at the "optimum" (crisp solution) as
was the case with the MAX-MIN formulation of the same problem. This change
gives additional flexibility to the fuzzy programming model. However, there is a
trade-off between a more flexible model and the attained level of support for each
of the fuzzy inequalities. Using this model, some of the inequalities may result in

lower support (satisfaction) levels than those produced by the MAX-MIN model.

169




For example, one of the reliability levels may be sacrificed for an increase in the

other reliability level and the objective function.

In reservoir operation planning decision-makers tend to be sensitive to the
issue of reliability. It is, therefore, unlikely that the above model may be used for
practical problems. If a distinction in treatment of the original objective function
and treatment of reliability constraints should be made, a compromise between
MAX-MIN and a risk-inclined solution procedure may be adopted. The idea is to
use a minimum operator for combining the reliability constraints and then to

maximize the sum of supports for the objective function and constraints, i.e.
Maximize WL{f, g(r)} + u{o, B} (6.15)

where W{f, 5(r)} and i{o, B} are previously defined membership functions. This
model and the MAX-MIN model will be used, and their results analyzed, in the

Gruza reservoir case study.

6.5. MODEL IMPLEMENTATION AND RESULTS

The developed modelling approach has been applied to the Gruza reservoir
in Yugoslavia. The long-term planning objective for the Gruza reservoir concerns
conservation storage for water supply of the city of Kragujevac, flood and
sediment deposition control, and the low flow augmentation downstream from the
reservoir [Jaroslav Cerni Institute, 1976]. A realistic economic and social utility
evaluation was not available for fhe reservoir objectives. This is a consequence of

the specific characteristics of the economy in this developing country. According
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to the mentioned reservoir purposes, the storage capacity of the Gruza reservoir of

64.6x100 m3 is divided into three zones:

(1) the dead storage zone of 8.5x100 m3 (258 m.a.s.L.);
(i) the active storage zone of 48.4x106 m3 (269.25 m.a.s.1.); and
(iii) the flood control zone of 7.7x100 m3 (270 m.a.s.L.).

The reservoir must provide a firm water supply in the amount of Q=0.816 m3/s
for municipal water supply, and an additional Q=0.20 m3/s for instream release
throughout a year. The reservoir started operation in 1983. Since then feasibility
of improved utilization and potential water supply to rural areas has become
apparent. Figure 6.9 shows that high storage levels were maintained in the
reservoir during the period 1985-1988 despite measured inflows below the long-
term average for 52 years. Therefore, utilization of excess water seems even more
appropriate.

270.00
269.25 JASN

YA
/w . |

258.00

Water Level (m.a.s.l.)

1985 1986 1987 1988
Year

Figure 6.9. Gruza reservoir water levels during the period 1985-1988
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Using available streamflow observations of the Gruza basin, monthly inflow
distributions were derived for use by the model. Attempts were made to fit each
-~ month's inflows to a normal, log-normal, Pearson type III, or log-Pearson type III
distribution. Using both the Chi-square and Kolmogorov-Smirnov goodness of fit
tests, a log-normal distribution has been selected as the most suitable. Upon fitting
each month's inflows to a log-normal distribution, the monthly marginal
probability distributions are completely described by their respective means and
variances. The detailed input data and results of the streamflow statistical analysis

are presented in Appendix B.

For the testing of the fuzzy set approach developed in this work, a group of
professors and graduate students of the Civil Engineering Department at the
University of Manitoba served as a "decision-making body". They were presented
with the information on reservoir characteristics, purposes, past performance, and
considerations about improved use. The attitude toward operating the reservoir in
the past was illustrated by the reservoir levels, inflows, and releases during the
period 1985-1988. Using the scale from Table 5.1, a questionnaire presented to the
"decision-makers" asked them to rank the relative importance of ten discrete risk
levels. The judgment was based on the past management decisions, their personal
judgment, and knowledge about the reservoir system as provided in the
questionnaire. In addition to this, they were asked to give a point estimate of the
risk levels, as required for the classical approach to the selection of risk levels in
chance-constrained reservoir operation modelling. A sample of the questionnaire
is given in Appendix C. A matrix of comparisons was established from the
questionnaire and an appropriate set of weights, and CI were calculated for each

experiment.
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The consistency measures used in the context of the Gruza reservoir
problem served to highlight anomalous data supplied by the assessors. The results
in Table 6.1 demonstrate that the consistency ratio values, for most of the
comparison matrices, stayed within the acceptable limits (O<CR<0.1). Those
assessors whose matrices show larger inconsistency than allowed, were asked to

reconsider and adjust their priority estimations among different risk levels.

Table 6.1 Largest eigenvalue, consistency index, and consistency ratio for

membership functions of the two chance constraints

Assessor Constraint Amax CI CR
No. type
1 a 10.417 0.046 0.031
1 B 10.387 0.043 0.029
2 o 11.019 0.113 0.076
2 B 11.314 0.146 0.098
3 a 11.487 0.165 0.111%
3 B 11.113 0.124 0.083
4 o 10.232 0.026 0.017
4 B 11.152 0.128 0.086
5 a 11.328 0.148 0.099
5 B 12.445 0.272 0.182*
6 a 11.022 0.114 0.076
6 B 12.657 0.295 0.198*

* these comparison matrices were considered inconsistent and were

submitted to assessors for reconsideration
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The results, of the MAX-MIN methodology applied to selecting risk levels
in CCP, were compared to the point estimates of the acceptable risk levels elicited
from the assessors. Table 6.2 shows how the obtained results compare to the point
estimates. For example, the results for assessor No. 2 show the inconsistency in his
a priori estimates of the acceptable risk when compared to his priorities as set up by
pairwise comparison. The assessor was ready to accept flood control reliability of
75% when asked about acceptable levels. However, the fuzzy set procedure, using
the data provided by pairwise comparison, showed that a higher reliability level is.
required.
Table 6.2. A priori risk estimates and risk levels obtained using the proposed

fuzzy set approach

Assessor Risk point Risk levels
No. estimates calculated
o o p

1 0.100, 0.150 0.063, 0.082

2 0.250, 0.050 0.059, 0.061

3 0.020, 0.100 0.060, 0.059

4 0.150, 0.000 0.155, 0.049

5 0.050, 0.010 0.057, 0.068

6 0.100, 0.000 0.065, 0.053

Another example shows that a risk-free solution (8=0.0), required by assessors
No.4 and No.6, was not workable. More realistic solutions, i.e., B=0.049 and

p=0.053 respectively, were obtained using the fuzzy set approach. Considering that
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assessors supplied only qualitative input to the model the agreement between the

~obtained results and a priori fixed risk levels is very good.

The detailed results from an iterative search procedure run are shown in
Table 6.3 and Table 6.4. Membership levels for both the objective function and
constraints (assessor No. 4), as well as the change in risk levels throughout eleven
iterations of the MAX-MIN procedure, are presented in Table 6.3. The results
demonstrate how the significant changes in the risk level o did not allow the search
to be terminated before the required level of accuracy was achieved although the
change in the risk level 8 had diminished in the last three iterations. The column
with the additive objective function (z=u{fa’B(r)} + p{a,B}) shows that the
additive model, i.e., the less conservative model, achieved the maximum
satisfaction level (1.078) earlier than the MAX-MIN procedure, and at risk levels
higher than those obtained by the MAX-MIN procedure. This table also
demonstrates how each of the models treats a trade-off between reliability levels
and the objective function. The MAX-MIN procedure is always driven by the
lower membership level of u{fayﬁ(r)} or u{c,B}, while the additive model is
driven by the average value of the two. Table 6.4 reports on how the reservoir
policy, recommended by the CCP model, changes during the last several iterations.
Again, a comparison between the results in iteration 6 (the "crisp” solution of the
additive model) and iteration 11 (the "crisp" solution of the MAX-MIN model)
shows the impact of the different procedures, e.g., the total annual release
decreases from 25.54x100 to 24.45x100 m3 if the more conservative procedure is
used. However, the impact, especially in August and October, on within-year
release distribution is more pronounced. As shown in Chapter 4 these releases are

most sensitive to a change in reliability levels.
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Finally, these two tables demonstrate how the model presents the user with a
range of near-optimal solutions from which to choose. In the example MAX-MIN
solution (Table 6.4), release policies from the iterations 6,8,9, and 10, for which
the risk levels are not very different, may be considered as near-optimal solutions.
Direct presentation of solutions to the user is an obvious benefit of the method if
the user has other reasons to prefer the solution with a lower membership level but

still close to the identified intersecting solution (iteration 11). These two tables also

Table 6.3. Risk and membership levels throughout the iterative search

procedure run

Iteration Membership  W{fqp(r)} Risk
No. levels + pu{o,B} levels
r{fap®m], u{o,B} o, B

1 1.000, 0.037 1037  0.500, 0.500
2 0.771, 0.100 0.871 0.500, 0.196
3 0.654, 0.200 0.854 0.500, 0.117
4 0.603, 0.300 0.903 0.500, 0.089
5 0.588, 0.400 0.988 0.415, 0.071
6 0.578, 0.500 1.078 0.180, 0.054
7 infeasible - 0.098, 0.039
8 0.495, 0.550 1.045 0.140, 0.046
9 0.537, 0.525 1.062 0.160, 0.050
10 0.517, 0.537 1.054 0.150, 0.048
11 0.527, 0.531 1.058 0.155, 0.049
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explain the relationship between grades of membership and physical variables

(release).
Table 6.4. Annual release policies for the first and last five iterations of an
iterative search procedure run
Month Min. Max. Iteration No.!

Allow. Allow.
Release Release
1 6 8 9 10 11

[106m3] [106m3] [106m3]
October 0.54 8.04 054 6.65 803 737 769 1753
November (.52 7.78 052 052 052 052 052 052
December  0.54 8.04 054 054 054 054 054 054
January 0.54 8.04 054 054 054 054 054 054
February 0.48 7.26 048 048 048 048 048 048

March 0.54 8.04 054 054 054 054 054 054
April 0.52 778 052 052 052 052 052 052
May 0.54 8.04 804 504 521 513 517 515
June 0.52 7.78 778 1.60 1.62 161 162 161
July 0.54 8.04 804 09 099 094 09 0.95
August 0.54 8.04 8.04 7.69 429 599 517 558

September .52 7.78 1.60 052 052 052 052 052

INote: Results from iterations 2-5 and 7 are omitted in the presentation because of high risk levels

while iteration 7 rendered an infeasible solution.

The fuzzy set approach for handling imprecision can reduce the
requirement for precise numerical inputs in decision modelling. The imprecision
in the input is modelled using fuzzy set theory, which is then used to calculate the
imprecision implied in the results. But so far, the DM is presented only with the

results which were reduced to numbers. For example, the release of 5.15x106 m3,
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with the membership degree of 0.53 calculated for May, is of no immediate use to a
DM. If however, reservoir monthly releases are plotted against membership levels
for each iteration of the search procedure, then the information available from the
- fuzzy analysis may be seen and stated more clearly. Figure 6.10 shows a

membership function of the release for the month of May.
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Figure 6.10. Fuzzy set representing recommended reservoir release in May

Clearly, some form of hedged advice may be given from observing this fuzzy set.
The recommended release in May can be characterized as "approximately 5x100

m3",

Careful analysis of Figure 6.10 reveals that a risk-averse attitude toward
operating the reservoir is represented by the rising limb of the membership
function as the release is decreased from 8x100 m3 to around 5x106 m3. In this

part of the function membership levels of the fuzzy set constraints dominate over
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membership levels of the fuzzy set objective function (pu{a,p} > u{fa’B(r)}). This

information may be used in situations which dictate risk-averse actions. On the
other hand, the falling limb of the fuzzy set membership function to the left of the
5%100 m3 in Figure 6.10, represents releases for the risk-inclined operation. It

should be noted that the rising limb is not completed because the procedure had
ended the search for the "optimum" before lower membership levels were
investigated. Furthermore, this example reveals the dominance of the minimal
storage constraint over the flood control constraint because the increase in

membership values causes reduction in release values.

An opposite example, for the dominance of the flood control constraint is

given in Figure 6.11.
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Figure 6.11. Fuzzy set representing recommended reservoir release in October
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The rising limb of the release membership function for the month of October from
0.5x106 m3 to 7x106 m3 represents the risk-inclined decisions. Conversely, the

risk-averse decisions are represented by the falling limb to the right of 7x106 m3.
Again, some form of hedged advice may be given from observing this fuzzy set.
The recommended release in October can be characterized as "approximately

7x100 m3".
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Figure 6.12. Fuzzy set representing recommended reservoir release in January

Finally, Figure 6.12 shows a special case of a membership function for a
release during one of the winter months. This was one of the months from the
cluster with the lowest release priority in Figure 6.5. In addition, the quantity of
accumulated water was below the flood control pool in this month, so the flood
control constraint was not binding. Thus, the recommended release stayed at the

minimal allowable level for all membership degrees.
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Special attention should be directed to the sensitivity of the "crisp” results to
the upper bound value of the scale used for pairwise comparison of the risk levels
and clustered months. Table 6.5 shows the difference in the membership levels and
risk levels obtained by using three different upper bound values of the scale. It may
be observed that similar risk values were obtained for a. 8 values varied slightly.
The overall similarity does, however, demonstrate the robustness of the procedure

with respect to the selection of the upper bound value of the scale.

Table 6.5. The effect of the scale on selected risk levels

Scale 1-5 1-7 1-9

u{fep(r)} 0.625 0.567 0.527
nio,B} 0.637 0.575 0.531
o 0.050 0.049 0.049
B 0.198 0.171 0.155

A similar conclusion may be drawn from Table 6.6 which shows the difference in
release policies with respect to variation in the same parameter. The difference
between the annual release schedules obtained using the scales 1-5 and 1-9 is 7.4%,
while the difference drops to 2.9% when the scales 1-7 and 1-9 are compared.
Again, the impact of the upper bound value of the scale on the within-year

distribution of releases is most significant for the month of August. It should be
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noted that the similar general conclusions will hold for each set of near-optimal

solutions provided along with the "crisp" solution.

Table 6.6. The effect of the scale on release schedule

Release 106m3

Month Scale 1-5 Scale 1-7 Scale 1-9
Oct 7.30 7.46 7.53
Nov 0.52 0.52 0.52
Dec 0.54 0.54 0.54
Jan 0.54 0.54 0.54
Feb 0.48 048 0.48
Mar 0.54 0.54 | 0.54
Apr 052 0.52 0.52
May 5.12 5.14 5.15
Jun 1.61 1.61 1.61
Jul 0.94 0.95 0.95
Aug 7.66 6.37 5.58
Sep 0.52 0.52 0.52

6.6. SUMMARY OF FINDINGS

An attempt has been made to discuss the characteristics of an optimization
model, i.e., chance-constrained (CCP); and a model based on principles of

"satisficing", i.e,.fuzzy chance-constrained (FCCP). The best comparison may be
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obtained if characteristics of the two models are contrasted on a one-to-one basis.

The following is a summary of findings:

Common Characteristics:

Both models are long-term reservoir planning models, i.e., both provide a
monthly schedule(s) for releases within a one-year planning horizon. Both models
are consistent in terms of how they use input information to provide a solution(s):
CCP uses "crisp" data and renders a "crisp” solution; FCCP uses imprecise
information and arrives at a range of near-optimal solutions from which one may
be selected if necessary. The preliminary set of releases, of both models, is based
on the previous realizations of random streamflows, i.e., both models are

stochastic in nature.

Model use:

The release set identified by both models serves as a general guideline for resource
allocation and strategic planning on the part of the water authority. In practice, the
actual realizations of random inflows, storage states, as well as unexpected shifts in
decision-making attitudes, should be taken into account to revise the planning
solutions. This is done by means of the sequential use of an optimization model
(usually one different from a long-term planning model), in a mid-term or real-

time manner (i.e., using forecasted information).

Differences:
1) CCP - Reliability levels are provided by a DM or an analyst without an
explicit rationale for assessing the consistency of DM's input (e.g., why certain

reliability levels vs. others).
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FCCP - Reliability levels are decision variables. Only the relative importance of
different reliability levels are needed from a DM. The information necessary to do
the analysis is also extracted qualitatively. A consistency measure is available to
. evaluate the consistency of the DM's input and theréby ensure a reasonable

solution.

2) CCP - Objective function coefficients (i.e., value of released water), which
are necessary for the analysis must be provided a priori. Brill [1979] identifies
empirical shortcomings in estimating benefits and costs. He suggests that "in going
from quantitative descriptions to benefits and costs, more judgmental and
subjective elements enter the analysis", so they should be dealt with qualitatively.
These "crisp" benefits/costs estimates are hard to obtain and unreliable. In addition,
optimization results tend to be highly sensitive with respect to changes in objective

function coefficients.

FCCP - Objective function coefficients are obtained using information on the
relative importance of releasing water in one particular month vs. other months.
The preference scale (weights) is constructed from information obtained
qualitatively. Again, the consistency index is available for evaluating the

consistency of the DM's responses.

3) CCP - Feasible space is highly constrained even for lower values of

reliability levels. The specified constraints are inflexible.

FCCP - Presents and treats the relaxed (softened) objective function and constraints
as fuzzy inequalities. The model explores a broader feasible region than the

original CCP model. In terms of multi-objective analysis, it is hypothesized that
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with relaxing the original feasible space the model explores the interior region of
the non-inferior set without determining the complete "crisply" defined inferior
set. That interior search is not achieved in the same manner as in a classical multi-
objective analysis, i.e., by carrying out a parametric analysis of objectives
expressed as constraints. It is done in a more directed way using a qualitatively
provided preference structure. The flexible specification of the limits requires no
absolute boundaries, but uses tolerance levels ("satisficing" vs. optimizing) to
explore those regions of interior space which are denser with respect to preference
information provided. In this manner, the algorithm explicitly takes into account

fuzziness, vagueness, and imprecision.

4) CCP - Does not directly evaluate the effect of constraint violation - an effect

that is sometimes difficult to quantify.

FCCP - The membership functions obtained using qualitative data from assessors
represent measures which implicitly consider the effect of both the frequency and

the extent of constraint violation.

Finally, the choice of the fuzzy procedure, i.e., MAX-MIN or additive,
should be carefully analyzed in each situation. The solutions identified by both
procedures should be presented to the DM or DM body, which will eventually
select the best compromise between high reliability levels and potential benefits to

be gained by releasing water from the reservoir.
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CHAPTER 7.

SUMMARY AND CONCLUSIONS

7.1. SUMMARY

Reservoir modelling and model use, if properly performed, may result in
increasing potential benefits or decreasing costs of managing water in reservoirs.
However, several problems in applying formal models for reservoir sizing and
short- and long-term planning have been encountered by different water authorities
and agencies. The most frequently reported problems are related to the lack of
communication and understanding between model users and model developers. This
leads to the first contribution of the research: identifying, formalizing, and
structuring reservoir modelling expertise, which by its nature resisté completely
formal (algorithmic) representation. By formalizing and structuring reservoir
analysis knowledge in REZES (an intelligent decision-support system), reservoir
analysis expertise becomes more explicit and available to different potential users.
As a user friendly, educational and practical tool, REZES can bridge the gap
between a potential user and a model. REZES is intended to advise users and explain
and perform tasks usually reserved for an expert planner or modeller. REZES

performs within the limits of the eleven incorporated models.

A second contribution of the research presented in this thesis is in combining
formal (mathematical) models with "expert" knowledge (in the form of experience,
judgment, etc.), that lacks formal structure. Human experts, experienced in applying

formal models to practical problems, possess and use both types of knowledge in
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solving real-world problems. Through the deeper understanding of a reservoir
- model, and the understanding of the parameters influencing the solution as offered
by REZES, a user may improve his/her perception of the problem. The potential
benefits of combining this knowledge into one computerized tool is illustrated by the
Gruza reservoir example. In the case of the Gruza reservoir, changing the reliability
levels and then observing consequent changes in operating policies, may help the
user to reach a conclusion about an acceptable compromise between reliability levels

and expected returns from improved water allocation.

A careful selection of reservoir models included in REZES has been made to
minimize the uncertainty and subjectivity involved in reservoir analysis. However, it
was demonstrated through the Gruza example that even by using the expert systems
technology, uncertainty and subjectivity may not be adequately treated. A need for
treating both stochastic uncertainty and imprecision, that is non-random in nature,
stimulated the development of a fuzzy-set-based approach to reservoir chance-
consﬁained modelling. The two methods for selecting risk levels within a chance-
constrained reservoir operation model, based on the fuzzy set approach, represent
the third contribution of the thesis. Both methods incorporate imprecision directly

into the model.

An application of the fuzzy model to the Gruza reservoir operation problem
demonstrates the feasibility, robustness, and efficiency of both the proposed
approach and its iterative search procedure. This fuzzy procedure leads to sets of
results which are of practical interest and which are not critically sensitive to
changes in model parameters. A group of professors and graduate students has been
used to provide necessary input for estimating membership functions. Although the

actual decision-maker may provide different comparison matrices than the ones
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which were selected by these "decision-makers", the methods of estimating

membership functions and the iterative procedure are essentially the same.

To summarize, the use of the Engineering Expert Systems approach, and the
development of an intelligent decision support system for reservoir modelling, is
introduced as an appropriate application of emerging technologies to the single
multipurpose reservoir optimization. However, not all identified problems can be
solved by using this approach. It is believed that only a combination of existing
("classical" and non-classical) models, new (fuzzy) models, and new technologies

will bring the full potential of benefits to water resources practice.

7.2. CONCLUSIONS

The REZES system, developed in this thesis, can be used to optimize the size
or the release schedules of single multi-purpose reservoirs, given a variety of
reservoir uses and assuming a deterministic or stochastic future. The major benefit
of using REZES lies in its ability to perform analysis and explain the reasoning used
therein, to provide recommendations, and to take actions during a consultation. The
intelligent decision-support system (IDSS) capable of doing so can stimulate the
participation of the people concerned with reservoir management decision making
(DMs) in using the expertise and models provided by the people concerned with
reservoir modelling (experts). Therefore, reservoir management can benefit from
providing an opportunity for greater involvement of DMs or reservoir operators in
using mathematical models. It is hoped that due to its relative ease of use REZES will
encourage more reservoir operators, managers, or less skilled water resources

engineers to actually use mathematical models when making release decisions.
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As no general algorithm exists for reservoir analysis problems, an additional
benefit in using REZES is is that it provides a selection of procedures that perform
differently depending on the form of the mathematical model they employ. The
differences and similarities among the eleven models, and the situations in which it is
most appropriate to use each of them, may still cause some confusion with potential
users. However, this situation is still preferable to having too few methods from

which to choose.

The increasing demand for proper management of water quantity requires
development of comprehensive water resource management models to cope with the
complexity of multi-purpose, multi-reservoir systems. Even if a deterministic
future with perfect flow forecasts is assumed, most of the multi-reservoir models
suffer from the so-called "curse of dimensionality". The introduction of stochastic
inflows into a model formulation only further aggravates the problem. REZES
comprises both stochastic and deterministic mathematical models but only for single
reservoir schemes. The cdnsequences of not treating multi-reservoir systems may,
however, be reduced by the careful selection of the system constraints for each of the
mathematical models. For example, relationships (hydraulic, electrical, etc.) among
Teservoirs in a system or external connections may be represented through a set of

constraints.

In the last two decades there has been an increased awareness of the need to
identify, and simultaneously consider, several reservoir management objectives.
Although REZES does not cover any of the classical multi-objective techniques,
multiple objectives have been incorporated into the mathematical models. This

incorporation was accomplished by simple addition, when a common metric was
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available, or by the single objective function and the imposition of constraints

related to additional objectives.

The second major contribution, presented in this thesis, considers the
treatment of non-random imprecision or "vagueness" in reservoir modelling. The
fuzzy-set approach, applied to the risk-level-selection problem, gives worthwhile
results when some functional relationships, e.g., system constraints or objective
functions, cannot be quantified for the formulation 6f the model. In the context of
chance-constrained programming (CCP) used to demonstrate the approach, the
developed method combines use of the fuzzy set operations and the linear
programming technique. In this work the more common "MAX-MIN" relation,
stemming from the intersection of the fuzzy objective and fuzzy constraints, is
questioned as to whether it is the most appropriate one for the fuzzy optimization

criteria.

An alternative procedure which gives less "conservative" solutions is
developed and compared to the "classical" MAX-MIN approach. The new model
incorporating fuzzy sets is developed by tailoring the chance-constrained reservoir
operation model developed by Simonovic [1979]. It should be noted, however, that
certain limitations of the original CCP model still apply to the new model
formulation but their impacts are reduced. One such limitation is related to the
increase in variance of the convoluted inflows with the increase of the number of

time steps in the time horizon.

The procedure for selecting the risk levels is general, in that it is able to
handle non-linear membership functions for both fuzzy constraints and the fuzzy

objective function. The procedure may also be applied to less imprecise situations
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where, for example, objectives, related economic and/or social utilities, and weights
are known with certainty and only constraints are fuzzy. The simple search
procedure, employed to render the intersection of the two fuzzy sets, is very
efficient even if implemented on a PC-based micro-computer. An additional major
benefit of using the procedure lies in the fact that one may view the near-optimal
solutions, which the procedure provides as a form of automated sensitivity analysis.
The generation of these near-optimal solutions by this sensitivity analysis directly
accounts for the imprecision involved in defining constraints or an objective

function.

The crucial task of estimating membership functions was performed by
applying the scaling method for priorities. This method reduces the main drawback
of using inconsistent DM's input in model building. It also reduces the complexity
and pressure on a DM by using a linguistic approach to eliciting data rather than a
numerical one. Nevertheless, the major benefit, in using the proposed method,
remains in easy incorporation of qualitative, imprecise, and subjective input into a

CCP model formulation.

7.3. RECOMMENDATIONS FOR FUTURE RESEARCH

In order to be well-received among practitioners, REZES needs verification
in practice and some further refinements. Recommended directions for future
research on interactive modelling and use of REZES in reservoir management are:
expanding the limited library of formal mathematical models and augmenting the
user interface to handle additional graphics, especially for handling output results.

Currently, REZES is not able to distinguish between an expert user and a complete
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novice, i.e., explanation and help facilities are insensitive to the user's level of
expertise. In some cases, more efficient use and faster consultations may be achieved

when detailed help is not needed.

Remaining problems for discussion and future research are: (a) analysis of
the uncertainty inherently associated with reservoir modelling expertise; and (b)
treatment of the subjectivity with which different experts approach the same type of

reservoir problem.

Another major area that could benefit from further research is related to the
improvement of algorithms. One obvious improvement would be to make use of
variable time steps in formal models. Even more radical changes to the mathematical
models would be needed to allow REZES to address optimization problems of multi-
reservoir systems. The large number of variables in a stochastic model makes the

present techniques impractical for multi-reservoir systems.

In this thesis, the application of fuzzy sets to reservoir analysis has been
carried out through an optimization long-term reservoir operation planning model.
Yet, uncertainties and imprecisibn in inflow forecasting and in estimating outflow
effects, make fuzzy sets an appealing approach to real-time reservoir operation
modelling. Two research directions on this issue may be worth examining: fuzzy
optimization and fuzzy reasoning. The former is related to new applications of, or
even possible computational improvements to fuzzy optimization models similar to
that presented in the thesis. The latter is related to research in fuzzy logic, i.e., the
logic underlying approximate, rather than exact, modes of reasoning. That

reasoning plays an essential role in the human ability to make rational decisions in a
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fuzzy environment. The research in this area may result in better management of

~ uncertainty in IDSS and expert systems.

As for the improvement and application of the presented reservoir model, the
involvement of a decision-maker must be ensured. Therefore, further
improvements and implementation must be carried out in cooperation with a person

actually involved in decision making.
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APPENDIX A

The following section gives the detailed description of the chance-
constrained reservoir operation model [Simonovic, 1979] briefly introduced in
Chapter 6, and the transformation of the stochastic problem into its deterministic

equivalent.

We recall that the model (6.1)-(6.5) was stated in the following form:

S;=8; 4G -di-r-1, Vi, t=12,..T (AT)
rr{lrz%Xf(r) | (A2)

P, 2c-v)<a (A3)

PGS, <m)<p ’ (Ad)
Foin ST ETmax Vi (A5)

Substituting equation (A1) into equation (A3) yields:

P(S;_l+§}—d[-r¢-112c-v;).<.05 (AG)
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Using the basic property of a probability inequality with the random variable g

taken to the left-hand-side of the constraint gives:
P(GiSc-v-Siqa+di+n+l)21-a (A7)

The expression in equation (A7) is equivalent to:
Flc-v-Sia+d+r+l121-0a (A8)

if F[-] denotes the cumulative distribution function of the convoluted inflows. In
his work Simonovic [1979] combined random inflow and random irrigation
demand into the random variable i,. Both variables, inflow and demand, were
assumed to be independent. In this thesis only one random variable is treated, i.e.,
random inflow. In addition to that instead of using iterative convolution method,
the historical realizations of cumulative inflows were investigated and émployed to
estimate the distribution of the joint events (cumulative flows). Knowing the

probability density function of g, the final form of the constraint is:
c-vi-Sia+di+r+L2Fl-a) (A9)

where F} denotes the inverse of the cumulative distribution function F |

Similarly, for constraint (A4),
P(Siqa+q-di-ri-Li<m )< (A10)

P(?];Sm[~5t_1+dt+rt+lt)ﬁﬁ (A].l)
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F{:mz'S[-1+dt+rt+lt]Sﬁ (A12)
mt~S¢_1+d,+rt+l,SF;1(ﬁ ) (A13)

Finally, the deterministic equivalent of the stochastic problem (A1)-(A5)

may be stated in the following form:

max f (r)

) (A14)
c-vi-Sia+d+rn+L2F1-a) Vi (A15)
mi-Sia+di+n+L<FNB) Vi ' (A16)
Fosin S 10 S P V1 | (A17)
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Year
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

APPENDIX B

Mean Monthly Flows [m3/s]
for period 1926-1975

River: Gruza
Gauging St: Tucacki Naper

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann
mean

2.850 4.890 0.220 1.320 0.429 2.370 3.400 0.501 0.834 0.350 0.495 0.450 1.509
2.520 0.754 3.500 2.500 1.030 1.570 0.199 0.377 0.640 2.700 1.170 0.740 1.475
0.394 0.760 2.770 4.170 2.910 1.160 0.218 0.110 0.147 0.531 0.430 1.410 1.251
0.815 1.550 1.780 6.350 4.210 0.976 0.497 0.706 1.430 0.740 0.340 1.160 1.713
0.707 0.420 2.320 2.270 4.100 0.990 0.980 0.820 0.200 1.280 0.037 0.290 1.201
0.420 0.901 4.000 1.470 2.670 0.820 0.202 0.567 0.331 1.880 2.090 0.367 1.310
1.920 2.060 3.020 5.910 1.820 1.440 0.440 0.351 0.759 0.135 1.460 1.390 1.725
1.470 1.480 1.700 4.330 5.530 2.190 0.620 0.710 1.700 0.372 1.940 1.320 1.947
0.939 1.300 4.880 0.590 1.610 1.810 3.190 0.860 1.590 0.960 0.750 0.670 1.596
2.190 4.380 1.900 3.000 2.920 0.984 0.393 0.490 2.240 1.190 1.690 1.460 1.903
1.970 3.790 2.050 1.420 0.910 1.620 0.122 0.786 0.415 0.556 2.100 1.050 1.399
1.720 4.450 4.820 3.150 5.230 2.360 2.730 5.190 2.200 1.140 1.960 1.430 3.032
2.720 2.400 2.770 6.410 2.890 0.780 2.050 0.754 1.150 1.250 1.920 0.730 2.152
1.800 0.340 2.510 4.350 2.350 0.820 1.050 0.726 0.780 0.701 2.740 1.980 1.679
1.680 3.660 4.000 4.000 1.790 2.530 1.910 0.794 0.377 1.100 1.390 1.610 2.070
2.070 5.290 3.110 2.040 2.220 1.720 0.169 0.168 0.400 1.440 2.160 2.040 1.902
2.600 1.680 5.420 4.450 2.610 1.760 0.860 1.040 0.927 0.081 1.680 0.220 1.944
0.620 2.290 0.930 2.430 0.377 2.590 0.536 0.229 1.330 0.346 0.190 0.253 1.010
0.740 1.000 5.320 5.350 0.730 2.050 4.310 0.067 1.100 1.820 2.200 2.000 2.224
1.880 4.020 2.560 4.910 0.841 1.710 0.362 0.693 0.142 0.672 1.070 0.603 1.622
0.680 0.915 1.830 1.840 0.440 0.330 0.168 0.089 0.093 0.172 1.120 1.200 0.740
0.565 2.690 4.540 0.794 0.338 0.319 0.077 0.588 0.166 0.131 1.010 0.550 0.981
3.000 1.940 0.770 1.580 1.290 6.060 0.410 0.246 1.850 0.174 0.062 0.229 1.468
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1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
Mean
StDv
rl

r2

r3

0.432 0.564 0.860 2.490 0.611 1.320 1.380 0.291 0.233 0.233 0.706 0.531 0.804
0.614 1.060 1.600 0.607 0.396 1.150 0.264 0.186 0.246 0.240 0.554 1.320 0.686
0.548 1.200 2.040 2.230 1.590 0.276 0.352 0.277 0.243 0.231 0.299 0.713 0.833
1.240 0.900 0.600 2.070 0.460 0.381 0.285 0.207 0.187 0.972 1.130 3.660 1.008
1.610 1.850 2.750 2.310 0.400 1.050 0.938 0.400 0.396 1.070 0.345 0.352 1.123
0.338 0.750 3.760 3.940 5.210 1.210 0.426 0.821 0.262 1.600 0.860 2.470 1.804
3.440 3.960 0.840 6.180 1.240 1.150 0.800 7.060 1.160 2.770 1.500 4.300 2.867
2.900 3.05010.100 5.760 2.530 1.290 0.405 0.130 0.104 0.135 0.212 0.385 2.250
0.702 1.970 0.731 0.773 4.500 2.390 0.665 0.848 0.960 1.230 0.550 1.860 1.432
2.120 1.150 3.250 5.920 1.630 0.308 0.196 0.159 0.163 0.222 0.338 0.503 1.330
0.985 0.433 0.708 0.428 0.405 2.160 1.350 0.897 0.987 0.437 1.290 0.957 0.920 °
1.380 2.160 1.260 1.330 1.320 0.794 0.899 0.509 0.406 0.492 0.658 0.924 1.011
0.951 1.115 0.746 1.000 4.000 2.010 0.905 0.521 0.560 0.467 0.718 0.932 1.160
1.800 3.480 7.200 5.240 1.080 0.944 0.278 0.120 0.117 0.163 0.227 0.264 1.743
1.750 5.640 1.250 1.390 0.184 0.208 0.098 0.082 0.211 0.093 0.097 0.101 0.925
0.189 0.944 2.430 1.930 1.040 0.267 0.738 0.136 0.170 0.720 1.840 1.800 1.017
1.370 2.640 3.350 1.660 4.510 0.810 0.227 0.047 0.053 0.033 0.085 0.153 1.245
1.670 5.320 1.530 1.390 1.030 0.310 0.659 0.138 0.143 0.089 0.184 1.210 1.139
1.270 1.690 3.650 2.170 3.200 1.410 0.272 0.048 0.059 0.063 0.081 0.202 1.176
1.190 3.820 1.620 0.404 0.378 0.232 0.174 0.397 0.539 0.300 1.100 0.781 0.911
1.240 6.680 3.130 1.770 0.692 2.360 0.678 0.364 0.876 0.186 0.276 0.536 1.566
3.550 6.900 4.000 2.200 6.130 1.840 1.400 0.376 0.206 0.398 0.520 0.384 2.325
0.652 1.380 5.060 3.180 0.753 0.612 0.408 0.215 0.342 0.410 0.397 0.707 1.176
0.454 0.430 0.358 0.261 0.234 0.118 0.717 0.291 0.730 5.370 1.280 0.718 0.913
0.760 1.490 4.160 3.730 1.080 0.480 0.615 0.176 0.183 0.163 0.188 0.715 1.145
1.530 0.785 0.583 1.040 2.570 1.060 0.387 0.073 0.065 0.184 1.280 4.770 1.194
1.640 0.939 3.310 0.996 2.050 2.370 0.802 2.560 0.775 1.080 1.260 0.963 1.562
1.990 3.630 4.870 1.900 0.991 3.090 0.485 0.385 0.364 0.207 0.616 1.100 1.636
1.920 3.510 3.430 4.870 1.230 0.578 0.457 0.311 0.247 0.272 0.420 1.230 1.540
1.471 2.354 2.806 2.765 1.936 1.368 0.811 0.671 0.611 0.761 0.943 1.109 1.467
0.848 1.722 1.888 1.805 1.586 1.015 0.885 1.187 0.566 0.915 0.708 0.972

0.382 0.540 0.110 0.405 0.204 0.143 0.271 0.221 0.421 0.215 0.364 0.414

0.315 0.041 0.160 0.002 0.141-0.083 0.048 0.136 0.411 0.318 0.322 0.233

0.120 0.166 0.368 0.326 0.012-0.022 0.081 0.185 0.501 0.159 0.291 0.040

Cskw 0.564 0.921 1.267 0.599 1.007 1.947 2.291 4.216 1.289 2.912 0.579 2.045
Cvar 0.577 0.731 0.673 0.653 0.819 0.742 1.092 1.770 0.926 1.202 0.751 0.876
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MONTHLY INFLOW DISTRIBUTIONS

This section presents graphical results of hydrologic frequency analysis of
historical monthly streamflows at the Gruza dam site. Statistics derived from
historical monthly streamflow observations are used to generate the required
monthly distributions. Four theoretical distributions were investigated: normal,
log-normal, Pearson type III, and log-Pearson type III. For each distributional
assumption, the magnitude of events for various return periods is selected from the
theoretical "best-fit" line according to the assumed distribution. Computer
programs for analysis are taken from Kite [1985]. Both solutions for the method of

moments and the maximum likelihood method have been investigated.
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Figure B1. Flow duration plot Gruza river data (January)
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Figure B2. Flow duration plot Gruza river data (February)
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Figure B3. Flow duration plot Gruza river data (March)
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Figure B4. Flow duration plot Gruza river data (April)
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Figure B5. Flow duration plot Gruza river data (May)
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Figure B6. Flow duration plot Gruza river data (June)



LTC

Inflow (cms)

July

"""" Normal distribution

o
)
{ — Log-normal distribution

1

:

'\_ o ==== Pearson HI distribution

1

@

] ---+ Log-Pearson Il distribution

B Historical data

0.0

0.2

0.4
Probability

Figure B7. Flow duration plot Gruza river data (July)
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Figure B8. Flow duration plot Gruza river data (August)
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Figure B9. Flow duration plot Gruza river data (September)



0¢€T

October

B Historical data

Normal distribution
10 4

— Log-normal distribution

===~ Pearson III distribution

==+ Log-Pearson III distribution

Inflow (cms)

0.4 0.6

. 0.8 o 1.0
Probability

Figure B10. Flow duration plot Gruza river data (October)
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Figure B11. Flow duration plot Gruza river data (November)
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TESTING THE GOODNESS OF FIT OF STREAMFLOW DATA TO
PROBABILITY DISTRIBUTIONS

Two statistical tests: Chi-Square and Kolmogorov-Smirnov were used to help
judging whether or not a particular distribution adequately describes the set of streamflow
observations on the Gruza river. Both test were performed for 95% confidence level
(a=0.05). The following table shows whether particular distribution provides a good

approximation to the orginal sample or not.

Distr. NORMAL LOG-NOR PEAR-3 LPEAR-3

Test CH2 KST CH2 KST CH2 KST CH2 KST

Jan * * * * * * * *
Feb ? * * * ? * * *
Mar * * 9 * * * 9 *
Apr ? * * * 9 * * *
May 9 * * * * * 9 *
Jun * * % * 9 * * *
Jul 2 9 ® * 9 * * *
Aug 9 2 * * 9 9 * *
Sep * * * * 2 * * *
OCt 9 ES * * ES ES £ *
Nov ? * * * 9 * * *
Dec * * * * * * * *

* Test OK

? Test failed
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APPENDIX C

QUESTIONNAIRE USED FOR THE CONSTRUCTION OF THE
MEMBERSHIP FUNCTIONS

Imagine yourself as a member of a decision-making body preparing long-
term planning guidelines for managing a reservoir. The following reservoir

characteristics should help you in finding the most appropriate answers:
Dam type: arch (relatively safe to overtopping)

Reservoir purposes: 1) water supply (municipal and industrial),
2) flood control of the downstream area which is
predominantly rural (rarely populated),
3) sediment deposition control, and

4)  low flow augmentation.

The reservoir is built primarily for providing water for a large municipal
settlement (the town of Kragujevac) 10 km from the reservoir site and releasing
minimal contracted volume downstream from the reservoir. The obligation of the
reservoir management is to provide constant amount of water each month for these
purposes. The potential of supplying rural areas with drinking water prompted the

question of utilizing excess water (if any).
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The following three storage zones are identified in the reservoir design process:

@/ FLOOD CONTROL STORAGE

ACTIVE STORAGE

MINIMAL STORAGE

ez

The attitude of the managers towards operating the reservoir in the past may be
illustrated by the reservoir levels during the period1985-88 (the reservoir started

operation in 1983).

270.00
269.20 1) =y A

]
5
)

258.00

Water Level (m.a.s.l.)

1985 1986 1987 1988
Year

QUESTION No. 1

What would be the minimal required reliability levels for keeping reservoir

stoi“age below flood control and above minimum storage levels respectively, in % ,
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i.e., what is the percentage of time that the reservoir flood control storage and

minimal storage are not corrupted (e.g., X % for flood control and Y %).

Flood Storage Reliability %

Minimum Storage Reliability %

QUESTION No. 2

Using the following scale indicate the relative importance of different failure
frequencies to each other (e.g., how important is the difference between having
minimal reservoir storage corrupted on average once in five and once in seven
years of operation). Base your decision on past management decisions (previous

page) and your personal judgement and knowledge of the reservoir system.

Scale Description

a) two frequencies are equally significant

b)  experience and judgement slightly favor one frequency over another

c) experience and judgement strongly favor one frequency over another

d) a frequency is strongly favored and its dominance is demonstrated in
practice .

e) the evidence favoring one frequency over another is of the highest possible

order of affirmation
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Note: When the compromise among two adjacent choices (e.g., b&c, or d&e) is

needed use both letters.

The following is the proposed notation for frequencies:

on average 50%
on average 60%
on average 70%
on average 80%
on average 90%
on average 92.5%

on average 95%

o HE o w e

on average 97.5%

Do

on average 98%

b

on average 99%

Explanation of the following tables:

- It is assumed that a frequency is equally significant in comparison with itself (that

n_n

is why the scale notation "a" is used for the same corresponding rows and

columns).

- You are not supposed to fill a space with "X"
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Flood storage :

i)

Minimal Storage

ii)

[l P

Thank you for your time
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