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CHAPTER I

INTRODUCTIOI{

Loeb ¡ s nule| for the prediction of s¡nnmetric fi-nit
cycles, fails in the case of a relay eontrol sysùem with
delay (figure 1),

The describing functfon meùhod is an approximate

nethod of predicLing linià eycles" The Nyrquist Plot, A(jw),
and the negative inverse of the describing functio"', :f"]{n),

are plotLed, Interseetions of these two curves indj-eate
possibl-e fi-mit cycl-es" The frequency, w, of the J-imit cyele
is that, value of w that mapse bymeans of the A(jw) functíon,
into the intersection point" Similarly the magnitud€r E, is
determined frorn t,he -K;](E) curve.

I" J" Loeb, Itph6nonènes g6r6¿itaires dans les
Servomé€enismes; uni Crít6riurn G6nára1 de Stabil!+íe",
Annalgg des T6láconmunicatigns u 6(L2)t 3t+6 - 356 (195I).

Loebts RuIe:
The limít cycle is stable, if the veetor cross product.

------à
gAGó - g- (-K:.r(E)) is out of the page i"e. '¡positiverr
dr¡ " dE



--+r^rhere dl(Jw) is a vector at the intersectionrpoint
dw tangent to the Nyquist Ploto in the dir-

__________+ 
ection of increasing frequency and

d , ,'-1r- r
fu(-tt;o*tn) is a vector at the intersection point

tangent to the negative inverse of the
descri-bing function, i,e. the critical
locus, in the dírection of inereasing
magnitude.

Loelirrs Rule prediets an inflnity of stable límlt cyclesu

corresponding to eaeh of the crossLngs of the critical loeus

íra an upward direction. The inner limÍt cycles (those of
higher frequeney) are in fact unstable.

An intuitive reason for the failure can be given-

Loeb¡fs criterion presumes that the mapping from the s-planeu

into the A(s) witl be single valued. Because of the

presence of the delay -- E s the raapping is not single

ve.lued.

The Nyquist Plot is a mapping of the s = i$¡ line,
from the s-plane into the A(s) plane. A(jw) represents the

magnitude]gaín and phase shift glven to an input of the form

Esin wt,
Mapping of the s : ri + Jw llnes in the s-plane

(where d. is a real nonzero constant) can similarly be made
'l-

into:, the A(s) p1ane" A( CIr.+ ¡w) represents the roagnitude

gain and phase shift, given to an lnput of fr*t
Ee 'a sin(t¡t ) "

Grenst*Èd,*,S.2 definítion of the describing function for

,(n) : to/fi nuotÏ,

Thus the critieal locus lies along the n"gativ* real axls for
ånF tri "

2" P" E. W, Grensted; trAnalysis of the Transient Resp-

onse of Isonlinear Control Systemstto A.-Þ,4tn'--Ifgrc' 89, lg58t

pp, l+27 - 32,



FÏGURX I

A SYSTEM FOR WHICH LOEB'S RULE FAILS

Nyq.uist Plot of A( -t "t(")

6'i + ilr

FÏGURE 2

THE CRTTICAL LOCUS AND PART OF THE NYQUIST PLOT FOR THE SYSTEM SI{OI",IN TN

FÏGURE I
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Because of the presence of the delay, "-t 
u, an infinity

4)of such 0., + jw curves cut the eritical locus at any point (see

figure 2)" tire closer the point is to the ori-gin, the Larger the
Ir,unber of the fi) 0.

where the s = jw curve cuts the eritical locus closer to
the origin, several s : 6', + Jw curves with 6., > 0 cut Lhe

critical Iocus"
Loebts RuIe inforrns us that the Il sin wt mode would be

ú.t
stable, However other Ee r sin wt modes are possible, with
O-. > 0" These modes are exponentiatly increasfng and can not be

àt"ut".
It is not then reasonable to expect Loebrs RuIe Lo work in

a system containing a delayu unless one restricts its applícation
to Lhat portion of the plane where 0'( O for al-l modes.

?Brookes-, in his M"Se, thesis, _obtaÍned for the second pre-
dicted freguency of possible oscillatlon (m : 3), for a system in
which L(s) = I/s(s +I) the following:

(Hanel Locus) w : 6.4L rad./sec"
(Tsypkin Method) '!or : lo 55 rad."/see"

û= 1,22 nep. /sec.
When lA(s)l : O.O2t+3 LA(s) : I80o the second crossing

(second largest magnitude, E) of the critical locus by the Nyquist

Plot occurs. Two modes of oscillation are possible with V), A"

3Br"ry Edward Brookes, 'rthe Stability of Linit Cycles in
Time-Lag Relay Control Systemstt (M.Sc, Thesis, Dept. of Electrical
Sngineering, The University of iulanitobau l'Iay L967)" p,54

Frequency of Li:nit Cycle

Growlng Exponential Tem



First mode of oscillation ¡^¡ : 6,1¡0 rad" /sec.
t: 0 nep"/sec,

Second mode of oscillation: w = lof[ rad./sec.
fr: l"óó nep, /sec"

This order of magnitude agreement gÍves some credence to the

argument that it is the lower frequency modes with S) O that
cause the unstable behaviour"

I{owever, in a relay control syst,em it is not clear hor.¡ two

ôr more modes would interact' if they existed simultaneously, An

exact rnethod is needed to determine what will happen"

In Chapter II, an exact nethod of predicting self-oscill-aùíons
and determiníng their stabilÍty is developed for a system contaÍn:i-ng

a de1-ay and a discrete nonlinearify,
In Chapter III this rnethod is applied to a system containing

an ideal relay, a delayrand. a. Iinear part L(s) = I/s(s + l)"
It is shown that all the higher frequency self-oscillatioæ

are índeed unstable,



CH.A,PTER IÏ

A PREDICTION OF SELF-OSCILLATIONS TN AN AUTONOMOUS SYSTEM CONTAINING

A DTSCHETE NONLINEARITY AND DEIAÏ

In this chapter an exact nethod of deternining the modes of

oscillatÍon |s developed. A proeedure for examÍning the stablllty
of the predicted lirnit cycles is suggested.

IU DESCRIPTION OF Tiß SYSTEM:

the block diagram of the system is given ín figure J" Ït is a

feedback system whose forru¡ard path contains:

(") A diserete operator, S(ersgn(ê)), whose value may depend on

both its input, e, and t,he sign of the time derivative of its

input, sgn(è), and which assumes one of a set of constants

so that

S(ersgn(è)) = u(t) = ". (2,I)
'v¡here c . are constants and J = I, ê. o ,k"

J

The current value of j depends on ersgn(ê), and the value j

assumed.u i(tI), at the prevlous switching lnstant of u(t),

+* 9-u. - s 
"1

(b) A flxed delay of magnitude, t. , so that

u(t-E)=v(t) (2.2)



( c) A linear operator whose

It is characteriøed by

It may be descrj-bed by

input is v(t) and output is y(t)"
a rational transfer function L(s),
the state equaùions:

å:¿**Bv

Y=Cë*Dv

where x ls an n-dimensional state vector, A, B, Ce

const'ant matrices of appropriate dlmension.

The ouùput y(t) is teAUack with a gain of -l- and

is aseuned to be zero"

Thus

e(t) = -y(t)

FIGUAE 3

BLOCK DTAGN,AM OF HE

(2.3)

(2" 4)

and D are

the ínput

(2..5)

"-t "S(ersen(e) )

STSTEM



2U TTE PSEUDO-STATE SPAGE APPRO¡,CH

As the system incorporat.es a delay, the conventíonal state
sþs.ce would be of infinlte dÍmension. However, as u(t) varies
in diserete steps its value will be const,ant for fínite intervals
of tj¡ne. The same information coutr-d be stored by reeording the
switching instants of v(t), ti, and the magnitude to which v(l)
wilt switeh, crl+*\. Thus ühe state of the system can be

.J\ ví/

specified by a finite seù of data"

3" PREDTCTÏON OF SELF-OSCTTLATIONS
' In a sysüem wiÈhout delay, self-oscillation: occurs if

5(t+r) = g(t)"
The state variabLes of the linear part are the state variables
of the systen, and thus completely deternnine the future behavior
of the system,

ïn a system v¡Íth delay, ühe informati.on stored in the delay
(eonst,ituting an inffnite number of state variables) also influ-
ences the future behavior of the system, In the case being
considered, the waveform in the delay is a succession,of constant
levels of finite length"

!(t) is used to represent the intervaLs between: swftching
instants stored in the delay a.nd 9(t) tfre nagniüudes associated
t¡.iÈh ùhese switching instant,s so that

!(t + T) = T(t,) and C(t + T) : c(t) if serf-oseillaüionr
occurs, The dimension as weII as the values of g(t) and C(t) can

vary with time"

(a) !þq conditlon x(t+T): 4(r)



The solutlon of the equation (2"3) yields

+
r'

t^) + l"o{t-tu) e *,(trr) a¿ro' Ivf
-ô

.?: , The t. occur periodically
aJ-oo I

rø

=l and t :ST,

tt +!-
(^"

\ "o(r-¡r) n
J
t¿

íodic solution

x(t) : "A(t-to)*(

v(t) swít,ches at I t
perlod of i equal to
Let t :0 Nhen t,or

Let E=sT*0 rsheresis

Thus E:t,__*0 e
ST

Sinee u(t-t)=v(ò), so

As u(t): c*r**\ when t.Jtúi/ l-

v(t) : c./r+.¡tEi) when ti (

The sol-utioni for ä(T) may be

u( t ) srsitches

t

t ( tior

wrltten as

(2,7)

.: :ì(i2,8)

dtr (2"9)

requirÍng x(0) = ¡¡(1)

(2"6)

with the

sr

an integer and o< 0

at t. - ìe
.L

t

As B is a eonstant matrix,
produces

x(t) = "AT4(o)

[r - "o*] x(o) =

,r4

.{
C=o

"i(rT)

a per

t¿rt
t'L I{Årl

<- Jtri/ Jð=o l:

-At r

CIEI E ( 2,10)
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If A and (l - uAT) are nonsingular tir*s may be written as

( 2""1I)

(b) The Conditions !(t + T) = T(t) and c(t + T) = g(t)

Consider the signal u(t) entering the delay ln the tine

interval (-t ,T - t ) t" illustrated Ín figure 4'(a)' This

determines the signal v(t) Ín the time interval (0rT) shot¡n

i-n figure ¿(b)"
At ti¡re t : O a waveform consisting of :

(i) s full periods as illustrated at (a) in figure d and

(il) a perlodic continuatíon for the interval (-0 r0), is stored

in the deIay. This occupies the time interval (-tro)"
In order that the system have an osctllation of perlod Tt

the contents of the delay at ti¡re T must be identical to that at

the tine t : o described aboveo This occupÍes the tlme interval

(- t + T, T) iLlustrated in figure l¡"

q is defined to be the maximum integer such that to ( 0

That ls trr+q - t is the last switchÍng of u(t) before t = 0'

Let h beanintegersuchthat q+I(n(q+r" Then

periodicity requires t("o.¡_)r+tr - Z : tsrfh - T' * T, and

tsrth : tn * sT (2"L2)

Now,l-etto':'rbsthelergestswitchingt'imeofv(t')whichsatisfies
-/,olÉto\ rsr+h - L

x(o) = [, - "o' i "ar i"r,.î, [.-utr*t *"-o'r] ¿-r s
c__A
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(2.L3)

dt?

\¿"L) )

(2.L6)

rp+t*sT-t

o 
"¡( rl)

Th,rs

Nor+

*o(tn

r(rur+r., - E ) : "o(tfsT- =' 
=(o) 

+ B v(t ' )dt'

(2,14)

since v(t) = "i ( tT) r,¡here tiol and ll is a constant matrix.

rta"sT-t

\ 
"0, 

t,n*sr- z, -t, )

J
l=o

tr(t(

)( t ? ft""'^' 
I 

o,o, . I ì "i(rî) 
J 

.-o''

L L L--o t¿

..^*tT-c 
-l 

ì
\ .-ot'o'l -|
--, -l )

x(t=*n-¡: ):"n(tn+s:LE

If A is nonsingular

--z.l- qo\ - .A(t'n+st- 
t

ð(t"rrh -L/ = 
L

¡(+ 
^l-nu..- -AQ.l-+l- f- r+e)

I rP'L)1 l<
/x(0)+ | )".,*+1fu
{ | \ J\vi/
L L- c--o

'j] '' 'l, -A( tn+sT- E, ) -At
"¡t.l), + e



'la

At, this switching instant e and "gr,(;) rnust have values required
by the operaùor Siersgn(å)), in order that u(t) witl switeh from

"¡ ( rlr+r,_r ) to 
"i { tj"*o ) :

Let uo(tl"*n -U ) be rhe specified varue of *(uî*ri, -î' )

Then
J-

o l+' ?" \"d\"sr*h - v l

Since .r( t1-' st*+h

= -Y( tT"*n - E

_E ) = "i(*l),

) = -c¡(rl*rn - t ) -ov(t+"*n

this may be expressed as

P-4.

¿ "¡(rl)
.\ L
GO

_D"i (rl)

(2.L7)

( 2,J_8)

ua(tj"+r, - t )
A( t,, +sT- T'h

* c./**\
J\ vD'/

and if A is nonsingular as

l.,r) 
., 

I
:., 

] 
,1

f
.{
I
L

t.'
l-

J

,cL+t

\ u-ot' du
I
1.

at¡tsT-\ -Arrle
I

"P

t.* % , A(t,+st-t )eu(tl**n-tr):-Ce n x(0)

.li -A

"i ( rT) É"

. -A(tn+sT-s3 )

"¡t rl) t

+I
+

-At.].re)

^+
+e

I .l
e)_1 A-r BJ - o"¡ 

( ri)

(2"L9)
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When x(0) is substituted in üerms of the unkno?¡n ti
,;. ^ \(i = O, co. gt) there result €#Èr equations in r unknown

t. to solve. A wave shape for u(t) must be chosen and the
values of the t. found numerically" One method of choosing
the v¡aveshape is to examine the.traJectort"".aT. the 

;tate.space in relation to the switching planes anrl4observår+g.what

IÍ-nit cyeles mlght be possible.
After a limit cycle is predicted, an examination of the

trajectories in the state spêce will determíne if any of the
sgn(e) eonditions are unsatisfied or if any extra.neous

switchings occure if nelther of the precedd-ng,, eventualities
arise the linit cyele ,i-s possible.

L" A METHOD OF DETERMÏNING THE STABÏLÏTY OF THE LIMÏT CYCTES

The method is as follows:
(a) Determlne the relatfon between the incremental variations

in one switching point, 
^ ët, Lhe time between the i and ùhe

(i + f ) swlt,chings of v(t), ATir and ùhe next switching

point, AIinI, respectively"

Local línearization may be used to express this in the forrn:

ÁIt+l : FiA4.i + G.Z\Tì (2"2O)
J¿

where j :0, ¡r¡ F. is an nxn matrix and G. is an nxl
matrix.

In general there will be r equations, one for each

switchi-ng point in the limit cycle; however, symmetry may

make some of these equations identíca.I"
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(b) Determine the val-ue of 4'Ti in terms of the 
^ëbtuwhere b < i" ,AT. depends on the varÍation in time between

the switchings of u(t), that occurred t seconds before.

Local línearization may again be used to express this in the

form:

(z,zL)

where f-w(r
r(i-sr
K. 1s a bcn constant matrix"

U

If a switching point of v(t) occurs on a switching plane

of u(t) there may be turo equations, The one that is in fact
applÍcable, depends, r:n çhi-ch side of the switching plane

5o places the switching point'

(c) Combine the relations into a set of difference equatj-ons,

Then determine the sta.bility of these equations.
+,

.r'

ar,+r : Fj oE * *¡ I Ku ^4u (2"22)

b=w

The next chapter applies the procedures developed in

this chapter to a specific problem and should eler$;,fy many

of the detaiLs of the technique.

?'Ì/
orr:ì Ku^rr

b=w



CHAPTER IIÏ

SELF-OSCILLATIONS IN A NELAY SYSTEM WTTH DELAY

The methods of Chapler II are applied to a system in
which the nonlinearity j-s e¡r ideal relay, the delay is
unity, and the linear part has a transfer funcÊion

t(s):l/s(s + l).

1. DESCRTPTTON OF THE SYSTEM

The block diagram of the system is given in figure l"
The elements of the fon¡ard pafh are:

(n) .{n ideal re}ay for which

u(t) : sen(e(t)) (3,1)

(ht A unit relay for which

u(t - r) = v(t) (3"2)

(c) A linear operator, vrhose ínput is v(t) and output is
y(t), characterized by the transfer function I/s(s +1)"

Let the state variables for the linear subsystem be:

*I:y+r' (3ð^)

Then

'!a = '\r

x:44*Bv

(3.3b)

ß"to)



lrtLI

where

and

where

input

[o ol
Á: | |' lo -rlL-l

Y:Cä

|--rc =Lr _rl

The output y(t)
is setiLo "ero so

e(t) : -y(t)

D_

is fed back l.¡ith
fhat

gainr of -1 and the

3,6)

Irltllr IL-l

3"5)

¿ë STATE SPACE DESCRIPTTON

( ") The Trqie _ctories
Integration of the state equations produces for constant v

*r=***ro ß,7)

!'IGURE 5

tsLOCK DIAGRAÞÍ OF A RELAY SYSTEI{ WITH DELAÏ
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where *10 is the value of *l t¡hen

' xz: v(l - "-t) + *ro *-t

where xr' is the value o{ x2 when f :

Elimination of t by combining (3.7) an¿

of curves
¡-

, \ -f,(rt-xto)*2-o:(*20-v/e

a sket'ch of r^¡hich is given in figure 6"

v) 0

t=0, and

o

( 3, S) resul-ts

lc nl

in the family

3 "g)

v(0

FÏGURE

TBAJECTORTES TN THE

6

STATE PLAN!]
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(b) The Sr'¡itching Line for utL)
Equations (3"r), (3"5), and (3"6) yierd

u(t)=-sgn(xl-oe)

Therefore if *I ) *Z then

and if *t ( *2 then

(c) Possible Srrmmebric SeIf-Oscillations
Figure 7 shows possible linit cycles.
s is the number of full periods stored i¡l the delay"

(3"r0)

ü:-1

u=l

(*r*r*'*2*"*)

v:1

-+(*rri.r,*z*in i r=x2
FIGURË 7

POSSIBLE STÌ,I}4ETRIC TIMTT CYCLES

iy'31
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The Sr^'itching Lines foq v(t)
From a consideration of the waveform stored in the delay,

J

figure f, and. equation (3"7), and the*fagt t,hat v: _1, it ís
apparent that t: I = sT + (**r* -Y) where T is the period

of the oscillation" The symmeüry condition *Irir, : -xl-a.*

and equation (3"7) produce

*r*u* -- t/lt (3"Ir)

(3.L2)

Application,of (3,q) to describe the trajectory between ( $ , 5 )

and. (x*u*, x2rÌax) and substitution from (3"L2) yietds

*arru*- ].: ((4" +t)xlnax- e)6(4sxlmo:."-r) (3"r3a)

A sinilar procedure produces

-( ¿rsx- +f )
*2*lo*I=((4"+t)**rrr+2)e rlnl-n (3"13a)

If s : 0 (3,l-3^) and, (3't3u) represent- straight lines'
Thls case gives the switching lines for v(t) when no switchings

are stored in', the delay initially"

^ PREDICTTON OF SELF-OSCILLATÏON
)ø

For the ídeat relay c. = * l, rf t^ = 0 and c:t :'ì
J * o J\0+) -*

then e:t+*) : (-1)i
J\"1 z

(3.14)

* 
$ ,. ol"Çt^eJ t^ {rsu"" T'
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Since

Ar [' ol
e:l I

[o "-'_i
ß,ti)

(a

equationr (e,rO)\u"oru"

x(o)

I
,l

I'j
16)

f ;!,-r -l

= i,-,,, I I:' 
f:,,1,, .., 1

(=o L _tL

tl
lo 0 

Itl
[o t - *-t-]

Thus
?4

e = ¿ (-r)' (rior - .r) 3.tT)
.\
c=o

which specifies that the total tj-:ne in, a period for which v = I
is the same as that for which v : -1, and

')++-'n\i,"i+I'i,.-l_*20:- -.:f \l-e tzo

For an ideal relay eo(tf - 1) = O since t : I.

Substitution of the values given in'equations (3"4), 3"5), (3,.14),
(3.L5), and (3,18) i-nto equation (2.I8) produces

*'Sr,rce A t¡srnSql",r e14^t¡on Q'tt) €qhhotberase.,(,
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0:rr --10 +(-r)P(tr,*sT-t-tp)

_"-(tn+ st-l) t._ t.
(-r)i (e-i+r - u-i)

P+

+(

r-f.

\
Go

tr 
r]+

h

r

m

r-.-T

P-12

\
L=o

t. *sT-l
(-r)P(en -e ( 3"r9 )

v¡here to ( tn + sT -r ( toar

This set of expressions for

to t. where i :0o ooo eI

one assumes to exist.

Svnmetric 0scillations

If r=2 sothat tZ=T
requires that II: T/2,

Substitution into (3"I8) gives

(3,20)

q+r relatesxr'

oscillations that

: Q * le o..e

for the self

*zo: ffi = *z'i'

then, as to : 0, equation (3.L7)

(3"2r)

for such an oscillation"
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Now h was defined to be an inbeger that, satisfies q + I< h(q + r.
As r:2 then h:q*1, q+2,"

Al¡o Q<t requires q < r, Thus q may only assume the two values

0 and l"
The periodic conditions derived, in Section Jb of Chapter IÏ,

i¡np1y that switchings of u(t) nust occur at (tq+I r- sT - I),

i"e" h:q*1, and (to*(s+1)T-I), ioeo 11 =q*2.

(") e = o

Switchings of u(t) oceur at (T/2 + sT - I) and

((s + 1)T - 1), As these switchings must be T/2 aparb, equation'

(2"l-3) yierds
o< (s +å)r - r <T/2((" + 1)r - r< T

rn¡hich upÕn rearrangement becomes ( s¡munetry allows the use of either
thecondiLionfor h:1 or h:2),

T ¿ T ¿L

--^* 

- \-s + L/¿ s
(t"zz)

Equation (¡"f¿) states that odd swÍtehings are swltchings

of v(t) from *I to -1" f/Z + sT is an odd switehing; With

v : 1, a. switchíng of u from *l to -l is required" " SÍmilarly, a

switching of u from -l t,o *l is requi-red when v : -I, An examin-

ation of figure 7 indicabes Lhat such a timit cycì-e is possible,

By eva.luaLing equation ( 3.L9) for the tr^¡o switching points

(i) h: Iy p:0 and (fi) h:22 p = Lc a:rd eliminating: =IO t

between them one obtains

^ r-( zs+t)T/2.
o:(4s+l)t/t*-z+ffi 3"23)

I * e -/-
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As the oscillation is sJnnmetrie *IO : -f/+" this could have

been substituted dfrectly into equation (3.l9) for (i) or (ii) and

the above equation obtained." Arternativery orr"* given in: (3"rr)
and *2*"* given in (3.ef) could have been substituted into the

switchi^ng tine (3,lfâ) again resulting in the above equation,
Ïf the substitution m = 2s * 1 is made, this equation becomes

identical r,¡1th the real part of ühe Hame1 l,o"ut3fJ3ro, one of the
requlsite conditions for oscillatlon ín this system, The range of T/2
given by (3"22) is the range for which ùhe imaginary part of the
Hamel- Locus satisfÍes the necessary switching condition,4

(b) q:r-

Switchi:rg of u(t) occur at (s + I)f - f and (s + 3/Z)T - 1.
As these switchings must be T/2 apart, equation (2"t3) yield.s

o <(s * r)'r - r 1r¡z ( (u + 3/2)r - r< r
which upon rearrangement gives

-L<r< 
l.. (3"2to)

s+I s+å

Equatíon (3"Lt+) staües that even numbered switchings are

swltchings from -1 to *1" As (s + 1)T is an even numbered

svritching, a switching of u from -l to +1 while v : *1 is
required" Sinilarily a switching of u from *I to -I r+h1}e

v = -I is required, ExaminatÍon of figure ? indlcates that such a

Iimit cycle is not possible.

*Barry Edward Brookes, rrThe Stability of Llmit Cycles in Time-Lag

Retay Conürol Systemstr (M.Sc" Thesis, Dept, of Electrical trJngineer-

ing¡ T967)o p. t+7.
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By evaluating equation (3,19) for the tv¡o switching points
(i) h:2, p=0 and (ii) ¡=30 p:1 andelirnlnating *1O

between them one obtaíns

(4u+ Ðr/a-2+Î"t:'"]#,:o (t.25¡
(1 + e *'*¡

ïf the substitutíon m = 2s * 2 is made, this again becomes
the same a.s the rear part of the Ha¡ner Locus set to ze,.o. The ra-uge
of r/2 howevero is the range for which t,he Í-naginary part of the
Hamer Locus fairs to satisfy the swítching condi-tions.5

tt" THE STABILITY 0F THE LIMIT CYCLES

(u) Deternination of Equation (2"20)
ïf v = -r equation (3"7) specifies thaù for the trajec-

tories sho¡rn on figure B,

*l_fo:-t/2 **l*rro

for the lj-mit cycle amd

*l-*i., * o*rri+r : -0/2 + 
^Ti) 

+ xLna* * o*rr,

for the perturbed trajecüory. fhus

otrri+r-: o*trr- oÎi (j"26a)

Ã'Ibld,
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Similarlylf v:I

Atroi+r = o*rr, * ati (3 "z6a¡

use of equations (l"g), (i,11), (l"zt) and local t-ineariøation:
produees

A*roi+r = #4, axrrÍ+r - A"r, ,) + "-r/'o*r,,
ß "27¡

The same expression results if v : *I or v : _1.

(b,) )
ItLet Í be the value of *r and xrr when u switches from

+1 to -l on the li-mit cycre and al¿ be the varÍatio¡r in, xr
and *Z on the i-th crossin*g of the switching line"

(i) s=0

From figure I and equatiom (g"T) it is apparent that

if v:-1 then

ATi = o*rrr - o5 r*, 3"zu)

butlf v:I

ATi:-a*r.i+A3r*, (3,zga)

(ii) s )- I

The varlation in time between the i and the (i + I)
swi-tchings of v(t), À T.i o is the varíatíon in the time
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Y
interval between the switchÍngs of u(t) tfrat oeculed ts = Lr)

k( t), the (i - 2s) andseconds previous to the switchings of
(i + I - 2s) switchings ôf u(t),

From equation ( 3"7) if is apparent that the change ín
the total dÍstanee iravelled in the *I direction, between the
(i - 2s) and (i +1 - 2s) switching of u(t), will be the varia-
tion in the tírne interval, bet¡¡een these switchÍ-ngs. 'Ihus from

figure B it follov¡s when

Iv - -r

^,T. 
: 2 .Ax-

l- I eL-¿S

but if r¡ : I then

(*)

: çs +-Jl4-ìg =+ az^ +i-(s+L/to)T-r -"r,i

(3"29a)

^l i*r-r" ß "zça)

and local lineariza-Lion ín
above, the variations in

¡-Ð U (3,3ob)
(s+L/t+)r-1 Àx

l̂gL

o5 ,-ro - o3 r*r-ru

Á.'1. : -2 A*tri_2" + Ali_2" *

Use of equations (t"g), (3,I1), (3"fe)
a må.nner símilar to that of section (a)
Y -*.ì BJi+f and Ji maY be found Lo be

o5r*r: f# a*r,, n
t I ^ t I ./o\,¡L-l >'TL/ ¿. J L

(s + r//+)r -1

drt u

^3

CoqþÞation-of- Equations to Fo-rm (2.??)

(i) For s:0

From equations (3,26a) and (3"28A), oi- (3.26'l¡) and (3"28b),



combined v¡ith

ax.._ :-a+r

(j.3oa) iL

FoÁEi

foll-ows that

(3,3r)

where

., : FIîãTîTv \ -/ a _t

Thus

a¿ : Fk ar.
-KO-O

Therefore if À, and À, ur" ihe eigenvalues of Fo, the linear

system is asyrnptotieally stable-if. l\-l < 1, i = I, 2"6 Thus' J'
the limít cycle mode with s : 0 t"¡iIl be stable for arbitrarily
small perturbations of the switchíng points and thus of the linit
cycIe"

For the system under consideration equation (j.Zj) for s :0
produces T/Z = 3.75" For this value the eigenvalues are found t,o

be À r" Z: A.05BO t j O"A55g so thaù the oscillation predicted for

s : O is locally stable

A"Lotfi A, Zadeh and Charles A. Desoer, Linear System Theory

(Toronto: McGraw-Hilt Book Company, 'L963), p. tr82.

t/tr - z

-2
---;.-Ër + et/'

L-'t /2e'

^ L-'t /2
<?*n + e-'t/2 0/L -L))

I * e-l"
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If

then

ì.a ---L r \Án(z') = H \z)

where

"2s*l_i ^,ri

H(z) : ,2srr t 2ç
-z -e -s 3.36)

-F
2s-i 3.37)

3ô*)

form v¡here all the factors of

of adj H( z ) have been can-

n can be reduced bY elementarY

f orm,

2s+

),s<'
Lz0

l- Lsl,çl-s
L L=o

^ 
-rl

H-r(") : #*-rla#:

r.¡here P(z) /n(z) is H-l(, )

clet H(z) comnon to all the

ceIIed"

i:/ o \

m( z,)

in the

element,s

r.1

Theoremg'7

Ëvery z-matrj:c H(z) of rank

transformations to the Smith Normal

¡ /-\ ôL. \'b.t va'

^ 
p /-\v L^\al .oa¿'

o...é 0Ëocogoâ6oo

0 0 .oð t,(z) oêan'

0 o coe c oêo

0

0 0.o

0

U

U

3Jq)N(z) =

0

?¡'"urrk A¡rres Jr. ,
Co., L962), p. I88"

Matrices (Ner.r York: Scharm Publishing



J4

vlhere each r¡( z ) is monic ( i' t'

highest power of z is unity) and f'(z)
(i : l, 2e , n-I).

When a z-metrix H(z) of rank n

greatest conmon divisor of all g-square

greatest colnmon divisor of all g-square

conmon dívisor is

a
ElenentÈy transformations modify

by at most a multiplicative constant'

invert,ed (iu e. j-s nonsingular)

aetH( z ) :

which k is

- l)-square

Aþ) : I

the coefficient of the

divides f.ur(z),

has been reduced t'" (3"39) the ,

minors of I{( z ), I ( n is t'he

minors of l{(")" This grea&est

(g:1r2t ,n)

the determinant of
Therefore Íf H(z)

the
can

matri:c
be

ìn

(n

(rr(z)tr(z) .'. rrr(z))k

a constant. The greatest' common divisor of all

minors of H(z) and thus -of ad'iH(ø) is therefore

drr-r(z) : fr(z) f"(ø'l'"'" rrr-r(z)

and so

rn(z) : rrr(z) rr¡ri¡ evenlg

sj-nce rr(z) dj-videsn r'*r(zb rn(z) contains au- the

(perhaps t'o a lor*er power) tilat det'H(z) con-tains'

consider factors eonnon to ell elenents of p(z) Ä(z)

2s*
2s*t-i^ä _ F" 2 uru-L a.li

L:o

(3.40 )

roots

where



¿ s-t7'
,as i-I-..l. - \2, L\x-, , * ./ 2,

J. y J. ^.\
C=o

¿\j.2) =,

x. -o-l_ Ja7'v

(3"¿ur)

^2r-,,)--! 
¿'r,, 

? ,.
aÞ- )-   ---

¡:-À .i!. l '

-t-'

2S-l_
/.

T/t \
Õ"L/',' \ o/'"\

'r -n

If the oscillation ís
small initial dísturbance
sysùem, In particular let

to be stable, it rnust be stable for any
stored in the delay or placecl on the
Lhe disturbance be such that

L 12s
Í:2s

Then

3,tz)

Thus a,s P(z) is already in reduced. form, onry the factor z ilay
cancel in n(z).

It is obvious from a partial fraction expansion of AX(z),
t,hat if "a.x(t) ls ùo ha.ve stable behavi-our the zeros of rn(;a,) and
thus of detH(ø) must all l.ie in the open unit circle: lzl (1,

If ¿.x(t) is to have unstahle behaviour deil{(z) must have
at least one zero outside ì:he closed unit circle" rf alr the zeros
of detH(z) lie in the cl-osed unit circle with one or more on the
unit circle higher order terms must be considered to determine.-
stabiliüy.
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a
Theoren: "

For a given pol;.nomia.f f(z) : ao * arz + .". + anzn, IeL

all the "k be real and the following sequence of polynomials

f .(z) be const,ructed:

h-if ,.\
r "(z) : l- ,lt' "u

' k=; 
t1- tL

v¡Trere ro(z) : f(z) and

,(J+r) _,(i) ,(i) _ "(i) ,(i) - i :*k -@o ok -";:i"rr-i-f.rJ=Crl-e ,n-1"
3. +a)

LeL ,,. : u!t' ':t ,5n), k : r¡ z, n

Then, if, for some k(n, Pkf o but ft+t(z) = O, Lhen f(")
has n - k zeros on the unit circle lzl = | at the zeros of fU(z);
it has p zeros in this circle, r,rrhere p is the number of negative

Éi for j=Ir2e ,k andithas q:k-p øerosoutsidebhis
circle, 

J.
From equations (9"*), (3"34) and (2.t6) and the definition,

of a determinant.

det-r{( z) : z2={ r"o' - (r + u-T/2¡r2s+L + e-T/z zzs

. 4-t.=-i1 
*t/'å - - 2¡r-G+:/z),r - u-: /: \(s*+r/dT--r z+ffiJ ß.tù)

BMortì, l,farden, The'Geometry--cf the-Zeros of a PglJclomi-al in
a Com'plex Vp.riable (New York; American Ma.thematical Society, L949),

p" L57.
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detH( u) : ,2t(z * I)t(r)
where

f(z) : ,Zs*L -e + "-T/z)rau - z(r + u-T/z)

+ e" 42)

Note: equation (3.23) ma.y be used to show that z : -L is a root
of detH( z ).

Leter4iqetion o-L the Locat-Lg! qt the Zeros of f(z)

ujt): ^3- ^|uo.

2s-l
\, -rL 1
,l \-L ) 7,

l=t

-t

s)¡ L (for proof see

ß'tr3)

appendix),a- is always less tha.n I for
o

/'r \
Thus -i < "f''( o for s), r
Now

-2 "I*( 
s+1/2 )T z + u-r/21 2(L + "-r/2)

ß"trtn)

2(e I-(s+t/2)r
(s + L/t+)T -
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From the geometry of figure ? it ís appa.rent thq't

(s+I/4)r-1:3>o and

(e1-( s+t/z)r _ .tt/r) = ("-( Y +"t/t*) - "-r/z)) o es

":t) : (,:t))2 - (,51)in ( t -r -2)2 : -3 ß"trs)

tntu 
', 

: tÍt)( o Pz: ':t' ":t)> o

and so there is ¿.t least one zero of f(z) and thus of detH(z)

that is outsi-rle the unit circle'
It is therefore proven that alt the liiniù cycles for s)z 1

¿re unstable. The predictions of Chapter I have been verífied
for this particular case"



CHAPTER IV

DÏSCUSSION 01,- RESULTS

In Chapter I, a.n intulüive discussíon of the failure of
Loebts Rule in sysLens containing delay is given, Tt is predicted
that all the higher frequency modes of oscillation in any relay
control system with dela.y wiIL be unsLable"

In Chapter II an exact method of determining self-osciII-
ations and their stability in a feedback control sysùem containing
a discrete nonlinearity, a delay, and a linear part is developed,

This method is stabed in a very general form and can be

simplified for special applications. For instance, if syrnmetric

oseillations are expected the fact that ë(t) = -¿(t + t/Z) carr

be used instead of x(t) = l(t + T) and t,he number of switching
equations ean be reduced by half and üheÍr forrns simplified,

The chief r.,'eakness of fhe method is that one must first
choose the form of the osci-Ilation to be invest,igated, The method

used Ín this thesis was to examine the trajectories in the state
space in relaüion to the switching plane, Thls, however, requires
Judgement and it would be easy to miss a possible limit cycì-e in
a more complex system, For very complex systems the method would

be close to impossible"
A r+orthy project would be the developmenü of a sysbem for

predicting possible forms of oscillations"
In Chapter ïIï, the methods of Chapter II are applied to



sJmmietric oscillations in a part,icular s¡rstem,

Chapter I ís confirrned for this system.

The prediction of

The methods of testing the stability of difference
equations for variations in the sr.ritching points is applicabre
to other ideal relay systems, for which the state matrix is
dia.gonal" They lrill have difference equàtions and F" and Go

matrices of the same form.
i'Jhen one considers the argument of cha,pter r, one suspect,s

there should be a. general proof regarding instabil-ity of s¡rmmetric
oscillations Lhe frequencies of which correspond to the intersee-
tion o{ t,he Nyquíst Plot and crítica} locus in a region where a

mode of oscillations with O-)0. exists regardLess of the non_
- An of t-h¡slinearity. 4åås investigation^r^¡ô'uid a.Iso have merit,
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APPENDIX

3
Proof that 0 (. a.o (t for s). L in !ìquation (3"t+7)

since (*-(5 +t/ù - u-'/')>o a.nd S ) o (proven on p, 36)
then .J 0.

Use of (3"2j) allows one to write

It follor*s from the el-Lernatine series rule that

.-T/zrL-,1/2 if r>ó
Substitution of the above ancl use of (3"12) gives

uo(-2,+rtr*T

tr 3, õåT 
rhen a'o( r

Therefore if 3> ,/S and T <1 then ao( 1



t,?
*J

Inlhen s = I equation (l"Zg) gives T : 0.g|gLAA"
r.¡here 0 -< 0 < T, T decreases in a monotonie manner
Therefore T(f for s) 1.

A Lower Bound or I
of (3,9) gives

Since t:sT+0
as s inereases.

u=-I'-*-t

Differentiation

dx^
-(=- l^, r\

dxl--\^2--L/

thus G2

"1
:I-D(?'t) (

¡¡here (t , ? ) is a point, on the *I = *2 switching line such that
a tangent through this point of the tra.jectory with v : I passes
through the (xlmax, xzmax) point,

As the slope of any trajectory decreases when *I and *z
increase (xr( I) I > t

U:It-

q,3)

IGURE 9

A LO'Ì/üER BOUND ON 5



Use of the point slope equation for a. straight line gives

tt - *¿r"*
tt - **ut -'l vr

Substitution from (:,rf ) and 3"9à) and use of the quadratic formula

produces

l+lv

T . ,r:T/8*,Ire2 -t-'- 
Y eT/z +.L

Check That Figuqe 9 Corrpgt!.y Rgpresent_s. the- Georqetry
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The geometry of figure ! correctly represents this solution for \-.,LI

dÐ

yì ,,/ ,

Lr \ t/l* <r for u )t 1"

Norn¡ ao (, t for s)z L if

r--îr/s 1- ,l(r/e)' - r/u + Lanh(r/Ly) ) ,/f-v



t,q

This is true if
L(T) = ranhl/tn) t/t, - tz/roo = R(T)

These are smooth curves. A calculation of values indicates

that this ínequality is valid for O<T<2"12 (approx,). The curves

have a point of tangency at T = 0, However, the second dèrivatives
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indicate tha.t for erbitrarily smatl T > 0 t(T)> R(T)"

The slopes of these functions are respectively

g! : | 'u"nz t/t* and q* = L/t+ - r/5o
dT lr. 'r d'l'

Since the shapes of t,hese functions are well known it is easy fo see

that
(L/Lr) sech' t/t, > t/tr - 't/So

on the range 0<T<I.39 (aPProx.).

Thus the curves diverge properly et T : 0, and remain apart

because of the slope eondition over the rafige I assumes for s ) I'

Thus

O(ao( I for slzT.


