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ABSTRACT

A general method for prediction and determination
of the stability of self-oscillations in a system
containing a discrete nonlinearity and delay is

developed. This method is applied to a system for

which Loeb's Rule fails.
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CHAPTER I

INTRODUCTION:

Loeb's Rule} for the prediction of symmetric limit
cycles, fails in the case of a relay control system with
delay (figure 1).

The describing function method is an approximate
method of predicting limit cycles. The Nyquist Plot, A(jw),

and the negative inverse of the describing functiom qué(E),

are plotted, Intersections of these two curves indicate

possible limit cycles. The frequency, w, of the limit cycle
is that value of w that maps, by means of the A(jw) function,
into the intersection point. Similarly the magnitude, E, is

determined from the -K;é(E) curve,

Loeb's Rule:
The 1imit cycle is stable, if the vector cross product

—_— ?

-1 R . cas
dA( jw) L (K (E)) is out of the page i.e. "positive"
aw & d

1. J. Loeb, "Phénomdnes Héréditaires dans les
Servoméggnismes; un: Critérium Général de Stebilite",

Annales des Télécommunications, 6(12): 346 - 356 (1951).




WG .
where dA(jw) is a vector at the intersectiom: point

cw tangent to the Nyquist Plot, in the dir-
ection of increasing frequency and
—_—
d -1 . . . .
dE(-Keq(E) is a vector at the intersection point

tangent to the negative inverse of the
describing function, i.e. the critical
locus, in the direction of increasing

magnitude,

Loeb's Rule predicts an infinity of stable limit cycles,
corresponding to each of the crossings of the critical locus
in an upward direction, The inner limit cycles (those of
higher frequency) are in fact unstable.

An intuitive reason for the failure can be given.
Loebi!s criterion presumes that the mapping from the s-plane,
into the A(s) will be single valued. Because of the
presence of the delay e_'c s the mapping is not single
valued,

The Nyquist Plot is a mapping of the s = jw line,
from the s-—plane into the A(s) plane. A{jw) represents the
magnitude_gain and phase shift given to an input of the form
- Esin wt,

‘Mapping of the s = 0. + Jw lines in the s-plane
(where Cfi is a real nonzero constant) can similarly be made
into: the A(s) plane, A( G}f»jw) represents the magnitude

gain and phase shift, given to an input of <rit
Ee ~ sin(wt).

Grensb@@&é*g definition of the describing function for
s o‘.t o,_t
an input of the form "3 o35yt gives Keq(E) = L/fn Be ).

Thus the critical locus lies along the negative real axis for

any 0.

2, P. E., W. Grensted, '"Analysis of the Transient Resp-
onse of Nonlinear Control Systems", A,S.M.E. Trans., 80, 1958,

PD- h27 - 320
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FIGURE I

A SYSTEM FOR WHICH LOEB'S RULE FAILS
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FIGURE 2

THE CRITICAL LOCUS AND PART OF THE NYQUIST PLOT FOR THE SYSTEM SHOWN IN
FIGURE I



Because of the presence of the delay, e-?:s’ an infinity

of such U; + jw curves cut the critical locus at zny point (see
figure 2). The closer the point is to the origin, the larger the
number of the 0’i> 0,

Where the s = jw curve cuts the critical locus closer to
the origin, several s = Cfi + jw curves with 0;f> 0 cut the
critical locus.

Loeb'!s Rule informs us that the FE sin wt mode would be

oyt

stable, However other Ee sin wt modes are possible, with

0;'> 0. These modes are exponentially increasing and can not be

stable.
It is not then reasonable to expect Loeb's Rule to work in
a system containing a delay, unless one restricts its application
to that portion of the plane where O 0 for all modes.
BrookesB, in his M.Sec. thesis, obtained for the second pre-
dicted frequency of possible oscillation (m = 3), for a system in
which L(s) = 1/s(s +1) the following:

6.41 read./sec.

Growing Exponential Term (Tsypkin Method) w = 1,55 rad./sec,
G = 1.22 nep./sec,

When |A(s)l = 0.0243 LA(s) = 180° the second erossing
(second largest magnitude, E) of the critical locus by the Nyquist

Frequency of Limit Cyecle (Hamel Locus) w

Plot occurs, Two modes of oscillation are possible with 0> 0,

3Barry Edward Brookes, '"The Stability of Limit Cycles in:
Time-Lag Relay Control Systems" (M.Sc., Thesis, Dept. of Electrical
Engineering, The University of Manitoba, May 1967). p.54




First mode of oscillation w = 6,40 rad./sec.

O=0 nep. /sec.
Second mode of oscillatiom: w = 1,74 rad./sec.
0" = 1.66 nep./sec.

This order of magnitude agreement gives some credence to the
argument that it is the lower frequency modes with 2> 0 that
cause the unstable behaviour.

However, in a relay control system it is not clear how two
or more modes would interact if they existed simultaneously. An
exact method is needed to determine what will happen,

In Chapter II, an exact method of predicting self-oscillations
and determining their stability is developed for a system contaiming
a delay and a discrete nonlinearity.

In Chapter III this method is applied to a system containing
an ideal relay, a delay,and & linear part L(s) = 1/s(s + 1),

It is shown that all the higher frequency self-oscillations

are indeed unstable,



CHAPTER 1I

A PREDICTION OF SELF-OSCILLATIONS IN AN AUTONOMOUS SYSTEM CONTAINING

A DISCRETE NONLINEARITY AND DELAY

In this chapter an exact method of determining the modes of
oscillation is developed. A procedure for examining the stability

of the predicted limit cycles is suggested.

DESCRIPTION OF THE SYSTEM:
The block diagram of the system is given in figure 3. It is a

feedback system whose forward path containss

(a) A discrete operator, S(e,sgn(&)), whose value may depend on
both its input, e, and the sign of the time derivative of its
input, sgn(&), and which assumes one of a set of constants
so that

S(e,sgn(8)) = u(t) = oy (2.1)

where cj are constants and j =1, ... ,ko.

The current value of j depends on e,sgn(é), and the value j
assumed, j(t;), at the previous switching instant of u(t),

A
i
(b) A fixed delay of magnitude, T , so that

w(t - T ) = v(t) (2.2)



(e¢) A linear operator whose input is v(t) and output is y(t).
It is characterized by a rational transfer function L(s).

It may be described by the state equations:
¥ = Ax + Bv (2.3)

y = Cx + Dv (2.4)

where x is an n-dimensional state vector. A, B, C, and D are
constant matrices of appropriate dimension.
The output y(t) is fedback with a gain of -1 and the input
is assumed to be zero,
Thus
e(t) = -y(t) (2.5)

u(t) - s v(t) L(s) y(t)

”S(e,sgn(é)) e

r =07/ \ e(t)
J

FIGURE 3

BLOCK DIAGRAM OF THE SYSTEM



2,

THE PSEUDO-STATE SPACE APPROACH
As the system incorporates a delay, the conventional state
space would be of infinite dimension. However, as u(t) varies
in discrete steps its value will be constant for finite intervals
of time. The same information could be stored by recording the
switching instants of v(t), t., and the magnitude to which v(t)
will switch, cj(tz)’ Thus the state of the system can be

specified by a finite set of data.

PREDICTION OF SELF~OSCILLATIONS
In a system without delay, self-oscillatiom occurs if
x(t+T) = x(t).
The state variables of the linear part are the state variables
of the system, and thus completely determine the future behavior
of the system,

In a system with delay, the information stored in the delay
(constituting an infinite number of state variables) also influ-
ences the future behavior of the system. In the case being
considered, the waveform in the delay is a succession of constant
levels of finite length.

T(t) is used to represent the intervals between: switching
instants stored in the delay and C(t) the magnitudes associated
with these switching instants so that

T(t + T) =T(t) and C(t + T) = C(t) if self-oscillatiom
occurs, The dimension as well as the values of T(t) and C(t) can

vary with time,

(a) The condition x(t + T) = x(t)




The solution of the equation (2.3) yields

t

eA(t— eA(tat')

x(t) = M%)y ) + B v(t') ab! (2.6)
t,

v(t) switches at {ti}: - The t, occur periodically with the
period of i equal to r.
let t =0 then 1t =T and ¢t = gT,
) r sT
Let ¥© =sT+ § where s is an integer and 0§ § < T.

Thus €¥ =+t _+ 8§ .
sr

Since u(t - ) =v(t), so u(t) switches at ti - e

As u(t) = cj(t;.t) when t, - <t & by - T (2.7)
t) =c,, .+
v(t) CJ(ti) when t, < t < tin b2,8)

The solutiom for x(T) may be written as

Y f".'i'i
(1) = *x(0) + é °3(t]) S ATt g g (2.9)
(=0 fé

As B is a constant matrix, a periodic solution requiring x(0) = x(T)

produces

e t£+1

[I - eAT_J x(0) = 2 e5 (et AT j et gpr B (2.10)

K 1
(=0 ¢




AT)

If A and (I - e are nonsingular thﬁs may be written as

~1 L
N AT ]*”' AT -At, -At,
2&(0) b [I - e e écj(tz) [e i+l $e l] A—l B
=0

(2.11)

(b) The Conditions T(t + T) = I(t) and C(t + T) = C(t)

Consider the signal wu(t) entering the delay in the time
interval (=T ,T - € ) as illustrated in figure 4(a). This
determines the signal v(t) in the time interval (0,T) shown
in figure L(b).

At time t = 0 a waveform consisting of:

(i) s full periods as illustrated at (a) in figure 4 and
(ii) 2 periodic continuation for the interval (-8 ,0), is stored
in the delay. This occupies the time interval (~-C,0).

In order that the system have an oscillation of period T,
the contents of the delay at time T must be identical to that at
the time t = O described above, This occupies the time interval
(- € + T, T) illustrated in figure L.

q is defined to be the maximum integer such that t £ .

That is tsr+q _ % is the last switching of u(t) beforeé t =0,

Let h be an integer such that q + 1€ h<q+ r. Then
periodicity requires t(q+ﬁ)r+h - T = tsr+h - % + T, and

boptn = tn ST (2.12)
Now let tp??be the largest switching time of v(t) which satisfies

- T

b sitsr+

P

10
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Thus

< -
t) Sty + ol v < b (2.13)

Now

€.+ sT-T

A(th-{-s'l‘- T ) A(th+sT- T .tt)

E( ts:r'-Hn

£=0
(2.14)

since v(t) = ¢

Ciag
(t, +st- T) e
A(t, +st-
_ h -At'
(=0 T
T+sT-%
~At!?
]
+ cj(tg) e dtt | B (2,15)
tP
If A is nonsingular
(2
A(t, +sT- T ) ~-At, -At,
- - h i+l i
x(t_ ., -C)=e x(0) + écj(tﬂi“)ée +e )
\.=o

At 4sT- T)  ~At_.
+ cj(t+)(—e h + e P) At B (2,16)

-T )=c¢e x(0) + e Bv(t')dtt

Lot . .
J(ti) where t. <t g t.,; and B is a constant matrix,
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At this switching 1nstant e and sgn(e) must have values required

by the operator S(e, sgn(e)), in order that u(t) will switeh from

c.,. + to e¢,,,+ N
J(tsr+h-.l) J(;t’s1c'+h)'
o | fied va +

Let e (t srth ) be the specified value of e(tsr-f-h )

Then
_ + _ + +
© ,(tsr+h -T) = °y(tsr+h -t)= -Cz(tsr-f-h -T) -Dv(tsr+h =)
(2.17)
Since v(t sr+h -T) = cj(t;), this may be expressed as
P4, Lt

A(t, +sT- T )
+ _ h ~At?
d<tsr+h -T)==Ce J(:zs(o) + 2 °J<t;f> e dt!

fkfs'l'*? =0 t(:
+ c.,,+ e"At' dt' | By -Dec.,.+
3(t)) j(tp) (2.18)
tP
and if A is nonsingular as
+ A(t +sT-TC )
ed(tsr-!—h -CT )=<Ce x(O)
p-1
‘ —At‘ -At
i+l i
’:O
, =A(t +sT-%) -At
h p -1
4 - De,, .+
+ Cj(t;)(e + e )| AT B CJ(tp)

(2.19)



When x(0) is substituted in terms of the unknown bt

(i =0, ... ,r) there result #re r equations in r unknown
ti to solve, A wave shape for u(t) must be chosen and the
values of the ti found numerically. One method of choosing
the waveshape is to examine the trajectories in the state
space in relation to the switching planes andxgbservgﬁg-what
limit cycles might be possible.

After a limit cyecle is predicted, an examination of the
trajectories in the state space will determine if any of the
sgn(;) conditions are unsatisfied or if any extraneous
switchings ocecur, If neither of the preceding.eventualities

arise the limit cycle is possible.

ho A METHOD OF DETERMINING THE STABILITY OF THE LIMIT CYCLES

The method is as follows:
Determine the relation between the incremental variations
in one switching point, A X the time between the i and the

(i + 1) switchings of v(t), ASTi, and the next switching

point, A X, ., respectively.

=i+l
Local linearization may be used to express this in the form:

AX, = FjAgi + GjATi (2.20)
where Jj =0, ... ,r, Fj is an nxn matrix and Gj is an nx1
matrix.

In general there will be r equations, one for each
switching point in the limit cycle; however, symmetry may

make some of these equations identical,



(b)

(e)

Determine the value of ‘&Ti in terms of the Zggb's
where b < i. ASTi depends on the variation in time between
the switchings of u(t), that occurred T seconds before,

Local linearization may again be used to express this in the
form:

,5:
AT, = E K, AX (2,21)
b=w

where f - w< r
f é.i - 8T

Kb is a 1lxn constant matrix.

If a switching point of v(t) occurs on a switching plare

of u(t) there may be two equations. The one that is in fact
applicable, depends-on which side of the switching plane
%, places the switching point.

Combine the relations into a set of difference eguations,
Then determine the stability of these equations,
£
AKX g = Fj Ax, t Gj ig Kb AK, (2.22)
b=w

The next chapter applies the procedures developed in
this chapter to a specific problem and should clarify many
of the details of the technique.

15




CHAPTER III

SELF-OSCILLATIONS IN A RELAY SYSTEM WITH DELAY

The methods of Chapter II are applied to a system in

which the nonlinearity is an ideal relay; the delay is
unity, and the linear part has a transfer function
L(s) = 1/s(s + 1).

DESCRIPTION OF THE SYSTEM

(a)

(1)

(e)

Then

The block diagram of the system is given in figure 5.
The elements of the forward path are:

An ideal relay for which

u(t) = sgn(e(t)) (3.1)
A unit relay for which
u(t - 1) = v(t) (3.2)

A linear operator, whose input is v(t) and output is

y(t), characterized by the transfer function 1/s(s +1).

Let the state variables for the linear subsystem be:

Xy =y +¥ (3.32)
X, =¥ (3.3b)
_3:{. = A _J_{_ -+ Bv (3014-)




where
0 0 1
A= B =
0 -1 1
and y = Cx (3.5)
where C=[l -l:l

The output y(t) is fed back with a gaim of -1 and the
input is set ' to zero so that

e(t) = -y(t) (3.6)

2. STATE SPACE DESCRIPTION
(a) The Trajectories
Integration of the state equations produces for constant v
¥ TV 0 (3.7)
Luce)
=0/ e(t) e(t) llu(t) oS v(t) 1 v(t)
\7// 1 s(s+1)
FIGURE 5

BLOCK DIAGRAM OF A RELAY SYSTEM WITH DELAY

,wi§; S



where X, is the value of x; when t = 0, and

X, = v(l - e—t) + %54 et (3.8)

where Xy 18 the value of Xy when t =20

Elimination of t by combining (3.7) and (3.8) results in the family

of curves

’%(Xl-x10>
Xy = V= (X2O -v) e (3.9)
a sketch of which is‘given in figure 6,
x
2
- —/V__;__ el
v>0 v<0
FIGURE 6

TRAJECTORIES IN THE STATE PLANE



(b) The Switching Line for u(t)
Equations (3.1), (3.5), and (3.6) yield

u(t) = —sgn(xl - x2)

]

Therefore if xl> X, then u = =1

2

]
H

and if xl< X, then u

(¢) Possible Symmetric Self-Osecillations

Figure 7 shows possible limit cycles.

s is the number of full periods stored in the delay.

(3.10)

Xy s 9 Xors )

X e g XA s
( 1min?® " Zmin

FIGURE 7

POSSIBLE SYMMETRIG LIMIT CYCLES

19




The Switching Lines for v(i)

From a consideration of the waveform stored in the delay,
figure 7, and equation (3.7), and the faiﬁ that v = +1, it is

apparent that T =1 = sT + (le ) where T is the period

ax

of the oscillation. The symmetry condition Ximin = “Flmsx

and equation (3.7) produce

X = T/4 (3.11)

and so E
=] 1 - = -
(s + )T - 1= (ks + 1)~ 1 | (3.12)
Application of (3.9) to describe the trajectory between (§ s g )

and (x XZmax) and substitution from (3.12) yields

Ilmax?

~1)

X, - L= ((hs + )xq, - 2)e b5% oy (3.13a)
A similar procedure produces
-(4sx, . +1)
. Imin
Xomin Tt = ((4s + l)xlmina+ 2)e (3.13b)

If 8 =0 (3.13&) andf(B.le) represent: straight lines.
This case gives the switching lines for v(t) when no switchings

are stored in: the delay initially.

PREDICTION OF SELF-OSCILLATION

For the ideal relay ¢, = P11 t =0 end ey =l

then = (--1):.L ’ (3.14)

C.r.T
3(ty)

*
E 1s defined In L(juvc. <.

20



Since

At '
e = -t (3.15)

equatiom: (2.10)*%ecomes

F' Q}L T 7
b1
0 0 . S dt? 0 1
x(0) = (-1) (4] tb‘rl
0 1-e T (=0 0 \ e (Tt pe | | 2
L ¢, N
(3.16)
Thus
=R |
_ i
0 = 2 (=1) (t’i+l - ‘bi) (3.17)
(=0

which specifies that the total time in a period for which v =1

is the same as that for which v = -1, and

1
.t t,
e e é (-1)Y (e oot (3.18)
20 =7 T §
-° =0

For an ideal relay ed(tz - 1) =0 since T =1,

Substitution of the values given im equations (3.4), (3.5), (3.14),
(3.15), and (3.18) into equation (2,18) produces

* :
Sl"\CQ A = 5153\414\’ eic'{a,fmy\ (ZID €ahnot he used,




P-4
0 = _1)t - _1)P -1 -
X5 F 2 (~1) (ti+l ti) + (=-1) (th + sT - 1 tp)
(=0
1
. b, t,
~e_(th+ sT-1) oI :g -1 (e i+l e 1)
1 - e-T z_:D
P-
.t t, £, +5T=1 t
+ P e i ety 4 ((1)P (e P ~eP) (3.19)
»
where tp g th + sT -1 <tp+1 (3.,20)

This set of expressions for h=q + 1, ..., g + r relates %10
to ti where 1 =0, ... , r for the self oscillations that

one assumes to exist.

Symmetric Oscillations

If r=2 so that t, = T then, as to = 0, equation (3.17)

requires that t, = T/2.

Substitution into (3.18) gives

1/2
1l - ¢€ .

%20 = 72, = *omin (3.21)
(L+e/7) °

for such an oscillation,

22



Now h was defined to be an integer that satisfies q + 1< h<q + r.

As r=2 then h=qg+ 1, g + 2,

Also @< T requires q < r. Thus q may only assume the two values

0 and 1.

The periodic conditions derived, in Section 3b of Chapter II,

imply that switchings of wu(t) must occur at (t + sT - 1),

g+l
i,e. h=q+1, end (tq+(s+l)T-l), i.e. h=gq+ 2,

(a) g=20

Switchings of wu(t) occur at (T/2 + sT - 1) and
((s + 1)T -~ 1). As these switchings must be T/2 apart, equatiom
(2,13) yields

0S€ (s +3)T - 1<T/2€(s + 1T -1<LT

which upon rearrangement becomes (symmetry allows the use of either
the condition for h =1 or h=2),

1 <T<

EE% (3.22)

o j

Equation (3.14) states that odd switchings are switchings
of v(t) from +1 to -1, T/2 + sT 4is an odd switching:; With
v = 1, a switching of u from +1 to -1 is required.. Similarly, a
switching of u from -1 to +1 is required when v = -1, An examin-
ation of figure 7 indicates that such a limit cycle is possible,

By evaluating equation (3.19) for the two switching points
(1) h=1, p=0 and (il) h =2, p =1, and eliminating ',
between them one obtains

Qo l-(25+1)T/2
1+ e"l/2

0= (4s + 1L)T/L - 2 + (3.23)

23



As the oscillation is symmetric X5 = -T/L. This could have

been substituted directly into equation (3.19) for (i) or (ii) and

the above equation obtained, Alternatively x given inm (3,11)

1lmax

and Xomax given in (3.21) could have been substituted into the

switching line (3.132) again resulting in the above equation,

If the substitution m = 2s + 1 1is made, this equation becomes
identical with the real part of the Hamel Locégxgé}o, one of the
requisite conditions for oscillation in this system. The range of T/2
given by (3.22) is the range for which the imaginary part of the
' L

Hamel Locus satisfies the necessary switching condition.

(o) g=1

Switching of u(t) occur at (s + 1)T = 1 and (s + 3/2)T - 1.
As these switchings must be T/2 apart, equation (2.13) yields

0L (s +1)T -1<T/28(s+3/2)T-1<T

which upon rearrangement gives

—L LI (3.24)

1
s +1 g_:—g
Equation (3.14) states that even numbered switchings are
switchings from -1 to +l. As (s'+ 1)T is an even numbered
switching, a switching of u from -1 to +1 while v = +1 is
required. Similarily a switching of u from +1 to -1 while
v = =1 is required. Examination of figure 7 indicates that such a

linmit cycle is not possible,

hBarry Edward Brookes, "The Stability of Limit Cycles in Time-Lag
Relay Control Systems" (M.Sc. Thesis, Dept. of Electrical Engineer-

ing, 1967), p. 47.



By evaluating equation (3.19) for the two switching points

(i) h=2, p=0 and (ii) h = 3, p =1 and eliminating X0

between them one obtains

28l-(s+l)T

(hs + 3)T/4 - 2 + T, O (3.25)
+ e

If the substitution m = 2s + 2 is made, this again becomes
the same as the real part of the Hamel Locus set to zero., The range
of T/2 however, is the range for which the imaginary part of the

Hamel Locus fails to satisfy the switching conditions,5

L. THE STABILITY OF THE LIMIT CYCLES

(a) Determination of Equation (2,20)
If v =-1 equation (3.7) specifies that for the trajec-

tories shown on figure 8,

“min ~ =1/2 + “1max
for the limit cycle and

= . A
Xypin Tt Axl,i+l (T/2 + Ti) LIRS Axl,i

for the perturbed trajectory. Thus
= . - AT, ' °
kal,i+l ASxi’l Tl (3.26a)

Tbid.

——————
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Similarly if v =1

X i T AX ;T AT (3.26b)

Use of equations (3.9), (3.11), (3.21) 2nd local linearizatiom
produces

-2 -T/2
DXy g4 T (12e172) (Ax y - Axy ) te DXy 4

(3.27)

The same expression results if v =41 or v = -1,

(b) Determination of Egquation (2,21)

Let s' be the value of Xy and X5s when u switches from
+1 to -1 on the limit cycle and Al%z be the variation im Xy
and X, on the i-th crossing of the switching line,

(i) s=0
From figure 8 and equatiom (3.7) it is apparent that
if v =21 then
ATy = Ax - A% (3.282)
but if v =1
- J— A
AT, Ax o+ % i (3.28b)
(i) s2>1

The variation in time between the i and the (i + 1)

switchings of v(t), AZ;Ti, is the variation in the time




interval between the switchings of wu(t) that occué;d‘t = 1
seconds previous to the switchings of .}Rt), the (i - 2s) and
(i +1 - 2s) switchings &f u(t).

From equation (3.7) it is apparent that the change in
the total distance travelled in the Xy direction, between the
(i -~ 2s) and (i +1 - 2s) switching of wu(t), will be the varia-
tion in the time interval, between these switchings. Thus from

figure 8 it follows when

v = -1

ATy =2 A% 4 o5~ AFi00 - 28112 (3.29a)

but if v = 1 then

Al"'\ - -

=2 AX g o0 T AR ot B85 0 (3.290)

Use of equations (3.9), (3.11), (3.12) and local linearization in
a manner similar to that of section (a) above, the variations in
§i+l and Ei may be found to be

(s +1/1)D - 2 el”(s+l/2)T

A% = G+ T o1 2%, T E T ImT a3 2%, (3.30a)
and
A% - (s + L/WT = 2 A S Ax (3.30b)
1

T+ i/T -1 ©%,1 T G+ /LT - 1 2%2,1

(¢) Combination of Equations to Form (2,22)

(i) For s =0

From equations (3.26a) and (3.28a), or (3.26b) and (3.28b),



combined with (3.30a) it follows that

A§i+l = FOA'}S’i (3031)

where

_1-1/2

S SR
o " (T/5 = 1) |
-2 2el”r/2 e--‘I‘/2

C A

"~ Thus

_ =K
Ax =T, Ax,

Therefore if >\l and )\2 are the eigenvalues of F_, the linear
system is asymptotically stable.if !>\j‘<< 1, j=1, 2.6 Thus

the limit cycle mode with s = 0 will be stable for arbitrarily
small perturbations of the switching points and thus of the limit
cycle,

For the system under consideration equation (3.23) for s =0
produces T/2 = 3,75, For this value the eigenvalues are found to

be >\1‘2 = (0,0580 + J 0.0559 so that the oscillation predicted for
b

s =0 1is locally stable,

6Lotfi A. Zadeh and Charles A, Desoer, Linear System Theory

(Toronto: MecGraw-Hill Book Company, 1963), p. A482.
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If

2s+1 28 ~
H(z) = I- Fo - Gy (3.36)
then
25 2s-1
vy =L 2s+1-1 . Rs=1
Ax(e) =1 |13 Ax - T Ez ax | (3.37)
(=0 &o
where
ilg) = adi H(z) _ P(z) (3.38)

~ det H(z) m(z)

where P(z)/m(z) is H'l(z) in the form where all the factors of
det H(z) adj H(z)
celled,

common to all the elements of have been can-

7.

Bvery z-matrix H(z)

Theorem:

of rank n can be reduced by elementary

transformations to the Smith Normal form,

fi(z) O 69 0 O L O

O f2(Z) e oo O LI O

s 0 R0 8 08RG0 0OOCEOTDOOOOCEDOISOOCISOCD

N(z) = 0 0 £ () 0 (3.39)
® 9 @& n -
O O ¢ 0 0 O -2 O
0 0 eae 0 oo 0
L .
7Frank Ayres Jr,, Matrices (New York: Schaum Publishing

Co., 1962), p. 188.

‘“,éi
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where each fiﬁz) is monic (i.e. the coefficient of the
nighest power of Z is unity) and fi(z) divides fi+l(z),
(1 =1, 2, «oo 5 n=1).

When a z-mstrix H(z) of rank n has been reduced to (3.39) the ;.
greatest common divisor of all g-square minors of H(z), g& n 1is the
greatest common divisor of all g-square minors of N(z). This greatast

common divisor is

dg(z) = fl(z) f2(z) ves fg(z) (g =1, 2, evo 5 )

&
Elementry transformations modify the determinant of the matrix
by at most a multiplicative constant. Therefore if H(z) can be

inverted (i.e. is nonsingular)
detH(z) = (fl(z)fz(z) coo fn(z))k

in whieh k is a constant. The greatest common divisor of all

(n - 1)-square minors of H(z) and thus. of adjH(z) is therefore

dn-l(z) = fl(z) fgﬁz)ﬁ;,. fn—l(z)

and so

m(z) = £ _(2) (3.40)

1wto evehlg
Since fi(z) dividesA fi+l(z)g fn(z) contains all the roots

(perhaps to a lower power) that detH(z) contains.,
Consider factors common to all elements of P(z) A(z) where

25 28-1
AD(z)=1 2 225+l°le. - F_ Zz’?'s-l AX,

et 8 S
(::o = 0
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ov

- _
25 251
:gjzzs'lﬁléxxj oD Rt
51 . ‘Lﬁ
1 = .
0 ¢
/ 5‘{1’:} = (3621»1)
2s-1 .
2S
25411 ~T/2N 281
z AJQ 1 ¢ gz - 2,1
el (=0

If the oscillation is to be stable, it must be stable for any
small initial disturbance stored in the delay or placed on the

system. In particular let the disturbance be such that

Q i< 2s
# 0 i=2s

Then

HHAW L 1A, 12

Thus as P(z) is already in reduced form, only the factor z may
cancel in m(z).

It. is obvious from a partial fraction expansion of AX(z),
that if Ax(t) is to have stable behaviour the zeros of m{z) and
thus of detH(z) must all lie in the open unit circles: z| < 1.

If Ax(t) is to have unstable behaviour detH(z) must have
at least one zero outside the closed unit cirecle, If all the zeros
of detH(z) 1lie in the closed unit circle with one or more on the
unit circle higher order terms must be considered to determine:

stability.

o



Theorem:

For a given polynomiazl f(z) = N T anzn, let

all the ak

fj(z) be constructed:

be real and the following sequence of polynomials

et
f(z) = :Ef a('j> z
J keo k k

1l

where fo(z) f(z) and

(341) _ (3) ,(3) _ (3) ,(3)
0

®x k n-j ®n-j-k* 9 Oy 1, eev 5 n =L
(3.40)
Let = a(l) a<2) v a(k> k =1, 2, o0 N
k o o) o “? 3 e
Then, if, for some k<n, P # 0 but fk+l(z) = 0, then f(z)
has n = k 2eros on the unit circle {z] = 1 at the zeros of fk(z);

it has p zeros in this circle, where p 1is the number of negative
;% for j=1, 2, ... , kK and it has q = k - p zeros outside this
circle, 3
From equations (3,323, (3.34) and (3,36) and the definitiom

of a determinant.

detH(z) =

Zzs{zzﬁz S+ e-—T/2)Z23+1 + o1/2 28

L 201 - o1-(s+1/2)T, 2(81-—(s+l/2)T _ e_.T/z}
(3.41)

O/ I R I W/ L N

8Morris Marden, The Geometry of the Zeros of a Polynomial in

a Complex Variable (New York: American Mathematical Society, 1949),
p. 157.




detH(z) = zzs(z + 1)f(z)

where
2W$~1
/2 Yy .
£(z) =22 (2 + &/2),%5 | (1 4 &R Z(-l)lzl
(=1

2(61‘..( s+1/2)T _ e«-T/Z)
(s + 1/4)T - 1

-+

Note: equation (3.23) may be used to show that 2z = -1 is a root
of detH(z).

Determination of the Location of the Zeros of f(z)

(l)__ 2 2
% T 8% T 2gp

A-(s41/2)T _ _-1/2
(s +1/4)T - 1

2(

(3 2

22 1 (3.43)

ai is always less than 1 for s 2 1 (for proof see appendix),
(1)

Thus -1<a,"'< 0 for s2 1

Now

(1)
%o 8, %25 T f2g41 1

(ST 1/2y 172
(s +1/4)T - 1

- 201 + e /3

(3.44)

(3.42)
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From the geometry of figure 7 it is apperent that

(s +1/L)T -1 =9> 0 and

(1-(s1/2)T _ =1/2y _ (~( 8 4T/4) _ ~T/2y> o g

\S < Xmax T/ke

Thus (l)
ang < =2 for s> 1

22 2 2 L) a2 - (3.45)

Thus (L _ (1) (2)
Py =2y Lo P,=a " a, >0
and so there is at least one zero of f(z) and thus of detH(z)
that is outside the unit circle.

It is therefore proven that all the limit cycles for s> 1
are unstable, The predictions of Chapter I have been verified

for this particular case.



CHAPTER IV

DISCUSSION OF RESULTS

In Chapter I, an intuitive discussion of the failure of
Loeb's Rule in systems containing delay is given., It is predicted
that all the higher frequency modes of oscillation in any relay
control system with delay will be unstable,

| In Chapter II an exact method of determining self-oscill-

ations and their stability in a feedback control system containing
a discrete nonlinearity, a delay, and a linear part is developed,

This method is stated in a very general form and can be
simplified for special applications. For instance, if symmetric
oscillations are expected the fact that x(t) = -x(t + T/2) can
be used instead of x(t) = x(t + T) and the number of switching
equations can be reduced by half and their forms simplified,

The chief weakness of the method is that one must first
‘choose the form of the oscillation to be investigated. The method
used in this thesis was to examine the trajectories in the state
space in relation to the switching plane., This, however, requires
Jjudgement and it would be easy to miss a possible limit cycle in
a more complex system., For very complex systems the method would
be close to impossible.

A worthy project would be the development of a system for
predicting possible forms of oscillations,

In Chapter III, the methods of Chapter II are applied to



symmetric oscillations in a particular system, The prediction of
Chapter I is confirmed for this system,

The methods of testing the stability of difference
equations for variations in the switching points is applicable
to other ideal relay systems, for which the state matrix is
disgonal., They will have difference equations and FS and GS
matrices of the same form,

When one considers the argument of Chapter I, one suspects
there should be a general proof regarding instability of symmetric
oscillations the frequencies of which correspond to the intersec-
tion of the Nyquist Plot and critical locus in a region where a
mode of oscillations with O >0 exists regardless of the non-

x| . _ar tThag .
linearity. ks investigationAwould also have merit.,
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APPENDIX

3
Proof that 0L a L1 for s3» 1 in Equation (3.L7)

s = 2(81-(s+1/2)T _ e--T/2> _ 2(6—(3 +T/L) e_’l‘/g)

o (s +1/L)T « 1 ‘g

Since (e—(S"FI'/h) - e;T/2)>O and ‘\’j) 0 (proven on p. 36)
then a(? 0.

Use of (3.23) allows one to write

o Ger(rudare”?)
o (s+L/4)T - 1

It follows from the alternating series rule that

/251 _ 1t/ ir TY6
Substitution of the above and use of '(3.12) gives

a -2+ T1/2+1/2

Ir T then a <1
Tg) % o

Therefore if §>T/5 end T<L1 then a <1
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When s = 1 equation (3.23) gives T = 0,979422., Since 1 = sT + 8
where 0L < T, T decreases in a monotonic manner as s increases,
Therefore T<1 for s>1.

A Lower Bound on }

Differentiation of (3.9) gives

d.X?
—= = _(x, - 1)
dxl P
thus
2 _1
= =1 -
1 (>Z ”l ) )2
where ()Z 7 ) is a point on the x, =x, switching line such that

a tangent through this point of the trajectory with v =1 passes

ax® X2max> point.

through the (le

As the slope of any trajectory decreases when Xy and x

2
increase (xl< 1) \% > V( .
u = 1 u = ;l
(x 3 )
(%,%) Imax’ *2max
/ o
7 7 1

FIGURE 9

A LOWER BOUND ON ?



Use of the point slope eaquation for a straight line gives

yl" amax:l
'7 = Fmax -V(

2\
Substitution from (3.,11) and (3,2Z) and use of the quadratic formula

produces
T/2
— + ¢ 2 9.__.“..‘.:...:.!:
.YZ]_’ZM‘F/B.. \/(T/’3> —T/4+GT/2+]_

Check That Figure 9 Correctly Represents the Geometry

As T/2
X,  Sx then T/4> Soe=- = tann(T/4)
1m 2max ) 8T72 1

thus

Yl =T/8 + \/(T/S)?’ - T/l + tann(T/L) < T/L

The geométry of figure 9 correctly represents this solution for yZl

as

YL1<T/[,,<1 for s 2 1.

Now a.o<l for s2 1 if

1/8 + \[(1/8)° - 1/1 + tenn(1/1) > /5



This is true if
L(?) = tanh?/4 > T/L - Tg/lQO = R(T)

These are smooth curves. A calculation of values indicates
that this inequality is valid for 0K T<2.12 (approx.). The curves

have a point of tangency at T = O. However, the second deérivatives

2 2
d” 1(T d“ R(T
=, (1) =0 =nd =, (1) = _ 150

aT T=0 daT

indicate that for srbitrarily smell T >0 L(T)7? R(T).

The slopes of these functions are respectively

dL. 1 2, dR _ o
i sech™ T/} and 37 1/4 - T/50

Since the shapes of these functions are well known it is easy to see
that
: 2
(1/4) seeh”™ T/L > 1/k - T/50

on the range 0<T<1.39 (approx.).

Thus the curves diverge properly at T = 0, and remain apart

because of the slope condition over the range T assumes for s> 1,

Thus
O<ao< 1 for s >1,

L5



